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Abstract

In this paper we show that the total variation diminishing (TVD) finite
difference scheme which was analysed by Sweby [6] can be interpreted as a Lax-
Wendroff scheme plus an upwind weighted artificial dissipation term. We then
show that if we choose a particular flux limiter and remove the requirement
for upwind weighting, we obtain an artificiai dissipation term which is based
on the theory of TVD schemes, which does not contain any ﬁroblem dependent
parameters and which can be added to existing MacCormack method codes.

Finally, we conduct numerical experiments to exapine the performance of this

new method.

Research supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-17070 while the author was in residence at ICASE,
NASA Langley Research Center, Hampton, VA 23665.



1. TIntroduction

A major result of recent research into numerical methods for the solution
ofrsystems of hyperbolic conservation laws has been the development of second
order accurate total variation diminishing (TVD) finite difference schemes.
These schemes have a number of attractive properties including the fact that
they resolve discontinuous solutions well, they do not exhibit spurious~
oscillations and, under certain circumstances, they can be proven to converge.

Unfortunately, the apparent complexity of these schemes has thus far
discouraged their widespread adoption. Instead, most applications progams use
standard methods such as the MacCormack variant of the Lax~Wendroff method and
add additional artificial dissipation to damp the spurious wiggles that occur
near discontinuities. These dissipation terms are usually chosen in an ad hoc
fashion and usually contain problem—dependent parameters which must be fine
tuned before the method will work.

In this paper we attempt to remedy this situation. In particular, we
interpret the TVD finite difference scheme which was analysed by Sweby [6] as
a Lax-Wendroff scheme plus an upwind weighted artificial dissipation term. We
then attempt to simplify this artificial dissipation term by removing the
requirement that it be upwind weighted. The result is a dissipation term which
is based on the theory of TVD schemes and which does not contain any free
parameters,

An outline of this paper is as follows. In section 2 we briefly review
the theory of TVD finite difference schemes. Using this theory, we derive an
artificial dissipation term for scalar hyperbolic equations in section 3 and
we examine its performance in numerical experiments. These results are
extended to systems of hyperbolic equations in section 4 and additional

numerical experiments are performed. Section 5 contains some closing remarks.



2. Total Variation Diminishing Finite Difference Schemes
We consider the initial value problem for a scalar conservation law. That
is
u, + f(uw) =u,_ - a(uu_ =0, alu) = df (v) t>0
t X t x ? du ’
(2.1)

u(x,O)

uo(x), -0 £ x £ o

where uo(x) is assumed to have bounded total variation. A weak solution to

this problem has the following monotonicity properties.
(1) No new extrema in x may be created.

(2) The value of a local minimum is nondecreasing and the value of a local

maximum in nonincreasing.

The total variation of the solution to (2.1) at time t is defined by the
formula

(2.2) TV(u(x,t)) = sup ] |ulx,,,t) - ulx,0)],
k

where the supremum is taken over all partitions of the real line.

It follows from this monotonicity property that the totai variation in

x of u(x,t) does not increase in t. That is

(2.3) TV(u(tZ)) < (ult))), for all t, >t

Much recent research has been devoted to the construction of finite

difference schemes that satisfy a discrete version of equation (2.2). We

briefly describe this work below.



Consider explicit finite difference schemes in conservation form which

approximate (2.1) and which we denote by

(2.4) Un+1 - L-Un.

A scheme is called total variation diminishing if

n+1

(2.5) v(t™ ") = 1v(L.U") < Tv(U").

In addition, a scheme is called monotonicity preserving if the finite

difference operator L is monotonicity preserving; that is, U® a monotone
mesh function implies that LeU? is also a monotone mesh function. The

following result, presented without proof is due to Harten [3].

Theorem 2.1 (Harten). A total variation diminishing scheme 1is

monotonicity preserving.

This says that TVD schemes will not produce spurious oscillations. This
is their chief attraction.

Another reason why TVD schemes are attractive is that it is very useful to
have a bound on the total wvariation of the solution when proving convergence
of nonlinear difference schemes [cf. 4, 5]. Equation (2.5) provides such a
bound but convergence proofs are beyond the scope of this paper.

