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SUMMARY

Zachary [Phys. Rev. A 29 (6)m 3224 (1984)] has receﬁtly'analyzed

the instability of relativistic—electron helical trajectories in com-

bined uniform axial and helical wiggler magnetic fields when the
radial variation of the wiggler field is taken into account. It is

shown here that the type II instability comprised of secular terms

growing linearly in time, identified by Zachary and earlier by

~ Diament [Phys. Rev. A 23 (5), 2537 (1981)], is an artifact of simple

perturbation theory. A multiple-time-scale perturbation analysis .
reveals a nonsecular evolution on a slower time scale which accommo-

dates an arbitrary initial perturbation. It is shown that, in the

_absence of exponential instability, the electron seeks a modified

"helical orbit more approﬁriate to its perturbed state and oscillates

stably about it. Thus, the perturbed motion is oscillatory but

nonsecular, and hence the helical orbits are stable.

. *Summer Faculty Fellow. Permanent address: Jackson State Univer-

sity, Dept. of Physics and Atmospheric Sciences, Jackson, Mississippi
39217. _ ' '



I. INTRODUCTION

A recent paper Ey W. W. Zacharyl.extends to arbitrary radiﬁs
some earlier work by é. Diament_2 concerning the ihstability of rela-
ti&istic-electron helical t?ajectories in combined uniform axial and
helical wiggler magnetic fields when the radial variation and axial
component of the wiggler field:are taken into account. These authors
find in particulaf that, in the absence of exponential instability,
theie remaihs a weak instability:compfiséa of secular terms which gréw
linearly in.time, casting doubt on the suitability of these helicéi
Qrbits as a basis:for frée—éléctron laser calcﬁlations. Hére, it is
éhown-that a refined perfurbation,analysis-employing a multiple;time-_
scale formalism reveals a nonsecular evblution of the orbit on a
slowei'timé.séale which accommodates arbitrary perturbing initial
conditions. In the abséncé of exponential instability, the electroﬁ
seeks. a mddified helical orbit more appropriate to its perturbed state
and oscillafes stably about this>modified beit. Thus, the secular
terms'can be1Said to manifestlphysical';tabilitz of the orbits rather ‘
than iﬁstability; | ‘ | |

Tﬁe'plan‘of the paper is as follows. In Sec. II, the formalism
of the multipléftimeescaie perturbation theory is introduced. In
Secg.IiI; thé first¥order ﬁonsecular.solution is obtained by Laplace
.transfotmation.ﬁethods and it is shown how the parameters of thefzero-
order helical orbit are médified by the perturbing initial conditions.
In Sec. IV, the analogous parameter.shifts in response to a small

change in the guide magnetic field.are derived. Finally in Sec. V,



the weak instability of Diament2 is interpreted in this context.
II. MULTIPLE-TIME-SCALE PERTURBATION THEORY

Zacharyl considers the trajectory of a relativistic electron in
the magnetic-field combination

- 2I. (kr)

B(r,d,2) ="€[Boz + B r - cos (kz ~ #)] , (2-1)

ke
where Bo and Bw denote the maénituaes of.tﬁe gxial guide and hgiical
wiggler magnetic fields,lrespectively, k is the wave number of the
axially éeri§dic wiggler field, I, is the modified Bessel function of
the fiﬁst kind of order one, and (r,#4,2z) denote cylindrical coordinates
in space., We adopt Zéchary'é notation in the following but refine ﬁis'
. perturbation analysis. |
The equations govefning the motion of a relativistic_electron

in the magnetostatic field (2-1) can be written schematically in the

~ form

Xy

>
=Y

(X7 o o or %) | v (2-2)

> o . :
where x denotes the six-dimensional phase-space vector

> . T - 2~
x=[r, 8, 2z, V, Ve v, T ! (2-3)

and (yr,v¢,vz) are the cylindrical components of the electron vélocity

multiplied by ¥, the usual relativistic factbr. Expressions for the

.- > . . . .
six components of y are given in Ref. 1. The equations (2-2) admit

the steady-state helical-orbit solution
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xo(t) =[a, ¥ lkut +e -T/2,Y% lut + k 19, 0, kau, u]T ,  (2=4)

where 6 is an arbitrary phase and the parameters a, u and ¥ are reléted_

by the conditions
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.wit.h.ﬂé’w =tel 5,/ (mcx().

