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Studies have shown that interior noise levels in general



aviation aircraft are generally high and annoying. The airborne



noise transmission through aircraft sidewall is one of the important



source-path combinations of the sound transmission into an aircraft



cabin. This report describes the work completed for an ongoing



general aviation interioi noise research project. A broad-based
 


approach--i.e., laboratory investigation of sound transmission



through panels, use of modern data analysis techniques and



application to actual aircraft--was used to determine methods to



reduce general aviation interior noise.



The laboratory investigations were carried out in a low-cost



acoustic panel test facility. The experimental noise reduction



characteristics of stiffened flat and curved panels with damping
 


treatment are discussed. The experimental results of double-wall



panels used in the general aviation industry are given. The effects



of skin panel material, fiberglass insulation and trim panel



material on the noise reduction characteristics of double-wall



panels are investigated. These results are compared with the



±





theoretical predictions from classical sound transmission theory for



multilayered panels. The changes needed in the classical sound



transmission theory for a better agreement are discussed. It is



also shown that the same theory can successfully be used to design



the interior noise control treatment of a new aircraft.



The development of the acoustic intensity system for this test



facility is described. The use of cepstral analysis techniques to



determine the absorption coefficients of interior trim panels in



situ is discussed. Also a computer program, which can be used to



.analyze the problem of high interior noise of the production



aircraft and to study the effectiveness of the noise control



treatment, is given. The use of this program on aircraft noise



control has shown the validity of the models used.. The results
 


indicate that with minor modifications the classical sound



transmission theory can be used not only to predict the panel sound



transmission loss characteristics but also to analyze actual noise
 


control treatment of an aircraft.
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CHAPTER 1



INTRODUCTION



Studies (References 1-3) show that the levels of noise within



general aviation aircraft are high when compared to other modes of



transportation and in many cases result in annoyance and discomfort



for the pilot as well as the passengers. This is despite the use of



heavy acoustical treatments. The noise control treatment in



present-day general aviation aircraft is based on an after-the-fact



approach. Even though high interior noise level is uncomfortable



and annoying, it rarely affects the safety of the aircraft. For



this reason it does not receive enough attention from the aircraft



designers during the initial phases of the design of an aircraft.



only after a prototype is constructed and found to be noisy are the



members of acoustic and-vibrationgroups consulted. However, there
f 

is a growing iwareness of this problem, both in the industry and in 

research institutions. The noise sources in general aviation are 

engine, propeller, auxiliary equipment and airflow over fuselage. 

The noise paths include both structure-borne and airborne paths. In 

particular, a significant NASA-sponsored research program is being 

conducted in the area of structural transmission phenomena and



prediction. The research program concerns itself with the



transmission of the airborne noise from the engines and propellers,



through aircraft sidewalls into the fuselage. In this area, three



major topics of experimental and theoretical analysis can be 

identified:
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1. Sound transmission through actual fuselage structure;



2. 	 Sound transmission through a cylindrical model;



3. 	 Sound transmission-through panel type structures.



It is the third topic that is being investigated at the



University of Kansas Flight Research Laboratory (KU-FRL), under a



grant from NASA. This ongoing program, titled "A Research Program to



Reduce the Interior Noise in General Aviation Airplanes," is funded



by NASA Langley Research Center, through continuing Cooperative



Agreement NCCI-6. The work conducted by the KU-FRL, in addition to



contributing to NASA Langley's general aviation noise programs, also



provides information that is more directly applicable to the design



and modification of interior noise control treatment of' general



aviation aircraft. The latter is the reason for general aviation
 


manufacturers to stimulate the KU-FRL research program with valuable



information as well as with test specimen.



This research program started in April 1976 and has guaranteed



funding up to April 1985.. This report presents the organization and



results of this program from June 1982 through June 1984. During



this period, the research progrm was concentrated in the following



aspects of the interior noise problems of general aviation aircraft.



1. , Investigation of sound transmission through panel type



structures;



2. 	 Development of new data analysis techniques for the test



facility;





3. 	 Application of the results of this research program to
 


actual aircraft noise control.



The next chapter describes the project history, the status of



the project at the beginning of this report period, the research



objectives, and the impact of this project.



Chapters 3-6 deal with the first aspect of the project. "n



particular, the sound transmission characteristics of panels treated



with damping tapes are presented in Chapter 3. The effects of three



different damping tapes are analyzed. chapter 4 describes the test
 


methods developed to measure the loss factors of panels installed at



this test facility. These values are needed for use in theoretical 

prediction programs. Also discussed in this chapter are effects of 

various parameters on the loss factors of panels installed in this 

test facility. chapters 5 and 6 deal with the sound transmission 

characteristics of double-wall panels. Chapter 5 presents the 

results of a systematic experimental investigation of double-wall 

panels. Chapter 6 describes the computer program developed to 

calculate the noise reduction values of such panels. Analytical and 

experimental results are also compared in this report. 

Chapter 7 describes the design development and testing of the



acoustic intensity techniques at this facility, with the



installation of this technique, sound intensity radiation of panel



type structures can be studied. A method to measure the absorption



coefficients in situ based on the principle of deconvolution of



composite signals is presented in Chapter 8.
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The application of the results obtained in Chapters 5 and 6 to



actual aircraft noise control design is described in Chapter 9. A



computer program, base& on the conventional sound transmission
 


theory to troubleshoot high interior noise problems of individual



aircraft, is presented in Chapter 10.



Conclusions and recommendations based on this research project



are given in Chapter 11.
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CHAPTER 2
 


PROJECT HISTORY AND MANAGEMENT



2.1 PROJECT HISTORY



In April 1976, the request by the University of Kansas for a



grant to do research in the field of general aviation interior noise



was approved by the Noise Effect Branch of the NASA Langley Research



Center. The broad objective of this research program is expressed



by its title, "A Research Program to Reduce the Interior Noise of
 


General Aviation Airplanes." The first year of this research



program was exploratory in nature. It was used to define a long­


range, follow-up research program in interior airplane noise.



During the latter part of the project year 1976-77 and the first



part of the project year 1977-78, the design and construction of the



KU-FRL acoustic test facility was undertaken. During the second



project year onwards, the program objectives (Reference 3) remained



as follows:



1. 	 To determine the sound transmission loss characteristics 

of various structural panels and panel treatments 

(experimentally); 

2. 	 To compare test results with predictions from pertinent



analytical methods;



3. 	 TO provide a systematic collection of sound attenuation



characteristics of panels based on both experimental and



analytical considerations;
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4. 	 To use these results to extend or develop prediction



methods.



By the end of the second project year the following tasks were



accomplished:



1. 	 Design and construction of an acoustic test facility: A



description of the test facility is given in Appendix A of
 


this report.



2. 	 Design and construction: special test sections to measure



sound transmission loss characteristics at oblique angles



of incidence.



3. 	 Determination of transmission loss data for single panels.



4. 	 Empirical and theoretical insertion loss prediction



methods.



During the next two project years (1978-79 and 1979-80), a



systematic study was undertaken to determine the parameters that



affect noise transmission through single-wall panels. The



parameters studied include mass; thickness; stiffness; angles of



incidence; radius of curvature; riveted, bonded and clamped edge



conditions; and tensile stress. During this period, the effect of



the cavity of The termination box of the test facility on the



measured sound transmission loss of the panels was also



investigated. A systematic study was also undertaken to investigate



the sound transmission loss characteristics of single-pane and dual­


pane plexiglass windows. During this investigation, use of flat,



depressurized, integral, dual-pane windows was also explored. The
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results of these two years of study are presented in the Doctor of
 


Engineering Report (Reference 4).



During the years 1980-81 and 1981-82, the sound transmission



charcteristics of interior trim panels, multilayer panels and



composite panels were studied. Also investigated were the concepts



of Helmholtz resonators for dual-pane windows and tuned dampers for



structures (References 5 and 6). During this period, tests were
 


also performed on panels with damping tape.



The author, Ramasamy Navaneethan, started working on this



project in August 1979. The work performed between June 1980 and



June 1981 was used for his Master of science thesis (Reference 5).



He continued to work for his doctoral program on this project.



During 1981-82, he familiarized himself with actual aircraft
 


interior noise problems and developed methods to apply the results



of this test facility to actual aircraft applications. He became
 


the student project manager for this continuing NASA project from



June 1982. This project report covers the period from June 1982 to



June 1984 and the relevant work on actual aircraft applications.
 


During the project years 1982-83 and 1983-84, the following



additional objective was added to the primary objectives of the
 


project:



To develop new analysis techniques at the KU-FRL acoustic



test facility.



During this project period, the following tasks were proposed.





1. 	 TO investigate the effect of damping material on the sound



transmission loss characteristics of skin panels;



2-. 	 Tb investigate the damping characteristics of panels used



in general aviation aircraft;



3. 	 To document the sound transmission loss characteristics of 

double-wall panels; 

4. 	 To investigate the parameters which affect sound



transmission through double-wall panels;



5. 	 To develop a simple, theoretical model which will predict
 


the sound transmission loss characteristics of double-wall



panels;



6. 	 To develop a computer program to apply the results



obtained in 3 through 5 in the noise control treatment



design of an aircraft;



7. 	 To develop a method for troubleshooting high interior
 


noise problems of existing production aircraft;



8. 	 To develop procedures to calculate sound transmission



values using acoustic intensity measurements;



9. 	 To develop cepstral analysis techniques for the



measurement of absorption coefficients of nonstandard size



panels.





PARAGRAPHS 2.2 AND 2.3
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CHAPTER 3
 


NOISE REDUCTION CHARACTERISTICS OF SINGLE PANELS



WITH DAMPING MATERIALS



3.1 INTRODUCTION



Experimental investigations have already been performed at the



KU-FRL acoustic test facility to determine the individual effects of



structural stiffening, curvature and damping on the sound



transmission loss characteristics of panel-type structures used in



general aviation industry (Reference 4). But in practice, all three
 


of these factors occur together; i.e., the aircraft skin is always



stiffened by stringers and frames, it is often pressurized to add
 


comfort for the passengers, and invariably some sort of damping



treatment is added. In this series of experimental investigations,



the sound transmission characteristics of the panels containing



damping material were investigated.



Earlier studies (References 3 and 4) indicate that the use of



stiffeners on panels increases the stiffness of th6e anel,-whi6h



increases the noise reduction in the stiffness-controlled region (or



low-frequency region). Curving a panel increases the low-frequency



noise reduction if the curvature is low, because of the stiffening



effect of the curvature. However, when the curvature ,is very high,



other effects such as oblique incidence become dominant. These



effects reduce the noise reduction, offsetting the effect of



stiffening. In the high-frequency region, the effect of curvature



is to reduce the noise reduction. The effect of increasing damping
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of panels by means of additional damping treatment is to increase 

the noise reduction at the fundamental resonance frequen6y and also­

to reduce the severity of the resonance peaks and dips in the high­

frequency region. In this series of tests, the above results were 

kept in mind in choosing the test parameters to be varied. Two 

panels, representative of the actual aircraft panels, were used.
 


Three different types of damping treatment were investigated.



The KU-FRL acoustic test facility was used for these tests. It



consists of three main systems: testing apparatus, signal



generating and analyzing equipment, and depressurization system.



Figure 3.1 shows the test facility. Figure 3.2 shows the test



facility configuration for flat panels. Figure 3.3 shows the



adapter required for a curved, stiffened panel. The data



acquisition system and noise generation equipment are illustrated in
 


Figure 3.4. Finally, the schematic diagram of the depressurization



subsystem is presented in Figure 3.5. The description and



characteristics of the- test-facility are summarized in Appendix A.



In the following section the modifications done to the test



facility, the test panels, and the parameters tested will be



described. The results for each group of tests performed will also



be presented in the subsequent sections.



20





CD 

ft 
U) 

ft 

H. 

'AA 

(Source Side) (Receiving Side) 
.­ .­ "­ .)(insulation 

Brick Wall 
Speaker Baffle Plate 

Absorplive Molerial in Speaker Box 
Test Specimen 

Loose Foam 
C:1 Absorptive Terminalion (Box) 

c - - Absorptive Wedjes 

. 

10 

f sDoubleWall 

In Between) 

°_ 

Absorptive 
M ea 

0 
'V 

- E 

0 
____-__.._ --

S clion C - C ---­

"U)ic­ _ -­ --------­] - -­ -

a 

rt
,,4 



107.5" 

Rails for Wheels 

(D 

H 
H.tI 

M 

COO 

Table partly omitted for clarity 

SECTION A-A 

0 0 

0N 

o jAbsorption ue 

A A 

(D 

77,5" 
Table 

Brick 
Wall 

__ 



CRails 

6.25" -­v 107.5' 

for Wheels 

Cr 

0 

I, SECTION A-A Table partly omitted for clarity 

0 0 

0ETONAA•. 

tiTest 

ro 
Sectionl 

A 
Absorption Tube C 

/D A 

77.5" 
Table 

Brick 
Wall 

ha 11 

-
aI 



M 

O 
n 

Noise Gene,at;on
A 

Noise M.nsurmenI 
,B. 

Noise Analysis 
A. Altec 405-8G Speakers 

Crown D-150 Power Amplifier 

C. TAPCO 2200 Equilizer 

(D 
W 

] 

E .D 
D -
-.... 

Noise Source 
i) GeneralfRadio 1390-A 

Random Noise Generator 
0 0 

I 00 tol 
ii) Hp 3300A Function 

Generator 

E. B&K 4136 Microphones with,V268PemsrM 
S F. B&K 2804 Microphone Power 

0 
; r 

> 

H.W~ _ Supply 

ct~~ . GtLs. Nagra SJS Tape Recorder 

WReal 
D H. Spectrhl Dynamics Model S D335 

Time Analyzer 

I..Apple 2+ Computer 

ct J. HP 7045-A X-Y Recorder 



Ht



(D Vacuum Pump
On-Off 

Switch 

(D 

I-'. Air from Box00N 

rt Speaker Box "0

H0 0- Differential Pressure 

Shut off Valve r 

U) To Vacuum 
:* Pump 

Bleed Air


Bleed Air


Valve 



3.2 MODIFICATIONS TO THE TEST FACILITY
 


These tests with the flat and curved panels with-pressure



differential across the test specimen demanded some modifications to



the test facility. These are described below.



3.2.1 DEPRESSURIZATION SYSTEM



AS previously mentioned, testing was also done with pressure
 


differential across the test panel. A depressurization system had
 


already been used in the KU-FRL acoustic test facility (Reference



3). This system was reactivated for use in this phase. The



schematic diagram of the system is shown in Figure 3.5. The system



was recalibrated to determine the line losses. The system proved to



'be reliable and posed little problem during the tests. Pressure



differentials up to 3 psi could be generated.



3.2.2 ADAPTER FOR CURVED PANEL



Unlike the flat panel, which can be directly clamped to the



test section, the curved panel required an additional curved support
 


on both sides of the panel so that a simply-supported edge condition



could be simulated. Figure 3.3 shows the adapter used and its



relative location in the test facility. This adapter was



constructed from 3/4 inch particle board and had the same outside



dimensions as the standard test section. The adapter shifted the



centerline of the test specimen back to three inches from the noise
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source, as compared to the standard one inch for the flat panel. No



corrections were made for the additional cavity produced by this



adapter. However, the distance between the microphones was



maintained constant at eight inches.
 


3.3 DESCRIPTION OF THE TEST PANELS AND MATERIALS



3.3.1 FLAT PANEL



The flat panel, made from standard aluminum sheet, was



stiffened in one direction by "L" stringers. The sheet was 0.04
 


inches thick and 20 inches by 20 inches in outside dimensions. The



extruded stiffeners were riveted to the skin. Figure 3.6 gives the



geometrical details of the panel.



3.3.2 CURVED.PANEL



The curved aluminum panel was stiffened in two directions. The



sheet thickness was .04 inch. The panel was curved in one direction



and stiffened in both directions, thus approximating a typical



general aviation type sidewall. The radius of the curvatuve of the



panel was 33.5 inches. This radius of curvature is representative



of the radius used in the general aviation industry. The stiffeners



and the frames were riveted to the skin. The outside dimensions



were 20 inches by 20 inches. The geometric details of the panel are



given in Figure 3.7.
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3.3.3 DAMPING TAPES



Three damping tapes were used in the investigations. They were



Y-370, Y-434, and Y-436, manufactured by the 3M Company. They



provided constrained layer damping. Y-434 has a 7.5-mi
 


constraining layer, and Y-436 has 17-mil constraining layer. Y-370



is the commonly used damping tape in the general aviation



industry. These tapes were self adhesive; and, as a result,



application to .the test specimen was easy. The tapes were applied
 


in amounts of 30%; 60%, and 100% of the panel test area (18 inch by



18 inch). During tests with partial coverage, the application was



limited to the central part of the test panel. This was in



conformity with existing industry practices. The stringers and



frames were not treated with damping tape. All tests were done at



room temperature, as it was not possible to vary the temperature



within the acoustic test facility. The damping properties of these



materials will degrade when they are soaked in very low temperatures



that can be expected in cruise conditions. The results of the



present series should be considered in this context.



3.4 TEST RESULTS



Table 3.1 summarizes the variables considered in this series of



tests. At least one noise reduction test was conducted for each



,combination of variables considered. These variables were chosen



after consultation with the industry. As already explained, the



tests were conducted only at room temperature. Tests with the sweep
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Table 3.1 : List of Variables Considered



Panels:



a. 	 Flat, stiffened aluminum, thickness .040" (.85 kg

or 1.88 ib) 

b. 	 Curved, stiffened aluminum, thickness = .040" (1.09

kg or 1.240 ib) 

Noise Source:



a. 	 Sine wave sweep oscillator


b. 	 Random Noise Generator



Depressurization, AP:



a. 	 0 psi 
b. 	 i psi 

c. 	 2 psi 
d. 	 2.5 or 3 psi



Damping Material:



a. 	 Y-370


b. 	 Y-434


C. 	 Y-436



Percentage of Coverage:



a. 	 0% (Bare panel)


b. 30% 
c. 60% 
d. 100% (1B" x 18" area) 
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oscillator were carried out in two steps to improve the resolution 


at low frequencies. In the first sweep, the frequency range from 20 


to 50G Hz was -covered.- The effective bandwidth in this frequency 

range was three Hz. In the second sweep the frequency range from 

500 to 5000 Hz was covered, with an effective bandwidth of 15 Hz. 

In both cases, the linear sweep time was 100 seconds. The analysis 


of tests with the random noise generator was also carried out with 


the two frequency ranges (500 and 5000 Hz) for the same reason. The



random noise generator, however, produced a flat spectrum up to 20



kHz. From the narrow band analysis, the one-third octave analysis



is done by energy-summing the narrow band levels within each one­

third octave band. This was achieved through a computer program. 

The results of the individual tests are published in Reference 7. A 

typical output is given in Figure 3.8. The result obtained from the 

test facility .is the noise reduction as a function of frequency. It 

is a continuous curve from 20 Hz to 500 Hz and from 500 Hz to 5000



Hz. In the subsequent sections, however,, the effect of various



parameters on the result obtained will be discussed only at two
 


frequency'values, one from the low-frequency region (stiffness­


controlled region) and the other from the high-frequency region



(mass-controlled region). These results are representative for



these regions.- Previous tests at this facility have also confirmed



these-trends (References 4, 5, and 7).



32





5B 

CURVED PANEL 
DAMPING MATERIAL ­ Y-434 

39 X COVERAGE 
PANEL bEIGHT ­ 1.119 kq 

NOISE SOURCE - WHITE NOISE 
PRESSURE DIFFERENTIAL - 3 psi 

-u 

w 
(D 

z 
40 *~'Y~lPi L~ 

H H 

00 

t 

0 20 
Iii It 

w IOO 

2 3 4 
DO 

H5 V
1000 

FREQUENCY H=





3.4.1 EFFECT OF NOISE SOURCE



The test results of both excitations matched within the



experimental scatter (±2 dB) in the low-frequency region. in the



high frequency region, due to the resonance peaks and dips, it was
 


not possible to identify the scatter for individual filter



location. However, the least-square values of the results were



within the ± 2dB. These results are consistent with the earlier



test results with the unstiffened panels. For all the cases



considered--i.e., stiffened and depressurized panels--no significant
 


differences exist in the results between these two noise



excitations.



3.5 NOISE REDUCTION CHARACTERISTICS OF BARE FLAT AND CURVED PANELS
 


3.5.1 FLAT PANEL



Before the application of damping treatment, the noise



reduction characteristics of the bare panels were investigated.



Earlier studies had indicated that depressurization increases the



low-frequency noise reduction by the stiffening effect (Reference



4). The purpose, in this case, was to study the extent of the gain



in noise reduction that can be obtained by a pressure differential



in an already stiffened structure. In all cases the pressure on the



source side was reduced to simulate the actual aircraft



conditions. Depressurization of up to three psi differential was



investigated. The effect of depressurization is easily seen by
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studying the variation at two selected frequency values, 100 and



3000 Hz. The frequency value of 100 Hz is within the stiffness­


controlled region, and 3000 Hz is in the mass-controlled region.



The effect of depressurization of the flat panel is similar to that



of the unstiffened panel (see Reference 4). The maximum increase in



the noise reduction occurs in the first one psi, and after that the



effect is minimal (Figure 3.9). At 100 Hz, the noise reduction



increased from 17 dB to 28 dB for the first one psi and increased



only by three dB for the next two psi pressure differential.



Compared to the unstiffened panel (see Reference 4), these results



are not impressive. This is because the panel is already stiffened,



and hence the increase in stiffness is not proportionally high.



This can be seen from the resonance frequency. The depressurization



increases the stiffness without varying the mass, and hence the



resonance frequency should increase (Figure 3.10). In this case the



increase is from 120 Hz to 230 Hz. As can be seen from Figure 3.10,



this increase in the resonance frequency directly translates into



higher noise reduction in the stiffness-controlled region. At 3000



Hz, there is a slight decrease in noise reduction with increase in



pressure differential. This result is in variance with the earlier



results for the unstiffened panel (Reference 4), where it was
 


reported that it remained the same. However, the present results
 


confirm the published theoretical results by Koval (Reference 8),



which reported a decrease of up to three dB.
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3.5.2 	 CURVED PANEL



Earlier experimental investigation on curved, unstiffened



panels (Reference-4) indicates that the low-frequency noise 

reduction of the unstiffened, curved panel increases up to a certain 

value and then decreases. Curving a panel stiffens the panel and 

also changes the angle of incidence of the panel. Stiffening of the 

panel increases low-frequency noise reduction. The low-frequency


noise reduction decreases when the angle of incidence is not


normal. The combination of these two effects determines the final



low-frequency noise reduction. During these tests, the effect of



radius of curvature was not investigated. Only one radius (33.5



inches) was used.



The results of the tests with the curved panel confirm the



trend observed with the bare, flat panel. A plot of noise reduction



at 100 and 3000 Hz is given in Figure 3.11 as a function of pressure



differential. As the panel is already stiffened, due to the
 


stiffeners as well as the curvature, the noise reduction at 100 Hz



is higher compared to the flat panel tested: 30 dB as opposed to 17



dB for the flat panel. But the additional increase in noise 

reduction due to pressurization was smaller, as can be seen from 

Figure 3.11. This can be attributed to the initial high stiffness 

of the panel. Without any damping treatment it can be concluded



that the increase in noise reduction due to pressurization is much



smaller in an already stiffened structure than in an unstiffened



structure. The same conclusions can be drawn from the measured
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fundamental frequency of the panel, as shown in Figure 3.10. The



resonance frequency increases 220 Hz to 295 Hz for 2.5 psi pressure



differential. once again the major increase occurs during the first
 


one psi pressure differential. In the mass-law (or high-frequency)



region, the decrease in noise reduction due to depressurization is



slightly more pronounced in the curved panel than in the flat



panel. 'This result is also in conformity with the theoretical



results published in Reference 8.



3.6 Y-370 DAMPING MATERIAL



3.6.1 FLAT PANEL



The effect of Y-370 damping material on the flat, stiffened



panel has been discussed in Reference 5. Y-370 was found to 

decrease the fundamental resonance frequency and the noise reduction 

values in the stiffness-controlled region. But the noise reduction 

at the resonance frequency was higher. Also the effect of the 

damping tape in the high frequency region was to smooth out the 

peaks and dips in the noise reduction curve and also to increase the 

noise reduction due to the increased mass of the damping tape 

(Reference 5). During the present tests, the effects of



jdepressurization and partial application of the damping tape were



investigated, with the purpose of verifying those trends.



The effect of partial treatment of the damping material on the



noise reduction characteristics of the flat test panel are given in 
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Figure 3.12. At low frequencies (-100 Hz), the effect of partial



coverage on the noise reduction characteristics of the flat panel is



negligible. Except for the initial 30% application, there is no



effect in the low frequency noise reduction by the Y-370 damping



treatment. Even the increase at 30% is noticed only at 0 psi.-


Hence, this is considered to be an experimental error. At other



pressure differentials, no gain is achieved in the sound



transmission loss of airborne noise excitation, with the appliction



of the damping tape. In the high frequency region (shown in Figure



3.12 for 3000 Hz), there is an increase in the noise reduction due



to the additional damping tape. This increase occurs at all the



pressure differentials tested. As observed in Reference 5, the



increase is due to the increased mass of damping tape.



The effect of depressurization on the noise reduction



characteristics of panels treated with Y-370 damping tape is shown



-in Figure 3.13 at 100 and 3000 Hz. The noise reduction values are



shown for three areas of treatment: 30%, 60%, and 100%. Also shown



in the same figure are the noise reduction values for panels without



any treatment. At 100 Hz, the effect of depressurization on the



noise reduction values of the treated panel is similar to that of



the untreated panel. The increase in noise reduction is more



pronounced during the first one psi than at any other time. At



higher pressure differentials, the effect of treatment is



negligible. In the high frequency region (Figure 3.13), the



untreated flat panel shows nearly constant noise reduction values at
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all pressure differentials. However, with the application of the



treatment, there is a slight decrease (2-3 dB) in the noise



reduction as the pressure differential is increased. These



decreases are of two to three dB.



The effect of depressurization on the fundamental resonance



frequency is given in Figure 3.14. In all areas of treatment



tested, the resonance frequency increases with an increase in



pressure differential. This increase is more pronounced when the



area of application is smaller. This effect can be attributed to



the increased mass of damping treatment.



3.6.2 CURVED PANEL



Tests similar to those described in section 3.6.1 were carried 

out with the curved panel. The parameters were maintained nearly 

the same to make one-to-one comparison between the flat and the 

curved panel. As already explained, all tests were performed with 

both swept and random noise as excitation sources. The differences 

between the results obtained from these two excitation sources were 

still within the experimental accuracy of the test facility. 

The trends of results obtained with the curved panel are 

similar to the results obtained with the flat panel. The noise 

reduction values as a function of the area of coverage are given in 

Figure 3.15 for 100 and 3000 Hz. As the stiffness of the curved 

panel is already high, the low-frequency noise reduction is higher 

than that of the flat panel. It remains constant up to 60% 
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treatment and thereafter shows one to two dB decrease. In the high­

frequency region at 3000 Hz there is a gradual increase in the noise 

reduction as the area of application is increased. This increase is 

similar to the one observed with the flat panel. 

Figure 3.16 shows the noise reduction values as a function of



the pressure differential. The effect of pressurization-with the



Y-370 damping treatment is similar to that without the treatment.



with the curved panel the increase in low-frequency noise reduction



is smaller; i.e., 30 dB to 37 dB. In the high-freguency region, the



decrease in the noise reduction values observed without the



treatment becomes less and less severe as the area of application is 

increased. 

The measured resonance frequency as a function of the pressure 

differential is shown in Figure 3.17. As with the flat panel, 

pressurization stiffens the panels and increases the resonance 

frequency. For example, the resonance increases from 195 Hz to 260 

Hz when the pressure differential increases from zero to three psi 

with 160% treatment. However, at a given pressure differential, 

increasing the area of application decreases the fundamental 

resonance frequency. For example, at two psi the resonance



frequency decreases by 30 Hz from 285 Hz without the treatment to



255 with the treatment. This also confirms the experimental results



of Reference 5 where it-was found that the Y-370 material does not



increase the stiffness. Addition of mass alone decreases the



resonance frequency.
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3.7 Y-434 DAMPING MATERIAL
 


Y-434 damping tape has a seven-mii constraining aluminum
 


layer. But it does not contain the foam material present in the Y­


370 material. The purpose of these tests is to compare the sound



transmission loss characteistics of panels with this damping



material with those of Y-370. Y-434 material is the lightest of the



three damping materials tested. The parameters investigated were



the same as for damping tape Y-370: four pressure differentials (0,
 


1, 2, and 3 psi), two types of noise sources (white noise, and swept



sine), and three different areas of coverage (30%, 60%, and 100%).



The results of these tests are also given in Reference 9.



3.7.1 FLAT PANEL



The effect of Y,434 material is very similar to that-of Y-370



material. Once again, because the difference in the results



obtained with sweep oscillators and random noise generator were



negligible, the results will be valid for both types of excitations.



The effect of partial treatment of the Y-434 damping material



on the noise reduction characteristics of the flat panel are given



in Figure 3.18. At low frequencies, the effect of the area of 

treatment on the noise reduction is small. These results are



similar to the results with the Y-370 damping tape. In the high



frequency region, the increase due to the treatment is smaller



because the Y-434 material is lighter. The weight of Y-434 material
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for 18" x 18" treatment is 0.2 ibs, while that of Y-370 is 0.62 

lbs. In this case the increase in mass is smaller; hence -the­

increase in noise reduction due to this effect is also smaller. 

The effect of depressurization is given in Figure 3.19. if a



constraining layer is attached atop, the damping material, then



bending of the composite produces not only bending and extensional



strains in all three layers, but also shear, primarily of the middle



(damping) layer. The shear-strain energy storage tends to dominate



the damping action of constrained damping layers (Reference 9). The



action also increases the stiffness of the panel.- Because of this



increase in stiffnes, the noise reduction in the stiffness­


controlled region is higher (1-2 dB) at zero psi. However, with.



increase in pressure differential, this increase vanishes. At high



frequency, the results are very similar to Y-370 material.



The cross plot-of the resonance frequency vs pressure



differential is given in Figure 3.20. The resonance frequency in



fact slightly increases at zero psi, indicating that the stiffness



effects of the tape are more predominant than the mass effects.



However, at three psi, the mass effects overshadow the stiffness



effects.



3.7.2 CURVED PANEL



similar cross plots for curved panel with Y-434 are given in



Figures 3.21-3.23. The results are very similar to Y-370



treatments. The only noticeable difference is in the resonance
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frequeficy-vs'prssre-di-ferentiaT (Figure 3-23-' With Y-370 . 

damping tape, the resonance frequency tends to flatten at high 

pressure differential, while with Y-434 material the resonance­

frequency continues to increase even at three psi differential. 

3.8 Y-436 DAMPING MATERIAL



Y-436 damping material has 17 mil constraining layer.



otherw7ise it is similar to Y-434. The full application of Y-436



material weighed 0.4 ibs, as opposed to 0.62 lb for Y-370 and 0.2 lb



for Y-434. The parameters varied during this investigation were



essentially the same: four pressure differentials (0, 1, 2, and 3),



two types of noise sources, and three different coverages (30%, 60%,



and 100%).



3.8.1 FLAT PANEL 

The cross plots at 100 and 3000 Hz are shown in Figures 3.24,



3.25, and 3.26. The trends of the curves are very similar to the



trends observed with the flat panel with Y-370 damping tape.-- In the
 


high frequency region, the increase in the noise reduction (Figure



3.24) is higher because of the higher mass of Y-436 compared to
 


Y-434. The effect of pressurization on the high frequency noise



reduction on flat panels with Y-370 and Y-434 is to decrease



slightly (Figure 3.13 and 3.19). But with the Y-436 material this
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decrease is not observed (Figure 3.25Y. The resonance frequency



(Figure 3.26) behaves exactly like the resonance freguency with the



Y 434 -material (Figure 3.20).



3.8.2 CURVED PANEL



Similar cross plots are given for a curved panel with Y-436



material in Figures 3.27-3.29. Once again the results are similar,



except-that the increased stiffness due to 17 mil constraining layer



is more visible. Because of the increased stiffness, the noise



reduction does not decrease with the application of the treatment



(Figure 3.27). with the curved panel, the decrease with the



pressure differential is still high (see Figure 3.28). The



resonance frequency vs pressure differential is nearly similar to



that with the Y-434 material.



3.9 DISCUSSION AND CONCLUSIONS



Reference 9 discusses the effect of damping material on 

infinite panels. with the infinite panels the damping tapes do not 

have any effect below the coincidence frequency. In the KU-FRL 

acoustic test facility the coincidence- frequency of aluminum panels 

is well above 5000 Hz. This is because of the normal angles of 

incidences. However, the studies (discussed in Reference 51) 

indicate that the sound transmission of finite panels is controlled 

by the resonant transmission; i.e., by the various resonance 
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modes. The sound transmission at each mode is controlled by the



damping of the mode. In the KU-FRL acoustic test facilitythe panel



size tested was 18" x 18". Hence, this panel will have both
 


longitudinal and circumferential (or lateral) resonance



frequencies. Earlier tests (References-3 and 4) indicated that the



severity of the resonance peaks and dips are higher with-the
 


pressure differentials. Hence it was initially expected that the



effect of damping tape would be more than just the effects of mass



and stiffness. However, results of all three damping tapes tend to



show that these panels behave more like infinite panels, for



airborne noise excitation.



In particular, based on 
 the experimental investigations, it is



concluded that the noise source has negligible effect on the noise



attenuation characteristics of the specimens under all conditions



tested. This is considered to be so, due to the normal incidence of



the panel in the Beranek tube and the very high sweep time of the 

sweep oscillator. The effect of curvature on a bare panel is to



stiffen the panel, thereby increasing low frequency noise



reduction. The maximum increase in noise reduction occurs in the
 


first one psi pressure differential in all cases. The gain in noise



reduction for the curved panel is smaller compared to that of the



flat panel, since it is inherently stiffer. In the high-frequency



region the noise reduction decreases by one to three dB due to



pressurization. This result is consistent with published



theoretical results (Reference 4).
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Even at room temperature, the effct of damping tapes on the



noise reduction is negligible at frequencies other than the
 


resonance frequencies. This is consistent with the classical mass



law predictions. When the mass of the damping tapes constitutes a



large percentage of the mass of the specimen, as in the case of 100%



coverage, the effect is essentially to increase noise reduction in



the high frequency region. The test results indicate that with



greater application of Y-370 material, the fundamental resonance
 


frequency decreases. This is due to the fact that only mass--not 

stiffness--is added. with Y,436 and Y-434 materials which have



constraining layers, the resonance frequency shift is negligible,



indicating that the additional stiffness produced by the



constraining layer balances out the effect of added mass on the 

resonance frequency. The effect of percentage of coverage is to



decrease low-frequency noise reduction and- to increase noise



reduction at high frequencies. Decreases were very slight for all



the pressure differentials tested.



Scatter of the noise reduction values at the fundamental



resonance frequency precludes any general conclusion about the



effect of percentage of coverage of the damping material. In 

general, the resonance peaks and dips are reduced by the application



of damping material.
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CHAPTER 4 

DETERMINATION OF LOSS FACTORS



4.1 INTRODUCTION



This test program was conducted in the KU-FRL acoustic test



facility to determine the damping of panels mounted in the Beranek



tube. Damping is defined as energy dissipation of a structure as it



deforms and the conversion of ordered mechanical energy into thermal



energy. Unlike mass and stiffness, damping does not refer to a



unique-physical phenomenon; and that is the reason damping is very



difficult to predict in general. Damping mechanisms include



interface friction, acoustic radiation, magnetic hysteresis,



mechanical hysteresis (also called material damping), and any other



way of converting mechanical into thermal energy. In practical



cases one or two mechanisms generally predominate (Reference 9).



For example, the material damping in aluminum alloy structures is



known to contribute only a tiny proportion to the total damping



(Reference 10). Likewise, magnetic hysteresis has a very small



effect.



The panel damping is an important factor for noise reduction at



the fundamental frequency and in the mass law region (higher



frequencies) depending on the particular mode; as a result, the



boundary conditions.of the panel play a significant role in the
 


damping of the installed panel (Reference 11). since the damping



varies considerably with different installations, it is not readily



68



http:conditions.of


predicted. For this reason, this evaluation of a technique for the



determination of the damping in panels in the KU-FRL acoustic test



facility was undertaken.



This chapter details the equipment and the method used to



obtain the required data and the techniques for reducing the data to



usable terms. Also described are the tests used to validate the



results obtained for the panels installed in this facility, and the



conclusions reached as a result of these tests are presented.



4.2 DEFINITION OF TERMS



There are many units and terms used for designating damping in



materials. of these the loss coefficient, n (or loss factor, as it



is commonly called) is often used in structural mechanics and will



be used in this paper. Loss coefficient is a relative energy unit



defined as the ratio of damping energy to strain energy and is



applicable 	 to both liner and nonlinear materials.



ns = Ds/2U	 (4.1),
s 
 

where 	 Ds is the damping energy dissipated in the total specimen



Us is the total elastic energy stored in the specimen.



The subscript s denotes that these values are specimen properties.



These properties are dependent on the specimen configuration, such
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as panel size and shape, as well as the material properties. This



-
subscript will be dropped subsequently with the understanding -that
 

all values for n are specimen loss factors.



For purposes of comparison of results with those of other



investigators, the relations with several other common measures of



damping are'given-below.



1. 	 Quality factor, Q: Physically this is amplification at



resonance.



Q = 	 27YU/D = 1/n 	 (4.2). 

2. 	 Specific damping capacity, 'P 

' = D/U = 2wn -	 (4.3). 

3. 	 Damping ratio, : Fraction of critical damping:



= C/Cc = n/2 (4.4);



C is the viscous damping coefficient, ibf-sec/in;



C. is the critical damping coefficient, ibf-sec/in.



4. 	 Logarithmic decrement, S:



6= £n(xc/X1 ) = n (4.5); 

x0 = the amplitude of the damped wave at point 0; 

xI = the amplitude of the following wave after I cycle. 

For further explanation of measures and nomenclature of damping, see



References 9 and 11.
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4.3 TECHNIQUES FOR DAMPING EVALUTION
 


Several methods have been used to determine the damping of a



specimen. Those that can be applied to a panel include bandwidth,



energy measurements, amplification factor, and decay rate.



For the bandwidth method a frequency sweep is made, and the



bandwidth is measured at a specified fraction of maximum



amplitude, problems arise when modes are closely spaced, as is the



case with most panels for all but the first one or two modes.



The energy measurement method involves directly measuring the



energy input (amplitude and phase) and the specimen output



(amplitude and phase) and using these to calculate the energy loss



directly. This requires more elaborate and expensive equipment.



Measurement of amplification factor is difficult to use for



absolute measurement of damping, since the reference level may be



hard to find.



Decay rate or logarithmic decrement tests are easy to do and
 


are widely used (References 9 and 15). Here the excitation force is



turned off and the panel is allowed to vibrate freely with the



response, as measured by vibration pickup, recorded. The



logarithmic decrement, 6, can then be obtained from this record



using the relation 6 = n(x o/x ). The limitation on this method is



the assumption that the decay curve is logarithmic. Physically this



means that S must be independent of amplitude (viscous damping).



When this assumption is violated (the curve is not logarithmic), a



logarithmic curve can be fitted to the decay curve and an equivalent
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value for & can be found. Because of the simplicity and reliability



of this method, the damping values were determined using the decay



rate tests.



4.4 EQUIPMENT



The equipment set-up for the decay rate tests is shown in



Figure 4.1. The panel displacement can be measured by several



devices, including capacitance pickups or accelerometers. An



accelerometer was chosen over the capacitance pickup because of the
 


ease of installation and operation. Since the mass of the



accelerometer is very small, the loading on the panel is
 


insignificant, as shown in the next section. The integrator on the 

sound level meter (SLM) has a switch to select output of 

acceleration, velocity, or displacement. The active filter was used 

when the, third octave filter was out-of service. A comparison test 

run with each filter yielded the same results. For the first tests 

the Techni-rite hot stylus recorder was used with a capability of



recording up to 125 Hz and 100 mm/sec. This was inadequate for the



modes above the first; so the Honeywell oscillograph, with a 

capability of recording up to 1000 Hz and 80 inches per second, was 

used for all sebsequent tests. The sweep oscillator was chosen over



random noise generator because tests with the random noise generator



produced nonanalyzable results.



A switch was installed in the wires between the amplifier and



the speakers, as shown in Figure 4.1. This single throw switch
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diverts the current to an S2 to prevent damage to the amplifier when



the speakers are shut off for the decay tests.­


4.5 TEST MTHOD



The most important factor to consider in damping testing is to



test the specimen in a configuration which bears a close resemblance



to the application of the results. For this reason the damping will



be evaluated with the panel in the same installation used for the
 


noise reduction tests.



4.5.1 PANEL INSTALLED IN BERANEK TUBE



For the decay rate tests the accelerometer was mounted on the



panel as described in Reference 12. For the first few tests the



accelerometers were mounted with the cement, but for later tests



bee's wax was used because of the ease of installation and



removal. The accelerometer cable was routed toward the top of the



panel and taped with electrical insulation tape at three points to



minimize .triboelectric noise caused by vibration of the cable. The



panel was then placed in the Beranek tube (Figure 4.2), and the



eight clamping bolts were torqed to 25 in-lb. At first, frequency



sweep was made from 20 Hz to 1000 Hz to locate the resonant peaks



for the panel. This frequency response was then stored on the



analyzer and the output of the SLM was connected to the tape



recorder for signal amplification. The amplified signal was then



sent to the oscillograph.
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For the actual tests the first resonant peak was located on the 

scope and the frequency read. This frequency was then tuned- on the­

oscillator and minor adjustments made to yield the maximum 

acceleration as indicated on the SLM. This peak does not
 


necessarily correspond to the resonant frequency of a specific mode



but was very close. Acceleration was used as output, since the



displacements were so small that the meter was operating at its



lower limits for even the low frequencies and was registering mostly
 


noise at the higher frequencies. The gain on the recorder was then



adjusted to yield the widest signal available on the oscillograph



(approximately 3 inches, but this varied with frequency). The



speaker was then switched off to obtain a record of the signal



decay. The paper speed was then adjusted to give a decay of about



three inches for more accurate analysis and the test repeated until



three good decays were obtained. After the three decays-were



recorded, the next peak (one which is not closely coupled or



overshadowed by another peak) was located; and. the preceding steps



were repeated for each subsequent peak up to -1000 Hz.



4.5.2 FREE PANEL TESTS



Several tests were performed on panels hung by a wire in front



of the speakers, as shown in Figure 4.3, to minimize the effects of



support-related damping (see Reference 9). These tests were used to



check the validity of this decay test set-up by comparing the



results for the free panel with those obtained by other
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investigators and for comparison with the panel installed in the 

tube to determine the support-related damping. The test procedure 

remained unchanged ekcept that the accelerometer was mounted on a 

diagonal, as shown in Figure 4.4, since the middle of the panel is 

the intersection of two nodal lines for the first and several other 

modes. The cable from the accelerometer was routed to the nearest 

nodal line and off the panel at the intersection of the nodal line 

with the edge of the panel. Difficulties arose here at low 

frequencies because the fundamental resonance frequency for the free



panels was generally <10 Hz, which is far below the frequency range



of the speaker set-up.



4.5.3 SPECIAL CONSIDERATIONS



1. Mass Effect of Accelerometer: The effect of the



accelerometer mass on the natural frequency of the panel 

was checked using natural frequency relations for a beam 

with both ends supported and a central mass. These 

relations of Reference 13 yielded a 0.7% decrease in the 

natural frequency due to the accelerometer, for an 

accelerometer mass of 2.7 gm and the mass of the lightest 

panel at 298 gm. This is certainly a negligible change. 

The cable and tape will similarly have an even smaller'



effect due to their mass and also should not affect the



stfffness.
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2. 	 Effect of a Closed cavity: By placing the panel in a



closed cavity, the effect of the pressure within the



cavity could be significant, especially in the small space



between the panel and the speakers. This effect was
 


checked by recording the microphone signal simultaneously



with the accelerometer signal. The results of these tests



showed that for some modes, there was a significant
 


effect. That is, for the worst case the microphone signal



decay rate was only two times faster than the panel decay



rate. For a viable damping test, the decay of the noise



source should be an order of magnitude greater than the



decay of the panel. The case presented here certainly



violates this rule, but this was the worst case. For most



panels, the microphone signal decay rate was significantly



greater.



4.6 	 DATA ANALYSIS



To obtain the loss factor, n, from the decay curves, a workable 

relation was first obtained as follows: 

6 = 1 Zn(x /x n ) (4.6);
n 0



= the logarithmic decrement



x0 = 	 the amplitude of the damped wave at point 0



xn = the amplitude of the damped wave after -n cycles



n,= the number of cycles.



8O





For consistent results Plunkett (Reference 14) suggested counting
 


the number of cycles, nel for the amplitude to decay to x0/e.



=1 £n(e) 
 (4.7),

n 

e 

or 6 = 1 	 (4.7a);
n 

e 

but he = f*te (4.8), 

f = the frequency of vibration 

te = 	 the time to decay to x0 /e 

and 	 te = de/s 	 (4.9),



de = 	 the distance to decay to xO/e 

s = 	 the recording paper speed 

with the result that 

6 s/f*de) (4.10); 

or in terms of 

S= s/(w*f*de) 	 (4.11). 

4.6.1 CURVE FIT 

The following procedure was then used to measure de from the



decay curve:



1. 	 Using a French curve (logarithmic) draw a curve to fit the



overall decay,



2. 	 locate the first good peak and measure its height: This



is X. 

3. 	 Divide x0 by the numerical value of e.



4. 	 On the decaying curve find where the value of x is equal



to the result of step 3: This is point e.





5. 	 Measure the distance between point 0 and point e: This is



de• 


A problem noted wi-th-the above procedure was that variation of the 

loss coefficient occurred depending on which part of the curve was 

fitted. This was only a problem with curves which deviated 

significantly from the logarithmic decay, such as when mode 

interaction was evident or when Coulomb type damping was present. 


The variation introduced here was minimized by fitting the curve to 


the entire decay rather than a minor portion of it. 


4.6.2 LINEAR REGRESSION CURVE FIT



This method involves digitizing the peaks of the decay curve



and fitting a curve through the points. Both a linear and a



logrithmic curve were fitted using linear regression for both. The



correlation coefficient for each curve is used as a measure of the



quality of the fit to indicate whether the damping is primarily



Coulomb (indicated by a good linear fit) or viscous (indicated by a



good logarithmic fit).



4.6.3 COMPARISON



A comparison of the two data analysis methods was done to check



if there was any difference between the results. Three tests of a



0.032 	inch thick aluminum panel were analyzed by both methods. The



results for the second method are consistently higher (by 8.7%) than,



those from the first method, but the overall trends for each method
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are nearly identical. The regression curve fit method would be



expected to be more accurate than the mechanical curve fit. Either



method predicts the overall trends of damping with the frequency;



and results from the first method can be corrected to match those of



the second method. One consideration is that the second method



takes up a lot of analysis time and was not possible at nigh



frequencies due to masking of individual peaks.



4.7 RESULTS



To check the validity of this test set-up and panel



installation, several tests were run with panels of various



materials and configurations. Panels mounted to vibrate in the



free-free modes were used to check the basic test set-up and for



comparison with the installed panels to see what effects this



installation has on the damping of the panels. Various clamping



bolt torques were checked to approximate simply supported and



clamped boundaries, and a heavy steel frame was used for a closer



approximation of the clamped condition. The trends of damping



variation with stress and frequency were measured and compared with



results of other investigators. The effects of various stiffened,



riveted, and bonded panel configurations were checked for



comparison. Finally, the effect of damping materials and composite



material panels were measured. A list of the tests is given in



Table 4.1.
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Table 4.1: Damping Test Log



Test # Test Description



0.020 Al, Free Panel



0.020 Al, Free, Stress effect



0.020 Al, Free



0.032 Al, Free



0.025 Al, Free, Active and 1/3 octave filter



0 032 Al, Free, 100% Y-370



0.025 Al, Stiffened (Channel & Z), Free



0.016 Al, 15" x 15", Bonded



0.016 Al, 15" x 15", Bolted edge strip
 


0.020 Al, 15" x 15", Bonded



0.020 Al, 15" x 15", Riveted



0.020 Al, new recorder set-up



0.025 Al, Standard



0.032 Al, Standard



0.032 Al, Effect bf foam contact



0.032 Al, Test w/o foam over speakers



0.032 Al, 2 in. wide clamping frame



0.025 Al, Stiffened (Channel & Z) crossed



0.032 Al, 100 % Y-370



2 x 0.016 Al, Bonded with IC-998



0-0-0, Graphite/epoxy



45-0-45, Graphite/epoxy



0.032 Al, Standard



0.032 Al, Standard



0.032 Al, Standard



45-0-45, Graphite/epoxy



0-45-0', Graphite/epoxy



0-0-0, Kevlar/epoxy



45-0-45, Kevlar/epoxy



0-45-0, Kevlar/epoxy
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4.7.1 FREE PANEL



The results from the free hanging panel tests on the bare



aluminum panels of thickness 0.020 to 0.032 inch show that the loss
 


factor at the lowest obtainable frequency was 0.002 to 0.004. This



compares rather well with the loss factors from Heckl -(Reference 15)



for a free hanging bare panel of 0.0022. Large variations occurred



for some frequencies. These were likely caused by the panel



vibrating in a mode which caused the clip to vibrate, thus



dissipating more energy and resulting in an increase in the measured



damping.



4.7.2 INSTALLED PANEL



To show the effect of the boundary conditions in the tube on 

the damping, a plot of the damping results for a 0.032 inch panel is 

shown in Figure 4.5 for both types of mounting. In addition, a plot


for a 0.032 inch panel with-a 2 inch wide by 0.25 inch thick steel


clamping frame is shown. The figure shows that the installation has


increased the damping of the panel by more than an order of


magnitude. This same effect was also observed with the 0.020 and


0.025 inch thick aluminum panels. Comparison of the loss factors



for the installed panel and the clamped panel shows that at the



first two modes the frequencies and loss factors are in fair
 


agreement. However, above this the installed panel damping is



higher than for the clamped panel; and the frequencies are



altered. This indicates that the boundary conditions for the
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installed panel approximate those for clamped panel for the lower 

modes. This was not the case at higher frequencies. Further tests 

should be done to check how well these boundary conditions 

approximate simply supported conditions. The loss factors for the 

clamped panel approach those for the free panel, as they should for 

the ideal case of no dissipation at the boundaries. 

1. 	 Repeatability of Runs: The consistency of the test method 


and the data reduction method can be checked by 


calculating the standard deviation in the results for 


several successive runs at each frequency. This was d6ne 

for tests #23 and #24 with the 0.032 inch panel, with 

results shown in Table 4.2. The results of 4.9% and 3.7% 

for the average percentage standard deviation indicate 

that thq loss factor for a given installation is within 

4-5% 	 of that measured.


2. Clamping Torque: The effect of the clamping bolt torque



on the loss factor'was measured for a 0.020 inch panel, 

with the results shown in Figure 4.6. The clamping 

torques were varied from 20 in-lb to 50 in-lb. Also shown 

are the results of tests with the clamping frame. The 

change in loss factor is negligible, as it should be. The 

only factor affecting this is the decreased amplitude due 

to the increased clamping on the panel causing a decrease 

in air damping, but this is compensated by the increase in 

stiffness of the "compliant" boundaries. 
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Table 4.2: Percentage Standard Deviation for Tests #23 and #24



Test #23 	 Test #24



f y/x (% f a/x (%)



116 0.1 112 4.9


178 1.4 177 3.7


289 5.8 281 6.0


502 15.1 498 5.1


572 5.8 564 1.5


689 4.6 680 2.2


792 1.6 785 2.1



Average 4.9% 	 3.7%



3. 	 Successive Installations: Three tests were run on a



standard 0.032 inch panel on different days to check the



variations introduced due to the panel mounting



technique. The results are shown in Figure 4.7. For the
 


frequencies of 100 to 500 Hz, the variations are very



small; but for the first mode and at the higher



frequencies (<500 Hz), the variations were fairly large.