The scheme (2.4) can be written in the form

ntl _ .n _ n n
(2.6) U, =0y Ck_l/zAUk_1/2+ Dk+1/2AUk+1/2



where

n

2.7 n =gt -
(2.7) AUy 1= Upear ~ Uy

and  Cy.1/9 and Dyyy/9 are functions of UD, Harten [3] proves the
following Lemma which provides a sufficient condition for the scheme (2.6) to

be total variation diminishing.

Lemma 2.2 (Harten). If the coefficients C and D of equation (2.6)

satisfy the inequalities

0< Gy,

(2.8) 0< D1y,

0<

=l Ck+ 1/2+ Dk+ 1/2 L1

then the scheme (2.6) is total variation diminishing.

Later, we use this Lemma to prove that our scheme is TVD.

3. Scalar Equations

For ease of presentation, we first consider the scalar linear equation

(3.1) ug + auy = 0, a = const. > 0.



Sweby [6] considers the solution to this problem using a scheme of the

form
+1 v + , + +
(3.2) U = U - vt + Y (10 le(n) iy - o(n b g,
where
Au?
(3.3) Vv = _a_é.E.’ r+ = __1_‘:_1_/2
At k AUn
k+ 1/2

and ¢(rk) is the flux limiter. This is a scheme of the form (2.6) with

(3.4) Gty = V{1 + 1o 0 [0(x) /ry - 65 ))]}

Dk+ 1/2: 0 *
A sufficient condition for the scheme (3.2) to be TVD is that v 1 and
+, + +
(3.5) '¢(rk)/rk = ¢(rk_1)l L2

Sweby also specifies that ¢(r) > 0 and that ¢(r) =0 for r < 0. Under

these additional restrictions the bound (3.5) becomes
(3.6) 0< ¢(x)/r, ¢(r) < 2.
If ¢(r) =1, scheme (3.2) reduces to the centered difference Lax~

Wendroff method. If ¢(r) = r, scheme (3.2) reduces to the second order

upwind Warming and Beam [8] method.



The region defined by (3.6) is shown in Figure 1 along with the limiters
corresponding to the Lax-Wendroff and Warming-Beam methods. Since these
schemes are known to produce spurious wiggles 1in solutions with steep
gradients, it is not surprising that these schemes are not uniformly within
the TVD region.

Since the Lax-Wendroff method does not require one to determine an upwind
direction and since many production computer codes are based on the Lax-
Wendroff method or its variants, we wish to examine the possibility of adding
terms to these codes to obtain a TVD scheme.

If we add a term of the form

+

+y , 0,00 + +
(3.7) K+ Y (rk)AUk+ I~ K- Y ( rk—l)AUIkz— 1

to the Lax-Wendroff scheme

2
ntl _ .n _v Y n

(3.8 e =T~z (40 +1p7 20, 1/2) + 3= (85 +1p 7 A0 1)
and rearrange this to the form (3.2) we get

Kerl
(3.9) UE“ = Uﬁ - [v{1 +1/2(1-v)[1/r; - 1]} - { :+/2‘ Iﬁt_ 1/2}]AU;:_ Iy, ¢

k
That is K;
1 +
Cmlpy = v{1 +1/2(1—v)[1/r; -1]} - { ++/2- K 1/2}

(3.10)

Dk+ 1/2 = 0,



A comparison of (3.9) with (3.2) shows that we can obtain Sweby”s scheme

if we choose

(3.11) K;+1/2= > (w1 - o(x)]-

Next we consider the equation

(3.12) u. + auy = 0, a = const. < O,

For this problem Sweby”s scheme takes the form

where

#(r)
ol _ _ - _ k n
(3.13) v, o= UE +v{-1 +1 a+)fe(x,,) ..._F-] hau’, L,
k
n
AU
M1

and our modified Lax-Wendroff scheme takes the form

| ; - 1
(3.14) 02 = @+ v[{-1 +1p () [1- —-1;_—]} Ky, " Ek;-:/-z}]AUz,, 1 *
k Kk

This reduces to Sweby”s scheme if we choose

v(1l+v)

