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ABSTRACT

Theoretical aspects of a new capability developed and implemented in NASTRAN
Level 17.7 to analyze forced vibration of a cyclic structure rotating about its
axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of
turbomachines are some examples of such structures. The capability includes the
effects of Coriolis and centripetal accelerations on the rotating structure which
can be loaded with:

1) directly applied loads moving with the structure and

2) inertial Joads due to the translational acceleration nf the axis of
rotation ('base' acceleration).

Steady-state sinusoidal or general periodic loads are specified to
represent:

1) the physical loads on various segments of the complete structure, or
2) the circumferential harmonic components of the loads in (1).

The sinusoidal Toads are specified as functions of frequency and the general
periodic loads are specified as functions of time. The translational acceleration
of the axis of rotation is spacified as a function of frequency in an inertial
coordinate system.

The cyclic symmetry feature of the rotating structure is used in deriving
and solving the equations of forced motion. Consequently, only one of the cyclic
sectors is modelled and analyzed using finite elements, yielding substantial
savings in the analysis cost. Results, however, are obtained for the entire
structure. A tuned twelve-bladed disc example is used to demonstrate the various
features of the capability.



1. INTRODUCTION

Under the sponsorship of NASA's Lewis Research Center, a series of new
capabilities has been developed and added to the general-purpose finite-element
structural-analysis program NASTRAN [1-7]. A variety of problems including
static aerothermoelastic and dynamic aeroelqstic analyses of tuned cyclic
structures,and modal analysis of mistuned cyclic structures, such as bladed
discs of turbomachines, and advanced turbopropellers have heen addressed.

This paper presents the theoretical aspects of one of these NASTRAN capabilities
[4,57.

Figure 1 illustrates the problem by considering a 12-bladed disc as an
example. The bladed disc consists of twelve 30° segments--identical in their
geometric, material and constraint propérties. The disc rotates about its axis
of symmetry at a constant angular velocity. The axis of rotation itself is
permitted to oscillate linearly in any given inertial reference. In addition,
the bladed disc is allowed to be loaded with steady sinusoidal or general periodic
Toads moving with the structure. Under these ronditions, it is desired to deter-
mine the dynamic response (displacement, acci ‘= -ation, stress, etc.) of the
bladed disc.
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2. EQUATIONS OF MOTION

The cyclic symmetry feature of the rotating structure is utilized in deriving
and solving the equations of forced motion. Consequently, only one of the cyclic
sectors is modelled and analyzed using Tinite elements, yielding substantial
savings in the analysis cost. Results, however, are ubtained for the entire
structure. The Coriolis and centripetal acceleration terms have been included.
For clarity of derivation, the equations of motion are first derived for an arbi-
trary grid point of the cyclic sector finite element model, and then extended
for the complete model.

COORDINATE SYSTEMS

These are shown in Figure 1. ©0-XYZ is an inertial coordinate system,
O-XBYBZB is a body-fixed coordinate system such that OXB coincides with the axis
of rotation of the structure and is always parallel to O0X. For a NASTRAN finite
element model of the bladed disc, O-XBYBZB also represents the Basic coordinate
system. A-xyz is a body-fixed global coordinate system in which the displace-
ments of any grid point P are desired. The unit vectors associated with these
coordinate systems are also shown in Figure 1.

DEGREES OF FREEDOM L

The rotating structure is permitted four rigid body motionshincluding three
translations (along 0X, OY and 0Z) and one rotation at a constant angular velocity
$ about its axis of rotation OXB.
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Each grid point of the structure is permitted six degrees of freedom,
The displacement at any grid point in any sector can be expressed in any body-
fixed coordinate system as a combination of:

1) the steady state displacement due td the steady rotation of, and the
steady state loads applied to, the structure, and

2) the vibratory displacement (superposed on the steady displaccment) due
to the vibratory excitation provided by the directly applied loads and the
inertial loads due to the acceleration of the axis of rotation ('base’
acceleration).

The purpose of .the present development is to determine the vibratory
response.

LAGRANGE FORMULATION

Referring to Figure 1, the complete tuned structure consists of N identi-
ca’ cyclic sectors. If u represents all the vibratory degrees of freedom of the
complete structure, the equations of motion can be derived via the Lagrange
formulation,

d 3T, T ,030,3D _ oW
ot ( 55‘) "ttt C o (1)

where T and U represent the kinetic and strain energies, respectively, of the
complete structure; D is the Rayleigh's dissipation function representing the
energy lost in the system due to resisting forces proportioné] to velocities U
(e.g. viscous damping forces); and &W represents the virtual work done on the

structure by the external forces through virtual displacements du.

