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SU}_4ARY

A previouslydevelopedlocal inviscid-viscousinteractiontechnique
for the analysisof airfoil transitionalseparationbubbles,ALESEP
(AirfoilLeading Edge Separation),has been modified to utilize a more
accuratewindward finite differenceprocedurein the reversedflow region,
and a natural transition/turbulencemodel has been incorporatedfor the
predictionof transitionwithin the separationbubble. Numerous
calculationsand experimentalcomparisonsare presentedto demonstratethe
effects of the windward differencingscheme and the natural transition/
turbulencemodel. Grid sensitivityand convergencecapabilitiesof this
inviscid-viscousinteractiontechniqueare brieflyaddressed. A major
contributionof this report is that with the use of windward differencing,
a second,counter-rotatingeddy has been found to exist in the wall layer
of the primaryseparationbubble.

INTRODUCTION

The prediction of airfoil stall is an engineering problem of

considerable importance as it determines one of the major operating limits

of an aircraft. The physical mechanisms and different types of airfoil
stall are reasonably well understood as evidenced by the excellent article

by Tani (Ref. I) which is nearly twenty years old. Nonetheless, the

capability to predict stall has lagged considerably behind this

progress due to the overall complexity of the flow, particularly the
critical role played by the transition process from laminar to turbulent

flow, and the development of reliable and accurate numerical methods for

separated flow. It was pointed out by Tani (Ref. I) that airfoils at
moderate incidence angles, prior to either leading-edge stall or thin

airfoil stall, experience local separation bubbles just downstream of the

peak suction (minimum pressure) region. Therefore, as a start on the

development of airfoil stall, the present investigation has been conducted

to develop a method for the prediction of closed airfoil separation
bubbles.

Figure 1 shows a schematic diagram of an airfoil leading-edge bubble

which occurs if the Reynolds number is sufficiently low so that the boun-

dary layer remains laminar up to the minimum pressure point. Downstream
of this point, separation occurs almost immediately since laminar boundary

layers, in contrast with turbulent flows, are extremely sensitive to
adverse pressure gradients. A separation bubble forms in which a

recirculating streamline pattern is bounded by a shear layer. Since shear

layer flows tend to be highly unstable to flow disturbances, transition
from laminar to turbulent flow generally occurs in this shear layer.

Further downstream, the turbulent mixing between the shear layer flow with

the lower dead air region results in entrainment of higher energy air which

energizes the flow near the surface thereby resulting in flow reattachment

with subsequent turbulent boundary layer flow downstream. As shown in Fig.
1, the initial portion of the separation bubble is characterized by a

pressure plateau followed by a pressure recovery region after the



transition process is initiated, but prior to flow reattachment. An

increase in incidence causes the bubble to move forward and contract in

streamwise extent until the flow no longer reattaches. At this incidence

angle, bubble bursting has occurred, thereby resulting in leading edge

stall which is accompanied by an abrupt loss of lift since the suction peak
has now collapsed with the resultant pressure distribution redistributed in
a flattened form over the airfoil chord.

There have been numerous experimental investigations conducted such as

the work of Bursnall and Loftin (Ref. 2), Gault (Ref. 3), Gaster (Ref. 4),
Horton (Ref. 5), Ntim (Ref. 6), Evans (Ref. 7), Roberts (Ref. 8), and more

recently that of Mueller and Batill (Ref. 9) to provide information on the

flow in the neighborhood of transitional separation bubbles. Owen and

Klanfer (Ref. i0) deduced from experimental measurements that bubble
bursting occurs if the momentum thickness Reynolds number at the laminar

separation point is less than 125; similarly, Crabtree (Ref. Ii) proposed
a criterion based on the pressure rise over the bubble. Later, Horton

(Ref. 12) developed a semi-empirical theory based on the experimental

measurements of Gaster (Ref. 4) for the growth and bursting of laminar

separation bubbles. At the present time airfoil analysis codes, such as
the NASA-Lockheed multi-element airfoil code (Ref. 13) and the GRUMFOIL

code (Ref. 14), use simple criterions such as these to detect the
occurrence of laminar separation bubbles and whether or not bursting

occurs. In these analyses, if laminar separation is detected without

bursting then the flow is assumed to immediately undergo transition to
turbulent flow with a jump discontinuity in the boundary layer parameters
such as shape factor and skin friction.

With the recent theoretical developments in boundary layer and

inviscid-viscous interaction theory for separated flow, there have been

several analytical investigations (Refs. 15-19) conducted to provide a more

detailed description of the flow process in a laminar separation bubble.
Further progress has been made by Gleyzes, Cousteix, and Bonnet (Ref. 20)

in which their interaction analysis utilizes a natural transition model

deduced from a correlation based upon amplification of laminar instability
waves and free stream turbulence.

The present report is the second in a series on the development of a

prediction method for airfoil transitional separation bubbles. In the

previous investigation, which was reported in Ref. 21 and subsequently

condensed into the paper in Ref. 22, an inverse finite difference boundary
layer procedure was iteratively combined with a Cauchy integral represen-

tation of the inviscid flow which is assumed to be a locally linear pertur-
bation to a known global viscous airfoil solution. Based on the favorable

comparisons which were obtained with experimental data, the major conclu-

sion drawn from this previous work was that this inviscid-viscous interac-

tion model provides an accurate description of transitional separation

bubbles provided the transition region is specified a priori. The focus of

the current effort has been three-fold; first, to continue to improve this

interaction technique through the inclusion of a windward differencing
technique in the reversed flow region. Previously, the Reyhner and Flugge
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Lotz (FLARE) (Ref. 23) approximation to the streamwise convection term was

used in regions of reversed flow. Only minor changes have occurred in the
pressure, skin friction and displacement thickness distributions with the

inclusion of windward differencing. It has been found that a more accurate

treatment of the convection term through the use of windward differencing

has shown that a second, counter-rotating bubble exists in the interior of

the main separation bubble. The existence of this secondary bubble

structure appears to be insensitive to grid size as shown by numerical
tests reported herein. In the second effort, the natural transition

turbulence model of McDonald-Fish-Kreskovsky (Refs. 24 and 25) has been

included to replace the forced transition model previously utilized. The
McDonald-Fish-Kreskovsky transition/turbulence model has been found to

predict transition too far downstream in separated and low free stream
turbulent flows and hence, it is concluded from the present study that

further development of this model is required to enhance its applicability

to these flows. Finally, in a third effort, a brief study of the
convergence of this interaction scheme has been performed along with

additional comparisons with experimental data to further evaluate the

scheme. Numerical results indicate that the present inviscid-viscous

interaction technique is capable of reducing residuals to desired levels.

LIST OF SYMBOLS

a Structural coefficient

c Airfoil chord

cf Skin friction coefficient

Damping factor applied to mixing and dissipation lengths

Perturbation stream function

F Velocity ratio, u/u e

g Total enthalpy ratio, H/H
e

H Total enthalpy

£ Mixing length or ratio of local to edge density * molecular

viscosity product

L Reference length or dissipation length

m Perturbation mass flow

n Coordinate normal to reference displacement surface

N Coordinate measured normal to reference displacement surface from

the body surface



Pr Prandtl number

Pr T Turbulent Prandtl number

q Magnitude of fluctuating velocities

Re Reference Reynolds number

Ree Local momentum thickness Reynolds number

R6 Correlated momentum thickness Reynolds number

Rr Turbulent Reynolds number

s,S Coordinates along reference displacement surface

Tu Turbulence level

u Velocity component parallel to reference displacement surface

v Velocity component normal to reference displacement surface

V Transformed normal velocity in Prandtl transposition theorem

Windward differencing weighting operator

B Pressure gradient parameter

6 Boundary layer thickness

6* Displacement thickness

6_ Stress thickness

E Eddy viscosity coefficient

K von Karman constant

q Transformed normal coordinate

Kinematic viscosity coefficient

Molecular viscosity coefficient

Transformed tangential coordinate

Velocity potential

p Density

Stream function

4
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Interaction relaxation parameter

Subscripts

e Edge of boundary layer

I Inviscid

ref Reference solution

tI Start of transition

t2 End of transition

T Turbulent

v Viscous

Free stream

1 Start of interaction region

2 End of interaction region

Superscripts

' Perturbation quantity

+ Inner wall non-dimensionalized coordinate

k Global inviscid-viscous iteration counter

INVISCID-VlSCOUS INTERACTION ANALYSIS

Since the initial development (Refs. 21 and 22) of the transitional

inviscid-viscous interaction technique, work has continued to improve this

analysis for short transitionaLsep_aratio!t_bubbl_s. In this analysis, the
two-dimensional boundary layer equations are solved in inverse form (Ref.