For the fundamental mode this variation can be attributed



to the fact that the logarithmic curves did not fit the



decay 	 curves very well. The liner correlation factor was



0.99, while the logarithmic correlation factor was 0.95,
 


indicating that the damping present was primarily



Coulomb. At the higher frequencies this variation is



possibly due to the alteration of the closely spaced



higher modes upon each successive installation. Test #24
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represents an average of the three, so this test will be



used for comparison p'urposes in the following section.



4.7.3 EFFECT OF STIFFENERS



To test the effect of stiffeners, a 0.025 inch aluminum panel



with a channel stiffener and a "Z" stiffener crossed in the middle



was tested, both free and mounted in the tube.



1. 	 Free: A comparison of the loss factors for a stiffened



plate with those of a bare plate as plotted in Figure 4.8



shows that at low frequencies there is no effect. At



higher frequencies there is a noticeable increase in the
 


damping. This increasing loss factor contribution with



frequency agrees with the investigations by Ungar and



Carbonell (Reference 16) and by Heckl (Reference 15), who



show that this effect is caused by air pumping at the



joints.



2. 	 Installed: For the panels mounted inthe tube, the



results are shown in Figure 4.9. Here the effect of the



stiffeners is masked by the effect of the boundary



conditions.



4.7.4 EFFECT OF DAMPING MATERIAL



For the evaluation of the testing of damping materials, two



damped panels were tested. The effect of damping material on the



noise reduction characteristics were discussed in Chapter 3. The
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first panel was a 20 x 20 x 0.032 inch aluminum panel with Y-370



damping material over an 18 x 18 inch area of the panel. The second



panel consisted--of a 20 x 20 x 0.016 inch aluminum panel with a 17.6



x 17.6 x 0.016 inch aluminum panel bonded to this with iC-998



viscoelastic adhesive. The first panel was tested for both free and



installed mounting, while the second was tested only for the



installed condition.



1. 	 Free: As shown in Figure 4.10, the damping material had a



definite effect on the loss factor with a A of about



0.075. This increase by more than order of magnitude



corresponds well with the results of Crandall (Reference



17) for a free-free beam.



2. 	 Installed: Figure 4.11 shows the results for the two



damped panels mounted in the tube, comparing them with the



results for the bare panel. The overall effect is seen to



be an increase in damping at the higher frequencies and



not much effect at the lowest frequency. The two



materials seem to behave the same over the entire range.



The An is about the same for the frequency range 500-1000



Hz as it was for the free panels.



4.7.5 COMPOSITE PANELS



Graphite/epoxy and Kevlar panels of various ply orientations



were tested in the installed conditions with loss factor results as



shown in Figure 4.12 and 4.13. There are no particular ply
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orientations' that stand out as having much better damping than the



others for either the graphite or the Kevlar panels. The scatter



for the Kevlar panels is larger than for the graphite composites,



possibly due to manufacturing tolerances; but the average damping



and the decrease with frequency are very close. These panels show



approximately a 30% increase in.damping (An = .03) over the aluminum



panel of comparable thickness (0.032) at the lowest frequency and



none at the higher frequencies. The effects of ply orientations



here are partially masked by the boundary losses. The scatter in



the data here is mainly due to the many factors which affect the



damping of composite panels in addition to the previously mentioned



effects of this installation on aluminum panels. One of these



factors is the fiber volume fraction of the composite (References 18



and 19) which is unknown for these panels.



4.8 CONCLUSIONS AND RECOMMENDATIONS 

The decay rate tests worked very well with the existing 

equipment at the KU-FRL acoustic test facility. The testing method 

used here produced results which were consistent within 5% for each
 


installation, which is very good for this type of installation.



Both methods of data analysis produced comparably consistent results



over a wide frequency range, with a difference of less than 10%



between the two.
 


Tests conducted on panels suspended by wire at the nodal point



verified the basic equipment set-up and test procedure and provided
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a comparison with the results for the installed panels, showing the



contribution of the boundary conditions to the overall damping of



the panel. The torque on the clamping bolts showed no effect on the



damping, variations in the experimental damping for successive



installations were within 10% for lower frequencies but varied



considerably for the higher frequencies. There was a 50% decrease



in the effect of stress as a result of the panel installation. The



effects of the panel installation tended to mask the increased



damping due to stiffeners, damping material, and composite



materials; but their effects were still generally noticeable.



As a result of this series of checks, the damping test



procedure as described here can be used to obtain loss factors



accurate to within 10% for frequencies up to about 500 Hz as panels



installed in the acoustic test facility. For the fundamental



frequency and for higher frequencies, care must be taken in using



these results. For general use, these loss factors can be obtained
 


by averaging the results for several successive installations, when



more specific results are required, it is suggested that the decay



tests and the noise reduction tests be done successively without



removing the panel. It is recommended that the effects of acoustic



radiation on the panel damping be analyzed theoretically and/or



experimentally., Also panels should be tested in a device which



approximates a simply supported boundary conditions to check how



closely the regular panel installation approximates the simply



supported boundary conditions.
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CHAPTER 5



NOISE REDUCTION CHARACTERISTICS OF DOUBLE-WALL PANELS



5.1 INTRODUCTION



The double-wall panels are made up of two panels (one



representative of the skin and the other of the trim) separated



either by an airgap or by a fiberglass thermal insulation



material. In industry this configuration is widely used. The skin



panel normally is designed for the structural integrity of the
 


airplane. The interior trim panel is used for decorative



purposes. Typically, inexpensive, light-weight trim materials are



used in commercially oriented, general aviation airplanes,* but more



luxurious materials such as carpet, leather, etc., are used in



business and executive type aircraft. In pressurized aircraft and



in aircraft flying at high altitudes, fiberglass insulation is used



to provide thermal insulation. The objective of this investigation



is to study the sound attenuation characteristics of such panels and



to use them as a part of the treatment to reduce externally



generated noise. In this investigation both aluminum and fiber­

reinforced materials were used as the skin materials. The trim 

panels investigated are the ones used in the industry. Beech



Aircraft Corporation and Cessna Aircraft Company (Wallace Division)



provided the test specimens. The details of the panel and the



configurations tested are described in Section 5.2. The results of



the experimental investigation are presented in Chapter 5.3.
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5.2 DESCRIPTION OF THE TEST FACILITY AND TEST PANELS



5.2.1 DESCRIPTION OF THE ACOUSTIC TEST- FACI-LITY



The KU-FRL acoustic test facility was used in this



investigation. A detailed description of this test facility and its



characteristics is given in References 20 and 21. Salient features



are excerpted from these reports and presented in Appendix A. In



the same appendix the limitations of the facility are also
 


described. All the panels tested were 20 inches by 20 inches with



18-inch-by-18-inch exposed area. The tests were conducted under



normal incidence at room temperature. Three adapter tubes were



added to accommodate the three panel depths tested. This was the



only modification to the test facility. A diagram of the facility



with the adapters is shown in Figure 5.1. The output from the test



facility is in the form of noise reduction curves plotted as a­


function of frequency. The noise reduction across a structure is 


defined as 


NR = 10 Log Ips/PrI 2 (5.1) 

where NR = Noise reduction (dB) 


Ps = Measured pressure on the source side (Pa) 


=
Pr pressure on the receiver side (Pa).
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5.2.2 DESCRIPTION OF THE TEST PANELS



The double-wall test specimens were made of skin, atrgap or



fiberglass insulation, and a trim panel. Figure 5.2 shows a typical



double-wall configuration tested. Three types of skin panels were



used in the investigation. The first type was .032" aluminum



panel. This panel was stiffened with a single extruded "T" section



stiffener, riveted down the center. This stiffener divided the



panel into two equal-area bays (see Figure 5;2a). Three test panels



of this type were used. These three panels vary only in the depth



of the edge members riveted to the edge of the skin panel. This



permits the installation of the panel depth of one, two, and three
 


inches. The second type'of skin panel was made of .029" thick
 


graphite-epoxy. Each of the three layers of the panel was made of a



woven cloth material with the two main directions of the fibers



perpendicular to each other. The ply orientation for the three



layers is 45-00-450. only one panel of this type was used in the



present investigation. This particular panel had two "hat"



stiffeners (see Figure 5.2c). The mechanical properties of this



panel are given in Reference 6. The third type of skin panel used



was made of .029" thick Kevlar* material. Once again it had three
 


layers of equal thickness with ply orientation 45-00-450. Two



panels of this type were used: one with one "hat" stiffener, and



the other with two "hat" stiffeners. Refer to Table 5.1 for further



*Made by DuPont Corporation
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information. The effects of the material and stiffeners were



studied using these panels.



Table 5.1: Skin Panels Tested at the


KU-FRL Acoustic Test Facilty
 


Number of Thick-

Panel Material Depth Stiffeners ness Weight*



(in.) (in.) (lb.)



Group 1



353 2024-T3 Aluminum 3 1 0.032 1.53



357 2024-T3 Aluminum 2 1 0.032 1.53



358 2024-T3 Aluminum 1 1 0.032 1.53



Group 2**



339 Kevlar 3 1 0.029 0.70



340 Kevlar 3 2 0.029 0.85



3-35 Graphite-Epoxy 3 2 0.029 0.90



*Skin and stiffener weight only



**All composite panels have three layers of the same thickness.



Ply orientation is 450-00-450.
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The insulation used was loose fiberglass material with a 

density of 0.7 lb/cubic ft, or 11 kg/m3 . This material came 

enclosed in very thin vinyl bags and thicknesses of 3, 2, and 1 

inch. 

The trim panels tested were the typical trim panels being used



or being proposed to be used in the general aviation aircraft. The



trim panels were constructed of lightweight base materials such as



glosed-cell polyvinyl chloride foam, aluminum, and fiberglass. The



foam panels were usually coated with a protective sheathing to give



the foam damage tolerance. Over the base material some type of



decorative material (called hereafter "trim panel treatment"), such



as leather; simulated leather, upholstery fabric, carpet, etc., is



usually applied. The trim panels tested have been divided into



three groups, depending on their base material. Group 1 have a



Klegecell base, while Group 2 have a Rohacell base. The panels in



these groups vary in the thickness of their base material and in



their trim panel treatment.-- Group 3 panels have miscellaneous base



material such as compressed fiberglass, 45% open-pore aluminum, and



Lexan. These panels and their relevant characteristics are



described in Table 5.2.



The skin panel and the trim panel were attached by means of the



channel section members (see Figure 5.2). The channel section was



riveted along the edges to the aluminum skin. In the case of 

composite skin panels, they were epoxied. Two types of attachment



of the trim panel to this channel section were investigated. In the
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Table 5.2: Trim Panels Tested at the KU-FRL


Acoustic Test Facility



-- Trim Panel Area Density


Panel Material and Treatment (lb/ft2 )



Group 1



317 0.125" Klege-Cell type 75 with 1 layer 0.128


type A fiberglass both sides



315 0.25" Klege-Cell type 75 with 1 layer 0.168


type A fiberglass both sides



318 Same as #317 but with 0.020" Royalite 0.258


covering



Group 2



341 0.125" Rohacell grade 51 with 1 layer 0.134


120 phenolic pre-preg skin both sides



323 0.25" Rohacell grade 51 with 1 layer 0.180


120 phenolic pre-preg skin both sides



347 same as #323 but with 2 layers 120 0.301


phenolic pre-preg skin both sides



342 	 Same as #341 but with 0.020" Royalite 0.279


covering



343 	 Same as #341 but with 0.5" carpet 0.674



344 Same as #341 but with 0.25" neoprene 0.432


-+ leather covering



325 	 same as #323 but with 0.125" neoprene 0.428


+ wool covering



Group 3



312 45% open 0.025" Aluminum with 0.5" 0.472


-foam + leather covering



314 	 0.090" Lexan 0.596



352 	 0.187" compressed fiberglass with 0.450


0.2" carpet
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first case, the trim panel was screwed to the flange by means of



eight screws. Most of the tests were carried out in this
 


configuration. The !ffect of "floating" the trim panel was



investigated by using a pressure-sensitive, double-sided adhesive



tape. The flange of the channel section was 1" all around; hence,



it was not exposed to the direct sound pressure field.
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5.3 EXPERIMENTAL INVESTIGATION



5.3.1 INTRODUCTION



The noise reduction tests of the double-wall structures were



conducted at the KU-FRL acoustic test facility. Various trim and



skin panel combinations were investigated. For each skin and trim



panel configuration, the effect of the fiberglass insulation was



also tested. The noise, reduction curve as. a function of frequency



was obtained by slowly sweeping the frequency, measuring the source



and the receiver microphone levels, and subtracting the receiver



microphone level from the source microphone level at each



frequency. This was done in two stages: first from 20 Hz to 500



Hz, and then from 500 Hz to 5000 Hz. In the first case the analysis



bandwidth was 2 Hz (effective bandwidth 3 Hz), and in the second



case it was 10. Hz (effective bandwidth 15 Hz). This was done to get



narrow bandwidth at low frequencies as well as to cover a broader



frequency range. The gains-of output signals could also be changed



between these two frequency ranges. All tests were performed at



normal angle of incidence and at room temperature and pressure.



There was no pressure differential between the source and the



receiver side.



Most of the tests were done at least twice to ensure



repeatability. The repeatability of the tests was generally good,



the results agreeing within 1-2 dB in the low-frequency region. In



the high-frequency region the least square lines agreed within 2-4
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dB. The noise reduction curves for all the tests are presented in



Reference 22.



A typical noise.reduction curve of a double-wall structure is 

shown in Figure 5.3, taken from Reference 22. It can be divided 

into three parts. In the very low frequency the noise reduction is 

a function of the stiffness of the skin and the trim panel. This 

region can be called the stiffness-controlled region. In the second 

frequency region, varying anywhere from 50 to 600 Hz, two resonance



dips dominate the noise reduction. The first one normally



corresponds to either the skin or the trim panel fundamental



resonance frequency. For the panels tested, resonance frequencies 

of trim and skin panels are so close that it is not possible to



separate them. The second major resonance corresponds to the panel­

air-panel described in Reference 9. In the high frequency region



(above 600 Hz) the narrow-band analysis (analysis bandwidth 10 Hz)



indicates a multitude of resonances, resulting in dips and peaks in



the noise reduction curve. -These resonances are due to the higher



order skin and trim panel modes, double-wall modes, and the cavity



modes of the test facility itself. In order to study the trends in



this frequency region, a least-square line approximation is used.



Previous studies at this facility have indicated that the slope of



the least-square lines of simple panels corresponds to the
 


calculated mass law slope (i.e., 6 dB/octave). In general, for the 

double-wall structure, the slope of the least mean-square line lies



anywhere between.6 dB/octave (predicted by mass law for single
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panels) and 12 dB/octave (predicted by classical transmission theory



for double-wall structures; see Reference 9). The effects of



various parameters on the noise reduction values will now be studied



at selected frequencies. These frequencies cover the three



frequency regions described above. In the high-frequency region



only the least-square line will be used. The choice of these
 


frequencies is rather arbitrary and at times can be misleading



because.of the wide variations in the characteristics of the panels



tested. For a complete review, the original noise reduction curves



in Reference 22 should be consulted.



Some of these double-wall panels tested showed very high noise



reduction values in the high frequency region. This posed some



problems in the measurement of the receiver microphone sound



pressure levels. At the KU-FRL acoustic test facility the panels



could be excited either by a random noise signal or by a slowly­


swept sine wave signal, Previous measurements at this facility had



shown that the differences in the noise reduction characteristics
 


due to either type of excitation were small, when analyzed through a



narrow band analyzer.. Because of this, the latter type of



excitation was chosen for this series of tests to improve the



accuracy in the measurement of receiver microphone signals. with



slowly swept sine waves it is possible to concentrate the sound 

energy over a very small frequency range. This produced a source



sound pressure level of 110-120 dB at these frequencies. Hence the



receiver microphone signal was correspondingly higher. Even with
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http:because.of


this type of excitation the problem was not completely solved. The



signal to (ambient) noise ratio was still low in many cases. In



addition, -durinq Many tests the change in the signal strength within



a frequency sweep exceeded the dynamic range of the instrumentation



used. As described above, the noise reduction characteristics were



investigated by dividing the analysis in two frequency ranges: a)



20-500 Hz with 2 Hz nominal bandwidth, and b) 500-5000 Hz with 10 Hz



nominal bandwidth. The dynamic range of the spectrum analyzer used



(Spectral Dynamnics Model 335) was 60 dB. Hence the maximum change



in the receiver microphone level that could be measured in either of 

the two passes was only 60 dB. This did not pose any problem either 

during the low-frequency sweep or with panels exhibiting lower high­

frequency noise reduction. However, this was not enough for panels 

with noise reduction higher than 80 dB in the high-frequency 

region. In such cases the receiver microphone level was near the 

maximum level of the analyzer at 500 Hz and was below the minimum 

level above 3000 Hz. Hence- true signal level could not be found at 

some frequencies above 3000 Hz. The only way this probiem could 

have been overcome was to further subdivide the frequency range.



But as mentioned above, the signal levels were so low that further



amplification did not improve the results very much, due to



deteriorating signal-to-noise ratio. This dynamic range limitation



produced scatter in the data when the noise reduction values were



higher than 80 dB. Even though this appears to be a serious



limitation, it is not so. This phenomenon also occurs in aircraft
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interior noise measurements. At very high transmission loss values



of the fuselage sidewall, the ambient noise level inside the



aircraft may be higher than the level transmitted from the



sidewall. Under these conditions it may not be worthwhile to have



higher noise reduction for the fuselage sidewall. Also, more
 


importantly, the noise level inside the aircraft is normally



dominated by the low frequency noise. Hence, the overall inside



aircraft is determined by the low-frequency noise level. The



contribution of the sound pressure level at these high frequencies
 


(>3000 Hz) to the overall noise level will be negligible. In



practice, if the sound pressure level at any frequency range is



below 20 dB of the highest band level, then it may safely be



neglected without affecting the overall sound pressure level. Hence



a dynamic range of 60 dB is more than adequate to predict the



interior levels accurately. Hence, no further attempt was made to



increase the dynamic range of the instrumentation used in the test
 


facility.



5.3.2 EFFECT OF SKIN PANEL



The effect of skin panels was investigated using four different



types of panels. They were the following:



a. 	 .032" aluminum panel with one "T" stiffener (panel 353)



b. 	 .029" thick, 3-ply (45o-0o-45d) graphite-epoxy laminate



with two hat stiffeners (panel 335)
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c. 	 .029" thick, 3-ply (45o-0o-45o) Kevlar panel with one hat



stiffener (panel 339)



d. 	 .029" thick, 3-ply (450-00-450) Kevlar panel with two hat



stiffeners (panel 340).



The parameters investigated with these panels are the effects



of the panel material and stiffeners. The noise reduction values of



these four panels are compared under similar configurations in



Figures 5.4 through 5.11. These figures show the noise reduction



values at four selected frequencies: two in the low-frequency



region (40 and 100 Hz) and two in the high-frequency region (1000



and 3000 Hz). The noise reduction values at 300 and 500 Hz are not



plotted, as they fall in the resonance frequency region. Because



the panels are so different in their characteristics, the X-axes in



these figures. are panel numbers and do not represent any



continuously varying parameters. Hence these figures are



essentially bar charts with values at four frequencies. The



influence of the skin panels is plotted for trim panels 312, 314,



315, 318, 425, 342, 344, and 352. For each trim panel two figures



are given: one with the fiberglass insulation between the skin and



the trim panel, and the other without (i.e., air gap). In all cases
 


the depth of the double wall was maintained at three inches.



The effect of the skin panel material can be studied by



comparing the noise reduction values of panels 335 (graphite-epoxy),



340 (Kevlar), and 353 (aluminum). There is a slight difference in



their thickness: both Kevlar and graphite-epoxy panels are .029"
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thick, and the aluminum panel is .032" thick. The mass and the



stiffness are the major variables. The weights of these individual



panels are .9 lb (graphite-epoxy panel 335), .85 lb (Kevlar panel



340), and 1.35 lb (aluminum panel 353). Kevlar panel 339, which has



one stiffener, weighs .7 lb. At low frequencies the noise reduction



of double-wall panels is a function of the stiffness of the skin and



the trim panel. In these figures, the trim panel has been kept the



same for each plot. Hence the noise reduction at 40 Hz in each plot



is a function only of the stiffness of the skin panel being



studied. However, the stiffness of the skin panel is a function not



only of the material properties but also of the number and the type



of the stiffeners used. The aluminum and the composite .panels had



different types of stiffeners. In the case of aluminum it was an



extruded "T" section. For composite panels it was a hat section.



This precludes any conclusions about the relative stiffness effects



of the various skin materials. In general, for the skin panels



tested, the graphite-epoxy skin panel and the aluminum skin panel
 


have the same noise reduction at 40 Hz, while the Kevlar skin panel 

has up to 7 dB less noise reduction. This is consistent with the 

single panel tests reported in Reference 6. The noise reduction



values at 100Hz vary very widely because they are very close to



either the skin or the trim panel fundamental resonance frequency.



At frequencies of 1000 Hz and 3000 Hz, the noise reduction is 

mainly a function of the surface density of the double-wall panel.



All other parameters being constant, it is a function of the skin 
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panel surface density. Since the surface densities of the graphite­


epoxy panel (panel 335) and the Kevlar panel (panel 340) are nearly



equal, theyhave nearly the same noise reduction. The aluminuim



skin panel (panel 353) is considrably heavier and hence has higher



noise reduction. For double-wall panels with an air gap, the



increase in noise reduction values closely match the theoretically



predicted 3-4 dB at 1000 Hz. At 3000 Hz two phenomena occur.



First, the first harmonic of the double-wall resonance falls in this



frequency region. The dips in the noise reduction introduced by



this resonance are strong enough to mask the increased noise
 


reduction due to higher surface density of the aluminum skin



panel. Second, this is the frequency region with very high noise'



reduction. Hence, as explained in Section 5.3.1, the variations in



the no;ise reduction values are not truly reflected in the results,



due to dynamic range limitations. Hence the effect of the increased



mass of the aluminum skin panel is not seen in the experimental



results. This is especiallr true with fiberglass insulation. 

panels with insulation show very high noise reduction (>80 dB) above 

3000 Hz. 

The effect of the stiffener can be studied by comparing the



results of the Kevlar panel with one stiffener (panel 339) and with 

two stiffeners (panel 340). In this case other parameters of the 

double-wall panels are the same. At very low frequency of 40 Hz, 

the effect of the stiffener is to increase the noise reduction by 

the increase in the stiffness of the skin panel. This trend is 
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confirmed in -all but three cases tested (see Figure 5.4 through 

5.11). The exception occurred in two cases with air gap. These



exceptions are considered to be due to experimental scatter. The



increase in noise reduction at 40 Hz due to increased stiffness is



less than three dB. Once again at 100 Hz, near the fundamental



resonance frequency of the skin/trim panel, there is a wide



fluctuation in the test results. The results show a very small



increase in noise reduction at 1000 and 3000 Hz due to the two



stiffeners. However, this increase is so small that it is within the



scatter of the experimental results.



5.3.3 EFFECT OF PANEL DEPTH



In general aviation aircraft the space available for the



installation of double-wall type structures for interior noise



cotrol is very limited, due to already small interior dimensions. A



quick survey among the manufacturers indicated that two-three inches
 


is about the maximum depth that can be allowed. Hence the effect of



the double-wall depth was investigated for only three cases: one



inch, two inches, and three inches. For this investigation,



aluminum skin panel and four trim panels were used.- The trim panels



tested were one from each group of the base materials described in



section 5.2. These panels were 312, 318, 325, and 352. The tests



were performed both with and without the fiberglass insulation in



the space between skin and trim panels. The results from the tests
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have been cross plotted in Figures 5.12 through 5.15 for the cases



investigated. For each test condition six frequencies are shown.



At 40 Hz, which is below the fundamental resonance frequency of



the skin or trim panels, the experimental results show a very small
 


decrease with increase in panel depth. The decrease was less than
 


three dB in all cases. This trend was not predicted by the simple



theory described in Chapter 6.. it is believed to be due to ihe trim
 


panel attachment procedure used in the investigation. The trim
 


panel was attached to the edge channel members by means of screws.



The depth of these channel sections determines the panel thickness
 


(see Figure 5.2). It is possible that with higher panel depth, the



stiffness of this member decreases, decreasing the double-wall panel



stiffness. This decrease in stiffness may cause the reduction



experienced in the test results. This effect is present even with



the insulation. An opposite phenomenon occurs at 100 Hz. This



frequency is on the other side of the fundamental resonance



frequency for most of the panels, and hence a slight increase is



expected with increase in panel depth. The increase was 3-5 dB.



The decrease in stiffness as described above can cause such a trend.



The noise reduction values at 300 and 500 Hz are also plotted



in Figures 5.12 through 5.15. This frequency region is the most



important region for the interior noise control of the general



aviation aircraft. The noise reduction values at 300 Hz show an



increase, with the increase in panel depth. The shape of the



curves, however, is different for different trim panels. This is
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because the experimental double-wall resonance frequency occurs in



this region. The noise reduction values depend very much on the
 


value of the double-wall resonance frequency. The simple theory
 


used in the theoretical analysis overpredicts the double-wall



resonance frequency (see chapter 6). Hence comparisons of the trend



of the noise reduction values at 300 Hz could not be made. The



trend of the frequency values themselves is the same--only shifted



by 75-100 Hz depending on the panel configuration. Similarly, at
 


500 Hz the variations in noise reduction could not be explained in



terms of the simple theory. Except for trim panel 312 with air gap,



the experimental results show either a steady increase or a slight



peaking at two-inch depth. The double-wall panel with trim panel



312 has a definite dip at 500 Hz at 2" panel depth. It is believed



that the porous aluminum base material may contribute to this



phenomenon.



At 1000 Hz, for all cases tested the noise reduction shows a



steady increase with increase in panel depth. As the panel depth is



increased, the first harmonic of the double-wall resonance frequency



decreases. on either side of this frequency, the slope of the noise



reduction curve will be high. At 1000 Hz we are in this region for



all three depths tested. This slope is higher if the resonance



frequency is closer to 1000 Hz. Because of this the noise reduction



of the three-inch depth panel is higher than that of the two-inch



panel. The increase is smaller for the air gap (6,dB max.) than for



the insulation (11 dB max.). Some of the increase in noise



reduction of the panels with insulation is due to the viscous shear
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in the insulation. This shear loss manifests itself as the real
 


part of the complex propagation constant (see Reference 9). The



effect of -the-harmonic of the double-wall resonance frequency is



more apparent at 3000 Hz with air gap. The resonance in this case



is so strong that it lowers the overall noise reduction of the
 


double-wall panels with two-inch depth at this frequency. Hence the



cross plot of noise reduction vs thickness shows a dip at two inches



at this frequency. These results are consistent with the



theoretical predictions and also with the results of the dual pane



window tests (Reference 9) carried out at this test facility. The 

addition of the insulation damps out this dip. In addition, viscous 

shear losses in the insulation increase the noise reduction beyond 

80 dB for three (panels 312, 318, and 325) out of the four trim 

panels tested. As described in section 5.3.1, any increase in the
 


noise reduction over this value does not get truly reflected in the
 


test results. In the case of trim panel 352, which has a lower



noise reduction at one-inch-panel depth (>70 dB), the effect of



increase in depth is more prominent.



5.3.4 EFFECT OF FIBERGLASS INSULATION 

Even though all double-wall tests have been done with and 

without air gaps, aluminum skin panel and fout trim panels (312, 

318, 325, and 352) were chosen for comparative study. The cross



plots at 40, 100, 1000, and 3000 Hz. are given in Figures 5.16



through 5.19. The Y-axis of these figures is the change in noise
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reduction due to the fiberglass insulation of density , .7 lb/cu.ft



or 11 kg/m 3 . These values were obtained by subtracting the noise



reduction values of the panels with insulation, from those without



the insulation (shown in Figures 5.12 through 5.15). At 40 and 100



Hz the effect of the fiberglass is negligible. In fact, in some



cases it is even negative. At high frequencies the fiberglass has



two effects, as described in the previous section. First, it



eliminates the dip in the noise reduction curve observed due to the



harmonics of the double-wall resonance frequencies. secondly, the



sound level is also attenuated by the viscous shear losses when it



travels through the porous media (Reference 9). At any given



frequency the attenuation due to this effect is linearly



proportional to the thickness of the insulation. The experimental



results tend to confirm this trend in those cases, where the noise



reduction measurements are not affected by the limitation of the
 


dynamic range of the instruments. At 3000 Hz the increase due to



the insulation varies from 3 dB (for trim panel 312) to 11 dB (for



trim panel 352) for two inch variation in the panel depth.



5.3.5 EFFECT OF TRIM PANELS



The interior trim panels are used in the general aviation



industry for decorative purposes. They also form a part of the



interior noise control treatment. But it is the decorative purpose



which determines the type of material and treatment that will be



used. Normally a trim panel has a base material, which provides the
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http:lb/cu.ft


stiffness and also makes it easier to install. The treatment such



as leather, simulated leather, upholstery, etc., is applied solely



for-decorativepurpases. Thboretically, these panels are treAted as



limp panels having mass-law impedance. Tests at this fa6ility of



various materials have shown that such an assumption may not be



valid (References 6). During the present series of tests, the



effect of these panels was investigated when used as a part of a



double-wall struture. As described in Section 5.3, the trim panels



were divided into three groups, based on their base material.



Tables 5.3 and 5.4 give the noise reduction vaiues at 40 and 3000 Hz



for four skin panels. As expected, there is considerable scatter in



the data. Figures 5.20 through 5.27 shqw this effect as a function



of the total panel surface density. For each skin panel the noise



reduction obtained is plotted as a function of the surface density



of the panel. Since the other panel parameters have been held



constant for each plot, the variation of the surface density in each



figure is due to the variation of the panel surface (area) density



of the trim panels.
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Table 5.3: Effect of Trim Panels on Noise Reduction


Characteristics of Double-wall Panel; 40 Hz



Airgap Insulation 

Skin Panel Skin Panel 

Trim Panel 353 335 339 340 353 335 339 340 

312 13 15 6 7 12 17 9 13 

314 9 11 7 7 10 15 9 9 

315 17 16 11 13 16 18 15 15 

317 13 12 7 8 13 16 12 15 

318 12 15 9 8 13 17 11 13 

323 19 17 16 15 19 21 15 17 

325 18 15 15 15 20 19 16 18 

341 14 14 7 8 15 16 13 15 

342 14 12 9 8 14 18 12 14 

343 9 12 7 6 13 13 11 11 

344 14 15 9 9 14 16 10 13 

* 347 24 25 19 20 23 24 19 22 

352 15 16 10 13 14 16 12 13 

*Has the highest noise reduction at 40 Hz. 
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Table 5.4: Effect of Trim Panels on Noise Reduction


Characteristics of Double-Wall Panel; 3000 Hz



Airgap Insulation 

Skin Panel Skin Panel 

Trim Panel 353 335 339 340 353 335 339 340 

* 312 72 66 65 67 84 80 80 80 

314 64 58 59 59 76 75 73 73 

315 66 56 56 56 78 70 73 74 

317 61 57 57 55 71 69 71 70 

318 62 57 57 59 78 .75 77 78 

323 58 54 52 58 74 69 76 74 

325 65 60 61 63 78 71 78 77 

341 59 56 57 55 75 69 75 73 

342 63 58 55 58 78 73 76 77 

343 68 65 67 .66 77 74 75 74 

* 344 72 67 66 64 84 80 80 80 

347 60 54 54 54 73 69 74 72 

352 61 55 54 56 80 78 76 77 

*Have the highest noise reduction at 3000 Hz 
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These-cross plots must be interpreted with care. The noise



reduction due to the trim panel at any frequency is not a function



solely of the mass of the panel, which explains the considerable



scatter seen in these plots. However, the mass of the trim panel is



still (at least in the high frequency region) a major factor and



represents the trade-off parameter that most often decides what



material will be selected for use. Because of the scatter, mean



square lines are shown, which indicate, as expected, increasing



noise reduction with increase in mass. From Tables 5.3 and 5.4 it



can be seen that trim panels 312 and 344 perform consistently better



than the other panels, even after consideration of their higher area



density. Both these panels are treated with flexible 1/2" foam



material, over which a leather covering is applied. The thickness



of the foam may be one of the reasons for the better performance of



these panels..
 


Four trim panels--312, 318, 325, and 352 (one each from groups



1 and 2, and two from group-3)--were selected for further



investigation. Each of these panels has a different base



material: 312 has 45% open pore aluminum, 318 has Rohacell core,



325 has Klege-cell base, and 352 has compressed fiberglass core.



These trim panels are representative of the trim panels being used



in the general aviation industry. Single panel noise reduction



tests were performed, and the results are given in Figures 5.28



through 5.31. These results confirm that the limp panel assumption



may not be valid for these panels. At this test facility, the noise
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reduction curve of a standard .03V"aluminum panel shows a slope of 

6 dB/octave, which corresponds to mass-law value. However, three of 

the four trim panelstested -had less -than 6 dB/octave slope. These 

values are tabulated in the next chapter. only panel 312 had a 

slope of 8 dB/octave, far higher than mass-law slope. Panel 352 had



a near zero slope, as can be seen from Figure 5.31. Both these



panels have nearly the same area density. While double-wall tests



confirmed these trends, they also indicated that the effectiveness



of panel 312 decreased and that of panel 352 increased, thus evening



out the difference. This aspect is further discussed in the next



chapter.



In the low-frequency region of 40-1000 Hz, panel 347 was



superior to all other panels tested. Panel 347 was the thickest



panel in group 2 and has two layers of 120 phenolic skin applied to



both sides to stiffen the base material.. Also it is made of light



Rohacell material. This property of high stiffness and low mass



increases its fundamental resonance frequency. This makes panel 347



superior to other panels in the low-frequency, stiffness-controlled



region.



The effect of attachment of the trim panel to the channel



section was also.investigated. Two types of attachment procedures



were tried. In one case the trim panel was screwed to the channel



section by means of eight screws as shown in Figure 5.2. The second



attachment was to simulate free-free edge conditions for the trim



panel. This was done by using 1/8" thick pressure-sensitive
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adhesive tape. The results are compared in Tables 5.5 through



5.7. The results indicate that the effect of the attachment is felt



only in the very low-frequency region. An increase of 0-2 dB is



observed with the free-free edge condition. This might be due to



the better isolation of the trim panel at very low frequencies. At 

100 Hz the results were inconclusive. It is possible that the 

vibration isolation of this tape is not effective at and above 100 

Hz. At very high frequencies the panels with tape attachment



indicate a gain of 0-3 dB. The results are within the experimental



scatter observed in this frequency region. Increased mass of the
 


1/8" tape all around might have caused some of the increase.



5.4 CONCLUSIONS



The results of the tests described in this chapter have



demonstrated the following characteristics of the sound transmission



through double-wall structures.



At very low frequencies (below 100 Hz) the noise reduction is a



function only of the stiffness of either skin or trim panel. Hence



use of a double-wall panel presents no additional gain over use of



the single-wall structure. At frequencies of 100 to 500 Hz, the



overall noise reduction of the double-wall panel is normally lower



than the noise reduction of the single panel with the same panel



weight. However, the noise reduction at these frequencies is so



much a function of the double-wall, panel-air-panel, resonance
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Table 5.5: Effect of Trim panel Attachment on the


Noise Reduction Characteristics of Double-

Wall Panels with Aluminum Skin; Depth 3"



a. Trim panel 318



Airgap 
 
Frequency



(Hz) Screw Tape 
 

40 12 14 
 

100 18 18 
 

300 29 32 
 

500 42 41 
 

1000 48 50 
 

3000 62 63 
 

b. Trim Panel 325



Airgap 
 
....



(Hz) Screw Tape 
 
Frequency 
 

40 18 18 
 

100 16 16 
 

300 42 43 
 

500 45 46 
 

1000 53 53 
 

3000 65 65 
 

Insulation



Screw 


13 


17 


30 


39 


56 


78 


Tape



16



17



31



46



59



80



Insulation



Screw 


20 


16 


34 


41 


59 


78 


Tape



20



16



35



46



59



78
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Table 5.6: Effect of Trim Panel Attachment on the


Noise Reduction Characteristics of Double­

wall Panels with Aluminum skin; Depth 2"



a. Trim Panel 318



Airgap 
 
Frequency



(Hz) Screw Tape 
 

40 13 14 
 

100 16 15 
 

300 19 26 
 

500 45 42 
 

1000 47 50 
 

3000 61 63 
 

b. Trim Panel 325



Airgap 
 
Frequency



(Hz) Screw Tape 
 

40 16 16 
 

100 14 14 
 

300 34 35 
 

500 42 45 
 

1000 47 49 
 

3000 61 63 
 

Insulation



Screw Tape



14 16



14 15



26 26



43 42



53 57



78 80



Insulation



Screw Tape



18 20



15 14



32 35



43 41



54 56



74 76
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Table 5.7: Effect of Trim Panel Attachment on the 

Noise Reduction Characteristics of Double­

wall Panels with Aluminin skin; Panel Depth 1" 


a. Trim Panel 318



Airgap 
 
Frequency



(Hz) Screw Tape 
 

40 14 15 
 

100 13 13 
 

300 19 21 
 

500 35 32 
 

1000 42 43 
 

3000 61 62 
 

b. Trim Panel 325



Airgap 
 
Frequency



(Hz) screw Tape 
 

40 17 18 
 

100 15 12 
 

300 32 30 
 

500 37 41 
 

1000 46 46 
 

3000 63 64 
 

Insulation



Screw Tape



15 16



13 14



16 17



32 36



48 51



72 75



Insulation



Screw Tape



20 20



15 15



23 24



35, 35



50 51



73 73
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frequencies that any conclusion on the efficiency of the double wall



without knowledge of the excitation frequency and the double-wall



characteristics will not be valid. By proper designing of the
 


double-wall panel treatment, the coincidence of the panel-air-panel



resonance frequency and the excitation frequency may be avoided.



The double wall may also be designed to give a higher noise



reduction at the excitation frequencies. In the high-frequency



region, even though the slope of the noise reduction curve of the
 


double-wall panel exceeds that of the single-wall panel, the



experimental values are lower than the theoretically predicted 12



dB/octave. one of the causes for the discrepancy is the assumption



that the trim panel behaves like a limp panel following mass-law



impedance.



In particular for the double-wall panels investigated, the 

effect of the airgap depth in the high frequency region is



negligible outside the range of the harmonics of the panel-air-panel 

resonance frequencies. of the skin panels tested, the aluminum skin 

panel offers higher high-frequency noise reduction by virtue of its 

greater mass. At low frequencies, graphite-epoxy panels have up to 

seven dB higher noise reduction than the Kevlar panels. One-to-one 

compariosn between these panels is not possible, due to the varied 

nature of the thickness and the stiffener characteristics. The 

effect of an additional stiffener in the skin panel is to increase 

the low-frequency noise reduction by about 4 dB. The additional 

stiffener has a negligible effect on the noise reduction at high 

frequencies. 
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The effect of the fiberglass insulation in the low-frequency 

region is small and at times slightly negative. In the high 

frequency region the.installation of the fiberglass insulation damps 

out the resonance effects and also increases the noise reduction due



to the viscous losses. This increse is directly proportional to the



insulation thickness.



The effect of the trim panel is not significant in the low­


frequency region. Increase in the trim panel mass results in a



slightly lower noise reduction. At high frequencies the base
 


material and the treatment of the trim panel play a major role in



the noise reduction characteristics of both double-wall and single­


wall panels. of the trim panels tested, panels with .5" foam as



part of the treatment had the best noise reduction in the high­


frequency region, even after consideration of their increased mass,.



Due to the instrument limitation, the effect of very high trim



panel density on the high-frequency noise reduction could not be



accurately determined. However, as the noise reduction is well



above 80 dB, it is considered that this may not be worthwhile.
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CHAPTER 6
 


THEORETICAL ANALYSIS OF'SOUND TRANSMISSION


THROUGH DOUBLE-WALL PANELS
 


6.1 INTRODUCTION



The main purpuse of the theoretical analysis of double-wall



panels was to compare the results obtained from experimental



investigations of Chapter 5 with the computer-calculated theoretical



results. The secondary purpose is to use this theoretical model for



the future design of double-wall noise control treatment. The



double-wall panels tested include skin, airspace, fiberglass
 


insulation and trim. Hence, one of the requirements for the



selection of the theoretical model is that it should be able to



handle these variables.



A literature survey was conducted to determine the methods



available (Reference 51). Recent studies to determine the interior



noise of propeller aircraft (References 23 and 24) still use the



classical sound transmission loss model originally proposed in



Reference 25. It was decided to use the same model, with some



modifications to accommodate the type of panels tested in Chapter 5.



6.2 THEORETICAL FORMULATION
 


For a plane wave with partial absorption on the receiver side,



the noise reduction across a panel is expressed as (References 

23-25):



157





Skin Septum Trim



Transmitted



Spressure
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pressure



Incident


pressure



Air gap Insulation


blanket



0 = Angle of incidence



Figure 6.1.- Schematic Diagram of a Multilayer Panel 
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NR = 10 log 11 + 	 (6.1), 

where NR = Noise reduction across a panel (d) 

T = Panel transmission loss coefficient 

a = Absorption coefficient of the receiver cavity. 

The transmission loss across a panel is calculated from 

=TLT10 	 log(-)	 (6.2), 

where TL = Transmission loss.



In case the receiver cavity is fully absorptive, as in the case of



the KU-FRL acoustic test facility, the noise reduction and



transmission loss will be the same. A typical multilayered panel is



shown in Figure 6.1. The transmission loss across this panel can be



written as



TL = 10 log(-) = 10 log IPs1 2 	 (6.3),.r. Pt



where 	 TL = Transmission loss across a panel (dB)-


Ps = Measured sound pressure at the source side (Pa)



pt = Measured sound pressure at the receiver side.



The sound 	 pressure measured by a microphone on the source side will



measure not only the incident sound wave but also the reflected



sound wave. The measured sound pressure is also called "blocked



sound pressure." Following the classic derivation from Reference



26, this 	 pressure ratio can be written in terms of the pressure



ratios across the successive interfaces as
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I12= 	 I__.___.....kTh 	 12 (6.4),

Pt 	 P3 Pk + 1
P2 	 Pt



where 	 N = Number of layers



= Pressure ratio across layer k. 

Pk+ 1 

For the purpose of calculating the pressure ratios across successive



interfaces, both airspace and fiberglass insulation (porous medium)



will 'be considered as similar media. The pressure in a porous
 


insulation or airspace is calculated from the solution of the one­


dimensional wave equation (Reference 26):



p = A cosh(bx + 	 'b)
	 (6.5), 

where 	 A = Pressure amplitude 

p = Pressure at any point along axis of sound 

propagation x ­

x = Distance from a terminal impedance Zt 

b = Propagation constant for the medium (neper) 

Tb = 	 Phase angle dependent on the characteristic impedance



of the medium and is given by



= coth- 1 ( (6.6), 
0 

where Zo Characteristic impedance of the medium.



Equation 6.6 is derived from the equation of impedance (Reference



26):



Z Z. coth (bx + Yb) (6.7).



In this case at x = 0, Z = Zt. Therefore,
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= cobcom z t (6.8).
z 
0



For an airspace between two solid boundaries, the propagation



constant



b = jwc = and ZO =pc. (6.9). 

For the porous insulation, both b and Zo are complex. Reference 9



gives a method to calculate these values for any porous insulation



material given its porosity, resistivity, and density. Hence,



knowing b and 'b, the pressure ratio across a porous fiberglass



insulation or airspace can be calculated.



The pressure ratio across septum or skin or trim panel can be



found by the impedance ratio across these layers because the



particle velocity across these layers should be continuous. The



impedance is defined as the ratio of pressure to partidle



velocity. Therefore, across any septum,



Pl P2


z1 -cand 2
 (6.10).
2 


since 11 and u2 are equal,



P1 zi (6.11). 

P2 z 2 

Therefore, if the impedances at the interfaces of successive layers



are known, then the pressure ratios can be calculated. The



impedance of airspace and porous media are calculated using Equation



6.8.4 The impedance in front of a septum (or skin or trim) is found



by adding the impedance of the septum to the terminating impedance



for that layer. For example, in Figure 6.1, if the impedance at
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zk+1 is known, then the impedance at k is calculated by adding the 

impedance of septum k to the impedance at k+1 In classical sound­

transmission theory, the impedance of the septum is given by the 

mass-law impedance (= jwmk). Therefore,



z k = zk+1 	 + jumk 	 (6.12), 

where 	 Zk = Impedance at location k



Zk+i = Impedance at location k+1



= Circular frequency



m k =Surface mass density of septum at k.



The above model has been corrected for the oblique incidence and



airflow in Reference 24. In the following subsections, the pressure



ratios and the impedance values across the individual layers are



given. These equations are taken from References 23 to 25,_ and 21.



6.2.1 SKIN PANEL



For a skin panel subjected to an obliquely incident sound wave



with an airflow, the pressure ratio is obtained from (Reference 24):



p1 ZpcosO2 + llO~



P I =[1 + + 
 -]~ (6.13),
P2 Z cos(1 + M sinO1 )z2



where 	 PI = Blocked incident pressure 

P2 = Transmitted pressure 

Zp = Characteristic impedance of skin panel 

Z2 = Terminating impedance for the skin panel
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02 = 	 Angle of incidence in Region 2



81 = 	 Angle of incidence



P1 c1 	 = Impedance of' air on the source side 

M = Mach number. 

Equation (6.13) can be simplified when the external flow is not 

considered. 

PI [ pC S8 Pl11CC S 2-_ 	 [1 + z+co.] +(6.14).p1 

2os%z2

P2 
 

The impedance of a panel is modeled in the KU-FRL program in



four ways:



a. 	 The first model used for skin impedance is derived from



simple mass law and is given by
 


Zp = 	 jcm 	 (6.15). 

b. 	 The second impedance model is for a stiffened and



pressurized cylindrical panel. It is given by (Reference



24):



2 3



w 2 sin4 m wD 4


Z +j[m n n sin4U=---	+ 
 

c14 	 (1 + M sine) 	 c14 (I + M sinS)4 

(6.16),



where I = Loss factor



D = 	 Flexural rigidity (Eh3/12(1 - 2)] 

cI = 	 Speed of sound on the source side



8 = Angle of incidence



M = 	 Mach number
 


m = 	 Mass per unit area
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E = Young's modulus



* = Poisson's ratio



h = Skin thickness



Wn = Fundamental resonance frequency.



For a cylindrical stiffened panel, neglecting the membrane



stiffness, it is given by (Reference 23):



4 
 
n4 4{p(1 2)2 + 2 (GJs 4 EfIf2 4D + s G
 Gff 


Mx y y x



2 2



+pR x_ 
 2
 
+ Ap 72 (1 + 26 )1 (6.17),2 2D



where D = Flexural rigidity as defined above



Lx = Length of the panel



Yx = Frame pitch



£ = Stringer pitch



E = Young's modulus



m = Mass per unit area 

I = Moment of inertia 

G = Shear modulus 

J = Torsion,constant 

p = Axial wave number (= I for fundamental mode) 

R = Radius of curvature


6 qLx
& = - (6.18) 
pnR 

q = Circumferential full wave number (= .5 for 

fundamental mode;*see Reference 23).
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C. 	 The third impedance model is for a flat panel with in­


plane stresses to simulate pressurization and is given by



(Reference-24):



2 2 3


Wn W3DTI sin44 e 
 n n sin4


14 (1 + M sino) 
 + 	 c (1 +
P 	 

M sine) 4 


(6.19),



where n= Fundamental angular resonance frequency for a panel



bounded by sides a and b and pressurization loads Px



and 	 Py. It is given by



7r P P 2 1 12 1/
"n 	 (mI l ( + -)+ Di (-r +- 2 (6.20);

2 	 b
(a 2a 
 

= Loss factor 

D = Flexural rigidity [Eh 3 /12(1 - 02)] 

Ci ="Speed of sound on the source side 

0 = 	 Angle of incidence 

M = 	 Mach number 

Px = Load in x direction due to pressurization



py = Load in y direction due to pressurization



m = Mass per unit area



E = Young's modulus



0 = Poisson's ratio



h = Skin thickness
 


a, b = Panel length and width
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d. 	 The fourth model is for cases where the fundamental



resonance frequency and damping ratio (= loss factor/2-)



are known. In this case the panel impedance is calculated



as ('Reference 27):



zp = 	 24wm + Wm(1 - [J 2) 	 (6.21),
p n 	 WA 

where Damping ratio



n= Natural frequency



m Mass per unit area



w Circular frequency.



6.2.2 SEPTUM



When a thin, impervious layer (leaded vinyl or vinyl) is 

present, the following equation is used to determine the pressure 

ratio across that layer: 

__i_ zieos8 i + 1Pi 
 z(6.22),


Pi +l i+1I



where Zi =Zp + Zi + 1 	 (6.23), 

zp jWmi (6.24), 

w= 2rf 

mi =mass per unit area of layer i 

f= frequency 

Zi + 1 Terminating impedance for layer i, 

calculated from impedance downstream of layer 

i + 1. 
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The input impedance Zi is simply the sum of the layer impedance



and the terminating impedance.



6.2.3 AIR GAP OR FIBERGLASS INSULATION
 


The pressure ratio across an airspace or a soft porous



fiberglass insulation subjected to an obliquely incident ray is



given by (References 23-25):



-1 Z. cosO 
( I
cosh[bd cosO + coth zB °S25)



1B (6.25),

p. 	 - z 1 cos8



Pi 	 + 1 cosh[coth-1( z + Io)


ZB



where b = Complex propagation constant (calculated from



equations and data in Reference 9 for fiberglass



insulation 

b = jwc for air gap (6.26) 

Zi + 1 = Termination impedance



ZB = Characteristic impedance of the layer



(calculated from Reference 9 for fiberglass



insulation)



= pc for air gap.
ZB 


The input impedance of the airgap blanket is given by



(Reference 23): 

ZB Z icosO 

Z. = c-
Cosa 

coth[bd cos8 + coth ­ 1 ( + 
B 

) (6.27). 
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6.2.4 TRIM PANEL CHARACTERISTICS



The pressure ratio across the trim -panel is -calculated using 

Equation 6.22. Two models exist for the panel impedance. The first 

is the same as Equation 6.24. The second model uses the 

experimental values obtained at the KU-FRL acoustic test facility.



In general, a single mode impedance model is given by (Equation



6.21)



=n 2 
Z =2Cwm+ jwm(1 - [-] ) (6.28), 
p n Wi 

where C Experimental damping ratio



= 
 n Experimental resonance frequency



m = Mass per unit area.



Equation (6.28) has been modified to change the slope of the



noise reduction curve in the high frequency region by a factor
 


called "slope factor" (see Section 5.3.5) to correspond to the



experimental value of the slbpe obtained. The model for panel



impedance uses Equation (6.28) in the low-frequency region and



experimental slope in the high frequency region.



