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Abstract

This paper deals with spectral approximations for exterior elliptic

problems in two dimensions. As in the conventional finite difference or

finite element methods, it is found that the accuracy of the numerical

solutions is limited by the order of the numerical farfield conditions. We

introduce a spectral boundary treatment at infinity, which is compatible with

the "infinite order" interior spectral scheme. Computational results are

presented to demonstrate the spectral accuracy attainable. Although we deal

with a simple Laplace problem throughout the paper, our analysis covers more

complex and general cases.
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1. INTRODUCTION

In this paper we address some questions concerning applications

of spectral methods to elliptic equations in exterior domains. Our

goal is to investigate if one can obtain spectral accuracy in this class

of problems. It is known through other methods that the accuracy of

numerical solutions is governed by the order of the farfield conditions

in addition to the order of the scheme itself. As an example for

finite element methods see Bayliss et al. [BGT]. On the other hand

boundary integral equations are very effective for exterior problems.

They use appropriate Green's functions which automatically take

care of the farfield behavior (see [HMG] and [GW]). However, they

are limited by the need to use explicitly known kernels and thus

cannot treat variable coefficient problems.

We believe spectral methods are useful alternative ways to ad-

dress these difficulties. Even more than in other numerical proce-

dures, the formulation of the farfield boundary conditions is an es,

sential issue: a poor radiation condition may waste the high precision

of spectral methods. A quite natural way of treating this problem

within a spectral context is presented here, and forms the crucial

part of this paper.

The basic problem to be treated here is as follows: let D be a

simply connected bounded domain in R _ , whose smooth boundary

will be denoted by F and whose exterior region by _ = R 2 - D. We



want to solve the problem

Lu--O in f_

(1.1) u = g on r

Boo(u) 0 r = + y2 oo,
where L is a second order uniformly elliptic differential operator in

_q ,g is a smooth data on 1" and the last condition represents the

behavior of the solution at infinity (a radiation condition).

As an example of a physical problem described by this formula-

tion, one can think of D as a conductor in the field of a line source

(located at x_= _-o). Then L is the Laplacian operator A, u is the

electrostatic potential, g(z_) = - log] z_- x_o I and Boo(u) = u-

log r. Another example is given by the incompressible, irrotational

flow around a body D: again L = A, u is now the velocity potential,

g(_) = 0 and Boo(u) - u - Uoz - r log r, where [To is the main

stream velocity in the x-direction and r is the circulation. Although

(1.1) is the simplest model one can consider, we will see that the

treatment by spectral methods is quite general. Even for eigenvalue

problems - such as the Helmholtz equation, which is not solved here

- the numerical farfield algorithm remains applicable.

When the elliptic equation is discretized, the computational do-

main is obtained by placing an artificial boundary too surrounding

the body at a finite distance. The radiation condition at infinity in

(1.1) must be replaced by a boundary condition

(1.2} B(u)=o on roo,
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which makes the problem mathematically well-posed and mimics the

radiation condition at infinity. Such farfield conditions may be of

local (or differential) type (see for instance [BGT], [G], [KM]), or

of global (or integro-differential)type {see, e.g., [ADK], [FM], [M],

[MCM]). They are usually obtained by approximately similar con-

ditions satisfied exactly by the physical solution on rc_ . Hence

they introduce an error on the numerical solution, which in principle

should be comparable with the discretization error of the numer-

ical scheme. The higher the order of the scheme, the higher the

"order" of the farfield radiation condition. Since spectral methods

produce discretization errors which decay faster than algebraically in

the mesh-size, the farfield condition to be prescribed in conjunction

with such methods must be particularly accurate to preserve the high

precision of the interior scheme.

The radiation condition we present here meets optimally this

stringent requirement, because its error is just the truncation error.

Our farfield condition is somewhat analogous to the global boundary

condition used in [MGM], but it takes most advantage from being

implemented in a spectral context, both in terms of computational

efficiency and accuracy. Numerical evidence shows that our treat-

ment of the radiation condition produces overall spectral accuracy
on the solution.

The plan of the paper is as follows. Section 2 is devoted to

the discussion of the farfield conditions on the artificial boundary. In

Section 3 we describe a pseudospectral algorithm for solving problem

(1.1). Finally, Section 4 contains the results of some numerical tests.
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2. AN INFINITE-ORDER RADIATION CONDITION

Let us assume that the problem we want to solve is the electro-

static potential problem, namely

Au=0 in ft

(2.1) u= g on r
u-logrbounded asr _oo.