26) iteratively with an incompressible Cauchy integral perturbation

analysis for the inviscid flow. Interaction between the inviscid and
viscous solutions is accommodated by using an update formula (Ref. 27)

which modifies the specified displacement thickness based upon the
differences between the inviscid and viscous velocities at the edge of the

boundary layer.

In this section, a review of the inviscid analysis, boundary layer

analysis, and the interaction iteration procedure are presented along with
a detailed description of the windward differencing scheme and the natural
transition/turbulence model which have been used in the present study.



Inviscid Analysis

The local inviscid analysis which was used in the present investiga-
tion as well as our previous work (Refs. 21 and 22) assumes that the

disturbance field induced by the presence of a transitional separation
bubble can be treated as a small disturbance to the global airfoil flow.

In Appendix A, a perturbation analysis is used to deduce the governing
equations and boundary conditions which describe the local disturbance to

the inviscid flow due to the presence of a protrusion on an airfoil. In

this analysis, the inviscid flow is split into an inner region which is in
the immediate vicinity of the protrusion and an outer region which

describes the global flow about the entire airfoil. Under a particular

limiting condition for the protrusion height to length ratio, it is shown
that to lead order the inner inviscid flow problem reduces to that of a

protrusion placed on a flat surface subject to a uniform incoming stream.
The magnitude of this uniform stream velocity is the airfoil local surface
speed deduced from the global or outer airfoil solution without the

presence of the protrusion. It is shown in Appendix A that the governing
equation for the perturbation potential for the inner flow region is

Laplace's equation subject to the usual small disturbance surface boundary
condition at the airfoil surface and uniform flow at large distance from

the bump. It is concluded on the basis of this analysis that to lowest

order the disturbance field created by the displacement thickness induced
by a transitional bubble can be represented by a lineal source distribu-

tion placed on the airfoil surface at the transition site. In the future,

this technique could be extended to include compressibility effects and

thereby develop a rational theory for the disturbance field induced by an
airfoil separation bubble in compressible flow.

In Ref. 21 a detailed discussion was presented which showed that if a

lineal source distribution is used to represent the local inviscid flow
then the surface speed is given by

u'(s,o):-E-js' (1)

The source strength is proportional to the streamwise rate of change of the
difference between the computed displacement surface and the reference dis-

placement surface both of which are shown schematically in Fig. 2.

The Cauchy integral given in Eq. (i) is evaluated from sI to s2 which
is the region of strong interaction that results from the presence of the

local transitional separation bubble. In the present calculations, the

reference displacement surface is computed from the GRUMFOIL analysis (Ref.
14) in which instantaneous transition from laminar to turbulent flow is

assumed to occur at the predicted laminar separation point. As a result,
the interaction displacement surface merges smoothly with the reference

displacement surface upstream of the interaction as shown in Fig. 2.

Hence, the lower limit, Sl, on the Cauchy integral is placed sufficiently
far upstream of the interaction region where the source strength is zero.



The placement of the downstream limit is somewhat more complicated since
the interacted displacement surface does not merge into the reference dis-

placement surface downstream of the interaction region. However, this mis-

match does not present a problem since, as was demonstrated in Ref. (21),

the interacted and reference displacement thicknesses typically are nearly

parallel to each other and therefore, do not contribute to the Cauchy

integral in this downstream region.

The Cauchy integral given in Eq. (i) is evaluated numerically using a

second order scheme developed by Napolitano, et al. (Ref. 28). This

numerical procedure permits the use of a nonuniform mesh distribution which
was used in the present problem to concentrate grid points near the center

of the interaction region in order to adequately resolve the high gradient

phenomena which occurs as the flow undergoes transition from laminar to

turbulent flow. The same surface grid point distribution was used in both

the inviscid and boundary layer analyses thereby avoiding interpolation
between these two solutions in the interaction calculations.

Viscous Analysis

The viscous solution technique used in the present investigation is

the inverse boundary layer procedure presented by Carter (Ref. 26) for the

analysis of separated flows. Although the inviscid analysis discussed in

the previous section has been limited to low speed flow, the boundary layer

analysis used in the present study was adapted from earlier work which was
for compressible flow. Thus the fully compressible boundary layer analysis

is presented here.

Formulation

The nondimensional boundary layer equations are written as follows in

terms of the reference displacement surface coordinate system shown

schematically in Fig. 2:

apu
+ --=O (2)8s 8n

8u _u due 8 [ _Usn_pu-_v']pu_+ _-_-_-n-= PeUe_+ _ M (3)

_H -- _H a [ ,u. _Hpu
_-- + pv = _ [ pV'H /_n Pr 8n

+,, l
The v-component of velocity and the n-coordinate are scaled in the usual

manner by R_e_ c where Re_c is the Reynolds number based on the free

stream flow conditions and the airfoil chord. The boundary conditions



imposed on these governing equations are:

OH
n=-_ref u:v:O, H or On SPECiFiED (5)

n'--_o U_Ue, H_He (6)

The Reynolds stresses are related to the mean flow by

ulv I Bu • Y aH (7)
-P :* Y _ ' -PV"_T'H_- Prt an

where _ is the viscosity coefficient. The transition from laminar to

turbulent flow may be modeled using a streamwise intermittency factor,

_(s), which varies from 0 to 1 over a specified region.

Werle and Verdon (Ref. 29) showed that it is convenient to transform

the boundary layer equations with the Prandtl transposition theorem which

is given by

. d 8re f
S:S, N:n+Sref, v:v+u-- ds (8)

where N is a transformed normal coordinate measured from the airfoil

surface perpendicular to the reference displacement surface. In Ref. 29 it
is shown that the form of the boundary layer equations is unchanged by this

transformation and the same boundary conditions (Eq. (5)) are imposed at
N=0.

The development of the inverse formulation begins by transforming the

equations, expressed in primitive variables, by the following transforma-
tion of the independent variables

N

a. (9)
o

which is quite similar to the Levy-Lees transformation. It is helpful to

scale the normal coordinate by the displacement thickness in strongly

interacting flows since this step insures that the boundary layer thickness

is approximately constant in the transformed coordinate. The continuity

equation is eliminated by introducing the stream function

a_, o,k
pu=_-_ pv=---aS (10)



The value of the stream function at the boundary layer edge is written in
terms of the displacement thickness

_-'peUe(N- 8*) (ii)

where

O3

_0 pu (12)
B_ = (l---)dN

PeUe
Then with the definitions

o

the edge value of the stream function can be written as

_'--,-- m (_-I +h) OS _.-.,-- a{) (14)

A _erturbation stream function is defined as

_=---_ _-Fm (_-l+h with F=_e-e (15)

such that f . 0 as q . = for a prescribed m. Note that in the transformed

inverse formulation the perturbation mass flow, m, is prescribed and not
just the displacement thickness.

Transformation of the compressible boundary layer equations with Eq.