6.3 COMPUTER PROGRAM



The equations described in Section 6.2 are used in a computer



program, which calculates the transmission loss of multilayer



panels. The program is written in PDP-11 Fortran, which is an



enhanced version of Fortran66. It is intended for use on the DEC
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MINC-11, 16 bit, 64 k byte minicomputer. Five difference types of



layers can be studied. These are skin, airspace, porous fiberglass



insulation, septum end trim. The program is written in such a way



as to permit the user to vary both the type and the order of the



layers. The flow diagram and the listing of the computer program
 


are given in Appendix B. The input data required, input data format
 


and output formats are given in the user's manual, Reference 28.



When this computer program is used for the calculation of
 


transmission loss of panels tested, several aspects should be kept



in mind. These are given below. It should also be noted that even
 


though the program can allow up to 10 layers, in the tests only
 


three layers were used; i.e., skin, airgap or fiberglass, and trim



panel.



a. Actual transmission loss should measure only the incident



pressure on the source side. But at the KU-FRL acoustic



test facility the source microphone measures the blocked



sound pressure, which consists of both incident and



reflected pressures. This effect has been taken into



account in the program.



b. The receiver microphone measures both the transmitted



sound pressure and the reflected pressure from the



receiver cavity. As explained in Appendix A, the receiver



cavity absorbs most of the transmitted energy. Hence the



contribution of the reflected pressure is assumed to be



negligible., In other words, the absorption coefficient of



the cavity has been assumed to be equal to 1.
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c. 	 At low frequency the receiving cavity stiffens the panel



due to Helmholtz effect. This effect increases the



measured fundamental resonance frequency of the single



panel. Hence the measured resonance frequency is greater



than the calculated resonance frequency. This effect can



also be expected for the double-wall panels. NO



modifications have been done to account for this effect.



This effect can be taken into account by inputting the



measured single panel resonance frequency of the trim and



the skin panel, instead of calculating their resonance



frequencies within the program.



d. 	 in practice the trim panel is modelled as a limp panel.



In classical sound transmission loss theory, limp panel



impedance is directly proportional to the surface density



and the frequency. The transmission loss resulting from



this impedance is known as mass-law transmission loss.



Under these assumptions the transmission loss increases by



6 dB for doubling of either the mass or the frequency. In



a transmission loss vs frequency plot, this produces 6



dB/octave slope. However, as can be seen from the test



results (Figures 5.28 through 5.31), the slope of the



least mean-square line of the trim panels varies



considerably. Hence a simple mass-law assumption seems to



be invalid for such trim panels. Three out of the four



panels tested had slopes less than the theoretical
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values. Hence the use of mass-law approximation produces



a higher transmission loss for a double panel. In order



to overcome this problem, an additional option for the



trim 	 panel was introduced for the trim panel impedance.



In this option the measured slope is used. The model uses



mass law impedance for low frequency and impedance



corresponding to the measured slope at high frequency.



The experimental slope is input as a ratio of the measured



slope to theoretical slope (6 dB/octave), and this ratio
 


is called the slope factor, values of these factors for



various trim panels are given in Reference 28. For this



study these values were measured from Figures 5.28 through



5.33.



e. 	 The absorption coefficient is normally less than one. But 

when-the cavity is nearly absorptive, (a 1) , as in the 

case of the KU-FRL acoustic test facility, the noise 

reduction and transmission loss will nearly be the same.



In case the cavity is not fully absorptive, noise



reduction values in general will be less than transmission



loss. At cavity resonance frequencies such



simplifications will not be valid. At the KU-FRL



experimental test facility the receiver microphone



measures both the transmitted pressure and the very weak



reflections from the cavity walls. Hence the sound



attenuation characteristics measured from this facility
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are called "noise reduction." The theoretical values



calculated from the program do not contain any corrections­


and hence are transmission loss values. This should be



borne in mind when making the comparison between the



theoretical and experimental values.



6.4 DETAILS OF THE INPUT DATA



For the theoretical investigation the parameters chosen to vary



were



a. Panel depth 

b. Effect of sound insulation



c. Effect of skin structure



d. Effect of trim panel material and treatment.



Four skin panels and four trim panels were used for the



comparison of the theoretical and the calculated values. The skin



panels tested are given in Table 6.1. Trim panels used were 312,



318, 325, and 352. The details of these panels are presented in



Table 6.2. The impedance model used for the skin and trim panels



was the single mode approximation. This approximation, described in



detail in Reference 28, required single panel resonance frequencies



of the skin panel and its damping ratio around that frequency



region. The tingle panel test results from 6 were used for the



resonance frequencies. The damping values of these panels had been
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measured and were reported in Reference 28. These values were used



in the calculation of the impedance. These values are tabulated in



Table 6.1.



The mechanical properties of the fiberglass insulation were



unknown. This insulation material was very similar to the PF 105



fiberglass insulation discussed in Reference 9. Also the



sensitivity analysis indicated that the minor variations in porosity



and resistivity of the insulation did not significantly change the



transmission loss values. Hence the porosity and the resistivity of



PF 105 material were used. However,-actual fiberglass density was



input.



The input data required for the trim panels were fundamental



resonance frequency, damping ratio, and the experimental slope of



the noise reduction and damping tests of the trim panels alone.



These values are tabulated in Table 6.2.



6.5 RESULTS



The outputs from the computer runs are plotted in Figures 6.2



through 6.25 for the 48 combinations considered. These calculated



values are plotted as dotted lines over the experimental values.



Each figure contains two plots: one with the fiberglass insulation



between the skin and the trim panel and the other without the



insulation.
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Table 6.1: Input Data for Skin Panels



Resonance Damping Surface


Skin Panel Frequency Ratio Density



(Hz) (kg/sq m)



353


357 50 .015 2.24


358



335 70 .03 1.58



339 40 .02 1.23



340 55 .02 1.48



Table 6.2: Input Data for Trim Panels



Trim Resonance Damping Surface slope


Panel Frequency Ratio Density Factor



(Hz) (kg/sq m)



312 0 .042 2.26 1.33



318 50 .060 1.26 0.58



325 60 .074 2.04 0.83



352 62 .063 2.20 0.05



Measured slope


Slope Factor 

6
= 
 
6
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In general, it can be seen that the agreement is reasonable for 

most of the cases tested. Due to thesingle mode approximation used 

in the program, the higher order modes of the skin and the trim 

panel are not present. Also not present are the higher order cavity 

modes of the receiver cavity. As the theory does not ignore the 

higher harmonic of the double-wall panel-air-panel resonance



frequencies, they are present and can be seen at higher panel depths



without any insulation between the walls.



At low frequency region the calculated values agree well with



the experimental double-wall results. These results are expected,



since the input values are experimental, single-panel, fundamental



-resonance frequencies of skin and trim panels. This indicates that



at low frequencies the transmission loss is a function of single­


panel stiffness' This is true when the frequency is well below the



fundamental resonance frequency of either the skin or the trim



panel.



in the frequency region.between 100 and 500 Hz, which is the 

region of greatest importance for general aviation interior aircraft



noise, the fundamental skin or trim resonance frequency and the



fundamental double-wall, panel-air-panel frequency occur. As can be



seen, the theoretical values overpredict the measured values by a



large value (75 Hz). The reason for this is not understood. Figure



6.26 shows the measured and the calculated double-wall resonance



frequency as a function of the thickness of the double-wall panel.



The effect of the panel depth on the measured and the calculated
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resonance frequencies is the sane; the experimental values are



always lower by 75 to 100 Hz, depending upon the trim panel. Around



this frequency region, measured values of noise reduction do not
 


agree with the calculated transmission loss values. However, the



trends are still maintained.



In the high-frequency region (above 500 Hz) the higher order



panel modes and the cavity modes are not predicted. with airgaps



the harmonics of panel-air-panel resonances are visible. The



agreement with the test results depends on the trim panel and the



depth of panel. Increase in panel depth decreases the fundamental



panel-air-panel resonance by the same amount as the experimental



results, as can be seen from Figure 6.26. At 3000 Hz frequency the



calculated transmission loss dips at 2" depth because of this



resonance frequency. This has also been observed in the



experimental results. With the insulation no decrease in noise



reduction is observed near the harmonic of the panel-air-panel



resonance frequency. Whenever the theoretical results are above



90 dB, the difference between the experimental values and the



theoretical values is large. This is due to the limitation of the
 


dynamic range of the instrumentation.



The theoretical results overpredict the high frequency noise



reduction of the double-wall panel with trim panel 312, and-they



underpredict the noise reduction of the double-wall panel with trim



panel 352. This is because of the variation in the actual slope of



the trim panels. The slope of panel 312 is 8 dB/octave, and that of
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panel 352 is nearly zero. These results indicate that the double­


wall evens out these differences. Reasonably good fit is obtained



when the slope is less than the theoretical 6 dB/octave slope.



Hence it can be concluded that the double wall acts as though the



trim panel slope is somewhere between .5 and .8 times the



theoretical slope.



6.6 CONCLUSIONS



In this chapter a computer program developed using classical
 


sound transmission theory is described. The computer program can



accept up to 10 layers. The layers can consist of skin, airgap,



fiberglass insulation, septum, and trim. Different options are



available to model various impedance characteristics of the skin and



trim panels.



The results obtained from the computer program werb-compared 

with the experimental results from double-wall panels with three 

layers. The agreement is considered reasonable, considering the 

simplifying assumptions of the model. The theoretically determined 

panel-air-panel resonance frequencies do not match with the 

experimental values. However, both follow the same trend. The use 

of slope factor improves the agreement. The agreement is good if 

the slope factor is between 0.5 and 0.8. 
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CHAPTER 7



MEASUREMENT OF TRANSMISSION LOSS OF PANELS


USING ACOUSTIC INTENSITY TECHNIQUE



7.1 INTRODUCTION



The characteristics and the limitations of the measurement



techniques currently used are described in Reference 21. Most of



the limitations mentioned in Reference 21 are due to the small size



of source and receiver sections of this test facility and the use of



acoustic pressure levels instead of acoustic sound power levels as a



measure of sound power. Also, in the present method, the sound



pressure levels are measured at only one location. Even though this



location had been chosen after a careful experimental study, it is



possible that this location may not be ideal for some cases.



Measurement of the sound power by the integration of the acoustic



9 
intensity levels over the entire panel will eliminate a few of these



limitations. The direct measurement of the acoustic intensity has



now been made possible by the development of the two-microphone,



cross-spectral method. This chapter describes the adoption of this



measurement technique at this test facility to measure transmission
 


loss values of the panel.



Theoretical developments for the calculation of the acoustic



intensity from the pressure measurements by two microphones



separated by a known distance is given in Section 7.2. In Sections



7.3 and 7.4 some of the limitations of this method and ways to



reduce some of the errors encountered are also described. The
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present test set-up had to be changed to introduce the intensity 

method at this test facility. The modified test set-up is, presented 

in- Section 7.5 Also presented in this section is the description 

of the computer programs and the modified test procedures. A 

typical test result from this test facility obtained using the 

acoustic intensity technique is given in Section 7.6. The chapter 

is concluded with a discussion of results obtained.



7.2 THEORETICAL ANALYSIS



7.2.1 ACOUSTIC INTENSITY



The acoustic intensity at any point is defined as the rate of



acoustic energy flow across a surface of unit area (Reference 29).



By definition:



IEr (7.1).

r,inst = dt6A 

This energy flux, 6E , is equal to the amount of work done 

upon -the area A in the direction r due to the total force; Fr; i.e., 

E r r = ptSA . Sr (7.2), 

where pt is the total pressure comprising the ambient pressure pa



and the sound (perturbed) pressure p. This gives
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u
Ir,inst = pa + pu (7.3),



where u = ar/at is the particle velocity in the direction r. Both



the sound pressure and the particle velocity are functions of



spatial coordinates and time. For sinusoidal processes, the time­


averaged value of the first term is zero if the averaging time is an



integral number of half periods. For other processes, it will be



zero if the averaging time is sufficiently long. If the processes



are stationary random, the same result can be obtained by



EfI I Efp rUI + E{pu r } 

=paEfurrI + Eu r I 

= PaUr + E{pur} (7.4).


mean



if the mean flow is zero, then



E{I } = E{pu 1 (7.5).r r 

Direct measurement of intensity using pressure-velocity product



has proved very difficult in field conditions (Reference 30). An



indirect measurement, wherein two microphones are used to measure



the acoustic intensity, has gained wide attention in recent years



(Reference 30). In the next section, equations required for the
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measurement of acoustic intensity using this method will be 

derived. This derivation closely follows References- 30 and 31. 

7..2.2 ESTIMATION OF ACOUSTIC INTENSITY USING TWO-MICROPHONE METHOD



-With zero mean flow of the medium, the time-averaged intensity



is given by Equation (7.5). For ease of calculation, let us



consider both p(r,t) and u(r,t) to be stationary random processes.



Fourier transforms of stationary random processes exist if their



autocorrelations and cross correlation are aperiodic (Reference



32). In such cases the Fourier transforms of p(r,t) and u(r,t) are



defined as
 


P(r,w) f p(r,.t)e-J tdt (7.6),



U(r,w) = - u(r,t)ej dt (7.7). 

From Euler's equation (Reference 29), the relationship between
 


the particle acceleration and the pressure is obtained as
 


p au grad p (7.8).



In one direction, namely r,



au

r = (7.9). 
-a- ar 
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In subsequent discussions, it is assumed that the particle velocity



is in the direction r, and hence the subscript r will be dropped.



The particle velocity is obtained by integrating Equation (7.9):



U= f -r at (7.10). 
P0



To measure intensity using two microphones, an intensity



measurement apparatus as shon in Figure 7.1 is used. In practice,



the pressure at the center of closely spaced points A and B can be



approximated by taking the mean of PA and PB" The pressure



gradient, to a first order, can be calculated by dividing the



difference in pressures at pA and p. by the separation distance,



6r. These approximations give the following estimates for p(r,t)



and u(r,t):



• I {p (r,t) + p (r,t)}

2 A B



(7.11). 

t 
u(r,t) = -- f (PB - PA)dt 

pr0



These approximations can be considerd valid as long as the



separation is small compared to the wavelength, A (Reference 31).



Following Laplace transform procedures, the time integral of the



transform can be replaced by



g7[fudt) = U(') (7.12). 
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Direction of



Acoustic Intensity



6r



Microphone B Microphone A 

Figure 7.1: Acoustic Intensity Measurement Apparatus
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Reference 31 states that even though this procedure is



mathematically incorrect, it gives valid results in practice. Hence



Fourier transforms of p(r,t) and u(r,t) can be written as
 


P(rW) =1 {pA(rW) + P (r,w)1 (7.13),

2 A



U(rw) {p (r,a) - P (r,w)} (7.14).

Urp=B A



From Equation (7.5):



i = E{p(r,t)u(r,t)} (7.15).r, av 

Both p and u are functions of the spatial coordinates of r. The



cross correlation function of p and u is defined by (Reference 32):



Rpu(t1 t 2 E{p(t )u(t2 (7.16).



Because of the stationarity, this equation can be written as
 


R (T) = Efp(t)u(t + r)} (7.17).Pu



At T = 0,



R (0) = E{p(t)u(t)} (7.18).
pu



The right hand side of the equation is equal to the averaged



intensity. Therefore,
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I = R (0) (7.19).
r,av Pu



By definitton, the cross 'spectrum of these two processes is given by



(Reference 32)



Sp (r,W) = j R (T)e-jTdT (7.20), 

and its inverse Fourier transform is



Rpu(T) =1 f Spu (w)eJWTdw (7.21).pu 2­

with T= 0, 

R (0) = S (w)d,= f S (f)df (7.22),
Pu 2r - Pu -~pu 

and



R (0) R (0). 
pu up



If the Fourier transform of p(t) and u(t) exist, the cross spectrum



can be written as (Reference 32)



S E{P(f)U*(f)} (7.23).

Pu 

Substituting the values for P(f) and U(f) from Equations (7.13) and



(7.14),
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E{PU*} = E{- (r + PB)(- (P - pA)] * } (7.24).
2 AP B jSoidrp (B A)*



Simplifying this equation,



E(PU*} = [{ P *} - EfPAP *1 + E{P P*} - E{P P *}]
2w6rp B B AA AB BA 

(7.25). 

By definition, 

E{PBPB*} = Power spectrum of pressure at B = SBB 

E{PAPA*} = Power spectrum of pressure at A = SAA" 

E{PAPB = Cross power spectrum between 

pressure at B and A = SAB. 

E{PBP *} = Cross power spectrum between 

pressure at B and A = SBA' 

Because SBA =.SAB*, 

J(SAB - SB) = +21m(SBA 

substituting these relations in the equation,



EfPU*} 2wrp {J(SB - SAA) + 21m(SBA)} (7.26).



If the cross correlation is real, which normally is the case,



the real part of the cross spectrum will be even and the imaginary



part of the cross spectrum will be odd. Hence, when integrated from



--'to -, the odd part integrates to zero. using only the real part,



Ir,av f rm(S)dw (7.27). 
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-m(S )dw (7.27).


r,av w6rp BA 

Fourier analyzers use only one-sided spectrum. The values on



the positive frequency side are doubled to keep the energy the same.



One-sided cross spectrum is normally denoted by GBA.



Irp Im(G )dw (7.28).
Ir,av w~rp 
 BA


0 

The negative sign in the equation can be avoided if the microphone



closest to the source is connected to channel B of the analyzer (see



Equation 7.11). For this case, the intensity can be written as



I f Im(G )d (7.29).
r,av 0wdrp AB



In practice, the digital form of the estimate will be used:



11 N/2 ImGAB(nAf)


Ir,av p~r nf (7.30),
I 
 

n=1 

where Af is the calculation bandwidth and N is the block size of the



analyzer. Intensity as a function of frequency is



I(nAf) = ImGAB(nAf) (7.31). 
r pdr nAf



7.3 LIMITATIONS



References 29-31 discuss the inherent limtations of the two­


microphone cross-spectral method to estimate the acoustic
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intensity. The limitations arise due to two types of error that 

occur: a) a systematic error and b) a statistical error. The 

systematic error is.due to the finite difference approximation used 

in the formulation of acoustic intensity. The statistical errors



are due to the random source excitation and other random variations



in measurement. In addition there are some more limitations that



are specific to the KU-FRL acoustic test facility. All these



limitations are discussed below.



7.3.1 HIGH FREQUENCY LIMITATION



At the KO-FRL acoustic test facility there are two possible



sources of error in the high frequency region. The first limitation



is due to the finite difference approximation for pressure and



pressure gradient. This produces a systematic error in the



estimation of these two quantities. The approximations used are



(Equation 7.11)



PA + PB (7.32),



2



3p PB - PA (7.33).



By the mean value theorem, these approxmations tend to the actual 

values only when the separation distance tends to zero. otherwise,



they produce a systematic error in the entire frequency range.



However, the error is most severe in the high frequency range. For
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a plane sinusoidal wave, the estimate of the intensity, using this



approximate method, is related to the actual intensity by (Reference-­


31) ­

sin(kdr)


r kdr


r



where I = actual intensity,



Ir 
 = calculated intensity,
 

k = wave number (w/c),



w = 27f



f = frequency.



(Sin x/x) tends to 1 when x tends to zero. Otherwise, it is



less than 1. Hence at high frequency (high k) and large separation



distance, the acoustic intensity will'be underestimated. At the KU-


FRL acoustic test facility, this is minimized by limiting the



separation distance to 25 mm (I") at frequencies above 500 Hz.



The second limitation is due to the band pass characteristics



of microphones. Because low frequency noise reduction is the major



concern in aircraft noise reduction, microphones with higher



sensitivity are preferred in this region. Only the low frequency



region is important in aircraft noise control applications. Hence,



1/2" B&K microphones were chosen for the measurement of transmission



loss bf panels. These microphones are accurate only up to 3500



Hz. With 1" separation and up to 400 Hz, the error due to the
 


approximation will be less than 3 dB for a plane wave with



sinusoidal wave. However, because this is a systematic error,
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similar error occurs both with and without the panel. Hence, when



the transmission loss is calculated, these errors tend to cancel out



each other.



7.3.2 LOW FREQUENCY LIMITATION



According to Reference 30, there is no -evidence of -any low



frequency limit due to the approximation errors. Reference 31 shows



that the estimation of the particle velocity results in the



estimation of the phase angle difference between the two



microphones. The term "kfr" in Equation (7.34) is the phase



difference between the microphones. This term is very small at low



frequencies because k is small. Hence, at low frequencies, the



measurement error of the phase angle becomes significant. The



measurement error is due to the channel mismatch between the two



microphone channels. This error can be eliminated (or reduced)



either by using phase-matched microphones or by correcting for the



difference in the phase angles when both the microphone channels are



exposed to the same sound field. while the use of phase-matched 

microphones will make measurement easier, it cannot account for the



phase mismatch in the rest of the measurement channels (like signal



amplifier, etc.). Because of this, a phase calibration procedure is



being adopted at the KU-FRL acoustic test facility. These



procedures are discussed in Section 7.4.
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7.3.3 NEAR FIELD LIMITATION



The third limitation occurs when this method is used in cases



where the intensity changes rapidly along the probe. when this



occurs, the intensity is very different at the two microphone



locations. Such a situation arises when the measurements are made



in near field. Several expressions have been derived to estimate



the effect of near field for simple sources such as monopole,



dipole, and quadropole. The following table, taken from Reference



31, gives the following criteria for limiting this error.



Proximity error less than


Source Type 1 dB if source is away by



Monopole 1.1 Sr



Dipole 1.6 Sr



Quadropole 2.3 6r.



While these results will not be valid for a complex source such as a



thin panel, they do provide some guidance in using the acoustic



intensity techniques near the sound sources.



7.3.4 LIMITATIONS DUE TO STATISTICAL ERRORS



Because of the random excitation, an estimate of GAB(f) is



made. This estimation gives an additional error due to the variance



of the quantity being measured. Reference 33 gives the normalized



random error, s(I) =N(Var(I)/2/I ), in this type of measurement as
 


2
s(I) = (n)- /2[ 1/y2 + cot AB(1 - y2 )/2y211/2 (2.35), 
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where n is the number of ensemble averages for cross spectrum, and



y2 is the coherence between the acoustic pressure at the two



measurement points..



As can be seen, the statistical error can be minimized by



selecting a large number of ensemble averages and by making sure



that the coherence level is high. Since the tests are conducted



inside a closed cavity where no other sources exist, the measured



coherence values are normally very high. In the KU-FRL aoustic test



facility an ensemble average of 256 and coherence values of above .8



are used. The tests are repeated if the coherence in general is



below 0.8. However, at some discrete values the coherence can be



lower than 0.8. For an assumed phase difference of .18 rad, with
 


these values for ensemble averages and coherence, thi statistical



error (E(I)) will be less than .194. For a plane wave, a phase



angle difference of .18 rad corresponds to 100 Hz at 4" microphone



separation.



7.4 CORRECTIONS FOR PHASE MISMATCH



As discussed in Sectioi 7.3, phase mismatch between the two 

microphones can be minimized either by using phase-matched


microphones or by correcting for the error. one of the
 

disadvantages of using the phase-matched microphone is that the


error due to phase mismatch of the rest of the measurement channel


cannot be corrected. At times these errors may become



significant. Hence at the KU-FRL acoustic test facility, phase
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correction by prior calibration of microphones is used. A



literature search was conducted. Based on the results, -he



following four methods were chosen (References 30, 31, and 34): 1)



phase angle correction, 2) transfer function method, 3) microphone



switching method, and 4) modified microphone switching technique.



7.4.1 PHASE ANGLE CORRECTION



In this method the phase difference between the two measurement



channels (including microphones) is measured when the microphones



are subjected to the same sound field. The phase angles of the



cross spectrum measured during the intensity tests are corrected for



this difference. The magnitude correction is done separately. If



the same sound field is applied to both the microphones, shown in
 


Figure 7.2, the measured cross spectrum is given by



SAB = SPP2 • H* HB (7.36), 

where SplP2 is the cross spectrum of the sound field at the position 

of the two microphones, SAB is the measured cross spectrum, and HA 

and HB are the transfer functions of the two measuring channels. 

The phase angle of the measurement channels is the phase angle of 

the transfer function. 

This is one of the methods chosen at the KU-FRL to correct for



the phase angle difference. This method is useful at low
 


frequencies. The exact realization is discussed in the next
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chapter. The magnitude calibration is done separately using B&K



Pistonphone 4220.



7.4.2 TRANSFER FUNCTION METHOD



Reference 31 shows that when two microphones are exposed to the



sound field, both magnitude and phase correction for channel



mismatch can be done using the relation:



S SAB (7.37), 

Pl 2 H(HA) A HAB 

where HAB is the transfer function between the measurement



channels. Since this method is very similar to the previous method,



this was not tried.



7.4.3 MICROPHONE SWITCHING METHOD



Chung, et al. (Reference 30), originally proposed this method



for correcting phase mismatch. In this method, tests are done



twice. Tests are first performed with the microphones in normal



locations; tests are then repeated with the microphones



interchanged. Under these conditions Reference 30 gives the actual



cross spectrum as



Im = [GABS -G 1AB1/21/p~rw IHAI - jHJ3 (7.38),
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where GAB = cross spectrum between microphones, 

GAB = cross spectrum-with microphones switched, 

JHA!, JHBI = gain factors, microphones A and B.



In this method every test has to be done twice; also, the test



section has to be opened for every mesurement. For these reasons



this method is not being used at the KU-FRL acoustic test facility.



7.4.4 MODIFIED MICROPHONE SWITCHING TECHNIQUE



This method is a combination of the transfer function method



and the microphone switching method. In this method, before the



start of the tests, the microphones are exposed to a sound field and



the cross spectrum (GAB) is measured. Now the microphones are



switched, the measuring system is exposed to the same field, and



once again the cross spectrum is measured (GBS). From Reference 34,



we get



AB (7.39),



GAB (j 

where * is the phase angle between the measurement channel. By 

assuming that the magnitudes are the same, the complex root 

computation is avoided.. The phase angle is calculated by dividing 

the phase angle of the cross spectral division by 2., 

This method is used to correct the measured intensity values



during the actual tests. The implementation of this method at the



KU-FRL acoustic test facility is discussed in the next chapter. The
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advantages of this method are I) the microphones need not be exposed



to the same sound field, 2) tests need not be peformed twice, 3) the



method is valid even at high frequencies. The only requirement is



that the sound field should be stationary.



7.5 EXPERIMENTAL SET-UP



7.5.1 HARDWARE DESCRIPTION



7.5.1.1 General Test Set-Up Description



The general arrangement of the acoustic intensity test set-up
 


is shown schematically in Figure 7.2. The system shown was designed



to take and process data as quickly and efficiently as possible.



Since each transmission loss test requires 324 intensity spectra at



402 frequency values each (324 spectra = 81 points for high and low



frequency tests for both the source and receiver side), the need for



speed in data processing and efficiency in data storage becomes



obvious. The operation of the system is described below.



The heart of the system is the Nicolet 660B dual channel FFT



analyzer. The analyzer provides temporary data storage and performs



all required FFT calculations. It is controlled by a Zenith Z-100



microcomputer which provides data reduction and permanent data



storage capability. The 660B and Z-100 are linked through their



respective RS-232C ports at a 9,600 baud rate. The communication



software used to transfer data from the 660B to the Z-100 is written



in a compiled Basic language.
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In addition to its data acquisition role, the Nicolet 660B also



provides the excitation signalithat drives the speakers in the



Beranek tube. This excitation signal is a band-limited binary white



noise output from the analyzer's rear panel. it is passed through a



TAPCO 2200 equalizer for the purpose of modifying the speaker inputs



to achieve a flat speaker output. The equalizer output is gained up



through a Crown D-150 power amplifier to drive the nine Altec 405-SH



loudspeakers. It is necessary to insert a high-pass filter between



the analyzer and the equalizer when testing panels with large



transmission losses. This is required to avoid overloading the



analyzer inputs in the low frequency range when attempting to gain



up the microphone outputs in the high frequency range.



Two B&K 4165 microphones with B&K 2619 preamps are positioned



in the Beranek tube by the microphone positioning device (MPD). The 

microphone preamplifier outputs are fed into the two channels of the



660B FFT analyzer (although tests involving panels with very high



transmission losses may require additional amplification of



microphone signals--such as the Nagra SJS tape recorder--between the



microphone power supply and the analyzer). From the analyzer, the



cross spectrum of the two microphones is transferred to the z-100
 


microcomputer where it is stored on 5 1/4 inch disks. Data



transferred to the Z-100 are cataloged in files by microphone



location, analysis (frequency) range, and source or receiver spectra



so that batch processing of data is simplified. Data reduction
 


routines are run on the Z-100 to generate point intensity values and
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overall-panel transmission loss. The values are plotted on a



'Hewlett Packard 7475A digital plotter.



7.5.1.2 Description of Microphone Positioning Device (MPD)



.The microphone positioning device was designed and built at the



KU-FRL for the purpose of accurately positioning the microphones



within the Beranek tube. The design requirements specified that the



MPD be able to position two microphones anywhere in a 16-inch-by-16­


inch plane parallel to and directly behind the test panel without



opening the tube. Movement of the microphones had to be done easily



and accurately from the outside. In addition, provisions for



varying the spacing between the microphones had to be made, and



"blockage" due to the device (interference with the sound paths



within the tube) had to be kept to a minimum.



The MPD is shown in Figure 7.3. It is an extension tube



constructed of particle board into which the positioning mechanism



is built. Vertical and horizontal motion is provided by a system of



cross beams. A Lucite block is attached to the vertical and



horizontal beams at their inersection and is allowed to slide freely



on both. The block is therefore constrained by the cross beams



(guide rods) such that when the rods are moved, the Lucite block



maintains its position at their intersection. The microphones are



attached to the Lucite block through an aluminum beam protruding
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from it (see Detail A of Figure 7.3).-The microphones can be



positioned at different locations along the beam to provide for



different microphone spacings.



The guide rods in the PD are controlled externally by a cable



and manual crank system. Position information is displayed on



scales by a secondary cable system driven off the cranks.



The MPD operates smoothly and positions the microphones with



reasonable accuracy. However, due to interference of the microphone



cables with the bottom of the MPD at low positions, it is not



possible to cover the entire 16-inch-by-16-inch sweep area. The



solution to this problem is to turn the microphones face down when



they are positioned near the bottom of the MPD. However, this,



requires that the Beranek tube be opened midway through a test.



While this is not a significant problem, it increases testing time.



7.5.2 SOFTWARE DEVELOPMENT



Because of the large amount of data that will have to be



processed using this method, the computer program had to be split
 


into many subparts before it could be handled by the Z-100 

computer. Depending upon the ease of programming and the amount of 

calculations involved, either Fortran or Basic language was chosen 

to write these programs. The flow diagram shown in Figure 7.4 

describes the steps involved. *The individual steps and the relevant 

equations are described in subsequent sections.
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Figure 7.4: Test and Analysis Flow Diagram
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7.5.2.1 Magnitude calibration



A B&K "Pistonphone" is used to calibrate the microphones.



Because the 660B outputs unscaled values, the actual output from



calibration tests is a function not only of the pressure but also of



the input max amplitude setting and number of ensemble averages. In



converting the output of the 660B to the actual BNC input volt level



and then to pressure, these two additional variables will have to be



considered. The B&K 4220 Pistonphone outputs calibrated sound



pressure level 124 dB (reference 20 micro pascals) at 250 Hz.



Hence,



Pca1

20 log(-) = 124 dB


Pref


124.


Pcal= 10 20Pref (7.40),


where Pcal = pressure corresponding to pressure level of 124 dB



(20 micro pascals).
Pref = reference pressure 
 

At a given input channel maximum amplitude setting for a given



number of ensemble averages, the pressure (pi) at any location i



will be proportional to the value output by the 660B (vi). 

Pi 
 MV.



or Pi = Kv. (7.41), 

where K is the calibration constant. The Pistonphone outputs 125 dB 

sound level at 250 Hz. There is a small tolerance about 250 Hz. 
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Also, spectral leakage always exists in digital signal processing.



whenever the energy is concentrated at a-discrete frequency which is



in between two adjacent cell (filter) locations, the energy is



smeared across the neighboring cells. See Reference 35 for



discussion on spectral leakage. In order to minimize the effect of



spectral leakage during calibration, the power-spectral values of



three adjacent cells on either side are summed to obtain the total



energy. The calibrated pressure can be equated to



i0+3 i0+3


2 =
ii K I v2 (7.42),


i=i0-3 i=i0-3


i00+3



2 2



(7.43),
Pcal = K- X v.2 
 
i=i-03



where i0 is the filter location corresponding to 250 Hz, vi is the



value output by the 660B at a given maximum amplitude setting and



for a given number of ensemble averages, and Pcal is the pressure



corresponding to 124 dB. The calibration constant K can then be



calculated from Equation (7.43). This needs to be done for both



channels. The functional relationship between the output and the



ensemble averages and the maximum amplitude setting is given in



Reference 36. The relationship between the true value and the value



output from the analyzer 660B during any one test was derived as



follows.



RMS spectrum of channel A:



AN
t C 

TVK= -- (7.44); 

t 0 
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Power spectrum of channel A:



2 At (7.45);2 N0TV = K Vt(-)2 N. 
A t A N 

Cross spectrum:



(A AtIN 0
= 
 AtABt 
 
(7.46);
(AA,cAB,c 


Nt



where TV = true value, 

V value output, 

A = maximum input amplitude setting, 

N number of ensemble averages,



K = calibration constants obtained from Equation (7.43), 

and the subscripts t, c, A and B correspond to test, calibration, 

channel A and channel B, respectively. These relationships were 

confirmed by experimentation. They are used in obtaining 

calibration constants. The actual test and analysis procedure 

developed, based on the above equations, is described in Reference


37. The listings of programs PSP660 and MAGCAL, used for the



determination of magnitude calibration constants, are given in



Appendix C. The output from these programs are stored in a file



named CALDAT.DAT. It stores calibration factor, number of averages,



and maximum amplitude setting for both channels. This file is 

accessed by other routines to convert the test values into true



values. 
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7.5.2.2 Phase Calibration



As described in Section 7.4, two different calibration



techniques are used at the KU-ERL acoustic test facility. Method I



calculates the phase angle difference between the two microphone



channels when both the microphones are exposed to the same field.



Method 2 uses the modified transfer function method described in



section 7.4.



7.5.2.2.1 Method 1
 


In this method both the microphones are exposed to the same



field, and any difference in the phase angle measured is due to the



difference in the channels. Subsequent tests can then be corrected



for this difference in phase angle. Figure 7.5 shows the schematic



diagram for the microphone phase calibration system. In this



method, the two microphones are inserted into a long tube with faces



of the microphones parallel. A random noise is generated at the



other end. Hence both the microphones are exposed to the same sound



field. Only the cavity resonance effects affect the actual sound



field incident at the microphone. By selecting the tube diameter of
 


two inches, the fundamental circumferential resonance frequency is



made to occur at a frequency greater than 5000 Hz, which is the



maximum frequency of interest. Thus the effect of circumferential



resonance frequency is avoided. The effect of longitudinal



resonance frequency could not be eliminated fully, but it is
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minimized by having absorptive fiberglass materials on the ends of



the calibration tube.



During the initial determination of the phase angles, it was



noticed that a certain amount of scatter was unavoidable in the



phase angle differences measured. Since this scatter may affect the



results during daily calibration; a statistical approach was taken



to minimize the effects of this scatter. It was decided to perform



tests many times to cover the entire range of parameters that cannot



be controlled exactly during any test. These parameters involve the



humidity, temperature, amount of time the calibration speaker has



been on, etc.



Thirty tests were conducted to cover the range of variables. A



mean of the results of these thirty tests can be considered to be a



good estimate of the mean of the population of all possible phase



angle measurements (see Reference 38). However, thirty calibration



tests every day to cover all possible random combinations is not



practicable. Hence it was decided to use significance testing to



obtain acceptable calibration values. In this procedure, the



population mean and standard deviation are first determined only



once. Thereafter, only a small number of tests need to be done



every day. The mean values of these tests are compared with the



population mean values, and the significance tests are used to



accept or reject the new values.



An estimate of population mean can be obtained by taking a mean



of a large number of tests. If the number of samples is greater
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than thirty, it can be assumed that the mean and the standard 

deviation of the sample are equal to the mean and the standard 

deviation of the population (Reference 38). Hence, thirty tests 

that are conducted in the beginning of a test series can be assumed



to be a very good estimate of the population mean and the standard 

deviation. Daily calibration values are then compared with these 

values for acceptability. In this case, while committing type I 

error can be tolerated, committing type II error should be 

avoided. The probability of committing type II is denoted by "s." 

The probability of committing type I error is denoted by "a." This 

is also known as the level of significance. When the alternate 

hypothesis is nonspecific (i.e., the mean of the test is not equal



to the population mean) as in this case, it is not possible to



compute the probability of type II error (Reference 38). However,



with a higher. sample size, both a and 0 can be reduced. Reference 

38 also gives the following equation for the two-tailed test to



obtain the power (1 - 8) for a specified alternative as 

(7.47),
n2 = 2 
(Za/2 2



where n2 is the number of observations required, a is the standard



deviation, and 6 is the difference between the sample mean and the



population mean. For .05 level of significance (a), z /2 is 1.96



for normal distribution, and for .05 probability of computing type



Ii error (s), z, = 1.645. Using Equation (7.50) as a guide and by
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trial and error, n = 5 was observed to be adequate for our



calculations.



These equations have been modeled into the computer program.
 


At the beginning of a series of tests, the calibration is performed



30 times, varying the uncontrollable parameters (such as



temperature, humidity, etc.) as much as possible. These tests are



performed once for low-frequendy range and again for high-frequency



range. The results are analyzed using STAT.BAS. The outputs (the



population mean and the confidence interval at 95% confidence level)



are stored into two files.



During the day of the tests, calibration is done only five



times. The analysis program, CALII.EXE, is run to perform the



significance tests. This has to be done for both frequency



ranges. The output file from this program is called CALII.DLO, or



CALII.DHI. These files contain the phase angle correction at each



filter location. These files are accessed by other routines to



correct measured phase angles.



7.5.2.2.2 Method 2
 


The second method for phase correction uses the modified



microphone switching technique described in Section 7.4.4. Equation



(7.39) is used to obtain the correction. In this method, the tests



are done only once every day. First, the microphones are clamped in



normal location in the MPD and the cross spectrum is measured. Then



the microphones are switched and the switched cross spectrum is
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measured. From these two cross spectra, the phase angle correction



as a function of freuency is obtained using Equation (7.39). The



listing of the programs involved is given in Appendix C.



7.5.2.3 Intensity Tests



The test procedure for measuring acoustic intensity values at.­


the KU-FRL acoustic test facility is given in Reference 37. The



intensity is calculated from the measured cross-spectral values by



Equation (7.31). The program INTSTY performs this calculation. It



also performs relevant magnitude and phase corrections. At present,



the intensity values are calculated at 81 grid points on an 18-inch­


by-18-inch cross sectional area. These intensity values are used



either to plot an intensity map or to calculate transmission loss.



The relevant programs are identified in Figure 7.4. The listing of



programs is given in Appendix C.



7.5.2.4 Plotting



The analyzed programs are plotted using the HP7475 digital



plotter with serial interface. The Basic plot programs TL7475 and



PIN7475 are used to plot transmission loss and intensity map,



respectively. The listings of these plot programs are given in



Appendix C.
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7.6 TEST RESULTS



This -chapter describes the tests conducted to check out the 

acoustic intensity procedures developed at the KU-FRL acoustic test 

facility. The tests decribed in this chapter are in addition to the 

tests conducted to verify the accuracy of the programs. In all 

cases, phase corrections were performed. 

7.6.1 SOURCE INTENSITY MAP



One of the important aspects of the plane wave tube is the 

behavior of the speaker array. It is desirable for all speakers to 

produce identical outputs with the same phase angle. Also the 

spectrum produced by the speakers should be flat for a random white 

noise excitation. During the initial calibration tests of the test 

facility, it was concluded (Reference 21) that the incident wave can 

be considered plane only up to 800 Hz. With the acoustic intensity



technique, this aspect can be easily verified. To determine the



sound field characteristics of the test facility, an acoustic



intensity survey was carried out along the cross section of the



plane wave tube. The test facility has a cross section of 18 inches



by 18 inches. Tests were conducted to measure intensity every two



inches, using the procedures outlined in Reference 37. This gave
 


intensity values of 81 grid points. During these tests, the gain



values at the frequency ranges of the equalizer were set to zero.



The results of the tests are plotted in Figures 7.6 and 7.7,
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for 300-Hz and 1000 HZ, respectively. The results are also



available for every 1.25 Hz' up to 500 Hz, and for every 12.5 HZ from



500 Hz up to 5000 Hz. The software programs developed seem to work



well for the type of analysis being done. Prom the tests, it was
 


found that the number of grid points needs to be increased at high
 


frquencies to obtain a good quality intensity map.



From Figure 7.6, it can be seen that two speakers (#2 and #6)



are producing less power (10 dB lower than the other speakers).



This phenomenon was seen at frequencies from 250 to 400 Hz.



Thereafter, these speakers behaved normally. But for these two



areas, the output was reasonably flat. At 1000 Hz, the variations



were much more severe. This could be due to the cavity resonances



present in the test facility. In general, the intensity was higher



around the edges than at the center. The reason for this is not



fully understood. However, based on this test, it is concluded that



the KU-FRL acoustic test facility cannot be considered a plane wave



facility above 1000 Hz.



7.6.2 INTENSITY MAP WITH ALUMINUM PANEL



At the KU-FRL test-facility, a 0.032" aluminum panel is used as



the standard panel. The transmission loss (or noise reduction)



values obtained with this panel are used for calibration. To



determine the acoustic intensity characteristics of this panel, an



intensity survey was carried out at the same 81 grid points as



before, this time with the 0.032" aluminum panel installed between
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the source and the microphones. Figures 7.8 and 7.9 show the


results at 300 Hz and 1000 Hz, respectively. At 300 Hz, the
 

intensity variation.was within 10 d3 at all points. At 1000 Hz,


while the maximum variation was only 20 dB, the actual intensity


value was 40 dB. It is anticipated that this low value of 

transmitted intensity may pose problems in accurate estimation of 

the intensity, especially if the panel exhibits higher transmission 


loss characteristics. This aspect was expected. At higher 


frequencies, the transmission loss will be higher because of the 


mass law. Several methods dould be used to overcome this problem. 


They are 1) installation of amplifier in the measurement channel, 2) 


increasing the input signal strength, and 3) filtering away the low 


frequency in the excitation signal using high-pass filters and then



amplifying the signal. The third method will involve performing



each test twice: once at low frequency, say up to 500 Hz; and the



second time, from 500 Hz to 5000 Hz.



7.6.3 TRANSMISSION LOSS OF PANELS



TO compare the measured transmission loss values with



theoretical values, two panels were tested: a 0.032" aluminum panel



and 40 oz/sq yd leaded vinyl. These specimens were tested at the



KU-FRL acoustic test facility using the test procedures outlined in



Reference 37. The resulting transmission loss characteristics are



compared with the mass law. The behavior of the test panels is



illustrated in Figures 7.10 and 7.11.



242





MICROPHONE HORIZONTAL LOCATION (INCHES)

0 2 4 5 8 10 12 14 16 18



*0



U) RECEIVER INTENSITY MAP 
Ld 2 KU-ntL TEST #0002 

&..& 0.032" 2024-T3 ALUMINUM PANEL 

FREQUENCY - 30) HZ' 
IH Z DATFs 12-5-83 
rt z 0 
o~It 

0Z ul706 n - 7a] iB. 00oo.;


_j ~~- 72 DR-uE 

V -74 DB1 0 - 70B 
o l , r-o 


r,," I~- 8 DBr- ­

pq .­sons


Ld>12



,


>182



~014L 

0 

H m 

18 



MICROPHONE HORIZONTAL LOCATION (INCHES)


0 2 4 6 8 10 12 14 1 1 

0 	 RECEIVER INTENSITY MAP 
KU-FRL TEST i(0M 
0.032" 2124-T ALUMINUM PANEL



"d 2 
 PANEL WEIGHT. 253 LB


' Li FREQUENCY - 1000 HZ



DATE. 12-5-83



rt 	 o0 H % 4--<-	 o 

oil- 0-[J40 08 

.A - 45 DO 

0 s6	 o80-55 DO 

02 

0< ~ 
0on< 

W12 

.		 b 
I:Z 
S014 

MDO 
Ht 

is
u 

le 



63 

*PANELz 0. 032" ALUMINUM PANEL 

so50WEIGHT, 1.03 LB 
-4 

0 

m4 
46 

En~0nMASS LAW 

0 H j 

,ao z 030 n­0 G 

m 
0 

10 

0 

II 
 I
 

FREQUENCY, Hz 



txj 

60 

(D 

50 

40 

* 
PANEL, 40 OZ/SO YD LEADED VINYL 

WEIGHT .77 LB 

00 

'< 

c-n 

< 
. 20 

o 

tz 
MAS LIAE VAU 

U, 
r5 030 

FREi, H 
4 7;x 

FRE, CY H 



The transmission loss (TL) curve for a particular panel is



obtained in the following manner. An intensity level survey is



conducted without any panel. The intensity level is integrated over



the entire panel area, and the incident sound power level is



estimated. Then the tests are repeated with the panel installed



between the source and the microphones, and the transmitted sound



power level is estimated. The differece in sound power level



between these two measurements will give the transmission loss.



This test procedure is similar to the measurement of insertion



loss. However, because the intensity is measured close to the



source and the panel is thin, the difference between this procedure



and the two-room transmission loss measurement method is expected to



be small. This procedure had to be adopted because the measurement



of only the incident intensity of the source side is not possible



with this technique. The reflected intensity from the test specimen



will affect the intensity being measured. This problem existed even



in the old procedure. That is the reason the term "noise reduction"



was used instead of "transmission loss."



Mass law values are also plotted in Figures 7.10 and 7.11. The



mean square transmission loss measured in each case is approximately

I 

2 to 5 dB lower at 5000 Hz. The integration of the several



intensity values for both with and without panels, used in this



procedure, is expected to yield an average transmission loss



value. This is in comparison to the use of just one microphone



situated close to both source and receiving side, which will result
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in position-dependent transmission loss values. Hence, a difference



between the two measurements was anticipated. The results with the



,old.test procedure gave up to 6 dB higher noise reduction than the



calculated noise reduction values. Hence, one-to-one comparison



between the present procedure and the single-microphone procedure is



not considered valid.



7.7 CONCLUSIONS



Based on the tests conducted, the following conclusions have



been reached with regard to use of acoustic intensity techniques at



the KU-FRL acoustic test facility.



The acoustic intensity technique can be adapted to measure the



transmission loss characteristics of panels. Use of this method



will give average transmission loss values as opposed to the
 


position-dependent values obtained from single-microphone



measurements.The same technique and installation can also be used to



plot the intensity maps of vibrating panels. Use of the microphone­


positioning device greatly simplifies correct grid positioning.The



acoustic ihtensity programs can easily be written on a



microcomputer. (Total cost of the microcomputer is less than



$2500.) The initial results indicate that transmission loss values



measured using this method are lower than theoretically predidted
 


values. This facility cannot be considered a plane wave facility at
 


high frequencies above 800 HZ.
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CHAPTER 8
 


MEASUREMENT OF ABSORPTION COEFFICIENTS



8.1 INTRODUCTION



When a noise source is situated inside a room and operates


continuously, the acoustic intensity at any point in the room will


be higher than the value that will exist if the same source is 

operated in the open air. This is because of the partial reflection 

of the sound energy by the walls. The sound absorbing efficiency of 

a wall is 	expressed in terms of an absorption coefficient. It is



also true 	for the ambient levels inside an aircraft. The acoustic



transmission through sidewalls, cockpit, rear bulkhead and floor is



the most significant to be considered in determining the interior



noise levels. However, a high internal absorption will tend to



minimize 	the ambient noise level produced by those sounds that do



penetrate 	into the fuselage. Also; there are sound sources inside



the fuselage such as the ai-conditioning ducts.



The effect of internal absorption on ambient sound levels can



approximately be found from the following equation. Neglecting the



effect 6f 	internal sources, the noise reduction of a sidewall can be



written as (Reference 23)



NR =10 (log (c/T)) 	 (8.1),



where 	 NR = Noise reduction of sidewall


T = Transmission coefficient 

a= Total absorption coefficient.
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Separating the effects of transmission loss and the internal 

absorption, Equation (8.1) can,be written as 

-N-= t0 logT + 10 loga (8.2). 

The following table, calculated based on Equation 8.2, shows 

the effect of the internal absorption on the noise reduction: 

Average Absorption Coefficient Change in Noise Reduction


(dB)­

.01 -20.0 

.1 -10.00 

.2 -7.0 

.5 -3.0



.9 -0.45



.99 -0.04



For example, the internal sound levels will increase by 3 dB if



the absorption coefficient is only 0.5. For a bare aluminum panel,



the value of absorption coefficient is -1 (Reference 23), while that



of the carpet is 0.9. Hence, a knowledge of the 'absorption inside 

an aircraft is useful for the noise control engineer.



8.2 DEFINITION OF ABSORPTION COEFFICIENT



The absorption of a material is quantified by means of a



coefficient. In the literature, this coefficient is defined in



several ways (References 9 and 39).
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8.2.1 SOUND ABSORPTION COEFFICIENT AT A GIVEN ANGLE OF INCIDENCE
 


The sound absorption coefficient (ae) is defined as a ratio of



the sound energy absorption by a surface to the sound energy
 


incident upon that surface at a given angle of incidence (6).



Accordingly, this coefficient is always less than one. However,



because the absorption will vary as a function of the angle of



incidence, the practical value of this coefficient will be limited.



8.2.2 STATISTICAL SOUND ABSORPTION COEFFICIENT
 


The statistical absorption coefficient (E) is defined (for an



absorbing surface of infinite extent) as the ratio of the sound



energy absorbed by the surface to the sound energy incident upon the



surface, when the incident sound field is perfectly diffuse



(Reference 9). This coefficient provides ,a single-number index for



general use.



8.2.3 SABINE ABSORPTION COEFFICIENT



Most of the sound absorption coefficients published are
 


obtained by measuring the time rate of decay of the sound energy 

density in an approved reverberation room with and without a patch



of the sound absorbing material under test laid on the floor
 


(References 9 and 39). The sound absorption coefficient (as)
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measured using this procedure varies at times considerably from -the



statistical absorption coefficient (a). This absorption coefficient



is called the Sabine Absorption Coefficient.



8.2.4 NOISE REDUCTION COEFFICIENT



This coefficient is different from the noise reduction defined



by Equation (8.1). Noise reduction coefficient (NRC) is obtained by



averaging (to the nearest multiple of 0.05), the Sabine Absorption
 


Coefficients (or Sabine Absorptivities) at 250, 500, 1000, and 2000



Hz (References 9 and 39).