Although we are dealing with the Laplacian operator, the reader

should keep in mind that the spectral procedure we are going to

describe is particularly designed for those situations - such as the

case of operators with variable coefficients approaching a constant

state at infinity - where the integral equation method is not feasible.

The starting point for deriving several families of radiation con-

ditions is the expansion of the exact solution into a convergent se-

ries of eigenfunctions, usually through separation of variables in a

neighborhood of infinity, where the differential operator has constant

coefficients. For (2.1} we have

(2.2) u(r,p)=Iogr+_ ak e,k_

(r, p) being the polar coordinates in the plane. Note that the right-

hand side satisfies the radiation condition at c_. The coefficients

ak are unknown. The farfield conditions are obtained by eliminating

these constants, or a finite number of theme on the artificial boundary

too.

Bayliss, Gunzburger and Turkel use in [BGT] differential oper-

ators in this process. Let us briefly recall their far-field conditions,



which we also implemented in a spectral context. The idea is to dif-

ferentiate (2.2) m times in the r direction and eliminate the ak's for

] k I__m through a linear combination of such derivatives. For each

m __1, this yields a differential operator

(2.3) B,_= _+
_'-1 r

which exactly anihilate the terms of order up to 2m in the series

(2.2), i.e.,

(2.4) Bm(.-logr-a0)=0 r,m+l ,m=1,2,...

with a0 estimated by averaging u in the farfield. The approximate

solution uap is required to satisfy the farfield condition

(2.5) B_(_°_- logr- a0)= o onr_

By comparing (2.5) with (2.4), it is seen that this method produces

an "a priori" (i.e., independent of the numerical discretization) error

on the approximate solution, due to having dropped the terms on

the right-hand side of (2.4). This error decays algebraically with the

distance of the artificial boundary. It can be made arbitrarily small

by raising the order of the farfield operator, but this may lead to a

cumbersome or inefficient numerical procedure.

The alternative approach which we follow in our construction of

an infinitely accurate boundary operator consists of expressing each

coefficient ak as a functional of u, rather than eliminating a finite

number of them via a differential operator. Observe that for any



r > 0, ak/rlkl is the k-th Fourier coefficient of the periodic function

_-+u(r, _o), as (2.2) shows. Thus the following representation holds

ak 1 f2_(2.6) rlkl -- 27r u(r,O)e-ik°dO -- ilk(r).

If we differentiate (2.2) with respect to r:

[ o.]r k

and use (2.6), we _et an integro-differential relation satisfied by the

exact solution of (2.1) on every circle of radius r. Precisely we have

'[,'/0 ]u,(r,lp)= r 2-_ }_-"lk leikC_'-°)u(r'O)dO
k

or

1 1
(2.7) Ur =--- K,u,

r r

where • denotes the convolution of u with the singular kernel

OO

1 Ek cos kr/"K(y)- _
k--1

We impose the radiation condition (2.7) on the approximate solution

over the artificial boundary 1"_. Clearly, the precision of this farfield

condition, as well as the efficiency of its implementation, rely upon

the accuracy and the easiness with which the singular integral in (2.7)

is evaluated. Accuracy and efficiency are guaranteed if the artificial

boundary is a circle, which is not at all a restriction, and if the

approximate solution is a trigonometric polynomial on too, which is

the case if a spectral Fourier method is used in the angular direction.



Assume thatroo = {(r,_o)I,Ir I= !!co)and thatthe approx-

imatesolution, which we denote by u N is represented on rco by a

trigonometric polynomial of degree N

_:_(Rco,_)= _ _(R_)_''_
Ikl_<N

(with,a_(Rco)=,__%(Rco)).Thenonecaneasilycheckthat

K *u lv = E I kl fiN(Roo)e 'k_,
Ikl___g

i.e., the integral operator produces a new polynomial of degree N_

whose Fourier coefficients are obtained from those of uN(Rco,.) sim-

ply by multiplication by the modulus of the wavenumber. If u N is

known on rco through its values uN(Rco, _.f) at the equally spaced

points j_r/N,5 = 0, 1, ..., 2N - 1, rather than through its Fourier co-

efficients, K • u N can be computed at the same modes exactly and

efficiently, by Fourier transforming the values of uN to get its coef-

ficients, then multiplying by the modulus of the wavenumbers and

finally Fourier transforming back to get the point values of K. uN.

