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TVD FINITE DIFFERENCE SCHEMES AND ARTIFICIAL VISCOSITY 

Stephen F. Davis 

I n s t i t u t e  f o r  Computer Applications i n  Science and Engineering 

Abstract 

I n  t h i s  paper  w e  show t h a t  t h e  t o t a l  v a r i a t i o n  diminishing (TVD) f i n i t e  

d i f f e rence  scheme which w a s  analysed by Sweby [6]  can be in t e rp re t ed  as a Lax- 

Wendroff scheme p lus  an  upwind weighted a r t i f i c i a l  d i s s i p a t i o n  term. We then 

s h m  t h a t  i f  w e  choose a p a r t i c u l a r  f l u x  l imi t e r  and remove t h e  requirement 

f o r  upwind weighting, w e  ob ta in  an  a r t i f i c i a l  d i s s i p a t i o n  term which is  based 

on t h e  theory of TVD schemes, which does not conta in  any problem dependent 

parameters and which can be added t o  e x i s t i n g  MacCormack method codes. 

F ina l ly ,  we conduct numerical experiments t o  exayine t h e  performance of t h i s  

new method. 

Research supported by t h e  National Aeronautics and Space Administration 
under NASA Contract No. NAS1-17070 while t h e  author w a s  i n  residence a t  ICASE, 
NASA Langley Research Center, Hampton, VA 23665. 
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1. Introduction 

A major r e s u l t  of recent  research  i n t o  numerical methods f o r  t he  s o l u t i o n  

of systems of hyperbolic conservation laws has been the  development of second 

order  accu ra t e  t o t a l  v a r i a t i o n  diminishing (TVD) f i n i t e  d i f f e rence  schemes. 

These schemes have a number of at tractive p rope r t i e s  including the  f a c t  that 

they resolve discontinuous so lu t ions  w e l l ,  they do not exh ib i t  spurious 

o s c i l l a t i o n s  and, under c e r t a i n  circumstances, they can be proven t o  converge. 

Unfortunately, t h e  apparent conplexity of these  schemes has thus f a r  

discouraged t h e i r  widespread adoption. Instead, most appl ica t ions  progams use  

standard methods such as t h e  MacCormack v a r i a n t  of t h e  Lax-Wendroff method and 

add add i t iona l  a r t i f i c i a l  d i s s i p a t i o n  t o  damp t h e  spurious wiggles t h a t  occur 

near  d i scon t inu i t i e s .  These d i s s i p a t i o n  terms are usua l ly  chosen i n  an  ad hoc 

fashion and usua l ly  contain problem-dependent parameters which must be f i n e  

tuned before  t h e  method w i l l  work. 

I n  t h i s  paper w e  attempt t o  remedy t h i s  s i tua t ion .  In pa r t i cu la r ,  we 

i n t e r p r e t  t h e  TVD f i n i t e  d i f fe rence  scheme which w a s  analysed by Sweby f6 ]  as 

a Lax-Wendroff scheme p lus  an  upwind weighted a r t i f i c i a l  d i s s i p a t i o n  term. We 

then attempt t o  simplify t h i s  a r t i f i c i a l  d i s s i p a t i o n  term by removing t h e  

requirement t h a t  i t  be upwind weighted. The result i s  a d i s s i p a t i o n  term which 

i s  based on the  theory of TVD schemes and which does not contain any f r e e  

p arame t e rs 

An o u t l i n e  of t h i s  paper i s  as follows. In  s e c t i o n  2 we b r i e f ly  review 

the  theory of TVD f i n i t e  d i f f e rence  schemes. Using t h i s  theory, w e  der ive  an  

a r t i f i c i a l  d i s s i p a t i o n  term f o r  scalar hyperbolic equations i n  sec t ion  3 and 

we examine i ts  performance i n  numerical experiments. These r e s u l t s  are 

extended t o  systems of hyperbolic equations i n  sec t ion  4 and addi t iona l  

numerical experiments are performed. Section 5 contains some closing remarks. 



-2- 

2. Total Variation Diminishing Finite Difference Schemes 

We consider the i n i t i a l  value problem f o r  a scalar conservation l a w .  That 

i s  

df u + f ( d X  = u - a(u)ux = 0 ,  a(u) = du (u), t > 0 t t 

(2.1) 

u( x,o) = u,(x) , - < x < -  

where uo(x) i s  a s s m e d  t o  have bounded t o t a l  var ia t ion.  A weak so lu t ion  t o  

t h i s  problem has t h e  following monotonicity propert ies .  