8.2.5 REVERBERATION TIME AND SABINE ABSORPTION COEFFICIENT
 


The time rate of decay, used in the measurement or the Sabine



Absorption 	Coefficient, is normally expressed in terms of the



reverberation time. The reverberation time is defined as time in



seconds required for the sound intensity level to decrease by 60 dB 

(Reference 	 9). The average Sabine Absorption Coefficient of a room



is defined by the following equation (Reference 9):



a = aaiSi/S 	 (8.3), 

where 	 a = Average Sabine Absorption Coefficient 

S = Total surface area of the reverberation room 

a. = Sabine Absorption Coefficient of the surface, i 

Si = Area of surface, i 
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The reverberation time and the average Sabine Absorption Coefficient



are related (neglecting air absorption) by the equation (Reference



9),



T = 	 0.161V/(Sz s ) in MKS units 

0.049V/(Sa ) in English units (8.4),s 

where 	 T = Reverberation time



V = 
 Volume of the chamber 

S = Total surface area of the chamber 

a = Average Sabine Absorption Coefficient. s 

The Sabine Absorption Coefficient of a test sample can be



determined from Equations (8.3) and (8.4) knowing the absorption



coefficient of a standard sample of the same size. one of the
 


primary difficulties in measuring the sabine Absorption Coefficient



is that this procedure is valid only in rooms with diffused
 


distribution of acoustic energy. This assumption is not valid for



rooms i) which are well defined and have sound focusing



characteristics, 2) which have odd-shaped cavities with deep
 


recesses, 	 and 3) which are small and can produce local anomalies



resulting 	 from standing wave patterns. To avoid these difficulties,



the 	 ASTM method (References 9 and 39) requires that the test chamber



be of volume 200 m3 with sample size eight feet by eight feet. Such



a chamber 	 may not be available to general aviation manufacturers who



want to test many interior trim panels. Also the sample sizes of



these materials available to the noise control engineers will most



often be smaller than the required eight feet by eight feet. Under
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these circumstances the measurement of Sabine Absorption Coefficieht 

may not be possible. A new method to measure absorption coefficient 

is necessary, even if it gives only a reasonable estimate of the 

absorption coefficient. It is noted that no other method will give 

the same results as the standard Sabine Absorption Coefficient 

method. - But a new method can be used for comparison of the 

absorption coefficients of various trim materials. The method



proposed uses the deconvolution technique. If a transient signal is



made to hit an absorption material, a part of the sound energy will



be absorbed. The absorption will not, in general, be uniform across



the frequency range. Hence, the reflected signal will be not only 

reduced in amplitude but also distorted. Comparing the direct and 

the distorted signals, the characteristics of the reflecting surface 

can be determined. The central part of the analysis when this 

method is used will be the separation (or deconvolution) of the 

direct and indirect signals. 

8.3 DECONVOLUTION AND CEPSTRUM



A schematic diagram of a system which illustrates the



deconvolution is shown in Figure 8.1. The receiver, a microphone,



receives both direct signal from source along the path t1, and the



reflected signal along the path £2" A simple way to deconvolve



would be to increase £2 over £ such that the total duration of the



signal is less than the time it takes for the signal to travel the



extra distance (£2 - Li). A typical case using a mathematical 
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example taken from Reference 40 is shown in Figure 8.2(aL. The time



series in this example are gener&ted by



- l ) - 2 )  
 y(t) = 50e (t + 30e (t (8.5).



The direct signal is sensed approximately one second after record is



started. The reflected signal, which is reduced in amplitude but



not distorted, is received one second thereafter. Because the,



duration of the signal is smaller than the delay time, it can easily



be deconvolved. However, achieving deconvolution in time domain is



normally not practicable, due to extraneous noise.



Using the autocorrelation method-, it is possible to detect the



presence of the echoes in the composite signal. However,



reconstruction of the characteristics (or impulse response) of the



reflecting surface is not possible (Reference 40). The third



technique is the use of cepstral technique, which is described in



References 40-43.



8.4 BASIC THEORY



8.4.1 -DEFINITION OF CEPSTRUM



There are two types of cepstra defined in the literature. Both



can be used for deconvolving the composite signal with the distorted



echo, power cepstrum and complex cepstrum.
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The. present-day definition of. the power cepstrum is as follows 

(Reference 44): The power cepstrum of a data sequence is the square 

of the inverse Z-transform of the logarithm of the magnitude square 

of the Z transform of the data sequence. Mathematically, 

x (nt) = (Z-1EnIX'(z) 12])2 (8.6);



XPC= Power cepstrum at nt



n = An integer



t = Sampling interval



Z = Z-Transform



X(z) = Fourier transform of x(z)



x(z) = Data sequence.



Normally the final squaring is not performed. Computationally,



the Z-transform is performed using the discrete Fourier transform.



The computational procedure for obtaining power cepstrum is shown in
 


Figure 8.3 (taken from Reference 40). The power cepstrum is then



the inverse discrete Fourier transform of the logarithm of the power



spectrum.



The complex cepstrum of signal x(t) is written as Xpc and is



defined as the inverse Z-transform of the complex logarithm of Z­


transform (Reference 44).



x (nt) = 1 Xn(z)) zn-ldz (8.7);


cp 27rj Zi~ )



where xcp(0) is logarithm of x(0), X(z) is the Z-transform of the



data sequence x(nt). Computationally this definition of complex



cepstrum is equivalent to finding the inverse Fourier transform of
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the complex logarithm of the Fourier transform of a data sequence. 

The calculation sequence of complex cepstrum is also shown in Figure



8- 3. 

8.4.2 Theory



The basic theory of calculating absorption coefficient using,



cepstral technique is reported in References 42 and 43. The



following derivation of deconvolution of signals using this



technique closely follows References 40-42. Consider the signal



measured by a system shown in Figure 8.1. The signal y(t) received



at the microphone (output) is a sum of the direct signal x(t) and



the reflected signal, distorted and attenuated by the reflecting



surface. Let the impulse response of the reflecting surface be



h(T). The Fourier transform of the h(T) yields the reflection



frequency response H(f) of the surface. The magnitude of H(f)



represents the ratio of the energy reflected to the incident



energy. Hence, in terms of H(f), the energy absorption coefficient



for a given angle of incidence is given by (see Reference 46)



a(f) = 1- H(f)12 (8.8).



Referring to Figure 8.1, the signal received at the microphone



y(t) can be represented by the equation,



y(t) = x(t) + f h(t - - X)x(X)dA (8.9),
2 0 

or in the operator form,
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y(t) = x(t) + h(t - T) * x(t) (8.10), 
£2 

where x(t) is the direct signal, £ /,2 represents the effect of 

spherical spreading of the source. The reflected wave is assumed to 

be plane waves (see Reference 42); and 1/.2 is always less than 1, 

T is the time delay between the arrival of the direct and reflected 

surfaces, (or echo delay time), and T is the observation interval. 

The total observation time is assumed to be much larger than the



delay time, correlation time of direct signal, and the impulse



response H(T). As can be seen, the signal arriving along the



reflected path is not just an attenuated, delayed replica of x(t)



but is also distorted. This distortion is due to the form of the



impulse response h(T) and occurs as a convolution at an echo delay



of T. This time delay is given by



9I -Z£


= 12



C


T 
 

where a is the speed of sound, £ is the distance travelled by the



direct signal, and Y2 is the distance travelled by the reflected



signal.



The Fourier transform of 8.10 yields



Y(f) = x(f)[1 + j1 / 2 (f)e-i2WfT] (8.12), 

where f is the frequency; and X, Y and H are the Fourier transforms 

of x, y and h respectively. The power spectrum is obtained as the



modulus squared:
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y(f) 12 = Ix(f) 12{E1 + ill -i(2rf)T il + 2H(f)e- 2 fi]*} 

(8.13). 

Taking logarithm,



2nfY(f) j2 £nIX(f) 12 + £n(1 + H( -i(2rf)- + 
£1 ]'2
~ei2f)e 
 

+ £n[1 + +(2 (8.14). 

The series expansions of the second and third term are convergent if 

the ratio £ /.2 and the magnitude of the transfer function are less 

than one. From the geometry of the problem, the ratio £ /A2is 

always less than one. For sound absorption materials, the magnitude 

of the transfer function is normally less than one. The series 

expansion of logarithmic function Xn(1 + p) is given by 

p2 p3 " 
£n(1 + p) = p - p/2 + p /3........ (8.15). 

Using this expansion for the second and third terms in Equation



(8.14), it follows that



Yny 2nJX£2 +l (2I)2 1 2 -2i(2f)r

,2 3 -i2irft - (2 -He + 

+n~j £ne 2 2 
1 X1 -2 * 

1 3 1 3 3i2rf) k31 13 r+3i2nf 

+Cr) 2 
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Inverse Fourier transforming:



1 WW +12 1YPCt) = ct) +-h(t-r)2-) - -h(t- T) *h(t T) + 

+ 2 1 2 1h--T)h(-t - T)* hC-t - T)+•-• 

(8.17), 

where ypc(t) and xpc(t) are the power ceptra of composite and direct



signals, respectively. This equation indicates that the power



cepstrum is a sum of the power cepstrum of the direct signal and a



series of delta functions at delay time T (both negative and



positive) apart. The mirror image at negative delay times occurs



because the power spectrum is an even function from 0 to Nyquist



frequency. The delay time equivalent in cepstral analysis is known



as "quefrency" (References 40, 41, and 44). Because of the



logarithmic operation, the effect of convolution type of system in



Equation (8.1) is now transformed into a simple additive type.



Also, the existence and the delay times of the echoes from the



reflecting surface are easier to establish, when the data is



transformed to cepstral domain.



The procedure of estimation of the characteristics of the



reflecting surface from the cepstrum is called channel estimation



(Reference 40). A typical cepstrum is shown in Figure 8.4. 
 To



obtain the impulse response of the reflecting surface and hence the



transfer function from a cepstrum, such as the one shown in Figure 

8.4, the cepstrum should be so arranged that the effect of the
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direct signal and the impulse response are isolated (see References



40-42). This means that the contribution of the direction pq(T)



should become negligible before the first reflected response or



before the quefrency value of T. Reference 42 discusses in detail



the enhancements that are required to obtain a "good" cepstrum that



can be used for further processing. Once a good cepstrum is



obtained, the impulse response is filtered out as shown in Figure



8.4 (taken from Reference 42). This impulse response is then



Fourier-transformed to obtain an transfer function. Equation (8.1)



is used to obtain an absorption coefficient. Even though the



processing of the data using this technique appears very



straightforward, several difficulties are encountered in practice.



These are described in References 40-44. Some of these difficulties



are discussed in the subsequent subsections.
 


8.5 	 TEST PROCEDURE



Based on the basic theory developed above, the test and



analysis tasks for using this technique were identified as



1. 	 set up test equipment as shown in Figure 8.5. 

2. Acquire data sequence y(t) at a preselected sampling rate.



.3. Transfer time series to computer.



4. 	 Repeat 2 and 3 (100-200 times).



5. 	 Repeat 2-4 without any panel.



6. 	 precondition data before processing: e.g., select data



length, apply time window zero pad, etc.
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7. 	 Final ensemble averaged power spectra of both direct and



composite signals.
 


8. 	 Use background subtraction (see Reference 43) to.remove



the effect of direct signal from composite signal.



9.- Find power cepstrum.



10. 	 Filter data containing impulse response of reflecting



surface (see Figure 8.4).



11. 	 Apply window and perform FFT to obtain transfer function.
 


12. 	 Calculate a(f) using Equation (8.8).



8.5.1 TEST SET-UP



The experimental set-up is shown in Figure 8.5. only normal



incidence was used because it avoids the need for determining exact



angle of incidence. Ideally, this test should be done in free field



conditions with very low ambient noise levels or in an anechoic



chamber. This would avoid multiple reflections off the wall that



will 	 contaminate the test signals. Neither of these two was



available at the KU-FRL. Proper time window was selected to



minimize the effects of wall/floor reflections from the digitaized



data.



An ideal noise source would be the one which produces a



transient signal (<10 msec) and whose power spectrum is nearly



flat. Properly selected pulse function would be ideal because it



has the smallest correlation time. However, when this signal is



sent through a speaker, the output is characterized by its impulse
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response. This response became unacceptable when a large speaker



was used (see discussion above). Various other noise sources such



as percussion caps, etc., were tried. Even though they produced a



better defined spectrum, the repeatability of tests was not good.



Finally it was decided to use a four-inch Altec 405-8H speaker.



This speaker had a frequency response from -150-1500 Hz. A seven



msec chirp (15 to 40000 Hz) generated by an analog sweep dscillator



was used as the input. The use of an AC power amplifier sometimes
 


produced a hum at 60 Hz, corresponding to the line frequency. This



contaminated the power spectrum. A DC amplifier was selected



because it minimized this problem. But the speaker and amplifier



combination produced a peak at 1800 Hz in the power spectrum. The



severity of this peak was reduced by the insertion of an equalizer



in the input circuit. In spite of these enhancements, the power



spectrum still contained a slowly varying oscillation (see Figure



8.6).



The digitizing of time signals was done using a two-channel FFT



analyzer, Nicolet 660B. One channel was used for the data and the



second channel for triggering. The triggering was done through a



trigger on the sweep oscillator. The analyzer had an anti-aliasing



filter with 48 dB/octave roll-off rate. The anti-aliasing filter



was set by selecting the frequency range knob on the front panel.



The data were always digitized at 2.56 times the frequency at which



the anti-aliasing filter was set. For example, if a frequency range



of 10 KHz was selected, the anti-aliasing.filter would be set at 10
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kHz and the sampling rate would be 25.6 kHz. The user had no 

independent control of the sampling rate. Also the number of



samples for each test was constant. Each time only 1024 data could



be collected. The user could not change this value. The FFT



analyzer was connected to the Z-100 through RS 232C port and was



, communicating at 9600 Baud.



A B&K 4136, 1/4" microphone with B&K 2619 preamplifier was used



to measure the signal. The upper and lower band edge of its



response was well above that of the speaker. The signal was



amplified through an amplifier in NAGRA SJ recorder. The tape
 


recorder was used only as an amplifier and not as a data recorder.



8.5.2 COMPUTER PROGRAM



Computer routines were written to perform the data acquisition



and analysis. The languages used were compiled Basic and Fortran.



The Fortran used is a subset of Fortran 77 without complex



variables. Hence all complex variables were represented by means of



two real numbers. Standard FFT routines (see References 45 and 50)



were used. To remain within the memory and speed of the



microcomputer Z-100, the program was divided into many small



routines. Figure 8.7 shows the flow chart for calculations. The



listing of computer routines developed at the KU-FRL is given in



Appendix D. These routines were tested with the mathematically



simulated data of Reference 40, and the results of one example are



shown in Figure 8.2.
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8.6 TESTS DONE



Reference 43 describes in detail the procedures to obtain



reflection coefficients of a panel in an anechoic room. The main



objective of the testing program at the KU-FRL is to use this



technique on a smaller sample size and in non-anechoic conditions.



The test technique is slowly being evolved. At the time of this



report, it has not yet been finalized. It will continue on to the
 


next project year, 1984-85.



During the present series a vinyl sheet backed with 1/4 inch 

foam was used as the test sample. The sample size of the foam was 

four feet by five feet. It was mounted on 5/8 inch compressed 

particle board by means of adhesives. During the tests, the 

distance between the microphone and the panel was varied between 18 

and 24 inches, and the distance was varied from 20 to 48 inches. 

Tests were done inside the KU-FRL laboratory. The line joining the 

centers of speaker, microphone, and the test sample was parallel to 

ground at five feet. 

A swept size signal was generated by the analog sweep 

oscillator, and the triggering signal was used to trigger the data 

acquisition on the FFT analyzer. The anti-aliasing filter was set 

at 10000 Hz. This meant that 1024 samples yielded .04 secs of 

data. At the end of each test, the data were stored on the floppy



disk. The tests were repeated 200 times with and without the



absorption material.
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Figure 8.8 shows the signal recorded for one such test without



any panel. In this case the reflected signals off the wall can be



seen after 10 msec of initial data. Also, during this series of



tests, the AC/DC coupling of the FFT analyzer was set to DC. Hence



at the beginning there is a DC shift. The problem of DC shift in



the low-frequency region will be discussed later. Figure 8.9-shows



the similar data for composite signal. In this case the AC/DC



coupling switch was selected to AC coupling. As can be seen, the



reflected signals overlap the incident signal. The cepstral



analysis is capable of deconvolving the signals, even when they are



overlapping.



For analysis first 512 points were used. The series length was



extended to 1024 points by padding zeroes. A sin 2 window was



applied, and the power spectrum was calculated and averaged. The



logarithm of power spectrum of the direct and overlapping signals is



shown in Figures 8.10 and 8.11. The effect of DC shift can be seen



as a peak in Figure 8.10.



As can be seen in Figures 8.10 and 8.11, the spectrum is quite



irregular in the low-frequency region. This type of spectrum



produces a low frequency oscillation in the cepstral domain, which



will interfere with the determination of the impulse response.



Hence it is nearly impossible to use only the composite signal to



obtain the impulse response. To obtain good impulse response only



from composite signals, the contribution due to direct signal should



die down before it reaches the delay time T. This is possible only
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0 



if the line peaks at 60 Hz or DC shift as in Figure 8.10 and other
 


irregularities are removed-. Because the frequency response of the



speakers used is poor at such low frequencies, as in Figure 8.10,



these effects cannot be fully eliminated. Some other procedure to



reduce or minimize such a stringent condition is necessary.



Reference 43 proposes a method called "background subtraction." In



this method, the logarithm of the direct signal is subtracted from



the logarithm of power spectrum of the composite signal. This



difference is shown in Figure 8.12. The spectral irregularities at



low frequencies can easily be seen in Figure 8.13 (with expanded X



axis). In order to obtain the cepstrum, these low-frequency



irregularities should be removed (Reference 43). To remove these



irregularities, Reference 43 proposes spectral smoothing in this



region.



When backed by a hard surface, the reflection coefficient



should approach one at zero Hz. Reference 43 shows under these



conditions the difference i log power spectra is given by
 


" £1 2 
AP(f) £n(1 + 2(-)cos2wfT 

£2 
+ (-) 

£2 
(8.18) 

Hence it could be assumed that at very low frequencies the rapid



changes seen in Figure 8.12 are not due to reflection from material



but are due to other reasons (such as noise). This part of the



spectrum can be modified below a certain frequency to conform to the



form shown above. This correction is shown by a dotted line in
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Figure 8.12. However, such a modification means that absorption



coefficients found will not be valid in this frequency region. In



this case, this region extends up to 300 Hz.



The power cepstrum calculated from the smooth spectrum is shown



in Figure 8.14. The power depstrum shows the first peak at the



correct delay time. But still certain irregularities are seen. For



these reasons, the extraction of absorption coefficient still may



not yield good results. TWO and five tenths (2.5) msec data was



extracted around this peak, the values were corrected for spherical



spreading, and a sin2 window was applied to the first and last tenth



of the extracted signal. The series was extended to 256 points by



padding with zeroes. It was then Fourier transformed. The



absorption coefficient was then calculated using Equation 8.8. The



final value is shown in Figure 8.15.
 


8.7 DISCUSSION AND RECOMMENDATIONS



During the series of tests performed so far, the speaker has



been kept at a distance of 24-48 inches from the microphone. This



may violate the assumptions in the theory. When the speaker was
 


moved far away from the microphone, the signal-to-noise ratio



significantly decreased. The speaker could not handle higher



power. This was traced to the fact that the sweep oscillator, even



when it was not sweeping, delivered a steady state signal at



frequency around its start cycle. The speaker could not handle this



steady signal. However, the speaker could handle a much higher
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transient signal. Also, it is still suspected that the reflections



off the floor may contaminate the signal. These, being



deterministic, will not average out when ensemble averaging is



done. The small sample size may also produce diffractions at the



edges. The test technique has not yet progressed far enough to
 


identify these effects. However, tests performed so far indicate



that this technique can be used at general aviation aircraft



companies without major cost and expertise.



Based on the experience gained during these tests, the



following recommendations are made for further testing. A digitally



piroduced signal, instead of analog signal, should be used. A 12-bit



D/A card is available for the Z-100 microcomputer. This card is



capable of handlig up to 70 KHz. One of the channels of this card



can be used for triggering. such triggering and digitally produced



swept sine signals can produce synchronized signals. This will
 


enable time domain averaging instead of frequency domain averaging



(Reference 43). This will also reduce computation time. Use of
 


IEEE-488 connections between the Z-100 and the Nicolet 660B will



increase data transfer rate and permit checking of other



parameters. Tests should also be done with speaker and microphone



at least 6-8 feet above ground level. Only then can the absorption



coefficients obtained be checked with published results. These



tests have been proposed for the project year 1984-85.
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APPLICATION TO AIRCRAFT NOISE CONTROL DESIGN



9.1 INTRODUCTION



References 3-6 give the results of the experiments performed at



the KU-FRL acoustic test facility to determine the sound



transmission loss characteristics of single-wall panels. Chapter 5



of this report presents the results of double-wall panels. These



panels measure only 18 inches by 18 inches. Slight changes to



classical sound transmission loss model provide acceptable restuls



for these panels, as can be seen from Chapter 6 (Figures 6.2­


6.25). In this chapter, application of classical sound transmission



theory to the design of interior noise control of an aircraft is



considered. Modifications to the classical sound transmission loss



theory were necessary before it could be applied to actual-aircraft



noise control design. The next section gives the design procedure



used. Section 9.3 gives the program details and the calculations.



In the last section, the theoretically predicted overall interior



values are compared with the measured values. A discussion of the



results concludes this chapter.



9.2 DESIGN PROCEDURE
 


This chapter describes attempts to design an interior noise



control a business jet aircraft of Max TOW 20000 lb category. This



.aircraft has two aft-mounted engines. When the initial design of
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the noise control treatment started, the prototype had already been 

built and was flying. At this stage, the interior noise levels of 

untreated aircraft were known. Major changes to fuselage



skin/stringer/frame were not possible. Also because the aircraft



was a jet aircraft, the interior noise spectrum was not very low­


frequency dominant. Hence the extended calculations done in



Reference 23 to find the transmission loss of untreated aircraft



were not needed. Analysis of the proposed treatment had only to be



confined to the effects of additional sound barrier and



insulation. For these reasons, it was decided to use classical



sound transmission loss theory.



For the purpose of the design of the interior noise control



treatment, the interior of the aircraft was divided into four parts,



as shown in Figure 9.1. The interior noise levels were measured



before the application of treatment in cruise flight (35000 ft/0.8



M) at four locations along the length of the fuselage. The level at



each location was representative of levels within that area. At the



time of these measurements, the aircraft still had some kind of



interior treatment, essentially for thermal insulation. The



spectrum at each location, along with the overall values, is shown



in Figure 9.2. It was noticed that even without additional



treatment the contributions of the energy above 5000 Hz to the



overall levels was negligible. Hence, during the design, only the



frequency values to 5000 Hz were considered.
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CESxb!:design of a noise control treatment involves selection of 

the barrier material such as leaded vinyl, proper placement of these



materials along the fuselage sidewall, and selection of fiberglass



insulation depth. For the sake of analysis, the source was



considered to be situated outside the aircraft. In other words, in



this analysis, the interior noise due to air-conditioning ducts,



hydraulic motor/accumulator, etc., was assumed to be small. For the



most part of the analysis, only engine noise was considered. The



noise generated due to airflow over the fuselage was not



considered. However, these assumptions are not restrictive in this



case because during the anlaysis the measured interior levels were



used. The measured levels, of course, contain the contributions



from all these sources. Also the structure-borne noise from the



engine into the interior through the fuselage structure was assumed



to be much le;s compared to the noise through the airborne path.



This will be the case when the engine isolators have adequate



attenuation at the audio frequencies. The lack of prominant



discrete tones in the measured spectrum (Figure 9.2) justifies this



assumption. Under these conditions the classical sound transmission



loss theory could be applied. Had any of these assumptions been



violated, then the predicted interior levels with the treatment



would not be achieved.



The final result of this design procedure was the prediction of



the interior noise level for a given weight penalty. The following



steps were involved in the design.
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calculation of theoretical transmission loss of untreated, 

aircraft. Here the aircraft was treated as a monocoque



shell, and the equations derived in Reference 51 were used



to obtain the transmission loss values.



2. 	 calculation of additional transmission loss of the



existing treatment. This is the minimal treatment used in



the prototype aircraft, essentially for thermal



insulation. This treatment was present when the interior



noise level measurements were made. To calculate the



transmission loss, the theoretical model described in
 


Chapter 6 was used. In this case the treatment consisted



essentially only of insulation.



3. 	 selection of additional treatment. The proposed



treatments consisted of fiberglass insulatibn or leaded



vinyls. Several densities of leaded vinyl and several



thicknesses of fiberglass insulations were used. A total



of 40 	 combinations were initially considered. Tables 9.1­


9.4 	 list some of the treatments considered.



4. 	 Calculation of additional transmission loss of the



proposed treatment. Once again, this was done using the



program in step 2 above.



5. 	 Calculation of the difference in transmission loss (T1).



This additional transmission loss is calculated by



subtracting the transmission loss obtained in step 2 from



transmission loss of step 4.
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ITable 9.1: Summary of Treatments: Region 

Location: STA #157-#217



predicted Interior Sound Pressure Levels



Treatment Without Absorption With Absorption Wt Penalty



# Description DBL DBA PSIL DBL DBA PSIL (lb)



22 3" + 20 92.9 84.7 76.7 92.6 78.5 70.1 10 

23 3" + 40 92.7 83.7 75.7 92.5 77.6 69.0 17 

12 3" + 60 92.6 83.5 75.2 92.4 77.3 68.6 24 

24 2" + 20 + I" + 20 92.8 82.8 71.7 92.6 77.2 65.6 17 

25 2" + 20 + 1" + 40 92.6 81.5 70.6 92.4 75.9 64.8 24 

13 2" + 20 + 1" + 60 92.5 80.9 69.9 92.4 75.4 64.3 31 

14 2" + 40 + I" + 20 92.5 79.2 68.0 92.4 74.2 '63.0 24 

26 2" + 40 + 1" + 40 92.4 78.8 67.7 92.4 73.8 62.8 31 

15 2" + 40 + 1" + 60 92.3 77.9 66.8 92.3 72.8 62.1 38 

27 2" + 60 + 1" + 60 92.1 75.9 64.7 92.3 71.3 60.5 45 

16 2" + 80 + 1" + 80 92.1 75.3 63.4 92.3 71.1 59.3 59 

17 2" +120 +1" +120 91.9 71.8 - 61.0 92.0 68.1 57.3 87 

29 20 + 3" + 20 92.58 82.4 74.4 92.2 75.4 67 17 

30 40 +'3" + 40 92.3 79.9 71.8 92.1 73.0 64.4 31 

31 60 + 3" + 60 92.1 77.9 69.9 92.0 71.0 62.5 45 

32 80 + 3" + 80 92.01 76.4 68.4 92.0 69.6 61.0 59 

33 120 + 3"'+ 120 92.0 74.1 65.9 92.0 67.6 58.6 87 

34 60 + 3" + 80 92.1 77.3 69.3 91.1 70.5 '61.9 52 

35 40 + 3" + 80 92.2 79.1 71.1 92.1 72.2 63.7 45 

36 1" + 20 + 2" 93.1 84.2 73.1 92.3 77.4 65.7 10 

37 1" + 20 + 2" + 20 92.8 83.0 71.8 92.2 76.2 64.6 17 

38 1" + 40 + 2" + 40 92.3 78.9 67.7 92.1 72.5 61.6 31 

39 1" + 50 + 2" + 60 92.3 78.2 66 92.1 72.2 60.7 45 

40 1" + 80 + 2" + 80 92.1 75.0 63.5 92.0 69.4 58.8 59 

41 1" +120 + 2" +120 91.9 72.0 61.1 91.93 67.0 57.2 87 

Remark - Treatment Description:



1" + 120 + 2" + 120 means a four-layered treatment, with the layers in 
this order: one inch of fiberglass, 120 oz/yd2 of leaded vinyl, two inches of 

2
fiberglass, followed by one more sheet of 120 oz/yd of leaded vinyl. These


layers were placed between the skin and the trim panel.
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Table 9.2: Summary of Treatments: Region Ii



Location: STA #217-#272



Predicted Interior Sound Pressure Levels



Treatment Without Absorption With Absorption Wt Penalty



N Description DBL DBA PSL DBL DBA PSIL Clb) 

22 3" + 20 94.5 87.6 79.4 93.4 81.6 72.9 9.5 

23 3" + 40 94.1 86.6 78.4 93.2 80.6 71.8 16.0 

12 3" + 60 93.9 86.3 78.0 93.2 80.3 71.4 22.5 

24 2" + 20 + 1" + 20 94.5 " 85.0 74.5 93.5 80.6 68.1 16.0 

25 2" + 20 + 1" + 40 94.0 84.7 73.5 93.2 79.3 67.1 22.5 

13 1" + 20 + 1" + 60 93.8 84.1 72.8 93.1 78.8 66.5 29.0 

14 2" + 40 + I" + 20 94.0 83.4 72.2 93.3 78.6 65.5 22.5 

26 2" + 40 + 1" + 40 93.8 82.9 70.8 93.2 78.1 65.2 29.0 

15 2" + 40 + 1" + 60 93.5 81.8 69.9 93.1 77.0 64.5 35.5 

27 2" + 60 + I" + 60 93.2 79.5 67.5 93.0 75.0 62.6 42.0 

16 2" + 80 + I" + S0 93.1 78.6 65.8 92.9 74.4 61.4 55.0 

17 2" +120 + I" +120 92.8 75.4 63.1 92.8 71.7 59.2 81.0 

29 20 + 3" + 20 93.7 85.2 77.1 92.8 78.3 70.0 16.0 

30 40 + 3" + 40 93.2 82.7 74.6 92.7 75.8 67.3 29.0 

31 60 + 3 + 60 92.9 80.7 72.7 92.6 73.9 65.3 42.0 

32 80 + 3"+ 80 92.7 79.2 71.1 92.5 72.5 63.8 55.0 

33 120 + 3" +120 92.6 76.9 68.7 92.5 70.3 61.3 81.0 

34 60 + 3" + 60 92.8 80.1 72.1 92.6 73.3 64.7 48.5 

35 40 + 3" + 80 93.1 81;9 73.8 92.7 75.0 66.5 42.0 

36 1" + 20 + 2# 94.7 87.1 75.9 93.2 80.5 68.5 9.5 

37 1" + 20 + 2" + 20 94.3 85.9 74.6 93 79.3 67.3 16.0 

38 1" + 40 + 2" + 40 93.5 82.5 70.8 92.8 76.3 64.0 29.0 

39 1" + 60 + 2" + 60 93.7 82.9 69.3 92.8 76.8 63.2 42.0 

40 1" + 80 4 2" + 80 93.0 78.7 66.4 92.6 72.9 60.9 55.0 

41 1" +120 + 2" +120 92.6 75.4 63.5 92.5 70.0 58.9 81.0 

Remark - Treatment Description:



1' + 120 + 2" + 120 means a four-layered treatment, with the layers in 
this order: one inch of fiberglass, 120 oz/yd2
 of leaded vinyl, two inches of



2
fiberglass, followed by one more sheet of 120 oz/yd of leaded vinyl. These


layers were placed between the skin and the trim panel.
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Table 9.3: Summary of Treatments: Region III 

Location: STA 9272-#342



Predicted Interior Sound Pressure Levels



Treatment without Absorption With Absorption Wt Penalty 

# Description DEL DBA PSIL DEL DSA PSIL (ib) 

22 3" + 20 95.7 91 81.3 93.2 85.3 75.0 11 

23 3" + 40 95 90.1 80.3 92.7 84.3 73.8 19 

12 3" + 60 94.7 89.8 79.9 92.5 84.0 73.3 27 

24 2" + 20 + I" + 20 97.0 91.9 76.6 93.9 86.5 70.4 19 

25 2" + 20 + I" + 40 95.9 90.6 75.6 93.2 85.2 69.6 27 

13 2" + 20 + 1" + 60 95.5 90.0 74.9 93.0 84.6 69.1 35 

14 2" + 40 + 1" + 20 95.6 89.0 73.1 93.2 84.0 68.0 27 

26 2" + 40 + 1" + 40 95.2 88.5 72.8 93.0 83.6 67.7 35 

15 2" + 40 + 1" + 60 94.4 67.3 71.9 92.5 82.3 67.0 43 

27 2" + 60 + 1" + 60 93.3 84.5 69.6 92.0' 79.8 65.1 48 
16 2" + 80 + I" + 80 93.0 83.4 68.1 91.9 79.0 63.8 67 

17 2" +120 + 1" +120 91.9 79.7 65.6 91.3 75.5 61.3 99 

29 20 + 3" + 20 94.4 88.9 79.0 91.9 82.1 71.7 19 

30 40 + 3"+ 40 93.2 86.3 76.5 91.4 79.6 69.2 35 


31 60 + 3" + 60 92.4 84.5 74.5 91.1 77.8 67.3 48 

32 80 ± 3" + 80 91.9 82.9 73.0 90.9 76.3 65.7 67 

33 126 + 3" + 120 91.4 80.6 70.6 90.8 74.1 63.3 99 
34 60 + 3" + 80 '92.1 83.8 74.0 91.0 77.1 66.6 56 

35 40 + 3" + S0 92.8 85.6 75.8 91.3 78.9 68.4 48 

36 1" + 20 + 2" 97.5 93.0 77.9 93.5 86.4 70.6 . 11 

37 1" + 20 + 2" + 20 96.6 91.8 76.7 93.0 85.2 69.5 19 

38 1" + 40 + 2" + 40 94.7 88.3 72.8 92.1 82.0 65.5 35 

39 1" +-60 + 2" + 60 95.3 88.9 71.2 92.4 02.7 65.6 48 

40 1" + 80 + 2" + 80 93.0 84.0 68.5 91.4 78.2 63.4 67 

41 1" +120 + 2" +120 91.8 80.6 65.9 90.9 74.8 61.4 99 

Remark - Treatment Description:



I" + 120 + 2" + 120 means a four-layered treatment, with the layers in 
this order: one inch of fiberglass, 120 oz/yd2 of leaded vinyl, two inches of


fiberglass, followed by one more sheet of 120 oz/yd2 of leaded vinyl. These


layers were placed between the skin and the trim panel. 
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Table 9.4: Summary of Treatments: Region IV 

Location: STA #342-4368 

Predicted Interior Sound Pressure Levels



Treatment Without Absorption With Absorption Wt Penalty



# Description DBL DBA PSIL DBI flA PSIL - (lb)



22 3" + 20 98.0 93.2 82.7 94.9 87.8 76.1 3.5



23 3" + 40 97.1 92.3 81.6 94.3 86.9 75.1 6.0



12 3" + 60 96.8 92.0 81.2 94.0 86.5 74.7 8.5



24 2" + 20 + I" + 20 99.5 94.4 78.0 96.0 89.2 71.6 6.0



25 2" + 20 + 1" + 40 98.0 92.8 76.9 94.7 87.6 70.7 8.5



13 2" + 20 + 1" + 60 97.9 92.6 76.2 94.8 87.5 70.2 11.0



14 2" + 40 + I" + 20 98.8 92.8 74.7 95.6 88.1 69.3 8.5



26 2" + 40 + I" + 40 98.4 92.3 74.3 95.3 87.6 69.0 11.0



15 2" + 40 + 1" + 60 95.7 97.5 73.4 94.6 86.4 68.3 13.5



27 2" + 60 + 1" + 60 96.1 88.8 71.0 93.8 84.4 66.4 16.0 

16 2" + 80 + 1" + 80 96.5 88.9 69.5 94.1 84.7 65.2 21.0



17 2" +120 + 1" +120 93.7 84.4 66.9 92.3 80.3 62.9 31.0



29 20 + 3" + 20 97.1 91.6 80.4 93.4 85.3 73.1 6.0



30 40 + 3" + 40 94.8 88.6 77.9 92.1 82.2 70.5 11.0



31 60 + 3" + 60 93.7 86.9 75.9 91.5 80.5 68.6 16.0



32 80 + 3" + 80 93.0 85.4 74.4 -91.2 79.1 67 21.0



33 120 + 3" + 120 92.2 83.3 71.9 90.9 77.1 74.6 31.0 

34 60 + 3" + 80 93.4 86.3 75.3 91.4 79.9 68.0 18.5 

35 40 + 3" + 80 94.3. 87.9 77.1 91.8 81.5 69.5 16.0 

36 1" + 20 + 2" 100 95.2 79.3 95.3 88.8 72.0 3.5 

37 1" - 20 + 2" + 20 98.9 94.0 78.0 94.5 87.6 70.8 6.0 

38 1" + 40 + 2" + 40 97.4 91.5 74.3 93.6 85.5 67.7 11.0 

39 1" + 60 +'2" + 60 98.5 92.7 72.9 94.3 86.7 67.0 16.0 

40 1" + 80 + i" + 80 95.4 88.2 70.0 92.4 82.4 64.7 21.0 

41 1" 120 + 2" +120 93.5 85.0 67.3 91.5 79.3 62.7 31.0 

Remark - Treatment Description:
 


1" + 120 + 2" + 120 means a four-layered treatment, with the layers in 
this order: one inch of fiberqlass, 120 oz/yd2 of leaded vinyl, two inches of 
fiberglass, followed by one more sheet of 120 oz/yd2 of leaded vinyl. These 
layers were placed between the skin and the trim panel. 
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6. 	 Correction for structure-borne path. Even though the



structure-borne noise from the engines through the



fuselage structure was neglected, the effect of the noise



transmission through sidewall (for example, improper



isolation of trim panel from skin) could not be



neglected. Several studies (References 9, 23, 25, 39, and



47) 	 have shown that in practice, the predicted



transmission loss of double-wall panels is seldom



achieved. In order to account for this, only 50% of



theoretically calculated values (in decibels) were assumed
 


to be 	 effective. While this figure of 50% is based on



judgement, the tests on the existing aircraft (see



Appendix F) had indicated that for small differences in



transmission loss values (due to treatments), this figure



was 	 not unreasonable.



7. 	 Calculation of additional noise reduction (NR) due to



increased absorption. The absorption coefficient of the



interior noise would increase when the intrior was



furnished. This increase is due to the increased



absorption of the trim panel, seating, carpet, head



liners, etc. This increase in noise reduction can be



calculated from Equation 8.1.



8. 	 Calculation of total noise reduction due to treatment.



This is the sum of transmission loss obtained in step 6



and noise reduction obtained in step 7.
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9. 	 Calculation of predicted interior noise spectrum. This is



obtained by subtracting the noise reduction due to



treatment from measured noise levels.



10. 	 Calculation of overall levels. From the predicted



spectrum, the predicted overall levels are obtained by



integration.



11. 	 Calculation of weight penalty. From the properties of the



materials used in treatment and the total area of



treatment, the weight penalty for each area was
 


calculated.



These steps are shown as a flow diagram in Figure 9.3. The



actual calculation was done by three programs. The transmission



loss of monocoque shell (Reference 51 ) was coded into a program (by



Gary L. Blankenship at Cessna Aircraft Company and by Jaap Lamris



at the KU-FRL) in Fortran language. This program closely follows



the equations in Reference 51 and in this case was used to obtain



the untreated sound transmission loss. The second program



calculated the additional transmission loss across a muitilayer



panel. This program was similar to the one given in Appendix B.



The program (written by the author) used HP 9845B Basic language.



The only difference was that the impedance of the skin panel was



calculated from the values of transmission loss calculated from the



first 	 program. The impedance model with Single Degree of Freedom



(SDOF) was used from Reference 27.



TL= 20 log i1+ 2 	 (9.1).2pc 
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Figure 9.3: Flow Diagram of Calculation
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I1+ . 12 = 10 10 (9.2), 
2pc 

where 	 TL = Transmission loss



pc = Impedance of air



Zp = Impedance of panel having only one mode.



For a panel of only mode,



Z = 2w M + jLM[1 - (0) 2 (9.3), 
p 

where = Damping ratio 

n= Angular natural frequency


M Mass of panel per unit area


W Angular frequency.



For small 	 damping ratio,



z jM[1 - () 2 	 (9.4), 

Sp is only imaginary. The absolute value of the Zp was found



from 9.2, and it was considered to be entirely imaginary. This



value of the impedance was then used for the calculations. For the



trim panel, simple mass law was used. For a limp panel, the



impedance (z p) is given by



Zp=jwm 	 (9.5), 

where w is angular frequency and M is mass per unit area. The rest 

of the program is the same as the program described in Chapter 6. 

The average absorption value was calculated by using the 

equation 	 (Reference 9),
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where a-= average interior absorption coefficient



a. = absorption coefficient of seat, trim, etc.
 
1 

Si = Area of treatment for seat, trim, etc. 

S = Total area. 

These values were then used in a program to calculate the 

interior spectrum and the overall values. This program was written



in Time Series Language (TSLT) in PDP 11/40 at Cessna Aircraft



Company and in Fortran at the KU-FRL. The driver routine in Fortran



is given in Appendix F. The actual program used for the analysis



was in TSL. These routines are similar to the integration routines



described in Chapter 10. A listing of those routines is given in



Appendix F.



9.3 CALCULATIONS 

The interior noise control treatment was designed for cruise



condition of 35000 ft/0.8 M. The input temperature and pressure



corresponded to the standard atmospheric conditions at this



altitude. The output from the monocoque shell program is given in



Table 9.5. The transmission loss, due to the existing treatment at 

the time of initial measurement was calculated using multilayer



program. The treatment consisted of fiberglass layer for thermal 

insulation and a thin trim material. The results are shown in Table



9.6. Next, a set of treatments was selected. These are shown in 
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To


Table 9.5: Transmission Loss, Untreated Fuselage CESSA



Frequency Transmission Loss



(Hz) (dB)



90 5.7 

100 7.9 

150 11.2 

200 13.3 

300 16.6 

400 18.8 

500 20.6 

600 22.0 

700 23.3 

800 23.8 

900 20.5 

1000 25.5



1500 29.6



3000 35.5



4400 38.8
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)ATA PROPRIETARY 

CESSNA Table 9.6: Transmission Loss of Initial Treatment 

Frequency 
 

(Hz) 
 

90 
 

100 
 

150 
 

200 
 

300 
 

400 
 

500 
 

600 
 

700 
 

800 
 

900 
 

1000 
 

1500 
 

3000 
 

4400 
 

Additional


Transmission Loss



(dB)



10.7



9.7



8.0



5.0



-7.7



8.8



14.5



17.8



20.1



21.9



23.6



25.6



32.6



49.3



57.8
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DATA PROPRIET



CESSNA



Tables 9.1-9.4 for the four areas considered. For each treatment 

the multilayer program was run. The input data for this program 

were the untreated transmission loss values and the properties of



the treatment materials. The input details for the treatments were



the same as described in Chapter 6; i.e., surface density for trim 

panel and septum and the resistivity, porosity, density and depth 

for fiberglass insulation. Because porosity and resistivity of the



fiberglass being used was unknown, the values of PF105 material were



used. The same values were used in the noise level prediction



programs described in References 23 and 24. The results of one such
 


run are given in Table 9.7. These results were obtained for each 

treatment. Additional transmission loss values were calculated by



subtracting the transmission value of the existing treatment and 

multiplying the resulting values by 0.5. 

The average absorption coefficient was calculated using
 


Equation (9.6). The absorption areas considered were divider,



ceiling (or head liner), sidewall above the armrest, sidewall below
 


the armrest, and seats. The values of absorption coefficient for



these areas were found either from unpublished data at Cessna and



the KU-FRL, from manufacturers' data or from experimental values



published in Reference 23. The absorption areas were calculated



from the drawings of aircraft. Table 9.8 gives the average



calculated absorption coefficient as a function of frequency. The



total area of the interior was estimated to be 320 sq ft. The



details of the calculation are available in Reference 52.
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)AT A' PROPRRWT.BIY


TO.



Typical Output Data from Multilayer Program
C'ESSSA Table 9.7: 
 

Frequency 
 

(HZ) 
 

90 
 

100 
 

150 
 

200 
 

300 
 

400 
 

500 
 

600 
 

700 
 

800 
 

900 
 

1000 
 

1500 
 

3000 
 

4400 
 

Additional


Transmission Loss



(dB)



15.0



12.5



-8.6



14.3



24.8


29.2


31 .5


33.1



34.9



37.8



43.5



43.8



•55.0



74.9



85.4
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DATA :R15E 

TO 
Table 9.8: Average Absorpiton Coefficients CESSNA 

Average Absorption



Frequency Coefficient



(Hz)



125 .13



250 .20


500 .36


1000 .45


2000 .51


2500 .50


3000 .54


4000 .57
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DATA PROPRJETA-RY


. TO 

9E SN4oth additional transmission loss and absorption values -were



input into the third program, to obtain the expected levels. A



typical output ts shown in Figure 9.4. These results are summarized



in Tables 9.1-9.4. Also shown in Tables 9.1-9.4 are the expected



values with a new absorption material. This material was one-inch



sound foam with perforated vinyl. The vinyl was 12 mil,thick. For



calculation purposes this was assumed to be applied on most of the



exposed areas. For each of these treatments, the weight penalty was



calculated by multiplying the surface density of the treatment and 

multiplying the area of .treatment. Then the results are plotted for 

four regions, as shown in Figure 9.5.



The four regions considered in this analysis were arbitrary.



There were no dividers between regions 1, 2, and 3. There was a



divider between regions 3 and 4 which could be closed. The levels



in one of the regions would therefore determine the levels in the



rest of the cabin. Hence for optimum results, the treatments should



be so selected as to yield nearly the same interior levels. These



treatment selections were termed "treatment strategies." For a



given weight penalty one treatment strategy could be selected. One 

such strategy drawn for 130 lbs is given in Figure 9.6. Several 

such strategies, each corresponding to one given weight, were drawn 

up. 
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ORIGINAL PAGE- WATA PROPRIETARY 
0F POOR QUALIT-

CESSNA,,, 90 
REGION I 

_1 ­

00 
-IJ0 
> 80 

0 NITHOUT ABSORPTIONU0 

w 00 

LI 70 WITH ABSORPTION 

EL
C 

z 
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WEIGHT OF TREATMENT " LB 

< 90 
REGION II 

'3 
 

co 0~s0TEl E



L> 800
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Figure 9.5: The Effect of Weiqht of Treatment on the 
Predicted Interior Level
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DATA PRopS JlET 

ORIGINAL PAGE IA 
OF POOR QUALITY to 

< 00v 
rn 
 

REGION III 

-J Cl) 0 0 " 
> 90 0 0 
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Figure 9.5: (continued)
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\TA PROPRIETA'RY 

CESS4 DISCUSSION OF RESULTS AND COMPARISON WITH ACTUAL DATA 

From the results shown in Tables 9.1-9..4, it was seen that 

equally dividing the total leaded vinyl and placing them next to the



skin and trim offered at least theoretically optimum results. This



was because the trim panel used was nearly as heavy as the 0.032



inch aluminum skin. Also it was seen that treatments with three



inches of fiberglass material were better than treatments with two



inch fiberglass material of the same weight density. Even with



these treatments increased absorption tended to reduce dBA and



three-octave band averages. This ±s significant because the two



quantities indicate the energy above 500 Hz still contributes



significantly to the overall interior levels.



Out of all these treatments, as an initial attempt, a treatment
 


with 113 lb weight penalty was chosen. No special absorption
 


material was installed. Figure 9.6 shows the selected treatment



strategy. The treated aircraft was flown at 35000 ft, and the



interior noise levels were measured by Cessna acoustic personnel at



the same four locations. Figure 9.6 shows the levels at the four



locations.



Table 9.8 compares the overall measured values with the



predicted values. The predicted dBA values with the absorption



material was 80 dBA.throughout the cabin. As can be seen from Table



9.8, the predicted and expected values agree very well indicating
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II 

DATA PROP.IETAFORIGINAL PAGE M 
OF pOOR QUALTfl To 

LEVEL (DBA) WT 

AREA DESCRIPTION OF TREATMENT an Eb* (LB) 

I 

3 * FIBERGLASS & 20 OZ/SQ YD 

LEADED VINYL 
B4.7 78.5 10 

20 OZ/SQ YD LEADED VINYL + 3" FIBERGLASS



+ 20 OZ/SQ YD LEADED VINYL


85.2 78.3 1



40 OZ/SQ YD LEADED VINYL + 3' FIBERGLASS



+40 OZ/SQ YD LEADED VINYL 86.3 79. 35



80 OZ/SQ YD LEADED VINYL + 3" FIBERGLASS



+80 OZ/SQ YD LEADED VINYL 85.4 79.1 21 

SAME AS REGION IV 31 
S5
AFT PR 

BULKHEAD



a* WfH4TOUT ABSORPTION WEIGHT OF ABSORPTIVE MATERIAL 16 

bW WITH ABSORPTION 
TOTAL WEIGHT 129.5



Fgr
9looOLH



Figure 9.6: A Typical Treatment Strategy 



ORIGINAL PAGE M'


IATA .PROPR IET lY OF POOR QUALITY 

TO.


C t A REGION I



OVERALL LEVEL 
LINEAR 
AWTED 

PSIL 

DBL 
DBA 
DB 

92.2g 
82,33 
74.27 

0. 

0. FREQUENCY 2500. 

'REGION II 

DB 

OVERALL LEVEL 
LINEAR DBL 
AWTED DB 

PSIL DE 

90.96 
83.38 
74.78 

0. -

0. 

Figure 9.7: 

I I I I I 

FREQUENCY as50. 

Measured Interior Noise Levels after Treatment 
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DATA PRQPRI~rAkj


ORIGINAL PAGE V TO


OF POOR QUALITY CESSNA.



REGION III



OVERALL LEVEL 
LINEAR D3L 94.a7 
AWTED DBA S.S 

PSIL DB 	 74.91 

0. 	 -	 I - I I p0. FREOUENCY 
- see. 

REGION IV



OVERALL LEVEL 
LINEAR DBL 9S.71 
AWTED DBA 86.01 

PSIL DR 7S.Og 

0. -	 I| i I 

0. 	 FREQUENCY 2s00. 

Figure 9.7: (continued) 
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DATA 'PROPRIETARY 
TO Table 9.9: Comparison between Measured and 

CESSNA Predicted Interior Noise Levels 

Sound Pressure Levels (dBA) 

predicted Values Measured Values 
Region 

Without Absorption With Absorption 35000 ft 41000 ft 

I 84.7 78.5 82.3 82.8 

II 85.2 78.3 83.4 83.7 

III 86.3 79.6 85.8 83.7 

IV 85.4 79.1 86.0 85.9 

Remark:



During tests, the aircraft did not have 16 lbs of absorptive


material.
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DATA PROPRIET,



TO


CESSNA



most of-the assumptions made were reasonable. This design procedure 

can serve as a starting point for the control of interior noise in a



new aircraft.



This agreement should be viewed with caution. It is possible



that the agreement is good because the total expected reductions



were only of the order of seven to ten dB. The author feels that if



the initial choice of treatment weight had been large, say 200 lb,



the agreement would have been poor. The reason for this is the



initial assumptions. With such a heavy treatment the contribution



of the sound radiated from the sidewall would have become small



compared to that from other sources such as transmission through



windows, internally produced sound (i.e., air-conditioning ducts,



etc.). Hence these sources would determine the interior sound



levels. In this treatment design no attempt had been made to



account for these sources. This was confirmed by the engineers at



Cessna Aircraft Company. The method suggested in this chapter



offers a good initial design procedure.
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POOR QUALITYOF 

CHAPTER 10



COMPUTER PROGRAP4 TO TROUBLESHOOT HIGH INTERIOR NOISE LEVELS
 


10.1 INTRODUCTION



All aircraft of the same type receive similar acoustic



treatment. But it is not uncommon to find some aircraft to have



higher interior noise levels than others in the same batch. In such



cases, conventional noise prediction analysis may not be of any



use. Such problems are normally solved by additional acoustic



treatments. This additional treatment is determined by trial and



error. From general aviation manufacturers it was learned that



there existed no systematic way of approaching such problems.



In this chapter a computer program, developed to aid the 

aircraft noise control engineer in diagnosing and treating the high 

interior noise problem, is described. The program identifies 

whether the noise increase is due to discrete tones or to general 

increase over a band of frequencies. The program can then be used



to study theoretically the effect of additional treatment on the



specturm. Finally, the effect of the treatment on the overall



linear, A-weighted and speech interference levels is calculated. In



the subsequent sections, the details of the program, including the



equations used, and typical outputs are discussed.
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10.2 COMPUTER PROGRAM



The computer program was written in Time Series Language ITSLT )



of Gren Rad Corporation. The reasons that dictated this choice of



language are 1) it is fast and easy to operate, 2) it is an



interactive language, 3) it has extensive graphics capabilities, and



4) it is specifically designed for time series application. TSL was



available on PDP-11/40 system operating on RT-11 operating system



with 4014 type Tektronix graphics terminal, at Cessna Aircraft
 


Company. Also, the interior noise levels of the aircraft at Cessna



Aircraft Company were analyzed on this system and the input data



were available in a format compatible with TSL.