Thus K • uN can be evaluated exactly in order Nlog2N operations

using a Fast Fourier transform, which is available anyway as part

of the spectral calculations machinary. Moreover, the global char-

acter of the convolution K * u N _ which would destroy the localitry

of a finite difference or finite element discretization method, is not

a drawback in a spectral context. Therefore, this kind of boundary

operator appears to be very natural for our purposes.

Thus the spectral solution is required to satisfy the radiation
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condition

11-K• onroo.
i

Unlikethefamilyoffarfieldconditionsproposedin[BGT],thisispre-

ciselythesame boundary conditionsatisfiedby theexactsolution,

i.e.,exceptforthetruncationerror(afinitenumber ofmodes),no er-

rorisintroducedon thenumericalsolutionby theradiationoperator

on theartificialboundary.

3. THE CHEBYSHEV-FOURIER METHOD

InthisSection,we describea pseudospectralmethod forsolving

theexteriorproblem(2.1),whichusestheglobalradiationcondition

previouslyintroduced.Thisalgorithmconsistsofthreemain steps:

i) mapping the physicaldomain ontothecomputationaldo-

main;

ii) building up the spectral collocation operator, which in-

cludes the radiation condition;

iii) solving the resulting system of discrete equations by var-

ious relaxation techniques.

Let us describe each step separately.

i) The Coordinate Transformation

It is not restrictive to put the origin of the coordinates within

the domain D. We assume that the boundary r of D is represented



in polar coordinates by the equation r = R(p), 0 < p < 2_', where R

is a smooth function. The exterior problem (2.1) will be discretized

in the anular region _ between F and the artificial boundary rco,

which is a circle of radius Roo :

={(rcos_,rsin_)_R_I0< _ < 2_,R(_)< r < Roo}.

This domain is mapped smoothly onto the computational domain,

the rectangle

_=((s,e)_R2)l-1<s<l,0<6<2_)

insucha way thattheimage ofr isthesides ---I. Let usremark

attheoutsetthatwe do not attempttoobtainany specialproper-

tiesinthe map (r,_)_ (s,0),except,ofcourse,boundaryfitting.

In particular,themap isnot conformal,asthiswould producean

immediatesolution.

The coordinate change has the form

(3.1) _=6
= ds, 0)

with r(-1,6) = R(0) and r(1,6) - Roo. 0 < 0 _< 2m The func-

tion r(s, 0) may be chosen to be an exponential stretching in the

s-direction, precisely

(3.2) r(s,e)=R(e)ezP(a(e)(s+I))

with aCO) = _log(Rco/R(O)). At least two reasons suggest this

choice. First, the exact solution of (2.1) satisfies for r large enough

u -_ log r - log(R(O)e a(°)(8+')) _- a(O)s.
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Accordingly, u at infinity is a power of s, which is correctly approxi-

mated by Chebyshev polynomials in s. The next reason is the expo-

nential stretching avoids the unnecessary crowding near the artificial

boundary of the Chebyshev points involved in the colloation process

{see [G] for similar considerations).

Numerically, the exponential stretching produces more accurate

results than other stretching functions of polynomial type (see [B]).

However, for some classes of problems algebraic stretching is the best

(see [B], [GO]). The choice is dependentupon the problem.

ii) The Pseudospectral Operator.

When written in the {s, 0) coordinates, the Laplace equation
takes the form

(3.3) Lu ---_aUss + buso + cuoo + dus = O,

for some variable coefficients a,b,c,d satisfying the ellipticity condi-

tions a > 0, c > 0 and ac - b_ > 0 in _. The solution u is periodic in

0, satisfies a Dirichlet condition at s = -1 and the radiation condition

(2.7) at s = 1. Therefore we look for an approximate solution uN

which is a trigonometric polynomial of degree N in 0 and an algebraic

polynomial of degree M in s:

M
*^N

uN(s,O) = _ _ UmkTm (s)e 'ks"
m=o ]kl<N

In the sum the asterisk means that fiNN ^N= Um(_N) for all m, and
T,,{s) is the m-th Chebyshev polynomial of the first kind. uN



isequivalentlydeterminedby itsvaluesu_ at the (M + l)x2N

Ghebyshev-Fouriernodes

(,_,0j)=(cos;_jr_, _-),_ = 0,...,M j = 0,...,2N- 1.