(1) No new extrema i n  x may be created. 

(2) The value of a l o c a l  minimum is nondecreasing and the  value of a l o c a l  

maximum i n  nonincreasing. 

The t o t a l  v a r i a t i o n  of t h e  so lu t ion  t o  (2.1) a t  t i m e  t i s  defined by the  

formula 

where the  supremum is taken over a l l  p a r t i t i o n s  of the  real l i n e .  

It follows from t h i s  monotonicity property t h a t  t he  t o t a l  va r i a t ion  i n  

x of u (x , t )  does not  increase  i n  t. That i s  

Much recent  research has been devoted t o  the  construct ion of f i n i t e  

d i f fe rence  schemes t h a t  s a t i s f y  a d i s c r e t e  vers ion of equation (2.2). We 

b r i e f l y  descr ibe  t h i s  work belaw. 
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Consider e x p l i c i t  f i n i t e  d i f f e rence  schemes i n  conservation form which 

approximate (2.1) and which w e  denote by 

A scheme i s  ca l l ed  t o t a l  v a r i a t i o n  diminishing i f  

(2.5) TV( Un+') = TV( L*Un) - < TV( Un) . 

In  addi t ion ,  a scheme i s  c a l l e d  monotonicity preserving i f  the  f i n i t e  

d i f f e rence  opera tor  L i s  monotonicity preserving; t h a t  is, Un a monotone 

mesh func t ion  implies t h a t  L*Un i s  a l s o  a monotone mesh function. The 

following r e s u l t ,  presented without proof is due t o  Harten 131. 

Theorem 2.1 (Harten). A t o t a l  v a r i a t i o n  diminishing scheme i s  

monotonicity preserving. 

This  s ays  t h a t  TVD schemes w i l l  n o t  produce spurious o s c i l l a t i o n s .  This 

is  t h e i r  chief a t t r a c t i o n .  

Another reason why TVD schemes are a t t r a c t i v e  i s  t h a t  i t  i s  very usefu l  t o  

have a bound on t h e  t o t a l  v a r i a t i o n  of t h e  s o l u t i o n  when proving convergence 

of nonlinear d i f f a rence  schemes [c f .  4, SI. Equation (2.5) provides such a 

bound but convergence proofs are beyond t h e  scope of t h i s  paper. 

The scheme (2.4) can be w r i t t e n  i n  t h e  form 
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where 

(2.7) AUn - k+1/2- - 

and ck-1/2 and ~ ~ + ~ / 2  are functions of un. Harten [3 ]  proves t h e  

following Lemma which provides a s u f f i c i e n t  condi t ion  f o r  t h e  scheme (2.6) t o  

be t o t a l  v a r i a t i o n  diminishing. 

I a m m  2.2 (Harten). I f  t h e  c o e f f i c i e n t s  C - and D of equation (2.6) 

s a t i s f y  t h e  i n e q u a l i t i e s  

o < c  - k+ 1/2 

then t h e  scheme (2.6) i s  t o t a l  v a r i a t i o n  diminishing. 

Later, w e  use  t h i s  Lemma t o  prove t h a t  our scheme i s  TVD. 

3. Scalar Equations 

For ease of presenta t ion ,  w e  f i r s t  cons ider  t h e  scalar l i n e a r  equation 

(3.1) ut + au, = 0, a = const. > 0. 
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Sweby [ 6 ]  considers t he  s o l u t i o n  t o  t h i s  problem using a scheme of t h e  

form 

where 

( 3 . 3 )  

and +(rk) is t h e  flux limiter. This is  a scheme of t h e  form (2.6) with 

(3 .4)  

k+ 1/2 = 0 D 

A s u f f i c i e n t  condi t ion  f o r  t h e  scheme (3 .2 )  t o  be TVD is t h a t  v - < 1 and 

Sweby a l s o  s p e c i f i e s  t h a t  +(r) > 0 and t h a t  + ( r )  = 0 f o r  r - < 0. Under 

these  a d d i t i o n a l  r e s t r i c t i o n s  t h e  bound (3.5) becomes 

I f  +(r) = 1, scheme (3.2) reduces t o  t h e  centered d i f f e rence  Lax- 

Wendroff method. I f  +(r) = r, scheme (3.2) reduces t o  t h e  second order  

upwind Warming and Beam [ 8 ]  method. 
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The region defined by (3.6) is  shown i n  Figure 1 along with the  limiters 

corresponding t o  t h e  Lax-Wendrof f and Warming-Beam methods. Since these  

schemes are known t o  produce spurious wiggles i n  so lu t ions  with s t e e p  

gradien ts ,  i t  i s  no t  s u r p r i s i n g  t h a t  t hese  schemes are not  uniformly wi th in  

t h e  TVD region. 