The listing of this program is given in Appendix F. It is



divided into four parts:



1. Read input data and set up for further processing.



2. Problem identification:



a. Effect of varying a discrete tone level



b. Effect of varying the level over a band of frequency.



3. Treatment:



a. Effect of adding mass



b. Effect of increasing stiffness



c. Effect of the use of double wall 

d. Effect of increasing internal absorption



e. Effect of adding fiberglass insulation
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ORIGINAL PAGE IE


OF POOR QUALITY



f. Effect of adding any treatment whose additional



transmission loss is known as a function of



frequency.



4. 	 Output:



a. 	 calculation of overall linear level



b. 	 Calculation of overall A-weighted level



c. 	 Calculation of speech interference level



d. 	 Display of interior noise spectrum with and without



treatment.



This program has considerable flexibility built into it. For



example, the effect of more than one treatment can be studied at a



time. The program is interactive, user friendly, and menu driven.



The flow chart of the program logic is given in Figure 10.1. Each



treatment is covered in one subroutine in the program. These



treatments are discussed below.



10.2.1 EFFECT OF A DISCRETE TONE



The effect of varying the level of one or many discrete tones



by a specified amount on the overall levels can be studied using the



subroutine called SPFREQ. This routine can be used for studying the



effects of structure-borne noise or the effects of engine or



propeller blade passage harmonics. By comparing the discrete tone



levels with the average for the type of the aircraft, one can find



whether the increase is due to discrete tones. The first part of



this routine calls the routine PEAK, which prints the freauency
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READ INPUT DATA



F!



EFFECT OF
'EFFECT OF I EFFECT OF BAND 
 

OF FREOUENCY TREATMENT
DISCRETE TONE 


CALCULATE OVERALL



LEVELS



DISPLAY



CHANGE AGAIN



STOP



Figure 10.1 : Flow Chart of the Program 
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OF POOR QUALITY 

values of all discrete tones and the maximum sound pressure levels



at these frequencies. This permits easy identification of whether



the discrete tones are high. The next part of the subroutine



changes the value at a given frequency. The user can arbitrarily



set the values of these discrete tones to any level (for example,



levels found in ether aircraft) and can calculate overall levels.



If any peaks are changed, the adjacent values are also printed so



that spectral leakage, if any, can be accounted for. The user has



to change the value at each frequency.



10.2.2 EFFECT OF A BAND OF FREQUENCY
 


In some high interior noise problems, the increase in noise



level is over a band of frequency: for example, increased air



conditioning duct noise results in higher noise levels at 200-500



Hz. In such cases it is useful to study the contribution of a part



of the interior noise spectrum on the overall noise levels. This



will permit the user to concentrate only on the significant part of



the spectrum during the design of the acoustic treatment. A



subroutine, BNFREQ, is included. This routine changes the value of



the sound pressure levels over a frequency range specified by the



user. These values can either be changed by a constant value or set



to a constant value. After modification, integration routines can



be used to check the effect of this variation on the overall



interior level.



320





10.2.3 EFFECT OF ADDITIONAL MASS



In normal practice, the increased transmission loss is achieved 

by mass loading the treatment. -This is done by inserting leaded 

vinyl sheets (of surface density 10 oz/sq yd) between the skin and 

trim panel. The effect of addition of the leaded vinyl sheets can 

be studied using the subroutine called MASLAW. This subroutine uses 

classical mass law to predict the increased transmission loss at 

different frequencies. The following asusmptions are made in the 

equation (Reference 47) used in this routine: 

1. 	 Stiffness effects are neglected.



2. 	 The entire transmission loss is assumed to follow



classical-law theory.



3. 	 The angle of incidence is normal.



4. 	 Atmospheric conditions (speed of sound and density of air) 

are assumed to be the same across the panel. 

From the interior noise spectrum, the effect of the 

transmission loss due to theY'existing treatment is subtracted and 

the effect due to combined (existing and additional) surface density 

is added. under the assumptions the additional sound transmission 

loss 	 at any frequency is given by (derived from Reference 47, page 

297)



( I+Am) 2 . am). 

ATL = 10 log [{i + AM) ) 21/0 + (-) 1] (10.1),
2pc 	 2pc 

where ATL = 	 Increased transmission loss due to additional



treatment (dB)
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= Circular frequency



m = Average mass per unit area (existing; Kg/m 2 )



Am = Mass per unit area of additional treatment (Kg/m2 )



pc = Impedance of air



p = Density of air (Kg/m
3 )



c = Speed of sound (m/sec)



This increased transmission loss is subtracted from the



measured interior noise spectrum at each frequency to obtain



modified interior noise spectrum.



10.2.4 EFFECT OF ADDITIONAL STIFFNESS



The stiffness of a sidewall or window is an important parameter



in the control of low-frequency noise (Reference 4). In the



stiffness-controlled region the sound transmission loss can be



increased by increasing the stiffness of the panel. For-example,



such a treatment may be recommended when it is suspected that the



increased interior noise is due to the higher sound transmission



through windows. In such cases window panes may be thickened, which



would mean an increased stiffness as well as mass. A subroutine



named STLAW is included in the program; this subroutine calculated



the effect of this additional stiffness and mass on the interior



noise spectrum. The following assumptions were used in deriving the



equations used in subroutine STLAW:
 


1. Only single degree of freedom model is used.



2. Angle of incidence is normal.
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3. Atmospheric conditions are the same across the panel.



The single degree of freedom model was chosen because of the
 


limitations-uf TSL in handling variables and the requirement of



speedy results. Also required will be a knowledge of the



fundamental resonance frequency and damping ratio of the panel



before and after change and other atmospheric conditions. Under the



above assumptions, the increased sound transmission loss across a



panel or window is given by (Reference 27, Equations 8 and 10)



2pc + Zp2 
ATL = 20 log II (10.2),

2pc ­ p1



where ATL = Increased transmission loss due to additional



stiffness



= Circular frequency (rad/sec)



p = Impedance of air



c =-Density of air



Zp = Impedance of panel.



Subscript "<" denotes the value before change, and subscript



2" the value after change. The impedance of the panel or window is



calculated using single degree of freedom model



Zp = 2C m + jwm(l - ( )2 (10.3), 

where a = Damping ratio 

= Circular frequency (rad/sec)



m = Mass per unit area



Cn = Natural frequency (rad/sec) 

j =3 
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The increased transmission loss values are then subtracted from



the measured interior noise spectrum at each frequency to obtain the



expected interior noise spectrum.



10.2.5 THE EFFECT OF THE USE OF DOUBLE WALL



Double-wall structures are sometimes used to obtain increased



high-frequency sound transmission loss. However, at low frequencies



the use of a double wall does not have any effect. The program



contains an option where a double-wall structure can be used in



place of a single-wall structure. For the purpose of calculation,



it would be assumed that the data available is with a single-layer



sidewall. Also, for simplicity it is assumed that the added wall



has the same surface density as the existing skin. This can easily



be changed if required. This can also be used to study the change



in the interior noise levels, as the spacing between the walls is



varied. The following assumptions are made in the calculations



using this subroutine (DUBWAL):



1. 	 The sidewall before treatment is a single wall layer.



2. 	 The additional wall has the same surface density as the



skin.



3. 	 Only mass loss effects are considered.



4. 	 It is assumed that the atmospheric conditions do not



change between two sides of the wall.
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Under these conditions the increased sound transmission loss of a



double wall over the existing single wall can be derived -from



-equations given in Reference 47 (page 312), as 

tmco {c os, cot 1 os 

ATL = 10 log[1 +W os 
pc 

cos() 
C 

_­
2 

cost s 
PC 

sin wd cos
C 

}2] 

2
- 10 log [1 + 2 (10.4), 

where ATL = Increased transmission loss due to the double wall over 

the existing single wall 

t = Circular frequency 

= Angle of incidence is set to normal by statement 250 of 

Subroutine DUBWAL. For any other incidence the cosine 

of the angle should be in R3.



ms = Mass per unit area of the skin



pc = Impedance of air



p = Speed of sound between walls
 


d = Spacing between walls.



The increased transmission loss values calculated using Equation



(10.4) is then subtracted from the measured interior noise spectrum at



each frequency to obtain the expected interior noise spectrum after



treatment.



'325





10.2.6 EFFECT OF INCREASED ABSORPTION



The increase in internal absorption will decrease the reflected



energy of the sound waves from the sidewall, thereby decreasing the



interior noise levels. The increased absorption will be useful if the



cabin is made of highly reflective hard surfaces. Included is



subroutine ABS, which would calculate the additional noise reduction due



to increased absorption is included. No detailed calculations are



included within the program. Approximate knowledge of pretreatment



absorption values is needed to use this subroutine. Three different



absorption-vs-freguency tables are available. The first is based on



experimental results published in Reference 23. The second and third



use the absorption coefficients for noise control materials published in



Reference 48. Practice shows that these values are very optimistic.



once one of these options is selected, the increased noise reduction is



calculated from



sa



ANR = -10 log I-ul (10.5), 
sat



where ANR = Additional frequency at frequency f.



s Average surface area of treatment assumed to be the same



before and after treatment
 


a= Average untreated absorption coefficient at frequency f


u 

= Average treated absorption coefficient at frequency f. 

The additional noise reduction due to increased absorption is then 

subtracted from the measured interior noise spectrum to obtain the 

expected interior noise spectrum. The absorption coefficients are 
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stored in ABSLO.TAB and ABSHI.TAB. These tables of absorption vs



frequency can be modified to include known values of new absorption
 


materials.



10.2.7 EFFECT OF ADDITIONAL FIBERGLASS INSULATION



The mechanism of sound transmission through fiberglass insulation



is different from that through simple sound barrier material. Reference



9 discusses the mechanism of sound transmission through insulation



material. Chapter 5 discusses the experimental effect of fiberglass



insulation observed. The propagation of sound through the material



results in two types of losses: 1) the reactive losses associated with



the imaginary part of the propagation constant, and b) the resistive



losses associated with the viscous losses in the material. The effects



of these two losses are discussed in Chapter 6 and are taken into



account in the computer program discussed in that chapter. However, as



can be seen, the calculated transmission loss values are seldom realized



in practice. Because of this, in the subroutine TTL2, which calculates



the effect of fiberglass insulation, only the resistive losses are
 


included. This' greatly simplifies calculation because it does not



account for the reactive losses. The resistive losses due to added



fiberglass are calculated by (Reference 9)



AT = ad (10.6), 

where a = Real part of the propatation constant; 

d = Thickness of the fiberglass layer. 

The resistive part of the propagation constant is a complex function of 
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frequency, porosity, resistivity and other material properties.



Reference 47 (page 270) gives the values of typical materials used in



the aircraft industry. (These values are still used, as can be seen in



Reference 23). At present, three options are available for users. The



first option is a curve containing the values as published in Reference



47, Figure 2.22, for the pf105 type fiberglass. The other two are



slightly modified versions of the first option, to have higher losses at



lower frequencies and lower losses at hiqher frequencies. These two a­


vs-frequency curves can be replaced by known a-vs-frequency curves of



any other fiberglass material.



10.2.8 EFFECT OF KNOWN TREATMENT



in addition to the above treatments, a separate subroutine, TLI,



is included, where a user can input known increased transmission loss



values as a function of frequency. This table can be obtained from a



more sophisticated analysis which is not possible using TSL. This



subroutine will prompt the user for a table of frequency vs additional



transmission loss. This subroutine calculates transmission loss values



at intermediate frequencies by linear interpolation. The subroutine



then simply subtracts this value from the interior noise specturm at



each frequency value.
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10.2.9 CALCULATIONS OF OVERALL LEVELS



The linear overall levels of both modified and unmodified spectra 

are calculated using the energy sum method: 

N (SPL.) 

OSPL = 10 log (10 10 ) (10.7),
i=1 1



where OSPL = overall sound pressure level



SPL i = Sound pressure level of filter i



N = Number of filters.



A-weighting of sound levels is performed electronically in sound level



meters to approximate the loudness level sensitivity of the human ear



when listening to pure tones (References 9, 39 and 49).



Reference 39 (Table 4.1) gives in a tabular form the electrical



weighting network responses at various frequencies. In this computer



program, a curve was fitted through these points and this approximate



equation:



4 3 2
ASPL = -.8345 f, + 10.07 f - 55.73 f + 160.7 f - 184.8 

(10.8). 

This curve does not deviate from the values of Reference 49 by more than 

0.05 dB. The comparison with sound level meter readings indicates this



equation is invalid within 0.1 dB overall. At each frequency this



response is added to the interior levels. once again the overall levels
 


are calculated.using Equation 10.7.



The speech interference level is a simplified method of quantifying



noise in terms of its interfering effect on speech communication



(Reference 49). The speed interference level is calculated from the
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arithmatic average of the sound pressure levels of 500, 1000, 2000 and



4000 Hz octave bands. These values should be used in conjunction with



Table SIL-I in Reference 49 to indicate conversing distance over which



speed is satisfactorily intelligible (corresponding to an articulation



index of 0.4). when only the octave bands at 500, 1000, and 2000 Hz are



used, the level obtained is called the "preferred speech interference



level" (PSIL). Because normal narrow band analyzers are constant



bandwidth analyzers and not proportional bandwidth analyzers, a routine



was written to calculate octave band levels, obviously, the input data



should have values of at least up to the higher band edge of 4000 Hz for



calculating SIL. However, the general aviation interior noise is low­


frequency dominant. Hence the normal analysis is done only up to 5000



Hz. Therefore, this program uses preferred speech interference levels.



Finally, depending upon the user input, either the modified



spectruum, the unmodified spectrum or both the spectra are output



graphically using TSL XDISPL subroutines. The overall values are also



indicated within the display area.



10.3 USE OF THE PROGRAM



This program needs less than 64 K memory. To use this program, the



interior noise levels of the noisy aircraft should be measured and



recorded on tape. To use this program in TSL, this recording should be



analyzed using TSJ and output in TSL format using BLKOUT command. This



program is loaded from TSL STANDBY mode C>) by typing



LOAD 'MSYNTH.RN'
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http:MSYNTH.RN


LOAD 'ELKIN'



LOAD 'XDISPL'



The program is executed by typing



SYNTH 'DEV:FILNAM.EXT'



where DEV:FILNAM.EXT is the data file containing narrow band data.



Thereafter the options are presented to the user as a series of menus.



A typical output is shown in Figure 10.2. A case study where this



program was used, is discussed in Appendix F.2.



10.4 CONCLUSIONS



This program serves as a basis for the noise control engineer to



study the effect of various treatments on the interior noise levels.



This program is very general and hence can be used for any aircraft



noise problem. For the same reason it cannot identify the exact cause



of any particular problem but can indicate what each treatment can do.
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CHAPTER 11



CONCLUSIONS AND RECOMMENDATIONS



The significant conclusions and recommendations resulting from



this research project are summarized in the following two



subsections. Additional insight into a particular area may be
 


gained by referring to the appropriate section of the teport.



Overall, all of the objectives and projected technology



contributions established in Section 2.1 were generally satisfied.



The conclusions are presented in Section 11.1, while Section 11.2



contains the recommendations.



11.1 CONCLUSIONS



1. The broad-based approach proposed in this research--i.e.,



laboratory experimental investigation of sound transmission and



vibration characteristics of panels, use of new data analysis
 


techniques, and application on actual aircraft--provides a
 


sound method to solve a complex problem such as the general



aviation aircraft noise problem. The new data analysis
 


techniques such as acoustic intensity and cepstral methods
 


provide additional information not easily available previously 

- to the noise control engineer. 

2. The results of the experimental investigation of flat and
 


stiffened panels with damping materials confirm that in the



low-frequency region--i.e., at frequencies below the
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fundamental resonance frequency--stiffness alone is the



dominant parameter. In this frequency region the curvature,



stiffeners, and depressurization have more effect than the type



and the amount of damping material. The effect of damping



material, as expected, is high only at the resonance



frequency. The effect on the overall noise reduction is quite



small. However, the damping tape increases noise reduction



slightly while the pressurization tends to decrease the noise



reduction in this region.



3. 	 The installation effects were identified as the most important



parameters on the loss factor measurements. A panel installed



in the KU-FRL acoustic test facility exhibits significantly



different loss factors than a free-free panel throughout the



frequency region. The effect of the damping material on loss,



factor, was to increase it by an order of magnitude. Since



loss factors are needed in the theoretical predictions, both



loss factor tests and noise reduction tests should be done



successively, without removing the panel, for best results.
 


4. 	 Double-wall panels exhibit significantly higher noise reduction



than single-wall panels in the high frequency region. However,



in the low-frequency region their efficacy is low. The



stiffness of skin or trim alone controls the low-frequency



noise reduction. The effects of various parameters such as



skin, trim panel (material and density), panel depth, and



fiberglass, insulation that affect the noise reduction
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characteristics of a double wall are presented. These results



can 	serve as an aid to noise control engineers in the gener&l



aviation industry.



5. 	 The classical sound transmission loss model for a multilayer



panel is an adequate approximation to analyze the noise



reduction characteristics of double-wall panels tested at this



facility. This computer program helps in explaining and



understanding the effects of various parameters that affect



sound transmission through such panels.



6. 	 The acoustic intensity method developed for panels at the KU-


FRL acoustic test facility should serve as a valuable tool in



studying the sound radiation characteristics of panels



installed in the acoustic test facility. This method will be



useful to study the effects of stiffeners and damping



materials. This type of investigation should allow closer



tailoring of- treatment to obtain the highest reduction for



minimum weight penalty.
 


7. 	 The cepstral method promises to be an effective method to
 


determine the absorption characteristics of trim materials.



This method has not yet been fully developed. Once further



tests are performed to finalize the test procedure, this method



can be a valuable tool in choosing the interior trim material



in the general aviation industry.



8. 	 The application of multilayer program to actual interior noise



control design confirms the trends of the noise reduction
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characteristics observed at the KU-FRL acoustic test



facility. It also proves that with a slight user's judgement,



this model can be profitably used by the industry, as a



starting point for the control of interior noise in a new



'aircraft.



9. 	 The computer program developed to study the effects of



treatments uses the results of classical sound transmission



loss theory and results from the KU-FRL test facility. This



program presents in one single program the ability to analyze



the problem and study the effectiveness of noise control



treatments. The engineers at Cessna Aircraft Company confirm



the usefulness of such programs in noise control.



11.2 	 RECOMMENDATIONS



1. 	 Starting with flat, bare aluminum panel at the beginning of 

this project, the complexity of the test specimen has been



gradually increased to include parts of real aircraft. The



noise reduction characteristics of these panels are available



for use by engineers in the general aviation industry. Even



with the difference in panel sizes, it is anticipated that the



trends observed will still be valid.



2. 	 The design procedure for interior noise control used in this



report uses classical monocoque transmission loss program



(Reference 51). However, the recommended input will be the



measured (bare fuselage) transmission loss across fuselage
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sections. This will increase the accuracy in prediction..



Because'of the cavity effect and the random errors, a number of



tests need to be done to determine the transmission loss of



untreated fuselages.



3. 	 The computer program developed for the analysis of interior



noise problems is recommended for use as is. Because of the



approximations,at times the absolute values may not be



meaningful. This program should be used to study the trends.



4. 	 Future tests in determining noise reduction characteristics
 


should include the effect of large panel size of the real
 


aircraft. The size of panels will affect low-frequency noise



reduction. Hence it is recommended that a systematic study



similar to the one for panel type structures be undertaken with



these large structures.



5. 	 The noise reduction characteristics of trim panels indicate



very wide variations in their sound transmission



characteristics. The parameters include the construction



details of base material, trim material, and other material
 


properties. It is recommended that the trim panels used in the
 


industry be studied to determine the optimum trim panel



configuration from the point of view of their acoustical



characteristics.



6. 	 The tests with the cepstral techniques show great promise. It



is recommended that the development of this method be
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continued. The finalized test procedure should be easy and



less time consuming for routine use in the industry.



7. 	 It is recommended that the acoustic intensity technique be used



to study the sound radiation pattern of stiffened panels and



treatments. The results of this investigation should be useful



in designing treatments with low weight penalty.



S. 	 Finally, it is recommended that the design procedure used in



this report be improved to include the analysis of very low



frequency region. This will be necessary for its use in



propeller-driven aircraft.
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APPENDIX A



DETAIL AND CHARACTERISTICS OF THE KU-FRL ACOUSTIC TEST FACILITY
 


The design and construction details of the KU-FRL acoustic test



facility have been described in Reference 20. Reference 21



describes the investigation carried out to determine the



characteristics of the test facility. Salient features from these



reports are presented below.



A.1 DESIGN AND CONSTRUCTION DETAILS



The test facility consists of two chambers: the source chamber



and the receiver chamber. The test panel is mounted between these



two chambers. The source chamber--consisting of a massive brick



wall, a concrete collar, and a steel box--contains nine evenly



spaced loudspeakers. This chamber can be considered to be a speaker



box. Its purpose is to support the speakers and to prevent sound



radiation to the rear and sides. It contains sound absorbing



materials to minimize standing waves. These waves can induce



undesirable speaker-sound radiation characteristics. A small



distance, about one inch, separates the test panel from the front



side of the speaker baffle. This arrangement prevents standing



waves between the baffle and the test panel at freauencies in the
 


range of interest, 20-5000 Hz. Other standing waves, parallel to



the panel and the speaker baffle, could disturb the desired



uniformity of excitation at the panel surface. The strenqth of
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these waves, however, is reduced by sound absorbing material, which



nearly fills all the space between the baffle and the test panel.-


The receiving chamber is an acoustic termination, which absorbs



almost all the sound energy. To facilitate the installation of test
 


specimens between this termination and the speaker box, the



receiving chamber is mounted on wheels and rests on a steel table.



Figures A.1 and A.2 show the details.



The test specimen size is 20 inches by 20 inches. One inch



along the edges is used to clamp the test specimen between the two



chambers. This leaves an exposed area of 18 inches by 18 inches.



This is the maximum size of the test specimen that can be tested at



this facility.



The loudspeakers can be driven by an amplified signal from a



pure tone generator, or a frequency sweep oscillator, a random noise



generator, or a tape recording of in-flight boundary layer



fluctuations (Figure A.3). An equalizer is included in the sound



generation system to obtain a reasonably flat input spectrum. The



noise measuring system includes two 1/4" or 1/2" B&K microphones,



one on each side of the test panel. The output signals of the



microphones are fed to a (narrow band) real-time analyzer. The



resulting spectra are transferred to an H-8 microcomputer where they



are stored on floppy disks. The data are then transferred to the



KU-FRL MINC computer through the phone lines, where noise reduction
 


curves are plotted using an HP 7225B plotter.
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The facility has a series of adaptors which are used to test



the noise reduction characteristics at different angles of



incidence_. In-addi-tion- a -tension device is available which permits
 


investigation under uniaxial or biaxial (tensile) stresses. To test



the effect of pressurization on the sound transmission loss of a



panel, a depressurization system has been installed. With this



system the pressure in the source chamber can be reduced. At



present all tests are being conducted at ambient temperature (68 to



72 degrees F).



A.2 	 CHARACTERISTICS OF THE TEST FACILITY



Several investigations were carried out to determine accurately



the characteristics of this test facility. The results are



described in References 3 and 4. Notable-conclusions are given



below.



1. 	 At high frequencies using a standard panel, the slope of



the noise reduction curve obtained corresponds to that



predicted by mass law (i.e., 6 dB/octave). However,



actual measured values exceed mass law values by 3-4 dB.



2. The plane wave approximation is justified only below a



.frequency of 800 Hz at short distances from the speaker



baffle. However, this variation seems to have not much
 


effect on the slope of the noise reduction curve. It is



also 	 justified over the entire frequency range tested (20



to 5000 Hz) if the distance from the source is at least 34



inches.
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3. 	 Although all the walls have been covered very carefully
 


with high quality absorption material, standinq waves have



not been fully prevented.



4. 	 In addition, the reflections from-the sidewalls affect the



signal measured by the receiver microphone. These



reflections and the standing waves result in additional



peaks and dips in the measured spectra, when narrow-band



analysis istcarried out.



5. 	 The use of a sweep oscillator with a very slow sweep rate



is a satisfactory substitute to measure sound transmission



through aircraft structures.



6. 	 Each of the nine speakers has its own frequency response



characteistics.



7. 	 The effect of the possible reflections off the back panel



of the receiving chamber is so low that it is within the



experimental scatter.



8. 	 Removal of the back panel of the source chamber affects
 


the results below 60 Hz.



9. 	 The air in the closed cavity backing the test specimen



acts as an additional stiffness, raising the fundamental



panel resonance frequency. For a simple panel the



analytical model gives an accurate account (within 5%



accuracy) of this effect.



10. 	 The edge conditions of the test panel are somewhere



between simply supported and clamped, and this complicates
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any comparison of measured and theoretical values in the



low-frequency region. In the high-frequency region,



presence of the cavity resonances and the sound absorption



capability of the sound absorption materials coiplicate



comparison of measured sound transmission with theoretical



predictions. However, the results from the facility agree



with the results from classical transmission loss theory



when higher modes are neglected.
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APPENDIX B



MULTILAYER SOUND TRANSMISSION LOSS PROGRMAM
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ANGLE=
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ORIGINAL PAGE IS



OF POOR QUALITLISTING OF PROGRAM 
B.2: 


B.2.1: LISTING OF TLOSS



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCC 
C C


C C


C PROGRAM TO CALCULATE THE TRANSMISSION LOSS ACROSS C


C MULTI-LAYERED AIRCRAFT SIDE-WALL C


C C


C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCC 

C 
C 
C####### THIS PROGRAM CALCULATES THE TRANSMISSION LOSS OF


C####### AIRCRAFT SIDE-WALL WITH NOISE CONTROL TREATMENTS.
 

C 
C 
C################# VERSION : 1 9################4 
C################## PROGRAMMER : RNAVANEETHAN ################## 
C################ DATE : 20-DEC-82 ################## 
C 
C 
C# ###### 

C 
C REFERENCES 
C 1. WILBY ET AL,"INTERIOR NOISE CONTROL PREDICTION
 

C STUDY FOR A HIGH-SPEED PROPELLER DRIVEN


C AIRCRAFT", NASA CR 159200 SEPT 1979


C 2. REVELL E.D. ET AL,"ANALYTICAL STUDY OF INTERIOR


C NOISE CONTROL BY FUSELAGE DESIGN TECHNIQUES ON


C HIGH-SPEED PROPELLER DRIVEN AIRCRAFT", NASA CR


C 159222,1980.


C 3. BERANEK L.L.,"NDISE AND VIBRATION CONTROL",


C MCGRAW-HILL,1971.


C


C#######



C 
C FOR FURTHER DETAILS OF THE EQUATIONS USED IN THE PROGRAM REFER



KU-FRL REPORT KU-FRL-REP-417-19.


C 
C#######


C INPUT DATA


C THE NAME OF THE DATA FILE NEEDS TO BE INPUT


C INTERACTIVELY. SEE USER'S MANUAL FOR THE


C INPUT DATA AND FILE FORMAT


C


C OUTPUT DATA


C BOTH ON PRINTER AND DATA FILE (NAME TO BE


C SPECIFIED INTERACTIVELY


C


C OTHER DETAILS:
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C THE MAIN PROGRAM "TLOSS" IS ON THIS FILE 
C NAMED 'MLAYER.FOR'. THE SUBROUTINES ARE 
C ARE AVAILABLE ON A FILE NAMED 'BLAYER.-FOR'. 
C THE FUNCTIONS NOT AVAILABLE IN THE SYSTEM 
C LIBRARY OF MINC ARE GIVEN IN 'CLAYER.FOR!. 
C TO EXECUTE COMPILE MLAYERBLAYERCLAYER AND 
C LINK TO GET AN EXECUTABLE FILE 'MLAYER.SAV'. 
C THIS HAS BEEN DONE. TO EXECUTE : 
C 1. PREPARE DATA FILE ACCORDING TO 
C USER'S MANUAL. 
C 2. TYPE 'RUN MLAYER <CR>' 
C 3. WHEN ASKED FORGIVE INPUT DATA 
C FILE AND OUTPUT DATA FILE. 
C 
C FILE NAME FORMAT IN MINC 
C REFER RT-11 OPERATING MANUAL 
C 
C



PROGRAM TLOSS


C


C####### DIMENTION STATEMENTS



DIMENSION L(IO),THETA(IO),THICK(IO),SDENS(IO),DENS(1O),P(IO)


DIMENSION R(IO),FREQ(27),ANG(23),PRESS(2),TEMP(2),THK(51)


DIMENSION THIK(5),PT(5),RTCS),SDEN(IO),DEN(5),C(IO)


DIMENSION TLT(27),TLA(27)


REAL IO1,I02,NU


COMPLEX ZCAP(1O),Z(1O),B(1O),XI(IO),X2(IO),PRATIO(1O)


COMPLEX RRPIP(23),PIT(23),Z2UTZIUTZPCOSH,CC


BYTE INAME(15),ONAME(15)


COMMON/COM/THTH2,THETAAMACHPRESS,C


COMMON/ONEI/HRHO


COMMON/ONE2/AI,ECIIO1,.IIA2,EC2,102,J2,EII1,E2,G2


COMMON/ONE3/ESKNU,ETAB1,B2,ICYL,A


COMMON/ONE4/PAXPCIR


COMMON/ONES/SKDEN,ETASKFOSK


COMMON/TWO/THICK


COMMON/THREE/DENSPR


COMMON/FIVEI/SDENS


COMMON/FIVE2/ETATPFOTSLPFAC


DATA INAME,ONAME/30*O/



C####### FREGUENCY VALUES AT WHICH TL IS CALCULATED.


C



DATA FREQ/20.,40.,60.,80.,IO0.1125.,150.,175.,200.,225.,250.,300.,


&400.,500.,600.,700.,SOO.,9O00.,1.,I5OO.,2000.,2500.,3000.,


&3500.,4000.,4500.,5000./


C



C####### ANGLES OF INCIDENCE USED IN THE RANDOM INCIDENCE INTEGRATION
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C 
DATA ANG/O.,4.,8.,12.,16.,20.,24.,28.,32.,36.,40.,44.,48.,52.,


856.,60.,64.,68.,72.,76,,80.,84,,88./


NFREO=27


NANO=23


PI=3,141592654


C



C####### READ DATA FILE NAME


C



° 
 TYPE*, ENTER NAME OF THE INPUT FILE


ACCEPT i0O,(INAME(I),I=1,14)



C


C####### READ OUTPUT FILE NAME


C



TYPE*,' ENTER NAME OF THE OUTPUT FILE


ACCEPT i00,(ONAME(I),I=1,14)



100 FORMAT(14AI)


C


C###### OPEN INPUT DATA FILE, READ DATA AND CLOSE INPUT DATA FILE


C



OPEN (UNIT=S,NAME=INAME,TYPE='OLD',FORM='FORMATTED1 )



C


C####### READ AMBNT CONDITIONS AND INCIDENT ANGLES


C



READ (8,105) PRESBS(IPRESS(2),TEMP(1),TEMP(2),AMACH


READ (8,103) IA


IF(IA.NE.1) GO TO S1


READ (8,105) TH


GO TO 83



81 IF(IA.NE.2) GO TO 1004


83 CONTINUE


C


C####### READ NUMBER OF LAYERS OF TREATMENT AND TYPE OF LAYERS


C



READ (8,103) N


READ (8,103) NSKIN,NAIR,NFIBERINSEPTAINTRIM



103 FORMAT(515)


IFiUNSKIN+NAIR+NFIBER+NSEPTA+NTRIM).NE.N) GO TO 1000



C


C####### READ TYPE OF IMPEDANCE MODEL FOR SKIN AND ETAILS OF SKIN


C####### IF SKIN IS PRESENT


C



READ (8,103) (L(I),I=IN)


IF(NSKIN.EQ.0) GO TO I


READ (6,103) ISKIN


IF(ISKIN .NE. 1) G0 TO 2


READ (6,105) H,RHO



105 FORMAT(7FI0.4)
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GO TO 	 1 
2 	 CONTINUE



IF(ISKIN.NE.2) 60 TO 3


READ (,-103)I-C-YLo


READ (8,105)A,H,RHONUETAB1,B2,AIECI,IO1,J1,A2,EC2wIO2,J2,


READ (S,107)ESK,E,S1,E2,G2



107 	 FORMAT(5E10.2)


GO TO I



3 	 CONTINUE


IF(ISKIN.NE.3) GO TO 19


READ (6,1O5)HR,NUETAS1,B2,PAX,PCIR


READ (8,107)ESK


O0 TO 1



19 CONTINUE


IF(ISKIN.NE.4) SO TO 1001


READ (8,105)SKDEN,ETASK,FOSK



I CONTINUE


C


C####### IF AIRGAP LAYERS ARE PRESENT READ THEIR THICKNESS


C



IF(NAIR.EQ.0) SO TO 4


READ (8,105) (THIK'(I),I=1,NAIR)



4 CONTINUE


C


C####### IF-FIBERGLASS INSULATION LAYERS ARE PRESENT READ THEIR


C####### CHARACTERISTICS


C



IF(NFIBER.EQ.0) SO TO 5


DO 611 I=1,NFIBER


READ (8,105) DEN(I),RT(I),PT(I)ITHK(I)



611 CONTINUE


5 CONTINUE


C


C####### IF SEPTA ARE PRESENT READ THEIR SURFACE DENSITIES


C.



IF(NSEPTA.EQ.0) GOTO 6


READ(SI05)(SDEN(I),I=INSEPTA)



6 CONTINUE


C


C####### IF TRIM IS PRESENT READ ITS IMPEDANCE MODEL AND


C####### CHARACTERISTICS


C



IF(NTRIM.EQ.O) SO TO 7


READ(8,103) ITRIM


IF(ITRIM.NE.1) GO TO 8


READ(8,105) SURDEN



-°

GOTO 7 
 
9 IF(ITRIM.NE.2) GO TO 1002
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READ(S,105)SURDEN,ETATPFOT,SLPFAC


7 CONTINUE


C


C####### END READ STATEMENTS


C


C


C####### CALCULATE SPEED OF SOUND AND AIR DENSITY (OUTSIDE AND INSIDE)


C



DO 10 I=1,2


C(1)=20.05*SORT(273.+TEMP(I))


RO(I)=.00348272*PRESS(I)!(TEMP(I)+273.)



10 	 CONTINUE


RO(NI)=RO(2)


C(N+I)=C(2)



C


C####### ASSIGN THE CHARACTERISTCS OF LAYERS IN THE CORRECT ORDER


C



KAIR=I


KFIBER=I


KSEPTA=I


KTRIM=i


KSKIN=1


DO 11 I=I,N


IF(L(I).NE.i) GO TO 12


THICK(I)=H


KSKIN=KSKIN+I


GO TO 11



12 IF(L(Il).NE.2) GO TO 13


THICK(I)=THIK(KAIR)


KAIR=KAIR+i


GO TO 11



13 	 IF(L(I).NE.3) GO TO 14


DENS(I)=DEN(KFIBER)

R(I) =RT(KFIBER)



P(I) =PT(KFIBER)


THICK(I)=THK(KFIBER)


KFIBER=KFIBER+1


SDENS(I)=DENS(I)*THICK(I)


GO TO 11



14 IF(L(I).NE.4) GO TO 15


SDENS(I)=SDEN(KSEPTA)


KSEPTA=KSEPTA+I


GO TO 11



15 	 SDENS(I)=SURDEN


KTRIM=KTRIM+1



11 CONTINUE


CLOSE(UNIT=S)



C
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C####### PRINT INPUT VALUES


C 

WRITE(6,200) 
200 -FORMAT-(' 'd". INPUT DATA //) 

WRITE(6,201) 
201 FORMAT(' AMBIENT CONDITIONS /) 

WRITE (6,202)PRESS(1) 
202 FORMAT(' OUTSIDE PRESSURE(PASCAL) ',FI0.2) 

WRITE (6,203)TEMP(1) 
203 FORMAT(' OUTSIDE TEMPERATURE(DES C)= ',F10.2) 

WRITE (6,204)PRESS(2) 
204 FORMAT(' INSIDE PRESSURE(PASCAL) ',F10.2) 

WRITE(6,205)TEMP(2) 
205 FORMAT(' INSIDE TEMPERATURE(DEG C) ',F1O.2) 

WRITE(6,206) AMACH 
206 	 FORMAT(' MACH NUMBER ',F1O.2)



IF(IA.EQ.2) GOTO 16


WRITE(6,232)TH



232 	 FORMAT(' ANGLE OF INCIDENCE(DEG) = ',F10.2) 
SO TO 17



16 WRITE(6,233)


233 FORMAT(' ANGLE OF INCIDENCE = RANDOM')


17 	 CONTINUE



DO 20 I=1,N


IF(L(I).NE.1) GO TO 21


WRITE(6,207)I



207 	 FORMAT(/' LAYER # ',12,' IS SKIN'/)


WRITE (6,208) ISKIN



208 	 FORMAT(' IMPEDANCE MODEL FOR SKIN = ',I1/)


IF(ISKIN .NE. 1) 00 TO 22


WRITE (6,209) HRHO



209 FORMAT(' THICKNESS OF-SKIN(M) = lFS.4,/,' DENSITY ,OF 
& SKIN(KS/CU M) = ',F6.1) 
G0 TO 20 

22 CONTINUE 
IF(ISKIN.NE.2) GO TO 23


WRITE(6,210)A,HRHOIETASK


WRITE (6,211)


WRITE (6,212)B1,AIECl,IO1,J1,El,G1


WRITE(6,213)


WRITE (6,212)B2,A2,EC2,IO2,J2,E2,32



210 FORMAT(' RADIUS OF THE PANEL(M) ',FB.4,I,' THICKNESS OF 
&SKIN(M) = ',FB.4,/,' DENSITY OF SKIN(KG/CU M) = ',F6.1, 
&/,' YOUNG"S MOD OF S/M2) a ',EI0.2) 

211 FORMAT(/' STRINGER (STIFFENER) CHARACTERISTICS') 
213 FORMAT(/' FRAME CHARACTERISTICS') 
212 FORMAT(' SPACING(M) = ',FB.3,/,' X-SEC AREA(M2) 

&,F8.3,/,' ECCENTRICITY(M) ',FS.3,/,' MOM OF INERTIA(M4)= 
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&,EB.2,/,' TORSION CONST(M4) =',ES.2/,' YOUNG"S MOD(N/M2) = 
&,E8.2,/,' SHEAR MOD(N/M2) = 1,EB.2/) 
GO TO 20 

23 IF(ISKIN.NE.3)GOTO 82 
WRITE(6,215)H,RHO,B1,B2,PAX,PCIR 

215 FORMAT(' THICKNESS OF SKIN(=M),FS.4,I,' DENSITY OF 
& SKIN(KG!CU M) ',F6.1,/' LENGTH OF PANEL(M) ',F.4, 

/,' WIDTH OF PANEL M) = 'JF.,/,' SKIN LOAD/UNIT 
&LENGTH(N/M)= ',FIO.4,/,' CIRCUM SKIN LOAD(N/M) = ,F10.4) 
SOTO 20



82 WRITE(6,223)SKDENETASK,FOSK


223 FORMAT(' SURFACE DENSITY(KS/SO M) ',F7.4,/,' DAMPING



&RATIO = ,FS.3,/,' FUND. RESONANCE FREO(HZ) =


&,F4.0)


GO TO 20



21 	 CONTINUE


IF(L(I).NE.2) GO TO 24


WRITE(6,216)I



216 FORMAT(/' LAYER # ',12,' IS AIRGAP 1/)



WRITE(&,217) THICK(I)


217 FORMAT(' THICKNESS OF AIRGAP(M) ',F8.4)



GO TO 20


24 	 CONTINUE



IF(L(I).NE.3) GO TO 25


WRITE(6,225)I



225 	 FORMAT(/' LAYER # ',12,' IS FIBERGLASS 'I)


WRITE(6,218)DENS(I),R(1),P(I),THICK(I)



216 FORMAT(' DENSITY(KG/CU M) = ',F6.i,/,' RESISTIVITY 
&(MKS RAYLS) = ',F7.0,/,' POROSITY 9 
&F3.1,/,' THICKNESS(M) = ,FS.4 
GO TO 	 20



25 	 CONTINUE


IF(L(I).NE.4) GO TO 26


WRITE(6,226) I



226 FORMAT(/' LAYER # ',12,' IS SEPTUM '/)


WRITE(6,219)SDENS(I)



219 FORMAT(' SURFACE DENSITY(KG/SQ M) ',F7.4)


0O TO 20



26 CONTINUE


IF(L(I).NE.5) GO TO 20


WRITE(6,227)I



227 	 FORMAT(/' LAYER # ',I2,' IS TRIM'/)


WRITE(6,220) ITRIM



220 FORMAT(' IMPEDANCE MODEL FOR TRIM ',II/)


IF(ITRIM.NE.1) GO TO 28


WRITE(6,221) SDENS(I)



221 	 FORMAT(' SURFACE DENSKS/SO M) = ',F7.4)


SOTO 20



364





ORIGINAL PAGE 1


OF poOR QUALITY



28 	 CONTINUE


WRITE(6,222)SDENS(I),ETATPFOTSLPFAC



222 FORMAT(' SURFACE DENSIT-Y(KG/SQ'M) ',F7.4,/,' DAMPING 
&RAT-IO - = ',F5.3,1,' FUND. RESONANCE FREQ(HZ) = 
&,F4.0,/,' SLOPE FACTOR ',F5.3) 

20 CONTINUE 
WRITE C6,2501lINAMECKK),KK=1,14) 

250 FORMAT(//IOX9' INPUT FILE NAME = ',14A1,) 
WRITE(6,251)(ONAME(KK),KK=1,14) 

251 FORMAT(IOX,' OUTPUT FILE NAME = ',14A1,/) 
C 
C####### START OF FREUENCY LOOP


C



IF(IA.EQ.I)TH=TH*PI/1SO.


DO 30 I=1,NFREQ


W=2.*PI*FREO(1)


ZCAP(N+I)=CMPLXCRO(N+I)*C(N+I),O.)



C


C###### CALCULATE CHARACTEISTIC IMPEDANCE FOR AIRGAPS AND POROUS


C####### FIBERGLASS INSULATIONS
 

C



DO 40 KI=1,N


KK=KI


IF(L(KI).NE.3) SOTO 41


CALL PCBKT(KK,W,RO(N+I),ZCAP(KI),B(KI))


C(KI)=W/(AIMAS(B(KI)))


80 TO 40



41 	 CONTINUE


IF(L(KI).NE.2)GO TO 40


RO(KI)=RD(N+I)


C(KI)=C(N+I)


ZCAP(KI)=CMPLX((RO(I)*C(KIl)),0.)



40 	 CONTINUE


C


C####### FOR SPECIFIC ANGLE OF INCIDENCE SET COUNTER J=l


C



J=l


IF(IA.EQ.1) GOTO 31



C


C####### LOOP FOR RANDOM ANGLES OF INCIDENCE


C



DO 32 J=I,NANG


TH=ANG(J)


TH=TH*PI/10.



31 	 CONTINUE


THETA(1)=TH


ITEMP=I


L(N+I)=2
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C 
C#O##f # CALCULATE THE ANGLE OF TRANSMISSION FOR AIRGAPS AND FIBERGLASS


C



DO 45 KI=i,N+1


THETA(KI)=THETA(ITEMP)


IF((L(KI).NE.2).AND.(L(KI).NE.3))60 TO 45


TE=C(KI)*SINA(ITEMP))/C(ITEMP)


IF(TE.'T.1.) GO TO 1003


CALL ASIN(TE,THETA(KI))


ITEMP=KI



45 	 CONTINUE


C


C####### CALCULATE THE IMPEDANCE AND PRESSURE RATIO OF UNTREATED SKIN,


C####### IF PRESENT.


C



IF(NSKIN.EO.O) GO TO 33


TRI=(C(2)/C(1)*COS(TH)/(I.+AMACH*COS(TH)))**2


IF(TR1.GT.I.) 60 TO 1003


CALL ASIN(SQRT(I.-TRI),TH2)


Z2UT = CMPLX(RO(N+I)*C(N+I)/COS(TH2),O.)


IF(ISKIN .EQ.I) CALL DPAI(W,Z2UT,ZIUT,ZP)


IF(-ISKIN.EO.2) CALL DPA2(W,Z2UT,ZIUT,ZP)


IF(ISKIN.EQ.3) CALL DPA3(W,Z2UT,Z1UT,ZP)


IF(ISKIN.EO.4) CALL DPA4(W,Z2UT,ZIUT,ZP)


PIP(J) = CMPLX(I.,O)


CC=CMPLX(RO(1)*C(1)/(COS(TH)*(I.+AMACH*SIN(TH))),O.)


PIP(J) = PIP(J)+ZIUT/Z2UT+CC/Z2UT


GO TO 34



C


C####### IF SKIN NOT PRESENT SET PRESSURE RATIO TO (l.,0.)


C


33 PIP(J)=CMPLX(I.,O,)


34 CONTINUE


C


C####### CALCULATE SPECIFIC IMPEDANCE OF EACH LAYER FROM ITS


C####### CHARACTERISTIC AND TERMINATING IMPEDANCE. START FROM


C####### INTERIOR.


C



Z(N+I)=ZCAP(N+I)


Z(N+I)=Z(N+I)/COS(THETA(N+I))


DO 46 KI = N,AI,-1


KK=KI


IF(L(KI).NE.5) GO TO 47


IF(ITRIM.EO.I) CALL TRIMI(KK,WZ(KK+I),Z(KK),ZCAP(KK))


IF(ITRIM.EQ,2) CALL TRIM2(KK,WZ(KK+I),Z(KK),ZCAP(KK))


GO TO 46



47 	 CONTINUE


IF(L(KI),NE.4) GO TO 48
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CALL TRIMI(KK,',Z(KK+),Z(KK),ZCAP(KK))


GO TO 46



48 	 CONTINUE


IF(L-(K-I-i.NE.3) GO TO 49


ZCAP(KI)=ZCAP(KI)/COS(THETA(KI))


CALL GAP(KKZCAP(KK),B(KK),Z(KK+I),W,Z(KK),XIK),X2(KK))


GO TO 46



49 	 CONTINUE


IF(L(KI).NE.2) GO TO 50


ZCAP(KI)=ZCAP(KI)/COS(THETA(KI))


B(KI)=CMPLX(O.,(W/C(KI)))


CALL GAP(KKZCAP(KK),B(KK),Z(KK+I),WZ(KK),XI(KK),X2(KK))


GO TO 46



50 	 CONTINUE


IF(L(KI).NE,1) SO TO 46


IF(ISKIN.EO.I) CALL DPAI(W,Z(KK+I),Z(KK),ZCAP(KK))


IF(ISKIN.Eg.2) CALL DPA2(W,Z(KK+I),Z(KK),ZCAP(KK))


IF(ISKIN.EO.3) CALL DPA3(W,Z(KK+I),Z(KK),ZCAP(KK))


IF(ISKIN.EO.4) CALL DPA4(W,Z(KK+I),Z(KK),ZCAP(KK))


CONTINUE



C


C####### CALCULATE PRESSURE RATIOS OF INDIVIDUAL LAYERS FROM THEIR


C####### SPECIFIC AND THEIR TERMINATING IMPEDANCES


C



DO 55 KI=IIN


IF(L(KIl).NE.I) SOTO 56


PRATIO(KI)=CMPLX(I.,O.)


CC=CMPLX(RO()*C(1)/(COS(TH)*(I.+AMACH*SIN(TH))),O.)


PRATIO(KI)=PRATIO(KI)+Z(KI)IZ(KI+1)+CC/Z(KI +)


GO TO 55



56" 	 CONTINUE


IF((LCKI).NE.2).AND.(L(K-I).NE.3)) GO TO 57


PRATIO(KIh=COSH(X2(KI)1/COSH(XI(KI))


GO TO 55



57 CONTINUE


CC=CMPLX(COS(THTA(KI))90.)


CC=ZCAP(KI)*CC/Z(KI+i)


PRATIO(KI)=CMPLX(I.,0.)+CC



55 	 CONTINUE


C


C####### CALCULATE THE PRESSURE RATIO ACROSS ALL LAYERS


C



PIT(J)=(1.1O.)



DO 60 KI=I,N


PIT(J)=PIT(J)*PRATIO(KI)



60 	 CONTINUE


C


C####### EXIT ANGLE LOOP IF SPECIFIC ANGLE OF INCIDENCE
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IF(IA.NE.2) GO TO 61


32 CONTINUE


C


C####### FOR RANDOM INCIDENCE INTEGRATE OVER THE ENTIRE ANGLE RANGE


C



DO 62 KI=I,NANG


TH=ANS(KI)*PI/I5O.


YI(KI)=CABS(PIP(KI))**2*SIN()


Y2(KI)=CABS(PIT(KI))**2*SIN(2.*TH)



62 	 CONTINUE


STEP=(EB./(NANG-I))*PI/1S0.


CALL SIMP(STEP,YI,PIA,NANG)


CALL SIMP(STEP,Y2,P2A,NANG)



C


C####### FOR RANDOM INCIDENCE CALCULATE THE UNTREATED AND TREATED


C####### TRANSMISSION LOSS.