(9) and the introduction of the perturbation stream function defined in Eq.

(15) results in the following set of governing equations:

aT m (I h)aF
a_ " V_ - _- a_ (16)

rn2F _-m mF(n -I + Ja_"

Pr €)'r/ I_ I +_ Pr'-"; a_

0'-') 2 [ ]



where

H I dMe pp.
g:f, B M, I (19)

Equations (16)-(18) are solved for F, g, f and B for a prescribed

streamwise distribution of m subject to the following boundary conditions:

•_=0 F=f'=o g=gw Or-_-J specified!w

" I (20)q--co F=g----l ond f---O

These equations can also be solved in the direct mode with B prescribed and

the outer boundary condition f = 0 eliminated. In this case, if m is set

equal to _then the usual Levy-Lees formulation is deduced with the only
difference being that the normal component of velocity has been

re-expressed in terms of the stream function. In the inverse case, the
unknown pressure gradient parameter is deduced simultaneously with the

remainder of the solution. The numerical solution of these equations for

the direct and inverse mode is an implicit finite difference technique =
which is first order accurate in the stream direction and second order

accurate in the normal direction. The details of the numerical scheme are

presented in Ref. 26. In the next section, the modifications made to this
scheme in the reversed flow region are discussed.

Windward Differencing

In the previous formulation (Ref. 21) of the finite difference repre-

sentation of the boundary layer equations, the FLARE (Ref. 23) approxima-
tion was used in regions of reverse flow (i.e., within the separation

bubbl_) to insure numerical stability. This approximation assumes that

streamwise convection is zero in these regions. An objective of the cur-

rent study has been to assess the accuracy of the FLARE approximation with
a more accurate "windward" finite difference scheme in which the flow

direction is properly accounted for in the finite difference representation
of the streamwise convection terms.

The finite difference cells shown in Fig. 3 are used in the numerical

approximation to the boundary layer equations given in Eqs. (16)-(18) for
attached flow. A second order accurate central difference operator is

applied to the normal gradient terms whereas a one-sided first order

accurate operator is applied to the streamwise gradient terms. This first

order accurate streamwise differencing scheme is known to be much more
stable and free of oscillations than the second order Crank Nicolson

difference scheme due to the numerical damping (diffusion) inherent in the
lower order accurate scheme.

i0



Since the boundary layer equations are parabolic, an instability will
arise when the solution marching direction is opposite to the flow
direction. Reyhner and Flugge Lotz (Ref. 23) have shown that this

instability is easily avoided by assuming that the streamwise convection

terms are zero in reversed flow regions. For the present equations, the
FLARE approximation becomes

0! = 0__gg= O (21)

when F < 0.

This approximation is particularly attractive since special

differencing cells do not have to be utilized in the implementation of the

FLARE approximation. Therefore, the differencing cells shown in Fig. 3 may

be used everywhere within the boundary layer thus simplifying the numerical
scheme.

It is apparent, however, that when this approximation is used, the

converged solution of the numerical difference equations is not necessarily

the solution to the boundary layer equations since a loss of accuracy due
to the negligence of the streamwise convection terms is incurred. As an

improvement to the FLARE approximation, a windward finite difference cell

such as that shown in Fig. 4 can be used to calculate streamwise gradient

terms in reversed flow regions. The streamwise gradients for both attached

and separated flow are represented by the weighted difference operator:

k F k k k-I k
_F I i,j - Fi-l,j Fi+l, j- Fi, j

I = a + (I-a)
0_' i,j _'.k. - _'ik k-I k (22),,] I,j _i+l,j - _i,j

where _ = 1 F > 0 attached flow

= 0 F < 0 reversed flow

k = global iteration index

The weighting coefficient, e, is usually 1.0 which yields the usual first

order backward difference operator for attached flow. For negative

streamwise velocities, _ is changed to 0 and the difference operator
switches to a first order forward difference. Since the marching direction

of the numerical scheme is always in the positive (i.e., increasing i)
t-direction, the information used to calculate the forward difference

operator of Eq. (22) must come from the previous global iteration results.

The operator given by Eq. (22) may be applied to all of the streamwise

gradient terms including the stream function t-gradient in Eqs. (17) and
(18). Numerical calculations, however, have indicated that the use of this

operator on the stream function streamwise gradient leads to an instability

as the bubble size increases or as the streamwise grid spacing becomes

11
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smaller. This instability appears to originate in regions where the normal

velocity component is high such as exists at the ends of a large

recirculating region. Application of the weighted difference operator on

the stre_ function has been found to _plify the normal velocity component

in these regions. Similar sensitivity to windward differencing on this
term was observed in Ref. 30 in which a stre_ function-vorticity formu-

lation of the boundary layer equations were solved for separated flow.

Further research is needed to determine a stable iterative strategy if the
_/_ term is to be treated in the same manner as the _F/D_ term. Hence,

this study has focused on the application of the windward difference

operator to the stre_wise convection term only.

_Natural Transition/Turbulence Model

In the previous interaction work presented by Carter and Vatsa (Refs.

21 and 22), the Cebeci-Smith turbulence model (Ref. 31) was used to deter-

mine the turbulent eddy viscosity coefficient, _. Either an instantaneous

transition or the intermittency function empirically developed by Dhawan
and Narasimha (Ref. 32) was used to force the flow from l_inar to

turbulent. In this earlier report, with the proper selection of transition

point and transition length, the effects of the separation bubble on the

inviscid loading distribution could be predicted with the interaction

technique. Unfortunately, the values of these quantities are not usually
known a priori and the solution is sensitive to their specifications.

A focus of the current effort, therefore, has been to incorporate a

turbulence model into the interaction technique which has the ability to

predict transition automatically. Briley and McDonald (Ref. 15) reported
success in predicting transitional separation bubbles with their time

dependent Navier-Stokes/boundary layer solver using the McDonald-Fish

turbulence model (Ref. 24). This model is based upon the solution of the

integral form of the turbulent kinetic energy equation. Since this model

has been presented a number of times in previous reports, including the

recent critique given by Walker and Werle (Ref. 33), only a brief discussion

sion will be presented here. The turbulent kinetic energy equation is

d PeU_ _, =PeUe3(_z-_3 ) +Eds 2o=

where _I = ,_ + 0 ,_-f qe2
O'r/ i T Uez d'r/ , (24)

u'u°l[ .IPe O.r/ I- d'r/, (25)

12



I( U,Ue)2 /(_3-J'o_ _\--_-, i ! _;; + o,,Tf_qe2 ' auUe_ _ _ d_? (26)

q2
E---_ PeUe - Pe Ve (27)

where

7rN
f_- = I- cos-- (28)

Br

= _ O McDonold-Fish Mode, _. (29)l I McDonold-Kril|kovlky- Fish Model 1

In the numerical predictions to be presented in the Results Section, the

McDonald-Fish-Kreskovsky model (Ref. 25) has been used in attached direct
boundary layer calculations and the McDonald-Fish (Ref. 24) model has been

used in separated interacting calculations as suggested by Briley and

McDonald. For the McDonald-Fish-Kreskovsky model, the value of 6_ is
defined as the first N location from the edge of the boundary layer where

the local shear stress exceeds 2 percent of its maximum value. If 6_ is

computed to be less than the boundary layer thickness, 6, then 6T is reset

to equal 6. For the McDonald-Fish model, 6T is set equal to 6. Structural

coefficients, al, a2, and a3, have been introduced in terms of the local
mixing length, £, to determzne the components of the perturbation
velocities.