Since t h e  Lax-Wendroff method does not  r e q u i r e  one t o  determine a n  upwind 

d i r e c t i o n  and s ince  many production computer codes are based on t h e  Lax- 

Wendroff method o r  i t s  va r i an t s ,  we wish t o  examine t h e  p o s s i b i l i t y  of adding 

terms t o  these  codes t o  ob ta in  a TVD scheme. 

I f  w e  add a term of t h e  form 

(3.7) 

t o  t h e  Lax-Wendroff scheme 

and rearrange t h i s  t o  t h e  form (3.2) w e  g e t  
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A comparison of (3.9) with (3.2) shows t h a t  we  can ob ta in  Sweby's scheme 

i f  w e  choose 

Next we consider  t h e  equat ion 

(3.12) U t  + aux = 0, a = const. < 0. 

For t h i s  problem Sweby's scheme takes the  form 

where 

u = - < o  aAt 
Ax 

and our modified Lax-Wendroff scheme takes t h e  form 

This reduces t o  Sweby's scheme i f  we choose 

A comparison of equations (3.11) and (3.15) shows how t h e  s ign of t h e  
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c o e f f i c i e n t  a changes the  method. I n  p a r t i c u l a r ,  w e  see t h a t  as a changes 

s ign ,  t h e  d e f i n i t i o n  of r changes and t h e  form of t h e  term involving the  

Courant number v changes. We can combine these two cases i n t o  a Lax- 

Wendroff method wi th  an upstream weighted a r t i f i c i a l  d i s s i p a t i o n  term as 

follows. Put t h e  scheme i n t o  t h e  form 

(3.16) 

whe r e 

(3.17) 

r , i f  a > O  - 0 

V - 2 ( l+v) [+ ( r i+ l )  - 13 , i f  a < 0. 

This  method s t i l l  r equ i r e s  t h a t  w e  know which d i r e c t i o n  i s  upwind. For 

hyperbolic systems i t  i s  t h i s  requirement t h a t  makes upwind d i f fe rence  schemes 

complicated. Therefore w e  attempt t o  cons t ruc t  a method without upstream 

weighting by rewr i t ing  equation (3.17) as follows 
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(3.18) 

It is  obvious t h a t  t he  terms involving t h e  K’s are d i s s ipa t ive .  The 

ques t ion  t h a t  needs t o  be adressed i s  how much more d i s s i p a t i v e  (3.18) i s  than  

(3.17). To obta in  some idea  about t h i s  we compute the  so lu t ion  t o  t h e  

equation 

(3.19) Ut + ux = 0 

with square wave i n i t i a l  data.  We use t h e  MacCormack version of t he  Lax- 

Wendroff method and t h e  limiter def ined  by 

(3.20) 
(%n(Zr,l), i f  r > 0 

+ ( r )  = 
, i f  r < 0, - 

Figure 2a shows the  r e s u l t  of t h i s  computation a f t e r  100 s t eps  a t  a 

Courant number, v = .9 using t h e  MacCormack method without add i t iona l  

d i ss ipa t ion .  Note t h a t  t h e  s o l u t i o n  e x h i b i t s  severe  o s c i l l a t i o n s  i n  those  

regions where r+ is s m a l l  as predic ted  by Figure 1. Figure 2b i s  the  r e s u l t  

of t h e  same computation using t h e  MacCormack scheme with t h e  upwind 

d i s s i p a t i o n  (3.17) and the  f l u x  l i m i t e r  (3.20). Notice t h a t  t he  spurious 

o s c i l l a t i o n s  have been removed. F ina l ly ,  Figure 2c shows t h e  r e s u l t  of t h e  

same computation using t h e  MaeCormack scheme with t h e  s impl i f ied  d i s s i p a t i o n  

(3.18) and t h e  f l u x  l i m i t e r  (3.20). These r e s u l t s  are almost ind is t inguish-  

ab le  from those of Figure 2b. I n  add i t ion  w e  can prove t h e  following: 
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Theorem 3.1. The method (3.16), (3.18) with  f l u x  l imi te r  (3.20) i s  TVD 

under t h e  r e s t r i c t i o n  t h a t  t h e  Courant number I v l  < 1. 