While uN i for j=0,...,2N-1 are prescribed by the Dirichlet condition

on r, the unknowns uN for i=0,...,M-1, j=0,...,2N-1 are computed

by solving the set of collocation equations

(3.4) Z_(uN)(,,,OA=o

The operator !_sp is pseudospectral approximating to the operator L

defined in (3.3), which makes use of the radiation condition (2.8) -

as well as of the Dirichlet condition on r - in the evaluation of the

partial derivatives of ug at the mesh points. Let us describe this

process. The derivative u_rodoes not involve boundary conditions,

hence it is computed by a standard procedure through the discrete

Fourier transform. The derivative uN is computed spectrally from

all the values of uN on the mesh. On the artificial boundary, what

is obtained does not necessarily satisfy the radiation condition (2.8),

which in the (s, 0) coordinates takes the form

(3.5) u8 = _ 1- K • uN

Thus we modify the values of ug on the artificial boundary according

to (3.5). The term K*u N is evaluated in the way described in Section

2. We end up with a modified partial derivative of uN, let us call it

fisN which we further differentiate spectrally to produce u_ and uN.

In this procedure, the boundary conditions are imposed implic-

itly, namely during the evaluation of the spectral operator £_v. Thus
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£8pisan ai_neoperator,sincethe boundary conditionsare non-

homogeneous.In viewofthefurtherdiscussion,itisconvenientto

write(3.4)intheequivalentform

- = 0 i= O,...,M-1,
(3.6)

j = 0,...,2N - 1

whereLsp denotesthelinearpartof£8p and thevectorf takesinto

accounttheinhomogeneityinboth theDirichletand the radiation

boundaryconditions.

We concludethissectionwitha few remarkson theimplemen-

tationofthelocalboundary conditions(2.5).For m--I we havea

Robin-typecondition,which can be implementedimplicitlyas de-

scribedpreviously,by modifyingthecomputed valuesofus on the

artificialboundarytosatisfytheradiationcondition.Form > 2,Bm

involveshigherorderradialoperators.They may be computedspec-

trally,and (2.5)canbeimposedexplicitly,asa setoflinearequations

atthe pointson roo (inthiscasethe ellipticequationiscollocated

attheinteriorpointsonly).However,theresultingalgebraicsystem

exhibitswildeigenvalueswhich doesnotcompromisethepossibility

ofusingemcientiterativemethodsofsolution.So,itispreferableto

eliminatethehigherorderradialoperatorsby means ofthedifferen-

tialequation(3.3)on the boundary.Thisprocess,althoughrather

complex,producesa boundaryoperatorwhichisjustfirstorderinthe

radialdirection;theassociatedboundaryconditionscan be imposed

implicitly,asdescribedabove.
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iii) Iterative Methods for the Discrete Problem.

The direct inversion of the algebraic system (3.6) is extremely

impractical since the associated matrix, which we still call Lsp, is full

and severely ill-conditioned. This matrix is not even computed, as it

would require too much storage. Instead, the matrix-vector multipli-

cation Lsp v can be done efficiently through fast Fourier transforms, a

process which needs just few storage matrices of size Mx2N for u and

its partial derivatives and the coefficients of the operator. Therefore

we always resort to iterative methods of solution, and specifically

to those methods which update the solution by few matrix-vector

multiplications of the type Lsp v.

Explicit time advancing techniques are a source of such methods,

as iteration may be thought of as an evolution towards steady state of

the solution of u_ - Lsp u-f. Convergence requires the stability of the

scheme for the operator of the problem; moreover, the convergence

history is heavily influenced by the conditioning properties of the

operator and by the choice of the pseudo-time step.

Among these methods, we tested the DuFort-Frankel algorithm

([G L1], [G L2], [F]), in the form

(3.7)
_ij -- tti]

--2Uij_Uij ),"2_[ = (L,pu-f)'_j-o'( a,j _- c,y _(u_.+, _ n-x(Asj) "(AO)2'

where a and c are the coefficients in (3.3) and Asj = sj-1 - sj, A0 =

_r/N. This algorithm is known to be unconditionally stable for con-

stant a, c, A s and for Dirichlet or Neumann boundary conditions,

once a has been taken large enough. However, for variable coef-



ficients and radiation boundary conditions there are limitations on

At, and the scheme (3.7) was found to converge very slowly to steady

state. Even when the parameters At, _rwere fixed at optimal values

(by trial and error, since there are no formulas for the general case),

or dynamically redefined at each time step the convergence was still

slow.

Due to the ill-conditioning of spectral operators, it is generally

accepted that iterative methods for the solution of steady state prob-

lems have to be used together with preconditioning techniques. As

first pointed out in [D] and [Mo], low order finite difference approx-

imations to the boundary value problem at the collocation nodes

provide a good way of preconditioning spectral methods. The matri-

ces obtained by this process, denoted generically by Lid are sparse

and hence easily invertible. Moreover, the condition number of the

matrix L-/_L_ v is bounded independently of the mesh size, or it grows

slowly with it. These facts have been proved for some constant coef-

ficient operators ([O],[HLAD]), and observed numerically for a wide

class of variable coefficient operators, subject to Dirichlet or Neu-

mann boundary conditions (see, e.g., [CQ],[HLAD],[PZH]).

