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I. INTRODUCTION 

VISCOUS COMPUTATION OF A SPACE SHUTTLE FLOW FIELD 

D. S. Chaussee, Y. M. Rizk, and P. G. Buning 
NASA Ames Research Center 

Moffett Field, CA 94035 USA 

Recent research efforts [1-3] have confl.rmed the ab~h.ty of the "parabo11Zed" 

Navier-Stokes (PNS) codes to predict accurately and rap~d1y the aerothermodynamics 

of the actual Space Shuttle Orb~ter up to an axial station that is 50% of the overall 

length. Th~s corresponds to a 10cat~on where the strake ends and the 45° swept w~ng 

beg~ns. In the past, the geometry of the Orbiter usually has been modified [4-7] 

such that a solution over the complete body was possible. These modifications take 

the form of chang~ng the sweep angle of the w~ng, remov~ng the canopy, and altering 

the lee of the body so that the cross sect~on ~s composed of two elliptical shapes. 

In one ~nstance [8], an inviscid solut10n was obta1ned for the complete Orbiter. In 

order to perform th1s calculation, a "fix" had to be used 1n the vicinity of the bow

shock/w1ng-shock interact10n reg10n. Phys1cally, what occurs is a region of embedded 

subson1c flow oW1ng to the bow-shock/wing-shock interaction which causes the result-

1ng coalescing shock wave to be more normal to the flow for a short streamwise dis

tance. Since the above 1nv1sc1d procedure was a marching code, 1t failed when the 

Mach number 1n the marching direct10n became subsonic. 

A V1SCOUS numer1cal procedure 1S descr1bed, to compute the flow over the Shuttle. 

Results are presented that demonstrate the capab~lity of the method. Obtainment of 

these results requires the use of two computer codes. A PNS code [9,10] is used to 

'obta1n the solut10n up to the bow-shock/wing-shock interact10n region, and an unsteady 

continuation code is used for the region after the shock 1nteraction. The unsteady 

Navier-Stokes code [11] 1S also used to obtain the blunt-body starting solution. Only 

results from the march1ng code w1ll be presented. For the flow condit10ns calculated, 

that is, Moo = 7.9, a = 25°, Twall = 540"R, ReL = 60,728/in., laminar or turbulent, 

the PNS code has been marched up to an X/L = 0.7 wh1ch 1S where the bow-shock/w1ng

shock 1nteract10n reg10n occurs. In this work, L refers to the length of the 

veh1c1e. 

II. COMPUTATIONAL TECHNIQUE 

The PNS equat10ns are obta1ned from the complete Nav1er-Stokes equations by 

neglecting the unsteady terms and the streamw1se V1SCOUS derivative terms. The com

plete deta1ls of all the terms and derivations can be found in Ref. 12. 

In the present formulation, ~ (the march1ng direction in computational space) 1S 

a function of x only (ax1s-normal marching planes). The governing equations are 

hyperbo11c-parabo11c in this ~-direct1on 1f the 1nviscid part of the flow field 1S 

supersonic, 1f there is no streamwise (axial) separat10n, and if the pressure gra

d1ent in the viscous reg10n near the wall is treated correctly. However, the system 

of equations st11l allows for the separation 1n the crossf10w plane (n-~). 



The present PNS code uses the Beam-Warming implicit algorithm to update the 

inter~or of the region and characteristic, ~mplic~t, spatially second-order-accurate 

boundary conditions at the outermost shock wave. An elliptic gr~d generator of the 

type developed by Steger and Sorenson [13] and further specialized to w~ng bodies by 

Ra~ et al. [10] ~s used to generate the grid for the calculat~ons. 

If the conditions in a particular region are such that the march~ng procedure 

~s ~nval~dated, the unsteady Navier-Stokes (UNS) code is used for these reg~ons. In 

calculat~ng the flow over the Space Shuttle, one such region occurs ~n the vic~nity 

of the bow-shock/w~ng-shock interact~on (a pocket of subsonic flow is encountered). 

The complete details of the UNS code can be found in Ref. 11. The UNS code is 

extremely versatile and relat~vely easy to use. It uses either a Beam-Warm1ng 

impl~cit algorithm or a hybrid scheme due to Rizk and Chaussee [11]. The outer shock 

wave is e~ther fitted or captured. Usually the initial guess is furn~shed by the PNS 

code, which is modified in some manner to march through reg~ons where ~t would not 

march before. This procedure is acceptable, since the unsteady code takes this rea

sonable guess and ~terates in time until a steady-state solution ~s obta1ned. 

The domain of th~s unsteady calculation encompasses the subson~c flow. The 

outflow boundary cons~sts ent~rely of superson~c axial flow ~n the ~nviscid part of 

the flow f~eld. Th~s permits the PNS code, which ~s more efficient, to continue 

marching from th~s po~nt. 

