
NASA Technical Memorandum 86261

NASA-TM-86261 19840021571

The Semi-Markov Unreliability
(SURE) " "':'_"""Range '_": '_:_'"'__'_"_

Program-_....

Ricky W. Butler

July 1984

LIBRARYCOPY
AUGg .1984

•]_I_GLEY RESEARCHCENTER
LIBRARY,NASA

I'__T.OJ_.VIRGINIA
NarWhalAero_ and
Space/__
I.IndeyP,awln_ Ceatl_
Hamgton,Virginia23665

https://ntrs.nasa.gov/search.jsp?R=19840021571 2020-03-20T22:49:53+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42848353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- -....... . •

r--i ."-c"r" _..
I--i,., '--- _."

r,_. ,F /_r-. -r_:_ ,--,r---,r A

_,!,.I ,_L.-_,--'-.. " ._ _-

_ i i _"............. ,-_";_"_ i'..i_ iu! t... ! ii ----_£

,, LH RP..T@:............... ,_...... ,"r,,HhH- Ii*I-,:_!,'0.--k3! IYH.n,_,,o_,.,_,_.[-_._i_.:.._ _,_r-,,,- __-_ r-,.-.r.,-" _,.'.,"--_: ._.,..-.r,r-._..,-.r-',,., _._,..
,,_,_ ,_ ''_ !_ ___ _'l-lbL ,_,Id_)0 _ _'_'-I l_"v.............. m_"FIi 15: ,,_, m,_,._,.... _,S ,,u,.___ ,2,bLb! 2 . " _ _ -_ -

-._. ' H,_ tOFL.,,:, - I ,_:_Jl} I --UTTL: Ti_.-='_....c_r;,i,,,,-r'!drmt:,',.;........... ,,",,"e' "-'" i:.'>,ra._r_. _,.ial..... pt.c_,r-#.an]
.14,t)! M; rl/r-,O ._L,'-,, ._ I'1.............. c. _:--t i ,--;F-.

K _ •-_F,_,.,---_ , ,U:,! ! F;1'- I- I --,r,r l :.,"-"_Ra'_'_;,'-z_dtL.i _ C----r,t_
L...... • !",.,'d t H_-" (-)!-:dU ! - ('::=;

..... _-.- ,,-, _" " "' H_L'!
.I_ t'.._:: ,,

r;F "_i,-.- / a..l._._l- i
,,__._, M.-_-........ ,--............... I,".-PV........... r...... _,_n_,_.,',_:; :T'.;,,,,., h,.,

: I;, t t",.',b; / "...L'""_., "_, ,--_K'...'_""-" , >iYi.._.,.,: ,--...-' .M_"i_.._-_..,_....,,'.._":,u",, ,..,,._.,_.o.-" _u, , • , , t... w-H,, , . "; u , _._- p _ ,

J
.- 1

. f
• - j..,.

INTRODUCTION

The traditional methods of computing the state probabilities of a semi-Markov

model are either applicable to only a small subclass of models or must be

programmed independently for each problem. Furthermore, these methods require

the solution of equations which are extremely complex and hence utilize

significant computer resources. Recently a new mathematical theorem was proven

which enables the efficient computation of the death state probabilities of a

large family of semi-Markov models useful for the analysis of the reliability

of fault-tolerant architectures. (See ref. I.) This theorem has been

mechanized into a flexible interactive reliability tool--the semi-Markov

Unreliability Range Evaluator (SURE). The SURE program provides the capability

for parametric analyses of candidate configurations of a computer system

architecture and thus should serve well as a design tool and as a validation

aid.

The SURE reliability tool applies to semi-Markov models with the following

characteristics:

(I) The transitions of the model must fall into two classes--slow
exponential transitions and fast general transitions.

(2) No circuit may exist in the graph structure of the model, i.e., it must
be a pure death process. Thus, transient faults cannot be modeled or
analyzed in SURE.

The SURE program consists of three modules--the front-end, the computation

module, and graphics output module. The front-end and computation modules are

implemented in Pascal and should easily "port" to other machines. The graphics

output module is written in Fortran but uses the graphics library TEMPLATE.

This module will only "port" to users with this library. The interface to this

. module is very simple and could easily be rewritten for other graphics systems.

The graphics output portion of the program was written by Mr. Dan Palumbo of

Langley Research Center. The graphics module has been very useful in

demonstrating the capabilities of the SURE system. The author is grateful to

Mr. Palumbo for this useful contribution to the SURE program.