Proof. The proof is  a d i r e c t  app l i c t ion  of Lemma 2.2. That is ,  we  show 

t h a t  i f  t h e  scheme is  put i n t o  t h e  form 

(3.21) 

then 

(3.22) 

(3.23) 

o < c  + D  (3.24) - k+ 1/2 k+ < 

Here we prove t h e  r e s u l t  f o r  v > 0. The computations f o r  v < 0 are 

similar. 

Rearrange (3.16) as follows 

(3.25) 

n 1 

r 
u;+1 = Uk - [ v {  1 + 1/2 (l-v)(F -1)) 

k 

That i s  
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1 <+3/2 + 
k+ l/2 = V I 1  +1/2(1-v)(7 r -1)) - { r + - %+ 1/2 - ”;;+ 1/2 } 

k+ 1 

(3.26) C 

k+l 

DK+ l/2 > O since 
To show t h a t  (& > 0, s u b s t i t u t e  (3.18) i n t o  (3.26) and rearrange terms + 1/2 

t o  obta in  

Note t h a t  (3.20) implies 

o < 9 0 < 2  r (3.29) 

(3.30) 0 < $ ( r )  < 1 

so 
2 v(1-v) v + v 

‘k+ l/2 - > v - 7  2 T > O .  

s u b s t i t u t e  (3.18) i n t o  (3.27) and add t o  (3.28). The r e s u l t  i s  
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(3.31) i s  < 1, i f  t h e  term i n  t h e  square brackets  i s  < 2. To show t h i s ,  

w e  no te  t h a t  

- - 

(3.32) 1 

k+ 1 

- - -- 
k+l r+ r 

and w e  consider  fou r  cases. 

+ 1 + 1 
k+ 1 < o => +(r,,) = $(F) = 0. r < O  => - + 

k+l k+l r r 
Case 1. 

In  t h i s  case t h e  t e r m  i n  square brackets  becomes 

> 2, so + + 1 Case 2. 2rk+l < 1 => rk+l  0 2  9 7 
k+ 1 r 

and t h e  t e r m  i n  square brackets  i s  

+ 1 1 < 2 => +(rk+l) = +(+ = 1. 1/2 < rk+l, 7 
+ 

Case 3. 

k+l rk+l r 

Then t h e  term i n  square brackets  becomes 

' k+l 
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+ 1 2 => - 
rk+l 

+ + < 1 => +(rk+l) = 1, +(+ = 7 . 
k+ 1 r k+l r 5 rk+l Case 4. 

Then the  term i n  square brackets becomes 

3 

k+l 

4 -  1 
+ + 
k+l 

-- 
r k+l r r 

This completes t h e  proof. 

It i s  t r i v i a l  t o  extend these  r e s u l t s  t o  scalar nonl inear  problems. We 

simply def ine  a l o c a l  wave speed by 

i f  AU 1 f 0 "k+ l/2 , 
"k+ l/2 k+ 1'2 

(3.33) 

k+ 1/2 = 0 , i f  A U  
df ('k) 

dU 

k+ 1/2 
a 

and apply the  schemes (3.16), (3.17) o r  (3.16), (3.18) as before. The wave 

speed d e f i n i t i o n  (3.33) makes the r e s u l t i n g  scheme conservative. 

Figures 3a,3b and 3c show computed so lu t ions  of the  inv i sc id  Burgers' 

equat ion wi th  square wave i n i t i a l  d a t a  and per iodic  boundary conditions. 

These r e s u l t s  were obtained using t h e  MacCormack scheme, the  second order  

upwind scheme (3.16), (3.17) and the s impl i f ied  scheme (3.16), (3.18), 

respect ively.  The MacCormack r e s u l t s  exh ib i t  severe o s c i l l a t i o n s  i n  the  

v i c i n i t y  of t h e  shock and an  entropy v i o l a t i n g  expansion shock. The upwind 

scheme el iminates  the  o s c i l l a t i o n s  but not  t he  expansion shock while t he  

s impl i f i ed  scheme e l imina tes  a l l  b u t  a small "entropy g l i tch"  i n  t h e  expansion 

region. 'kere i s  no d i f fe rence  between the  upwind method and the  s impl i f ied  

method i n  t h e i r  a b i l i t y  t o  reso lve  t h e  shock. 
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The Burgers' equation r e s u l t s  were highly dependent on the  choice of 

i n i t i a l  conditions. Indeed, f o r  c e r t a i n  i n i t i a l  conditions,  t h e  s impl i f i ed  

method a l s o  computed so lu t ions  containing expansion shocks. To our knowledge, 

t h e  only way t o  avoid expansion shocks i n  a l l  cases i s  t o  e x p l i c i t l y  add e x t r a  

d i s s i p a t i o n  t o  t h e  method when a sonic  poin t  occurs i n  an  expansion region. 