(3.15) K4 1= =7 [o(r,,,)-1]-

A comparison of equations (3.11) and (3.15) shows how the sign of the



coefficient a changes the method. In particular, we see that as a changes
sign, the definition of r changes and the form of the term involving the
Courant number Vv changes. We can combine these two cases into a Lax~
Wendroff method with an upstream weighted artificial dissipation term as

follows. Put the scheme into the form

2
n+l _.n _ v, m _ . v m _,m_.n
U =0~ 5 (U= Temy) + 5 (U — 20 + U )
+ + - = o o
(3.16) + [Kk+ llz(rk) + Kk+ l/z(rk-i-l)] Uk+1 - Uk)

- [KZ_ 1/2(r+_1) + K;_ I/Z(r;)](UE = Ultcl—l)

where
7 Q01 -e(r)] . if a>o0
+ —
Kk+1/2—
0 , if-a<o0
(3.17)
0 v , if a>0
1(k+1/2=
v —
5 A)[o(r,,) - 1] , 1if a<o.

This method still requires that we know which direction is upwind. For
hyperbolic systems it is this requirement that makes upwind difference schemes
complicated, Therefore we attempt to construct a method without upstream

weighting by rewriting equation (3.17) as follows



K1y, = b a=1vDl1 - o(5)]

(3.18)

Keu 1y, T3k G=IvDIL - o, )]

It is obvious that the terms involving the K”s are dissipative. The
question that needs to be adressed is how much more dissipative (3.18) is than
(3.17). To obtain some idea about this we compute the solution to the

equation

with square wave initial data. We use the MacCormack version of the Lax-

Wendroff method and the limiter defined by

min(2r,1), if r>0
(3.20) $(x) =
0 », 1if r <0,

Figure 2a shows the result of this computation after 100 steps at a
Courant number, v = .9 using the MacCormack method without additional
dissipation. Note that the solution exhibits severe oscillations in those
regions where rt 1is small as predicted by Figure 1. Figure 2b is the result
of the same computation using the MacCormack scheme with the upwind
dissipation (3.f7) and the flux limiter (3.20). |Notice that the spurious
oscillations have been removed. Finally, Figure 2c shows the result of the
same computation using the MacCormack scheme with the siﬁplified dissipation
(3.18) and the flux limiter (3.20)., These results are almost indistinguish-

able from those of Figure 2b, 1In addition we can prove the following:
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Theorem 3.1. The method (3.16), (3.18) with flux limiter (3.20) is TVD

under the restriction that the Courant number [v]| < L.

Proof. The proof is a direct appliction of Lemma 2.2. That is, we show

that if the scheme is put into the form

ntl _ .0 _ n n
(3.21) Uk = Uk Ck" 1/2 AUk_ 1/2+ Dk+ I/ZAUk‘l‘ 1/2
then
(3.22) Ck+ 1/2 2_ 0
(3.23) Dk+%@ 2_0
(3.24) 0 < <1.

—_ Ck+ 1/2 * Dk+ 1/2

Here we prove the result for v > 0. The computations for v < 0 are
similar.

Rearrange (3.16) as follows

UEH = U:: - [v1 +1/2(1-v)(i—+ -1}
(3.25) .\ k
Kk+¥b + - n - n
- 2 T T

That is
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K1<+3/2 +
- KK+ 1/2 1(k+ 1/2

(3.26) ¢, 1, = V{1 +1p v -1} -

Tt k+1

(3.27) Dt 1= Kw 1y »

DK+ 1/2> 0 since Kk+1/ > 0.

To show that Cp, 1/2> 0, substitute (3.18) into (3.26) and rearrange terms

to obtain

o(th4y)

1- k+1 -

(3.28) Cralpy= ¥ * v( 2“) [—==- ¢(r;) +1 - ¢(r, )]

Tr+1
Note that (3.26) implies
(3.29) 0 <8 ¢
(3.30) 0< ¢(r) <1
so

v(1=-v) 2

Corly 2V ===+ 3> 0.