The complete set of degrees or freedom u can be subdivided into N subsets,
each containing u” degrees of freedom for each of the N cyclic sectors. Since
any given cyclic sector is 'connected' to adjacent cyclic sectors only on its
two sides, u" satisfies the intersector boundary compatibility condition

n . Nl _
Uside 2 = Uside1 * N =122 .o N (2)

Equations (1), therefore, can be written as N sets of equatfbns coupled
only as given by equations (2):
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For clarity of presentation, without loss of generality, equations (3) are
first applied to obtain the equations of motion of an arbitrary grid point in any
cyclic sector by considering its three translational degrees of frecd>m. Inclu-
sion of the three rotational degrees of freedom at the arbitrary grid point, and
ex@ension to include the remaining grid points in the cyclic sector ar: con-
sidered subsequently. '

EQUATIONS OF FORCED MOTION

With reference to Figure 1, point P is an arbitrary grid point of the nth
cyclic sector with a mass of 'm' units Tumped from the adjacent finite elements.
Substitution of the expressions for T, U, D and SW in the Lagrange equations (3)
results in the following equations of forced motion of point P expressed in the
displacement (global) ccordinate system A-xyz:

o] @)+ 18] + 2aed] @+ [1KD - 9Piw ] ) = P) - DD GRp)

(4)

The terms appearing in equations (4) are given in Appendix A.

Equations (4) describe the translatory motion of an arbitrary point P in
an arbitrary sector n of the rotating cyclic structure subjected to a directly
applied vibratory load {P} and base acceleration {ﬁo}.

These equations can be extended to include the three rotational degress of
freedom at point P by noting that:

1) in a2 lumped mass model, only the transiational degrees of f-eedom at
any grid point contribute to the kinetic energy of the structure, and

2) the coupling between various degrees of freedom may exist only via
the stiffness matrix. (Instances where the damping matrix is defined
proportional to the stiffness watrix also may result in coupled equations
of motion.)

Accordingly, the matrices derived from kinetic energy considerations,
™M1, [813. [M]J and [MZJ of 2quation (4 ) can be expanded as typified

by
M,1) o
M = |- == - (5)
6x6 0 : 0 >
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where [MttJ is the 3x3 (translaticnal) mass matrix of equation (4 ). With sub-
scripts t and r representing the translational and rotational degrees of freedom
at point P, the stiffness and damping matrices may be expandad as

Pr )
Kl = |- = (6)
[8,,] | [B,,]

and (B] = |----—- (7)
L[Brt] : [Brrj_ ) v

By similar reasoning, the equations of forced vibratory motion of all the
cyclic sectors of the total structure can be written as

[y {;B"J + zn[a’{J]{ﬁ"} + [[K"J - QZ[M;‘J}{u"} tP") - MOYMR D,

n=1,2, ..., N. (8)

The intersegment boundary compatibility is specified by equation (2).
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3. SOLUTION OF EQUATIONS OF MOTION

The method of solution of the equations of forced motion (equations 8
and 2), is based upon the form in which the excitation of the rotating struc-
ture is specified. Because of its eventual implementation in tne wASTRAN
general purpose finite element structural analysis program, the following
soiution procedure is generally similar to the theoretical presentation of
cyclic symmetry given in the NASTRAN Theovretical Marual [8].

METHOD OF SOLUTION

The method of solution of the equations of motion consists of four principal
steps:

1) Transformation of applied loads to frequency-dependent circumferential .
harmonic components.

2) Application of circumferential harmonic-dependent inter-segment com- |
patibility constraints.

3) Solution of frequency-dependent circumferential harmonic components of
displacements.

4) Recovery of frequency-dependent response (displacements, stresses, loads,

- etc.) in various segments of the total structure. u‘

L

-8-

™~



An overall flowchart outlining the solution aigorithm is shown in Figure 2.
Provision to include the differential stiffness due to the steady loads is also
shown. '

1. Transformation of Applied Loads

’

The transformation to frequency-dependent circumferential harmonic components
depends on the form in which the excitation is specified by the user.