C



TLT(I)=I0.*ALOE1O(P2A)


TLA(I)=1O.*ALOGIO(PA)


GO TO 30



C


C####### FOR SPECIFIC INCIDENCE CALCULATE UNTREATED AND TREATED


C####### TRANSMISSION LOSS


C


61 CONTINUE



TLT(I)=10.*ALOGLO(CABS(PIT(1))**2)


TLA(I1iO.*ALOGIO(CABS(PIP(1))**2)



30 CONTINUE


C


C####### END OF FREQUENCY LOOP


C


C####### ON THE PRINTER GO TO NEXT PAGE (FORM FEED). THIS IS DUE


C####### INHERENT RESTRICTION OF LA 120 (DECWRITER III)


C



CLOSE(UNIT=6)


OPEN(UNIT=6)



C


C####### PRINT THE FREQUENCY,UNTREATED TL,TREATED TL AND ADD. TL DUE


C####### TO TREATMENT


C



WRITE(6,500)


500 FORMAT(////,17X,' SOUND TRASMISSION LOSS OF TREATED PANEL'//)



WRITE(6,501)


° 
 501 FORMAT(/TI3,'FREQUENCY',T28,'UNTREATE TL',T43, TREATED TL '58,



&'ADDITIONAL TL')


WRITE(6,502)



502 FORMAT(TI6,'HERTZ',T33,'DB',T48,'DB',T63,'DB'/)
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DO 70 	 I=I,NFREO


WRITE(6,503) FREQ(I),TLA(I),TLT(I),(TLT(I-TLA I))



70 CONTINUE


503 -FORMAT-I-3X,FS.0,7X,3(3X,FB.2,4X))


C


C####### OPEN AND WRITE IN OUTPUT DATA FILE


C



OPEN(UNIT=9,NAME=ONAMETYPE='NEW')


DO 71 I=I,NFREQ



71 WRITE(9,505)FREG(!),TLA(I)


505 FORMAT(TIOFS.Q,FS,2)



DO 72 I=INFREQ


72 WRITE(9,505)FREO(I),TLT(I)



DO 73 I=I,NFREQ


73 WRITE(9,505)FREQ(I),(TLT(I)-TLA(I))



CLOSE(UNIT=9,DISPOSE='SAVE')


GO TO 1100



C


C####### ERROR MESSAGES


C


1000 CONTINUE 

TYPE*,'TOTAL NUMBER OF LAYERS DO NOT MATCH WITH INDIVIDUAL LAYERS 
& SPECIFIED!' 
GO TO 1100 

1001 CONTINUE 
TYPE*,' SKIN IMPEDANCE MODEL',ISKIN,' IS NOT AVAILABLE!' 
GO TO 1100 

1002 CONTINUE 
TYPE*,' TRIM IMPEDANCE MODEL',ITRIM,' IS NOT AVAILABLE!' 
SO TO 1100 

1003 CONTINUE 
TYPE*,' THE INCIDENCE AN IS GREATER THAN CRITICAL ANGLE FOR 

& TRANSMISSION!' 
O0 TO 1100 

1004 	 CONTINUE 
TYPE*,' ERROR IN THE SPECIFICATION OF INCIDENCE ANGLE !' 

TYPE*,' ALLOWED OPTIONS : I = DISCRETE AND 2 = RANDOM' 
1100 CONTINUE


C


C####### END OF PROGRAM


C



STOP


END
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3.2.2: LISTING OF BLAYER



CCCCCCCCCCCCcccccccccCCC CCCCCCCCCCCCCCCCCCCCC CCC CCCCCCCC0CCCCCCCCC



C C 

C C 

C SUB-PROGRAM FOR SOUND TRANSMISSION C 
C THROUGH FOR MULTI-LAYERED PANEL C 
C C 
C 
0000000CC 000CCC 00C000CC0C00CCC 0000000CCCC CCC 

C 
CCCCCCCC0CC 00CCC 

C 
C 

C####### THIS SUB-PROGRAM CONTAINS THE SUBROUTINES FOR THE


C####### TRANSMISSION LOSS OF AN AIRCRAFT SIDE-WALL WITH NOISE


C####### CONTROL TREATMENTS
 

C


C##4##A########### VERSION 1 #######0############


C################ PROGRAMMER : R.NAVANEETHAN #########4##########


C################# DATE 27-DEC-82 ###################


C


C#######



C



C FOR REFERENCES REFER TO LISTING OF THE MAIN PROGRAM


C "MLAYER.FOR"


C

C######U############################################## ###"####### #### #



C


C


C SUBROUTINE FOR THE DETERMINATION OF THE IMPEDANCE OF SKIN PANEL



C IMPEDANCE MODEL # I
 

C MASS LAW


C



SUBROUTINE DPAI(WI,Z2,ZI,ZP)


COMMON /CO/ TH,TH2,THETA,AMACH,PRESS,C


COMMON IONEI/ H,RHO


COMPLEX Z1,Z2,ZP


REAL-M,THETA(IO),PRESS(2),C(10)



C


C####### CALCULATE IMPEDANCE OF THE PANEL


C



M RHO*H


PI = 3.1415V2654


ZP CMPLX(0.,WI*M)



C


C#O##### CALCULATE THE IMPEDANCE OF THE LAYER


C



ZI=ZP+Z2


11 RETURN



END


C
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C
C 

C SUBROUTINE FOR THE DETERMINATION OF THE IMPEDANCE OF THE SKIN PANEL


fC IMPEDANCE MODEL # 2


C MIKULAS EQUATION


C



SUBROUTINE DPA2(WI,Z2,ZIZP)


COMMON /CO/ THTH2,THETAAMACHPRESS,C


COMMON /ONE1I/ HRHO


COMMON IONE2/ A1,ECI,IO1,J1,A2,EC2,IO2,J,EI,S1,E2,62,ICYL,A


COMMON /ONE3/ ESKNUETA,BIB2


COMPLEX ZPZ2,Z1


REAL M,IOII02,THETA(IO),PRESS(2),NUC(IO)


M = H*RHO


D = (ESK*H**3)/(12.*(1.-NU**2))


PI = 3.141592654



C


C####### RESONANCE FREQUENCY STIFFENED PANEL. NEGLECTS MEMBRANE


C####### STIFFNESS OF THE CYLINDER.(MIKULAS EQUATION)


C####### M=l N=.5 REFER NASA CR 159200


C


C


C####### CALCULATE BENDING AND TORSION PARAMETERS
 

C



RBP=E2*(A2*EC2**2+102)/(D*B2)


SBP=EI*(AI*ECI**2+IO1)/(D*BI)


RTP=G2*J2/(D*B2)


STP=Gt*Jt/(D*Bt)



C


C####### SET DEL AND M FOR FLAT PANELS


C



IF(ICYL.EQ.2) GO TO 201


DEL=I.



- AM=1.0


DELP=O.


SOTO 202



C-


C####### SET DEL AND M FOR CURVED PANELS
 

C



201 	 CONTINUE


AN=.5


AM=I.


DEL=AN*BI/AM*PI*A


DELP=(PRESS(2)-PRESS(1))*A/2.*(AM*BI/PI)**2/D*(I.+2.*DEL**2)



202 CONTINUE


C


C####### CALCULATE THE RESONANCE FREQUENCY


C
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WO2=AM**4*((1.+DEL**2)**2+SBP+DEL**2*(RTP+STP)+DEL**4*RBP))+DELP


WOT=(PI/BI)**2*SQRT(DIM)*SQRT(W02)



C


C###### CALCULATE IMPEDANCE OF THE PANEL


C



ZPR1 = ((WOT**2)/W1)*M*ETA


ZPR2=((WI**3)ETA*((SIN(TH))**4))/((C(I)**4)*



((I.+AMACH*SIN(TH))**4))


ZPCI = (W1*M)-(((WOT**2)*M)/WI)


ZPC2 = -((WOT**3)*D*((SIN(TH))**4))/((C(i)**4)*



&((I.+AMACH*SIN(TH))**4))


ZP = CNPLX(ZPRI+ZPR2,ZPCI+ZPC2)



C


C####### CALCULATE THE IMPEDANCE OF THE LAYER


C 

Z='ZP+Z2 
11 RETURN 

END 
C 
C 
C SUBROUTINE FOR THE DETERMINATION OF THE IMPEDANCE OF THE SKIN PANEL 
C IMPEDANCE MODEL * 3 
C PRESSURIZED PANEL 
C 

SUBROUTINE DPA3(WIZ2,ZI,ZP) 
COMMON /COM/ THTH2,THETAAMACH,PRESS,C 
COMMON /ONEI/ HRHO 
COMMON /ONE3/ ESK,NU,ETA,BI,B2 
COMMON /ONE4/ PAX,PCIR 
COMPLEX ZPZ2,ZI 
REAL M,NU,THETA(1O),PRESS(2),C(10) 
M = H*RHO 
D = (ESK*H**3)/(12.*(I.-NU**2)) 
PI = 3.141592654 

C 
C######M CALCULATE THE RESONANCE FREQUENCY


C



W01 = (PAX/(B2**2))+(PCIR/(BI**2))+(D*PI**2)*I((1./B2**2)


&+(I./B1**2))**2)


WOT = (PI/SQRT(M))*SQRT(WG1)



C


C####### CALCULATE THE IEDANCE OF THE PANEL


C



ZPRI = ((WOT**2)/W1)*M*ETA


ZPR2=W**3*D*ETA*(SIN(TH)/(C(I)*(I.+AMACH*SINCTH))))**4


lPCI = (WI*M)-(((WOT**2)*M)/WI)


ZPC2 =-((WOT**3)*D*((SIN(TH))**4)}/((C(I)**4)*



&((I.+AMACH*SIN(TH))**4))
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ZP = CMPLX(ZPRI+ZPR2,ZPCI+ZPC2) 
C 
C#9##### CALCULATE THE IMPEDANCE OF THE LAYER 

ZI=ZP+Z2

11 RETURN


END

C 
C 
C 
C

C SUBROUTINE FOR THE DETERMINATION OF THE IMPEDANCE OF THE SKIN PANEL 
C IMPEDANCE MODEL # 4 
C 

c 

SUBROUTINE DPA4(WI,Z2,ZIZP) 

COMMON /COMI TH,TH2,THETA,AMACH,PRESS,C 

COMMON /ONE5/ SKDENETASKFOSK 

COMPLEX ZP,Z2,Z1 

REAL M,THETA(1O),PRESS(2),C(1O) 

M = SKDEN 
PI 3.141592654 

C

C####### RESONANCE FREQUENCY IS GIVEN


C 

WOT=2.*PI*FOSK


C

C####### 
 CALCULATE THE IMPEDANCE OF THE PANEL
 
C


ZPRI = 2.*M*ETASK*WOT


ZPC1 = (WI*M)*(I.-(WOT/WI)**2)


ZP = CMPLXAZPRI,ZPCI)



C


C###### CALCULATE THE IMPEDANCE OF THE LAYER
 

C



ZI=ZP+Z2


11 RETURN



END


C 
C 
C 
C

C SUBROUTINE FOR THE DETERMINATION OF THE IMPEDANCE OF TRIM 
C TRIM IMPEDANCE MODEL # I 
C MASS LAW 
C

C 
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SUBROUTINE TRIMI(KKW1,Z2,ZI1 ZP)


COMMON /FIVEI/ SDENS


COMPLEX ZP,Z2Zl


REAL M,SDENSUO)



C


C####### CALCULATE THE IMPEDANCE OF THE PANEL


C 

IP = CMPLX(O,,W1*SDENS(KK))


C 
C####### CALCULATE THE IMPEDANCE OF THE LAYER


C 

71 = ZP + Z2 
RETURN


END 

C 
C 
C 
C SUBROUTINE FOR THE DETERMINATION OF THE IMPEDANCE OF TRIM


C IMPEDANCE MODEL # 2


C EXPERIMENTAL VALUES


C 
C 
C 

SUBROUTINE TRIM2(KK,WI,Z2,ZI,ZP)


COMMON /FIVEI/ SDENS


COMMON /FIVE2/ ETATP,FOT,SLPFAC


COMPLEX ZP,ZI,Z2
 

REAL M,SDENS(IO)


PI = 3.141592654


M=SDENS(KK)


WOT=2.*PI*FOT



C


C## ##### CHANGE SLOPE IF FRED >500.


C



ASLP=SLPFAC


IZR=O


IF(WI.GT.3141.59)IZR=1


ZPCI = (W1**(I.-(WOT/W1)**2)


IF(IZR.EQ.O) GO TO 13


AK=IO.**(ASLP*6/20.)


Z500=(3141,59*M)*(I.-(WOT/3141.59)**2)


AN=ALOGIO(W1/3141.59)/ALOSIO(2.)



C 
C####### CALCULATE IMPEDANCE OF THE PANEL FROM MASS-LAWW IMPEDANCE


C####### AT 500HZ AND THE MEASURED SLOPE


C



ZPC1 = Z500*AK**AN
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13 CONTINUE 
ZP = CMPLX(2.*ETATP*WOT*M,ZPCI) 

C 
.C#####- CALCULTE THE IMPEDANCE OF THE LAYER


C



ZI = ZP+Z2


11 RETURN 

END


C 
C 
C
C 

C SUBROUTINE FOR THE DETERMINATION E IMPEDANCE OF


C AIRSAP AND INSULATION


C 
C 
C



SUBROUTINE GAP(KKIZCP,BPIZ2,WIZIXII,X22)


COMPLEX BP,Z2,ZI,ZCP,XII,X22,ACOTHCOTH


COMMON/COM/TH,TH2 1THETAAMACHPRESSC


COMMON/TWO/THICK


REAL THETA(IO),PRESS(2),C(IO),THICK(IO)


PI=3.1415962



C


C####### CALCUALTE THE XSII (FUNCTION OF TERMINATING IMPEDANCE)


C



XII =ACOTH(Z2/ZCP)


C


C####### CALCULATE THE XS12 (FUNCTION OF THE IMPEDANCE OF THE LAYER)


C



X22 = CMPLX(THICK(KK)*COS(THETK)),O.)


X22 =X22*BP+Xll



C


C####### CALCULATE THE IMPEDANCE OF THE LAYER


C



Z1 = ZCP*COTH(X22) 
RETURN 
END



C 
C 
C 
C SUBROUTINE FOR THE INTEGRATION


C SIMPSON'S RULE


C


C



SUBROUTINE SIMP(INC,Y,Z,NDIM)
 

REAL INC


DIMENSION Y(NDIM)
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NI=NDIM-I 
N2=NDIM-2 
SUMI=O. 
SUM2=0. 

C 
DO 5 J=2,N1,2 
SUMI=SUMI+4*Y(J) 

5 CONTINUE 
C 

DO 10 J=3,N2,2 
SUM2=SUM2+2*Y(J) 

10 CONTINUE 
C 

SUM = Y(1) + Y(NDIM) 
Z = (SUM + SUMI + SUM2)*INC/3. 

C 
RETURN 
END 

C 
C 
C 
C SUBROUTINE TO CALCULATE THE CHARACTERISTIC IMPEDANCE AND 
C PROPAGATION CONSTANT OF POROUS FUBERGLASS MATERIAL 
C (SEE REFERENCE # 3 IN MLAYER.FOR) 
C 

SUBROUTINE PCBKT(KK,W1,RHO2,ZCP,BP) 
COMMON/THREE/DENS,P,R 
REAL K 
COMPLEX BP,ZCP,RHOP,JW 
REAL DENS(1O),P(I0),R(1O) 
DENSIzDENS(KK) 
PI=P(KK) 
RI=R(KK) 
PI=3.1415962 

C 
C##f#### CALCULATE THE COMPRESSIBILTY FACTOR FOR PF105 FIBERGLASS


C



ECXI=ALOGIO(Wi/(2.*PI*R1))


IF (ECXI .LT. -3.) GO TO i


IF (ECXI .GT. 1.) GO TO 2


K=I.E5*(((-1.S21E-2*ECX1-6.099E-2)*ECXI+S.667E-2)*ECXI+1.3444)


GO TO 3



1 K=1.05E5


GO TO 3



2 K=1.3E5


C


C####### CALCULATE STRUCTURES FACTOR AND FACTORS Fl AND F2


C
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3 SF=1O.**(-3.0O1*ALOBIO(PI))


Fl=l.+(1.2*RI/(DENSI*W1))**2


F2=1.+(PI+DENSI/(SF*RH2)*(-. 2*RI (DENSI*Wi))**2



C####### CALCULAE THE COMPLEX (EFFECTIVE) DENSITY


C



RHOP=CMPLX(RHO2*SF*F2/FI,-1.2*RI/(FI*W))

C



C####### CALCULATE PROPAGATION CONSTANT


C



BP=CMPLX(P1/K O .)


BP=CSQRT(BP*RHOP)


JW=CMPLX(O.,WI)


BP=BP*JW



C


C####### CALCULATE THE CHARACTERISTIC IMPEDANCE


C



ZCP=CMPLX(O.,-K/(WI*P1))


ZCP=ZCP*BP


RETURN


END
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B.2.3: LISTING OF CLAYER



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C


C


C



c * FUNCTIONS/SUBROUTINES NOT PRESENT IN MINC LIBRARY * 
C 

C 

C PROGRAMMER : JAAP LAMeRIS VERSION 1 5-31-'52 
C R. NAVANEETHAN VERSION 2 12-28-'82 
C VERSION 2 MODIFIED FOR MLAYER.FOR PROGRAM 
C THIS SUB-PROGRAM IS CALLED CLAYER.FOR 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C


C


C SUBROUTINE TO CALCULATE THE ARCSINE OF A GIVEN VALUE (-I<X<I)


C



SUBROUTINE ASIN(X,Y)


PI=3.141592654


IF(X.LT.0) GO TO 30


A=O.


C=PI/2.


D=A


E=C



10 B=(D+E)/2.


IF(ABS(X-SIN(B)).LE.1.OE-7) GO TO 45


IF(X.GT.SIN(B)) GO TO 20


E=B


GO TO 10



20 O=B


GO TO 10



30 A=-PI12.


C=O


D=A


E=C


GO TO 10



C


45 Y=B



GO TO 50


C



50 RETURN


END



C


C


C SUBROUTINE TO CALCULATE THE ARCOS OF GIVEN VALUE (-I<X<I)


C
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SUBROUTINE ACOS(XY)

C 


PI-3.-54-1-52854 
CALL ASIN(X,Y)


C 


ACOS=PI/2.-y 

G0 TO 20 


20 RETURN 

END 


C 

C 
C FUNCTION TO RETURN HYPERBOLIC COTANGENT OF GIVEN COMPLEX


C NUMBER (X)


C


C



FUNCTION COTH(X)


COMPLEX X,COTH


COTH = (CEXP(X)+CEXP(-X))/(CEXP(X)-CEXP(-X))


RETURN


END



C


C 

C FUNCTION TO RETURN THE INVERSE HYPERBOLIC COTANGENT A 'GIVEN


C COMPLEX NUMBER (X).


CCALCULATES ONLY THE PRIMARY ARGUMENT


C


C 

FUNCTION ACOTH(X)


COMPLEX XACOTH


ACOTH = .5*CLDG((X+I.)/(X-i.))


RETURN


END



C 
C 
C FUNCTION TO RETURN THE HYPERBOLIC COSINE OF A GIVEN COMPLEX


C NUMBER (X)

C



FUNCTION COSH(X)


COMPLEX XCOSH


COSH = .5*(CEXP(X)+CEXP(-X))


RETURN


END
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C.i: FLOW CHART OF TEST ROUTINES' 

MAGNITUDE CALIBRATION 

TRANSFER-PROS: PSPS6O.BAS



ANALYSIS PROG: MAGCAL.FOR



PHASE CALIBRATION PHASE CALIBRATION 

TRUE VALUES TRANSFER PROG" INTB6O.BAS 

TRANSFER PROG: TFNSBO.BAS ANALYSIS PROG. INTOAL.FOR 

ANALYSIS PROG: STAT.BAS 

DAILY CALIBRATION
 


TRANSFER PROG: TFN6SO.BAS



ANALYSIS PROG: CALII.FOR



INTENSITY MEASUREMENTS



TRANSFER PROG: INT66P.OAS


ANALYSIS PROG: INTSTY.FOR



TRANSMISSION LO0S 

PLOT PROG; TL7475.BAS INTENSITY MAP



ANALYSIS PROG: INTVALFOR



INTRAPFOR



PLOT PROG: PIN7475.SAS



381





ORIGINAL PAGE Y0OF POOR QUALITY 

C.2: LISTING OF COMPUTER ROUTINES



C.2.1 LISTING OF PSP660.BAS



1 #########################################################


2 # # 
3
4 

#
# 

TRANSFER PROGRAM FOR POWERSPECTRUM OF CHANNEL A AND B #
# 

6 # 

7 # VERSION : 4 
8 # PROGRAMMER : R.NAVANEETHAN 
9 # DATE : 1-23-84 
10 # 
11 # 
100 SCREEN 0,0


110 DEFINT I-N


120 CLS:CLOSE


130 LOCATE 25,1


140 C$="ZZZOA35SY251SY261SY272SWAJ6FIEO=B"


150 C1$="ZZZOA35SY251SY261SY272SWAJ6F2EO=9"


160 PRINT STRINGS(6O," "3


170 SYN$=CHR$(22)


180 LOCATE 1,1


190 SPEED$="9600"


200 COMFIL$="COMI:"+SPEED$+",N,8,2'


210 OPEN COMFIL$ AS #1


220 OPEN "SCRN:" FOR OUTPUT AS #2


230 JC=I
 

240 LOCATE 25,1:PRINT "660B POWER SPECTRUM TRANSFER PROGRAM";


250 LOCATE I,I:PRINT STRING$(60," ")iLOCATE 1,1


260 IF JC=I THEN LINE INPUT "FILE NAMEFOR CHL A?


< E TO EXIT > :';DSKFIL$


270 IF JC=2 THEN LINE INPUT "FILE NAME FOR CHL B?


( E TO EXIT > :";DSKFIL$


280 IF JC=2 THEN C$=C1$


290 IF DSKFILS="E" THEN 650


300 LOCATE II:PRINT STRING$(60," ")-LOCATE 1,1


310 OPEN "R",#3,DSKFIL$,72


320 FIELD #3, 72 AS RI$


330 FOR IC%=I TO 33


340 D$=MID$IC$,IC%,I)


350 BOSUB 440


360 FOR IKX=I TO 75


370 NEXT IK%


380 NEXT IC%


390 REM CONTINUE


400 LOCATE 1,1


410 SOSUB 470


420 CLOSE #3:JC=JC+I:CLS


430 IF JC=2 THEN SOTO 260 ELSE GOTO 650


440 PRINT #I,D$;
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450 IF LOC(I)=O THEN 450


460 A$=INPUT$(1,#I):IF ASC(A$)=6 THEN RETURN ELSE PRINT -#2-,


"ERROR SENDING DATA":-SIOP


-4-70 J=O"


480 FOR IC%=1 TO 22


490 PRINT #i,SYN$;


500 J=J+i


510 PRINT J


520 IF LOC(I)<72 THEN 520


530 HI$ = INPUT$(72,#1)


540 IF J>17 THEN SOTO 560


550 GOSUB 600


560 NEXT IC%


570 PRINT LOC():IF LOC(1)l> THEN 570


580 A$=INPUT$(I,#I)


590 RETURN


600 REM CONVERT TO REAL


610 R$=HI$


620 LSET RI$=R$


630 PUT #3


640 RETURN


650 CLOSE:END
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C.2.2 LISTING OF MAGCAL.FOR



CCCCCCCCCcccCCCCCccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCCC CCCCCCCC


C C 
C MAGNITUDE CALIBRATION PROGRAM C 
C C 
CCCCccccccccCCCccCCCCCCCCCCCCCcCCCCCCGCC DccCCCCCCCCCCcccccCCC


C


C


C


C


C####### PROGRAMMER : R.NAVANEETHAN ################


C####### DATE : JAN 18, 84 ################


C####### VERSION : 2. ###############


C



C####### THE MAGNITUDE CAL PROGRAM USES THE INPUT VALUES FROM


C####### TRANSFER PROGRAM A:CALA.DAT AND A:CALB.DAT.


C


C####### REFER TO KU-FRL REPORT KU-FRL-417-22 FOR DETAILS ON


C####### ON THIS PROGRAM


C


C


C234567



IMPLICIT REAL(O-Z)


IMPLICIT REAL(B-F)


DIMENSION CHA(402),CHB(402)


CHARACTER*16 FSTRG,CSTRG


CHARACTER *15 FNAME


INTEGER*l IJ(72)


CHARACTER *1 HA,HBACHAR


DATA HA/"A"/


DATA HB/"B"/


J=l


IF(IORAND(72,72,5,0,"A:CALA.DAT")) GO TO 1000


IF(IORAND(72,72,6,0,"A:CALB.DAT")) GD TO 1100


DO 7 IUNIT=5 16


KL=O


DO 10 I=1,17


READ(IUNIT/I)(IJ(K),K=1,72)


DO 11 J=1,72,3


KL=KL+1


J1=IJ(J)


32=IJ(J+I)


J3=IJ(J+2)


IF(J3.LT.O)J3=256+J3


JM=1


IF(J2.LT.0) JM=-1


JP=IABS(J2)


CALL SUBI(JP,CSTRG)


FSTRG=CSTRG
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CALL SUBI(J3,CSTR)


CALL INSERT(CSTRG,FSTRG,1)


V=o.


DO 2-0 KI=15


K=1&-KI


Vl=O


CALL PUTCHR(ACHAR,I,KHAR(FSTRGK))


IF(ACHAR.EQ."I") VI=I


V=V+VI/2**KI



20 	 CONTINUE


IF(JM.E .-I)V=-V


IF(IUNIT.EQ.5) CHA(KL)=V*2.**JI


IF(IUNIT.EG.6) CHB(KL)=V*2C**J



10 CONTINUE


10 CONTINUE


7 CONTINUE



IF (IOCLOS(5)) STOP


IF (IOCLOS(6)) STOP



YMCHA = CHA(1)


YMCHB = CHB(1)


DO 2 I=5,400


IF (YMCHA.GE.CHA(I)) SOTO 3


YMCHA=CHA(I)


IAMAX=I



3 CONTINUE


IF (YMCHB.GE.CHB(I)) GOTO 2


YMCHB=CHB(I)


IBMAX=I



2 CONTINUE


YA=O.


DO 4 I=IAMAX-3,IAMAX+3



4 YA=YA+CHA(I)


YB=O.


DO 5 I=IBMAX-3,IBMAX+3



5 YB=YB+CHB(I)


PCAL=10.**(124./20.)*.0002


AKCHA=PCAL/SQRT(YA)


AKCHB=PCAL/SORT(YB)


WRITE(i,200)



200 FORMAT(' ','CHANNEL A DETAILS')


WRITE(1,201)



201 FORMAT(' ','ENTER MAX AMPLITUDE SETTING


READ(1 300) AMPCHA



300 FORMAT(FO.0)


WRITE(1,202)



202 FORMAT(' ','ENTER # OF AVERAGES $)


READ(I,301) NAVGA



301 FORMAT(IO)


WRITE(1,203)
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203 FORMAT(' ','CHANNEL B DETAILS')



WRITE(1,201)


READ(1,300) AMPCHB


WRITE(I,202)


READ(1 1301) NAVGB


IF (IOWRIT (S,2,0,'CALDAT.DAT")) STOP


WRITE (8,205) AKCHAAKCHB



205 FORMAT(' ',2E15.5)


WRITE(8 1205) AMPCHAAMPCHB


WRITE(S,206) NAVGA,NAVGB



206 FORMAT(' ',215)


IF (IOCLOS(B)) STOP


SOTO 6



1000 WRITE(1,500) HA


500 FORMAT(' ','ERROR OPENING DATA FILE OF CHANNEL ',At)



GO TO 6


1100 WRITE(1,500) HB


6 CONTINUE



STOP


END


SUBROUTINE SUB1(JP,CSTRG)


CHARACTER*16 BSTRG,B(S),CSTRG,SUBSTG


INTEGER*2 JO(3)


DATA B/"O001",01011","100","101","110 ,"111"1 
BSTRG=""


CSTRG=""


JO(l) =MOD(JP,B)


JPI = JP/S 
JO(2) =MOD(JPI,8)


JO(3) = JPI/S


DO 31 JI=1,3


JP=JO(JI) +



31 CALL INSERT(B(JP),BSTRG,I)


DO 32 JI=1,8


JK= 10-31


CALL ADDSTG(CSTRGSUBSTG(BSTRG,JKJK))



32 CONTINUE


RETURN


END
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C.2.3 LISTING OF TFN660.BAS



10 SCREEN 0,0


20 DEFINT I-N


30 CLS:CLOSE


"40 LOCATE- 25,1


50 C$="ZZZOA35SY251SY261SY272SWAJ3EOE4ZZZ="


60 PRINT STRINGS(60," ")


70 SYN$=CHR$(22)


80 LOCATE 1,1


90 SPEED$="9600".


100 COMFIL$="COMI:"+SPEED$+",N,8,2"


110 OPEN COMFIL$ AS #1


120 OPEN "SCRNr" FOR OUTPUT AS #2


130 LOCATE 25,1:PRINT "660B TRANSFER PROGRAM";


140 LOCATE 1,1:PRINT STRINGV(60," "):LOCATE 1,1


150 LINE INPUT "INPUT FILE? <TYPE E TO EXIT > :";DSKFIL$


160 IF DSKFIL$="E" THEN 620


170 LOCATE I,I:PRINT STRING$(60," "):LOCATE 1,1


180 OPEN "R",#3,DSKFIL$,72


190 FIELD #3, 72 AS RI$


200 FOR IC%=1 TO 36


210 D$=MID$(C$,IC%,I)


220 GOSUB 360


230 FOR IK%=I TO 75


240 NEXT IK%


.250 NEXT IC%


260 REM CONTINUE


270 LOCATE 1,1


280 GOSUB 390


290 D$="Z":GOSUB 360


300 D$="Z":GOSUB 360


310 D$&=":GOSUB 360


320 D$="9":GOSUB 360


330 GOSUB 390


340 CLOSE #3:CLS


350 SOTO 130


360 PRINT #I,D$;


370 IF LOC(1)=O THEN 370


380 A$=INPUT$(I,#1):IF ASC(A$)=6 THEN RETURN ELSE PRINT #2,"ERROR SENDING


DATA":STOP


390 J=O


410 FOR IC%=1 TO 22


415 PRINT #1,SYN$;


417 J=J+,i


418 PRINT J


420 IF LOC(I)<72 THEN 420


430 HI$ = INPUTS(72,#1)


470 IF 3>17 THEN GOTO 490


480 GOSUB 530


490 NEXT IC%



387





ORIGINAL PAGE W 
OF POOR QUALITY 

500 PRINT LOC(l):IF LOC(i)<>I THEN 500


510 A$=INPUT$(I,#I)


520 RETURN


530 REM CONVERT TO REAL


538 R$=H1$


539 LSET Rl$=R$


600 PUT #3


610 RETURN


620 CLOSE:END
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C.2.4 LISTING OF STAT.BAS


II #######################################f#######o##############


2 # # 

3 
4 

# 
4 

PROGRAM TO DETERMINE CONFIDENCE INTERVAL # 
# 

5 ######################## #############1#######################


6 #



7 # VERSION : I


6 # PROGRAMMER : BRIAN QUAYLE


9 # DATE : 30 -OCT-24


10 #


11 'f#


100 CLS


110 OPTION BASE 1


120 DIM X(513),X2(513),AVMAB(513),VAR(513),TAV(31),CI(513)


130 FOR 1=1 TO 31


140 READ TAV(I)


150 NEXT I


160 DATA 12.71,4.303,3.182,2.776,2.571,2.447,2.365,2.306


170 DATA 2.262,2.228,2.201,2.179,2.160,2.145,2.131,2.12,2.11,2.101


180 DATA 2.093,2.086,2.08,2.074,2.069,2.064,2.06,2.056,2.052,2.048


190 DATA 2.045,2.042,2.02


200 N=0


210 INPUT "ENTER NAME OF INPUT FILE CATALOG ";A$


220 OPEN "I",#1,A$


230 INPUT !ENTER OUTPUT FILE NAME ";BS


240 INPUT "ENTER SPECTRAL LINE SPACING ";LS


250 IF EOF(i) THEN GOTO 480


260 N=N+1


270 INPUT#I, N$


280 PRINT N$


290 OPEN "I",#2, N$


300 INPUT#I, MS


310 PRINT MS


320 OPEN "I",#3, MS


330 I=O


340 IF EOF(2) THEN SOTO 450


350 1=I+l


360 INPUT#2,A


370 INPUT#3,B


380 DEG=ATN(B/A)*(10/3.14159)


390 IF(A<O)AND(B>O) THEN DEG=DEG+180


400 IF(A<O)AND(B<O) THEN DEG=DEG-1S0


410 X(I)=X(I)+DEG


420 X2(I)=X2(1)+DEG^2


430 PRINT I*LS-LS;DEG;X(I);X2(I)


440 GOTO 340


450 CLOSE #3


460 CLOSE #2
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470 COTO 250 
480 CLOSE #1


490 OPEN "0",#1,B$


500 K=N


510 IF N>31 THEN K=31


520 FOR d=1 TO I


530 VAR(J)=(N*X2(J)-X(J)^2)/(N*(N-i))


540 X(J)=X(O)/N


550 CI(J)=TAV(K)*(VAR(J)/N)A2


560 PRINT J*LS-LS;X(J);VAR(3);CI(J)


570 PRINT#IUSING"###O#.### ";J*LS-LS,X(J),CI(J)


580 NEXT


590 CLOSE #1


600 FOR 1=1 TO 3


610 BEEP


620 FOR J=l TO 200


630 NEXT


640 NEXT


650 END
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C.2.5 LISTING OF CALII.FOR



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C C


C PHASE CALIBRATION PROGRAM FOR INTENSITY C


C TRANSFER FUNCTION METHOD C


C TYPE I C


C C


C C


C VERSION : I C


C PROGRAMMER : R.NAVANEETHAN C


C DATE : 20-MAY-83 C


C C


CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C


C


C###### FOR MORE DETAILS ON THIS METHOD REFER KU-FRL REPORT


C###### KU-FRL-417-22


C


C


C###### DIMENSION STATEMENTS


C



COMPLEX CALA (512)


COMPLEX CMPLX


CHARACTER *15 NAMET,NAME1,NAME2,NAME3,NAME4,NAMEC


CHARACTER *1 AR


REAL X(512),Y(512)


REAL ABIB(4)


DATA ABIB/4*0./


DATA NAMEI/"B:TFNCAL.DLO"/


DATA NAME2/"B:TFNCAL.DHI"/


DATA NAME3/"B:CALII.DLO"/


DATA NAME4/"B:CALII.DHI'/


RAD=180./3.1415962


WRITE(1,600)



600 FORMAT(* ENTER FREQUENCY RANGE 'U


READ(i,601) SFREQ



601 	 FORMAT(FO.0)


IFLAG=I


NAMET=NAMEI


NAMEC=NAME3


IF (SFREQ.GT.1000.) IFLAG=2


IF (IFLAG.NE.2) SOTO 112


NAMET=NAME2


NAMEC=NAME4



112 CONTINUE


C


C########## CHANGE N DEPENDING UPON THE ANALYZER


C



N=402
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C 

C######### OPEN DATA FILE CONTAINING TRANSFER FUNCTION DATA


C



IF(IOREAD(8,2,0,NAMET)) STOP


J=1


DO 1 I=1,67


READ(8,100) (X(JI), J1=J,J+5)


J=J+6


CONTINUE


J=1


DO 11 I=1,67


READ(8,100) (Y(JI), J=J,J+5)


J=J+6



11 CONTINUE


C


C####### CHANGE FORMAT STATEMENT DEPENDING UPON THE ANALYZER


C


100 FORMAT(6E0.0)



IF(IOCLOS(8)) STOP


NAMET="A:STATLO.DAT"


IF (IFLAG.EO.2) NAMET="A:STATHI.DAT"


IF(IOREAD(6,2,0,NAMET)) STOP


READ(6,114) FREQ



114 	 FORMAT(FO.0)


IF(FREQ.NE.SFREQ) GOTO 999


BW=SFREQ*2,56/1024.


DO 3 I=I,N


READ(6,110) AMEAN,ALVL



110 FORMAT(F9.3,1X,F9.3)


IF(ALVL.LT..I) ALVL=.1


THETAI=ATAN2(Y(I),X(I))*RAD


IF((IFLAG.EQ.2).AND.(I.GT.280))X GOTO 4


IF(I.EQ.1) THETAI=0.0


SIGMA=ALVL*SQRT(30.)


ZSTAT=(AMEAN-THETAI)/(SIGMA*SQRT(1./30.+I./5.))



987 FORMAT(' ",FI5.2,2F15.3)


IF(ABS(ZSTAT).LE.1.96) GO TO 4


WRITE(1,990)



990 FORMAT(' FREQUENCY CAL VALUE


&ZSTAT 1)


FRO=FLOAT(I-i)*BW


WRITE(1,967) FRQTHETAI,ZSTAT



989 WRITE(1,113)


113 FORMAT(' VALUES NOT WITHIN LIMITS! ACCEPT OR REJECT



&<A/R> - '$)



READ(Ij9G) AR


988 FORMAT(AO)



IF((AR.NE."A").AND.(AR.NE."R")) GOTO 989
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IF(AR.EO."R") GO TO 998



4 	 CONTINUE 
THETAi=-THEIAI/RAD ­

-CALA(I)=CMPLX(COS(THETAI) SIN(THETAI)) 
3 	 CONTINUE


C


C########## OPEN PHASE CAL DATA FILE


C



IF(IOWRIT(10,2,0,NAMEC)) STOP


ABIB(1)=SFREQ


ABIB(2)=2.


WRITE(1O,102)(ABIB(d)J=14)



102 	 FORMAT( ',4F15.5)


DO 2 I=I,N


WRITE(10,101) CALACI)



101 	 FORMAT(' ',2E15.5)


2 	 CONTINUE



IF(IOCLOS(1O)) STOP


GOTO 9999



999 WRITE(1,700)


700 FORMATC' FREQUENCY MIS-MATCH')



GO TO 9999


998 CONTINUE


9999 CONTINUE



STOP


END
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C.2.6 LISTING OF INT660.BAS



I 1## ##################**################# ################# ####
2 # #



3 # TRANSFER PROGRAM FOR CROSS SPECTRUM #

4 # 
 #


5 ########## ######################################################


6 #


7 # VERSION : 4



' # PROGRAMMER : R.NAVANEETHAN 
9 # DATE : 1-20-84 
10 # 
11 # 
100 SCREEN 0,0 
110 DEFINT I-N


120 CLS:CLOSE


130 LOCATE 25,1


140 C$="ZZZOA35SY251SY261SY272SWAJ2EOZZZ=8"


150 PRINT STRINGS(60," ")


160 SYN$=CHR$(22)


170 LOCATE 1,1


180 SPEED$='9600"


190 COMFIL$="COMI"+SPEED$+",N,8,2"


200 OPEN "SCRN:" FOR OUTPUT AS #2


210 LOCATE 25,1:PRINT "660B TRANSFER PROGRAM";


220 LOCATE I,I:PRINT STRING$(60," "):LOCATE 1,1


230 LINE INPUT "INPUT FILE? <TYPE E TO EXIT > :";DSKFIL$


240 IF DSKFIL$="E" THEN 640


250 OPEN COMFIL$ AS #1


260 LOCATE I,I:PRINT STRING$(60," ").LOCATE 1,1


270 OPEN "R",#3,DSKFIL$,72


280 FIELD #3, 72 AS RI$


290 FOR IC%=1 TO 34


300 D$=MID$(C$,IC%,I)


310 GOSUB 430


320 NEXT IC%


330 REM CONTINUE


340 LOCATE 1,1


350 GOSUB 470


360 D$="Z":GOSUB 430


370 D$="Z":GOSUB 430


380 D$="=":GOSUB 430


390 D$="9":GOSUB 430


400 GOSUB 470


410 CLOSE #3:CLOSE #1:CLS


420 GOTO 210


430 PRINT #1,D$;


440 FOR IK%=I TO 200:NEXT IK%


450 IF LOC(I)>I THEN 450


460 A$=INPUT$(I,#I)IF ASC(A$)=6 THEN RETURN ELSE PRINT #2,
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"ERROR SENDING DATA"tSTOP


470 J=O


480 FOR IC%=1 TO 22


490 PRINT #-iSYN$;


500 J=J+l


510 IF LOC(I)<72 THEN 510


520 Hit = INPUT$(72,#I)


530 IF J>17 THEN GOTO 550


540 GOSUB 590


550 NEXT IC%


560 IF LOC(1)>i THEN 560


570 A$=INPUT$(I,#I)


580 RETURN


590 REM CONVERT TO REAL


600 R$=H1$


610 LSET R1$=R$


620 PUT #3


630 RETURN


640 CLOSE:END
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C.2.7 LISTING OF INTCAL.FOR



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C C 
C PHASE CALIBRATION PROGRAM FOR INTENSITY C 
C C 
C C 
C VERSION I C 
C PROGRAMMER R.NAVANEETHAN C 
C DATE 02-SEP-83 C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C
C
 
C

C######## THIS PROGRAM CALCULATES THE PHASE CALIBRATION USING 
C####### THE METHOD DESCRIBED IN "THE APPLICATION OF ACOUSTIC 
C####### INTENSITY FOR ENGINE NOISE REDUCTION" BY M.D.CROCKER 
C####### ET AL, PRESENTED AT THE INTERNATIONAL CONFERENCE ON 
C####### RECENT ADVANCES IN ACOUSTIC INTENSITY METHODS, 
C####### SENLIS, FRANCE, OCT 1981 
C 
C 
C####### THE FIRST LINE OUTPUT IN ANY DATA FILE CONTAINS FOUR 
C####*## VARIABLES INCLUDING FREQUENCY RANGE OF ANALYSIS, 
C####### DISTANCE BETWEEN MICROPHONES, AREA SWEPT BY THE 
C####### MICOPHONE ETC. 
C
C
C
 
C

C######### DIMENSION STATEMENTS 
C 
C 
C######## DEPENDING UPON THE FFT ANALYSER CHARACTERISTICS THE 
C######## DIMENSION VALUES NEED TO BE CHANGED. 
C
C
C



COMPLEX CALA(408),CALB(408),CI


C


C##### THE FOLLOWING STATEMENT IS PECULIAR TO SUPERSOFT FORTRAN
 

C



COMPLEX CMPLX


C


C#####



C


REAL X(408),Y(408)


REAL ABIB(4),BBIB(4)


CHARACTER *12 NAMEI,NAME2,NAME3
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CHARACTER*2 STRI


CHARACTER*16 FSTRG,CSTRG


CHARAC-TER*- ACHAR


INTEGER *1 IJ(72)


DATA NAMEI/"B:XSNORM.DLO"/


DATA NAME2/"B:XSSWCH.DLO"/


DATA NAME3/"B:INTCAL.DLO"/


DATA STR1/"HI"/


DATA ABIB/4*0./


DATA BBIB/4*0./



C


C######### 
 READ DATA FROM X-SPEC DATA FROM THE FFT ANALYZER


C######### STORED IN THE DISC


C######### 
THIS FORMAT FOR OPENING THE DISK FILE IS PECULIAR


C######### TO SUPER SOFT COMPILER


C



WRITE(1,700)


700 FORMAT(' ENTER FREQUENCY RANGE OF ANALYSIS : )



READ(1,800) SFREG


800 	 FORMAT(FO.O)



IFLAG=l


IF(SFREQ.LT.1001.) GO TO 87


IFLAG=2


CALL PUTCHR(NAMEI,I1,KHAR(STRII))


CALL PUTCHR(NAMEI,12,KHAR(STRI,2))


CALL PUTCHR(NAME2,11,KHAR(STRI,I)


CALL PUTCHR(NAME2,12,KHAR(STRI,2)


CALL PUTCHR(NAME3,11,KHAR(STRIII)


CALL PUTCHR(NAME3,12,KHAR(STRI,2))



87 	 CONTINUE


IF(IORAND(72,72,5,0,NAME1)) STOP


KL=O


DO 10 I=1134


READ(5/I)(IJ(K),K=1,72)



C


C####### CONVERT 3 BYTES FROM NICOLET 660B TO 
 4 BYTE REAL


C####### VALUES OF SUPERSOFT FORTRAN


C



DO 11 J=1,72,3


KL=KL+i


KJL=KL-408


Jl=IJ(J)


J2=IJ(J+1)


J3=IJ(J+2)


IF(J3.LT.O)J3=256+J3


JM=I


IF(32.LT.O) JM=-I


JP=IABS(J2)
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CALL SUBI(JP,CSTRG)


FSTRB=CSTRG


CALL SUBI(J3,CSTRB)


CALL INSERT(CSTRGIFSTROI)


V=O.


DO 20 KI=1,15


K=16-KI


VI=O


CALL PUTCHR(ACHARIKHAR(FSTRG,K))


IF(ACHAR.EQ."I") Vi=1


V=V+VI/2**KI



20 	 CONTINUE


IF(JM.EO.-1)V=-V


IF(KL.LE.408) X(KL)=V*2.**J


IF(KL.GT.40) Y(KJL)=V*2.**J3 

11 CONTINUE 
10 CONTINUE 

IF(IOCLOS(5)) STOP 
N=408 
DO 12 I=1,40B 
Y(I)= -Y(I) 
CALA() = CMPLX(X(I),Y(I))



12 CONTINUE


C


C###### READ NEXT FILE


C



IF(IDRAND(72,721510,NAME2)) STOP


KL=O


DO 3110 I=1,34


READ(5/I)(IJ(K),K=1,72)


DO 3111 J=1,7213


KL=KL+I


KJL=KL-408


Jl=IJ(J) 
J2=IJ(3+1)


J3=IJ(J+2)


IF(J3.LT.O)J3=256+J3


JM=I


IF(J2.LT.0) JM=-i


JP=IABS W2)


CALL SUB1(JP,CSTRG)


FSTRG:CSTRG


CALL SUBI(J3,CSTRG)


CALL INSERT(CSTRG,FSTRG,I)


V=O.


DO 3120 KI=1115


K=16-KI


VI=O
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CALL PUTCHR(ACHAR,l,KHAR(FSTRGK))


IF(ACHAR.EQ."I") V=1


V=V+V1/2**KI



3-120 CONTINUE


IF(JM.EQ.-1)V=-V



IF(KL.LE.406) X(KL)=V*2.**Jl


IF(KL.GT.40) Y(KJL)=V*2.**Jl 

3111 CONTINUE 
3110 CONTINUE 

IF(IOCLOS(5)) STOP 
DO 3 I=1,N 

3 CALB(I)=CMPLX(X(I),Y(I))


C


C###### END OF DATA READ
 

C



IF(IOWRIT(I0,2,0,NAME3)) STOP


ABIB(1)=SFREO


BBIB(1)=SFREO


ABIB2)=2.


BBIB(2)=2.


WRITE(10,102)(ABIB(J),J=1,4)



102 FORMAT(' ',4E15.5)


C


C###### FOR MORE DETAILS ON THE METHOD SEE REF ABOVE


C



DO 21 I=I,N


C


C######### SEE REPORT KU-FRL-417-22 FOR DETAILS


C



Cl = CALA(I)/CALB(I)


THETA = ATAN2(AIMAG(CI)/REAL(CI))/2.


CALA(I)=CMPLX(COS(THETA),SIN(THETA))


C



C######## WRITE TO DISK NEW PHASE CAL VALUES


C



WRITE(10,101) CALA(I)


101 FORMAT(' ',2E15.5)


21 CONTINUE



IF(IOCLOS(l0)) STOP


STOP


END



C


C###### FIND BIT PATTERN FOR GIVEN INTEGER


C



SUBROUTINE SUBI(JP,CSTRG)


CHARACTER*16 BSTRG,B(B),CSTRG,SUBSTG


INTEGER*2 JO(3)


DATA B/"000""001""010l,"i0 ","0oo","I01", "i10","111/
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BSTRG='"


CSTRG="" 
JQ(1) 	 =MOD(JP,8)

JPI =Jp/s



JO(2) =MOD(JPI,8)


=0(3)
JPI/8



DO 31 JI=1,3


3P=JO(JI)+1



31 CALL INSERT(B(JP),BSTR,I)


DO 32 JI=1,8


JK= 10-JI


CALL ADDSTG(CSTRGSUBSTG(BSTRG,JKJK))



32 	 CONTINUE


RETURN


END
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CCCCCCCCCCCCCCCCCCCccc CCCccccccccccCCCCCCccCCCCCCCCCCCCCCCCCCC


C -C 

C C 
C C 
C PROGRAM TO CALCULATE THE INTENSITY SPECTRUM C 
C C 

C 
C 
C 

cccccCCC ccCCC ccc CCcccccccCCCCCcccc cccccc CCCCCCCCC CCCCCCCDCCC cccc


C



C


C######### VERSION : 1.1 ##############


C######### PROGRAMMER : R.NAVANEETHAN ##############


C######### DATE : 19-JAN-84 #############


C


C


C######### A WORD ABOUT THE WAY THIS PROGRAM IS WRITTEN 111111 
C#########



C######### EACH SPECTRAL DATA ARRAY IS ASSOCIATED WITH AN


0######### ADDITIONAL ARRAY WHICH DEFINES THE RELEVANT PARA


C######### METERS ASSOCIATED WITH THE ARRAY. FOR INTENSITY


C######### SPECTRUM THESE ARE SAMPLING FREQUENCY (ANALYSIS


C######### FREQUENCY RANGE), MIC SPACING AND AREA ASSOCITAED


C######### WITH THE MEASUREMENTS. ADDITIONALLY, ONE MORE SPEC
 

C######### CAN ALSO BE INCLUDED. THESE FOUR VALUES ARE STORED


C######### IN THE BEGINNING OF EACH INTENSITY SPECTRUM DATA


C######### ON THE DISK. THE UNIT OF INTENSITY VALUES STORED


C######### IS WATT/MA2.


C


C


C###### INPUT DATA REQUIRED:


C###### 1. DATA FILE CONTAINING XPSFILE NAME, FREQUENCY


C###### RANGE, INPUT MAX AMPLITUDE CHANNEL A, INPUT


C###### MAX AMPLITUDE CHANNEL B, NUMBER OF AVERAGES


C###### MICROPHONE SPACING AND AREA ASSOCIATED WITH


C###### EACH MICROPHONE. THIS FILE SHOULD BE NAMED


C###### XPSCAT.DAT. AND SHOULD BE AVAILABLE ON THE


C###### DISK A: REFER TO TEST PROCEDURE IN KU-FRL


C###### REPORT KU-FRL-417-22.


C###### 2. MAGNITUDE CAL DATA WITH FILE NAME CALDAT.DAT


C###### THIS FILE IS AUTOMATICALLY CREATED WHEN


C###### MAGNITUDE CALIBRATION IS PERFORMED


C###### 3. PHASE CALIBRATION DATA UNDER FILE NAME


C###### CALIIDLO (OR CALII.DHI). IF METHOD II


C###### CALIBRATION IS USED, RENAME FILE INTCAL.DLO


C###### (OR INTCAL.DHI) TO CALII.DLO (OR CALII.DHI)


C 
C 
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C*##### DIMENSION STATEMENTS


C



COMPLEX AXPS(408),CAL(408)


COMPLEX CMPLX


REAL BBIB(4kBINT(40S),X(408),Y(408),SPL(408),AREA(100)


REAL SFREQOUOO),AIN(OO),BIN(OO),AVG(IOO),,SPAC(100)


CHARACTER*I ANS,ACHAR


CHARACTER*15 INAME(1OO),NAME


CHARACTER *3 IN
 

CHARACTER *5 OUT


CHARACTER*16 FSTRGCSTRG


INTEGER*1 IJ(72)


DATA OUT/"ASPOO"/


DATA IN/"AIN"/


DATA NAME/'B:XSSOOL.OOO"/


DATA SPL/408*0.0/



C


C###### READ MAG CAL FACTORS


C



IF(IOREAD(6,2,0,"A:CALDAT.DAT")) GOTO 421


GO TO 422



421 CONTINUE


WRITE(1,423)



423 FORMAT(' ERROR OPENING FILE A:CALDAT.DAT')


'STOP



422 CONTINUE


READ(6,700) ACAL,BCAL


READ(61 700) ARAN,BRAN


READ(6,7Ol) NAVGA,NAVGB



700 FORMAT(2E15.5)


701 FORMAT(215)



IF (IOCLOS(6)) STOP


C


C###### READ XPS FILENAME AND TEST DETAILS


C



IF (IOREAD(6 12,O "A:XPSCAT.DAT")) GOTO 671


GO TO 672



671 WRITE(I,673)


673 FORMAT(' ERROR OPENING FILE A:XPSCAT.DAT')



STOP


672 CONTINUE



J=1


322 CONTINUE



READ(6,323,ENDFILE=324)INAME(J),SFREQ(J),AIN(J),BIN(J),


&AVG(J),SPAC(J),AREA(J)


J=J+l


GO TO 322
 


323 FORMAT(AI2,1X,6FO.0)
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324 	 JFILE=J-1


CONTINUE


IF (IOCLOS(6))-SIOP



-C


C####### READ PHASE CAL VALUES


C



NAME="A:CALII.DLO"



IF (SFREQ(i).GT.1001) NANE="A:CALII.DHI"


IF(IOREAD(9,2,0,NAME)) GOTO 961


SOTO 962



961 WRITE(1,963)


963 FORMAT(' ERROR OPENING A:CALII.DLO OR A:CALIIDHI FILE')



STOP


962 CONTINUE



READ(9,103) AI,A2,A3,A4


103 	 FORMAT(4F15,5)



DO 120 I=1,408


READ(9,121) CAL(1)



121 FORMAT(2EIS.5)


120 CONTINUE



IF (IOCLOS(9)) STOP


C


C####### CHANGE DISK FOR OUTPUT FILES


C



WRITE(1,800)


600 FORMAT(' REMOVE PROGRAM DISK IN DRIVE A:; INSERT



&OUTPUT DISK AND HIT RETURN'S)


PAUSE


CONTINUE



C


C###### CHANGE N DEPENDING ON THE ANALYZER SPEC


C



N=408


C


C####### MAIN LOOP FOR FILES


C



DO 900 IC=IJFILE


IF (IFIX(SFREQ(IC)+.05).NE.IFIX(AI+.05)) GO TO 1000



752 CONTINUE


'IF(IORAND(72,72,9,0,1NAME(IC))) GO TO 750


GO TO 751



750 CONTINUE


WRITE(1,780)



760 FORMAT(' CHANGE INPUT FILE DISK IN DRIVE B: AND HIT


&RETURN'$)


PAUSE


GO TO 752



751 CONTINUE
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WRITE(I,798) INAME(IC)


798 	 FORMAT(' ',AO)



KL=O


DO 10 I=1,34


READ(9/1)(.1J(K),K=i,72)



C


C####### CONVERT FROM 3 BYTES FROM NICOLET 660B TO 4 BYTE


C####### REAL VALUES OF SUPERSOFT FORTRAN


C



DO It J=1,72,3


KL=KL+1


KJL= KL-408


Jl=IJ(J)


J2=IJ(J+l)


J3=IJ(J+2)


IF(J3.LT.O)J3=256+J3


JM=I


IF(J2.LT.O) JM=-i


JP=IABSiJ2)


CALL SOBI(JP,CSTRG)


FSTRG=CSTRG


CALL SBI(J3,CSTRG)


CALL INSERT(CSTRG,FSTRS,I)


V=o.