Since Dy, 1/2> 0 and G, 1/2> 0, Cy+ 1/2+ Dp+ 1/2> 0. To prove that

Crt Iy + Dk+5@< 1,
substitute (3.18) into (3.27) and add to (3.28). The result is

| oy 6(er ) -
(3.31) Qi+ D1, =V + v(12v) (Sl o(ry) +2 - 2p(x, )]

Te+1
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(3.31) is <1, if the term in the square brackets is < 2. To show this,

we note that

- 1
(3.32) Teel = r+
k+1
and we consider four cases.
+ _ 1 _ + _ 1 -
Case 1. e <0 = —4—<0 = ¢(rk+1) = ¢(—;7—J = 0.
Tx+1 Tr+1

In this case the term in square brackets becomes

Case 2, 2r

k+1
and the term in square brackets is
+
2 - ¢(r) < 2
+ 1 + 1
Case 3. < 1o 57— <2 => 8(r,,) = o(—4) = 1.
Tk+l T+l

Then the term in square brackets becomes

- $(ry) <2 - ¢(r,:) < 2.

T+l
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+ _ 2 _ + - 1y _ 2
Case 4. 281, D =<1 =D o(r,) =1, 65— =5—.
Tk+1 k1 Tkl
Then the term in square brackets becomes
1 + 4 3 +
- -¢(rk)+2— — =2 - —¢(rk)_<_2.
Tk+1 Tkl Tx+1

This completes the proof.

It is trivial to extend these results to scalar nonlinear problems. We

simply define a local wave speed by

Af,
El-‘f—-/z . if AU 1, # 0
—————df(Uk) if AU

dUu ’ k+ 1/2 = 0

and apply the schemes (3.16), (3.17) or (3.16), (3.18) as before. The wave
speed definition (3.33) makes the resulting scheme conservative.

Figures 3a,3b and 3c show computed solutions of the inviscid Burgers”
equation with square wave 1initial data and periodic boundary conditions.
These results were obtained using the MacCormack scheme, the second order
upwind scheme (3.16), (3.17) and the simplified scheme (3.16), (3.18),
respectively. The MacCormack results exhibit severe oscillations in the
vicinity of the shock and an entropy violating expansion shock. The upwind
scheme eliminates the oscillations but not the expansion shock while the
simplified scheme eliminates all but a small "entropy glitch" in the expansion
region., There is no difference between the upwind method and the simplified

method in their ability to resolve the shock.
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The Burgers” equation results were highly dependent on the choice of
initial conditions. Indeed, for certain initial conditions, the simplified
method also computed solutions containing expansion shocks. To our knowledge,
the only way to avoid expansion shocks in all cases is to explicitly add extra
dissipation to the method when a sonic point occurs in an expansion region.
Although we cannot guarantee that the simplified scheme will do this
automatically, our computations indicate that this scheme is more robust than

the unmodified upwind scheme.

4., Hyperbolic Systems
In this section we extend the results of the previous section to
hyperbolic systems. To that end, we consider first the linear, constant

coefficient system

(4.1) u, + Auy, = 0, A = const.

where u 1is an m vector and A is an m x m matrix.
If the system (4.1) is hyperbolic, the matrix A has real eigenvalues and
a complete set of linearly independent right eigenvectors. If we let P

denote the matrix whose columns are the right eigenvectors of A, then

where
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(4-3) A = .

and Ak are the eigenvalues of A.

If we define a new set of dependent variables by the formula

(4.4) v=rply

and multiply (4.1) by Pl we obtain

-1 -1, -1
(4.5) (P u), + P AP (u), = 0
or
(4.6) v, +Av =0,

This is an uncoupled set of scalar equations. We solve (4.6) using (3.16).