_2 = 02q_ (31)

v 12 = QZq 2 (32)

The total magnitude of the fluctuating velocities is

13
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q2 : u I + vI + w' (33)

The local mixing length model as given by McDonald and Fish (Ref. 24) and
later modified by McDonald and Kreskovsky (Ref. 25) is

"_ = T _co + _- i- tonh _ I-cos-_-- for y < B

(34)

fco for y > 88

Similarly, the dissipation length is

L __ tonh -- (35)
8 _ LeO

where K = 0.43 is the value used for the von Karman constant and _is the

damping factor given by

The inner region scaled normal coordinate is

N + = N_r/p (37)

The free stream dissipation length is

LGD

8 '= 0._ (38)

The remaining unknown quantities are the values given to the structural co-

efficients, al, aT, and a3. McDonald and Fish showed that aI is nearly
zero in laminar flow and Yeaches a value of 0.15 for fully turbulent

boundary layers. McDonald and Fish derived a relationship between aI and

the turbulent Reynolds number, RT, where:

I r3r

"_'rJo I"TdN

Rr _ /.8z (39)

_]Zjo u dN

where v and vT are the laminar kinematic and turbulent eddy viscosities,
respectively, and __ is inner layer thickness defined as the first location
from the wall where1_ is approximately 4 percent of the total effective

14



viscosity, _ + vT" By first converting R_ into a correlated momentum
thickness Reynolds number, R6, using an empirical relationship

R8= IOORT °2e forRr_< I,

(4O)
= 68.26 R r-614.33 for R T > 40

the aI structural coefficient may be calculated from the relationship:

%( R'8 / R80 )
o = (41)

!
where a = 0.0115

O

R8 = I00
o

A cubic polynomial which matches values and derivatives at both ends is

used to express Re in terms of RT for 1 < RT < 40.

Briley and McDonald (Ref. 15) reported that their solution in separa-

ted flows was sensitive to the magnitude of the normal stress terms in Eq.

(23). Without a modification to structural coefficients, a2 and a3, the
flow upon separating, would not reattach and their solution diverged. For

this reason, they allowed the difference in a2 and a3 appearing in Eq. (26)
to vary linearly with RT using

02 - 0 3 = 0.3 + 0.6 (I- R r) for Rr < I

(42)
=0.3 for R r > I

Upon substitution of Eqs. (24)-(42) into the turbulent kinetic energy

equation, the free stream mixing length, _, may be calculated. The local

turbulent eddy viscosity is finally calculated from

-7--,

_T - O___y_u - P_ (_)

ON

The transition between laminar and turbulent flow is primarily controlled

by the source terms in Eq. (_) and by Eqs. (39)-(41) which determine the

magnitude of the structural coefficient aI. The source term E which
controls the growth of the turbulent kinetic energy is proportional to the

free stream turbulence level given by qee" For convenience _e is normalized
by the boundary layer edge velocity u ase

I/2

Tue = _ u'_-

15
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Interaction Iteration Procedure

The present analysis is based on a inviscid-viscous iteration tech-

nique which was previously presented by Carter (Ref. 27) and is adapted to

the present investigation as outlined in Fig. 5. This procedure, which has

been referred to as a semi-inverse technique by LeBalleur (Ref. 34),

combines an inverse boundary layer technique with a direct inviscid analy-
sis via the update procedure shown in Fig. 5. The key feature of this
iteration procedure is the simple update formula

\ uel

which permits an inverse boundary layer analysis to be directly linked to

an inviscid analysis which accounts for displacement thickness effects.
Note that for simplicity the update formula is shown in Fig. 5 with the

relaxation factor, _, set equal to one. It was found by Kwon and Pletcher

(Ref. 17) that convergence could be accelerated by making several inner-
loop passes through the Cauchy integral and the update formula with the

boundary layer prediction of the edge velocity, ue , frozen at its current

global iteration value. This technique was used i_ the present calcula-

tions with three inner-loop passes and was found to accelerate the global

convergence rate by a factor of three with a 50 percent reduction in

computer time as compared to calculations made without this inner
iteration.

RESULTS

Windward Differencing

In this section, the results obtained with the ALESEP (Airfoil Leading

Edge Separation) code using the windward differencing operator of Eq. (22)

in the reversed flow regions are compared with the results presented by

Carter and Vatsa (Ref. 21) using the same code but with the FLARE

approximation. In all of these calculations, a total of 100 grid points
were used in the normal direction in the boundary layer analysis with these

points distributed so that the minimum spacing was at the wall. The

Cebeci-Smith turbulence model was used with the start and length of

transition imposed at the same values as those reported by Carter and Vatsa

with the use of the Dhawan and Narasimha intermittency function.

Calculations using the windward differencing and FLARE approximations are
shown along with experimental data for the Gault (Ref. 3) NACA-0010 airfoil

and the Gaster (Ref. 4) series I-IV experiments.

Gault NACA-0010 Airfoil

The particular Gault case (Ref. 3) which has been analyzed here is for

an NACA-0010 airfoil at an 8 degree angle Of attack and a chord Reynolds
number of 2 x 106 for which a transitional separation bubble occurred in
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the leading edge region. This case has been chosen for the present

assessment since the maximum reversed flow velocity, u/u e = -.28, was the
largest of any case analyzed in the previous investigation (Ref. 21).

Results obtained from the GRUMFOIL code (Ref. 14) have been used for the

reference surface velocity solution and reference displacement thickness
distribution. A total of 71 grid points were distributed in the streamwise

direction extending between s/c = 0 to s/c = .32 with the minimum spacing
located in the transition region. The onset of transition was located at

s/c = .0283 with a transition length of .0161.

Figure 6 shows the predicted distributions of pressure, skin friction,

and displacement thickness using the windward and FLARE approximations.

Comparison of the pressure distributions shows that the only noticeable

difference between the windward and FLARE predicted results is a slight

decrease in the pressure coefficient at the "breakpoint" (transition point)

with the windward scheme. A similar expansion at the end of the pressure
plateau region has been observed in the recent experimental data of Jansen

and Mueller (Ref. 35) as well as the earlier work by Horton (Ref. 5) on

finite swept transitional bubbles. Comparison of the computed results with

the experimental pressure data in Fig. 6(a) shows that the inability of the
analysis to predict the constant pressure region near the peak suction

pressure is still unexplained as it is clearly not affected by the improved
differencing procedure used in the reversed flow region. Figures 6(b) and
6(c) show that, in general, only small differences exist between the

computed skin friction and displacement thickness distributions due to the

inclusion of the more accurate windward flow differencing technique. Hence,
it is concluded from the analysis of this case, which contains a

significant backflow velocity of u/u = -.28, that the FLARE approximation
is quite accurate in predicting the _verall effects of the transitional

separation bubble. Comparison of the windward and FLARE results shows, in

this case, only small differences which principally occur in the reversed
flow region. These differences, though, are very interesting as the
inclusion of windward differencing has revealed a new structure in the

recirculating flow region. This change in bubble structure is discussed
below.

It is observed in the skin friction distribution in Fig. 6(b) that the
calculation performed with the windward scheme in contrast with the FLARE

result shows a small region of forward flow (Cf > 0) occurs in the
interior of the separated flow region. This region occurs at the same

location where the surface pressure predicted with the windward scheme

shows a slight expansion at the end of the plateau region. Figure 7 shows

a comparison of the computed streamlines in the viscous region obtained

with the windward and FLARE schemes. Overall, these streamline patterns
are very close with the major difference being that the more accurate

treatment of the reversed flow region, via the windward scheme, has
revealed the existence of a second, counter-rotating bubble inside of the

primary separation bubble. To our knowledge this is the first time such

a structure has emerged from numerical calculations of the interacting
boundary layer equations for closed separation zones on solid surfaces.

Physically, such a structure is known to exist in separated flows as
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evidenced by several figures in the excellent compilation on flow

visualization recently published by Van Dyke (Ref. 36).