Consider now perturbationé akt) of the steady=-state helical orbit
% (t) by writing

Xy =X (6) + € W(r) + (). | e

Iq other wordg} we seek a perturbation sqlution of Eq..(2-2)b
correét to firstbordervin € where € denotes the order of smallness of
the perturbing initial conditiéns. _However, to cope with the seculér
terms which arise in a conventional perturbation analysisl,'we intro-
dgce a multiple~time-scale formalism. The essential idea of this method
is to éxtend the.numﬁer of independent time variables to remove
segularities order by order in;;he perturbation solution; the remoQél
of-tiﬁe secularities on a fast time scale determines the time develép—

. R > .
ment of the motion on a slower time scale. ' The solution x(t) is

expénded in the small parameter € in the form
> > : > o '
x(t) = xo(to,tl(tz, cee) * e'w(to,tl,t2; ees) .. e (2-8)

where to'tl’tz' +.. denote a hierarchy of successively slower time

scales:



dt'o ‘ dt dt

T cl.g =€, = =€°, ... - (279)

Operationally, we treat to'tl'tz' «es as independent variables,

expanding the time derivative in Eqg. (2-2) according to

A3 L.y .2y .
at éto +€atl +€atz+ e o o . (2~10)

Since the number of time variables has been increased, there is
additional freedom in the perturbation analysis which we make use of
to remove, order by order, any time secularities which occur in the
solutipn. This approach ensures that the perturbation solution
represented by (2-8) is uniformly valid, order by ordei. It shbuld bé.-
emphasized that there is égz_sufficient freedom in a conventional
perturbatién analysis of Eg. (2-2) to remove secularities order by
order; only if the conventional expansion procedure is carried out to
all orders in € and the secular terms summed, can the slow evolution'
of the.motion be determined. However, in a hultiple—time-scale
analysis of Eq. (2-2), the condition that the first-~order solution
3kto,tl,...) be nonsecular as t, —» codetermines the slow evolﬁtipn

- .
of xb(tb'tl"'°) on the t, time scale. When the multiple~time-scale

1

perturbation solution has been obtained to the desired accuracy, one
returns to the physical variable t by making the replacements to = t,

2 , ' . . >
tl =€t, t2 = € t, eve in the final expressions for xo(to'ti"'°)'

9
W(to,tllioo) I etc.

Accordingly, our procedure now is to substitute (2-8) and (2-10)

into Eg. (2-2), and then to equate to zero the coefficients of

. [o]
successive powers of € .. To lowest order (€ ), we have



a—t = Y(xol',A...' x06) » ’ (2-11) .

which,adﬁits thelaxisymmetric helical motion (2-4) for a certain class
of initial conaitions. We assume hére that the given initial conditions
fall into this class with perturb&tions to these initial conditions

to be considered in next order. Note that the time variable t in (2—4)
is now‘to_be_réplaged,by to aﬁd, furthermore, that fhe parameteré-

a, uand O, whiéh characterize thg helicél solﬁtioh (2-4); are conétahts
on the fast time scéle to but can vary on the sioﬁer timé scaie'ﬁl,b

'Proceeding to first order in € , we obtain the_equation

> ' ' -
bl + & - AW v C o (2=12)
3t 3%, . .

where A is a matrix whose entries are constant on the fast time scale

to and which has the explicit:form

T o 0 o ¥t 0 o |
ku -1
- ¥a 0 o -0 ) 0
_ o 0 o o) o ¥t
A = . : ' . , (2-13)

0 -K K - ¥ o )
k » ka

'LO Ka -hak ¥ o' o

where we have followed Zachary1 in defining the parameters

« = -ku{_fllo:t 20, [ 1) (ka) + 1" (a) (ka + e "H] | o en



S-qa *201nk)[1+2 %] ,  (2-12)
k= 20 ku I} (ka) S,

. -1 '
Y = - 2.ﬂ.w (ka) Il (ké) .