That is
Vn+1 - Vn _V (Vn - vn ) + v %Vn - 2Vn + Vn )
k k2 k+l k=17 " 2 ‘Tk+1 k k~1
+ + - - n n
(4.7) + [Kk_+ llz(rk) + Kk+nl/2(r§+l)](vk+1 = Vk_)

- [K-k'... 15 (r+_1) + K 14 (r;)](Vk - Vk-l)

where v = Mt/Ax and K* and ¥ are defined below.
Multiply (4.7) by P to obtain an equation in terms of the original

dependent variables., The result is
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n+l n At n n 2 At n n n
U = U = Agre (Vg = Uemy) #8735 (U = 20 + 0 )
+ + - - -1,.n n
(4.8) + Rl 1, (md * K1y, ()P (0 - 0

= (K1, (rey) *+ K1, (5VE (0 - v )

The first three terms on the right of (4.8) comprise the well-known Lax—
Wendroff scheme and need no further discussion. The last two terms require
that we know the matrices P and P~} and that we know which direction is
upwind. In the following we construct a simplified version of this scheme
which removes these requirements,

We remove the requirement that P and pl be known by approximating the

diagonal matrices k¥ by scalar matrices. That is, we let
(4.9) K#(ri) = K *(ri) I

where the f'i(ri) are scalar functions of rt .

We remove the necessity to determine upwind directions by choosing
(4.10) T H*) = .5 cov) [1 - o(H)]
where the Courant number v 1is defined as
(4.11) v = maxlkjl-ﬁ—;-

and C(v) is chosen as follows.
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v(1-v), if v < .5

(4.12) C(v) =
.25, if v > .5,

This definition of C(v) 1is an upper bound to the Courant number-

dependent coefficient in (3.18).

Thus far we have not defined rt and r~. 1In light of the fact that we

do not wish to compute P or P-l, we have chosen the following definitions

for r' and .

n n
(4.13a) ry = (a0 L 1/2)
* k n n
(au ., 1, > AUk+‘1/2)
B O S VRN \ S P
(4.13b) T = k-’ kth

n n
(au, _ Ly > AU 1p )

where (°+,*) denotes the usual inner product on RT,

If P does not vary significantly over adjacent mesh intervals, these
definitions can be interpreted as averages of the scalar definitions. These
were the most simple definitions that we could construct. They worked so well
in our numerical experiments that we saw no reason to investigate more
sophisticated r* definitions. We note in passing that other definitions
of r*¥ have been proposed by Sweby [6] and Chakravarthy and Osher [2].

With these simplifications, our numerical method takes the form
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n+l n At (. m n 2 At ;. .n n n
U = U m A (e = U y) + A7 5 (U - 20 + 0 )
(4.14) + Ry, (1) + Ky (r, )10, - 0)
* Ker 1 T Ker Yo 'kt kbl T Tk
= + + = - - ,
- (Ko, () + K 1/2(1fk)](U;;l - Upy)s
where X * and rt are defined by equations (4.10) and (4.13)

respectively. Note that the resulting scheme does not depend explicitly omn
the transformation (4.4). Therefore, we can use the scheme without
modification on nonlinear problems where (4.5) 1is not true. For the
computations which follow, we replace the Lax-Wendroff scheme (the first three
terms §n the right of (4.14)) by the conservative MacCormack scheme. These
schemes are equivalent for linear problems.

As a first test, we demonstrate the performance of this method on the

Riemann problem. That is, we solve the Euler equations

(4.153) u + f(u)X = 0, = {x Lo, t>0
where

p pu
(4.15b) u=|m|, f(u) = pu2 +p

E (E+p)u
(4.15¢) p = (yv-1)(E —l/zpuz)

and v = 1.4 with initial conditions
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U, x<0
(4.15d) u(x,0) =
Up» x>0

In this case the initial conditions were

445 o5
(4.16) u = [ .311:| R up = [ 0 ]
: 8.928 1.4275

Figure 4 shows the solution after 100 time steps computed on 140 grid
points at a Courant number of .95. These conditions are the same as those
used by Harten [3] and Chakravarty and Osher [2] in their numerical
experiments. The results shown in Figure 4 cannot be distinguished from those
shown in the cited references with one exception. Harten was able to obtain a
dramatic improvement in the resolution of the contact discontinuity by
selectively adding artificial compression to his second order upwind scheme.
We intend to study this technique in the future,

Next we demounstrate the performance of our method on é two dimensional
problem., Figure 5 shows a comparison of the present method with the second
order upwind scheme of van Leer [7]. To obtain these results, we solve the

two dimensional Euler equations

(4.172a) ut.+ f(u)X + g(u)y =0
where
p pu pv
2
pu pu +p puv
(4.17p) u= , f(u) = , glu) = 2

pVv pv +p
E (E+p)u (E+p)v

puv



(4.17¢) p=(yv-1) [E-1 (ouz + ov3)]

and Y = 1.4 for the problem of the reflection of an oblique shock from a
plane wall.