Although w e  cannot guarantee t h a t  t h e  s impl i f i ed  scheme w i l l  do t h i s  

automatically,  our computations ind ica t e  t h a t  t h i s  scheme i s  more robust than 

t h e  unmodified upwind scheme. 

4, Eyperbolic System 

I n  t h i s  s e c t i o n  we extend t h e  r e s u l t s  of t h e  previous s e c t i o n  t o  

hyperbolic systems. To t h a t  end, we consider f i r s t  the  l i n e a r ,  constant 

c o e f f i c i e n t  system 

(4.11 ut + Au, = 0, A = const. 

where u i s  an m vec tor  and A is  an m x m matrix. 

If t h e  system (4.1) is  hyperbolic, t h e  mat r ix  A has real eigenvalues and 

a complete set of l i n e a r l y  independent r i g h t  eigenvectors. If we l e t  P 

denote t h e  matrix whose columns are t h e  r i g h t  eigenvectors of A ,  then  

(4.2) 

where 

P'lAP = A 



-1 5- 

(4.3) 

and Xk are the  eigenvalues of A. 

If  w e  de f ine  a new set of dependent va r i ab le s  by t h e  f o r m l a  

-1 (4.4) v = P  u 

and multiply (4.1) by P" w e  ob ta in  

( P - ' u ) ~  + P - ~ A P - ~ ( u ) ~  = 0 

v + Avx = 0. t 

This  i s  a n  uncoupled set of scalar equations. We so lve  (4.6) using (3.16). 

That i s  

where v = A A t / A x  and K* and r* are def ined below. 

Multiply (4.7) by P t o  ob ta in  an equat ion i n  terms of t h e  o r i g i n a l  

dependent var iables .  The r e s u l t  is 
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The f i r s t  t h r e e  terms on t h e  r i g h t  of (4.8) comprise t h e  well-known Lax- 

Wendroff scheme and need no f u r t h e r  discussion. The las t  two terms requ i r e  

t h a t  w e  know t h e  matrices P and P-' and t h a t  w e  know which d i r e c t i o n  i s  

upwind. In t h e  following w e  cons t ruc t  a s impl i f ied  vers ion  of t h i s  scheme 

which removes t h e s e  requirements. 

We remove t h e  requirement t h a t  P and P" be known by approximating t h e  

diagonal matrices K* by scalar matrices. That is ,  we l e t  

* where the  *(r*) are scalar functions of r 

We remove t h e  necess i ty  t o  determine upwind d i r ec t ions  by choosing 

(4.10) 

where t h e  Courant number v is  defined as 

(4.11) v = maXIXjI;i;; A t  

j 

and C(v) is  chosen as follows. 
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(4.12) 

u ( l -u ) ,  i f  u < .5 - 
C(U) = 

1.25, i f  u > 05 . 

This d e f i n i t i o n  of C(u) i s  an upper bound t o  t h e  Courant number- 

dependent c o e f f i c i e n t  i n  (3.18). 

Thus f a r  w e  have not  defined r+ and r-. In  l i g h t  of t h e  f a c t  t h a t  w e  

do not wish t o  compute P o r  P'l, w e  have chosen t h e  following d e f i n i t i o n s  

f o r  r+ and r". 

(4.13a) 

(4.13b) 

where ( *  , e )  denotes t h e  usua l  i nne r  product on Rm. 