Velocity profiles at eight locations for the windward and FLARE calcu-

lations are shown in Fig. 8. with their positions in and around the bubble

region denoted by the arrows in Fig. 7. The profile at s/c = .031 shows
the small region of forward flow near the wall which is inside of the

secondary bubble predicted by the windward scheme. Except for the region

where this inner bubble exists, use of the windward differencing scheme

results in slightly lower local velocities within the boundary layer than
those calculated by the FLARE approximation. This difference accounts for

the slight increase in the displacement thickness found in the windward

scheme over that deduced by the FLARE technique for this case.

A grid study has been conducted to determine the double bubble

structure sensitivity to the streamwise grid spacing. Only the streamwise

grid was varied since the normal mesh of i00 grid points across the boun-

dary layer was thought to be adequate to resolve this secondary bubble.

Within the same calculation region (0 < s/c < .32), a 31 point and a 141
point grid were used in the windward and FLARE schemes. As for the 71

point grid discussed above, the points for these two calculations were

distributed nonunifor_ly with the minimum spacing in the transition region.

Figure 9 shows the effect of streamwise grid spacing on the skin friction
coefficient using the windward scheme. Despite some differences in the

skin friction due to the change in the mesh size, the presence of the inner

bubble remains unchanged for these calculations thus demonstrating that its
existence is not grid sensitive. Similarly, it was found that the

structure of the bubble using the FLARE approximation did not change from
that shown in Fig. 7 with these modifications to the streamwise mesh.

Convergence histories for the NACA-0010 calculations using the wind-

ward and FLARE schemes are shown in Fig. 10 for the three streamwise grids.

A relaxation factor of 0.5 was used in Eq. (45) for both the windward and

FLARE calculations for the 141 point grid calculation in order to overcome
an iteration instability. A similar situation arose in the earlier work of

Carter and Vatsa in which it was found necessary to use underrelaxation on

the perturbation mass flow parameter, m, in the update procedure to

eliminate a similarity instability. No attempt was made in the 141 grid
point calculations to optimize the relaxation factor to obtain the fastest

convergence rate. Relaxation factors of 1.0 were used in the 31 and 71

point grid calculations. Figure i0 demonstrates that the convergence rate
of the windward scheme is nearly the same as that for the FLARE and that

both schemes converge monotonically to the desired level of residual.
Windward differencing can, therefore, be used with little effect on the
convergence rate of the iteration scheme if the fine details of the

reversed flow region are of interest. Experience3has indicated that
convergence of the edge velocity residuals to I0- produces sufficiently
accurate results.
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Gaster Experiment

A second case with a less intensebackflowregion has been investiga-
ted to comparethe resultsobtainedwith the windward and FLARE
differencing,and in particular,to see if the secondarybubble occurswith
the inclusionof the more accuratewindward differencingscheme. An
experimentalinvestigationof a transitionalseparationbubble on a flat
plate performedby Gaster (Ref. 4) was chosen for this case. The
separationbubble was inducedby the pressurefield generatedby the
placementof an invertedairfoilnear the plate. Interactioncalculations
using the windward and FLARE approximationswere performedfor the series
I-IV experimentof Gaster. The referencepressure distributionwhich was
used in these interactioncalculationswas thatmeasured by Gaster on the
flare plate with the boundary layer trippedto turbulentflow near the
leadingedge. The referencedisplacementthicknesswas found from a direct
boundary layer calculationwith the referencepressuredistribution
prescribedand transitionforced to instantaneouslyoccur at the experi-
mental trip location. A uniformmesh consistingof 81 streamwisegrid
points between s/L = 0.5 and s/L = 1.5 was used in the calculations. The
Cebeci-Smithturbulencemodel was used with an assumedinstantaneous
transitionat s/L = 1.0.

Figure II shows only minor differencesbetween the windward and FLARE
differenceschemesfor the skin friction and displacementthicknessdis-
tributionsfor this case. There are no visibledifferencesin the predicted
pressure distributionsof the two calculations. Also, the structureof the
separationbubble does not changefrom that predictedwith the FLARE
approximationin this case. Figure 12 shows a comparisonof the velocity
profile for the two calculationslocatedat s/L = 1.0125 where the magni-
tude of the reversedflow velocity is a maximum. Only minor differences
exist betweenthe two profilesfor this case. The local velocityreaches a
u/ue = -.15 in the reversedflow regionwhereas in contrast,the maximum
reversedvelocity in the Gault NACA-0010airfoilcase, where the impactof

windward differencing is greater, is u/u e = -.28.

The predicted iso-velocity contours using the windward differencing

scheme are compared in Fig. 13 with the experimental contours measured by

Gaster. The iso-velocity contours predicted using the FLARE approximation

are nearly identical to those shown for the windward scheme. Although good
agreement was obtained with the experimental pressure distribution and the

separationand reattachmentlocationsas shown in Ref. 21, the predicted
flow field away from the wall differs substantially from the measured

iso-velocity contours. It is observed in Fig. 13 that the analysis
significantly underpredicts the overall boundary layer growth throughout

the bubble. This difference is probably strongly influenced by the

assumption of instantaneous transition at s/L = 1.0 which causes a slope

discontinuity in the predicted iso-velocity contours at this location.
Clearly more work is needed to include a natural transition model in this

analysis, which is addressed in the next section of this report.
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Natural Transition/Turbulence Model

Upon incorporation of the McDonald-Fish-Kreskovsky (MFK) model into

the ALESEP code, a series of direct boundary layer calculations using the
present finite difference boundary layer procedure were performed to
demonstrate the capabilities of the model for attached flows. For

separated flow, the modified McDonald-Fish (MF) model was used in the

identical manner as Briley and McDonald (Ref. 15) did in their study of
transitional separated flow on airfoils. In all of these calculations a

total of I00 grid points were placed across the boundary layer with the
minimum grid spacing located at the wall.

Attached Flow

Figure 14 shows the predicted skin friction and displacement thickness

with the experimental data taken by Blair (Ref. 37) for transitional, zero
pressure gradient flow over a flat plate at a high free stream turbulence

level. The free stream velocity was I00.0 ft/sec and the unit Reynolds
number was 5.105 x 104 . A total of 54 grid points were distributed

unevenly in the streamwise direction with the minimum spacing located at
the leading edge of the flat plate. In this case_ the free stream

turbulence decayed from 7 percent at the initial station to 3.6 percent at

x = 94 inches. Figure 14 shows that the calculated transition region is

between x = 2.2 and x = 6.2 inches. Since no detailed experimental data

exists in the transition region of the flow due to the thinness of the

boundary layer, this case demonstrates the accuracy of the boundary layer
scheme in turbulent flow using the MFK turbulence model. This case is
typical of the high free stream turbulence levels encountered in

turbomachinery flows. In external aerodynamics, which is the focus of the

present investigation, the free stream turbulence levels are generally
substantially lower.

By removing the turbulence generating grids upstream of the flat plate

test section, Blair (Ref. 37) measured the boundary layer characteristics
for a free stream turbulence level of 0.25 percent. The free stream

velocity and Reynolds number were held the same as in the previous case.

The computational grid defined in the previous example was used in the

predictions for this case as well. Figure 15 shows the comparison between

the results obtained with the present direct finite difference boundary
layer solution technique using the MFK turbulence model and the experimen-
tal data. It is observed that in this case, the predicted location of
transition is significantly further downstream than that observed

experimentally. Transition is predicted to occur between x = 37.2 and 55.2
inches whereas transition was measured to occur between x = 27.4 and 36.0

inches. Delayed transition was also predicted by the ABLE (Analysis of

Boundary Layer Equations) finite difference direct boundary layer solver
(Ref. 38) using the McDonald-Fish-Kreskovsky transition/turbulence model

for this low free stream turbulence case. The accuracy of the present

results in the laminar and turbulent regions is demonstrated in Fig. 15

with the inclusion of the known analytical behavior in these respective

regions for the skin friction and displacement thickness for a flat plate.
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Excellent agreement is observed in these two regions of the flow thereby

confirming the basic approach for fully laminar and turbulent regions while

highlighting the transition region shortfall.

