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ABSTRACT

IMPLEMENTATION OF UNIFORM PERTURBATION METHOD FOR POTENTIAL
FLOW PAST AXISYMMETRIC AND TWO-DIMENSIONAL BODIES

Tin Chee Wong
01d Dominion University, 1984

Director: Dr. Surendra N. Tiwari
Dr. Chen-Huei Liu

The aerodynamic characteristics of potential flow past an
axisymmetric slender body and a thin airfoil are calculated by using a
uniform perturbation analysis method. The method is based on the

~superposition of potentials of point singularities distributed inside
the body. The strength distribution satisfies a linear integral
equation by enforcing the flow tangency condition on the surface of the
body. The complete uniform asymptotic expansion of its solution is
obtained with respect to the slenderness ratio by modifying and adapting
an existing technique. Results calculated by the perturbation analysis
method are compared with the existing surface-singularity-panel method
and some available analytical solutions for a number of cases under
identical conditions. From these comparisons, it is found that the
perturbation analysis method can provide quite accurate results for
bodies with small slenderness ratio. The present method is much simpler
and requires less memory and computation time than an existing surface-

singularity-panel method of comparable accuracy.
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Chapter 1
INTRODUCTION

In recent years, applications of powerful and sophisticated
compﬁters are being made extensively to analyze and solve important
aerodynamic problems. Computer codes are now being developed to
simulate the flowfield over entire aircraft configurations by
considering the boundary-layer and full-potential formu]ations. For
realistic physical applications, it would be desirable to work with the
full Navier-Stokes equations. However, this requires large computer
resources (memory and execution time) which makes the computational
costs prohibitive for many applications. For this reason, the former
method is highly desirable for solving many important aerodynamic
problems. Thus, potential solutions become essential in analyzing many
flow problems. Although it would be desirable to obtain potential
solutions for the complete aerodynamic configurations, it is usually
convenient to analyze different basic components of the system
separately. In analyzing the flowfield over an airplane, it is
customary to divide the entire problem into the three separate problems
of fuselage, wing, and tail. Thus, separate programs are developed to
analyze the flow over the fuselage, wing and tail. The analyses of
axisymmetric bodies and two-dimensional airfoils are considered as the
first step for fuselage and wing designs respectively. The two-

dimensional airfoil results are modified usually to account for the



effect of three-dimensional wing flow.

The incompressible potential flow over axisymmetric bodies and
wings is essentially governed by the Laplace equation. Although the
Laplace equation is one of the simplest and well known of all partial
differential equations, the number of known closed-form solutions is
quite small. This is due to the non-homogeneous boundary conditions for
the partial differential equation and the requirement for the body
surface to be a coordinate surface of the one of the orthogonal
coordinate system for which the Laplace equation can be solved by
separation of variables. As a consequence, approximate solutions become
more useful in practical applications. One typical example is the
slender-body theory where the body boundary condition is simplified for
small slenderness ratio and angle of attack. In many important fields
successful approximations are found and some of these are discussed in
[1]*. The present study is an application of the slender body theory.

Many previous investigators have attempted to solve the potential
flow problem around a slender body. The idea of using a distribution of
singularities inside the body was first treated by von Karman [2]. For
the axisymmetric motion, he used a continuous distribution of sources
along the axis of the given body and gave a method for computing the
distribution strength. For the lateral flow past a given body he used a
continuous distribution of doublets along the axis with the doublet axes
normal to the body axis. It is difficult to obtain a closed-form
solution for the exact problem; however, an approximate closed-form

solution may be obtained, if the shape of the body satisfies certain

*The numbers in brackets indicate references.



conditions. The body should be slender and should not have any
discontinuities in its surface slope. Zedan and Dalton [3,4] and
Kuhiman and Shu [5,6] extended the method by dividing the singularity
distribution into elements and employing piecewise linear or polynomial
functions to represent the variations of the intensity of the source
distribution over each line element. The effects of the order of the
distribution, the number of elements, the normalization of the body
coordinates, the slenderness ratio and the geometry of the profile on
the performance of the method were studied in detail. It was concluded
that each of these factors should be chosen appropriately in order to
have accurate results.

Another approach to obtain approximate solutions to the slender-
body problem is to use the perturbation method. In 1967 Handelsman and
Keller [7] introduced a method to give a uniformly-valid approximaté
solution of axially symmetric potential flow containing a small
parameter, known as slenderness ratio €. The source strength distri-
bution satisfied a linear integral equation. A uniform asymptotic
solution to the integral equation was obtained. The left-hand side of
the integral equation was expanded in the power series of e2 and the
right-hand side in the power series of 62 and a power series in 52
multiplied by ez(log ez) without taking account of the dependence of the
source strength on . It was assumed also that the source strength
vanishes in an interval near each end of the body and that the profile
curve of the body is analytic. It was possible to give a complete
uniformly-valid solution to any order of approximation in this way. The
method used to determine the axially symmetric potential flow about a

slender body of revolution is presented in [7].



The axial singularity method can be applied to a two-dimensional
airfoil in a similar manner to solve the potential flow problem.
Similarly, one can have an alternative approach that will simplify the
mathematical conditions of the problem and enable the construction of an
approximate closed-form solution. Such an approach is called the
classical thin airfoil theory. The thin airfoil theory breaks down near
stagnation points and near the edges of the airfoil. This is because
the assumption of small perturbation is not valid in the neighborhood of
such points; the perturbation velocity is of the same order of magnitude
as the undisturbed velocity. For a survey of these difficulties and the
methods that are developed to relieve them one should make reference to
Van Dyke [1]. The first approach is the method of matched asymptotic
expansions and the second is the method of strained coordinates [8l.

The method of strained coordinates has been modified by Hoogstraten

[9]. However, these methods are so complicated that only the first two
terms of a uniform expansion are generally obtained. Geer and Keller
[10] presented the method to obtain a uniform asymptotic solution for
potential flow around a thin symmetric airfoil by adopting the method of
Handelsman and Keller [7]. This idea was extended and modified by Geer
[11] to obtain the complete uniform asymptotic expansion for the non-
symmetric airfoil. This perturbation method is presented in Chap. 2.
Since the method to obtain the complete uniform asymptotic expansion for
potential flow past axisymmetric and two-dimensional bodies is known,
the only interest here is the assessment of the perturbation method.
Such questions as: how large can the slenderness ratio be or what are
the advantagés and disadvantages of this method over other existing

methods are addressed. In the 1ight of these considerations, some



programs have been developed to obtain the pressure distributions for .
slender axisymmetric bodies and thin airfoils. In order to make
comparisons, some exact solutions and solutions obtained by using an
existing surface-singularity-panel method have been formulated and
presented in the latter part of Chap. 2. Much effort has been.devoted
to obtain the expressions of the asymptotic expansions for the potential
function, with the emphasis on some axisymmetric slender bodies and thin
airfoils, and these are presented in Chap. 3. The pressure distrbutions
on axisymmetric bodies and airfoils obtained by‘the perturbation
analysis method are compared with the results generated by the panel
method as well as exact solutions whenever available. These results are
presented in Chap. 4. The perturbation analysis method can be applied
to solve the electrostatic and magnetostatic potentials around a slender
conducting body [10-13]. Recently, Homentcovschi even modified this

method to solve two-dimensional elasticity problems [14].



Chapter 2
THEORETICAL FORMULATION

Basic potential flow theory is reviewed in this chapter. The
problem under consideration in this study is that of the steady
irrotational flow of incompressible, inviscid fluid, for which the
Navier-Stokes eqautions can be reduced to the classical Laplace
equation. Consider a body immersed in an ideal fluid and a space-fixed

reference frame. Then the surface of the body is described by
F(XI,XZ,X3) =0 (2.1)

The variables X1 sXp and x5 are the Cartesian coordinate system used in
the analysis. Because the fluid is incompressible, the continuity

equation implies that the divergence of velocity must be zero
v.Yy =0 (2.2)

Helmholtz's theorem states that the vorticity of an initially

irrotational, inviscid fluid is zero. Mathematically, one has

vxV =0 (2.3)

and it follows that



<1
u

vé (2.4)

Here ¢ is the velocity potential. The substitution of Eq. (2.4) into
Eq. (2.2), gives the governing Laplace differential equation for

incompressible potential flow, i.e.,
Ve=0 (2.5)

In order to solve for the potential ¢, Eq. (2.5) should satisfy the

boundary conditions
V. F =0 on  F(xy,xp,x3) =0 (2.6)

Also, the components of the velocity should vanish in a certain way with
distance from the body as that distance tends to infinity [15]. The

Bernoulli equation relating pressure and velocity is given by |

P-P U, 2

STz "1 @) (2.7)
7 ®

Once the velocity on the surface of the body, U, 1s determined, the

pressure distribution can be computed through Eq. (2.7).

2.1 Perturbation Analysis Technique
A large number of perturbation techniques to obtain approximate
solutions to physical potential flow problems is available in the
literature [1,7-12]. In this chapter, the special perturbation



technique developed by Handelsman and Keller [7,10-12] is reviewed 1in
detail.

2.1.1 Axially Distributed Singularity Method for Axisymmetric Body

Consider the steady state of incompressible, inviscid and
irrotational fluid past an axially symmetric rigid body which is at zero
angle of attack to the uniform stream, see Fig. 2.1. It is convenient
to analyze the problem by introducing cylindrical coordinates (r,8,x)
with origin at the body's nose and the x-axis along its line of
symmetry. The surface of the body is described by an equation r
= ¢ R(x), where ¢ is the slenderness ratio, 1.e.; the ratio of the
maximum radius of the body to its length. If one uses the length of the
body as a unit of length, then the body intercepts the x-axis at x=0 and
x=1. Then, the maximum value of R(x) in absolute value is one. In this
chapter, the slender body of revolution is considered, and ¢ is
considered to be a small value.

Since it is assumed that the flow is irrotational, the velocity

potential surrounding an axially symmetric body is given as
0 =0+ ¢ (2.8)

where ¢° is the potential of the incident flow while ¢b is the
perturbation potential. The perturbation potential ¢b is due to the
presence of the body, and this is to be determined. This is represented
by a superposition of point sources distributed along the x-axis inside
the body. The boundary conditions for this problem are the no-

penetration (or tangent-flow) condition:



z/1

Fig. 2.1

L : BODY LENGTH

Axially symmetric body immersed in a uniform stream.
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V¢ .n =0 on r = eR(x) (2.9)
and the infinity condition:
© » 0 as r » infinity (2.10)

where n is the unit outward normal vector to the surface of the body.
Due to the axial symmetry of the flow, both ¢b and ¢° are independent

of 8 and the equation of the profile curve depends on e, so that ¢b is a
function of x, r2 and €. In this study, our aim is to obtain an
asymptotic expansion of ¢b with respect to e2 arqund e = 0. We define
S(x)=R2(x) and then the cross-sectional area of the body at x is
weZS(x). Assume that S(x) is analytic on 0 < x < 1, with S(0) =0 =
'S(l) and it can be expanded in power series about endpoints as follows:

c x" (2.11)

S(x) = L Cn

n

e~ 8

S(x) = E dn(l-x)" (2.12)
n=1

where C, = S(")(O)'/n! and dn = (-1)" S(")(l) /nl . It is assumed that
¢y and dl are non-zero, i.e., the radius of curvature at each end of the

body is not zero. The perturbation potential 4,b is used to represent

the superposition of point sources distributed along a segment of the x-

axis inside the body with unknown source strength density f(x,e) per
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unit length [7]. Thus,

sxardie) = P(ard) -1 117 __flsie) g 172 (2.13)
a(e) [(x-g)" + r°]
where a(e) and B(e) are constants which determine the extent of the
source distribution and must be found in addition to f(x,e), and they
satisfy the inequalities 0 < a < 8 < 1.
The potential function ¢ can be related to stream function ¢

by Yy = “Té. and ¥p = o . Thus, one can rewrite Eq. (2.13) as

2 o, 2. 1 B x5y £(e,e) de
¥(xsr%se) = ¢ (x,r%) = 4= [ 2 (2.14)
) T ale) [(x-g)% 272