III. RESULTS 

Numerical results have been obtained for the following w~nd-tunnel cond~tions: 

Moo = 7.9, a = 25°, Twall = 540 0 R, ReL = 60,728/in. turbulent flow. For this calcula

t~on, the Shuttle surface coord~nates were obta~ned from Rockwell-International 

Corporation. The current geometry consists of the complete Shuttle; the canopy, 

OMS pods, and the vertical stab~l~zer are ~ncluded. 

The three-d~mensional blunt-body code or~g~nally developed by Kutler et al. [14] 

was used to obtain the blunt-nose solut~on which creates the necessary start~ng 

planes for the PNS code at X/L = 0.0522. Th~s solut~on was then marched downstream 

using the el11ptic grid generator to construct the gr1d between the body and the 

f1tted outermost shock wave. The grid cons1sted of e1ther 61 or 121 points 1n the 

merid10nal direct10n and 45 geometr1cally stretched radial p01nts. An example of the 

grid at an X/L = 0.66 is shown 1n F1g. 1. The outermost gr1d l1ne 1S the bow wave, 

which 1S fitted uS1ng an 1mplicit techn1que. 

The pressure contours 1n the reg10n of the canopy are Jresented 1n Figs. 2 and 3. 

In F1g. 2, the contours on the lee p1tch plane of symmetry uetween X/L = 0.067 and 

X/L = 0.4 are shown. In the canopy reg1on, the coalescence of contours details the 

canopy shock wave followed by an expansion wave on the lee of the Shuttle. The con

tours for a cross sect10n at an X/L = 0.2 are presented 1n F1g. 3. The canopy 

shock ~s once aga~n viewed at the p01nt on the lee where the pressure contours 



coalesce. The expansions which are visible on the windward are due to discontinui-

ties 1n geometry. 

The Mach number contours at an X/L = 0.66 are presented in F1g. 4. The main 

features are the wing shock and the crossflow shocks on the wing and upper body, 

respectively. These are denoted by the coalescence of the Mach contours. 

In Fig. 5, the crossflow veloc1ty vectors are presented at an X/L = 0.66. Two 

1nterest1ng features seen in this f1gure are the recirculation region in the w1ng

body Juncture and the lee vortex. 

The density contours in the vicin1ty of the wing tip at an X/L = 0.667 are 

shown 1n Fig. 6. The wing shock and the bow shock have 1nteracted as characterized 

by the bulge in the outer boundary. This 1S due to the w1ng shock becoming the outer

most surface, w1th the bow shock being captured. The bow shock appears as the coales

cence of the dens1ty contours near the outer surface. 

By numerically s1mulating 011 flow on the surface of the vehicle, as 1n Fig. 7, 

many 1nteresting features are observed. The lines of separation on both the strake

w1ng and the lee of the body are eV1dent by the coalescence of the numerical oil flow. 

The reattachment l1ne 1S v1s1ble on the Shuttle as a ser1es of 01l-flow lines d1verg-

1ng toward the separat10n l1nes. 

The computer-generated part1cle paths of F1g. 8 exh1b1t the same trends 1n the 

flow f1eld that are v1sible on the Shuttle surface V1a the 011 flow. Spec1f1c fea

tures are the vortices on the lee wh1ch are due to the strake-wing. At this angle of 

attack, the vort1ces that are generated on the W1ng 1mpact on the OMS pod. 

IV. SUMMARY 

A procedure has been presented for ca1cu1at1ng the flow over veh1cles that have 

embedded reg10ns of subson1c flow in the 1nvisc1d part of the flow f1e1d. A PNS 

march1ng code 1S used to obtain the solut10n up to the bow-shock/w1ng-shock interac

t10n reg10n. In th1s 1nteract10n reg10n, the UNS code can be employed S1nce the 

reg10n has a pocket of subson1c flow. Currently, only the results for the marching 

code up to an X/L = 0.667 are 1nc1uded. In the future, the results for the bow

shock/w1ng-shock reg10n will be ava1lable. 
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Fig. 2 Pressure contours in the lee pitch 
plane of symmetry. 
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Fig. 3 Pressure contours at X/L = 0.2. 
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Fig. 5 Crossflow veloc~ty vectors at 
X/L = 0.66. 
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Fig. 4 Mach contours at X/L = 0.66 •. 
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Fig. 6 Density contours near the wing tip 
at X/L = 0.667. 
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Fig. 7 Computational oil flow on the Shuttle surface up to X/L 0.66. 
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Fig. 8 Computational particle paths up to X/L = 0.66. 
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