Details of the five loading conditions considered are as follows:

Directly applied loads (segment-dependent and periodic in time)

1f p" represents a general periodic load on sector n specified as a function
of time at M equally spaced instances of time per period (Figure 3 ), the load
at mth time instant can he written as

m o £ fc -2 =M/2
P = p" 4 T [P" cos(m-Tab) + P" sin(m=Tab)| + (-I)m']Pn , (9)
2=1

m=1,2, ..., M ,

where b = 27/M, 8y = (M-1)/2 for odd M, 2, = (M-2)/2 for even M, .The last term
in equation (9) exists only when M is even The coefficients Png
(“2" = 0; 2c, 2s, 2=1, 2, ..., 2 3 M/2) in equation (9) are independent of time,
and are defined by the relations

-o m

%Z . o, (% = 0) Part of (10)
m=

i
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Each of the coefficient vectors P

P" cos(m-T2b),

Y P" sin(m-Teb), and
m

?(R"'. 25 seey R’L)
> (10 Contd.)

/

m
5 ) ](-l)m'] P" (M even only) (2=M/2).
AL

_u&n

on the left hand sides of equations

(10) can further be expanded in a circumferential (truncated) Fourier series

a = 2n/N

_n;:u

-t 2“ - llgﬂ kL -ugll _llgu
P =P 4 E : [%k cos (n-1ka) + 7 sin(ﬁ:Tka)} + (-1)"']?N/2
(1)
where n =1, 2, +.., N )
2" = 03 €y, 85,2 = 1, 2, vuuy & M/2
 (12)
k= (N=1)/2 for N odd
kL=(N-2)/2 for N even.
/

The Fourier

The last term in equation (11) exists only when N is even.

coefiicients

Ngn
=
P ("k" = 0y ke, ks, k=1, 2, ..

do not vary from sector to sector, and are defined by

_lln'l

] 2‘“

pii/2

+» k3 N/2) in equation (1)

N Y N
]N ) 1 p" (k = 0)

n=

N _l'zll
% ) ] P" cos(n-Tka)

n=

(k o 1. 2’ veey kL)

N -“2"
% 5_1 P" sin (n-Tka), and

N llzll
% y ](-1)"'1 P" (N even only) (k = N/2)

n= p

-10-
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The terms F'k' ("2" = 0; 2¢c, 25, 2. = 1, 2, +uss s M/2 and "k" = 0; k¢, ks,
k=1, 2, ..5» kL; N/2) are the transformed frequency-dependent circumferential

harmonic components of the directly applied loads PW (m=1,2, ..., Mandn=1,
2‘ 20y N)u

_ Directly applied 10ads (Circumferential harmonic-dependent and periodic in
time).

Such loads can be represented as

w []] -9 ] 2L -ﬁc.l -I%S" -w/?l
FK =FK 47 : P K" cos(MTab) + P K sin (FeTeb)| + (-1)™ 15 K", (14)
J'A

wherem =1, 2, ..., M represent the time instances at which harmonic components
"k" = 03 ke, ks, k = 1.“25 coey kL; N/2 of directly applied loads are specified.
-2

The coefficients $"k" on the right hand side of equation (14) are obtained
using equations (10) with sector number n replaced by harmonic number "k'.

Directly applied lo~ds (frequency-and segment-dependeiit)

This type of loads can be represented as

iy Mg k ~tgn Mg =g
M= F 4+ 1 P*C cos(mTka) + PKS sin('ﬁ'-_fka):| + (0T EV2 D (1s)
k::

where "2" (=1, 2, ..., F) now represents the frequencies at which excitation is

specified, The transformed frequency-dependent circumferential harmonic components
- 2"

P k" ("k" = 0; ke, ks, k=1, 2, ...y kL; N/2) are obtained using equations (13)
with "2" as defined above.

Directly applied loads (frequency-and circumferential harmonic-dependent)

These logdﬁ are the transformed frequency-dependent circumferential harmonic
components 3’“&" ("k" = 0; ke, ks, k=1, 2, ..., kL; N/2) with "2" (=1, 2, ..., F)
representing the various frequencies at which the directly applied loads are
specified,

Base acceleration (frequency- and circumferential harmonic-dependent)

In Appendix B, it is shown that the components of the transﬁationa] base
acceleration contribute to inertial loads on the rotating structure in the follow-
ing manner:

R S
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1. Axial compcnent contributes to'F"k" where "k" = 0, and "2" represents the
specified excitation frajuencies. .,
2. Latera) components contribute to F"k" where "k" = 1c and 1s, and "&" re-
presents the effective excitation frequencies which are shifted from the

specified frequencies by * 9, the rotational frequency.