> v
The term bxb/ )tl in (2-12) is absent in a conventional pertur-

bation analysis. It is to be obtained from the iowes't-order solution

(2-4) by differentiating the parameters a, u and © with respect to

tl' and it has the form

>
X

o/

[e)

+t q , (2-15)

(- %4
rf
(o]

> > . -
where the vectors p, q are constants on the fast time scale to.
Noting that the time dependences of u(tl) and a(tl) are related by

the equilibrium constraint (2-5) which implies

ku du (2 + kuld) da
- = = - ’ (2-16)
X atl ~ ka | Atl
. - > .
we obtain for p and g the expressions
l—”= dasat, [ 1, o, 0, 6, (ku + ka¥n), X'l]T
. 1 (
= -1 T (2-17)
+x “ae/at, [o, &, 1, 0, 0, 0] ,
> T
q4 = n da/at, [o, k, 1, 0, 0,07 ’ - (2-18)

where we have defined r\ = =~ (kuka) -l( of + ku¥). The combination of
parameters (o + kuf) appearing in (2-16) - (2-18) has been analyzed
by Zacharyl, who notes that it can only vanish if (ka) takes on one and

only one critical value, viz., ka ¥ 0.850.



III. FIRST-ORDER NONSECULAR SOLUTION

Combining (2-12) and (2-15), we seek a nonsecular solution of

the first-order equatibn

— ='é'

3

-
> .
v w-B-td . (3-1)

o
Eéuation'(3—1) is conveniently‘solved by Laplace transformation in the
variable to in terms of specified perturbing initial conditions-wo

at to = 0, Upon introduction of the Laplace transform ofiw(tby,-'
: bad -st
. _ o . _
c(s) = j}dto e T W (t) ’ A (3-2) .
. 0o ) : .
there'resﬁits from (3-1) the algebraic equation
> > > -»
(A - sI) .Ws) = ~w +p/s+ q/s2 oy : (3-3)

: . -
where I denotes the 6 x 6 identity matrix. Solving (3-3) for w(s),we
find -
- > >
R(S) « (- w +B/s +a/s) .

-
w(s) = _ ’ » (3-4)
: ' det ( A - sI)

where 5}5) denotes the transpose of the matrii of cofactors:for-
(a - s;), Expliciflexpressibns fbr the thirty-six entriés in gjs)
are gi&en‘in the Appendix. )

To'e&aluate the:Laplaéé inversion integral corresponding to (3-4)
by means of the Residue Theorem, we require the zeroes of the

denominator, ‘i.e., the eigenvalues of the matrix A. Direct evaluation

of det (A - sI) from (2-13) shows that the six eigenvalues are the



six roots of the equation
'det. (A - sI) = s2 (s4 + bsz +d) = O v - (3-5)

where, in agree.ment_‘ with Zacharyl,

o
Il

Y [‘P + (ka)-'l r] o+ X—lk[ka} + (ka);-ll - X'lx ;. (3-6)

‘- -;x-zkaK {[l + (ka)—2] (o + kur) - Y-lk?uz} e (3=7)

o
i

As an independent check on the algebra, we have related the results

4 without

(3-6) and (3-7) to those obtained by Freund and co-workers
Laplace: transformation. We have, by judicious use of the equilibrium
condition (2-5), carefully verified the relations

bealsal . a-alel . o

where .ﬂ.l a\nd'.ﬂ.2 are identical to the (possibly complex) character-
istic response frequencies of the equilibrium helical orbit derived
by Freund, Johnston and Sprang‘le3 and rgported again by Freund and

4 .
Ganguly , viz.,

w2

2 1,2 . 2 + 1 2 2.2 !
.(7.1'2 = 3 (“’; +w2) -3 1(«)1 - mz) + 4AB ’ (3-9)
where
W= 3% ¥ ¥k 20 T, () [ka+ xa)71] , (3-10)
] | ) , . R
0y =[0, -¥ Tan 1w ] A, - ¥
. ' o (3-11)
tx lku 2.0 I (ka) [ka'_-!- (ka) 1] .