RELIABILITY MODELING OF COMPUTER SYSTEM ARCHITECTURE

Highly reliable systems must use parallel redundancy to achieve their fault

tolerance since current manufacturing techniques cannot produce circuitry with

adequate reliability. Furthermore, reconfiguratlon has been utilized in an

attempt to increase the reliability of the system without the overhead of even

more redundancy. Such systems exhibit behavior which involves both slow and

fast processes. When these systems are modeled stochastically some state

transitions are many orders of magnitude faster than others. The slower

transitions correspond to fault arrivals in the system. If the states of the

system are delineated properly, then the slow transitions can be obtained from

field data and/or MIL STD 217D calculations. These transitions are known to be

exponentially distributed. The faster transition rates correspond to the

system's response to fault arrivals and can be measured experimentally using

fault injection. (Experiments by Charles Stark Draper Laboratory, Inc., on the

Fault-Tolerant Multlprocessor, FTMP, computer architecture have demonstrated

that these transitions are not exponential; see ref. 2.) The primary problem

is to properly model the system so as to facilitate the determination of these

transitions. If the model is too coarse the transitions become experimentaliy

unobservable. If the model is too detailed the number of transitions which

must be measured can be exorbitant. Once a system has been mathematically

modeled and the state transitions determined, a computational tool such as SURE

may be used to compute the probability of entering the death states (i.e., the

states which represent system failure) within a specified mission time, e.g.,

I0 hours.

The accuracy of the computational analysis is strongly dependent on the

correctness of the mathematical model. The absence of a critical transition

from the model can often be far more devastating than a 100 percent error in

the estimation of a recovery transition. Unfortunately, experimental

validation of the model essentially requires "life-testing" type experiments

which are impractical for ultrareliable systems. The only recourse is to rely

on the careful scrutiny of the model by system experts to insure that the model

correctly represents the behavior of the system. Consequently, it is essential

that the assumptions of the modeling exercise be carefully enumerated.

2

The behavior of a fault-tolerant highly reliable system is extremely complex]

Fortunately, most of the detailed instruction level activities of the system do

not directly affect the system reliability' The mathematical models must

capture the processes that lead to system failure and the system fault-recovery

capabilities. The first level of model granularity to consider is thus the

unit of reconfiguration/redundancy in the system. In some systems this is as

large as a complete processor with memory. In other systems, a smaller unit

such as a CPU or memory module is appropriate. The states of the mathematical

model are vectors of attributes such as the number of faulty modules, the

number of modules reconflgured out, etc. The transitions correspond to changes

in these specified attributes of the system. Certain states in the system

represent system failure and others represent fault-free behavior or correct

operation in the presence of faults. The model chosen for the system must

represent system failure properly. This is difficult because it is even

difficult to define exactly what constitutes system failure. System failure is

an extremely complex function of external events, software state, and hardware

state. The modeler is forced to make either conservative or nonconservatlve

assumptions about what is system failure. If one wishes to say that the

reliability of the system is higher than a specific value then conservative

assumptions are made. For example, in a TMR system of computers, the presence

of two faulty computers is considered system failure whether or not the two

faults are actually corrupting data in such a way as to defeat the voting

system. If one wishes to say the reliability is not less than some value, then

nonconservative assumptions are made. For example, the modeler assumes only

certain parts of the system can fail. The problem is further compounded by the

plethora of failure modes possible at the module level. The higher the level

of model granularity, the more bizarre the failure modes. Typically one must

at least consider the following classes of failures:

I. permanent

2. intermittent
J

3. transient.

But, the diversity within each of these classes is enormous. For example, the

permanent class includes single-pin failures such as stuck-at-ls, stuck-at-Os,

3

inversions, etc. as well as multlple,pln failure modes. Intermlttents can

occur with arbitrary duration and frequency. Transients can affect multiple

pins and last for arbitrary times. In addition, each class can have different

arrival distributions and effects on the system. The SURE system can be used

to solve models dealingwith permanent failures only.

A semi-Markov model of a triad with one spare is given in figure I. (In this

model it is assumed that the spares do not fall while inactive.)

3a 2a
0

° ©
Figure I. - Semi-Markov model of a triad with I spare.

The horizontal transitions represent fault arrivals. These occur with

exponential rate "a." The coefficients of "a" represent the number of

processors in the configuration which can fail. The vertical transitions

represent recovery from a fault. These transitions may have arbitrary

distribution and hence the rate is time dependent: r(T). (This time must be

local time, i.e., the time since entering the current state, in order to

preserve the semi-Markov property of the system.) Since the system uses 3-way

voting for fault-masking, there is a race between the occurrence of a second

fault and the removal of the first. If the second fault wins the race, then

system failure occurs.

A NEW MATHEMATICAL RESULT

A recently proven mathematical theorem enables a quick analysis of a large

olass of semi-Markov models. This theorem was proven by Mr. Allan White of

• Kentron, Inc. under contract to NASA Langley Research Center and will thus be

referred to as Whlte's Theorem (See ref. I.) In this section Whlte's Theorem

will be discussed but not proven. The reader is referred to reference I for

details of the proof.