2. Application of Inter-Segment Compatibility Constraints

As shown in Section 4.5.1 of Reference 8, equations (2)
are used to derive the compatibility conditions relating the circumferential
harmonic component degrees of freedom on the two sides of a rotationally cyclic
sector:
side 2 side 1

, 3
oI (k = o
—Xc —kc

U3 cos(ka) + Eﬁs sin(ka)
> k=1, 2 . k) o (16)
ks -Efc sin(ka) + U?s cos(ka)

and U’g/z . -'J']"/z : (k = N/2)

o

In order to apply these constraint relationships for any given harmonic k,
an independent set UK consisting of the circumferential harmonic component (cosine
and sine) degrees of freedom from the interior and side 1 of the cyclic sector is
defined. UK is selected from the 'analysis' set degrees of freedom (i.e., the
degrees of freedom retained after the application of constraints and any other
reduction procedures), and is defined as

TAC G,y (k) a*,  and
(17)
Uks = GSk(k) UK .

Ukc and E*s each contain all (and only) the 'analysis’set degrees of freedom
frem the interior and both sides of the cyclic sector. Equation§¥16) are used
to define some of the elements of the transformation matrices Gck and G- For
k = 0o and N/2, the matrix Gsk is null.

-12-
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3, Solution of Frequency-Dependent Harmonic¢ Displacements

For a given harmonic k, the introduction of UK in the equations of motion,
equations (8), results in the transformed equations of motinn

' maaK + BRGK + RO - B , (18)
= T w0 N
where M = Gck MG ck + Csk M sk

QPSS T g
& 6, B 6oy + Gry B" Gy

7K T 0 T n
K" = Gck K Gck + Gsk K GSk , and

As discussed earlier, 5*C and st are the transformed
frequency-dependent circumferential harmonic components of the directly applied and

base acceleration loads,

At any extitation frequency w”, Jet

P = BRele™t  and accordingly,
UK - ﬁKeiw’t ,

where 5K and ﬁK

(20)

are complex quantities. Equation (18) can be rewritten as

[-w’z ﬁK + ju B 4+ T(',K]ﬁK = 5K

~
n
—

~—

The excijtation frequency w” is given by

w” = w for all directly applied and axial base acceleration
loads, and (22)
= w0 for lateral base acceleration loads.

Equation (21) is solved for EK for a1l excitation frequencies and all harmonics

as specified by the user. The cosine and sine harmonic components of displacements
are recovered using equations (17).

4, Recovery of Frequency-Dependent Displacements in Various Segments

This Step is carried out only when the applied loads are specified on the 3
various segments of the complete structure.

-13- w



For Joads ﬁpgcified as functions of time, equation(11) is used to obtain the
displacements N in varjous segments with "&" = 0; %c, &s, 2= 1, 2, ..., Imax®
The circumferential harmonic k is varied from kmin to kmax‘ The user specifies

fmaxe Kmin @9 Kpay:

For loads specified aglzunctions of freguency, equation (15} §s used to
obtain the displacements " in various segments with "&" representing the

extitation frequencies. The circumferential harmonic is varied from user speci-
fied kmin to kmax’

The theoretical development discussed above has been implemented as a new
capability in NASTRAN Level 17.7. A1l aspects of the capability, including
DMAP changes, are extensively documented in References 4 and 5.

-14-

wiJ

&)



4. EXAMPLES

Five inter-related examples are presented to illustrate the theoretical
development of the previous sections. The new capability added to NASTRAN to
conduct forced vibration analysis of rotatipg cyclic structures [5] has
been used to conduct these examples. A 12-bladed disc is used for
deionstration.

Example 1 is conducted on a finite element model of the complete structure
(Figure 4). Examples 2 through & use a finite element model of one rotationally
cyclic sector (Figure 5). Results of example 1 are used to verify some of the
results obtained in the remaining examples. Table 1 summarizes the principal
features of these examples.

Steady-state frequency-dependent (sinusoidal) or time-dependent (periodic)
loads are applied to selected grid point degrees of freedom. The specified loads
can represent either the physical loads on various segments or their circumfer-
ential harmonic components. For illustration purposes only, the frequency band
of excitation, 1700-1920 Hz, due to directly applied loads and base acceleration )
is selected to include the second bending mode of the disc for a circumferential K
harmonic index k = 2. The 'blade-to-blade' distribution of the directly applied
loads also corresponds to k = 2. Table 2 1ists the first few natural frequencies
of the bladed disc for k = 0, 1 and 2. Modes for k = 2 are shown in Figure 7. g‘

GENERAL INPUT

1. Parameters:

Diameter at blade tip = 19.4 in.
[iameter at blade root = 14.2 in.
Shaft diameter = 4,0 in.