The calculations presented in Figs. 14 and 15 were for zero pressure

gradient flow over a flat plate. By placing a contoured body opposite to a

flat plate section, Sharma, Wagner, Edwards and Blair experimentally in-

duced the boundary layer edge velocity distribution shown in Fig. 16(a) on

the flat plate measuring surface. This experiment was conducted in the

UTRC Boundary Layer Channel to investigate the boundary layer chracteris-

tics in a flow with a pressure distribution which simulates that in the
leading edge region of an airfoil. The inlet to exit velocity ratio was

0.37 and the inlet free stream turbulence level was 7 percent._ The exit
Reynolds number based upon a 36 inch test section was 6.0 x I0-. A com-

parison between the calculated displacement thickness and skin friction of

the direct finite difference boundary layer analysis and the experimental

data is shown in Figs. 16(b) and 16(c). A total of 200 points were distri-

buted evenly along the flat plate in the boundary layer calculation. Local

turbulence levels, Tu , were calculated from the inlet free stream turbu-

lence and the local t_ upstream velocity ratio based upon the assumption of

frozen turbulence. Although there is no experimental data in the transi-

tional region, the agreement between prediction and experiment in the
laminar and turbulent regions indicates that the predicted transition

region is relatively close to that of the experiment. Transition was
predicted to exist between x = 24.24 and 29.05 inches with the MFK model.

A non-interacting inverse boundary layer calculation was run on this

case to demonstrate the agreement between the direct and inverse boundary
layer results using the MFK turbulence model. In order to be consistent

between the direct and inverse calculations, the computed values of the

perturbation mass flow parameter, m, resulting from the direct finite

difference boundary layer calculation described above, were used as boun-

dary conditions in the inverse calculation. The inverse boundary layer

calculation reproduced the boundary layer edge velocity distribution shown

in Fig. 16(a) demonstrating that the MFK turbulence model has been

correctly implemented for inverse boundary layer calculations.

This completes our calculations for attached boundary layer flows.

These three cases demonstrate that the MFK transition/turbulence model

gives good predicted results for flows with high free stream turbulence
levels. However, for low levels of free stream turbulence, the MFK

transition model predicts transition too far downstream resulting in a

substantial difference between the predicted boundary layer quantities and
the corresponding experimental measurements. This same weakness in the

transition model is carried over to separated flows as will be demonstrated
in the next section.

Separated Flow

Several calculations for transitional separation bubbles with low

free stream turbulence levels have been attempted with the McDonald-Fish (HF)
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turbulence model, modified for separated flow in the same manner as Briley

and McDonald (Ref. 15) suggested. Among these calculations are the Gaster

case, discussed previously, and the zero angle of attack flow over a NACA

663-018 airfoil experimentally studied by Gault (Ref. 3). This latter case
was computed by Briley and McDonald.

In the present calculations, it has been found that the onset of

transition is predicted too far downstream with the MF transition model.

The result has a catastrophic effect on the calculation of transitional

separation bubbles since the predicted bubble size is now much too large

with reattachment frequently not occurring thereby leading to massive

stall. In contrast, Briley and McDonald successfully used the MF

transition model in their time dependent Navier-Stokes/boundary layer
analysis of the Gault mid-chord transitional bubble case with none of the

difficulties which have been encountered in the present study with this

transition model. The difference in the present calculations and those of

Briley and McDonald is unresolved at the present time; there are signifi-
cant differences in these two inviscid-viscous interaction formulations but

whether or not these differences affect the calculation of the turbulent

kinetic energy equation in the transition region will require further
study. The delay in transition predicted in the flat plate flow with low

free stream turbulence, which was discussed earlier, clearly points to the
need for further work in adapting this transitional model to the low free

stream turbulence flows in external aerodynamics. It has been found that

reattachment can be forced to occur in the analysis of separated flows with

the MF transition model by artificially increasing the free stream turbu-

lence level, however. This is demonstrated using the flat plate experiment

of Gaster. When the calculation was performed for the free stream turbu-
lence level of 0.25 percent reported by Gaster, the ALESEP code with the MF

model predicted that the flow separated from the flat plate with transition

and thus reattachment not occurring in the region prior to the downstream

end of the calculation located at s/L = 1.5. By artificially increasing
the free stream turbulence level to 4.0 percent, the flow was made to

reattach within a reasonable length as shown in Fig. 17 where the predicted
pressure, displacement thickness, and skin friction with this level of free

stream turbulence are predicted. Local edge turbulence levels were calcu-

lated using the local to upstream velocity ratio using the assumption of

frozen turbulence. A further increase in turbulence level to 4.5 percent
results in a significantly smaller bubble with the pressure distribution

not showing the usual pressure plateau region characteristic of separated
flows. To further demonstrate the sensitivity of these calculations to the
prescribed free stream turbulence level, it was found that a free stream

turbulence level of 3.5 percent results in a bubble which has more than

doubled in size compared to that at 4.0 percent.

In order to demonstrate the accuracy of the turbulence modeling in the

MF model, transition can be forced to occur by simply varying the struc-

tural coefficient, al, from 0.0 in laminar flow to 0.15 for turbulent flow
over a specified transition length. The variation between these levels is

specified with the Dhawan and Narasimha intermittency distribution. The

angle of attack for this case is 0.0 degrees and the chord Reynolds number
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is 2.0 x 106. The reference pressure distribution was taken to be the

experimental distribution which was obtained at high Reynolds number (Re =

1 x 107 ) in which transition naturally occurred before laminar separation

could take place. A direct boundary layer calculation was performed from

the leading edge of the airfoil to s/c = 0.5 using the reference pressure

distribution as the edge boundary condition. The velocity profile was
taken at the s/c = 0.5 station from the direct calculation to be used as

the initial profile for the interacting calculation. The reference

displacement thickness was held constant at that value predicted by the
direct boundary layer calculation at s/c = 0.5. A total of 99 points were

distributed evenly between s/c = 0.5 and s/c = 0.99 in the interaction

calculation. The local edge turbulence level was calculated from a 0.2

percent free stream turbulence level and the local to upstream inviscid

veloctiy ratio using the frozen turbulence assumption. Transition was

prescribed to occur between s/c = .693 and s/c = .703. Figure 18 shows the

results of the interaction prediction using this forced transition model on

the NACA 663-018 airfoil tested experimentally by Gault (Ref 3). The good
agreement between the predicted pressure distribution and Gault's

experimental pressure data shown in Fig. 18(a) demonstrates that the
McDonald-Fish turbulence model may be successfully used in the interaction

calculation providing that transition is predicted correctly. Figures

18(b) and (c) show the predicted displacement thickness and skin friction

distributions for this case. The predicted boundary layer velocity

profiles at six locations along the airfoil surface using both the FLARE

and windward schemes are compared with experimental profiles taken by Gault

in Fig. 18(d). For this case where the maximum reversed flow velocity was

u/u = -.08, the FLARE and windard schemes produced nearly identical

results. The predlcted proflles dlffer from the experlmental profiles in

the transition region but agree fairly well in the laminar and turbulent

regions of flow. As previously shown by Carter and Vatsa (Ref. 21), the
predicted results using the interaction technique is quite sensitive to the

location of transition. It is shown in Fig. 19 that the sensitivity

remains unchanged using the transition model described above. A slight

change in the intermittency distribution shown in Fig. 19(a) leads to a
major change in the predicted results as shown by a comparison of the

experimental velocity profiles at s/c = .725 with the predicted profiles in

Fig. 19(b) using these intermittency distributions. A reduction in transi-

tion length of only 0.25 percent chord results in a 22 percent shorter

separation bubble and thus an attached turbulent profile at this location.