White's Theorem involves a graphical analysis of a semi-Markov model. The

theorem provides a means of bounding the probability of traversing a specific

path in the model within the specified time' By applying the theorem to every

path of the model, the probability of the system reaching any death state can

be determined within usually very close bounds. A simple semi_Markov model of

the 6-processor SIFT (see ref] 3) computer system will be used to introduce the

theorem. This model is illustrated in figure 2.

8(T) 8(T)

8(T)

3k .1 2k

, OCT)

Figure 2. - Semi-Markov model of SIFT.

The horizontal transitions in the model represent fault arrivals These are

assumed to be exponentially distributed and relatively slow. The vertical

transitions represent system recoveries by reconfiguration, i.e., removal of

the faulty processor from the working set of processors. These transitions are

assumed to be fast, but can have arbitrary distribution. White's Theorem

requires only that the mean and variance of the recovery time distribution be

specified. The death states of the model are states 4, 8, 11, 14 and 16.

Death state 4 represents thecase where three processors out of slx have failed

before the system reconflgures. State 16 represents the case where the system

has been completely depleted of processors. The unreliability of the system is

precisely the sum of the probabilities of entering each death state. Whlte's

Theorem analyzes every path to each death state individually. In the SIFT

model the following paths must be considered:

path I: I -> 2 -> 3 -> 4.

path 2: I -> 2 -> 3 -> 6 -> 7 -> 8.

path 3: I -> 2 -> 5 -> 6 -> 7 -> 8.

path 4: I -> 2 -> 3 -> 6 -> 7 -> 10 -> 11.

path 5: I -> 2 -> 5 -> 6 -> 7 -> 10 -> 11.

path 6:" I -> 2 -> 3 -> 6 -> 9 '> I0 -> 11.

path 7: I -> 2 -> 5 -> 6 -> 9 -> I0 -> 11.

path 8: I -> 2 -> 3 -> 6 '> 7 -> 10 -> 12-> 13 -> 14.

path 9: I -> 2 -> 5 -> 6 -> 7 -> I0 -> 12 -> 13 -> 14

path i0: I -> 2 -> 3 -> 6 -> 9 -> 10-> 12-> 13-> 14.

path 11: I -> 2 -> 5 -> 6 -> 7 -> 10 '> 12 -> 13 -> 14.

path 12: I -> 2-> 3 '> 6 -> 7 -> 10 -> 12-> 13-> 15 -> 16.

path 13: I -> 2 -> 5 -> 6 -> 7 -> I0 -> 12 -> 13 -> 15 "> 16.

path 14: I -> 2 -> 3 -> 6 -> 7 -> 10 -> 12-> 13 -> 15 -> 16.

path 15: I -> 2 -> 5 -> 6 -> 7 -> 10 -> 12 -> 13 -> 15 -> 16.

The number of paths can be enormous in a large model. The SURE computer

program automatically finds all the paths in the model.

Once a particular path has been isolated for analysis, Whlte's Theorem is

easily applied. Each step along the path must first be classified into one of

three classes. These classes are distinguished by the type of transitions

leaving the state. Each state along with the transitions leaving it will be

referred to as a path step. Onlyone transition can be on the current path

under analysis. This will be referred to as the on-path transition. The

remaining transitions will be referred to as the off-path transitions. The
B

classification is made on the basis of whether the on-path and off-path

transitions are slow (and hence also exponential) or fast. If there are no

off-path transitions in the path-step this is classified as a slow off-path

transition. Thus the following classes of path-steps are of interest:

Class I: (SLOW ON-PATH, SLOW OFF-PATH)

xi O
7i

There may be an arbitrary number of slow off-path transitions. If any of the

off-path transitions are not slow, then the path-step is in Class 3 below. The

path-steps I -> 2 and 5 -> 6 in the SIFT model are examples. The transition

rate of the on-path transition is Xi and the sum of the off-path transitions

is Yi"

Class 2: (FAST ON'PATH_ SLOW OFF'PATH)

() O

Once again there may be an arbitrary number of slow off-path transitions, €..z

As before, the off-path exponential transitions can be represented as a single

transition with a rate equal to the sum of all the off-path transition rates.

The path-steps 2 -> 5 and 3 -> 6 in the SIFT model are examples. The mean and

standard deviation of the on-path recovery-tlme distribution will be referred

to as _i and ci, respectively.

Class 3: (SLOW ON-PATH, FAST OFF'PATH)

This cl_s includes path-steps with both slow and fast off-path transitions.

However, only one off-path transltlon may be fast. The path steps 2 -> 3 and

7 -> 8 in the SIFT model are in this cl_s. The slow on-path transition rate

is el" The slow off-path transition rates are 81 and the mean and standard

deviation of the fast off-path recovery time distribution are ni and ¢I'

respectively

8

The class FAST ON-PATH, FAST OFF-PATH is not included since the theorem does

not apply to models that contain a state with more than one fast recovery-type

transition leaving it.