The boundary condition, Eq. (2.9), implies that there is no flow of
fluid through the surface of the body, i.e.,

B8(¢€)
f f(g,e)dg = 0 ' (2.15)

a(€)

Since the body is a continuation of the axial streamline for the total

flow, one can obtain
¥Ix,e2S(x)se ] = 0 (2.16)

Using Eqs. (2.15) and (2.16) in Eq. (2.14), it follows that

0 2 1 B(e) (x-£) f(é g) dg (2.17)
¥ [x,e S(x)] = o= [ : .
) T a(e) Lix-0)2+ e5(x)1Y/2

Equation (2.17) is a linear integral equation from which f(&,e), a(e)
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and B(e) need to be determined. The uniform asymptotic expansion of
the solution of this equation is obtained by adopting the method of
Handelsman and Keller [7]. Since the left side of Eq. (2.17) is
analytic in x for 0 < x < 1, f(x,e) must be analytic in its domain of
definition « < x < B, and the coefficients in the expansion of f(x,e)

with respect to e2 are assumed to be continuous in the interval

0 <x <1. Both a and 8 are found to be power series in 82 of the form
T 2n
afe) = ] ae (2.18a)
n=1
T . .2n
B(e) =1 - ] B¢ (2.18b)
n=1 v

In order to obtain an asymptotic expansion of the source strength
density f(x,e) of Eq. (2.17) with respect to ez, one first expands each
side of Eq. (2.17) with respect to 82 without taking account of the
dependency of f on ez. The left side can be expanded in a power series
in ez because ¢° is analytic in r2. The right side can be expanded
asymptotically in powers of ez and powers of e2 multiplied by
log(ez) with coefficients which are linear expressions in f. When both

sides are expanded, Eq. (2.17) becomes

4n E ¢5(X)SJ(X)er = fx f dg - IB(E)f dg
j=1 a(e) X
+.§ er(LJ. + log eZGJ.)f (2.19)
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where ¥ (x) = ’T'( )J o(x,rz) | 2., (2.19)
r =

In Eq. (2.19a) Lj and Gj are linear operators defined by Eqs. (4.13)-

(4.15) in [7], with e replaced by e2. Upon differentiating Eq. (2.19)

with respect to x, and by noting that

d X B
37 [f fdg-[ f ds] = 2 f(x,¢) (2.20)

X

there is obtained

1 G Dyst01 8 = artese

+
J

e~ 8

25 d_ 2
le ax (Lj+ log ¢ Gj)f (2.21)

To solve Eq. (2.21), the asymptotic solution for f is supposed to be of

the form

f(x,e) = 2" (1og &)™ £ (x) (2.22)

3
ne- g
—

32
e 1

where fnm(x) are functions of x and must be determined by substituting

Eq. (2.22) into Eq. (2.21), one obtains

o n-1

b z d Lo s"IM =27 1 (og )" (x)
n=1l m=0
@ 0zl o2 Hm) 2.m d 2
¢ 101 I €™ (log €Y G (Ly+log €%6y)fpy(x) (2.23)

n=1 m=0 j=1
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For each n and m , the coefficients of ezn(log sz)m on both sides of Eq.

(2.23) can be obtained as follows:

f1p = 2v %§(¢15) (2.24a)

F =2 9_( s") .1 nil Q—(L f ) n>?2 ‘(2 24b)
n0 = " dx'\¥n 7 42 &x*7§n-j,0 )

f1n = 0 m> 1 | (2.24c)

_ 1 n'ld - d
fhm = = 'z [jZI-a-x-(Ljfn"jgm X'd_—( n J m- 1)] n>2. m>1 (2-24d)

The fnm(x) can be determined recursively by starting with n=0, m=0.

Thus, once the Lj and Gj are evaluated, Eqs. (2.22)-(2.24d) will yield
the desired asymptotic solution for f(x,e) in terms of coefficients ¥
Inserting Eq. (2.22) into Eq. (2.13), the asymptotic expansion of ¢ is

obtained as

¢(x,r2;e) = ¢°(x,r2)'

[y

on o.m Ble)  fo (a) dg
1 2.25
{log &) Iu(e) [(x-5)° + r®1/° (2.2

3

1
ko

llMs
3
e
o

The method to obtain the asymptotic expansion with respect to ¢
about € = 0 of the integral operator in Eq. (2.17) is available in
[71.

Let the integral operator applied to a function F(x) which is

independent of ¢ be
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Ble)  F(e)(x-g) dt
I(x, = 2.26
(xoe) fa(e) [(x-£)° + es(x)1V/2 (2.26)

where a(e) and B(e) are given in Eqs. (2.18a) and (2.18b). By adding
and subtracting integrals to Eq. (2.26), one finds

I(x,¢) = fx F(g)dg - IB F(g)dg + fx F(g) [ Z(X-E% 177 -{]dg
a X o | [(x-£)% + es(x)1Y/

(x- + 1)de (2.27)
[(x-£)%+ e%s(x)1"%

[}
+ F(s)[
X

On the right-hand side of Eq. (2.27), one sets x-g=v and g-x=v to the
third and fourth integral respectively. Then, Eq. (2.27) becomes

X B(e)
I(x,e) = [ ( )F(E)dg - f F(g)dg + W(x,e) + V(x,¢) (2.28)
a(e X

£ Flxev) Dv(v2 + e25)12 217 av (2.28a)
0

1

Here, W(x,¢€)

B=Xx

- fo F(x+v) Dv(v? + eZ5)1/2

V(x,¢€) - 1] dv | (2.28b)

To find the asymptotic expansion of W and V, the binomial expansion is

considered
2 . 2..-1/2 @ 25 d |
v(v® + €°9) -1= 7 01?» ay - (2.28¢c)
=1 v

where aj = (-1)3(%0(%)......(%-+ j - 1)/j! . This expansion is not
valid throughout the domains of integration because these domains extend
to v=0. Therefore, special treatment should be applied. To F(x+v) in

the integrand of Eq. (2.28b), one adds'and subtracts the two leading
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23)-1/2

terms in its Taylor series at v=0. To [v(v2 + ¢ - 1], one again

adds and subtracts the leading terms of its binomial expansion. Thus,

Eq. (2.28b) can be written as

X

g- B-
V(xee) = F(x)[ “Tv(v24e28) Y2 174y + FHf vv(vZ+e?s) /2 134y
. (3)

B=x 1 2 1 .
b Lt V2 L a (S8 TR - § VAL,

0 ' j=0 J v j=0 Sde EREEE
v aye’s [ TF(e)- ] B vy ~2gy (2.29)

J= )

An analysis of the order of accuracy is described in Appendix A of

[7]. It shows that the first two integrals are 0(e) and 0(52109 sz),
respectively. The third termm is O(ez), but the fourth integral

is 0(e3), so that it is asymptotically negligible compared to the three
terms. To obtain the asymptotic expansion of the fourth integra1&in Eq.
(2.29), one can apply the same procedure. To the first factor ofwthé
integrand, one adds and subtracts the second term in the binomial
expansion-given by Eq. (2.28c). To the second factor one can add and
subtract the next two terms of the Taylor expansion of F(x+v) about
v=0. In this manner, a sum of integrals is obtained; some of which can
be evaluated explicitly, others can be expanded as power series

in ez, and the remaining term is asymptotically small compared to the
other terms. The same procedure can be applied to the remainder, and
this can be'done repeatedly. Thus, V(x,e) can be expressed as a series

of integrals which are successively smaller in ez as ¢ tends to zero.

Furthermore, W(x,c) can be treated in an exactly analogous way, so one

obtains
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W(x,e) + V(x,¢€)

T 2,3 H (x00) - H(cse)]

@ F(Zn) ~ ‘
1 Eal 7, (xs€) = P (x,6)]

© (2n+1) ~
- XO %25:171151 [K, (x,e) + K (x,€)] (2.30)

n=

+

where, H . ,P Kn are defined by

n n?
{d)
- 2n-1
H (x,¢) = R (xey) - b Ll Y1 gy (2.30a)
0 = )

- 2. 1
Py(xs€) = [: TV [y(vlees) V2 jzo aj(fz§)J]dv (2.30)

” i
Kn(x.e) = fx v2n+1[v(v2+€25)-1/2 - E a.(EL%)J]dv (a0=l) (2.30c)

0 j=0 9 v

Theifunctions Hn’ Pn’ and Kn are defined by Eqs. (2.30a), (2.30b) and
(2.30c) respectively, with (x-a) replaced by (8-x). To determine the

asymptotic expansion of I(x,e), one must expand asymptotically the

~

integrals Eqs. (2.30a) and (2.30b). Hn(x,e) and Hn(x,e) can be expanded

2

directly as Taylor series in €“ about € = 0. The integrals Eqs. (2.30b)

and (2.30c) have been analyzed in detail in Appendix B of [7]. Appendix

A in [7] shows that Pn = O(e2"+1), K = 0(e2"+zlog ez) and the same

n
holds true for Pn and Kn. However, in the difference Pn - Pn’ which

occurs in Eq. (2.30), the odd powers of € will be cancelled. By using
the results of Appendix B in [7] to Eq. (2.30), one finds that I(x,e)

has the asymptotic expansion
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1(x,6) = Wxoe) + Vixie) = T HIL (109 96,1 Fix) (2.31)
J=

Here, Lj and Gj are linear operators defined by Eqs. (4.13)-(4.15) in

[7], with € replaced by 2. The functions 9> 9potiss tygs Mps hy in

j* "i§? Uk’
Eq. (4.14) are defined by Eqs. (B10)-(B17) in Appendix B of [7]
when ¢ is replaced by az.

We now return to determine the coefficients @ and B in the
expansions of a(e) and B(e), respectively. From Eq. (2.24a) it follows
that fp(x) is analytic on 0 < x < 1, because ¥, is analytic and S(x) is
analytic with S(0) = 0 = S(1) and S'(0) # 0 # S'(1). It then follows
that from the recursive nature of Egs. (2.24a)-(2.24d), the function

fnm(x) will be analytic for 0 < x < 1 if both GjF(x) and LjF(x) are
analytic, provided that F(x) is analytic. This will be true if all of
these functions 9 > ;; hk’ ;; are analytic. The functions gy(x)
~ and §k(x) are defined in Appendix B of [7] as

o) = T g0 = Cx-ale)] + 5x /2 (2.322)

{[x-8(e)] + e25(x)} 2 (2.32b)

g(x,e) = ‘)? §'k(x)e2k
k=0

where a(e) and B(e) are defined in Eq. (2.18a) and (2.18b) respectively.
The functions gk(x) depends on the coefficients & in the expansion

of a(e). They are singular at x=0 except for certain values of % s SO
the appropriate & should be chosen such that gk(x) can be regular at
x=0. To relate g, (x) with @ One can square both sides of Eq. (2.32a)
and equate the coefficients of the same power of €. Similarly, §k(x)

can be related to Bk at x=1. Detailed derivation of @ and Bk is
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available in Appendix A. Using the results Eqs. (A9) and (Al7), the

expressions for a(e) and B8(e) are given by

2
c c4C (c,°cq + 2¢c,4c,)
ale) = _Il e2 - %62 e4 + 1"~3 - 12 e6 + 0(€8) (2.33)

2
d d.d (d-2d, + 2d,d.)
1-Le?e g2t - L3 12 5,00 (2.34)

B(€)

The functions hk(x) are defined in terms of the square root of g, (x).
Once the @, are chosen appropriately to make gy (x) analytic, then it
implies that h,(x) are also regular. Similarly, the ;;(x) are also
regular at x=1, since Ek(x) are made analytic. Therefore, LjF(x); Gj(x)
and f,.(x) are analytic provided that F(x) is analytic on 0 < x < 1.