DO 20 KI=1,15


K=16-KI


V1:O


CALL PUTCHR(ACHAR,I,KHAR(FSTRG,K))


IF(ACHAR.EO."I") VI=1


V=V+VI/2**KI



20 	 CONTINUE


IF(JM.EQ.-I)V=-V


IF(KL.LE.408) X(KL)=V*2.**J1


IF(KL.3T.408) Y(KJL)=V*2.**J1



11 	 CONTINUE


10 CONTINUE



IF(IOCLOS(9)) STOP


BBIB(1)=SFREQ(IC)


BBIB(2)=2.


BBIB(3)=SPAC(IC)*.0254


BBIB(4)=AREA(IC)*.0254*.0254



C


C###### DATA FOR OUTPUT FILE SPEC


C



NAME=INAME(IC)


CALL PUTCHR(NAMEI,KHAR(IN,1))


CALL PUTCHR(NAME,3,KHAR(IN,2))


CALL PUTCHR(NAME,4,KHAR(IN,3))
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C 
C###### CORRECT FOR MAG AND PHASE CAL


C



TEMP=ACAL*BCAL*(AIN(IC)*BIN(IC)) /(ARAN*BRAN)/(AVG(IC)


&/FLOAT(NAVGA))


DO Il I=I1,N


X(I)=X(I)*TEMP


Y(I)=Y(I)*TEMP


AXPS(I)=CMPLX(X(I),Y(I))



111 	 CONTINUE


DO 4 I=I,N


AXPS(I)=AXPS(I)*CAL(I)



4 CONTINUE


C


C###### OPEN & WRITE OUTPUT FILE


C



IF(IOWRIT(10,2,0,NAME)) 60 TO 755


GOTO 756



755 WRITE(1,757)


757 FORMAT(* ERROR IN OPENING OUT PUT FILE'$)



STOP


756 CONTINUE



WRITS(IO) (BBIB(1),I=I,4)



C123 FORMAT(IX,4EI5.5)


C


C


C###### CALCULATE INTENSITY


C


C



DO 5 I=IN


BINT(I)=AIMAG(AXPS(1))



C


C###### STD SEA LEVEL VALUE FOR DENSITY OF AIR WAS ASSUMED.


C###### FOR BETTER ACCURACY, DENSITY SHOULD BE CALCULATED


C



RHO1.225


BINT(I)=BINT(I)/(1.225*BBIB(3))



C


C###### THE FOLLOWING STATEMENT DEPENDS ON THE ANALYZER


C



OMEEA=2.*3.1415962*FLOAT(I-I)*BBIB(1)*2.56/1024.


BINT(I)=BINT(I)/OMEGA


WRITE(IO) BINT(I)



C104 FORMAT(' ',E15,5)


5 	 CONTINUE



IF(IOCLOS(IO)) STOP


DO 6 I=I,N


SPL(I)=SPL(I)+BINT(I)*BBIB(4)
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6 CONTINUE


900 CONTINUE



NAME=INAME(I)


CALL PUTCHR(NAME,IKHAR(OUT,I))



,CALL PUTCHR(NAME,3,KHAR(OUT,2))


CALL PUTCHR(NAME,4,KHAR(OUT,3))


CALL PUTCHR(NAME,6,KHAR(OUT,4))


CALL PUTCHR(NAME,7,KHAR(OUT,5))


WRITE(1,790)



790 FORMAT(' REMOVE OUTPUT DISK IN DRIVE A: AND INSERT SPL


&DISK'$)


PAUSE


CONTINUE


IF (IOWRIT(9,2,0,NAME)) STOP


DO 791 I=I,N


FR=FLOAT(1-i)*SFREQ(1)*2.56/1024.


WRITE(9,792) FR,SPL(I)



791 	 CONTINUE


792 	 FORMAT(' ',2E15.5)



IF (IOCLOS(9)) STOP


GO TO 999



1000 	 CONTINUE


WRITE(1,764)



764 FORMAT(' ERROR IN THE ANALYSIS RANGE SPEC')


999 CONTINUE



STOP


END



C


C###### FIND BIT PATTERN CORRESPONDING TO AN INTEGER


C



SUBROUTINE SUBI(JP,CSTRG)
 

CHARACTER*16 BSTRG,B(S),CSTRG,SUBSTG


INTEGER*2 JO(3)


DATA B/"000","001" 1101022, "011"',"100", "I01",'1i0","1i1"/


BSTRG=""


CSTRG=""

JO(1) =MDD(JPB)


JPI H
JIS



JO(2) =MOD(JPI,S)


JO(3) = JPI/B


DO 31 J=,3

JP=JO(JI)+I



31 CALL INSERT(B(JP),BSTRG,1)


DO 32 JI=,


JK= 10-JI


CALL ADDSTG(CSTRG,SUBSTG(BSTRGJKJK))



32 CONTINUE


RETURN
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LISTING OF TL7475.BAS
C.2.9 
 
I '###################################################


2'# #


3 '# TRANSMISSION LOSS PLOT PROGRAM #


4-'# # 

5 '################################################### 
6 '# 
7 '# PROGRAMMER : R.NAVANEETHAN 
8 '# VERSION : 2 
9 i# DATE : 3-9-84 
10 1# 
11 '1# 
100 DIM TL(817),FR(817),P(6) 
110 DEFINT I 
120 RRAD=57.29578 
130 DEF FNALOG(X)=LOG(X)/LOG(10) 
140 E$=CHR$(3) 
150 REM PROGRAM TRANSMISSION LOSS PLOT 
160 XLBL$="FREQUENCY HZ " 
170 YLBL$="TRANSMISSION LOSS DB" 
180 INPUT"TURN ON PLOTTER, AND HIT RETURN WHEN READY", A$ 
190 OPEN "COMI:9600,E,7,1u AS #1 
200 'CLEAR PLOTTER 
210 PRINT #1t"DF;OE;" 
220 FOR IK=I TO 100:NEXT IK 
230 IF LOC(l)=O THEN 230 
240 FOR IK=1 TO 100:NEXT IK 
250 A$= INPUT$(LOC(1),#1) 
260 IF VAL(A$)=O THEN GOTO 290 
270 PRINT ; "PRINTER ERROR ";VAL(A$)f" OCCURED!" 
280 STOP 
290 'CONTINUE


300 PRINT #1,"IP 1543,1488,9559,7520;" 
310 XI=FNALOG(20):YI=O:X2=FNALOG(5OOO)Y2=60:GOSUB 2190 
320 'SET CHARACTER SIZES' 
330 H=1.5:AR=I.5:AOR=O!:SL=O!:GOSUB 2000 
340 INPUT "ENTER PEN NUMBER (I THRU 8) = "In 
350 PRINT #1,("SP"+STR$(I)+";") 
360 'END OF PEN SELECTION 
370 INPUT "DO YOU WANT TO DRAW AXIS <Y/N> = Y$ 
380 IF (Y$<>"Y" AND Y$<>"N") THEN GOTO 370 
390 IF Y$="N" THEN SOTO 890 
400 'DRAW AXIS' 
410 XCORD=FNALOG(20):YCORD=O!:II=-2!:GOSUB 1660 
420 XCORD=FNALOG(5000):YCORD=O!:II=2!:GOSUB 1660 
430 XCORD=FNALOG(5000):YCORD=60:II=2!:GSUD 1660 
440 XCORD=FNALOG(20):YCORD=60:II=2!:GOSUB 1660 
450 XCORD=FNALOG(20):YCORD=O!:II=-I!:GOSUB 1660 
460 ' X-AXIS 
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470 J=l


480 FOR I=2 TO 10 
490 XCORD=FNALOG(10*I*J):YCORD=O!:II=O!:GOSUB 1660


500 XINC=O!:YINC=O:II=-2:BOSUB 1810


510 IF I010 THEN XINC=O!YINC=.9:II=-:BOSUB 1810


520 IF I=10 THEN XINC=O!i:YINC=I.8:I=-I:GOSUB 1810


530 IF I<>i0 THEN CW=-.4:CH=-1.6:GOSUB 1960


540 IF I=10 THEN CW=(-I!*FNALOG(J*100)/2):CH=-2.8:GOSUB 1960


550 LI$=RIGHT$(STR$(I),I)


560 IF(I=10 AND J=i) THEN L1$="I00"


570 IF(I=i0 AND J=10) THEN LI$="1000"


580 LBL$=Li$-GOSUB 2540


590 IF 03=100 AND 1=5) GOTO 630


600 NEXT I


610 J=J*10


620 GOTO 480


630 'CONTINUE


640 XCORD=FNALOG(300):YCORD=O!:I=1:GDSUB 1660


650 XINC=O!:YINC=-4!:II=I:GOSUB 1810


660 CW=-7:CH=-I:GOSUB 1960


670 H=2:AR=1.5:AOR=O!:SL=O:G0SUB 2000


680 A$="LB"+XLBL$+E$


690 PRINT #1,A$


700 ' START Y AXIS


710 XCORD=FNALOG(20):YCORD=O!:II=I:GOSUB 1660


720 H=I.5:AR=l.5:AOR=O!:SL=:lGOSUB 2000


730 FOR I=O TO 60 STEP 10


740 XCORD=FNALOG(20):YCORD=III=I!:BOSUB 1660


750 XINC=FNALOG(I.07):YINC=O:II=2:GOSUB 1810


760 PRINT #1,"PU;"


770 CW=-4!:CH=-.3:GOSUB 1960


780 A$="LB"+RIGHT$(STR$(I),2)+E$


790 PRINT #I,A$


800 XCORD=FNALOG(20):YCORD=I:II=I:GOSUB 1660


810 NEXT I


820 XCORD=FNALS(20):YCORD=30:II=1,GOSUB 1660


830 XINC=-FNALOS(I.25):YINC=0:II=i:GOSUB 1810


840 H=2!:AR=1.5:AOR=90!:SL=!:GSUB 2000


850 CW=-IO!:CH=O!:SOSUB 1960


860 A$="LB"+YLBL$+E$


870 PRINT #1,A$


880 'END OF YAXIS


890 'PLOT DATA


900 PRINT "LOW FREQUENCY DATA"


910 IKMAX=I:IFLG=1


920 GOSUB 1310


930 KIMAX=KIMAX


940 IFLG=2
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950 PRINT "HIGH FREQUENCY DATA"


960 GOSUB 1310


970 IKMAX=IKMAX-1


980- 4CONTINUE


990 FOR 1=1 TO IKMAX


1000 X=FR(I)


1010 Y=TL(I)
 

1020 IF I=I THEN XCORD=FNALOS(X):YCORD=Y:II=3:GOSUB 1660


1030 IF I01 THEN XCORD=FNALOG(X):YCORD=Y:II=2:GOSUB 1660


1040 NEXT I


1050 PRINT #1, "PU;"


1060 INPUT "WANT LEAST SQUARE LINE <Y/N> = ",Y$


1070 IF Y$<>"Y" THEN GOTO 1270


1080 INPUT "MIN FREQUENCY FOR LEAST SQUARE LINE? = ",AMF 
1090 SUMX=O!:SUMY=O!:SUMX2=0!:SUMXY=O!


1100 NI=O


1110 FOR I=I TO IKMAX


1120 IF FR(I)<AMF THEN GOTO 1170


1130 TI=FNALOG(FR(I))


1140 NI=NI+I


1150 SUMX=SUMX+TI:SUMY=SUMY+TL(I)


1160 SUMX2=SUMX2+T1^2:SUMXY=SUMXY+TI*TL(I)


1170 NEXT I


1180 SLOP=(SUMXY-SUMX*SUMY/NI)/(SUMX2-SUMX 2/N1)


1190 YINT = (SUMY-SLOP*SUMX)/N1


1200 X=FNALOG(AMF):Y=SLOP*X+YINT


1210 INPUT "ENTER PEN NUMBER (I THRU 8) = ",41


1220 PRINT #1,("SP"+STR$(II)+";')


1230 XCORD=X:YCORD=Y:II=3:GOSUB 1660


1240 X=FNALOG(5000):Y=SLOP*X+YINT


1250 XCORD=X:YCORD=Y:II=2:GOSUB 1660


1260 PRINT #1,"SP;"


1270 'CONTINUE


1280 INPUT "WANT TO PLOT MORE CURVES <Y/N> = "1Y$


1290 IF Y$="Y" GOTO 300


1300 END


1310 'ROUTINE TO READ DATA


1320 LINE INPUT;"FILE NAME OF DATA WITHOUT PANEL =",FILEI$


1330 PRINT


1340 OPEN "I",#2,FILEI$


1350 LINE INPUT;"FILE NAME OF DATA WITH PANEL = ",FILE2$ 
1360 PRINT


1370 OPEN "I",#3,FILE2$


1380 K=IKMAX


1390 KI=17:K2=401


1400 IF IFLG=2 THEN KI=41
 

1410 FOR 1=1 TO 402


1420 INPUT #2, XI,Y1
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1430 INPUT #3, X21Y2


1440 IF((I<K) OR (I>K2)' THEN 1510


1450 IF (YI<O) THEN YI=IE-12


1460 IF (Y2<0) THEN Y2=IE-12


1470 TL(K)= 10*FNALOG(YI)-IO*FNALOG(Y2)


1480 IF(IFLG=I) THEN FR(K)=(I-I)*1.25


1490 IF(IFLG=2) THEN FR(K)=(I-I)*12.5


1500 K=K+1


1510 NEXT I


1520 IKMAX=K


1530 CLOSE #2:CLOSEM3


1540-RETURN


1550 ' SUBROUTINE FIND INTEGER FROM OUTPUT STRING


1560 B$="".J=1


1570 FOR I=l TO NLOC-1


1580 C$=MID$(A$,I,I)


1590 IF C$=," THEN GOTO 1620


1600 B$=B$+C$


1610 GOTO 1630


1620 P(J=VAL(B$):3=J+1:B$='.


1630 NEXT I


1640 P(J)=VAL(B$)


1650 RETURN


1660 'SUBROUTINE PLOT


1670 IE=INT(II/2)*2


1680 IF(II>O AND IE=II) THEN PRINT #1,"PD;"


1690 IF(II>O AND IE0II) THEN PRINT #1,"PU;"


1700 XSCL=XCORD*XRATIO+XKNST


1710 YSCL=YCORD*YRATIO+YKNST


1720 IF ABS(XSCL>32767) THEN PRINT "X TOO LARGE":RETURN


1730 IF ABS(YSCL>32767) THEN PRINT "Y TOO LARGE":RETURN


1740 IXSCL=FIX(XSCL):IYSCL=FIX(YSCL)


1750 A$="PA"+STR$(IXSCL)+","+STR$(IYSCL)


1760 PRINT #1,A$


1770 IF(II>O) THEN RETURN


1780 IF(II=IE) THEN PRINT #1,"PD;"


1790 IF(II<)IE) THEN PRINT #1,"PU;"


1800 RETURN


1610 'SUBROUTINE INCREMENTAL PLOT


1820 IE=INT(II/2)*2


1830 IF(II>O AND IE=II) THEN PRINT #1,"PD;"


1840 IF(II>O AND IE<II) THEN PRINT #1,"PU;"


1650 XSCL=XINC*XRATIO


1860 YSCL=YINC *YRATIO


1870 IF ABS(XSCL>32767) THEN PRINT "X TOO LARGE":RETURN


1860 IF ABS(YSCL>32767) THEN PRINT "Y TOO LARGE":RETURN


1890 IXSCL=FIX(XSCL):IYSCL=FIX(YSCL)


1900 A$="PR"+STR$(IXSCL)+","+STR$(IYSCL)
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1910 PRINT #i,A$

1920 IF(II>O) THEN RETURN

1930 IF(II=IE) THEN PRINT #j-,.'rPa;" 
1940 I-F--I-I-(IE) THEN PRINT #1,"PU;"

1950 RETURN

1960 'SUBROUTINE CHARCATER MOVE

1970 A$="CP"+STR$(CW)+","+STR$(CH)+";"

1980 PRINT #I,A$

1990 RETURN

2000 'SET CHARACTER SIZES'

2010 RRAD=57.29578

2020 AORR=AOR/RRAD

2030 SLR=SL/RRAD

2040 PR=XNUM/YNUM

2050 W=INT(.1000!*(H/AR)/PR)/1000!

2060 IF (W>127.999) THEN W=127.999

2070 IF (H>127.999) THEN H=127.999

2080 A$="SR"+STR$(W)+","+STR$(H)+";"

2090 PRINT #1,A$


2100 RISE=INT(1OOO!*10O!*SIN(AORR))/1O00!


2110 RUNN =INT(i000!*100!*COS(AORR))/IO00!


2120 A$="DI"+STR$(RUNN)+","+STR$(RISE)+";'


2130 PRINT #1,A$


2140 SLR=INT(1000*SIN(SLR)/COS(SLR))/1000


2150 A$=NSL"+STR$(SLR)+""


2160 PRINT #IA$


2170 'END OF CHAR SIZE


2180 RETURN


2190 'SET SCALE WITH ARGUMENTS XI,X2,YIY2


2200 NLOC=O:A$=""


2210 PRINT #1,'OP;"


2220 IF LOC(1) =0 THEN 2220


2230 ACHR$=INPUT$(1,#1)


2240 A$=A$+ACHR$:NLOC=NLOC+1


2250 IF ASC(ACHR$)=13 THEN GOTO 2260 ELSE 2220


2260 'CONTINUE


2270 GOSUB 1550


2280 PIX= P(1):PIY=P(2):P2X=P(3):P2Y=P(4)


2290 XNUM=P2X-PIX


2300 YNUN=P2Y-PIY


2310 XPI=XI:XP2=X2:YPI=YI:YP2=Y2


2320 XRATIO=XNUM/(XP2-XPI)


2330 YRATIO=YNUM/(YP2-YP1)


2340 XKNST=P1X-XPI*XRATIO


2350 YKNST=PIY-YPI*YRATIO


2360 PRINT #1,"IW;"


2370 RETURN


2380 'END SCALE
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2390 'ROUTINE LABEL PLOT WITH ARGUMENTS LBL$ 
2400 PRINT "ENtER LABEL (LESS THAN 80 CHARCATERS) 
2410 PRINT "PRINT lZZ IF DONE" 
2420 INPUT L$ 
2430 ILEN=LEN(L$) 
2440 IF LS='ZZZ" THEN SOTO 2520 
2450 PRINT "MOVE PEN TO DESIRED POSITION AND "; 
2460 INPUT "HIT RETURN WHEN SATISFIED ",Y$ 
2470 PRINT 
2480 H=1.5:AR=1.5:AOR=0:SL=O:SOSUB 2000 
2490 LBL$=L$:GOSUB 2540 
2500 CW = -I*ILEN:CH=-1,2: GOSUB 1960 
2510 SOTO 2400 
2520 'CONTINUE 
2530 RETURN 
2540 'ROUTINE TO LABEL PLOTS WITH ARGUMENT LBL$ 
2550 E$=CHR$(3) 
2560 A$="LB"+LBL$+E$+";" 
2570 PRINT #1,A$ 
2580 RETURN 

412





ORIGINAL PAGE jg



OF POOR QUALITY



C.2.10 LISTING OF INTVAL.FOR



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCC


C C


C C


C PROGRAM TO TO COLLECT INTENSITY VALUES AT C


C A SPECIFIED FREQUENCY FROM THE INTENSITY C


C DATA FILES C


C C


C C


CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C


C


C####### PROGRAMMER : R.NAVANEETHAN


C####### VERSION : 2


C####### DATE : I-MAR-94


C


C


Cf#O#### INPUT DATA FILE: A CATALOG FILE WHICH CONTAINS


C####### NAMES OF ALL INTENSITY DATA


C####### FILES


C



DIMENSION AINT(402)


CHARACTER*12 NAME,NAMEI


CHARACTER*1 CHRA,CHRB


WRITE(1,100)



2 CONTINUE


100 FORMAT(' ENTER FREQUENCY VALUE OF INTEREST')



READ(1,101) FREQ


101 FORMAT(FO.0)


I CONTINUE



ICOUNT = FRE/Ii.25+1


IF (FREO.GT.500.05) ICOUNT =FREO/12.5+1


IF(FREG.LE.500.) CHRB = "L"
 

IF(FREQ.6T.500.05) CHRB = "H"


WRITE(1,103)



103 FORMAT(' ENTER CATALOG FILE NAME CONTAINING INTENSITY


&DATA FILE NAMES')


READ(1,104) NAME



104 FORMAT(AO)


WRITE(1,105)



105 FORMAT(' INSERT FIRST DATA DISK IN DRIVE B:')


PAUSE



3 CONTINUE


JC=O


IF (IOREAD(6,2,0,NAME)) STOP



4 CONTINUE


READ(6106,ENDFILE=5) NAMEI



106 FORMAT(AO)


WRITE(1,130) NAMEI
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130 	 FORMAT(' ',A12) 
CALL PUTCHR(CHRAIIKHAR(NAMEI,8)) 
JC=JC+1 
IF(CHRA.NECHRB) GO TO 999 

10 	 CONTINUE


IF(IOREAD(7,2,0,NAMEI)) GO TO 8


GO TO 9



8 	 CONTINUE


WRITE(1,107)



107 	 FORMAT(' INSERT 2ND DATA DISK DRIVE IN DRIVE B:'$)


PAUSE


GO TO 10



9 	 CONTINUE


READ(7) BIB2183,B4



C


C##### READ FROM FILE CONTAINING UNFORMATTED DATA


C


C120 FORMAT(4EIS.5)


C



DO 11 I=I,ICOUNT


READ(7) BINT



ClOg FORMAT(EIS.5)


11 CONTINUE



IF (BINT.LE.O.) BINT=I.E-12


AINT(JC)=10.*(ALOBIO(BINT/I.E-12))


IF (IOCLOS(7)) STOP


GO TO 4



5 	 CONTINUE


IF (IOCLOS(6)) STOP


JK=JC


WRITE(1,109)



109 	 FORMAT(' ENTER NAME FOR OUTPUT FILE')


READ(i,110) NAME



110 	 FORMATCAO)


IF (IOWRIT(10,2,01 NAME)) STOP


DO 12 I=IJK


WRITE(10,111) AINT(I)


Ill 	 FORMAT(' ',F15.5)



12 CONTINUE


IF (IOCLOS(I0)) STOP


GO TO 1000



999 WRITE(1,200)


200 FORMAT(' SOMETHING IS WRONG IN FILE NAMES!!!')


1000 CONTINUE



STOP


END



414





ORIGINAL PAGE 3OF POOR QUJALITY 

LISTING OF INTMAP.FOR
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CCCCCCCC CCCCCDccCCCCCC CCCCCCcccCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCC


C C


C C


-C INTENSITY MAP INTERPOLATION PROGRAM C


C C


C C


CCCCCCCCCDccccCcCCccccCCCCCCCccccCCCCCCDCCCcc ccCCCccccccccccc


C


C


C######## VERSION : 2


C######## PROGRAMMER : R. NAVANEETHAN


C######## DATE : 22-FEB-84


C


C


C######## THIS PROGRAM GIVEN 81 POINTS OF INTENSITY VALUES AT


C######## 81 LOCATIONS INTERPOLATES DATA AND OUPUTS DATA FILE


C######## WHICH CAN DIRECTLY PLOT INTENSITY MAP. PLOT PROGRAM


C######## IS CALLED P74751N. IT WILL PLOT INTENSITY MAP ON


C######## HP 7475 DIGITAL PLOTTER


C 
C


C 
C######## INPUT DATA : DATA FILE CONTAINING 81 INTENSITY DATA


C


C


C######## DIMENSION STATEMENTS


C



DIMENSION A(9,9),AX(9),AY(9)


DIMENSION BI(8IO),B2(810),IB3(BiO),IC(BIO)


CHARACTER*15 INAME,ONAME


DATA INAME/""/


DATA ONAME/""/


WRITE(I,700)



700 FORMAT(' ENTER INPUT FILE NAME '$


READ(1,122) INAME



122 FORMAT(AO)


WRITE(I,701)



701 FORMAT(' ENTER OUTPUT FILE NAME = )


READ(1,122) ONAME



123 CONTINUE


WRITE(I,702)



702 FORMAT(' ENTER CONTOUR INTERVAL IN dB (10. OR 5. OR 2.


&OR 1. = '$)


READ(1,703) CONINT



703 FORMAT(FO.0)


IF(.NOT. C(CONINT.EQ. 10.).OR.(CONINT.EQ.5.).OR.



&(CONINT.EQ.2).OR.(CONINT.EQII))) GO TO 123


IF(CONINT.EQ.10.) ICON=1
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IF(CONINT.EQ.5.) ICON = 2


IF(CONINT.EQ.2.) ICON = 3


IF(CONINT.EQ.1) ICON=4



C


C###### THE FOLLOWING LOOPS ASSIGN THE INTENSITY VALUES


C###### TO AN ARRAY WHICH REPRESENTS THE TEST GRID.


C



IF(IOREAD(B,210,INAME)) STOP


DO 10 J=1,9


DO i0 I=I19


READ (6,300) A(IJ)



300 FORMAT (FO.0)


10 CONTINUE



C


C###### THE FOLLOWING LOOPS TRANSLATE GRID LOCATIONS INTO


C###### LOCATIONS DEFINED BY THE DISTANCE FROM THE NPD EDGE.


C



DO 11 I=1,9


AX(I) = I + 2.*FLOAT(I-1)


AY(I) = I + 2.*FLOAT(I-1)



11 CONTINUE


IF(IOCLOS(S)) STOP



C


C###### FOLLOWING LOOPS DO THE INTERPOLATION BETWEEN POINTS IN


C###### A HORIZONTAL DIRECTION. THE LOCATION OF EACH DIVISION


C###### OF CONINT DECIBELS BETWEEN THE POINTS WILL BE FOUND


C###### FOR MAPPING PURPOSES.


C



IF(IOWRIT(10,2,0,"INTITMP")) STOP


C OPEN(UNIT=IONAME='INTI.TMP',TYPE='NEW')



DO 20 J=1,9


DO 20 I=118


Y2 z A((I+I),J)


Y1 = A(IJ)


X2 = AX(I+I)


Xl = AX(I)


IF(Y2.EQ.Y1) GO TO 20



C


C###### ENSURE THAT Y2 IS ALWAYS GREATER THAN YI.


C



IF (Y2.GE.Y1) GO TO 23


XITEMP = XI


YITEMP = YI


YI=Y2


Y2=YITEMP


XI=X2


X2=XITEMP



23 CONTINUE
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SLOPE = (X2 - X1)/(Y2 - YI)


CALL INVAL(YI,Y2,ZCAL,ICON)



21 	 CONTINUE


IF (ZCAL.GT.Y2) GO TO 22


XLOC = (SLOPE*(ZCAL - Y1)) + X1
 

WRITE (10,100) XLOC,AY(J),INT(ZCAL)


ZCAL = ZCAL + CONINT


O0 TO 21



22 CONTINUE


20 CONTINUE



C 
C###### THE FOLLOWING LOOPS DO THE INTERPOLATION BETWEEN POINTS


C###### IN VERTICAL DIRECTION. THE LOCATION OF EACH DIVISION


C###### OF CONINT DECIBELS BETWEEN POINTS WILL BE FOUND FOR


C###### MAPPING PURPOSES.
 

C 

DO 30 I=1,9


DO 30 J=l,


Y2 = A(I,(J+I))


Y1 = A(IJ)


X2 = AY(J+I)


XI = AY(J)


IF(Y2.EQ.Y1) GO TO 30



C 
C###### ENSURE THAT Y2 IS ALWAYS GREATER THAN YI.


C 

IF (Y2.GE.Y1) GO TO 33


XITEMP = Xl


Y1TEMP = Y1


YI = Y2


Y2 = YITEMP


XI = X2


X2 = XITEMP



33 	 CONTINUE


SLOPE = (X2 - X1)/(Y2 - YI)


CALL INVAL(Y1,Y2,ZCAL,ICON)



31 	 CONTINUE


IF (ZCAL.GT.Y2) GO TO 32


YLOC = (SLOPE*(ZCAL - Yi)) + XI


WRITE (10,100) AX(I),YLOC,INT(ZCAL)


ZCAL = ZCAL + CONINT


GO TO 31



32 	 CONTINUE


30 	 CONTINUE



IF(IOCLOS(10)) STOP


100 FORMAT (1X,F6.2,iX,F6.2,1X,I3)



C 
C###### SORTING DATA INTO SEQUENTIAL DIVISIONS OF CONINT DBS
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C 
IF (IOREAD(9,2,0,"INTI.TMP")) STOP



C OPEN(UNIT=9,NAME='INTI.TMP',TYPE='OLD')


I= I



40 CONTINUE


READ(9,200,ENDFILE=45) BI(1),B2(I),IB3(I)



200 	 FORMAT (F6.2,IX,F6.2,IX,13)


I=I+1


GO TO 40



41 	 CONTINUE


45 	 NS = I - I
 


IF(IOCLOS(9)) STOP


CALL SORT (NS,IB3,IC)


IF(IOWRIT(1l,2 10,ONAME)) STOP



C 	 OPEN(UNIT=iI,NAME=ONAME,TYPE='NEW')


DO 42 J=INS


J2 = IC(J)


WRITE(C111i 0 ) BI(J2),B2(J2),IB3(J2)



42 CONTINUE


IF(IOCLOS(ii)) STOP


STOP


END



C


C###### A MODIFIED BUBBLE SORT WRITTEN BY R.NAVANEETHAN


C



SUBROUTINE SORT(NS,IA,IC)


DIMENSION IA'(SIO),KSORT(S10),IC(S10)


DO 1 IS=I,NS


IC(IS) = IS


KSORT(IS) = IA(IS)



I CONTINUE


DO 3 IS=I,NS-l


DO 2 JS=lyNS-IS


IF(KSORT(JS}.LE.KSORT(JS+i)) GO TO 2


IT = KSORT(JS)


ITC IC(JS)


KSORT(JS) = KSORT(JS+I)


IC(JS) = IC(JS+I)


KSORT(JS+I) = IT
 

IC(JS+I) = ITC



2 CONTINUE


3 CONTINUE



RETURN


END



C


C#####t FIND INTITIAL VALUE TO START MAPPING


C



SUBROUTINE INVAL(Y1,Y2,ZCAL,ICONT)
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IF(ICONT.NE.I) GO TO I 
ZCAL=FLOAT(INT(Y1/IO.)*1O)+1O. 
GO TO 4 

I CONTINUE 
IF(ICONT.NE.2) GO TO 2 
DEC=(YI-FLOAT(INT(YI/1O.O)*IO))/IO. 
IF (DEC.LT.O.5) ZCAL= FLOAT(INT(YI/1O.))*IO.+5. 
IF (DEC.SE.O.5) ZCAL = FLOAT(INT((YI + 10.)/10.)*10.) 
GO TO 4 

2 CONTINUE 
IF(ICONT.NE.3) GO TO 5 
IDEC=MOD(INT(YI),2) 
IF(IDEC.EQ.1) ZCAL=FLOAT(INT(YI))+I. 
IF(IDEC.EQ.O) ZCAL=FLOAT(INT(Yl))+2. 
GO TO 4 

5 CONTINUE 
ZCAL=INT(YI)+I. 

4 CONTINUE 
RETURN 
END 
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C.2.12 LISTING OF PIN7475.BAS



I ####################################################


2'# #


3 '# INTENSITY MAP PLOTTING #


4'# #



5 '########t######################################## 
6 '#
 

7 '# PROGRAMMER : R.NAVANEETHAN


8 '# VERSION : 1
 

9 1# DATE : 3-1-84 
10 '# 
11 '# 
100 DEFINT I 
110 RAD=57.29578 
120 E$=CHR$(3) 
130 REM PROGRAM INTENSITY MAP PLOT 
140 XLBL$="MICROPHONE HORIZONTAL LOCATION (INCHES)" 
150 YLBL$="MICROPHONE VERTICAL LOCATION (INCHES)" 
160 INPUT"TURN ON PLOTTER, AND HIT RETURN WHEN READY", A$ 
170 OPEN "COMI:9600,E,7,1" AS #1 
180 'CLEAR PLOTTER 
190 PRINT #I,"DF;OE;" 
200 FOR IK=1 TO 100:NEXT IK 
210 IF LOC(1)=0 THEN 210 
220 FOR IK=1 TO 100:NEXT IK 
230 A$= INPUT$(LOC(1),#1) 
240 IF VAL(A$)=O THEN GOTO 270 
250 PRINT ; "PRINTER ERROR ";VAL(A$);" OCCURED!" 
260 STOP 
270 'CONTINUE 
280 PRINT #1,"IP 2000,2000,700017000;" 
290 XI=O!:YI=O!:X2=lS!:Y2=I!8GOSUB 1640 
300 'SET CHARACTER SIZES' 
310 H=2!:AR=i.5:AOR=O!:SL=O!:GOSUB 1460 
320 'SET PEN VELOCITY AND PEN #1 
330 PRINT "ENTER PEN VELOCITY "; 
335 INPUT "O=NORMAL OTHERWISE BETWEEN 0-38 "1 
340 IF 11=0 THEN PRINT #1,"VS;":GOTO 360 
350 PRINT #1,("VS"+RIBHT$(STR$(II),i)+";") 
360 'CONTINUE 
370 INPUT "ENTER PEN NUMBER (I THRU 8) = "I1


380 PRINT #I,("SP"+STR$(Ii)+";")


390 'END OF PEN SELECTION


400 INPUT "DO YOU WANT TO DRAW AXIS <YIN> "Y$



410 IF (Y$0'Y" AND Y$<>"N") THEN SOTO 400


420 IF Y$="N" THEN GOTO 810


430 'DRAW AXIS'
 

440 XCORD=O:YCORD=9!:I=-2!:GOSUB 1120


450 XCORD=1B:YCORD=O! I=2!:GOSUB 1120
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460 XCORD=18:YCORD=1B!:I=2!:GOSUB 1120


470 XCORD=O:YCORD=1I!:I=2!:GOSUB 1120


480 XCORD=O:YCORD=O!JI-=-I-!:GOSUB 1-t20


490- ' X-AXE' 

500 FOR IJ=O TO 18 STEP 2 
510 XCORD=IJ:YCORD=0!:I=O:GOSUB 1120 
520 XINC=O!:YINC=0:I=-2:GOSUB 1270 
530 XINC=O!:YINC=.3:I=-:GOSUB 1270 
540 CW=-.9:CH=-1.3:GOSUB 1420 
550 At="LB"+RIGHTS(STR$(IJ),2)+E$ 
560 PRINT #I,A$ 
570 NEXT IJ 
580 XCORD=9!:YCORD=O!:I=I:6OSUB 1120 
590 XINC=O!tYINC=-1.2:I=I:SOSUS 1270 
600 CW=-18!:CH=-1!:SDSUB 1420 
610 A$="LB"+XLBL$+E$ 
620 PRINT #IA$ 
630 ' START Y AXIS 
640 XCORD=O!:YCORD=O!:I=I:BOSUB 1120 
650 FOR IJ=2 TO 18 STEP 2 
660 XCORD=O:YCORD=IJ:I=O!:0OSUB 1120 
670 XINC=O!:YINC=O:I=-2:GOSUB 1270 
680 XINC=.3:YINC=O:I=-I:GOSUB 1270 
690 CW=-3.3:CH=-.3:GOSUB 1420 
700 A$="LB"+RIGHT$(STR$(IJ),2)+E$ 
710 PRINT #I,A$ 
720 NEXT IJ


730 XCORD=O!:YCORD=9!:I=I:GOSUB 1120


740 XINC=-1.2:YINC=O:I=I:SOSUB 1270


750 H=2!hAR=1.5:AOR=90!:SL=O!:GOSUB 1460


760 CW=-IB!:CH=O!:GOSUB 1420


770 A$="LB"+YLBL$+E$


780 PRINT #I,A$


790 H=2!:AR=1.5,AOR=O!iSL=O!:OOSUB 1460


800 'END OF YAXIS


610 'PLOT DATA 
820 INPUT "ENTER NAME OF DATA FILE ", NFILE$ 
830 OPEN "I", #2,NFILE$ 
940 ISYM=O:IINT=-999 
850 Xl=O!:Yl=l1:X2=18!:Y2=O!;OSUB 1640 
860 IF EOF(2) GOTO 940 
870 INPUT #2, XPOSYPOS,INTSTY 
880 IF IINT=-999 THEN IVFRST=INTSTY 
890 IF IINT<>INTSTY THEN ISYM=ISYM+I:INPUT"HIT RETURN",CR$ 
900 IINT=INTSTY 
910 XCORD=XPOS:YCORD=YPOS:I=I:SOSUB 1120 
920 PRINT #i,"PU;":GOSUB 1810 
930 G6TO 860 
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940 IVLAST=INTSTY


950 CLOSE #2


960 INPUT "WANT 	TO LABEL <Y/N> = ",Y$


970 IF Y$="Y" THEN GOSUB 1950


980 INPUT "WANT 	TO PLOT ANOTHER MAP <Y/N> ",Y$


990 IF Y="Y" THEN GOTO 280 
1000 END 
1010 ' SUBROUTINE FIND INTEGER FROM OUTPUT STRING 
1020 8S="":J=l 
1030 FOR 1=1 TO NLOC-1 
1040 C$=MIDt(A$,I,I) 
1050 IF C$="," THEN GOTO 1060 
1060 B$=B$+C$ 
1070 SOTO 1090 

'

1080 P(J)=VAL(B$):J=J+I:B$= ""


1090 NEXT I


1100 P(J)=VAL(B$)


1110 RETURN


1120 'SUBROUTINE PLOT


1130 IE=INT(I/2)*2


1140 IF(I>0 AND 	IE=I) 
 THEN PRINT #1,"PD;"
 

IE<>I) THEN PRINT *1,"PU;"
1150 IF(I>0 AND 
 
1160 XSCL=XCORD*XRATIO+XKNST


1170 YSCL=YCORD*YRATIO+YKNST


1160 IF ABS(XSCL>32767) THEN PRINT "X TOO LARGE":RETURN


1190 IF ABS(YSCL>32767) THEN PRINT "Y TOO LARGE":RETURN


1200 IXSCL=FIX(XSCL):IYSCL=FIX(YSCL)


1210 A$="PA"+STR$(IXSCL)+","+STR$(IYSCL)


1220 PRINT #I,A$


1230 IF(I>0) THEN RETURN


1240 IF(I=IE) THEN PRINT #1,"PD;"


1250 IF(I<>IE) THEN PRINT #1,"PU;"


1260 RETURN


1270 'SUBROUTINE INCREMENTAL PLOT


1280 IE=INT(I/2)*2



THEN PRINT #11"PD;"
1290 IF(I>0 AND 	IE=I) 

1300 IF(I>O AND IE<>I) 
 THEN PRINT #1,"PU;"
 

1310 XSCL=XINC*XRATIO


1320 YSCL=YINC *YRATID


1330 IF ABS(XSCL>32767) THEN PRINT "X TOO LARGE":RETURN


1340 IF ABS(YSCL>32767) THEN PRINT "Y TOO LARGE":RETURN


1350 IXSCL=FIX(XBCL):IYSCL=FIX(YSCL)


1360 A$="PR"+STR$(IXSCL)+","+STR$(IYSCL)


1370 PRINT #IA$


1380 IF(I>0) THEN RETURN


1390 IF(I=IE) THEN PRINT #1,"PD;"


1400 IF(I<>IE) THEN PRINT #1,"PU;"


1410 RETURN
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1420 'SUBROUTINE CHARCATER MOVE 
1430 A$="CP"+STR$(CW)+",'+STR$(CH)+";" 
1440 PRINT #1lA$. 
-1-450 RETURN


1460 'SET CHARACTER SIZES'


1470 AORR=AOR/RAD


1480 SLR=SL/RAD


1490 PR=XNUM/YNUM


1500 W=INT(1000*(H/AR)/PR)/1000


1510 IF (W>127.999) THEN W=127.999


1520 IF (H>127.999) THEN H=127.999


1530 A$="SR"+STR$(W)+",u+STR$(H)+";'"


1540 PRINT #i,A$


1550 RISE=INT(1000*100*SIN(AORR))/1000


1560 RUNN =INT(1000*100*COS(AORR))/I000


1570 A$="DI"+STR$(RUNN)+","+STR$(RISE)+";"


1580 PRINT #I,A$


1590 SLR=INT(1000*SIN(SLR)/COS(SLR))/1000


1600 A$="SL"+STR$(SLR)+;"


1610 PRINT #I,A$


1620 'END OF CHAR SIZE


1630 RETURN


1640 'SET SCALE WITH ARGUMENTS XIX2,Y1,Y2


1650 PRINT #1,"OP;'


1660 IF LOC(1) =0 THEN 1660


1670 FOR IK=I TO 200:NEXT IK


1680 NLOC=LOC(1)


1690 A$=INPUT$(LOC(1),#1)


1700 GOSUB 1010


1710 PIX= P(I)iPIY=P(2):P2X=P(3):P2Y=P(4)


1720 XNUM=P2X-PIX


1730 YNUM=P2Y-PIY


1740-XPI=XI:XP2=X2:YPI=YI:YP2=Y2


1750 XRATIO=XNUM/(XP2-XPI)


1760 YRATIO=YNUM/(YP2-YPI)


1770 XKNST=PIX-XP1*XRATIO


1780 YKNST=PIY-YPI*YRATIO


1790 PRINT #1,"IW;"


1800 'END SCALE


1810 ' ROUTINE SYMBOL WITH ARGUMENT ISYM


1820 H=2.5:AR=I.5:AOR=O!:SL=OkGOSUB 1460


1830 PRINT #1,"SI.175,.35;"


1840 IF ISYM=I THEN A$=UC-99,-3,-3,99,6,0,0,6,


-6,0,0,-6,-99,3,3;"


1850 IF ISYM=2 THEN A$="UC-99,0,4,99,-3,-6,6,0,


-3,6,-99,0,-4;"


1860 IF ISYM=3 THEN A$="UC-99,-3,2,99,6,0,-3,


-6,-3,6,-99,3j-2;-4
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1S70 IF ISYM=4 THEN A$="UC-99-1 1 3,99,-2-2,0
-2,2,-212,01212,0,2,-2,2,-2,0,-99,1,-3;"



1880 IF ISY=5 THEN A$="UC-99,3,0,99,-3,4,-3,


4 3 4
 -4,3,- , ,-99,-3,0;"



1890 IF ISYM=6 THEN A$="UC-99,2,2,99,-6,0,6,


-6,0,6,-991-21-2;"


1900 IF (ISYl <1 AND ISYM > 6) THEN SOTO 1920


1910 PRINT #1,A$


1920 'CONTINUE


1930 H=1.5:AR=1.5:AOR=O!:SL=O!:BOSUB 1460


1940 RETURN

1950 'ROUTINE LABEL PLOT WITH IVFRSTIVLAST ISYM
,
 
1960 ISYMN =ISYM

1970 PRINT "ENTER LABEL (LESS THAN 80 CHARCATERS)


1980 PRINT "PRINT ZZZ IF DONE"


1990 INPUT L$


2000 ILEN=LEN(L$)


2010 IF L$="ZZZ" THEN SOTO 2090


2020 PRINT "HOVE PEN TO DESIRED POSITION AND";


2030 INPUT "HIT RETURN WHEN SATISFIED ",Y$


2040 PRINT


2050 H=I1.5:AR=1.5:AOR=O:SL=O:GOSUB 1460


2060 LBL$=L$:GOSUB 2240


2070 CW = -I*ILEN:CH=-1.2: SOSUB 1420


2080 SOTO 1970


2090 INCRMT=(IVLAST-IVFRST)/(ISYHM-1)


2100 INUM=IVFRST-INCRMT'


2110 CW=3!:CH=-2.2:GOSUB 1420


2120 FOR IK=1 TO ISYM


2130 IV=IK


2140 INUM=INUM+INCRMT


2150 IVAR=INUM


2160 L$=RIGHT$(STR$(INUM),3)


2170 ISYM=IV:GOSUB 1810


2180 CW=i!CH=-.4:GOSUB 1420


2190 LBL$= "= "+L$+" DB": BOSUB 2240


2200 CW=-10.4:CH=-1,2:GOSUB 1420


2210 NEXT IK


2220 H=2!zAR=1.5:AOR=O:SL=O:GOSUB 1460


2230 RETURN


2240 'ROUTINE TO LABEL PLOTS WITH ARGUMENT LBL$


2250 E$=CHR$(3)


2260 A$="LB"+LBL$+E$+";T


2270 PRINT #IA$


2280 RETURN
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D.1 FLOW CHART OF TEST ROUTINES 


ACQUIRE COMPOSITE 


SIGNAL 


PROG: AVT2.BAS 


CALCULATE POWER 

CALCULAT POWER 


SPECTRUM 


PROG: ORIVAVT2.FOR 


[ENSEMBLE AVERAGE 


PR0 D P P . O 


BACKGROUND 


SUBTRACT 


PROG: PSPDIFF.FOR 


I 

SPECTRUM 


PROG: PSPCOR.FOR 


CALCULATE POWER 


CEPSTRUM 


PROG: CPSTRM2.FOR 


CALCULATE ABSORPTION 


COEFFICIENT 


PROG: ABS.FOR 
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D.2 LISTING OF COMPUTER ROUTINES



D.2.1 LISTING OF AVT2.BAS



1 'PROGRAM AVT2


2 'THIS PROGRAM TRANSFERS AVERAGE TIME SIGNAL OF CHANNEL B


3 'THIS PROGRAM IS USED IN ABSORPTION COEFICI-EN-T PROGRAM


1-0 SCREE-N -0-0


20 DEFINT I-N


30 DIM V(1030)


40 CLS:CLOSE


50 LOCATE 25,1


60 C$="ZZZOA31SY250SY261SY296SWAJ1F2EOZ=B"


70 PRINT STRING$(60," ")


80 SYN$=CHR$(22)


90 LOCATE 1,1


100 SPEEDS"9600"


110 COMFIL$="COMI:"+SPEED$+",N,8,2"


120 OPEN "SCRN:" FOR OUTPUT AS #2


130 LOCATE 25,1:PRINT "AVG TIME TRANSFER PROGRAM";


140 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1


150 LINE INPUT "INPUT FILE? <TYPE E TO EXIT > :";DSKFIL$


160 IF DSKFIL$="E" THEN 650


170 OPEN COMFIL$ AS #1


180 LOCATE 1,1 :PRINT STRING$(60," "):LOCATE 1,1


190 OPEN "O";#3,DSKFIL$


200 3=o


210 FOR IC%=1 TO 34


220 D$=MID$(C$,IC%,l)


230 GOSUB 390


240 NEXT ICZ


250 REM CONTINUE


260 LOCATE 1,1


270 GOSUB 440


280 D$="Z":GOSUB 390


290 D$="Z":GOSUB 390


300 D$=":":GOSUB 390


310 D$="9":SOSUB 390


320 GOSUB 440


330 CLOSE #1


340 FOR I= I TO 1024 STEP 4



^ ^^  
 350 PRINT #3,USING"###.##A ";V(I),V(I I);V(I+2);V(I+3)


360 NEXT I


370 CLOSE #3:CLS


360 GOTO 130


390 PRINT #I,D$;


400 FOR IK%=1 TO-200:NEXT IK%


410 IF LOC(1)O1 THEN 410


420 A$=INPUT$(1,#1)


430 IF ASC(A$)=6 THEN RETURN ELSE PRINT #2,"ERROR SENDING DATA":STOP


440 REM CONTINUE


450 FOR IC%=1 TO 65
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460 PRINT #ISYN$;


470 IF LOC(I)<96 THEN 470


480 HI$ = INPUTS(96,#1)


490 R$=HI$


500 GOSUB 550


510 NEXT IC%


520 IF LOC(1)<>1 THEN PRINT LOC(l):BOTO 520


530 A$=INPUT$(I,#I)


540 RETURN


550 K1=1:K2=8 
560 IF IC%=65 THEN K2=1 
570 FOR IM=KI TO K2 
580 J=J+l 
590 IM2=12*(IM-1) 
600 F$=MID$(R$,IM2+4,6) 
610 E$=MID$(R$,IM2+I0,6) 
620 V(J)=VAL(F$+"E"4E$) 
630 NEXT IM 
640 RETURN


650 CLOSE:END
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CCCCCCCCcCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCC 
C C­
c c 
C DRIVER ROUTINE FOR CEPSTRUM C 
C C 
C 	 C


cccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCC



C 
C 
C 
C########## PROGRAMMER : R. NAVANEETHAN ################


C########## VERSION : 3 ##################


C########## DATE : 29-MAR-84 #################


C


c



PROGRAM DRIV3


DIMENSION XRC1024)1 XI(1024),TR(1025)


CHARACTER*15 ANAME,BNAME
 

DATA PI/3.14154926/


DATA TR/1025*0./



C


C###### SET PROGRAM PARAMETERS AND READ CATALOG FILE NAME


C



N=1024


N3=N/2+1


N2=2*1024


WRITE (*,300)



300 	 FORMAT(' ENTER SCALE VALUE = 3) 
READ(*,*) SCL 
WRITE (*,301) 

301 	 FORMAT (* ENTER # OF POINTS IN TIME HISTORY TO BE USED '$) 
READ (*,*) NN 
F=5.*PI/NN


K2=NN+I


IKz8*NN/10


JK2=9*NN/10


JKI=NN/10


WRITE (*,302) 

302 FORMAT(' ENTER CAT FILE NAME = '$1 
READ (*,*) BNAME 
OPEN (6,FILE=BNAME,STATUS='OLD') 

I CONTINUE 
READ(6,100,END=51) ANAME 

100 FORMAT(AI5) 
WRITE(* 1 303) ANAME



303 FORMAT(' -,A15)


C


C###### READ DATA FROM DATA FILES
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C


OPEN (9,FILE=ANAME,STATUS='OLD')


DO 2 J=I,N,4


READ(9,102) XI(J),XI(J+),XI(J+2),XI(J+3)



102 FORMAT(E10.213(iX,EI0.2))


2 CONTINUE



CLOSE(9)


C


C###### APPLY SIN 2 WINDOW TO THE DATA SEQUENCE OF NN POINTS


C



DO 3 I=I,NN


XR(I)=XI(I)*SCL


IF((I-1).LE.JK1) XR(I)=XR(I)*(SIN(F*(I-1)))**2


IF((I-l).GE.JK2) XR(I)=XR(I)*(SIN(F*(I-I-IK)))**2



3 CONTINUE


DO 5 I=K2,N



5 XR(I)=O.


DO 7 I=I,N



7 XI(I)=O.


C


C###### CALCULATE FFT


C



INV=O


CALL FTOIA(XR,XI,NINV)


IF(INV.EQ.-1) GOTO 1000



C



C###### FIND POWER SPECTRUM. SPEC YET TO CORRECTED FOR ANALYSIS WIDTH


C



DO 8 I=IN3


a TR(I)= TR(I)+(XR(I)**2+XI(I)**2)



GO TO I


51 CONTINUE


C


C##### WRITE AVERAGED POWER-SPECTRUM TO DISK


C



OPEN (10,FILE='A:POWLSP.DAT',STATUS='NEW')


DO 9 IzIN3



9 WRITE(10304) TR(I)


304 FORMAT(IX,E1I.5)



CLOSE(10)


GO TO 1010



1000 WRITE(*,501)


501 FORMAT(' ERROR IN FFT ROUTINE')


1010 CONTINUE



STOP


END
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D.2.3 	 LISTING OF ADDPS12.FOR



ccCCCCCCCCCCCCCCCCccCCCCCCCCCCCCCCCCCCCCcccCCCCCcccccccccccccccCCCCCCcc


C C


C ADD POWER SPECTRUM FROM FILES C


-C 	 C 
cccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCC CCCCCC CC 
C



C


C############# PROGRAMMER : R.NAVANEETHAN ######################


C############# DATE ; 24-APR-84 ######################


C############# VERSION : 2 ######################


C


C



PROGRAM ADDPSP


REAL X(513)


CHARACTER *15 CATFIL,FILNAM


WRITE (*,200)
 


200 	 FORMAT('ENTER CATALOG FILENAME FOR ENERGY SUM OF PSP = 3) 
READ (*,*) CATFIL 
J=O 
OPEN (12,FILE=CATFIL,STATUS='OLD*)



23 READ(12,201,END=202) FILNAM


201 FORMAT(A15)



J=J+l


K=J+I


OPEN (K,FILE=FILNAM,STATUS='OLD')


GO TO 23



202 CONTINUE


DO 1 I=1,513


XSUM=O.