Classical seml-Markov theory has shown that the rearrangement of the path-steps

does not affect the probability of entering the death state of the path within
m

a specific time. Thus, the path can be decomposed into two subpaths--the first

subpath containing only class I path-steps, the second subpath containing only

class 2 and class 3 path-steps. The probability of leaving the first subpath

by the mission time, T, is of special importance In the analysis. Thls

probability Is referred to as E(T) Since this subpath consists only of

states wlth exponential transitions, It Is pure Markov.

Wlth the above classification, Whlte's Theorem can now be glven:

Whlte's Theorem: If E(T) is the probability of leaving the pure Markov

subpath by tlme T, the on-path recovery tlme distributions have means _i and
2

variances ai for I < i < m, the off-path recovery transitions have means nj2

and variances Cj for I < j < n, and the slow transition rates, aj,. Bj, and

€i, are as defined above, then the probability of entering the death state by

tlme T, D(T), is bounded as follows:

LB < D(T) < UB

where

n

UB : E(T){ II a nj}
J:1 j

2 2 - 2+ 2,

m [(_i,_i)] n in (aj+B_)(@_ Tll , (¢j+nj)2]
LB : E(T-A){ E I-€i_i Ea. - }

1:I uI j:1J J 2 n_

an. +

Whlte's Theorem gives the upper and lower bounds in terms of E(T) defined
2

earlier. Before illustrating the use of the theorem with an example two

: simple algebraic approximations for E(T) will be given--one which overestimates

and one which underestimates. (See ref. I.) Suppose we have the following pure
Markov Submodel:

_bl al _b2a2 _b_. '" _bn an <_)

The following algebraic expressions hold, where E(T) is the probability of

entering the state n+1 by time T.

ala2a3...an Tn
E(T) _Eu(T) =

n!

[n]E(T) > El(T) = Eu(T) I - T/(n+1) £ (ai + bi)
i--I

Furthermore, both Eu(T) and El(T) are usually very close to E(T). (See ref. I.)

I0

To see how Whlte's Theorem is used, consider the following portion of the

model:

- Q <,) @
<x,y>

<Wo Z>

P

There is only one path to state 3: I -> 2 -> 3. The first path step I -> 2 is

a class I path'step and hence contributes to E(t) The second path-step is

class3 (ai = 2a, ni = x, 8i = 0, ¢1 = y)" Thuswe have:

UB = Eu(T)(2ax)

LB --El(T-A) [2a (x - 2a(y2 + x2)/2 - (y2 + x2)/ xi/2)]

where

Eu(T)= 3aT

El(T-A) = 3a(T'A) [I - (T-A)a/2]

I/2
A = x

11

There is also only I path to state 6: I '> 2 -> 4 -> 5 -> 6 The path-steps

I -> 2 and 4 -> 5 are class I The path-step 2 -> 4 is class 2 (i.e., g. = 2a,
1

_i --x, oi --y) and the path step 5 -> 6 is class 3 (i.e. ej = 2a, Bj --O,

nj --w, Cj _,z). Thus,

UB = Eu(T)(2aw)

LB = El(T-A)[I " 2ax - (y2+x2)/x][2a(w - a(z2+w2) - (z2+w2)/wI/2)]

where

Eu(T) = (3a)(3a)T2/2! = 9a2T2/2

El(T-A) --[(3a)(3a)(T'A)2/2!] [I -(T-A)(3a + 3a)/3]

_-9a2(T-A)2/2 - 9a3(T-A)3

and

A = xI/2 + wI/2

12

THE SURE PROGRAM USER INTERFACE

Basic Program Concept

" Understanding the details of the above theory is not necessary to use the SURE

program. The user of the program need only be able to describe the semi-Markov

model of the system to the SURE program and enter values for the transitions in

the model. All of the computations described above are performed

automatically by the program. The SURE program utilizes a very simple command-

style language for description of the semi'Markov model. This language will be

discussed in detail in this section.

The SURE user must first assign numbers to every state in the system. The

semi-Markov model is then described by enumerating all of the transitions.

First, if the transition is slow then the following syntax is used:

1,2 : 0.0001;

This defines a slow exponential transition from state I to state 2 wlth rate

0.0001. (The program does not require any particular units, e.g., hour-I or
-I

sec . However, the user must be conslstent.) Second, if the transition is

fast then the mean and standard deviation (i.e., square root of the variance)

of the recovery time distribution must be glven. Since recovery rate is

roughly inversely proportional to recovery time, the rate is fast when the mean

of the recovery time distribution is small. The syntax for such a transition

is

15,207 = <0.01,0.003>;

This defines a fast transition from state 15 to state 207 with a recovery time

mean and standard deviation of 0.O1 and 0.003, respectively,

The two types of commands described above are the only essential ingredients in

the SURE language, However, to increase the flexibility of the SURE program a

13

few additions were made to the command language] These include:

(I) Constant Definitions,

(2) Expressions,

(3) Variable Definition,

(4) Read From Disk,

(5)Show,

(6) List Options,

(7) Graphics Display Interface,

(8) Miscellaneous Commands.