The asymptotic expansion of ¢(x,r2;e) can be obtained by using the
appropriate f . (x), a(c) and g(e) which are determined by Eqs. (2.24a)-
(2.24d), (2.33) and (2.34) respectively in Eq. (2.25). Once the
potential of the flowfield is found, the aerodynamic properties of any

given axisymmetric slender body can be evaluated.

2.1.2 Line Distribution of Singularities Inside a Two-dimensional

Airfoil
In Sec. 2.1.1, the potential flow past an axially symmetric slender
body has been described and the same technique can be applied to the
two-dimensional airfoil. This idea was presented earlier in [10,11].
In this section, the problem will be analyzed in terms of the functions
of a complex variable. Similar assumptions are made here as in Sec.
2.1.1. Consider the two-dimensional potential motion of an ideal fluid

past an arbitrary airfoil which is shown in Fig. 2.2. The problem is
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Fig. 2,2 Uniform stream past a two-dimensional airfoil with
an arbitrary angle of attack.

0¢
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analyzed in Cartesian coordinate (x,y) with the origin at the leading
edge of the airfoil and the trailing edge is some distance intercepts on
the x-axis. Now, one should recall the relationship between the
potential, the stream function and the velocity components in two-
dimensional motion. As before, the potential is ¢ and the stream
function is ¢. The combination of ¢ and ¢ into an analytic function as

a complex potential ¢(z), is given by

#(2) = o(x,y) + iv(x,y) (2.35)

and the x-y plane refers to the z-plane (z = x + iy).
For this study, it is convenient to think of ¢ as either the real

or imaginary part of a function
2(2) = (2) + ¢ (2) (2.36)

which is analytic in the z = x + iy plane outside the profile curve G of
the airfoil. The potential ¢° is the potential of the incident flow on
the airfoil, while ¢b is due to the presence of the body. The

b

potential ¢ 1is represented by the superposition of complex potentials

of point sources and vortices distributed along an appropriate arc
inside the airfoil. The boundary conditions of this problem are

no penetration condition: v¢ . n =0 on G

infinity condition: ¢b =-§;‘tan'1(y/x) + 0(1/r) as r + infinity
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where n is the unit outward normal vector to the surface and T is the
total circulation about the airfoil.

The equation of the profile G of the thin airfoil is given by
y = e[C(x)£/S(x)] on 0 < x < 1, and ¢ is defined as slenderness
ratio. This is assumed to be small for a thin airfoil. The leading and
trailing edges intercept x-axis at x=0 and x=1 respectively, and the
max.|C(x)£S(x)| = 1. It is assumed that both C(x) and S(x) are analytic
on 0 < x <1, with C(x) and S(x) vanishing at x=0 and x=1. These

functions can be expanded in a Taylor series at the endpoints as

C(x) = '{ cx" 5 C(x) = f ¢ (1-x)"
n=1 n=1
S(x) = E dnxn s S(x) = E gn(l-x)n (2.37)
n=1 n=1
M) ~ _ (neiM
where Ch = Thl > Cy = o
sty ~ _ (-ynsiMqy ;
dy = =1 » dpy = nl (2.38)

with d1 #+0 # dl‘

In order to solve for ¢, it is convenient to find a function, Eq.

(2.35), which is analytic in z = x + iy outside G and satisfies the

condition

Re {[i-e(C'5')/2 /513% - 0 on6 (2.39)
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Equation (2.39) is verified and explained in Appendix B. Here, ¢b

represents the superposition of the potential due to point sources and
vortices distributed along an arc inside the slender airfoil. Thus,

b , B(e) ~

¢ (z) = -5= [ In(z-g) f(&,e) dg (2.40)

ale

where f(£,e) is the unknown source strength density, which is a complex
expression. The constants a(€) and B(e) determine the extent of the
source distribution and they can be determined after f(£,e) is found and
they must be inside 6.

Using Eqs. (2.39) and (2.40) in Eq. (2.36), one obtains

Re ([1-e(C'5'/2/5)] S8 [x+ie(Ce/S)];

~

8 f(e,e) d

X e(C/S) ¢ | (2.41)

= Re (3= [1-e(C's5'/2/5)] [
a
Equation (2.41) is a pair of equations, corresponding to where the upper
(plus sign) and lower (minus sign) surfaces of G, is obtained. By
adding and subtracting these two equations, a pair of coupled linear
integral equations can be obtained. Upon denoting x+ie(C+/S) and

x+ie(C-vS) by xpu and xpl respectively, one has

2x Re {i(1+1C')[ fﬁ("P"),f ii(xp‘) st [d¢°(XPU)_ d4>°(xp1)]
dz dz 2/S “dz dz }

8 SN T
=Re qf [ 2HEC-B)(IMC) Y e S ¢(p o) g L (2.42)
a (x+ieC-g)" + €°S
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and
' 0 0 0 0
2% Re {i(1+ieC')/S[ ggfoP“)- gg-fo‘)] - g.s=[g§L1xP“) + gg.(xp‘)]}

B ] ] :
< Re (e [ B(HC) - S (x#ieC

-XHECE) £(5,e) dp (2.43)
a (x+ieC-g)" + €°S

In Eq. (2.42) and (2.43), f(&,e), a(e) and B(e) need to be determined.

Both a(e) and B(e) are found to be power series in ¢ of the form [11]

a e R Ble) =1 - J 8 e" (2.44)

a(e) =
1 " n=1 N

n

ne~-1 8

Using the results of [10] as an instructive example, the function

f(x,e) shall be of the form

x’e = 2. 5

where ;(x,e) is singular in x at x = a(e) and x = B8(e). The fﬁnction
;(x,e) is be assumed to be analytic before finding its asymptotic
expansion about € = 0. Following the procedures given in [10,11], both
sides of Eqs. (2.42) and (2.43) can be expanded with respect to ¢,
without taking account of the dependency of f on €. Since ¢° is an
analytic function of x + ie[C(x)t/S(x)], the left-hand sides of Egs.
(2.42) and (2.43) can be expanded in a power series in e€. Then, Egs.
(2.42) and (2.43) become

3 e J5(x) =Re {1 ]

L0 f(x,e) 1 (2.46)
J=0 j=0 J
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7 e K (x) = Re { z L trx.e)n (2.47)
j=0 jo Y

Here, Jj(x) and Kj(x) are defined as

(i/2] .
Jj(x) = 27 Re %Zi¢j(x) kZO (%k) CJ-Zk(x)Sk(x)

[G-1/21 )
- ool T g e sk

[(§-2)/2] »
$Sa) L (Jei )i 215k (x)]} (2.48a)

[(j-1§/2]

'-2k-1(x)sk+1(x)

K;(x) = 2r Re {21¢j(x) (on4p) ©

[(5-2)/2] | .
- 451 (%) [zc'(x) I (95008 225 )
[(3-1)/2]; “liai=1-2k
+S'(x) kzo (J )CJ (x)S (Xi]} (2.4§b)
. j+1
where o500 = (P (&) @, L, (2.88¢)

In Eqs. (2.48a) and (2.48b), the notation (g) = nl/(j!)(n-j)! has been
used and [n] is the greatest integer not exceeding n. Applying the same
idea of expanding integral operators asymptotically as in Sec. 2.1.1,
one can expand the right sides of (2.42) and (2.43). To do this,
consider the integral operators Ip(x,e), p= 0,1 applied to a function
F(c)/[(B-c)(;-a)]l/2 and F(z) is independent of €. The integral

operators 1P are defined as

IO(X,E)-I 2[X+1SC(X) C][l"’i EC (X)] + S S (X)F(C) d; (2.493)
a {[x+ieC(x)-212+25(x)} /(B - 2)(z - @)
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Il(x,e)= e [ 2$(x)[1+1eC (x)] - S (x)[x+ieC(x)-z] F(z) dz (2.49)
a  {[x+ieC(x)-21% + €“S(x)} /(B - 2) (g - a)

The constants a(e) and B(e) are defined in Eq. (2.44), where the
coefficients a and By need to be determined. The operator Ip(x,e) can
be expanded by following the similar method as given in [7] and by using

the results derived in [11], one obtains
P(x,e) = 1 L°IF(x)] (2.50)
=0 9

The linear operators Lg, p = 0,1 are defined in Appendix C. From the

definitions given in Appendix C, one has two simple operators

L}
0 z 2 -1 2
L0 [F(x)] = -4 [ (sin®e - x) " [F(sin“@) - F(x)] de (2.51)
| 0
Ly [F(x)1 = 20 / 32 F(x) (2.52)
To solve Eqs. (2.46) and (2.47), an asymptotic solution for f(x,e) is
assumed as
f(x,e) = I f (x)e" (2.53)
n=0

Here, the functions f,(x) are to be determined. By substituting Eq.
(2.53) into Eqs. (2.46) and (2.47), one obtains

o J ~ .eo ® j"‘ﬂ 0
jZO € Jj(x) = Re [} §0 n§0 Lj [fn(x)i] (2.54)



E ej K.(x) = Re E E €j+n L% [f (x)]
j=0J j=0 n=0 J o

(2.55)

By equating coefficients of the like powers of ¢ in the corresponding

equations, Eqs. (2.54) and (2.55), finds

n
Im {Lll) [fn(X)]} -Jn(x) - Im [-2-1 L;.) [fn_j(x)]]

n
Kn(x) - Re ‘Zl Lj [fn-j(x)]

1
Re {Lo [fn (X)]}
Using the results of Eqs.(2.51) and (2.52), one finds that

In (LQLF ()1} = In (Lo [F ()7} = LY [ In £ _(x)]

% In [f (sin%0)] - In [f (x)]
4
0 (sin2

Re (L} [f ()13 = 2x / (&L Re [f (x)]

X({1=X

de

9 - x)

(2.56)

(2.57)

(2.58)

(2.59)
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Applying the results of inversion of operators in [10] with Eqs. (2.58)

and (2.59) in Eqs. (2.56) and (2.57) respectively, one has

Im fn(x) = ;;(x) + Im fn(O)

where

~ n
f (x) = -’é;{ J(x) + Imj£1 L?[fn_j(X).]§

(2.60)
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k
.2
Zz 2 n £ =sin"o
X cos 0 0
- [ ———|J,(8) + Im Li[f_ (g ]] de (2.61
IIO(sine-x)[n) jzl‘]""]() £ =X (2.61)
and

n
Re f_(x)= %;/ig%’)‘lgkn(x) -Re ] L [fn_j(x)]} n>0  (2.62)

j=1

E_
In Eq. (2.61), the notation [G(&)] = G(a)-G(b). From Eqs. (2.61) and
g=b
(2.62), the function fn(x) can be determined recursively, once the
constants Im fn(O) are found. In order to determined Im f,(0), one has

to use the condition that

B~
Im [ f(g,e) dg =T
where

P = 'g r. & (2.63)

Here, each rj is a prescribed constant independent of e. By using Egs.

(2.45), (2.53) and Eq. (2.61) in Eq. (2.63) can be expressed as

B ;. (z) dz o .
J +2) e Im£,(0) (2.64)
0 ‘o /B-2)(z-0a j=0 J

By setting ¢z = (8-a) sinze + a and expanding each integrand in Eq.