I f  P does not  vary s i g n i f i c a n t l y  over ad jacent  mesh i n t e r v a l s ,  t hese  

d e f i n i t i o n s  can be in t e rp re t ed  as averages of t h e  scalar de f in i t i ons .  These 

were t h e  most simple d e f i n i t i o n s  t h a t  w e  could construct.  They worked so  w e l l  

i n  our numerical experiments t h a t  we s a w  no reason t o  inves t iga t e  more 

soph i s t i ca t ed  r* de f in i t i ons .  We note  i n  passing t h a t  o the r  d e f i n i t i o n s  

of r* have been proposed by Sweby [ 6 ]  and Chakravarthy and Osher [21, 

With t h e s e  s impl i f i ca t ions ,  our  numerical method takes  t h e  form 
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(4,141 

n A t  n - n 2 A t  n n n 
Ut" = Uk - A - 2Ax (%+l 'k-1 + A =('k+l - 2uk + 'k-1) 

* are defined by equations (4.10) and (4.13) - *  where K and r 

respect ively.  Note t h a t  t h e  r e s u l t i n g  scheme does not depend e x p l i c i t l y  on 

the transformation (4.4). Therefore, we can use the  scheme without 

modification on nonlinear problems where (4.5) i s  not true. For the  

computations which follow, we  replace t h e  Lax-Wendroff scheme ( the  f i r s t  t h ree  

terms on t h e  r i g h t  of (4.14)) by t h e  conservative MacCormack scheme. These 

schemes are equivalent  f o r  l i n e a r  problems. 

As a f i r s t  test, w e  demonstrate t h e  performance of t h i s  method on t h e  

Riemann problem. That is ,  we  so lve  the  Euler equations 

u + f(Ulx = 0, -03 < x < 0 0 ,  t > 0 t ( 4 1 5a) 

where 

(4,15b) 

and y = 1.4 with i n i t i a l  condi t ions 
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(4.15d) 

I n  t h i s  case t h e  i n i t i a l  conditions were 

(4.16) 
.4 45 

uL = [ 8.928 * 3 1 1 ]  UR = [ l:i275] 
Figure 4 shows t h e  s o l u t i o n  a f t e r  100 t i m e  s t e p s  computed on 140 g r i d  

poin ts  a t  a Courant number of .95. These conditions are the  same as those 

used by Harten [3] and Chakravarty and & h e r  [2] i n  t h e i r  numerical 

experiments. The r e s u l t s  shown i n  Figure 4 cannot be d is t inguished  from those 

Shawn i n  t h e  c i t e d  re ferences  wi th  one exception. Harten was a b l e  t o  o b t a i n  a 

dramatic improvement i n  the  reso lu t ion  of the  contact d i scont inui ty  by 

s e l e c t i v e l y  adding a r t i f i c i a l  compression t o  h i s  second o rde r  upwind scheme. 

We in tend  t o  study t h i s  technique i n  the  fu ture .  

Next we demonstrate t h e  performance of our method on a two dimensional 

problem. Figure 5 shows a comparison of the  present method with the  second 

o rde r  upwind scheme of van Leer [7]. To o b t a i n  these  r e s u l t s ,  we so lve  t h e  

two dimensional Euler equations 

(4.17a) 

where 

(4.17b) 

E 
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(4 . 1 7 4  

and y = 1.4 f o r  t h e  problem of t h e  r e f l e c t i o n  of an oblique shock from a 

plane w a l l  . 
For t h e  computations shown, we spec i fy  a uniform M = 2.9 flow a t  t h e  

l e f t  boundary. A t  t h e  top boundary, w e  spec i fy  the  conditions behind a shock 

t h a t  would tu rn  t h e  flow 11' (c f .  [ l ] ) .  A flow tangency condition is 

spec i f i ed  a t  the  w a l l  and a l l  var iab les  are ext rapola ted  at t h e  r i g h t  

boundary. The computation i s  started wi th  t h e  upstream condi t ions  s p e c i f i e d  

everywhere except t h e  top boundary. The r e s u l t s  shown cons i s t  of a t h r e e  

dimensional p l o t  of t h e  converged dens i ty  s o l u t i o n  and a long i tud ina l  s e c t i o n  

of t h i s  p l o t  taken a t  y = -5. Once again i t  i s  d i f f i c u l t  t o  d i s t i n g u i s h  

between t h e  r e s u l t s  computed us ing  t h e  two methods. 

F ina l ly ,  we compare t h e  present method t o  t h e  second order  upwind method 

of van Leer on a model t r anson ic  flow problem. 

The two dimensional Euler equations (4.17) are solved f o r  t h e  flow over a 

10% t h i c k  pa rabo l i c  arc bump i n  a channel. The flow is  assumed t o  be uniform 

i n i t i a l l y  and then t h e  condition t h a t  t he  flow be tangent t o  the  bump i s  

appl ied  a t  t h e  w a l l  i n  t h e  manner of small disturbance theory. Nonreflecting 

boundary conditions are applied a t  both upstream and downstream boundaries. 