These additional commands are discussed in the next section.

SURE Command Syntax

Lexical Details. - The state numbers must be integers between I and the

"MAXSTATE" implementation limit, usually I0000. (This limit can be changed by

redefining a Pascal constant and recompiling the SURE program.) The trans{tion

rates, means, and standard deviations are floating point numbers. The Pascal

REAL syntax is used for these numbers. Thus, all the following would be legal

input to SURE:

O.001 ,

12.34,

I.2E-4.

The number must begin with a digit. Thus .001 is illegal.

The semicolon is used for command termination. Therefore, more than one

command may be entered on a line. If commands are entered from a terminal (as

opposed to by the READ command described below), then the carriage return is

interpreted as a semicolon' Thus, interactive commands do not have to be

terminated by an explicit semicolon unless more than one command is entered on

14

the line.

In interactive mode the SURE system will prompt the user for input by a number

followed by a ?:

I?

The number is a count of the commands entered into the system thus far plus the

current one. If there is an error then the command is ignored and the count is

not incremented.

Constant Definitions. - The user may equate numbers to identifiers.

Thereafter, these constant identifiers may be used instead of the numbers. For

example:

LAMBDA -- 0.0052;

RECOVER --0.005;

23,25 --LAMBDA;

25,26 = <RECOVER,0.O01>;

Variable Definition. - In order to facilitate "parametric analyses" a variable

may be defined. A range is given for this variable. The SURE system will

compute the system reliability as a function of this variable. If the system

is run in graphics mode (to be described later) then a plot of this function

will be made. The following command defines LAMBDA as a variable with range

0.001 to 0.009:

LAMBDA --0.001 TO 0.009;

Only one such variable may be defined. A special constant, POINTS, defines the

number of points over this range to be computed.

Expressions. - When specifying rates or means and standard deviations in a

command, a linear combination of constants and a varlablemay be used:

15

ALPHA --2E-4;

LAMBDA --IE-6 TO IE-4;

5,6 : 7*ALPHA+12*LAMBDA;

5,9 --<3.0*ALPHA*ALPHA + ALPHA*LAMBDA, O.00i*ALPHA*LAMBDA>;

The only operations currently supported are addition(+), subtraction(-), and

multiplicatlon(*). The only restriction on the use of these operations is that

a variable cannot be multiplied by itself (i.e., only linear functions of the

variable are allowed; this restriction does not apply to constants).

Currently, there has been no need for higher powers of a variable parameter.

If higher powers of the variable are needed, this could be added to the system.

Arbitrary constant expressions may be used.

Read from Disk. - A sequence of commands may be read from a disk file. The

following interactive command reads SURE commands from a disk file named

SIFT .MOD:

READ SIFT.MOD.

If no file name extent is given, the default extent, MOD, is assumed. This

feature may be used in conjunction with interactive command input.

Show Command. - The value of a constant or variable may be displayed by the

following command:

SHOW ALPHA ;

Information about a transition may also be displayed by the SHOW command. For

example, information concerning the transition from state 654 to state 193 is

displayed by the following command:

SHOW 654,193;

16

List Options. - The amount of information output by the program is controlled

by this command. Four llst modes are available:

i

LIST --O; -- No output is sent to the terminal.

LIST = I; -- Only the total system upper and lower bounds are listed. This

is the default.

LIST = 2; -- Every path in the model is listed. The probability bounds for

each death state in the model is reported along with the

totals.

LIST = 3; -- Details about each step along a path is given along with all

of the information displayed by option 2.

Graphics Display Interface. - If the appropriate graphics hardware/software is

available, then SURE generates graphical displays of the reliability models and

plots the upper and lower bounds of the total system probability of failure as

a function of a single variable. The user indicates by "wand" input where each

state of the model should be displayed. The user must issue the MEGA command,

• MEGA;

prior to the transition commands to cause the system to prompt for the state

locations. The system automatically "pans" as the model exceeds the current

scope of the screen. Once the user indicates where each state should be

placed, the program automatically draws all of the transitions and labels them.

The user may retain the state location information on disk by theSAVEMEGA

command. For example, the current state location information is written to

file SIFT.MEG by the following command:

" SAVEMEGA SIFT.MEG.

State location information may be retrieved from a disk file by the GETMEGA

17

command. If state location has been stored on disk file FTMP_MEG from a prior

SURE session then the following command will retrieve this information:

GETMEGA FTMP .MEG.