(2.64) in Taylor series about € = 0, one obtains

T
r=2 E J % 1 ff {(a )ni f. [( ) si 26 4 ) d
= € m —_— — . B -a) S1In a 0
520 n=0 n! 0o 9f J=n e=0
+x) Im f,(0) (2.65)

J=0
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Equating coefficients of 1ike powers of ¢ on each side of Eq. (2.63) and
(2.65), yields -

LS
7 ~
ik . [(8-a)sin®s + al} do  (2.66)
0 kT e n-k _

T 2
¥ 0 e=0

L

Im fn(0)=

-3

k

Since ;a(x) depends only on Jp(x), the Im f, (0) can be determined
recursively from Eq. (2.66). Thus, functions f,(x) can be found through
Egqs. (2.61), (2.62) and (2.66) in a recursive manner.

Determination of the constants a(e) and B(e) is discussed now.
From Eqs. (2.61) and (2.62), one knows that Re fp(x) and Im fg(x) depend
on ¢°(z) which is analytic. Thus, it follows from the recursive nature
of Eqs. (2.61), (2.62) and (2.66) that all the Re fg(x) and Im fg(x)
must be analytic for 0 < x < 1 if the Lg[F(x)] is analytic. This will
be true if and only if each gj(x) and hj(x) in Eqs. (C2) and (C3) is
analytic on the interval 0 < x < 1. In the manner of Appendix A, one
can determine C uniquely by demanding that g(x,e) is regular at x=0.
Similarly, all of the B, can be determined by requiring that the
function h(x,e) is regular at x=1. By squaring both sides of Eqs. (C2)
and (C3) and equating the coefficients of the same power in e, one can
find out all the appropriate % and By > such that singularities at x=0
and x=1 of functions gj(x) and hj(x) are eliminated. The similar
technique for the determination of a(e) and B(e) is given in Appendix A,
and the general expressions for @ and B, are available in Appendix C.
Using the results in Appendix C and the definitions of Eqs. (2.37) and

(2.38), the leading terms for a(e) and B(e) are given by

2
d c.d d,(d, + 4c?)
a(€) =-Il ez A —lzl e3 - 216 1 e4 + 0(55) (2.67)
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42 %% 3, 9ldpt i) 4
)

5
. € 16 e + 0(g”) (2.68)

B(e) =1 -

Once f(x,e) has been obtained, the expression for ¢(z) is obtained by

using Eqs. (2.45), (2.53) in (2.40) and (2.36) is given by

» . Ble)  In(z-x) fi () dz
4’(2: ) = ¢° - 1 k
Ve ® mm L TR ]

(2.69)

Equation (2.69) is the desired uniform asymptotic expansion for ¢.
Suppose now that the thin airfoil has a sharp trailing edge such
that near x=1, S(x) has the expansion

~

= J d »

j=2£+1
where Ej = (-1)3 s@)(1)/5. From Eq. (2.70), it follows that one can
take B(e)=1, the asymptotic expansion obtained above remains valid when
Eq. (2.70) holds. The mathematical proof is available in Sec. 7 of
[10,11]. Physically, the velocity of the fluid near the sharp trailing
edge should be finite. As the velocity of the fluid with the potential
given by Eq. (2.69) near the trailing edge is examined, the first term
in Eq. (2.69), +2(z) obviously gives a finite velocity at the trailing
edge, because ¢°(z) is analytic at z=1. The remaining terms in Eq.
(2.69) contribute velocity components of the form

1
1 Fle) 4 (2.70a)

ale) 27 % Mz - ale)] (1-7)

[

Equation (2.70a) remains bounded as z»l, if and only if F(1)=0.
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Therefore, one shall make each fk(x), k > 0 vanishes at x=1 by properly
choosing the arbitrary constants of Im f (0). The mathematical proof of
choosing Im f) (0), so that each f (x), k > 0 vanishes at x=1, is shown

in Sec. 7 of [10], i.e.,
Im f,,1(0) = -f, ,,(1) ' (2.71)

If the flow described by ¢° is a uniform stream, the circulation
can be determined by Eq. (2.65), such that the 1ift L(e) of the airfoil

is given by
L(e) = p U, r'(e) (2.72)

where p is the density of the fluid and U_ is the speed of the uniform
stream at infinity. By using Eqs. (2.65) and (2.71), one finds that Eq.
(2.72) becomes

L)

- i, T 4k
L(e) = pU J2 Im (52
«iko™ 2 1MLy lytlae

i f; L(8-a)sin®s + aTt do
j=

e=0

-1 fj(l) (2.73)

The uniform asymptotic expansion for &(z;e) can be determined by finding
fn(x), a(e), and 8(e). Then, the velocity, pressure distributions on
the surface, and also the 1ift coefficient of an arbitrary airfoil can

be determined.
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2.1.3 Second Order Joukowski Airfoil

Certain assumptions have been made in analyzing the problem in Sec.
2.1.2. The upper and lower surface of the thin airfoil have the
equations y = e[C(x)+/S(x)] and y= e[C(x)-/S(x)] for 0 < x < 1; with
C(0)=S(0)=C(1)=S(1)=0. The equations of the thickness and the camber
line of the airfoil are y = /S(x) and y = €C(x), respectively.

Here ¢ is the slenderness ratio, while S(x) and C(x) give the thickness
and camber distributions. Varying € produces a family of affinely
related profiles. More examples are given by Van Dyke-in [1]. Now one
expects to seek an expression for a thin Joukoﬁski airfoil by using the
perturbation method. The parametric form of the Joukowski airfoil is
easily obtained by means of conformal mapping [15]. One employs a
transformation x(£,n), y(£,n), where the g-n plane refers to as

the z-plane which will map the region and its boundaries in

the z-plane into another desired configuration in the x-y plane, which
is referred to as the z-plane. Fig. 2.3 shows the notation of the
Joukowski transformation of a circle into an airfoil. The center of the
circle with radius a at any arbitrary point is given by uy=m ;6. The
symbol ¥y denotes the intersection of the vector a e'18 with the y-
axis. A circle with center at u  and radius of magnitude |u° - oy
transforms into a circular arc, which is considered as the skeleton of
the airfoil. The arbitrary circle, the points of which are described by

ie
r=ae +q (2.74)

transforms into an airfoil. The angle B determines the mean curvature
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{-plane
=7)
-
4Y z-plane
___— OL_zc—_—]T

Fig. 2.3 Illustrating the derivation of an arbitrary Joukowski
airfoil.
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of the profile and the magnitude |u - “o' determines the thickness of
the profile.

The circle is chosen such that it passes through g = z1 = C, where
C is real positive number. The corresponding point on the airfoil is
given by

2
I(g) = ¢ + %— ) (2_.?5)

It should recall that the center u of the circle, its radius a, and the

angle B are connected by
C=ae +me (2.76)

Since C is a real positive number, one can separate the real and

imaginary parts of Eq. (2.76) as follows:
C =a cosg + m cosé (2.77a)
asing=m sinS (2.77b)

Using Eq. (2.74) in Eq. (2.75), with the expressions given by Eqs.
(2.77a) and (2.77b), Z(z) can be separéted into real and imaginary parts
as x and y respectively. After further simplification, the parametric
form of the airfoil is obtained as follows:

2
(2.78a)

C
2 2

a (1l +h

x =a(cose +h) | 1+ 5
+ k

+ 2h cose + 2k sine)]
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2
y = a(Sine + k) 1 - 2 2 ZC (2.78[))
a(1 + h© + k© + 2h cose + 2 sine)

where h = (m/a) coss$ s . k = (m/a) sins (2.79)

The trailing-edge point of the airfoil is denoted by Zy with 6 = -g in
Eq. (2.75), one finds x = Re(ZT) =2Cand y = Im(ZT) = 0. Thus, the
trailing edge of the airfoil intercepts the x-axis at the point T with
0T=2C. In order to have an asymptotic expression for a thin Joukowski
airfoil a small parametric, €y should be introduced to expand the
available equations in power series. Generally the quantities h,

k, 8, and m should be small. If we choose m=51C, then Egs. (2.77a),

(2.77b) and (2.79) can be expanded to the second order of accuracy as

follows:
: =%S-B- (1 - ¢,coss) (2.80a)
h = (cosB coss$) g+ 0(e12) (2.80b)
k = (coss sins) e + 0(e,) (2.80c)

Using Eqs. (2.80a)-(2.80c) in Eqs. (2.78a) and (2.78b), and retaining

the terms with order of €1 one obtains

X = E%EE'{°°S°(1 +4coszs) + el[-coss(cose + cosg)(1 + coszs)

+ 2 cosza cos0(coss - cosB cos§ cos® - cosB sing sine)]}
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0(e,%) (2.81a)

+

C Pes 2 1
y = Csine coss 51[2cos B cos® - (cosB + COSB)]
. 2
. sin“B . . 2 . 2 2 2
+ Csine cosg " Ce151n6[s1n B + 2sin“e cos“B] + O(el) (2.81b)
By examining carefully the order of magnitude of sing, coss, sinzs

2 2

and cos“B, one finds that both cosg and cos“s are 0(1) and sing and

sin2 B are O(el) and 0(e§) respectively. Neglecting the terms of
O(el), Eq. (2.81a) can be further simplified as

x = 2Ccos® + 0(e (2.82)

1)

Furthermore, Eq. (2.81b) can be simplified by comparing the order of
magnitude of sing, sinzs, cosg and coszs as mentioned. To retain terms
of O(el), Eq. (2.81b) becomes

y = ZCelcoss sine (cose - 1) + 2Celsin6 sinze + O(ei) (2.83)

Introducing the nondimensional quantities X = x/2C, and y = y/2C, Egs.
(2.82) and (2.83) become

X = cose + 0(e,) | (2.84a)
y = €,c0s§ sing(cose - 1) + g, sing sinZe + 0(e§) (2.84b)

Upon eliminating sine and cose in terms of X, Eq. (2.84b) becomes
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y = el(-coss)(l -X)J/1- %2 + & sins(1 - ?2)
2
+ 0(ef) 1excl (2.85)

Obviously, if 6§ = n, Eq. (2.85) will yield a symmetrical second order
Joukowski airfoil, while the second term vanishes. It is consistent to
the second order Joukowski airfoil shown in Sec. 4.6 of [1]. It also
implies that the second term represents the equation of the camber
line. Therefore, Eq. (2.85) can be rewritten as

Y=Y, +Y, (2.86)
where y; = g (-coss)(1 - x) /1 - %2 and ?g = g, sing(l - ;2) .
To make Eq. (2.86) consistent with the required form of equation, simple

translation and scaling of the coordinates are done, such that Eq.

(2.86) becomes
yg = 2(-coss8) ¢ ¥ x(1 - x)> (2.87)

Yo = 2 siné £ x(1 - x) 0<x<1l (2.87p)

By defining € = 2(-cosa)el; with € is the slenderness ratio, Eq. (2.87b)
yields Yg = ¢ vS(x) and Yo = € C(x)
where

s(x) = x(1 - x)° | (2.88a)
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C(x) = Ax(1 - x) s A = -tans (2.88b)

S(x) and C(x) give the thickness and camber distributions of an airfoil

respectively, and A is related to the airfoil camber.

2.2 Other Solution Techniques

2.2.1 Some Exact Solutions

The analytical solutions of potential flow problems associated with
the motion of a solid body through an ideal fluid are considered here.
The final aim is to determine the pressure distribution over the surface
of the body and the 1ift force acting on the body whenever available.
The analytical solution for elliposidal body of revolution and two-

dimensional elliptic airfoil are obtained in this section.