DO 3 JJ=1,J


K=JJ+1


READ (K,101) XV


XSUM=XSUM+XV



3 CONTINUE


X(I)=XSUM/(25.*J)



I CONTINUE


DO 4 JJ= 1,J


K=JJ+1 
CLOSE(K)



4 CONTINUE


OPEN (15,FILE='B:NNAVGPSP.DAT',STATUS=°NEW')


DO 2 I=1,5.13



2 WRITE(15,101) X(II


101 FORMAT(IX,Eli.5)



CLOSE(15)


STOP


END
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D.2.4 LISTING OF PSPDIFF.FOR



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C C


C C


C PSP DIFF CALCULATION C


C C


C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC



C 
C 
C 
Cf######### PROGRAMMER ; R. NAVANEETHAN #######4########


C########## VERSION : 2 #################


C#########l# DATE : 2-MAY-94 ################


C



C


C234567



PROGRAM PSPDIF


DIMENSION TR(513)


DOUBLE PRECISION EIE2


CHARACTER*15 ANAME,SNAME


DATA PI/3.14154926/


C



C##### READ INPUT AVERAGED POWER SPECTRUM FROM A FILE


C



WRITE 	 (*,100)


100 	 FORMAT(' ENTER FILE NAME CONTAINING COMPOSITE SIGNAL = 

READ (*,*) ANAME 
WRITE (*,501) 

501 	 FORMAT ('ENTER ENSEMBLE SUM = 
READ (*,*) ES1 
WRITE (*,101) 

101 	 FORMAT(' ENTER FILE NAME CONTAINING DIRECT SIGNAL $)


READ (*,*) BNAME


WRITE (*,501)


READ (*,*) ES2


N=512


N2=2*N


NK=N+1


OPEN (9,PILE=ANAME,STATUS='OLD')


OPEN (SFILE=BNAMESTATUS='OLD')


DO I I=,NK


READ(B,201) X


READ(9,201) Y


EI=X/ES2


E2=Y/ES1



I TR(I)=DLOG(E2)-DLOG(EI)


201 FORMAT(IXEI1.5)



CLOSE(9)



432





5 

ORIGINAL PAGE 1a 
OF POOR QUALITY 

CLOSE(S)


OPEN(lOFILE='B:PSPDIF.DAT' STATUE='NEW')


DO 5 I=INK


WR-E:.TEttO1 12014Y T-(1)

CONTINUE



- CLOSE(IO)


STOP


END
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D.2.5 LISTING OF PSPCOR.FOR



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C C 
C SMOOTH THE BACKOOROUND SUBTRACTED SPECTRUM C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCC 
C 

C


C############# PROGRAMMER : RNAVANEETHAN ####################


C############# DATE : 23-APR-84 ####################


C############# VERSION : 2 ################1###


C


C



PROGRAM PSPCOR


DIMENSION X(513)


CHARACTER *15 ANAME,BNAME


N=512


NK=N+1


WRITE (*,j0Q)



100 FORMAT (' ENTER INPUT DATA FILE $)


READ (*,102) ANAME



102. 	 FORMAT(A15) 
WRITE (*,101) 

101 FORMAT (' ENTER OUTPUT DATA FILE = 3) 
READ (*,102) BNAME 
WRITE (*,103) 

103 	 FORMAT(' CHANGE VALUES UPTO NUMBER 'f)


READ(*I*) 11


OPEN (9,FILE=ANAMESTATUS='OLD')


DO I I=I,NK


READ(9,201) X(I)



201 	 FORMAT(IX,EII.5)


I 	 CONTINUE



DO 2 I= lil


WRITE(*,104)



104 	 FORMAT(' ENTER NEW VALUE 3)


READ(*,*) AV


X(I)=AV



2 	 CONTINUE


CLOSE (9)


OPEN (SFILE=BNAMESTATUS='NEW')


DO 3 I=I,NK


WRITE(6,201) X(I)



3 	 CONTINUE


CLOSE (8)


STOP


END
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D.2.6 LISTING OF CPSTRM2.FOR



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C C 
C. - tESTRUM CALCULATION C 
C C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 
C 
C########## PROGRAMMER : R. NAVANEETHAN ########i#########


C########## VERSION : 6 ##################


C########## DATE : 2-MAY-84 ##################


C


C



C234567


PROGRAM CPSTRM


DIMENSION XR(I024),XI(I024),TR(513)


DOUBLE PRECISION EI,E2


CHARACTER*15 ANAMEIBNAME


DATA PI/3.14154926/



C


C###### 'READ INPUT AVERAGED POWER SPECTRUM FROM A FILE


C



WRITE 	 (*,lOO)


100 	 FORMAT(' ENTER FILE NAME CONTAINING COMPOSITE SIGNAL = )



READ (*,*) ANAME
 

WRITE (*1501)



501 	 FORMAT (' ENTER ENSEMBLE SUM $)


READ (*,*) ESl


N=512


N2=1024


NK=N+1


OPEN (9,FILE=ANAMESTATUS='OLD')


DO I I=I,NK


READ(91201) Y 

- TR(I)=Y 
201 	 FORMAT(IX1 EI1.5)



CLOSE(9)


XR(I)=TR(1)


XI(l)=O.


DO 2 I=2,N


XR(I)=TR(I)


K=N2+2-I


XR(K)=TR(I)


XI(I)=O.



2 	 XI(K)=O.


XR(NK)=TR(NK)
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XI (NK)=0. 
INV=i 
CALL FTOIA(XR1 XIN2,INV) 
IF(INV.EQ,-I) GOTO 1000 
OPEN(10,FILE='B:POWCPS.DAT' STATUS='NEW') 
DO 5 I:1,NK 
WRITE(iO,20i)XR(I) 

5 CONTINUE 
CLOSE(10) 
GO TO 1010 

1000 WRITE(*,106) 
106 FORMAT(' ERROR IN FFT ROUTINE') 
1010 CONTINUE 

STOP 
END 
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D.2.7 LISTING OF ABSCOFF.FOR



CCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCC.


C C


C C



ROUTINE FOR CALCULATION OF ABS COEFF FROM CEPSTRUM C


C C


C C


CCCCCCCCCCCCCC CCCCC CCCCCCCCCCCOSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCODD



-C 
 

C 
C 
C 
C########## PROGRAMMER : R. NAVANEETHAN #################


C########## VERSION : I ##################


C########## DATE : 2-MAY-84 ##################


c


C



PROGRAM ABSORP


DIMENSION XR(256),XI(256),TR(129)


DOUBLE PRECISION E


CHARACTER*15 ANAMEBNAMECNAME


DATA PI/3.14154926/


DATA TR/129*0./



C


C###### SET PROGRAM PARAMETERS AND READ CEPSTRM FILE NAME


C



N=128


N2=2*N


NK=N+1


WRITE (*,300)



300 	 FORMAT(' ENTER RATIO LI/L2 = )


READ(*,*) SCL



301' 	 FORMAT(' ENTER # OF POINTS FOR ANALYSIS = $) 
WRITE (*,301) . 
READ (*,*) NN 

501 	 FORMAT(' ENTER START POINT = '5) 
WRITE(*,01)


READ (*,*) NST


F=5.*PI/NN


IK=S*NN/10


JK2=9*NN/10


JK1=NN/10


WRITE'(*,302)



302 	 FORMAT(' ENTER CEPSTRUM FILE NAME = $) 
READ (*,*) BNAME 
OPEN (6FILE=BNAMESTATUS='OLD') 

C


C###### READ DATA FROM DATA FILE


C



OPEN (9,FILE=BNAMESTATUS='OLD')
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DO 502 J=INST-1 
502 READ (9,201) V 

DO 2 J=INN 
READ(9,201) V 
XI(J)=V 

2 CONTINUE 
CLOSE(9) 

C 
C###### APPLY SIN 2 WINDOW TO THE DATA SEQUENCE OF NN POINTS


C



DO 3 I=INN


XR(1)=XI(1)*SCL


IF((I-1).LE.JKI) XR(1)=XR(I)*(SIN(F*(I-I)))**2



IF((I-1).GE.3K2) XR(I)=XR()*(SIN(F*(I-I-IK)))**2


3 CONTINUE


C


C###### EXTEND SERIES TO 256 POINTS


C



DO 5 I=NN+IN2


-5 XR(I)=O.



DO 7 I=IN2


7 XI(1)=O.


C


C###### CALCULATE FFT



OPEN( 11FILE='B:HTAU.DAT' STATUS='NEW')


DO 165 I=1,N2


WRITE(II,201)XR(I)



165 CONTINUE


CLOSE (11)



C


INV=O


CALL FTOIA(XR,XI,N2,1INVY­

IF(INV.EQ.-i) SOTO 1000



C


C###### FIND POWER SPECTRUM AND ABSORPTION COEFFICIENT


C



DO S I=I,N+I


B TR(I)= I.-(XR(1)**2+XI(I)**2)



OPEN(10,FILE='B:ABS.DAT',STATUS='NEW')


DO 65 I=I,NK


WRITE(10,201)TR(I)



201 FORMAT(IX,E11.5)


65 CONTINUE



CLOSE(10)


GO TO 51



1000 WRITE(*,106)


106 FORMAT(' ERROR. IN FFT ROUTINE')


51 CONTINUE
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STOP 
END 
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COMPUTER ROUTINES USED IN PREDICTION OF



INTERIOR NOISE LEVEL
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E.1 LISTING OF DRIVER.FOR.



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC


C C 
C C 
C -SOUND TREATMENT CALCULATION PROGRAM C 
C C 
C C 
CCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCC


C 
C 
C 
C########### PROGRAMMER : R.NAVANEETHAN ###################


C########### VERSION ;1 #################


C########### DATE : FEB 15, 1984 ###################


C


C


C#######



C INPUT DATA


C THE NAME OF THE DATA FILE NEEDS TO BE INPUT


C INTERACTIVELY. SEE USER'S MANUAL FOR THE


C INPUT DATA AND FILE FORMAT


C 
C OUTPUT DATA a 
C BOTH ON PRINTER AND DATA FILE (NAME TO BE 
C SPECIFIED INTERACTIVELY 
C 
C OTHER DETAILS: 
C THE M PROGRAM DRIVER IS ON THIS FILE 
C NAMED, 'DRIV.FOR*. THE SUBROUTINES ARE 
C ARE AVAILABLE ON A FILE NAMED 'T2LYER.FOR'. 
c THE FUNCTIONS NOT AVAILABLE IN THE SYSTEM 
C LIBRARY OF MIND ARE GIVEN IN 'CLAYER.FOR'. 
C TO EXECUTE COMPILE DRIVT2LYER,CLAYER AND 
C LINK TO SET AN EXECUTABLE.FILE "DRIV.SAV'. 
C THIS HAS BEEN DONE ALREADY FOR THIS VERSION. 
C IF FORTRAN SOURCE FILES ARE MODIFIED THEN 
C REPEAT THE ABOVE PROCEDURE. 
C


C TO RUN THE PROGRAM:


C 1. PREPARE DATA FILE ACCORDING TO


C USER'S MANUAL.


C 2. TYPE 'RUN DRIV <CR>'


C 3. WHEN ASKED FORGIVE INPUT DATA


C FILE AND OUTPUT DATA FILE.


C


C FILE NAME FORMAT IN MINC


C REFER RT1l OPERATING MANUAL


C 
C 
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C 
C234567



PROGRAM SPL


C


C######## THIS PROGRAM CONTROLS THE SOUND TREATMENT REQUIRED FOR AN


C######## AIRCRAFT


C



REAL DELTL(5,23),SPLWO(523),SPLW(5,23),SCAREA(5)1 SECWT(5)


REAL SPL(5),FREQ(23),TLT(231,PR(2),TP(2),AWT(23),SPLA(5)


BYTE INAME(I5),ONAME(15),OUTFIL(5,15)


COMMON /MAIN/ PRTPjAMACH


DATA INAMEONAME/30*' '/


DATA OUTFIL/75*' '/


DATA FREQ/31.5,40. 150.,63.,S0.,100.,125.,160.,200.,250.,315.,



&400. 500.,630.,0.,1000.,11250.,1600.,2000.,2500.,3150.,4000.,


-&5000./



DATA AWT/-39.4,-34.6,-30.2,-26.2,-22.5,-19.1 ,-16.1,-13.4,-10.9,
&-8.6,-b.6,-4.B,-3.2,-1.9,-.8,O. ,.6,1. ,1.2,I.3,1.2,1. ,.5i 

NFREQ=23


C


CN####### READ INTERNAL SOUND PRESSURE LEVEL WITHOUT ANY TREATMENT


C-

TYPE *, ENTER NAME OF THE INPUT FILE 
ACCEPT 100,(INAME(I),Iz1,14)

C



C######## READ OUTPUT FILE NAME


C



TYPE*,' ENTER NAME OF THE OUTPUT FILE


ACCEPT 100,(ONAME(I),I=1,14)



100 FORMAT(14A)


C


C######## OPEN AND READ INPUT-DATA FILE


C



OPEN (UNIT=SNAME=INAMETYPE='OLD')


READ (6,101) ISECT


READ (8,105) PR(1),PR(2),TP(1),TP(2),AMACH



101 	 FORMAT(I10)


DO I I=1,ISECT


READ (8,102) SCAREA(I)


READ (8,105) (SPLWO(IJ),J=,23)



105 FORMAT(7FI0.5)


102 FORMAT (F1O.4)



WRITE(6,120) ISECT


120 	 FORMAT(' SECTION = 'q3)



CALL TLOSS(TLTSECWT(I))


DO 2 J=1,23



2 DELTL(IJ)=TLT(I)


C
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C###### FORM-FEED TO THE PRINTER


C 

CLOSE(UNIT=6)


OPEN(UNIT6)



1 CONTINUE


C


C###### CLOSE DATA FILE


C



CLOSE(UNIT=R)


C


C####### CALCULATE INTERIOR SPL WITH TREATMENT AND TREATMENT WEIGHT


C



TOTWT=O.


DO 5 I=iISECT


SPL(I)=O.


SPLA(I)=O.

DO 4 J=I,NFREQ


SPLW(I,3)= SPLWO(I,J)-DELTLUI,J)


SPL(I)=SPL(I)+ i0.**(SPLW(Ij)/I0.)


SPLA(I)=SPLA(I)+ l0.**((SPLW(IJ)-AWT(J))/1I0.)



4 CONTINUE


SPL(1)=IO.*ALOGIO(SPL(I))


SECWT(I)=SECWT(I)*SCAREA(I)


TOTWT=TOTWT+I)



5 CONTINUE


OPEN(UNIT=9, NAME=ONAMEITYPE='NEW')


WRITE(9 200)


WRITE(6 200)



200 	 FORMAT(' NOISE CONTROL TREATMENT DESIGN RESULTS')


WRITE(9,201) TOTT


WRITE(6,201) TOTWT



201 FORMAT(SX,' TOTAL TREATMENT WEIGHT = ',F1O.5',' KGS')


WRITE(9,202)



202 FORMAT(5X,' SECTION PREDICTED SPL WEIGHT OF


& TREATMENT(KGOS)


WRITE(9,205)



205 FORMAT(' DBL DBA')


DO 6 I =i, ISECT


WRITE(9,203) I,SPL(I),SPLAECWT(I)


WRITE(6,203) ISPL(I),SPLA(I),SECWT(I)



203 FORMAT(IOX,II,IOX,F6.1,1OXF6.1.,12XF6.2)


6 CONTINUE



STOP


END
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READ INPUT DATA



ROUTINE: SYNTH



EFFECT OF EFFECT OF BAND EFFECT OF 
DISCRETE TONE OF FREGUENCY TREATMENT 

ROUTINE: SPFREG ROUTINE: BNFREQ ROUTINE: TL 

CHECK BACKGROUND 

LEVEL 

ROUTINE: BKGRD 

CALCULATE OVERALL 

LEVELS 

ROUTINE: SYNINT 

DISPLAY 

ROUTINE:SYNOIS 

CHANGE AGAIN ? 

END
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TREATMENT 

ROUTINE: TL 

O= 

MASS STIFFNESS OTHER r 

TREATMENT TREATMENT. TREATMENT 
ROUTINE: STLAW 

SINGLE WALL DOUBLE WALL KNOWN ABSORPTION FIBERGLASS 
ROUTINE: MASLAW ROUTINE: OUBWAL TREATMENT TREATMENT TREATMENT 

UROUTINE TTLI ROUTINE: TTL
AS 

OUTINE: TTL2 

RETURN 
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.F.2 LISTING OF THE PROGRAM 
:CLEAR 
 -
CREATE SYNTH


"XREF BLKIN


XREF SPFREO


XREF BNFREQ


XREF TL
 

XREF BKGRD


-XREF SYN-INT


XREF KEYIN
 

XREF SYNDIS


I10 BLKCLR


119 BLKIN 80,PO


12H MOVE B0,B1


139 PRINT 'OPTIONS AVAILABLE:'


140 PRINT 'Z= NO CHANGE'


150 PRINT 'I= CHANGE THE SPL AT A SPECIFIED FREC'


160 PRINT '2= CHANGE THE SPL OVER A FREQUENCY RANGE'


170 PRINT '3= ADD A SOUND TREATMENT'


18Z INPUT I


190 IF I0,I,290,200,220


200 SPFREO B1


210 GOTO 290


220 IF I0,2.25Z,230,250


230 BNFREQ 81


240 GOTO 299


250 IF I0,3,280,260,28Z


26Z TL BI


270 GOTO 290


280 GOTO 130


290 REMARK CONTNUE


295 BKGRD 81


300 PRINT 'CONTINUE MODIFYING'


310 HINPUT 13,'Y','N'


329 GOTO I3,3ZH,130,330


330 BLKDEF B14,5,9


335 ZERO B14


340 SYNINT


350 PRINT 'ENTER TITLE FOR DISPLAY (40 CHR MAX)'

360 BLKDEF B15,20,1


370 KEYIN 0,39 

380 SYNDIS 

39Z-PRINT 'CONTINUE ?' 


.400 HINPUT I5,'Y'.'N' 
410 GOTO I5,390,420,SZ0

420 END


430 PRINT 'OPTIONS AVAILABLE'


440 PRINT '2= WITH ORIGINAL SPECTRUM'


45Z PRINT '.I= WITH MODIFIED SPECTRUM'


46 INPUT IS


470 GOTO I5,492,480


480 GOTO 130


490.GOTO 129


500 END


510 RETURN


CREATE SPFREQ


XREF PEAK


XREF BPRINT


100 STACK 100,1Z1,103,134,114,115


"V1S STACK 2.0,221.292,293


III PRINT 'WANT THE PEAK FREa AND THE VALUES 7'


112-HINPUT I1.'Y'.'N' 
113 GOTo I0,111,114,120

114 PEAK PH



120 PRINT 'ENTER VALUE OF FREO TO BE CHANGED?'
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130 INPUT RZ
 

140 BIBSET P0,5,j0


150 BISSET P3,B,R


160 CUOT RI,RZ,I0


170 PROD RI,RI,.5


180 STACK 202,201,5,1,151


190 DIF 114,11.3


200 SUM 115,11,3


210 BPRINT PS,I14,II5,R


220 PRINT 'WANT TO CHANGE 2'


230 HINPUT I2,'Y','N'


240 GOTO 12,222,250,290


250 PRINT 'ENTER CHANGED VALUE?'


250 PRINT 'ONLY 4 TH VALUE WILL BE CHANGED'


270 INPUT R3


28Z LET PS,I1,R3


290 PRINT 'CONTINUE SP FREC CHANGE?'


300 HINPUT I2,'Y','N'


310 GOTO 12,292,120g,320


320 STACK 253,252,2S14,50


333 STACK 165,154,154,153,151,150


340 RETURN


CREATE BNFREO


XREF BPRINT


100 STACK 10l.1Z1,102,103,104,114,115


113 STACK 203,201,222,2Z3,204


120 PRINT 'ENTER LIMITS OF FREQ.RANGE'


130 PRINT 'MIN'


140 INPUT R2


150 PRINT 'MAX'


160 INPUT R3


170 BIBSET PZ,5,I0


180 BIBSET P0,6,R0


190 QUOT R1,R0,I0


200 PROD RI,RI,.5


210 STACK 202,201,S,I,164


220 STACK 203,201,5,1,165


'230 PRINT 'UNCHANGED VALUES'


240 BPRINT P0.I14,IIS,RI


245 PRINT 'OPTIONS AVAILABLE:'


250 PRINT '1= CHANGE BY CONSTANT-DELTA DB'


260 PRINT '2= CHANGE TO A CONSTANT VALUE'


270 INPUT I "


280 COTO 10,250,290,350


290 PRINT 'ENTER DELTA DB. REDUCTION'


300 INPUT R4


310 FOR 11,114,115


320 DIF PZ,I1,Pg,X1,R4


330 NEXT I1


34Z GOTO 402


350 PRINT 'ENTER NEW VALUE'


360 INPUT R4


370 FOR I1I14,115


380 LET PZ,I1,R4


390'NEXT I1


420.PRINT 'CHANGED VALUESP
 

410 ;PRINT P0,114,II5,R1


42 PRINT 'CONTINUE ?'


430 HINPUT 14,'Y','N'


440 GOTO 14,420,120,450


450 STACK 254,253,252,251,250


460 STACK 165,164,154,153,152,151,150


470 RETURN


CREATE TL
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XREF DUBWAL 

XREF STLAW 

XREF TTL 

XREF TTL2 

XREF TTL1 

109 STACK 100


110 PRLNI 'OPTIONS AVAILABLE-'


20 PRINT-'0: MASS LAW'


130 PRINT '1= STIFFNESS TREATMENT'


140 PRINT '2= OTHER TREATMENTS'


150 INPUT I0


I6 GOTO IS,17H,190,210


170 PRINT 'OPTIONS:'


172 PRINT '0= SINGLE WALL'


173 PRINT '1= DOUBLE WALL'


174 INPUT 10


175 GOTO I,176,178


176 MASLAW P0


177 GOTO 290


178 DUBWAL PO


179 GOTO 290


180 GOTO 290


190 STLAW PZ


20Z GOTO 290


210 PRINT 'OPTIONS AVAILABLE'


211 PRINT 'Z= SOUND TREATMENT WITH KNOWN DELTA TL VS FREQ'


220 PRINT '1= ADDITIONAL ABSORPTION'


230 PRINT 'Z= ADDITIONAL FIBERGLASS:BLANKET'


240 INPUT I


250 GOTO I0,283,265,280


260 TTL PH


270 GOTO 290


280 TTL2 PO


281 GOTO 29Z


283 TTLI PH


290 STACK 15Z


300 RETURN


CREATE MASLAW.


100 STACK 100,IZ1


110 STACK 200,201,202,203,204,205,26,27,208.


120 PRINT 'ENTER EXISTING.AVERAGE MASS PER UNIT AREA(LB/SQFT)'


130 PRINT 'INCLUDE SKIN,TRIM,LEADED.VINYL'


140 INPUT RH


150 PRINT 'ENTER MASS PER UNIT AREA OF ADDITIONAL TREATMENTr


160 INPUT RI


170 PRINT 'ENTER OUTSIDE TEMP (DEG F) AND PRESSURE (PSI)'


180 INPUT R2,R3.


190 STACK 202,459.7,2,16,14.96,4,254


200 STACK 202,32.,3,.5555,4,273.,2,255


210 STACK 203,205,5,24.,4,255


220 STACK 3.14,295,5,2Z4,5,255


239 PROD RO,RZ,4.882



- 240 PROD RI,R1,C.882 
250 SUM RI,RO,RI 
260 BIBSET P0,5,I 
27. BIBSET P0,6,R6


280 QOT R7,R6,IP


290 PROD R7,R7,.5'


292 SUM I,Igr,-l


300 FOR 12,0,IZ


30I LET I1,I2


302 STACK 101,0,207,4,258


320 STACK 205,208,4,201,4,253,203,203,4,1.,'2,20,10.,4,253
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330 STACK 205,203,4,20,4,252,202.22,4,1.,2,20,12.,4,252


340 SUM PZ,I1,PZ;I1,R2 
350 DIF PZ,I1,P, I1,R3 
36Z NEXT 12 
370 STACK 252,257; 255,255,254.253,252,251,250 
383 STACK 151,15f 
393 RETURN


CREATE BKGRD


130 STACK 100,101,1Z,20,201,202,203,204 
200 BIBSET Pa,6,R 
333 BIBSET PZ,5,10 
40 STACK 200,100,0,5,2.,5,255 
500 SUM Izzg,-1 
603 FOR I1,0,I0 
613 STACK 1f1,0,290.4,25I 
633 STACK 45.,30.,5990.,5,10.,201,3,4,2,252 
632 REMARK CORRECTION FOR ANALYSIS BANDWIDTH 
635 STACK 2f2,10.,12.5,200,5,2Z,4,3,252 
640 LET R3,PS,I1 
650 IF R3,RZ,660,700,700 
660 LET PZ,II,R2 
703 NEXT I1 
710 STACK 254,253,252,251,250,152,151,150 
720 RETURN 
CREATE STLAW 
100 STACK 100,0gl

113 STACK 200,201,202,233,204,205,206,207,208,209,210,211,212,213,2-14,215


120 PRINT 'ENTER AVERAGE MASS PER UNIT AREA OF SKIN(LS/SQ FT)'


130 INPUT RE


131 PROD RE,R0,4.882


140 PRINT 'ENTER AVERAGE MASS PER UNIT AREA OF FRAMES(LB/SQ FT)'


150 INPUT RI


151 PROD RIR1,4.882


160 PRINT 'ENTER AVERAGE STIFFNESS OF FRAMES(LB.IN)*


170 INPUT R2


171 PROD R2,R2,.113


180 PRINT 'ENTER ADITIONAL MASS PER'UNIT AREA OF STIFFNES TREATMENT'


190 INPUT R3


191 PROD R3,R3,4.882


220 PRINT 'ENTER ADDITIONAL STIFFNESS DUE TO TREATMENT'


213 INPUT R4


211 PROD R4,R4,.113


220 PRINT 'ENTER TEMP (DEG F) AND PRESSURE (PSI)'


230 INPUT R13.RI4


240 STACK 213,459.7,2,15,14.96,4,265


250 STACK 213,32.,3,.5555,4,273.,2,262


260 STACK 214,212,5,24.,4,262


270 STACK 2.,212,4,215,4,265


280 STACK 203.20,2,255,2ZZ,205,5,16,Z55


290 STACK 203,201,2,203,2,256,202,204,2,26,5.,16,255


310 MOVE P0,83


320 BIBSET PZ,5,I0


330 BISSET Pf,6,R7


340 QUOT RB,R7,I


350 PROD R8,RB,.5


355 SUM IZ,IH,-I


360 FOR II,0,I


370 STACK 191,9,298,4,6.28,4,259


380 IF Rg,R5,392,390,410


390 SUM RI0,RZ,R


400 GOTO 42Z


410 LET RIO,RZ


420 STACK 205,.94,4,210,41215,2,261,211,211,4,261


430 LET B3,I1.Rll
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442 STACK 205,209,5,261,21114,1.,3,11,210.209,4,251


450 STACK 211,211,4,261


'46H SUM B3,II,83,11,RI1


461 LET RI1,B3,II


462 STACK 211,215,5,215,5,261


463 LET B3,11,R11


464 NEXT Ii


465 LOG B2­

466 MLCONR 10.,B3 "


467 ADD 83,PO


468 FOR 11,0,I0


469 STACK 10I,0,2S8,4,6.28,4,259­

470 IF R9,R6,480,480,50


480 STACK 200,201,2,203,2,260


490 GOTO 510


500 STACK 200,203,2,26


510 STACK 206,..4.4.210,4,215,2,261,211,211,4,261


5Z0 LET B3,II,RII


530 STACK 206,229,5,261,211,211,4,1.,3,11,210,4,2Z9,4,261


540 STACK 211,211,4,261


550 SUM B3,II,83,31,R1I


560 NEXT I1


565 STACK 215,215,4,255,1.,215,5,265


580 MLCONR R15,93


600 LOG B3


620 NLCONR 10.,B3


640 SUB 83,P0


650 STACK 265,254,263,262,251,.60,259,258,257;25,255,254,253,5.,2S0


660 STACK 151,150


670 RETURN


CREATE TTLI


82 PRINT 'THIS SUBROUTINE USES STRAIGHT LINE INTERPOLATION BETWEEN'


83 PRINT 'FREQ. STARTING FREC IS ZERO. ENTER WHEN ASKEDtFREO AND


84 PRINT 'THE CORRESPONDING DELTA TL'


9Z STACK 100,101,20l,202,203,204,225,206,207


10Z BIBSET P0,6,R1


110 BIBSET P0,5,I0


120 STACK 20I,1I0,0,5,2.,5,251


130 MOVE P0,B3


140 ZERO 83


145 LET R2,0.


146 LET R4,0.


150 GOSUB 1000


155 SUM I,10,-1


160 FOR 11,0,I0


170 STACK 1I.0,291,4,256


180 IF R6,R3,200,200,190


190 LET R2,R3
 

191 LET R4,RS


192 GOSUB 1000


200 STACK 20S,204,3,203,202,3,5,2z6.;202,3,4,204,2,257


210 IF R6,100,220,230,23o


ZZ0 LET R7,9.


230 IF R7,40.,250,2S0,240


240 LET R7,40.


250 LET 83,I1-,R7


260 NEXT Ii


270 SUB B3,P0


275 STACK 257,256,255,254,253,2524251,151,150


280 RETURN


1000 PRINT 'ENTER FREQ VALUE'


1010 INPUT R3


1020 PRINT 'ENTER ADD. TL DUE TO TREATMENT AT THIS FREQ


1030 INPUT R5
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'Iff4Z RETURN



CREATE SYNMES


90 END


100 PRINT 'TO RUN LOAD BLKIN AND XDISPL.'


110 PRINT 'THEN EXECUTE SYNTH TIC DEV:FILNAH.EXT TIC.'


122 PRINT 'FOR HELP, LOAD TIC HELP.MEW TIC AND EXECUTE"


130 PRINT 'HELPNT TIC OVRWRT.HLP TIC '



140 RETURN


CREATE TTL


XREF BLKIN


XREF ASS


190 STACK 100,101


120 STACK 201,202,203,2Z4,2Z5,206


142 STACK 102,103


163 PRINT 'OPTIONS AVAILABLE:'


180 PRINT '0= EXPERIMENTAL ASS IN CURRENT FUSELAGE DESIGN'


200 PRINT 'I= OPTIMISED ABS IN LO FREO REGION'


223 PRINT '2= OPTIMISED ABS IN HI FREC REGION'


24Z INPUT 13


260 BIBSET PZ,5,11


280 BIBSET PZ,6,R1
 

303 STACK 201,101,2,S,2.,S,252


32Z STACK 100.,202,S,1,152


340 DIF I1,I1,1 
36 GOTO I3,380,660,680


380 PRINT 'ENTER UNTREATED ABSORB COEFF 7'


400 INPUT R3


420 PRINT 'ENTER MAX TREATED ABSORBtCOEFF?'


440 INPUT R4


.46Z MOVE P0,B3


480 ZERO 83


500 FOR 1,12,11


523 STACK 100,0,Z02,4,255


540 STACK 206,20,2.,3,204,2Z3,3,4,23,2,256


560 IF R5,1500.,600,600,50


58Z LET RS,R4


600 STACK 203,206,5,20,10.,4,11,2S6 
620 LET B3,I0,R6


643 NEXT 10


650 SUB 83,P0 
655 GOTO 720


660 BLKIN flhI,'ABSLO.TAB'


665 ABS PO


673 GOTO 720


68Z BLKIN BIl,'ABSHI.TAB'


685 ASS Po


720 STACK 153,152


740 STACK 256,255,254,253,252,251,151,150


760 RETURN


CREATE TTL2


100 STACK 100,101,1Z2,201,0ZZ,203,204,205 
120 REMARK THIS SUBROUTINE CALCULATES THE RESISTIVE LOSS DUE TO 
140 REMARK POROUS BLANKET­
160 PRINT 'RESISTIVE LOSS DUE TO FIBERGLASS BLANKET' 
165 PRINT 'OPTIONS AVAILABLE:"


170 PRINT '0- BLANKET TYPE A'(PFIZS)'


172 PRINT '1 BLANKET TYPE B (PFIE5 WITH HIGHER LO FREO TL)'


174 PRINT '2- BLANKET TYPE C (TYPE B WITH LOWER HI FREQ TL)'


178 INPUT 12


220 PRINT 'ENTER BLANKET THICKNESS IN INCH'


240 INPUT R5


260 BIBSET P0,5,I1


280 BIBSET PO,6,R1


300 STACK 201,101,0,5,2.,5,252
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"340 MOVE P9,83


360 ZERO B3


380 FOR 10,1,I


40O STACK 100,0,2Z2,4,253­

405 STACK -23,20,253


410 GOTO I2,A20,502,512


420 IF R3,2.,440,44H,480


440 STACK .05,203,2Z,4,2b4


460 GOTO 520


480 REMARK CONTINUE


500 STACK -1.234,203,4,16.53,2,Z3,4,53.76',3,203,4,51.37,2,24


501 GOTO 520


502 IF R3,2.,503,503,505


503 STACK .6,293,4,254


504 GOTO 520


5S5 STACK 2.503,203,4,714.56,2,203,4,29.66,2,203,4,-19.87,2,254


506 GOTO 520


512 IF R3,2.,513,513,515


513 STACK .6,203,4,254


514 GOTO 520


515 STACK -1o268,203,4,14.37,2,203,4,-43.25,2,203,4,42.44,2,254


520 STACK 204,205,4,254


540 LET B3,I0,R4


560 NEXT I0


580 SUB B3,PO


600 STACK 255,254,253,252,251,152,151,150


620 RETURN


CREATE DUBWAL


100 STACK 100.I11


110 STACK 20,201,202,203,204,205,205,207,212,213,214,215


120 PRINT 'ENTER MASS PER AREA (LB/SQ FT)'


130 INPUT RO


135 PROD RB,RO,4.882


140 PRINT 'ENTER SPACING IN INCH'


150 INPUT RI


155 PROD R,Rl,.0254


160 PRINT ' ENTER TEMP(DEG F) AND PRESS (PSI)'


.170 INPUT R13,R14


130 STACK 213,459.7,2,16,14.96,4,265


190 STACK 213.,32.,3,.S555,4,273.,2,262


200 STACK 214,212,5,24,,4,215,4,262


210 MOVE PO,B3


220 BIBSET P0,5,I0


230 BIBSET PO,6,R2


.240 STACK 202.100,0.5,.5.4,252


250 LET R3,1.


260 sUm i1,I0,-i


320 FOR 11,0,I


310 STACK 101,0,202,4,5.28,4;254o


315 STACK 204,200,4,212,5,257


320 STACK 207,203,4,.5.4,255,205,225,4,255


330 STACK 1.,205,2,20,10.,4,255


340 SUM P0,gI1,P0,II,RS


380 STACK 204,201,4,203,4,215,5,256.


390 STACK 205,14,207,.5,4,203,4,236,15;4,3,255


400 STACK 205,2.5,4,207,4,203,203,4,4,1. ,2255


410 STACK 205,20,10.,4,255


420 DIF PO,I1,P0,II,R5


430 NEXT II


440 STACK 265,264,263 ,262,257,256,255,254,253,252,251"%ZSz"


450 STACK 151,150


460 RETURN


CREATE BPRINT
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100 STACK 108


110 STACK 213,214,215


120 LET RIS,P3


130 PRINT ' FREQ SPL'


131 FORMAT 1.7,2


132 FORMAT 2,7,2


140 FOR I8,P1,P2 
150 STACK 198,Z,215,4,264 
160 LET RI3,PZ,18 
170 PRINT R14,' ',R13 
180 NEXT I8 
181 FORMAT 
190 STACK 255,254,263 
200 STACK 158 
210 RETURN 
CREATE INTEG 
5 STACK I02,131 
I1 STACK 100,20ff0,2 1 
20 LET RI,Z. 
z2 LET IIPI 
23 LET 12,P2 
30 FOR 10.II.12 
49 LET RZ,PZ,I0 
50 STACK 200,.1,4,22,250 ­
60 SUM RI,RI,Rg 
70 NEXT IS 
90 STACK 201,20,10.,4,251 
100 LET P3,R1


110 STACK 251,259,150


112 STACK 151,152


1Z0 RETURN


CREATE SYNDIS


XREF DISPLY


XREF LABI


100 STACK 100,202,201,202


I1 PRINT 'ENTER DISPLAY OPTIONS:'


120 PRINT 'Z= ORIGINAL SPECTRUM'


130 PRINT '1= MODIFIED SPECTRUM'


140 PRINT '2= BOTH SPECTRA'


150 INPUT IS


160 PRINT 'ENTER MAX VALUE VERTICAL SCALE'


170 INPUT RZ


180 PRINT 'FREQ RANGE'


182 PRINT 'MIN'


183 INPUT RZ


184 PRINT 'MAX'


186 INPUT RI


20 GOTO It,21Z,230,259


210 DISPLY B0,'M','EX',R,R,'YLAB','DB','SC',R2,'CLAB','UNMOD SPECTRA','SUB',LABI


220 GOTO 270


230 DISPLY Bl,'M','EX',R0,R1,'YLAB' ,'B','SC',RZ.'GLAB','MOD SPECTRUM','SUBILA1,


240 GOTO 270


Z5 DISPLY BO,'M'.'EX',RZ,R1,'YLAB'-,tB','SC',RZ,'GLAB',' ','SUB',LABI,'G','R'


25 DISPLY 81,'H','EX',RZ,RI,'SC',R2;'NG,'G*


270 ERASE


275 PRINT 'CONTINUE DISPLAY'


280 HINPUT I2,'Y','N'


290 GOTO I,270,112,300


300 HOLOUT 'KB',27


310 HOLOUT 'KB',12


320 STACK 252,251,260, 1


330 RETURN


CREATE SYNINT


XREF INTEG
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XREF AWT"



XREF SIL

100 STACK 200,203,204,10I,I02.103

110 PRINT 'ENTER LIMITS OF INTEGRATIONf

120 PRINT 'MIN'

130 INPUT R3


142 -PRINT '-MAX-'-- ­

150 INPUT R4 

160 BIBSET BZ,S,I1 

170 BIBSET BZ,6,RO 

180 STACK 200,121,9,5,.5,4,251 

190 STACK 2H3,201.5,1,152.204,221.5.1,153 

200 INTEG BZ,I2,I3,R3 

210 LET B14,0,R3 

220 INTEG BI,12,I3,R3 

23Z LET B14,2,R3 

240 MOVE B,B3 

250 AWT B3 

"260 INTEG B3,12,13,R3


270 LET B14,1.R3


280 MOVE BI,BS3


290 AWT 63


300 INTEG B3,I2,I3,R3


310 LET B14,3,R3


320 STACK 200,.E,4;259


330 IF R0,5650.,380,340,340


340 SIL B0,R3


350 LET B14,4,R3


360 SIL BI,R3


370 LET B14,5,R3


380 STACK 153,152,151,254,253,250


390 RETURN


CREATE AWT


100 STACK 100,I21,102,200,201,202


110 BIBSET P0,S,I1


120 BIBSET P0,5,RZ


130 QUOT R1,RO,I1


140 PROD RI,RI,.5


150 LET P,0,0.


'155 SUm II,iI,-I


150 FOR I,I,II


170 STACK 1,Z,201,4,20,250


180 STACK 20r,200,4,200,4,2H0,4,-.8345,4


190 STACK 20Z,2Z,4,200,4,1Z.Z7,4
20 0 4 5 5 73 4

200 STACK 2H 0 , , ,- . ,


210 STACK 200,160.7,4,-184.8,2,Z,2,2


220 STACK 250


250 LET RZ.P0.I0


260 STACK 202,20,2,252


270 LET Pt, I,R2


280 NEXT 1I


290 STACK 252,251,250,152,151,15Z


300 RETURN


CREATE KEVIN


log SUM Ih,P0,-1 

120 HOLIN KB',II


130 IF Ii,13,140,250,140­

140 IF 11.127,21ff,150.21Z


150 SUM I2,10,-I


160 IF 10.PM,170g.190f,190


170 LET I0,PZ


1s GOTO 120


190 HOLOUT 'KB',92
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200 GOTO 120 
215 IF 10,PI,220,220,290 
220 HOLOUT 'KB',I1 
230 TRANS 1,Bl5,I0,I1 
240 GOTO 110 
250 IF I0,P1,265,260,290 
260 FOR Il,I,PI 
270 TRANS 1,815,11,32 
289 NEXT 11


290 PRINT 
310 RETURN 
CREATE BLKPRT 
1Z0 FOR I1,0,39 
110 TRANS 0,BI5,I,I


120 HOLOUT 'KB',I1


130 NEXT IZ


140 PRINT


150 RETURN


CREATE LABI


XREF BLKPRT


19 STACK 200,21.202,203,204,205,206


I1 BEAMP 20Z,145


120 BLKPRT


130 BEAMP 0,105


140 FORMAT 1,6,2 ­


145 FORMAT 2,6,2


I50 LET RZ,B14,0
 

160 LET RI,BI4,1


170 LET R2,B14,2


180 LET R3,B14,3


182 LET R4,B14,4
 

184 LET R5,B14,5


200 PRINT 'OVERALL LEVEL UNMOD MOD'


210 PRINT 'LINEAR DBL ',RZ,' '.RZ


220 PRINT 'AWTED DBA ',R1,' '.R3


230 BIBSET BO,6,RS


240 STACK 206,.E,4,256


250 IF RSE65.,270.260,260


260 PRINT 'SIL Ds ',R4,'. ',RS


270 STACK 256,255,2S4,253,252,251,250


280 FORMAT


290 RETURN


CREATE SIL


100 STACK 100,I01,0I2,104,220,201,204,205


110 BIBSET 80,5,10


120 BIBSET B,,R2


130 STACK 10,0,202,5,2.,4,252


140 LET R,0.


150 LET RI .


16 LET 11,355


170 LET 12,705


18 STACK 102,0,202,4,1,152


190 STACK 101,0,2Z2,4,1,151


200 FOR I0,1,4


210 FOR 14,11,12


220 LET RS,PH,14


230 STACK 205,10.,5,22,25


240 SUM RZ,RO,R5


250 NEXT 14


260 STACK 200,20,10.,4,250


270 STACK 21,,200,251,12,151,12,,2.,4,1,152.


280 LET R0,0.


290 NEXT It


300 STACK 20I,4.,5,251
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,310 LET PI,RI


32Z STACK Z55,254,251,250,lS4,152,151,ISO


332 RETURN


CREATE ABS


10 REMARK THIS SUB CALCULATES ADD. TL DUE TO ABSORPT-IONo


22 STACK 100,11.,12.103,200,21 ,202;203,224,205,206,207


40-LE-T 12',0


50 BIBSET P0,6,RI


60 BIBSET PZ,5,I0


7Z STACK 201,10Z,0,S,Z.,5,251


80 MOVE PZ,B3


90 ZERO B3


100 LET R2,0.


110 LET R4,0.
 

120 GOSUB 1000


130 SUM 10,I1,-i


140 FOR 11,1,10


150 STACK 1I1,0,221,4,256


156 STACK 205,20,256


160 IF R6,R3,200,2Z0,162


162 IF R3,3.6Z2,165,290,220


165 LET R2,R3


170 LET R4,R5


180 GOSUB 1020


ZO STACK 205,204,3,203,202,3,5,206,202,3,4,204,2,257


206 STACK .1,207,5.20,10.,4,11,267


Z06 IF R7,10.,210,21H,207


207 LET R7,10.


210 LET B3,I1,R7


220 NEXT I1


230 SUB 83.P0


240 STACK 257,256,255,254,ZS3,252,251,250,153,152,151,1S


252 RETURN


1020 SUM 13,12,1


1010 LET R3,B11,I2


1020 STACK 223,20,253


1930 LET R5,BI1,I3


1040 SUM 12,12,2


I5 RETURN


CREATE PEAK


10 STACK 100, 101,102,20Z,201,202.


15 STACK 123,203


20 BISSET P0,5,11


30 BIBSET P0,6,RO


40 STACK 200,10l,,5,2.,5,250


50 ERASE


60 PRINT ' FREQ PEAK VALUE'


70 FORMAT 1,10,2


80 FORMAT 2,10,Z

90 DIF I1,11,10.


95 LET I0,3


100 MOVE P0,B3
 

I11 DIFF B3
 

122 SUM i1,I2,1


130 IF I0,I1.140,250,250


140 IF B3,I,120,120,160


150 SUM I1,I,1


162 IF B3,I.,170,150,150


170 DIF I,10,1


171 DIF 12.I ,l


172 DIF R2.PO,I,P0,12


173 SUM 13,19,1


174 DIF R3,PZ,13,P0,I0


175 STACK 203,10,253
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182 IF R2,3.-,I82,lgZ,190

182 IF R3,3.,120,190,190 
190 STACK 100.0,200,4,251 
200 LET R2,PZ,I3 
210 PRINT R1,R2


222 SUM 10,10,l


230 IF tO,I1,120,240,240


240 REMARK CONTINUE


250 FORMAT


255 STACK 253,153
 

26H STACK 252,251,250,152,151,150


270 RETURN


CREATE SAVSYN


XREF SYNTH


XREF SPFREQ


XREF BNFREQ


XREF TL


XREF MASLAW


XREF BKGRD
 

XREF STLAW


XREF TTLI


XREF SYNMES
 

XREF TTL


XREF TTL2


XREF DUBWAL


XREF BPRINT


XREF INTEG


XREF SYNDIS


XREF SYNINT


XREF AT


XREF KEVIN-

XREF BLKPRT


XREF LAB!


XREF SIL


XREF ABS
 

XREF PEAK


13 OSPEC 'MSYNTH.RN'


23 PRINT 'CLEAR'


3Z SAVE SYNTH,'NE'


4Z SAVE SPFREQ,'NE'


5a SAVE BNFREQ,'NE'


6H SAVE TL,'NE'


73 SAVE MASLAW,'NE


75 SAVE BKGRDJNE'


-80 SAVE STLAW,'NE'


9H SAVE TTLI1'NE'


130 SAVE SYNMES,'NE'


110 SAVE TTL.'NE'


120 SAVE TTL2,'NE'


122 SAVE DUBWAL,'NE'


130 SAVE BPRINT,'NE*


13Z SAVE INTEG,'NE'


134 SAVE' SYNDIS,'NE'


136 SAVE SYNINT,'NE'


140 SAVE AWT.'NE'


150 SAVE KEYIN,'NE'


I50 SAVE BLKPRT,'NE'


170 SAVE LABI,'NE'


172 SAVE SIL,2NE'


180 SAVE ABS,'NE'


200 SAVE PEAK,'NE­

210 SAVE SAVSVN,'NE'


220 PRINT 'SYNMES'


230 PRINT 'END'


240 END­

250 RETURN


SYNMES


END
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F.3 A SAMPLE APPLICATION CSSNA 

In this appendix the application of this program during a noise



control program of a noisy, producti6n, business-jet aircraft by the



engineers at Cessna Aircraft Company is described. Figure F.1 shows



the interior spectrum in the aft seat area of this aircraft. The



overall linear and A-weighted levels were high. The preferred



Speech Interference Levels (PSIL) were acceptable. The aircraft



interior spectrum was then analyzed using this program. From the



low figure of PSIL it is obvious that the higher levels were due to



the high low-frequency content. As can be seen in Figure F.i, the



discrete tone at 270 Hz dominates the spectrum. This tone



corresponds to engine N1 tone. The use of PEAK subroutine in the
 


program showed fhis value to be 97.2 dE. The levels of the
 


neighboring band (265 and 275) were found to be 91.6 and 94.7 dB.



This high value at these locations could be attributed to spectral



leakage. Comparison with the normal aircraft interior spectrum



showed that the peak should range from 85 to 88 dB. The effect of



reducing this tone to normal levels is shown in Figure F.2. In this



case the tone at 270 Hz was reduced from 97.2 to 90 dB. The values



at 265 and 275 Hz were also changed correspondingly. This reduction



alone decreased the overall linear and A-weighted levels from 101



dBL and 92.9 dBA to 96.6 and 88 dBA. A reduction of this peak to 84 

would have reduced the levels to 95.2 dEL and 86.2 dBA. Hence,



before any application of additional treatment, the e gine 

installation interference was checked. A slight engine interference
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was found. The interference was cleared by the installation of the 

engine 	 and its accessories. The aircraft interior levels were



measured, and Figure F.3 shows the measured spectrum. Because the



interior 	 levels were still high compared to normal aircraft (86.3



dBA instead of normal 83-85 dBA), additional treatments were



contemplated. An addition of 40 oz/sq yd leaded vinyl decreased



these levels to acceptable values, as shown in Figure F.4. The



placement of this additional vinyl sheet was finalized based on the
 


results from the program discussed in chapter 6. The results from



the program indicated that the maximum gain in the noise reduction



would be achieved in this aircraft if this material is placed next



to the trim panel, with this mass treatment and additional



treatments (not known to the author) the aircraft was flown and the



results are shown in Figure F.5. The aircraft was delivered with



the levels of. 90.7 dBL, 81.1 dBA and 63.6 dB PSIL.
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