+ - -
A=t -2, O (3-12)



.Y

- B'= -?».ﬂ.wu (cX)_l { [.n-o -Y-lku (1 - kzaz)] I2(ka)

+ 37 [+ e 1 ka) = k)t 1, (k)] (3-‘1»3)

. The conditions for.e#ponential instability of ﬁhe orbit are, as
. shown by" zécha;'yl, either d<0 with (b° = 4d) >0, or A>0 with
(b2- 4d)<(). Ehe'marginal stability condition d = 0 agrees exactly
with that foﬁnd by Freund and Ganguly4. In the domain 420 with
(b2 - 49) >0, the quantities iii and Il; are réal and positive and sd
there is'no exponehtial instability of the drbit. However, Zachafy;
fihds a non-eprﬁential‘instability instead‘in this case, associated
with sécﬁlar terms which grow linearly in time. The proper inter-i'
pretation of these secular terms in terms of orbital stabilitz 1s the
subject of this papér. |
_Iﬁéertion of (3-5) and  (3-8) into (3;4) yields thé relation(_
. R(s) . (- W+ p/s +g/sz)

(o]
® () =

’ (3-14)

2.2 2. 2 2
s (s +.FL1) (s +.(lm)

and it remains simply to invert the Laplace transformation to obtain V
> : N N . + .
w(té). The singularities of w(s) occur at the simple poles s = - 1111,
s = i_illz,,and also at s = 0. It appears from the form of the q term )
in (3-14) that the pole at s = 0 may be as high as fourth order.

. . -> : > .
However, explicit evaluation of the g term reveals that R(s) . g is

prbportional to s and so the pole at s = 0 is at most of third ordef.'

: Accofdingly, we'rewrite.(3-l4) in the form .

wW(s) = 373 >3 ’ _ (3-15)



-10-

> . . :
where the vector numerator N(s) is analytic at s = 0 (as well as at

the other zeroes of the: denominator) and is given by the expression
> -> > > :
N(s) = R(s) . (-swo + p + gq/s) . (3-16)

’_i‘he Laplace inversion integral can now be evaluated using the ° '
Residue Theorem. In the domain 4 >0 with (b2 - 44) > 0, the contributions
. + . _ o+ : -
from the simple poles at s = = 1.0.1 and s = =~ 1.0.2 lead to stable
sinusoidal oscillations at the characteristic frequencies _ﬂ.l and’
. . » . .
n.. Thus, the solution w(to) can be decomposed into an oscillatory

2

> : -»>
part, .wosc(to) , and the contribution from the pole at s = 0, w, (to) ‘

which ‘includes any time secularities:

> > >. ‘ o :
wot) =w  (t) 4 w,(t) . | (3-17)

Use of the Residue Theorem leads directly to the oscillatory terms

. 1 ‘
> .t n *
wos'c(to) - > '2 Z — N (t i.ﬂl) e J"nlto
; 2 (] -0 4=\ AL
A
— —— Ndiny 1_(1-21:0
_n4 2
) .

v

It rémains, then, to investigate the contribution w *(to) from the pole
at s = 0.
Since it is of third order, the pole at s = 0 leads to a contri-

bution of the form

V() = ?+,‘Ito. + Fel 2 . (3-19)



C =11~

> - >
where ?, s and g’ are vectors, constant on the fast time scale to.