Figure 19 dramatically demonstrates the accuracy which is required of a

transition model in order to accurately predict the flow in a transitional

separation bubble.

CONCLUDING REMARKS

The development of an improved airfoil transitional separation bubble

analysis has continued through the inclusion of a proper finite difference

technique in the reversed flow region and the incorporation of a natural

transition/turbulence model to predict the onset of transition within the

separation bubble. This introduction of a windward finite difference
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procedure into the present inviscid-viscous technique has been found to be

stable and inexpensive in terms of additional computational time over that

with the Reyhner-Flugge Lotz (FLARE) approximation. It has been found for

flows with reversed flow velocities up to 28 percent of the boundary layer

edge velocity that comparable results for the surface pressure, skin
friction, and displacement thickness are predicted by the windward and
FLARE schemes. However, the use of the more accurate windward difference

scheme has revealed a major structural change in the interior of the

separation bubble. A counter-rotating region under the primary transitional

separation bubble can emerge with the use of windward differencing which

has not previously been observed with the FLARE approximation. Numerical
tests were performed to indicate that the existence of this secondary

structure is not sensitive to grid spacing. The differences in bubble

structure and boundary layer characteristics between the windard and FLARE

schemes are proportional to the size of the reversed flow region and the

magnitude of the reversed flow velocity within the bubble. Convergence
studies also indicate that with both the windward and FLARE schemes, the

present inviscid-viscous coupling procedure is capable of reducing resid-
uals to desired levels. The McDonald-Fish-Kreskovsky natural transition

turbulence model has been incorporated into the interaction code for the

prediction of transition within the separation bubble. A number of cases

are presented which demonstrate that this model predicts transition too far
downstream in separated and low free stream turbulent flows. Sensitivity

studies are reported which indicate that modifications to this natural

transition model are required for these flows.
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APPENDIX A

Analysis of the Inviscid Flow Over an

Airfoil with a Small Protrusion

In this appendix the method of matched asymptotic expansions is used

to analyze the inviscid flow over an airfoil on which a small protrusion
occurs. Figure A-I shows a schematic diagram of the airfoil with the

protrusion details enlarged so that the length scales which characterize
this bump can be clearly shown. First, a general formulation of the

overall inviscid flow will be presented followed by a detailed description

of the outer flow over the airfoil and inner flow in the immediate vicinity
of the protrusion. Matching of these two flows through second order will
be discussed with the end result being a mathematical formulation of the

lead order perturbed inviscid flow near the protrusion which is used in

the main text in the local inviscid-viscous interaction analysis. The
present analysis is conducted only for incompressible flow; however, the

inclusion of compressibility effects should straightforwardly follow the
formal approach taken here.

The incompressible, irrotational flow over an airfoil can be described
by the full potential equation

where _ and q are orthogonal curvilinear coordinates oriented to the smooth

airfoil surface as shown in Fig. A-I. The subscripts _ and q denote diffe-

rentiation in the respective directions. For convenience the origin of the

_,n-ooordinate system has been chosen at the center of the protrusion as
shown in Fig. A-I. The metric coefficient H is defined as H = 1 + Kq where

K is the curvature of the airfoil surface (without the protrusion). The

tangential and normal velocity components, U and V, respectively are
related to the velocity potential _ by

IU -

H _ V = _ _ (A-2)

The surface boundary condition is given by

vu H _o (A-3)

which is imposed at _o = 6T(_) and requires the flow to be tangent to the

airfoil, including the protrusion. Equation (A-3) can also be expressed in
terms of the velocity potential which results in
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In the present analysis, it is assumed that the streamwise length of the

protrusion is _ where c is asymptotically small compared to the chord of
the airfoil. Hence, it is seen that over most of the airfoil the usual

Neumann condition, ¢_ (_,0) = 0, is the required boundary condition. In
U . .

the far field, the flow Is requlred to return to uniform flow which is

stated by

_ -- H COS _ !'OS _ ,_ _ O0 (A-5)

\

¢_ _ - sin 8 )
where 0 is the airfoil surface angle measured with respect to a reference
axis.

It is convenient to break the analysis into an outer or global description

of the flow, and an inner or local description which is applicable in the

immediate vicinity of the protrusion. The relative length scales of the

bump are chosen also as to be representative of those of viscous displace-

ment thickness induced by a transitional separation bubble. In our

previous investigation (Ref. 21) it was observed that the height/length
ratio of the displacement surface produced by a transitional separation

bubble was always very small. Therefore, in the present study it is
assumed that

=O (A-6)E--_-O E

and hence, the protrusion height, _, is taken to be asymptotically small

compared to its length, _, in the limit of a vanishing protrusion. We now
proceed to establish the outer and inner region expansions in terms of the

protrusion length, _.

Outer Region

The outer potential is expanded in terms of the gauge functions An to

give

o

o
where each of the Cn are assumed to be 0(1). Substitution of Eq. (A-7)

o
into Eq. (A-I) and taking the limit as E . 0 it is seen that each of the Cn
satisfies the original partial differential equation.

( o) (o)I _n,_ _. + H € n-Q -r/ = 0 (A-8)

The curvature of the airfoil, K, is assumed to be 0(i), that is, as _ . 0
the airfoil curvature remains finite.
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We now substitute the expansion for the outer potential into the

surface boundary condition given by Eq. (A-4). Since we are assuming the

protrusion is thin, that is, its height is small compared to its length_
the boundary condition can be transferred via Taylor series from the

protrusion surface q = _o to n = 0, the original airfoil surface. The
surface boundary condition now becomes

o (_ T,I o A2 ° } A2 _ °€I,_(_,0)- ---_-- €,((_,0) - A---T _:_ (_,0) + a---T 2_ (_,0)

o (_ o)+ €°2 (_,o)
+ B I" ¢ID _ , "_1 'r/_ (A-9)

+ _ TT _ o o€_ (_,O)- 2K€,_(_,O) + """ =O

In Eq. (A-9), T' denotes dT/d¢ which is an 0(1) quantity with _ defined as

_/€. Equating 0(1) terms to zero yields

¢o
I_7(_,O) = O (A-10)

which is the usual surface boundary condition for the flow over an airfoil
with no protrusion.

Substitution of the outer expansion in Eq. (A-7) into the far field
boundary condition yields

¢o + A_ 0o Hcose/_---T2_. - n,

as _,_ _ oO (A-11)

Z_2 €? + _ sin 8

As _ . 0, it is concluded that A1 must remain finite and hence, AI, is set
to unity for convenience. At thzs point, the description of the %irst

order outer problem is complete and it is seen that it is simply the flow
over the airfoil without a protrusion.

Inner Region

In the inner region, it is convenient to define stretched coordinates

X- ( Y = _E (A-12)
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so that in these coordinates the protrusion length is 0(1) and the height

is 0(6/_). Equation (A-6) shows that even in these coordinates the

protrusion appears as a small disturbance to the local airfoil flow.

The potential function for the inner region is expanded in terms of _ as

(_i (_ ,r/iE} = $I (E) _i I (X,Y) + _2 (E) _i 2 (X,Y) +"" (A-13)

Substitution of th'is expansion into the governing equation (A-I) yields

82 i i
+i××+ +, YY+

CA-14)

+ e (KY* i )y _'' I (KY+i2X)X - (KY(_i)2Y Y l + "'" =0IY _1

Equation (A-14) shows that in the limit of _ . 0 the first order inner

potential is governed by Laplace's equation

¢i + :o
IXX IYY (A-15)

The surface boundary condition, Eq. A-4, is expressed in terms of the inner

region potential as

I 1
i = _ _

--_ H2 o --_ (A-16)

which is implemented at Y = Y = 6/_ T(X) where T(X) is an 0(I) function.