1. Analytical Solution for Ellipsoidal Body in Uniform Stream

Consider a rigid ellipsoidal body moving through a uniform ideal
fluid. The flow is assumed to be steady, incompressible and irrota-
tional. To simplify the problem, a body-fixed reference frame and
elliptical coordinate system (£,n,8) are introduced. The derivation is
described in Appendix D. Using the results of Eq. (D5a), one is able to
obtain U =U_e_+ u, én where U _= ﬁlﬁ--AQ-and u, = - ﬁiﬁg-gﬂ

E & g e an 9E

Here, U_ and Un are velocity components in & and n directions

1
respectively, and

2. 2
LI PN R (2.89)

Consider the Neumann boundary condition on g = £ and the infinity
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condition as & tend to infinity. Making reference to Appendix D, the

boundary conditions can be simplified as follows:

¥(g,m) =C' on g =g (2.90a)

u A2

W(En) > — sinh%e sin?

n+C" as £ » infinity (2.90b)

Equation (2.89) along with Eqs. (2.90a)-(2.90b) can be solved by
separation of variables. One finds out that the velocity component
in €, direction on the body surface is zero (due to the no penetration

11
on the surface of the body), and the velocity in én direction is given

by
U, sinn
E:oshgo+ sinh go]"(_'s'i_n'h?r) cosh Ey= COS™n

With application of Bernoulli equation, the pressure distribution on the

surface of the elliposidal body is given by
C,=1- (g (2.92)

2. Analytical Solution for Elliptic Airfoil in Uniform Stream

In Sec. 2.1.3 the idea of conformal mapping has been introduced to
get the shape of an airfoil. Here, the pressure distribution over the
airfoil, by means of Joukowski transformation is discussed. This method
can be used directly to the actual problem of by means of mapping the
flow past an arbitrary circle, for which the solution is already

known. To define the arbitrary circ]e; we describe the points by
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el® (2.93)

Y
[]
-

where ro = (a+b)/2 with a and b are the major and minor semi-axis
lengths of the ellipse respectively. Making reference to [15], the

complex velocity on the airfoil surface is given by

-ie
i 2U¢ sine e
W(z) = 1z (2.94)
dg

where dz/dz = 1 - C2/z2 and C = (/a2 - b2)/2. After simplification,

the velocity distribution along the contour of the ellipse is given by

1/2
U () (14k) (ax2) / (2.95)
U raZ + x 2021 2

where k = b/a. The pressure distribution on the elliptic airfoil can be

computed through the Bernoulli equation.

2.2.2 Panel Method

A considerable number of panel methods has been developed in the
past two decades to analyze the steady, inviscid and irrotational flow
fields past a body of arbitrary geometry. The incompressible flowfield
is governed by the Laplace equation which can be transformed to an
integral equation relating the perturbation potential to the source and
doublet singularities distributed over the surface. There are different
discretization techniques among panel methods for solving the integral
equation. Basically, all the methods approximate the surface by

elemental panels of prescribed geometric shape and singularity variation



41

and the integral equation is solved by.enforcing a boundary condition at
a control point or points on the panel. There is a summarized table in
[16], showing several useful panel methods with panel geometry,
singularity variation and boundary condition specification. In this
section the governing equation and the basic idea of discretization are
reviewed.

Consider steady, inviscid, irrotational and incompressible fluid
flow in a bounded domain D, Fig. 2.4, governed by the Laplace equation

e =0 (2.96)

where V = UQ + V¢. The perturbation potential ¢(P) at any point P can
be expressed as the potential induced by a combination of source (o),

and doublet (u) singularities distribution over a bounded surface S
= 1 3,1
$(P) = gf o(- Tﬁ.‘) ds + £f ¥ (T;r‘_) ds (2.97)

where r is the distance from the point P to the bounded surface
and n represents the normal to the surface S directed into the fluid
domain. The boundary condition in this study is the flow tangency

condition or
V.n=0 (2.98)

Since there are two unknowns o and u, while there is one boundary

condition, there exists an infinite number of source and doublet

combinations which satisfy Eq. (2.97) and one can specify the doublet
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Body immersed in a bounded flowfield.
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strength and solve for the source strength or vice-versa. Using the
idea of real external and imaginary internal fields introduced in [17],
the condition for the perturbation potential interior to the region is

constant and set equal to zero, i.e.,

¢y =0 or ¢ = (2.99)
Thus, it follows that

c=Vé.n (2.100)

For Neumann problems, the source density distribution is given by
Eq. (2.100), the doublet distribution is to be determined. For
Dirichlet problems, the doublet distribution is known from the
prescribed potential on the boundaries, and the source distribution is\‘
to be determined.

In order to introduce 1ift, wake networks extending from the
trailing edge to downstream infinity are considered. As the free stream
Reynolds number increases, the thickness of the wake region diminishes
and is often assumed to be zero. Since fluid properties are continuous
across the wake, the wake region is usually modelled as a stream surface
having zero pressure loading imposed by the surrounding flow. The wakes
can be represented by a doublet sheet with zero thickness and streamwise
doublet gradient, 'emanating from the trailing edge and parallel to the
free stream. Determination of the strength of the wake constitutes the
Kutta condition which is available in [16]. Some typical numerical

schemes were already presented in the literature [16-21].
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Chapter 3
APPLICATION OF PERTURBATION METHOD

3.1 Perturbation Technique for Slender Bodies of Revolution

The formulations of Sec. 2.1.1 are applied to the case of a uniform
ideal fluid flow past an axisymmetric slender body. The coordinate
system is fixed to the body and the velocity of the stream at infinity

is U_. The incident stream function is given by
P (x,r?) = ur?2 (3.1)

The stream :function ¢° can be expanded in powers of 82 and the
coefficients wj(x) can be obtained by using Eq. (3.1) in Eq. (2.19b);
this yields

wl(x) =U /2 , ¢j(X) =0 for j > 2 (3.2)
By inserting these coefficients into Eqs. (2.24a) - (2.24d) together
with the definition of operators Lj and G;, the first six leading terms
of fon(x) are given as follows:

flolx) ==y s (3.3a)

14
fa0(x) = -7 3¢ (L1f10)
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)
- - UG (5 T - S eSS oy BN

+

1-x . -2
S IO [S'(x+v) = S'(x) - vS"(x)] v = dv

-S jx [S'(x-v) = S'(x) + vS"(x)] v"2 dv} (3.3b)
0
fa(x) =-+9 (g¢f )=y 9 (ssv) (3.3¢)
21 7dx 81710 "7 % o
fag(x) = 0 (3.3d)
fa (x) = =2 & (LFy + G fy ) + Gyfy0)
31 2 dx \f1721 * Bl * BTy

_1 d ' i
=7 xS Ty) "§dx (s f1p")

Ax(1-x ]

- G [T (S Tog - 5+ G- 10t

X
+S IO [fZI(x'V) - f21(x) + Vfél(x)] V-z

1-
- fo x[f21(x+v) - £y (x) = vEy ()1 v2 dv) (3.3e)
1d x oy d ored? e

Equations (3.3a) - (3.3f), together with (2.18a) and (2.18b) depend upon

the profile curve. The expressions for fnm(x), a(€) and 8(e) can be
evaluated if S(x) is specified. The complete asymptotic expansion

for ¢(x,r2;a) can be obtained from Eq. (2.25) with ¢° = U x. The flow
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velocity components over the body surface can be determined by taking
appropriate derivatives of ¢. Next the Bernoulli equation is used and
the pressure coefficient on the body surface is evaluated as

U, 2
Cp=1- (IE? (3.4)

where Ug is the velocity distribution on the surface of the body. The
profile curve is defined by r = ¢ vS(x) on 0 < x < 1.
In this study, two different axisymmetric bodies are analyzed, and

their profiles are given as follows:
1. Ellipsoidal Body

S(x) = 4x(1 - x)
2. Dumbbell Shaped Body

S(x) = 4bx(1 - x)[1 - bx(1 - x)] s b>2
With the profile shape r = ¢ VS(x) on 0 < x < 1 mentioned, one can
obtain explicit expressions for fnm(x), a(e) and B(e) from Eqs. (3.3a)-
(3.3f), (2.18a) and (2.18b) respectively for each of the above two cases
(Figs. 3.1 and 3.2). Lists of the required expressions are presented in

Appendix E.

3.2 Perturbation Technique for Thin Airfoils
The formulation given in Sec. 2.1.2 is applied to the flow problem
when the airfoil is at rest in an ideal fluid which has unit velocity at
infinity. The airfoil is at an arbitrary angle of attack y to the x-

axis. Thus, the complex potential for the incident stream is given by

P°(z) = e 1Y 2 (3.5)
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R(X) = .0SO=SCRT(S( X))
SOX) =4X( 1-X)

LENGTH/DIRMETER= 10.00

Fig. 3.1 Elliposidal body geometry with € = 0.05



SCX) =BX( 1-X)( 1-BX(1-X)

| LENGTH/DIRMETER= 16.67

R(X)= .030=SORT(S(X1) B= 3.00
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PRTY S
-5 | l I | | I l | B
0 ol 2 3 ] ) 6 o8 9 1.3
X
Fig. 3.2 Dumbbell shaped body geometrv with € = 0.03, b = 3
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Introducing Eq. (3.5) in Eq. (2.48c), one obtains

e 1Y ifj=0
#5(x) = (3.6)
0 ifjs>1

Using Eq. (3.6) in Eqs. (2.48a) and (2.48b) yields

Jo(x) = 4y siny

Jl(x) = =4x C'(x) cosy

Jj(x) =0 if j»2 (3.7)
Kl(x) = =27 S'(x) cosy

Kj(x) =0 if j = 0,2, ...

The functions f,(x) are obtained by inserting these coefficients
together with the expressions in Appendix C defining the operator
Lg, into Eqs. (2.61) and (2.62). The three leading terms f,(x) are

computed as follows:

Re folx) = 0 (3.8)

folx) = 2 siny _—
To

Im fo(x) =<~ - siny (3.8¢)

Re fl(x) = - —;;[v/ %%;jx_)_ 2%S'cosy + Re Li [fo(x)]] ' (3.9a)

£1(x) =-’2‘;{Im LY [fo(x)] - 4x C'(x) cosY} (3.95)



50

T
. 2
Z 2 g=sin”o
X cos 6 0
- — Im Ly [fA(E)] - 4x C' (&) cosi] de
:Z'IO sin"9 - x [ 10 E=x
w
r 2 ~
In f,(0) == -2 fo f,(sin%) do (3.9¢)
Re fz(x) = --%; / xsl;x [}e L% [fl(x)] + Re L; [fo(x)]] (3.10a)
fo(x) =5 {Im LY [F,(x)7 + Im L [fo(x)]} G
k]
X !7——2—“529 [1 Lt (e)1 + m LY [f (a)]]g=51nzede
- m g + Im
x 0 sin"o-x 11 20 £=x
-121'_
r ~
In f,(0) =-2-2 fo[fz(sin29)+2 siny(ay cos?e - 8, sin%s)1de  (3.10c)

The operators L?, L%, Lg, and L% are given in Appendix C. When Egs.
(3.8a)-(3.10c) are used in Eqs. (2.53) and (2.45) they give the
asymptotic expansion for f(x,e) up to 0(53). Once f(x,e) has been
found, one can obtain an expression of ¢(z;e) by using Eq. (2.69) and
the pressure coefficient can be evaluated from Eq. (3.4). Since Egs.
(3.8a)-(3.10c), (2.67) and (2.68) are functions of S(x) and C(x), once
they are specified, the complete expansion for ¢(z;e) up to 0(e3) can be
determined.

In this study, elliptic airfoils and second order Joukowski
airfoils have been analyzed using the above method. For a symmetric
airfoil the function C(x) is set to zero; only the thickness solution
has to be solved. If the airfoil is symmetric and is set at zero angle
of attack, then there is no circulation about the airfoil and all r, are .

set equal to zero in determining the cdnstants Im fn(O). Moreover, if
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the airfoil has a sharp trailing edge, special treatment is applied to
obtain each Tos which is given in Eq. (2.71). The profile curve of the
thin airfoil is defined by y = e[C(x)+/S(x)] on 0 < x < 1, with small
slenderness ratio €. Three different airfoils are used as test cases,
Figs. 3.3, 3.4 and 3.5, and their geometries are as follows:
1. Elliptic Airfoil

S(x) = 4x(1 - x)
2. Symmetrical Second Order Joukowski Airfoil

S(x) = x(1 - x)3
3. Cambered Second Order Joukowski Airfoil

C(x) = Ax(1 - x)

S(x) = x(1 - x)3
Here, A is related to the airfoil camber and is defined in Eq.
(2.88). Using the above information, expressions for
fo(x), Tpo a(e) and B(e) can be derived in each case. A brief
derivation and the lists of the resulting expressions are included in

Appendix E.
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.S

N

b Y(X) = .0S0xSCRT(SCXI )
SCX) =4X( 1-X)

o T/C= 10.00%

Fig. 3.3 Elliptic airfoil of 10% thickness.