Hereafter, we will describe a finite difference preconditioning

matrix Lj'd for the spectral operator with integral radiation condition

introduced in this section. At the mesh point (i,j} the operator (3.3)

is approximated by second order finite differences over the molecule

{(i,j),(i 4- 1,j),(i,j -4-1),(i -{-1,j . 1),(i - 1,j - 1)}. This yields

a "/-diagonal matrix. The points (i . 1,j -k 1) and (i- 1,j- 1)

are needed for consistency with the mixed term uso. A 5-diagonal

matrix is obtained instead by approximating the reduced operator
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aus_+ eUoooverthe molecule((i, j), (i -4-1,j), (i,j • 1)} The latter
matrixcan be invertedless expensivelythan the formerone,and it
providesafairlygoodpreconditioningas longasthe bodyshapedoes

not deviatetoo muchfroma circle.Otherwise,the termuso in the

differential operatoris significant,and the 7-diagonalmatrix has to

be preferred.

In both cases, the outer points of the computational molecules

centered on the artificial boundary are eliminated using the homo-

geneous form of the radiation condition (2.8). The exact evaluation

of the integral term K • u would produce a full 2Nx2N block cor-

responding to the unknowns on the artificial boundary. Instead, the

band structure is preserved if the global operator is approximated by

a three-term formula,

(K . u)oj _ k+uo,y+l + kouoj + k-uo,y-1.

The coefficients k± and k0 are determined in such a way that the

approximation is exact for u = 1, cos 6 and sin 0 on the boundary.

At the points on the body surface, homogeneous Dirichlet con-

ditions are implemented.

In this way we end up with a matrix .M, which has 7 non-zero

diagonals (5 if the five-point molecule is used), plus 2(M-l) non zero

entries, due to the periodicity condition in the 6 direction. An in-

complete LU decomposition of this matrix can be built up following

Meijerink and van der Vorst [MV]. Precisely, a lower and an upper

triangle matrix _ and// are introduced, respectively with the same

(a priori) non-zero elements as the lower and the upper triangular
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parts of .M. U is normalized to be identically 1 on the main diagonal.

These matrices are defined by the condition that the product _//

equals _ at the (a priori) non-zero elements in .M (A different condi-

tion has also been implemented, essentially with equivalent results:

_U and JM must agree at the off-diagonal non-zero elements of .M,

and the row sums of _U and _4 must be equal, see [W]). Finally, we

set Lid -- _U. This matrix is a close approximation to .M, while it

allows the inversion of a linear system in O(MN) operations.

The algebraic system (3.6) with this preconditioning has been

solved by Richardson iterations

(3.8) un+1-un-bo_L71(f -Lspu n) ,n__O.

Alternatively, one can use Dufort-Frankel iterations

which corresponds to a second order method. The following discus-

sion concerns (3.8), but the conclusions hold true for (3.9), too (see

[CQ]).

The choice of the acceleration parameter a in (3.8) is quite deli-

cate. Formulas for a involving the eigenvalues ofA = L-/_Lep (see for

instance [O]) are impractical, since no theoretical information on the

spectrum of A is known. Attempts to estimate dynamically the ex-

treme eigenvalues of X (see [HLAD l for such an algorithm) have given

poor results in our situation. Instead, a minimal residual strategy

for choosing a at each iteration proves to be quite efficacious. Pre-

viously, a n is determined in order to minimize the iS-norm of the
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residualr'_+'= j"- L_vu_+1, (see [WH]), i.e.,

= (L_pp_,L_pp_)'

where

(3.11) pn = L-lr,Sd "

With this choice, (3.8) is nothing but a descent method of the form

(3.12) u_+1 = u_ + a_P_,

where the descent direction pn is determined according to (3.11).

This method is quite appealing, since it produces fast convergence

with modest work and storage requirements. Its drawback lies in

the fact that it may break down if the symmetric part of the ma-

trix L,pLT_ is indefinite, as a n may become zero. This occurrence

has never been observed in the case of full Dirichlet boundary con-

ditions, or constant coefficient elliptic operators. Unfortunately, the

breakdown does happen for the problem under consideration, in eases

where the geometry is far from being circular in shape. Then, a

descent direction other than (3.11) must be used to continue the

method.