If the location information is on a file with the same VMS file name (except

the extent) as the command file whlch describes the model then the following is

an abbreviation for the commands GETMEGA TRIPLEX.MEG; READ TRIPLEX.MOD:

READ TRIPLEX*; .

The extent names must be .MOD for the file contalning the model commands and

.MEG for the file containing the state locations on the graphics display.

The SCAN and ZOOM commands may be used to peruse the model. The "wand" button

is used to end the ZOOM and SCAN commands.

Miscellaneous Commands. - The following commands are also valid:

RUN; -- initiates the computation. This command is issued after

the model description is fully entered

RUN OUTFILE; -- initiates the computation as above, but, the output is

written to file OUTFILE.

EXIT; -- causes program termination without computation.

TIME = 100; -- sets the mission time to I00. The default TIME is 10.

POINTS s 100; -- indicates that 100 points should be calculated/plotted

over the range of the variable.

18

ECHO = O; '- turns off the echo when reading a disk file_ The default

value of ECHO is I which enables echoing. (See example 3

in the appendix.)

" HELP; -- generates a brief description of each SURE command.

Typical Program Usage

The SURE program was designed for interactive use. The following method of Use

is recommended:

(I) Create a file of SURE commands using a text editor describing the semi-

Markov model to be analyzed.

(2) Start the SURE program and use the READ command to retrieve the

information from this file.

(3) Then use the miscellaneous commands to change the llst option or other

defaults as deslred.

(4) Enter the RUN command to initiate the computation.

Several interactive sessions are given in the appendix.

LIMITATIONS OF THE PROGRAM

The SURE program is applicable to a large class of semi'Markov models.

However, the following llst of restrictions should be observed:

(I) Fault arrival transitions must be exponentially distributed.

19

(2) No circuits may exist in the model, i.e., the system must be a pure

death process.

(3) Recovery transitions may be arbitrarily distributed, but, only I

recovery type transition can leave any particular state.

(4) Only one start state is allowed in a model (i.e,, only one state with no

transitions to it).

(5) The algebraic approximations to E(T) and E(T-A) currently used in the

program lead to widely separated bounds when the mission time, T,

becomes too large, i.e., when [T/(n+1)] Z (_i+_i) > I. A more elaborate

calculation of E(T) and E(T-A) will eventually be incorporated into

SURE.

(6) The lower bound defined by the theorem is close to the upper bound as

long as the standard deviations of the recovery transitions are the same

order of magnitude as the means or smaller. As the standard deviation

of these transitions become larger the bounds separate.

ERROR MESSAGES

The following error messages are generated by the SURE system. These are

listed in alphabetical order:

CIRCUIT FOUND WHILE TRAVERSING THE FOLLOWING PATH - A circuit has been found
in the model.

COMMA EXPECTED - syntax error, a comma is needed.

CONSTANT EXPECTED - syntax error, a constant is expected.

ERROR OPENING FILE - <vms status> - the SURE system was unable to open the
indicated file.

2O

E(T) APPROXIMATION IS INACCURATE - the entered mission time is so large as
to make the upper and lower bounds very far apart.

FILE NAME TOO LONG - file names must be 80 or less characters.

FILE NAME EXPECTED - syntax error, the file name is missing.

ID NOT FOUND - the system is unable to SHOW the identifier since it has not
yet been defined.

IDENTIFIER EXPECTED - syntax error, identifier expected here.

IDENTIFIER NOT DEFINED - the identifier entered has not yet been defined.

ILLEGAL CHARACTER - the character used is not recognized by SURE.

ILLEGAL STATEMENT - the command word is unknown by the system]

INPUT LINE TOO LONG - the command line exceeds the 100 character llmlt.

INTEGER EXPECTED - syntax error, an integer is expected.

NUMBER TOO LONG - only 15 dlglts/characters allowed per number.

ONLY I VARIABLE ALLOWED - only I variable can be defined per model.

REAL EXPECTED - a floating point number is expected here.

SEMICOLON EXPECTED - syntax error, a semicolon is needed.

STATE OUT OF RANGE - The state number is negative or greater than the
maximum state limit (default = 10000, set at SURE compilation time).

TRANSITION NOT FOUND - The system is unable to SHOW the transition because
it has not yet been defined.

VMS FILE NOT FOUND - The file indicated on the READ command is not present
on the disk. (Note: make sure your default directory is correct.)

WARNING: VARIABLE CHANGED! - If previous transitions have been defined using
a variable and the variable name is changed, inconsistencies can result in
the values of the transitions.

WARNING: MORE THAN ONE STARTSTATE - The model entered by the user has more
than one start state (i.e., a state with no transitions to it).

= EXPECTED - syntax error, the = operator is needed.