For the computations shown, we specify a uniform M = 2.9 flow at the
left boundary. At the top boundary, we specify the conditions behind a shock
that would turn the flow 11° (cf. [11). A flow tangency condition is
specified at the wall and all variables are extrapolated at the right
boundary., The computation is started with the upstream conditions specified
everywhere except the top boundary. The results shown consist of a three
dimensional plot of the converged density solution and a longitudinal section
of this plot taken at y = .5, Once again it is difficult to distinguish
between the results computed using the two methods.

Finally, we compare the present method to the second order upwind method
of van Leer on a model transonic £low problem.

The two dimensional Euler equations (4.17) are solved for the flow over a
10% thick parabolic arc bump in a channel. The flow is assumed to be uniform
initially and then the condition that the flow be tangent to the bump is
applied at the wall in the manner of small disturbance theory. Nonreflecting
boundary conditions are applied at both upstream and downstream boundaries.
Figures 6a and 6b show the converged pressure distribution on the wall for a
flow with inlet Mach number .675 using the van Leer method and the present
method, respectively.

The flow consists of an expansion region over the forward part of the
bump, 0 < x £ .5, followed by a shock mear x = ,75. This is the type of

problem that the Van Leer method was designed to solve since the shock is
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steady and nearly aligned with the computing grid. Figure 6a shows that the
van Leer scheme does an admirable job on this problem. 1In particular, the
flow expands smoothly through the sonic point (P = ,717) and there is only
one grid point within the shock. By comparison, Figure 6b shows that the flow
computed using the present method is not quite as smooth in the expansion
region and there are two points within the shock. Still, considering the fact
that the current method is considerably easier to program and that it runs in
2/3 the time of the Van Leer scheme, the results shown are quite acceptable.
During the course of this work, we discovered that, for two dimensional
problems, the flux limiter (3.20) imposes a severe Courant number stability
restriction on the method beyond that of the two~dimensional MacCormack

scheme. To prevent that we define a new flux limiter by the formula
(4.18) ¢(r) = min(2|r], 1),

A simple application of the maximum principle shows that the artificial
dissipation based on this limiter is stable for two dimensional problems under
the same Courant number restriction as the two-dimensional MacCormack

method. At this time we have not analysed the three dimensional case.

5. Concluding Rgnarks

In this paper we construct a simple artificial viscosity term for Lax-
Wendroff type methods which is based on the theory of Total Variation.
Diminishing upwind finite difference schemes. This method has advantages over

both conventional artificial viscosity schemes and the TVD upwind schemes. .In
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particular, the method does not contain the problem dependent parameters of
conventional artificial viscosity schemes and it does not require the complex
rlogic of upwind schemes.

The numerical experiments that have been performed thus far have been very
encouraging but more numerical experimentation is needed. We intend to carry
this out in the future and also to apply the ideas of this paper to other

numerical schemes.
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Figure 2a. Solution of (3.19) with square wave initial data after
100 steps at v = .9 using MacCormack method.
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Figure 2b. Solution of (3.19) with square wave initial data after
100 steps at v = .9 wusing upwind scheme (3.16), (3.17).
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Figure 2¢c. Solution of (3.19) with square wave initial data after
100 time steps at v = .9 wusing TVD scheme (3.16), (3.18).
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Solution of Burgers' equation using MacCormack scheme.

Figure 3a.
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Solution to Burgers'

equation using TVD scheme (3.16), (3.18).

Figure 3c.
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Figure 4. Solution to Riemann problem after 100 time steps at
v = .95 using scheme (4.14), (4.10).
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Figure 5b, Density profile for shock reflection problem using modified MacCormack schene,
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Figure 6a. Pressure distribution along wall for transonic problem using

Van Leer scheme.
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Figure 6b. Pressure distribution along wall for transonic problem using

modified MacCormack scheme.
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