Disc thickness = 0.25 in.

Blade thickness 0.125 in.

Young's modulus 30.0 x 106 1bf/in2
Poisson's ratio = 0.3

Material density = 7.4 x 1074 1bf-sec?/in®
Uniform structural damping (g) = 0.02

-15-
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2. Constraints:

A cylindrical coordinate system with origin at the Basic origin, Z axis
along Basic X axis, and @ measured from i;:2 Basic Y axis is chosen as the global
(displacement) coordinate system for all grid points.

A11 constraints are applied in body-fixed global coordinate system(s).
A11 grid points on the shaft diameter are completely fixed. Rotational degrees
of freedom 8, at remaining grid points are constrained to zero.
c

y1
RESULTS

Figures 8 and 9 present a comparison of grid point displacement and element
stresses from examples 1 and 2. The results are seen to be identica’ from both
these examples. The CPU time, however, on IBM 370/3031 was 750 seconds for
example 1 as compared to 185 seconds for example 2. The expected behavior about
the k = 2 natural frequency of 1814 Hz can be seen in both these figures.

Figures 10 (k = 0), 11 (k = 1c) and 12 (k = 2c) are from example 3. The

k = 0 excitation consists of axial base acceleration and directly applied loads.
The selected frequency band of excitation, 1700-1920 Hz, 1ies between the second
out-of-plane disc bending mode frequency (1577 Hz, k = 0, Table 2) and the first
in-plane shear mode frequency (1994 Hz, k = 0, Table 2). Since the excitation
is parallel to the axis of rotation, only the former mode responds. The K = 1
excitation is due to lateral base acceleration only. Although the frequency b
band of input base acceleration is 1700-1920 Hz, the rotation of the bladed disc
at 600 Hz splits the input bandwidth into two effective bandwidths:

(1700 - 600) = 1100 to (1920 - 600) = 1320 Hz, and
(1700 + 600) = 2300 to (1920 + 600) = 2520 Hz.

oSy T W

The only k = 1 mode in these effective bandwidths is the first torsional
mode of the blade with the disc practically stationary (2460 Hz, k = 1, Table 2).
This is shown by the out-of-plane displacement magnitudes of grid points 18
(blade) and 8 (disc) respectively (Figure 11). The k = 2 excitation consists of
directly applied k = 2c loads. The out-of-plane displacement magnitude of grid
point 18 (Figure 12) compares well with that obtained in example 2 (Figure 8).
Table 3 1ists the out-of-plane displacement response of grid point 18 as obtained
in examples 2 and 3. The marginal difference in response in example 3 is due to
the Coriolis and centripetal acceleration effects at a rotational speed of 600
revolutions per second.

Resuits from examples 4 and 5 compare well with tn from example 3, and
are shown in Table 4. k

-16-



5. CONCLUSIONS

1. Theoretical aspects of a new capability, develcped and added to the
general purpose finite element program NASTRAN Level 17.7 to conduct forced
vibration analysis of tuned cyclic structures rotating about their axis of
symmetry, have been presentad.

g

2. The effects of Coriolis and centripetal accelerations together with
those due to the translational acceleration of the axis of rotation have been
included.

3. A variety of user options is provided to specify the loads on the
rotating structure.

4. Five interrelated examples are presented to illustrate the various
features of this development.

-17-
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APPENDIX A

TERMS APPEARING IN EQUATION 4

(includes all differential stiffness

Ux7
fuy =9 Uy
o,
P,
{P} = i Py S
P, '
5 - § §
global T
M) =M1 = [1%5)
global
[8] = [B ]
global T
(8,1 =08, = [1°)
global
(kK] = [K]
global o T
M=% =[1%]
| 0 0
[MZ] = [TGBJ 0 mc ms
0 -ms mc

o 3

o O O

0

o

m

0

0

=m

0

0
0
m

[1°%

(%)

contributions) (A7)

(A8)
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KD Cad =D

cosfit ,

= 19

S

1
§

R8

-~
-
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B

B

sinQt

, and
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APPENDIX B
INERTIAL LOADS DUE TO BASE ACCELERATION

The acceleration of the axis of rotation generates inertial loads at all

grid points of the complete structure. In this appendix, the generation of these

inertial loads and their transformation to frequency-dependent circumferential
harmonic components are discussed.