We found it very effective to determine pn according to the

method Orthodir, proposed by Young and Jea ([YJ]).In its origi-
nalformulation pn is computed to be ATA - orthogonal to all the

--1

previous descent directions (recall that A "- Lid Lsp), i.e.,

rt--1

(3.13) =Ap
k----O
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with

= - (A2f-l' Apk)
(Ap k,Ap k)

The method is guaranteed to converge even if the symmetric

part of A is indefinite. We use a truncated version of the method, in

which the sum in (3.13) starts from k=n-2 (for this version, however,

convergence is not assured anymore). One step of Orthodir requires

twice as many operations as one step of the original method (3.8).

Thus, we shift to Orthodir whenever the a '_ given by (3.10)-(3.11)

becomes too small, say a '_ < .001. After one step of Orthodir, we

continue with Richardson's iterations (3.8). No break-down of this
algorithm was observed.
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4. NUMERICAL RESULTS.

Evidence about the good performances of the method proposed

here can come - at the moment - from numerical tests only. Indeed,

the present status of the analysis of spectral methods is unable to

handle such "complex" situations as multidimensional, variable co-

efficient equations with integrodifferential boundary conditions (see

IGHV]for an overview of mathematical results about spectral meth-

ods). In particular, analysis of variable-coefficient operators are

known for boundary value problems of Dirichlet type only (see the

paper by Canuto and Quarteroni in [GHV]). Results for the implicit

imposition of boundary conditions of Neumann or third type have

not been established yet, except for the one-dimensional, constant

coefficient case.

The hard point is to prove that the collocation scheme described

in Section 3 is stable; namely, that the Chebyshev-Fourier solution

W g to the problem

AW g = F, in

(4.1) w _ = 6, onr
OW _v +1 K*W Iv H onFoo,

Or r

satisfies an estimate of the form

(4_) IIw_ I1_<_c{ IIr I1_+Ilallr+II_ Ilroo},
(with C > 0 independent of Y), where the norms in (4.2) are norms

of suitable Sobolev spaces. If we assume that (4.2) holds, then it is

immediate to prove not only that the approximation is convergent,
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but also that the error decays spectraUy. Actually, if u is the solution

of (2.1), set fi = IMPN u, where PN denotes the truncation of a

trigonometric series in 0 to the order N and IM denotes the algebraic

interpolation of degree M in the s-direction at the collocation points.

It is well known that the error between u and fi decays spectrally.

Since PN(K * u) = K • PNU, it is readily seen that W N = u N - fi is

the collocation solution of the problem

AW N -'- A{u- fi) in _,

(4.3) wN = g -- Pgg on F

oWN 1K W N (Ott) Off0--"7-+ * = PN Or on toor

All the right-hand sides in (4.3) decay faster than algebraically in the

Sobolev norms as N, M ---+oo, hence so does W N, according to (4.2).

We conclude that uy approximates u with spectral accuracy. Note

that if (4.2) holds, the convergence is guaranteed for any fixe.____Advalue

Roo of the radius of the artificial boundary.

Let us present now some numerical results.

In order to compare the behavior of our global radiation condi-

tion, the Bayliss-Gunzburger-Turkel radiation conditions of the first

and second order were also implemented. The same pseudospectral

algorithm described previously was used.

In order to appraise our numerical results we need exact solution

of the problem for an arbitrarily shaped domain D. We simulated this

situation by considering a point source at z_.o = (zo,yo)_ D, whose
exact solution is

log
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We prescribed this value on r. Note that this satisfies (2.1) with

a0 =- 0. The numerical procedure begins only with this value on 1".

Moreoever, one can add to this above solution any harmonic function

which decays at infinity and still satisfied by (2.1). Such solutions

are used for comparison purposes. We considered three significant

situations.

CASE 1: the body is a circle of radius 1, and the exact solution
1

is u(x, y) = log z-.7) 2+y2

CASE 2: the body surface is described by the function R(_) =

1 + .4 cos 29 (see Fig. 1), and the exact solution is

cos2_ 3cos3_
u(r,p)=logr+ r--T--+ rS .

CASE 3: the body surface is described by the function R(_) =

1 + .7 cos p + .3 sin 2p (see Fig. 2), while the exact solution is

2.

u(,yI-log - 1)2+(y- 11' .

The algorithms were tested on a 9x8, a 17x16 and a 33x32 grid, and

for different positions of the artificial boundary. If we define the rela-

tive distance of the artificial boundary to be p = Roe] 0_<_<2_rmaxR'(_j,_

then the range of p was the interval [1.2,5.].