Since the protrusion is treated as asymptotically thin, even in inner

coordinates the surface boundary condition can be transferred to Y = 0 with

a Taylor series expansion. Substitution of the inner expansion for the

potential function Eq. (A-13), into the surface boundary condition, Eq.
(A-16), and the use of a Taylor series yields the following relation to be
satisfied at Y = 0:

82 • [ ]41Y (×,o_ + a---_"€_ (x,o)+ -7- T¢',_(X,O)-T'¢ i,x(x,o)
o

(A-17)

+ 2_ KYT' _iX (X,0) + "" • =0

As € . 0 the 0(1) surface boundary condition is

€I_(x,o):o (A-IB)
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and thus we see that to first order neither the inner or outer solution is

affected by the presence of the protrusion for the limit considered here
(61c<< i).

Matching the 1-term inner limit of the outer expansion with the 1-term

outer limit of the inner expansion yields

EXO_x (0,0) = &l _Ii (oO,OO) (A-19)

In order for these solutions to match we set 6 = _. The solution for the

inner first order potential function is now established by Eqs. A-15, A-18,

and A-19 and is simply

_i (X,Y) : U_ (0,0} X (A-20)

o o

where UI(0,0) = _IX(0,0) is the airfoil surface speed evaluated at the

protusion location, _ = 0, n = 0, on the airfoil surface. So we see that

the influence of the protrusion is relegated to the second order problem
which will be discussed next.

Second Order Analysis

The governing equation for the second order outer problem has already

been given as Eq. (A-8) with n = 2. The surface boundary condition, Eq.
(A-9) is written as

o (_,O) _ (_ O) + _ T _° (_ O) + =O (A-21)- , '

This relation shows that the inner boundary condition on the second order

outer potential is determined by the choice of the gauge function, A2. If

we choose A_ = 6]£, the height to length ratio of the protrusion, then the
inner boundgry condition for the second order outer problem will be the

usual small disturbance boundary condition given by the first two terms in

Eq. (A-21). However, since we want this boundary condition to be met by

the inner solution, A2 is chosen such that A2 > 6/_, that is

lira _ =0
• A 2 (A-22)

E---O

thereby resulting in

O °
27/1_, O) =0 (A-23)

Since the outer boundary condition for the second order outer potential is

homogeneous as deduced from Eq. (A-It), then the solution for the second

order outer potential which satisfies Eq. (A-23) and the governing equation
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O

is the trivial solution @2 (_,n) = 0. This result is expected since the
first order inner solution was found to be unaffected by the presence of

the protrusion.

The second order inner problem is now examined and will show for the

first time the explicit appearance of the protrusion characteristics. The

governing equation, (Eq. (A-14), is rewritten as follows with the first
order inner solution inserted:

€ 3 dK 0i

_2YY _2 d_ '
_2XX y U (0,0) + ... =0 (A-24)

The gauge function, 62, is chosen so that 62 > _3 which results in

@_×x+ @i2_:o (A-25)

The surface boundary condition, Eq. (A-17) is rewritten as

_ T'_i (XO)+ _ 1 " ]
 x,ol ,x , T' Ix,o)

(A-26)

2_" {T'_z i (X 0)1+' =0+ KY _,x ""

Since we want the inner solution to describe the flow over the protrusion

the gauge function, 62, is set equal to the protrusion height, 6, which
results in

@_y(Xo):u° (O0)T'' ' (A-27)

Equation (A-27) is the usual small disturbance surface tangency condition

which in this case is that of a thin protrusion subjected to the local

velocity of the outer solution evaluated at the protrusion origin.

The outer boundary condition on the second order inner potential is

determined by matching the inner and outer expansions. The matching
condition between the 2-term inner and 2-term outer expansions leads to

_ (0O,OD)= _ XZ €I{{° (O,O) + XY €oi{_ (O,O) + Ya¢_(O,O) (A-28)

The least restrictive condition that can be imposed at this point is to
choose the limit

lim _2

E-- O -_ =O (A-29)
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which resultsin

_ ((D,(D):0 (A-30)

At this point two-terminner and outer expansionshave been derived
which describethe local disturbancedue to a protrusionplaced on the
airfoil. For the particularlimit where the bump height, 6, relativeto
the length, €, satisfiesthe inequality£2 < 6 < £, it has been determined
from matched asymptoticexpansionsthat to lowest order the disturbedflow
over the protrusionis governedby Laplace'sequationwith the usual small
disturbanceboundary conditionat the airfoilsurfaceand uniform flow at a
large distancefrom the protrusion. This uniformflow velocity is that of
the first order outer solutionover the airfoilevaluatedat the protrusion
origin. It is observed that to secondorder, the inner solutionis
independentof the airfoil curvature. Further examinationshows that ex-
plicit dependenceon the airfoilcurvaturedoes occur in the third order
inner solution. It is deducedfrom this analysis that to secondorder the
outer solutionis unaffectedby the presenceof the protrusion.

It is of interestto comparethe particularprotrusionheight to
length ratio chosen in the presentanalysiswith that inherentin triple
deck theory for stronglyinteractinglaminarflows. Triple deck theory is

a multi-layerasymptoticanalysisdevelopedby Stewartso9 and Williams
(Ref. 39) in which the wall layer,of length,£3 = Re-318 and height, £5 =
Re-3/8, plays a role analogousto that of the bump in the present study.
Triple deck theoryhas been successfullyused in numerous strongly
interactingviscous flow applicationsto delineatethe mathematical
structureas the Reynoldsnumber tends to infinity. Even though triple
deck theory has been limited thus far to laminarflows and the presentflow
under study is transitional,nonethelessit is of interestto determineas
to whether or not triple deck theory overlapswith the presentanalysis.
In the presentwork we are assumingthat 6 > £2 which is equivalentto
stating that the bump height to length ratio is

_II > length
(A-31)

length [bump

In triple deck theory the inner deck dimensions yield

height I = length 2/3
length triple (A-32)

deck

Since the length of the inner deck is vanishingly small as Re . _, it is

seen that the triple deck height to length ratio satisfies Eq. (A-31) and

hence, we can state that the particular protrusion dimensions chosen in the

present analysis are inclusive of those contained in triple deck theory.
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Fig. 1 Schematic diagram of airfoil laminar-transitional separation bubble and pressure distribution



INTERACTIONDISPLACEMENT
I_, V

RFACE s2

_')* S,U

Sl 6*rel \

REFERENCEDISPLACEMENTSURFACE

,\
L,o IL SURFACE

Fig. 2 Local interaction region coordinate system
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Fig. 3 Finite difference cell structure for the boundary layer equations -- attached flow.
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Fig. 4 Finite difference cell structure for boundary layer equations -- reversed flow.
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Fig.5 Inviscid-viscousiterationprocedure
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Fig. 6 Comparison of results for windward and FLARE differencing -- NACA.0010
airfoil (modified).
(a) Pressure distribution.
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Fig. 6 Comparison of results for windward and FLARE differrencing -- NACA-0010
airfoil (modified).
(b) Skin friction
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Fig. 6 Comparison of results for windward and FLARE differencing -- NACA-0010
airfoil (modified).
(c) Displacement thickness
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Fig.7 Transitional separation bubble streamline pattern -- NACA-0010
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(a) Windward differencing
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Fig.8 Velocity profilesfrom windwardand FLAREdifferencing -- NACA-0010airfoil (modified).
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Fig. 9 Effect of streamwise mesh size on skin friction from windward differencing.
NACA-0010 airfoil (modified)
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Fig. 10 Globalconvergencehistory-- NACA-0010airfoil (modified).
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Fig. 11 Comparison of windward and FLARE differencing for the Gaster experiment.
(a) Skin friction.
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