As given by equation (4), the inertial forces on the

three translational degrees of freedom at an arbitrary point P of the modelled
cyclic sector, expressed in the global (displacement) coordinate system, are

78y = -t 20k ) = [P020P%) (81)
where
B
Py m 0 01{1 o0 0O y 50 /
(P8} = Py = -lom ollo ¢ s Y, S (B2)
Pz 0 0 m 0 -s ¢ 20 ’

sin Qt.

i

with ¢ = cos Qt and s

Since all the cyclic sectors are identical in all respects except for the
specified loads, no generality is lost in assuming, for simplicity, that the
modelled sector is the n = 1 sector. Equation(B1) can, then, be rewritten as

1 0 0
w8 =8 o ¢, s | B (83)
0 S, Cp ,
where
c, = €os (n-1+1.2n/N), and } (88}
s, = sin (n=T « 1« 21/N)
Substituting equation (B3)in equations (13), and noting that
% c. =0 (B5)
n=1 "

-22-
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m
o

S
Lsp

e, e cos (n-Teke2n/N) = N/2
n

Iy * cos(-T+ke-2n/N) 20 ,

n

ch e sin(n=Teke2n/N) 20 ,

n
Zsa « sin{n=T e« ke« 2n/N) = N/2
n

=0

tne circumferential harmonic components

B
Y‘Px

G
{'P-O} = [TBGJZg ("k"
_ o - B
Fey = 188 Py { (k"
P,y
G 0 4"
{"3'15] = [TBGJ Pzﬁ (nku
-PY ,

G
{ﬁkc,ks} = {0} , all other "k".

" -

y k=1
y k#1
> (85)
(contd)
9 k=.'
y kil

-

of the base acceleration lcads become

3
0)
1c) *
b (86)
1s) , and
J i"

In the present development, the components of base acceleration XO, Y0 and
Z0 are considered to be sinusoidal of frequency v, and are specified as ‘

XO. mag cos(ut +¢>x) ,

> 2
o
]

- 2
]

Yy = YO, mag cos (wt +d§) , and

ZO = ZO, mag cos{ut +g)
-23-
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From equation (B2) therefore, we can write
Py = -mxo'mag. cos (wt + ¢)

PYB = 'm[YO.mag cos 0t cos(wt + ¢Y) + Zo,mag sin Qt ¢ cos{wt + ¢Zﬂ' and

7 = 'm['Yo.mag sinQt » cos(uwt + ¢Y) + Zo,mag cos §: cos{wt + ¢Z)J. .f(ae

The cosine and sine products in equations (B8) can be expressed in terms of
individual cosine and sine terms with frequencies (w + ) and (w - Q).

The following conclusions about base acceleration loads can, therefore, be
drawn by substituting equations (B8) into equations (B6):

1. The axial component of base acceleration, ko(w), contributes to FO

tation frequencies w.

at exci-

2. The lateral components of base acceleration, Yo(w) and Zo(w), contribute to
Fqc and ?45 at excitation frequencies (w * Q) fur each w specified.

-24-
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NOMENCLATURE

Damping matrix

Coriolis acceleration coefficient matrix
Rayleigh's dissipation function

"Symmetric Components" transformation matrix
Unit vectors along Inertial XYZ axes
Unit vectors -long Basic Xy Yp Zp axes (Figure 1)
Unit vectors along Global xyz axes

Stiffness matrix

Circumferential harmonic index

Time harmonic index

Mass matrix, number of time intervals per period (Figure 3)
Centripetal acceleration coefficient matrix

Base acceleration coefficient matrix

Mass

Nurber of cyclic sectors in the complete structure

Load vector

Aerodynamic coefficient matrix

Base acceleration vector

Position vectors (Figure 1)

Kinetic energy, coordinate system transformation matrix
Time

Strain energy

Physical displacement degrees of freedom

Virtual work

Rotational frequency

Forcing frequency ¥




NOMENCLATURE (Continued)

Superscripts

Basic

Global

Independent solution set in "symmetric components”
mth time instant

nth cyclic sector

L Fourier coefficients ("symmetric components")

The above superscripts have been used in the paper to qualify various
scalars, vectors and matrices, such as T, U, u, Py M, K. They
should not be confused with exponents.
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