> EXPECTED - syntax error, the closing bracket > is missing.

21 •

*** ID CHANGED TO X - The value of the identifier (Constant) is being
changed.

*** ID CHANGED TO X TO Y - The value of the identifier (Variable) is being
changed.

*** MORE THAN I RECOVERY FROM STATE X - the indicated state has more than I
recovery type transition leaving it.

***** TRANSITION X -> Y ALREADY ENTERED - The user is attempting to re-enter
the same transition again.

CONCLUSIONS

The SURE program is a flexible, user-frlendly interactive deslgn/validation

tool. The program provides a rapid computational capability for a wide class

of semi-Markov models useful in describing the permanent fault behavior of

fault-tolerant computer systems. The major deficiency of the program is the

inability to deal with transient or intermittent behavior of such systens.

Currently, the program provides useful bounds only when the mission time is

relatively short, e.g., on the order of 10 to 1000 hours for a system with

component failure rates of 10-4/hour. However, this deficiency soon will be

remedied by the use of more powerful numerical routines.

22

APPENDIX

The following examples illustrate interactive SURE sessions. For clarity, all

user inputs are given in lower case letters.

" Example I. This session illustrates direct interactive input and the type of

error message given by SURE:

$ sure

I? lambda = Ie-5;

2? 1,2 = 6*lambda;

2? 2,3 = 5*lamba;

^ IDENTIFIER NOT DEFINED

3? 2,3 = 5*lambda;

4? show 2,3;

TRANSITION 2 -> 3: RATE --5]00000E-5

5? 2,4 = <le-4,1e-5>;

6? 4,5 = 2*lambda;

7? llst = 2;

8? time = 10;

9? run

STARTSTATE-- I

5 STATES IN GRAPH

MISSION TIME -- 10.0000

PATH # I: 5 4 2 I

PATH # 2: 3 2 I
J

2 PATHS IN GRAPH

23

DEATHSTATE PATH LOWERBOUND UPPERBOUND

5 I 5.98620E-08 6.00000E-08

3 2 2.96614E'12 3.00000E-12

TOTAL 5.98650E-08 6.00030E-08

190 MILLISECS CPU TIME UTILIZED

Example 2. - The following session indicates the normal method of using SURE.

Prior to this session, a text editor has been used to build file TRIADPI.MOD

and TRIADPI .MEG was created by the SAVEMEGA command in a previous session.

$ sure

I? read triadp1*;

2: LAMBDA = IE-6 to Ie'2;

3: RECOVER = 2.7E-4;

4: STDEV = 1.3E-3;

5:1,2 = 3*LAMBDA;

6:2,3 --2*LAMBDA;

7:2,4 = <RECOVER'STDEV>;

8:4,5 = 3*LAMBDA;

9:5,6 = 2*LAMBDA;

10:5,7 = <RECOVER,STDEV>;

11:7,8 = LAMBDA;

12: POINTS = I0;

13: time = 6;

13? run

24

STARTSTATE= I

8 STATESIN GRAPH

MISSIONTIME = 6.0000

3 PATHS IN GRAPH

LAMBDA LOWERBOUND UPPERBOUND

I.O0000E-06 6.15621E-15 I.00441E-I4

2'78256E-06 5.20068E-14 8.22407E-14

7.74264E-06 4.96200E-13 7.33127E-13

2.15444E-05 5.85662E-12 7.75250E-12

5.99484E-05 8.87328E-I0 1.04754E-I0

1.66810E-04 1.62064E&09 1.77475E-09

4,64159E-04 3'25940E-08 3.45029E-08

1.29155E-03 6.80160E-07 7.14440E'07

3.59382E-03 1.42382E-05 1.51684E-05

1.00000E'02 2'88873E-04 3.25060E-04

290 MILLISECS CPU TIME UTILIZED

Figure 3 illustrates the model displayed on the output graphics device. The

plot of figure 4 was generated from this run.

25

A

Pl
{l
0
<
M

0

<
V

() °<) .,o ooo@
M

8
<
M

0
P1
<
9

() o ooo

Figure3.- MarkovModelfromexample2.

26

Z",

ID-6

p :i

0 _
_.B ;i
A _
o i

I " _

"T ;

Y I L1-'1
0
F • •

FLAuER!la-B'.. ." "" " _ " , " i " '_:

I[1 -_l I I I I I I I I I I I I I I I

" .00005 .LIOLI15 OLIO2S .OLIL135 OOL1LI5 00055 LlOL16S .000 "IS
LAHBDA

"_igure 4. - SI.II_..output £tom example 2.

.... ..,,, .

Example 3 - The following interactive Session illustrates the use of the ECHO

constant. This is used when the model description file is large and it is

desired that it not be displayed on the terminal as it is read by the SURE

program.