Y(X)= .100=(C(X) +/- SORT(S(X)))
COXy= .000=X( 1-X) SUXI=X[1-X) =3

T/C= 6.507 OELTAR=180.00

53

Fig.

3.4

Symmetrical Joukowski airfoil of 6.5% thickness.

1.0



- Y(X)= .100=(C(X)+/- SQRT(S(X)))

COX)=1.000=X( 1-X) S{X)=X(1-X)x=3

__ T/C= 6.50/Z DELTA=135.00

54

Fig. 3.5 Cambered Joukowski airfoil of 6.5% thickness.
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Chapter 4
RESULTS AND DISCUSSION

In this chaptgr an assessment of the merits of the perturbation
analysis method is made. The pressure distribution on axisymmetric
bodies and two-dimensional airfoils obtained by the above method are
compared with those of panel method as well as exact solutions whenever
avaliable. The results of the panel method are obtained by using the
low-order panel method code.(progrqm VSAERO, developed by Maskew
[18]). The analytical expressions for the ellipsoidal body and elliptic

airfoil are avaliable in the literature presented in Sec. 2.2.1.

4.1 Axisymmetric Bodies

Since the analytical expression for an ellipsoidal body is
available, this body is selected to demonstrate the accuracy of the
perturbation analysis method with the variations of the slenderness
ratio and also the number of terms in the expansion of ¢. Figs. 4.la-
4.2c illustrate a comparison of the pressure distributions, as calcu-
lated by the perturbation analysis method with different order of
accuracy in the expansion of ¢, with analytical solutions for the two
values ¢ = 0.1 and ¢ = 0.2, corresponding to L/d = 5 and 2.5, respec-
tively. The results show that the perturbation solutions agree well
with the exact solutions to a high order of accuracy, i.e., up to

0(88)- With the same order of accuracy in ¢ up to 0(38), the pressure
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distributions obtained from the perturbation analysis method and the
panel method are compared with the exact solutions, with different
numbers of panels in the chordwise direction for ¢ = 0.10. The
calculations are presented in Figs. 4.3a-4.3c. It is seen that the
results using 30x6 panels and 50x6 panels yield better agreement with
the exact solutions than using 10x6 panels. Again for the same order of
accuracy in ¢ up to O(es), and using 50x6 panels, three sets of pressure
distributions are compared with four different values of e. The results
are presented in Figs. 4.4a-4.4c. The perturbation solutions agree well
with the exact solution with small slenderness ratio up to 0.1, and the
panel solutions compare well with exact solutions for all values of €.
The dumbbell shaped body is also analyzed by the perturbation analysis
method with the expansion of ¢ up to 0(e4), as well as by the panel
method. A comparsion of pressure distributions obtained by the above
method and the panel method, using 50x6 panels, with different values

of ¢ and profile parameter b are presented in Figs. 4.5a-4.6b. For
small ¢ and b, the perturbation solutions agree well with that generated
by the panel method. In the present examples, each perturbation case
required only 2 seconds computing time versus 5 seconds (30x6 panels) or
14 seconds (50x6 panels) for the panel method. This computation time

comparison is based on the CDC Cyber 173.

4.2 Two-Dimensional Airfoils
The analytical pressure distribution on the surface of the elliptic
airfoil is avaliable in the literature discussed in Sec. 2.2.1. It is
convenient to do numerical experiments for the perturbation analysis

method using this airfoil. Perturbation analysis solutions for an
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elliptic airfoil, set at zero angle of attack, are compared with exact

solutions, with different order of accuracy in ¢ expansion for ¢ = 0.10

and ¢ = 0.15, corresponding to the t/C ratio = 20% and 40% respectively,
as presented in Figs. 4.7a-4.8b. It is apparent that the perturbation
analysis solution gives quite good agreement with the analytical
solution for high order of accuracy in ¢ up to 0(54). The pressure
distributions calculated from the perturbation analysis method are
compared with the exact solutions, with different values of slenderness
ratio and these are shown in Figs. 4.9a-4.9c. The results show that the
perturbation solutions agree closely with exact solutions up to 20
percent thick elliptic airfoil.

Results of the symmetrical second order Joukowski airfoil obtained
by the perturbation analysis method with the order of accuracy of ¢
expansion up to 0(e3) are compared w%th the panel method in the
following section. Here, 3.25%, 6.5%, 10% and 13% thick airfoils are
chosen as the test cases. For the calculation presented, the thickness
of the airfoil, angle of attack, and the number of panels are given for
each of the calculation. The calculations presented in Figs. 4.10a-
4.10c and 4.1la-4.11c are obtained using different numbers of panels in
the chordwise direction for symmetrical Joukowski airfoil of 6.5%
thickness at 0° and 6° angles of attack, respectively. The results do
not give a smooth curve near some regions of the leading edge until 50
panels are used. A comparsion of the perturbation analysis solutions
for the symmetrical second order Joukowski airfoil at 0°, 6° and 12°
angles of attack with panel method are presented in Figs. 4.12a-4.15c.
The perturbation solutions agree with the panel solutions except in some

region on the leading edge of the airfdi] surface. Table 4.1 illus-
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trates the appreciable difference between the 1ift coefficients of the
two methods from the exact solutions.

The perturbation analysis method has been applied to the cambered
second order Joukowski airfoil with the order of accuracy in the
expansion for ¢ up to 0(e3). Calculations are presented in Figs. 4.16a-
4.19c. The results generated by the panel method with 0°, 6° and 12°
angles of attack are used for comparison. Both pressure distributions
agree closely for small slenderness ratio and angle of attack up to ¢ =
0.03248 and y = 6° respectively, except at some regions near the leading
edge. The 1ift coefficients obtained from the perturbation analysis and
the panel method compared with the exact solutions are shown in Table
4.2 . In the present example, the computation time for each pertur-
bation case required 8 seconds, while 0.5 seconds (10 panels), 2 seconds
(30 panels) and 5 seconds (50 panels) were required for each panel-

method solution.
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(a) e = 0.1 ; ¢ expanded up to e2.
Fig. 4.1 Comparison of pressure distributions from the perturbation

analysis method with the analytical solution for
ellipsoidal body.
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Fig. 4.1 Continued
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Fig. 4.1 Concluded.



cp

62

Lo ROX} = .2C0xSCRT(X(1-XH]
J;_ LENGTH/DIRMETER = 2.50 é

——

.3\ . ALPHA= .40COE-01 BETA= .250CE+0Q

SQURRE--- PERTURBATICN LINE--- EXACT

B

&=
| E@G

Eg
Bg

ol @

@@EGEGEEGEE@EGEEEE@BECD

-1.0 I l I | | l | I | |

0 ol 2 3 ot 8 8 I 8 3 10
X

(a) € = 0.2 ; ¢ expanded up to €% .

Fig. 4.2 Comparison of pressure distributions from the perturbation
analysis method with the analytical solution for
ellipsoidal body.
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Fig. 4.3 Comparison of the perturbation and exact solutions with

the panel method for ellipsoidal body.
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Fig. 4.3 Continued.



67

G : R{X)= .1C0C=SCRT(YX(1-X1]
[ﬁ LENGTH/DIAMETER= 5.00 NPRN= 300
8- ALPHA= .101CE-Ql BETR= .983%E£.00
? i
sH— CROSS----PERTURBATION LINE----EXRCT SQURRZ----PANEL
€
N

cep

-1.0 i ] | l I I l 1 | |

o ol 2 3 ot -x5 8 Iy 1} 3 10

(c) e = 0.1; ¢ expanded up to €®; 300 panels with cosine spacing.

Fig. 4.3 Concluded.



CP

1.@

il

113

68

ROX) = .OSCxSTRT(YX(1-X1)

&
LENGTH/DIRMETZR= 10.00 NPAN= 3CO
©
ALPHA= .250SE-02 BETR= .337-C0
CROSS----PERTURBATION LINE----EXACT SQURRE----PANEL
ai

-2
-4 -
-8}
-8
-1.0 l 1 | i I I l | l ]
0 ol 2 ) 3 't 8 8 7 1] 3 1]

(a) €

Fig. 4.4

X
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Pressure distributions from the perturbation analysis
and the panel methods are compared with the exact
solution for ellipsoidal body.
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Fig. 4.5 Comparison of pressure distributions from the perturbation

analysis method with the panel method for dumbbell shaped
body.
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Fig. 4.6 Comparison of pressure distributions from the perturbation

analysis method with the panel method for dumbbell shaped
body.
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Fig. 4.7 Comparison of pressure distributions from the perturbation

analysis method with the exact solution for elliptic
airfoil.
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Fig. 4.8 Comparison of pressure distributions from the perturbation
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Fig. 4.10 Comparison of pressure distributions from the perturbation

analysis method with the panel method for symmetrical
Joukowski airfoil.
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Fig. 4.11 Comparison of pressure distributions from the perturbation.

analysis method with the panel method for symmetrical
Joukowski airfoil.



87

9 YOX) = L1000 COX)+/- SORTISIXIT) NPaNz 30
COX)= .000=X(1-X) SUX)=X(L-X}#%3 DOM= 5CC.0
-gb— T/C= 6.50%Z AGLE CF ATTRCK= 5.C0 OEGRIZ
ALPHA= .25139E-02. 0. dETA=1.0CCO
T - CRQSS----PERTLRBATION LINE—--PRNEL
-8
-§}—
b -4 b
’
-3 —
+
+
B
-l p—
o— >———t - -~ > +
1 I l | I | | [ l 1 J
=il 0 ol 2 3 ot 8 L.} ol 8 . 1.0

0
(b) € = 0.03248 ; y =6 ; ¢ expanded up to €2; t/C = 6.5% ;
30 panels with cosine spacing.

Fig. 4.11 Continued.



ce

88

— YOX)= 10Ca( CCX) +/- SCRT(SIX)I) NPANz 53
C(X)= .000=X(1-X) SUX}=X(1-X)223 CN= 500.9

-8 b— T/C= 6.507Z ANGLE OF RTTACK= 6.00 CEGREE
ALPHA= .2519E-02. 0. BETA=1.0000

S CROSS----PERTURBATIGN L INE----PANEL

-§}—

-5}—

Y

2

(c) € =0.03248 ; Yy =6 ¢ expanded up to €2; t/C = 6.5% 3
50 panels with cosine spacing.

Fig. 4.11 Concluded.



cP

89

o YOX: = CS0=l LKl +/- 3CRTISIXI)) MPAN= S0

9

' COX:= .00C3K [-X) SiX =X(L-X:2e3 CNz SC3.C
-3 T/C= 3.25%7 A\GLE OF ATTAC<= 0.CO DESRZE
ALPHR- .8282£-03. Q. 8c7R~-]1.CCO0
- 5p— CROSS----PERTLRBATION LINZ----PRNZL
TR S
P ] -
4
a L L
?h’__’___’ ,

02 ——

M

81—

8
1.0 | 1 J | | l | | L [ |

"‘ u 'l 02 ', ot 8 8 o7 .| O, l’o

X
(a) € = 0.01624 5 Yy = 0° ; ¢ expanded up to €2 ; t/C = 3.25%
50 panels with cosine spacing.
Fig. 4.12 Comparison of pressure distributions from the perturbation

analysis method with the panel method for symmetrical
Joukowski airfoil. '
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(b) € = 0.01624 ; Y = 6° ;5 ¢ expanded up to €% ; t/C = 3.25% ;

50 panels with cosine spacing.