Figures 6a and 6b show t h e  converged pressure  d i s t r i b u t i o n  on t h e  w a l l  f o r  a 

flow with i n l e t  Mach number .675 using the  van Leer method and the  present  

method, respec t ive ly  . 
The flow c o n s i s t s  of an expansion reg ion  over t h e  forward p a r t  of t h e  

bump, 0 < x < .5, followed by a shock near x = .75. This is the  type of 

problem t h a t  t h e  Van Leer method w a s  designed t o  so lve  s i n c e  t h e  shock i s  

- -  
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steady and nearly aligned with the  computing g r id ,  Figure 6a shows t h a t  t h e  

van Leer scheme does a n  admirable j o b  on t h i s  problem. I n  pa r t i cu la r ,  t h e  

flow expands smoothly through the  son ic  poin t  (P = .717) and the re  i s  only 

one g r i d  poin t  wi th in  t h e  shock. By comparison, Figure 6b shows t h a t  t h e  flow 

conputed us ing  t h e  present  method is  not q u i t e  as smooth i n  t h e  expansion 

region and t h e r e  are two poin ts  wi th in  the  shock. S t i l l ,  considering t h e  f a c t  

t h a t  t h e  cu r ren t  method i s  considerably easier t o  program and t h a t  i t  runs i n  

2/3 t h e  t i m e  of t h e  Van Leer scheme, t h e  r e s u l t s  shown are q u i t e  acceptable. 

During t h e  course of t h i s  work, we discovered t h a t ,  f o r  two dimensional 

problems, t h e  f l u x  limiter (3.20) imposes a severe  Courant number s t a b i l i t y  

r e s t r i c t i o n  on t h e  method beyond t h a t  of t h e  two-dimensional MacCormack 

scheme. To prevent t h a t  w e  de f ine  a new f l u x  limiter by t h e  formula 

A simple app l i ca t ion  of t he  maximum p r i n c i p l e  shows t h a t  t he  a r t i f i c i a l  

d i s s i p a t i o n  based on t h i s  limiter i s  s t a b l e  f o r  two dimensional problems under 

the  same Courant number r e s t r i c t i o n  as the  two-dimensional MacCormack 

method. A t  t h i s  t i m e  w e  have no t  analysed t h e  t h r e e  dimensional case. 

5, Concluding I€emarks 

In  t h i s  paper w e  cons t ruc t  a s i m p l e  a r t i f i c i a l  v i s c o s i t y  term f o r  Lax- 

Wendroff type methods which i s  based on t h e  theory of Total Variation 

Diminishing upwind f i n i t e  d i f f e rence  schemes. This method has  advantages over 

both conventional a r t i f i c i a l  v i s c o s i t y  schemes and t h e  TVD upwind schemes. In  
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p a r t i c u l a r ,  t he  method does not contain t h e  problem dependent parameters of 

conventional a r t i f i c i a l  v i s c o s i t y  schemes and i t  does not r equ i r e  t h e  complex 

l o g i c  of upwind schemes. 

The numerical experiments t h a t  have been performed thus  f a r  have been very 

encouraging but more numerical experimentation i s  needed. We intend t o  ca r ry  

t h i s  o u t  i n  t h e  f u t u r e  and a l s o  t o  apply t h e  i d e a s  of t h i s  paper t o  o t h e r  

numerical schemes. 
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Figure 1. TVD Region 
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Figure 2a. Solution of (3.19) with square wave in i t ia l  data after 

100 s t e p s  a t  v = .9 using MacCormack method. 
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Figure 2b. Solution of (3.19) with square wave i n i t i a l  data after 

100 s t e p s  a t  u = .9 using upwind scheme (3.16) ,  (3.17).  
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Figure 2c. Solution of (3.19) w i t h  square wave i n i t i a l  data a f t e r  

100 t i m e  s t eps  a t  v = .9 using TVD scheme (3.16) ,  (3.18).  
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Figure 4. Solution t o  Riemann problem after 100 t i m e  s t e p s  a t  

v = -95  using scheme (4.141, (4.10).  
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Figure 6a. Pressure distribution along wall for transonic problem using 

Van Leer scheme. 
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y = 0. 

Figure 6b. Pressure distribution along wall for transonic problem using 

modified MacCormack scheme. 
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