Table 1 provides some information about the behavior of the

iterative algorithm used to solve the system (3.6). We report the

relative residual (i.e., the 12 - norm of the current residual divided

by the 12 - norm of the initial residual) at some selected iterations.

The convergence histories are relative to the intermediate case p -- 3,
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and to the use of the integral radiation condition (2.8). These results

can be considered typical, in the sense that the rate of convergence

becomes just slightly worse where p approaches 1 (because of the in-

creased stretching of the coordinates), and it is essentially the same

if the local radiation conditions are imposed instead. It is observed

that the preconditioning is sensitive to the geometry (i.e., to the

coefficients of the differential operator). Moreover, the spectral ra-

dius of the iteration matrix depends on the mesh-size (although some

"strange" behaviors appear, such as in Case 2 where the convergence

on the 17x16 grid is faster than on the 9x8 grid, or in Case 3 where

the histories for N-16 and N=32 are essentially similar). These facts

are clearly related to the use of an incomplete LU decomposition in

the inversion of the finite difference system. However, the precon-

ditioning is globally effective. The reader should take into account

that over 1000 iterations of the Du-Fort-Frankel algorithm (3.7) are

needed to drive the residual below 10-1° , in the simplest geometry

of the circle. Moreover, in all the cases tested, at most some 50 it-

erations of our algorithm were enough to produce 2 significant digits
in the spectral solution.

Tables 2-4 contain the results of our tests, which allow to com-

pare the performance of the first order (F), the second order (S)

[BGT] radiation conditions, and the integral (I) radiation condition

on the issue of the spectral accuracy. In each cell, the upper number

is the relative error between the exact and the spectral solution in the

12 - norm at the grid in the computational domain. This error may

appear geometry-dependent, since the grid points are displaced in

the physical domain by the stretching of coordinates. For this reason



23

we have included the relative error in the maximum norm, which is

independent of the mapping of the domain (this is the lower number

in the cell). The two errors behave qualitatively in the same way.

In general, it is seen that the integral radiation condition always

produces the best results, and it is the sole to guarantee the spectral

accuracy in all the cases.

This is evident in Case 1 (Table 2), where the I-condition pro-

duces spectral accuracy for any value of p. Thus the error just comes

from the discretization scheme, while it is weakly sensitive to the po-

sition of too. On the contrary, the F- and the S- conditions produce

spectral accuracy only when Foo is far enough from the body. Other-

wise, the truncation error introduced by the local radiation condition

dominates the discretization error, and the global error increases as

Foo is brought close to the body. This is particularly evident on the

33x32 grid. The reason is that in the expansion (2.2) of the exact

solution, the terms with index [ k I larger than 2 (or 3) are treated

incorrectly by the local radiation conditons, and correctly by our

global condition.

This phenomenon is even clearer in Case 2, where the exact

solution is chosen on purpose to exhibit the different behavior of the

radiation conditions. The I-condition is the only one which allows the

artificial boundary to be brought very close to the body, yielding the

smallest errors. Note that on the gx8 and the 17x16 grids, the error

decreases as roo approaches D even when the F- or the S- conditions

are used: the error in this ease is dominated by the diseretization
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error, which takes advantage by the refinement of the mesh. But on

the 33x32 grid, the same behavior as in Case 1 occurs.

Finally, Case 3 is an example of a situation where an exact solu-

tion with a singularity relatively close to the boundary of the body is

coupled with a fairly complex geometry. Again, the I-condition per-

forms the best, producing spectral accuracy. It should be noticed,

however, that now even the error obtained by the I-condition gets

worse if the artificial boundary is too close to the body. Since the

exact solution is qualitatively comparable with the exact solution of

Case 1, the origin of this phenomenon should be found in the fact that

the coordinate mapping produces larger variations in the coefficients

of the elliptic operator, hence there is an overall loss of precision.

This remark may suggest the use of a multidomain technique, when-

ever the geometry is too complex to be handled accurately by the

one domain mapping discussed here.
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TABLE 1 : Convergence h i s t o r i e s  (* means: below 

0 

50 

1 0 0  

1 5 0  

2 0 0  

2 5 0  

3 0 0  

CASE 3 CASE 2 

3 3 x 3 2  

l *  I- 
.1E-3 

.2E-4 

.2E-5 

.3E-6 

.3E-7 

9x8 

1. 