Fig. 4.12 Continued.
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" Fig. 4.12 Concluded.
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(a) €

Fig. 4.13

0.03248 ; vy =0° ; ¢ expanded up to €2 ; t/C =6.5% ;
50 parels with cosine spacing.
Comparison of pressure distributions from the perturbation

analysis method with the panel method for symmetrical
Joukowski airfoil.
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Fig. 4.13 Continued.
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(c) € = 0.03248 ; v =12° ; ¢ expanded up to €2; t/C = 6.5% ;
50 panels with cosine spacing.

Fig. 4.13 Concluded.
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(a) € =0.04872 ; y =0°; ¢ expanded up to €2 ; t/C = 9.75% ;
50 panels with cosine spacing.
Fig. 4.14 Comparison of pressure distributions from the perturbation

analysis method with the panel method for symmetrical
Joukowski airfoil.
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(b) € = 0.04872 ; y =6° ; ¢ expanded up to €2; t/C = 9.75% ;
50 panels with cosine spacing.

Fig. 4.14 Continued.
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50 parels with cosine spacing.

Fig. 4.14 Concluded.
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(a) € =0.06496 ; vy =0°; ¢ expanded up to €2 ; t/C = 13% ;
50 parels with cosine spacing.
Fig. 4.15 Comparison of pressure distributions from the perturbation

analysis method with the panel method for symmetrical
Joukowski airfoil.
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(b) € = 0.06496 ; vy =6° ; ¢ expanded up to €2 ; t/C = 13% ;
50 parels with cosine spacing.

Fig. 4.15 Continued.
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(c) e =0.06496 ; Y= 12° ; ¢ expanded up to €2 ; t/C = 13% ;
50 parels with cosipe spacing. .

Fig. 4.15 Concluded.



Table 4.1 Comparison of lift coefficients of the perturbation, panel and exact

solutions for the symmetrical Joukowski airfoils

Slenderness Exact Perturbation Panel c : c
ratio L,pt T “a,ex L,pn " “L,ex
C C C x 100% , x 100%
€ 1.ex 2,pt %,pn 2,ex Ci,ex
Y = 6°
0.06496 0.71588 0.72245 0.67684 0.92 -5.45
0.04872 0.70234 0.70603 0.66472 0.53 -5.36
0.03248 0.68797 0.68961 0.65377 0.24 -4.97
0.01624 0.67278 0.67319 0.63080 0.06 -6.24
Y = 12°
0.06496 1.42391 1.43698 1.34485 0.92 -5.55
0.04872 1.39698 1.40432 1.32128 0.53 -5.42
0.03248 1.36840 0.37167 1.29823 0.24 -5.13
0.01624 1.33819 1.33901 1.23750 0.06 -7.52

10T
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(a) € =0.02688 ; vy =0° ; ¢ expanded up to € ; t/C = 3.25% ;
50 panels with cosine spacihg.
Fig. 4.16 Comparison of pressure distributions from the perturbation

analysis method with the panel method for cambered
Joukowski airfoil.
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(b) € = 0.02688 ;

"
()}
=)

Y ; ¢ expanded up to €2?; t/C = 3.25% ;

50 panels with cosine spacing.

Fig. 4.16 Continued.
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Fig. 4.16 Concluded.
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(a) € = 0.05376 3 y =0° ; ¢ expanded up to €? ;3 t/C = 6.5% ;
50 panels with cosine spacing.
Fig. 4.17 Comparison of pressure distributions from the perturbation

analysis method with the panel method for cambered
Joukowski airfoil.
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(b) € =0.05376 ; Y =6" ; ¢ expanded up to €2 ; t/C = 6.5% ;
50 parels with cosine spacing.

Fig. 4.17 Continued.
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(c) €=0.05376: ;3 Y =12° ; ¢ expanded up to e* ; t/C =6.5% ;3
50 panels with cosine spacing.

Fig. 4.17 Concluded.
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Fig. 4.18 Comparison of pressure disfributions from the perturbation

analysis method with the panel method for cambered
Joukowski airfoil.
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(b) €=0.08064 ; Y =6° ; ¢ expanded up to €2 ; t/C = 9.75% ;
50 panels with cosine spacing.

Fig. 4.18 Continued.
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Fig. 4.18 Concluded.
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(a) € =0.10752 ; v =0" ; ¢ expanded up to €2 ; t/C = 13% ;
50 parels with cosine spacing.
Fig. 4.19 Comparison of pressure distributions from the perturbation

analysis method with the panel method for cambered
Joukowski airfoil.
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(b) € =0.10752 ; y =6° ; ¢ expanded up to €% ; t/C = 13% ;
50 parels with cosine spacing.

Fig. 4;19 Continued.



cpP

113

— Y(X)= .200= CX)+/~- SORTISIXI1) NPRN= S0

-9

C(X)=1.00C=X(1-X) S{XI=X(1-Xd=%3 DN= 5C0.0
-8 T/C= 13.007 ANGLE OF ATTARCK= 12.C0 DEGREE

ALPHA- .9900E-02. -.2120CE-02 BZTR=1.0C00
- . CRQOSS----PERTUREBATION LINE——PENEL

*’
Y - +
-S—
4
-3»——
2
o p—
0-——
+
K/ﬁ"?fi?rff”vvvvvrvvi"—r—_ﬁ

1 | M | 1 | | | | [ |

=l 0 ol T4 3 1 | x 3 8 o7 8 3 1.0

(c) e =0.10752 ; vy = 12° 3 ¢ expanded up to e? t/C = 13% ;

50 panels with cosine spacing.

Fig. 4.19 Concluded.



Table 4.2 Comparison of 1ift coefficients of the perturbation, panel and exact
solutions for the cambered Joukowski airfoils

Slenderness Exact Perturbation Panel c, ot- . c, on” C, o
rﬁ:io cz.ex cz,pt cz,pn 2 cz,ex, x 100% ’cn,ex == x 100%
Y = Q°
0.10752 0.61721 0.69115 0.63346 11.98 2.63
0.08064 0.46641 0.50658 0.46610 8.61 -0.07
0.05376 0.31268 0.32987 0.30390 5.50 -2.81
0.02688 0.15689 0.16101 0.14812 2.62 -5.59
Y = 6°
0.10752 1.32350 1.40981 1.29947 6.52 -1.82
0.08064 1.16264 1.20984 - 1.12378 4.06 -3.34
0.05376 1.99734 1.01767 0.95359 2.04 -4.39
0.02688 1.82841 0.83332 0.77878 0.59 -5.99
Y =12°
0.10752 2.01528 2.11303 1.94816 4.85 -3.33
0.08064 1.84614 1.89984 1.76670 2.91 -4.30
0.05376 1.67107 1.69432 1.58984 1.39 -4.86
0.02688 1.49084 1.49649 1.38619 0.38 -7.02

P11
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Chapter 5
CONCLUDING REMARKS

The perturbation analysis method has been used to analyze the
potential flow, due to a uniform stream, past an axisymmetric body or a -
two-dimensional airfoil. The theoretical formulations have been
described in Chap. 2. Results obtained from the above method for
certain classes of either axisymmetric slender bodies or two-dimensional
thin airfoils have been compared with those generated by the panel
method, as well as with exact solutions whenever available.

Numeriéal experiments for ellipsoidal bodies and elliptic airfoils
have shown that the higher order expansion of ¢ in € gives better
results, as compared with exact solutions than lower order repre-
sentations. The perturbation analysis method for axisymmetric slender
bodies give pressure distributionS'thch compare well with the panel and
exact solutions for small slenderness ratio up to € = 0.1, corresponding
to a L/d ratio of 5. The perturbation analysis method is quite
inexpensive, because little computer memory is required; but it is only
applicable to slender bodies. It is suggested to be an applicable
method as a preliminary step in modelling some simple fuselages as part
of the analysis of a wing mounted on'a slender axisymmetric fuselage.

The utility of the perturbation analysis method for the two-
dimensional airfoils is also confined to the thin airfoils with small

slenderness ratios up to € = 0.03248, corresponding to t/C = 6.5%. The
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perturbation analysis method seems to relieve the numerical instability
of the panel method at some regions near the leading edge of the airfoil
surface. The perturbation analysis method can also provide more
accurate results for thin airfoils (i.e., € tends to a small value) as
compared with the panel method. Moreover, the computing time and
computer memory required are relatively small as compared with an
existing panel method. The perturbation analysis method is recommended
as a method which will provide reliable solutions for thin airfoils at
Tow cost. Using the thin airfoil analysis as an illustrative example,
the perturbation analysis method can be extended to analyze the three-
dimensional wing as the next task. If the extension to the three-
dimensional wing can be completed, the next step will be the development
of a program for the wing design problem with the axisymmetric fusé]age
effects on a pair of wings. This study has been only a preliminary step
for the wing-fuselage design problem.

In addition, the perturbﬁtion analysis method can be applied to
solve the electrostatic and magnetostatic potentials around a slender

conducting body in a similar manner.
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APPENDIX A

DETERMINATION OF THE COEFFICIENTS OF a(e) and 8(e) FOR
AXISYMMETRIC BODIES

Appropriate constants @, need to be determined such that gk(x) is
regular at x=0. One can proceed in the following way. The

functions gk(x) are defined by

® 1/2
«ma=k%ggn3k=ux-daf+e%un (A1)

where a(e) = 21 @ €2n . Since S(0) = 0 is assumed, as x is set equal
n=
to zero in Eq. (Al), one obtains

g (0) = o , k1 (A2)

To determine @ explicitly, one squares both sides of Eq. (Al) and has

2 . 2 @ | Kk 2%
[x - a(e)]™ + €7S(x) = ] I 9:(x) gp_s(x) | e (A3)
k= j=0 J J -
Here, @y = = X is defined, such that a(ec) can be written as
a(e) = J o (A4)
n=0

Using Eq. (A4) in Eq. (A3), the left side of Eq. (A3) becomes
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© k
2k 2
ko [jzo E a"'j] =resl

Equating the coefficients of the same power of e2 on both sides of the

above equation, one obtains

k k
. .+ = . .
jzo aJak-J sk,l S(x) JZO gJ (x)gk-J (x) (A5)
where Gmn is the Kronecker delta, i.e., smn =1 if m=n, Gmn=0 ifm=#n.
For k = 0 go(x) = X (A6)
For k = 1 gq(x) = =ay + ig(‘l (A7)

Using Eq. (A2) and with the Taylor series expansion of S(x), Eq. (A7)
yields @y = s$'(0)/4 .
For k > 2, Eq. (A5) becomes

k-1
g (x) = - + ;;jgl [ ogog - 95(x)g_y(x)] (A8a)

Using Eq. (A2) in Eq. (A8a), one has

; k-l
@ =-% j£1aj 930 (A8b)

One can determine L recursively by using Eqs. (A8a) and (A8b) and has

the result as follows:
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ale) = S0 2 _ SO (0) 8

L [LS'(O)]ES"'(O) P SOOI |6y o8 (A9)

Similiarly, §k(x) can be made regular at x=1 and the coefficients g, are
determined by following the same procedures as above. The resulting

expressions are as follows:

® 1/2
g(x,¢€) = kgoik(x)eZk = {[x - 8(e)1% + %S(x)) (A10)
where 8(e) =1 - El Bnezn with By = 0 and By = - s'(1)/4 .
n=
g, (1) = 8, (A11)
k kK
'ZO By Bk-j+ 8,1 S(x) = jzo 9j(x)9k-j(x) k>0 (A12)
Golx) =1 - x (A13)
§(x) = -8y + 5pfids (A1)
For k > 2
. ; kel o
gk(x) = 'Bk +m le [BJ Bk-j - gj (x)gk-j(x)] (A15)
k-1
1 N (AIG)
O SV ALY
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g(e) =1+ 51 2SS (L) 4

+ H[s'(mzs'--(l) . S'(l)tg“(l)]z]eé + 0(e8)

(A17)

By using the above resulting equations, a(e) and B(e) can be evaluated.
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APPENDIX B
BOUNDARY CONDITIONS IN COMPLEX PLANE

The complex potential ¢(z) is defined in Eq. (2.35) as

o(z)= o(x,y) + ip(x,y) which is analytic in the z-plane outside G. The

derivative of the complex potential with respect to z is denoted by W(z)

and is known as the complex velocity, i.e.,

W(z) =%=ﬂ +i_g_xt

X
= al - 'ilt
ay oy
= u(x,y) - iv(x,y) (B1)
where u and v are the velocity components in x and y direction
respectively.
From Fig. 2.2, on the surface of the airfoil, one finds that
(B2)

The equation of the profile G is given by

y = e [C(x) &+ /S(x)] on 0<xc«<l1
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g¥-= € [C'(x) % %5%%%;] (B3)

Equating Eqs. (B2) and (B3), yields

v-eu[C'(x)t%%lJ]=0 (B4)

Using Eq. (B1) in Eq. (2.39), and considering the real part of the
resulting expression, one has the same expression as Eq. (B4).
To satisfy the boundary condition at infinity in Eq. (2.39), one

needs

B B
Re [ f(g,e)de =0 and Im [ f(g,e)dg =T
a a
where T is the total circulation about the body. Physically, the first
condition says that there is no fluid flow through the surface of the

body.
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APPENDIX C
EXPRESSIONS FOR TWO-DIMENSIONAL AIRFOILS

1. Linear Operators of the Integral Equation

Linear operators Lg,p=0, 1 in Eq. (2.50) are defined in Sec. 4 of

[11], and some of the related operators are given by

n
by(x) =8, o - jZ1 a;(x)b_4(x) (1)
v n . 2., 2 1/2
g(x,€) = 20 g,(x)e" = {[a - x - 1eC(x)]1" + €S(x)} (c2)
n=
h(x,e) = Eo h(x)e" = {08 - x - iC(x)1%+ e%5(x)1 /2 (c3)
n=
~ ¥ j
hy,506F) = 4 fz{(%;) [(T-x-i ec)"(2+1) [F(T) (ca)
Z E(P) (x4ieC p
- pzo (xple ) (T-x-ieC) ] o de
where T = [a(e)-8(e)] cosZe + 8(e) and C = C(x).
In particular, with n = j = 0 in Eq. (C4), yields
n
; (x,F) = 2 z 2 -1 . 2
0,0(%s ) = IO (sin“e - x) " [F(sin"e) - F(x)] de (C5)

2. Determination of the Coefficients of a(e) and B(e€)
.The functions g(x,e) and h(x,e) are defined in Eqs. (C2) and (C3)
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where a(e) = § a e and B(e) =1 - ) aE .
m=2 m=2

Following the similar procedures mentioned in Appendix A, the general

expressions for the determination of a(e) and 8(e) can be found as

below:
ao=0-a.1
g (0) = a o, m> 2
g (x) =x

gy (x) = 1C(x)

"

[}

3

+
(V,]
e

g,(x)

Form » 3

m-2
a, = - 1C'(0) @, ? z 319" (0)

(c6)
g (x) = -a-1X g +q ()43 ZX z Ly 8005501 (€)

Applying Eqs. (C6) and (C7) with m=3 and m=4, one obtains

g5(x) = - ag - 1 ng)Séx)

2x



=2
—
>
~
1}
-
|
x

hl(x) =_- i C(x)_; B

h(1) =8 ,m>2

- S(x)
ho(x) = -8 * 71
Form > 3
1 m"z )
— . [ 4 [ i

- i C(x)
hp(x) = - 8, + 2(1-x) [8n1 * Pp_g(x)]
1 m"z
Using Eqs. (C8) and (C9) with m=3 and m=4, this yields

C(x)S(x)
2(1—x)2

s(x) _ [C(x)1%(x) _ [5(x)1°
2 2(1-x)2  2(1-x)°  8(1-x)°

ha(x) = -84 + 8

By using the resulting expressions, a(e) and B(e) can be determined.

AL/

(C8)

(C9)
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APPENDIX D
ELLIPTICAL COORDINATE SYSTEM

Consider the equations

x = A coshg cosn
Y = A sinhg sinn coss (D1)
Z = A sinhg sinn sing

With appropriate combination of x,y,z in Eq. (D1), one has two families
of elliptical (& is constant) and hyperbolic (n is constant) curves as

shown in figure D. The fineness ratio is defined by

length of major axis (D2)
length of minor axis

cothg =

The system of the reference unit vectors at point P are denoted
by EE’ én’ and 68’ corresponding to the coordinate &, n, 8. Making
reference to [15], the scale factors can be determined

1/2

he =h = A(cosh’t - cos’n) (D3a)

hB = A sinhg sinn . : (D3b)
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4 R/A

X/A
>

Fig. D Two families of elliptical and hvperbolic curves
with different values of £ and n .
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The unit vectors of the desired coordinate system in terms of the

Cartesian coordinate system are given by

(d]

='%— (7 sinhg cosn + J coshg sinn cosB + kK coshg sinn sing)
g
én = - e—-(f coshg sinn - J sinhg cosn cosB - K sinhg cosn sing) (D4)
n
e, = - sing + Kk coss

B

Making reference to Chap. 2 of [15], one obtains

e e
V= h—h—-"-‘k - Ay (D5a)
n's 2" g's ¢ _
hE eE hn en hB eB
1 ) ? d
VXV-FE-F‘—“E; 3t an 38 (D5b)
hEVE thn 0

Using Eqs. (D3a) and (D3b) in Eqs. (D5a) and (D5b), yields

2 2

3 Y k1) ¢
+ - cothg - cotn =0 (D6)
32 ant 3%

To find out the boundary conditions, one uses the requirements of no

penetration and infinity conditions on Eq. (D5a), and has

v(g,n) = constant = C' on ¢ (D7)

1]
vy
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2
UA
p(E,n) » —%L—-sinhzg sinfn +C* as & » infinity (D8)

By using Eqs. (D7) and (D8), Eq. (D6) can be solved by separation of

variables method.
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APPENDIX E

SIMPLIFIED EXPRESSIONS FOR AXISYMMETRIC BODIES AND
TWO-DIMENSIONAL AIRFOILS

1. AXISYMMETRIC BODIES
Using the Eqs. (3.3a)-(3.3f) with the specified S(x), one can find

out some leading terms of fnm(x), a(e) and B8(e) as follows:

1.1 Ellipsoidal Body
S(x) = 4x(1 - x)

Flo(x) = 4x U (1 - 2)

Foolx) = 8x U_(1 - )
fpy(x) = - 8x U_(1 - 2)
fp(x) = 0

fap(x) = 325 U_(1 - %)
f3(x) = 167 U (1 - 2)

4

a(e) = ez + e + 2e6 + 0(88)
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B(e) =1 - el - 84 - 28 4 0(38)

1.2 Dumbbell Shaped Body

S(x) = 4bx(1 - x)[1 - bx(1 - x)] s, b>2

fio(x) = 4= U _(2x - 1)[2bx(1 - x) - 1]

fho(x) = 4b%x U_([2 1og(b2x2-b2x+b)][bzx(36x4-90x3+76x2-24x+2).
+ b(28x3-42x2+16x-1)+2x-1] + b2x(168x 1-420x +356x 2-114x+10)
+ b(92x3-138x%+52x-3) }

fpy(x) = 8%x U_[b%x(36x"- 90x3+ 76x2-24x+2)
+ b(28x3-42x2+16x-1)+2x-1]

a(e) = be? + b2(1 + b)e* + 0(ef)

2

8(e) = 1 - be? - b2(1 + b)e? + 0(ed)

2. TWO-DIMENSIONAL AIRFOILS

2.1 Elliptic Airfoil

If the airfoil is symmetric and is set at zero angle of attack,
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then y = 0, r, = 0 and C(x) = 0. Notice that the imaginary parts of the
functions fn(x) all vanish, which simplifies the derivation. With all

these assumptions, one can find out f(x,e) up to 0(e3) as shown below:

fo(x) =0

fl(x) = - 2(1 - 2x)
fz(x) = - 4(1 - )
f3(x) = - 8(1 - 2x)

a(€) 82 + e4 + 256 + 0(58)

B(e) =1 - 52 - e4 - 28+ 0(58)

2.2 General Joukowski Airfoil
With the specified S(x) and C(x), all the operators can be
evaluated, through Eqs. (3.8a)-(3.10c) can be evaluated and the
constants Im f,(0) can be computed from Eq. (2.71). With this

information, the following three f,(x) are obtained as follows:
fo(x) = §(2 siny)(x - 1)
Re fl(x) = (cosy + Asiny)(x - 1)(1 - 4x)

Im f,(x) = 2(x - 1)[2(Acosy - siny)x + siny]
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Re f,(x) = 0.5(x - 1){3 (cosy + Asiny)(8x” + & + 1)

+ 2A [6(Acosy - siny)x(1l - 2x) + siny(1l - &)1}

In f5(x) = - 1 0.5(x - 1)[A(cosy + Asiny)(24x* - 16x + 1)

(Acosy - siny)(24x% - 20x + 1) + 4siny(2x - 1)]

+

Notice that f,(x) are complex-valued functions, so each f,(x) is

represented by
fn(x) = Re fn(x) +i Im fn(x) s n=0,1,2

Using the above results in Eq. (2.73), with the definition of 1ift

coeffjcient cz,pt one obtains

c = 2% [siny + 0.5(Acosy + siny)e + 0.25A(cosx)e2] + 0(53)

2,pt
The leading terms for a(e) is given in Eq. (2.67). Since this airfoil
has a sharp trailing edge, B8(€) should be set to one. Thus, by using
the resulting expressions, the asymptotic expansion for ¢(z;e) is given
by

1 In(z-g) f (g) dg
o(z;¢) = iy, U1 k k 3

_— € + 0(e )
2 k20 ale) L(L - o)z - 0) T2 )

In particular, if A = 0 or C(x) = 0, the real part of the results are
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suitable for the symmetrical Joukowski airfoil. For this case, the
first two terms of ¢(z;e) above agree exactly with Eq. (12.9) of [10],
when his results are expanded up to 0(e3).

The third order 1ift coefficient for the general Joukowski airfoil
is formulated to compare with the results obtained from the perturbatfon
analysis and the panel methods. Making reference to [15, 22, 23], the
exact lift coefficient.for the Joukowski airfoil is given by

Cz,e; = 8x avéin(f+§)/1, where y represents the angle of attack

and & is the éhor& of the airfoil. The radius a, the angles B8 and § are
connected by the Eq. (2.76). By applying the similar technique in Sec.
2.1.3, a perturbation parameter € is chosen, then

a = C(1-¢,cos8)/(1-0.5 e2sin®s) and & = 4C(1-¢;cos8)%/(1-2¢,coss).

By using the resulting expressions and retaining terms up to order

of elz, the 1ift coefficient can be expressed as

2

(W = 2asin(y+8)(1 - €/C0S§ - e12c0526 - 0.5 €1 sinza) + 0(e13)

£.ex
1

where g = tan” (elsinsl(l-elcoss)) and the 1ift coefficient for the
Joukowski airfoil can be computed up to 0(s13) if the angle of

attack y, the parameters § and €, are specified.