Ssure

I? getmega ftmp.meg

2? echo = Oi

3? read ftmp2.mod;

26? points = I;

*** POINTS CHANGED TO 1.00000E+00

27? run

STARTSTATE = I

20 STATES IN GRAPH

MISSION TIME = 10.0000

7 PATHS IN GRAPH

LAMBDA LOWERBOUND UPPERBOUND

I.OOO00E'04 4.5824OE'I0 5.02254E-I0

170 MILLISECS CPU TIME UTILIZED

Example 4. -This interactive session illustrates how to use SURE to obtain

system unreliability as a function of mission time.

$ sure

28

I? read ftmp9

2? LAMBDA = 5E-4;

3? STDEV = 3.6E-4;

- 4? RECOVER = 217E-4;

5? TIME = 011 TO 1000;

6? 1,2 = 9*LAMBDA;

7? 2,3 = 2*LAMBDA;

8? 2,4 = <RECOVER,STDEV>;

9? 4,5 = 9*LAMBDA;

I0? 5,6 = 2*LAMBDA;

11? 5,7 --<RECOVER,STDEV>;

.12?7,8 --6*LAMBDA;

13? 8,9 = 2*LAMBDA;

14? 8,10 = <RECOVER,STDEV>;

15? 10,11 = 6*LAMBDA;

16? 11,12 = 2*LAMBDA;

17? 11,13 = <RECOVER,STDEV>;

18? 13,14 = 6*LAMBDA;

19? 14,15 = 2*LAMBDA;

20? 14,16 = <RECOVER,STDEV>;

21? 16,17 = 3*LAMBDA;

22? 17,18 = 2*LAMBDA;

23? 17,19 = <RECOVER,STDEV>;

24? 19,20 = I*LAMBDA;

25? POINTS = 5;

26? run

STARTSTATE = I

20 STATES IN GRAPH

MISSION TIME = 0.0000

7 PATHS IN GRAPH

29

TIME LOWERBOUND UPPERBOUND

I.O0000E-01 9.69006E-II I.21527E-I0

I.O0000E+O0 I.14124E-09 1.21774E-09

I.O0000E+01 I.16587E-08 1 24261E-08

I'O0000E+02 I.27131E'07 I.59925E-07

I.O0000E+03 0.O0000E+00 8.13719E-02

E(T) APPROXIMATION IS INACCURATE

260 MILLISECS CPU TIME UTILIZED

3O

REFERENCES

(I) White, Allan L.: Upper and Lower Bounds for Semi-Markov Reliability

Models of Reconflgurable Systems. NASA CR-172340, 1984.

(2) Lala, Jaynarayan H; and Smith, T. Basil III: Development and Evaluation

of a Fault-Tolerant Multlprocessor (FTMP) Computer, Volume III, FTMP Test

and Evaluation, NASA CR'166073, 1983.

(3) Goldberg, Jack, et. al.: Development and Analysis of the Software

Implemented Fault Tolerance (SIFT) Computer' NASA CR-172146, 1984.

31

1. Report No, 2. GovernmentAccessionNo. 3. Recipient's'CatalogNo.
NASATM-86261

4. Title and Subtitle 5. Report Date

THESEMI-MARKOVUNRELIABILITYRANGE iJuly 1984
EVALUATORPROGRAM 6.PerformingOrganization('.ode

505-34-13-30
7. Author(s) 8. Performing Orgamzation Report No.

Ricky W. Butler i0. WorkUnitNo. "
9. Performing Organization Name and Addresl

NASALangley ResearchCenter 11. ContractorGrant No.

Hampton,Virginia 23665
13. Type of Report and PeriodCovered

12. Sponsoring Agency Name and Address TechnicalMemorandum

NationalAeronauticsand SpaceAdministration 14.SponsoringAgency Code
Washington,DC 20546

15. SupplementaryNotes

16. A_tra_

The SURE programis a new design/validationtoolfor ultrareliablecomputersystem
architectures.The systemusessimplealgebraicformulasto computeaccurateupper
and lowerboundsfor thedeathstateprobabilitiesof a largeclassof semi-Markov
models. Themathematicalformulasused in the programwerederivedfroma recent
mathematicaltheoremprovenby AllanWhiteundercontractto NASA LangleyResearch
Center. Thismathematicaltheoremis discussedalongwith the user interfaceto the
SUREprogram.

17. Key Wor_ (Suggest_ by Author(s)) 18. DistributionStatement '

Reliabilityanalysis
Semi-Markovmodels Unclassified--Unlimited

Faulttolerance SubjectCategory65
Reliabilitymodeling

19. Security C_assif.(of thisreport) 20. SecurityCla_if. (of thispage) 21. No. of P_ 22. Price"

Unclassified Unclassified 32 A03

*ForsalebytheNationalTechnicalInformationService.Springfield.Virginia2216!