.3E-6 

.1E-8 

.7E- 10 

.4E- 11 

.2E- 13 

CASE 1 

1 7 x 1 6  

1. 

.2E-3 

.2E-4 

.6E-5 

.6E-6 

.1E-6 

3 3 x 3 2  

1. 

.4E-5 

,1E-7 

.3E-9 

.3E- 10 

9x8 

1. 

.2E-6 

.8E-11  

.3E- 15 

.1E- 1 9  

.3E- 1 4  

1 7 x 1 6  

1. 

.2E-7 

.2E- 13 

.6E-17 

.3E-21 

3 3 x 3 2  

1. 

,2E-5 

.8E- 10 

.4E-15 

.2E-20 

9 x 8  

1. 

.1E-9 

.2E-2 1 

* 

.i( 

.1E-7 .4E-8 

17X 1 6  

1. 

.7E-6 

.8E- 1 2  

.4E-18 

* 



kk 9X8 grid 17X16 grid 33X32 grid

O F S I F S I F S I

.68E-2 .46E-2 .25E-2 .20E-2 .56E-3 .18E-3 •94E-3 .21E-3 .37E-51.2

.67E-I .36E-I .24E-I •33E-I .61E-2 .30E-2 .12E-I .28E-2 .49E-4

.80E-2 .70E-2 .38E-2 .18E-2 .57E-3 .27E-3 .83E-3 .10E-3 .49E-51.5

.65E-I .48E-I .33E-I .13E-I .43E-2 .46E-2 .81E-2 .69E-3 .80E-4

.48E-2 .52E-2 .34E-2 .44E-3 .36E-3 .24E-3 .14E-3 .85E-5 40E-5

.42E-I .42E-I .40E-I .25E-2 .37E-2 .48E-2 .51E-3 .97E-4 .91E-4

.34E-2 .38E-2 .27E-2 .25E-3 .26E-3 .18E-3 .34E-4 .33E-5 .30E-55.

.37E-1 .38E-I .36E-I .16E-2 .16E-2 .15E-2 .52E-4 .57E-4 .61E-4

TABLE 2: Results for CASE 1



9X8 grid 17X16 grid 33X32 grid

D_ F S I F S I F S I

.31E-I .26E-I .22E-I .36E-2 .15E-2 .12E-2 .16E-2 .31E-3 .37E-5
1.2

.38E-I .38E-I .37E-I .86E-4 .47E-4 .30E-4 .49E-4 .74E-5 .18E-6

.35E-I .36E-I .28E-I .26E-2 .18E-2 .14E-2 .95E-3 .18E-3 .46E-5
1.5 o

.19E-I .28E-I .19E-I .25E-3 .23E-3 .20E-3 .33E-4 .33E-5 .75E-6 _o

.54E-I .60E-I .42E-I .38E-2 .37E-2 .24E-2 .15E-3 .25E-4 .10E-4
3.

.32E-I .33E-I .26E-I .lIE-2 .lIE-2 .IOE-2 .62E-5 .33E-5 .33E-5

.59E-I .66E-I .47E-I .41E-2 .46E-2 .31E-2 .44E-4 .16E-4 .14E-4
5.

.53E-I .55E-I .47E-I .19E-2 .19E-2 .18E-2 .60E-5 .54E-5 .54E-5

TABLE 3: Results for CASE 2



I 9X8 grid 17X16 grid 33X32 grid

p F S I F S I F S I

.12E-I .12E-I .68E-2 .14E-2 .51E-3 .39E-3 .56E-3 .63E-4 .lIE-4
1.5

.59E-I .60E-I .53E-I .84E-2 .23E-2 .17E-2 .94E-3 .75E-3 .76E-4

.77E-2 .79E-2 .55E-2 .63E-3 .44E-3 .25E-3 .25E-3 .20E-4 .65E-5
2.

.53E-I .54E-I .49E-I .40E-2 .lIE-2 .10E-2 .25E-3 .59E-4 .52E-4 o

.57E-2 .60E-2 .52E-2 .89E-3 .fOE-2 .46E-3 .85E-4 .IIE-4 .47E-5
3.

.48E-1 .48E-I .46E-1 .18E-2 .20E-2 .16E-2 .30E-4 .42E-4 .39E-4

.61E-2 .67E-2 .67E-2 .13E-2 .15E-2 .74E-2 .26E-4 .15E-4 .12E-4
5..

.48E-I .49E-I .47E-I .26E-2 .27E-2 .22E-2 .46E-4 .48E-4 .49E-4

TABLE 4: Results for CASE 3
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