: Followj,ng the philosophy of the multiple-time-scale 'approach', we seek -

~to eliminate the secular time-growing terms in (3-19), i.e.,'to arrange

.- —»
that }.\-"'=_'.O-an'd §= 0 by an appropriate choice of the slow time _

' dependence of a(tl) and Q(tl) « The term grepresents a small net phase=

space displacement of the orbit which need not vanish. -
~ -Upon use of the Residue Theorem, there result the following

expressions for the vectoré ?, F y —f :

. 1 lim | 2 -»‘
- L (ning S ORI ni)ms)_) .
/'l B 2 2 ‘890 _Il(_s_2 ’ . _ (3»
nl nl ‘as
> l ' lﬁn > _ )
= n2 ﬂ2 s90 N(s) . - ' , (3-22)
1 2. .

Exé.mi_.ni_ng (3-20) - (3=-22), ‘we see‘from (3—16) that we I_ﬁust deiermine
the t;natrice;s R(0) y (dli/dsjl s .é 0 and (d2§/ds_2)ls: = 0. | The explicit
formulas for the entries in the cofactor matrix R(s) given in the
Appendix make these determinations straightforward.

Cbnsidier first thé véctor Tgi\}en by (55-22) .  From (3-16)-,. we
see that

lim

>
s%0 !

- - e
= . \ ——— . -— .
N(s) = R(0) « p '+ 3s L =0 ° . _ (3 23»)
. ' : > > -
From expressions (2-17), (2-18) for p, 4, there results then the

formula
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?= da 2 (K + kul¥)
dat (ku) (ka)

{o, %, 1, 0,0, 0] . (3-24)
i h
Since (o +1nL§)'¢ 0 except for the one critical value of ka, we must
therefore set

da

dt1

= 0 . (3-25)
in order to eliminate the quadratic time secularity in (3-19). . It
follows from the constraint (2-16) that we must also have

du

dt

0 , - ‘ | . (3-26)
1 |

. . R
and from  (2-18) that g = 0. .

: : -»
Proceeding to the evaluation of M and noting that

-
Lin  aN(s) _ _ oo L2 4 & .7 . (3-27)
‘590 ds - * "o ds}s =0
we find, making use of (3-25), the explicit result
> K (X +xuly KW T W) 1 ge
/& X3 ka 112 112 k dtl
R 1772
x [0, k, 1, 0, 0, 0] F B (3-28)

Note that the condition that/;vanlsh is again a single scalar
equation rather than a vector equation, this time leading to a
determination of the slow precession of the phase e(tl). From (3-28), . .

- S
the condition for a nonseqular solution w1ﬂ1/1= 0 is



f=13-

a6 _~ K (% +ku¥)
dt 3. 2 2
s | ¥ a ﬂl.g_z.

(ka woS + w°6) . e . (3-29)}

It remains, finally, to evaluate and interpret the constant

. _.5" N .
shift vector § in (3-=19) .. Using the relation

-_) . . . ’ . .
Lim 1 a%N(s) 1 9R 5> R >
590 2 2 2 2| ® T - Vo v (3730
ds ds s=0 _ ds s=0

we obtain.for the six coinponents of ?the results

S - K(S-‘P/ké)}

= (ka w +w ) P
1 2 2 2 o5 06" -
Lty .ﬂ.z
. —kR Lk
827 Kbt ppegr {xame * 5 o
:+k—a‘[°(+ ku _(S+ ka'i')]wpg} '

s = -K‘(-u,‘l’+°(a)
s

(ka WOS + wo6) ’

s = K+ kut )
¢ Yhan?anl

Ckaw gt W ).
These results can be understood in terms of shifts $a, Su, §6 in the
pa.iametérs a, u, o which characterize the equilibrium helical orbit

(2-4) . They.admit the interpretation

§1=Sa. ’ '82=ksd.=89' 2 84=0»‘ '
“ - (3-32)

65 r 66=8u ’

I
L d
~
E

T OA

o

C
Lo
~
[
s
oA
e
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‘where
€. o ka2 Vo5 * Woe)
¥ n? n? '
: 1 "%
‘ _ ¥ as : ‘
Su = X &t ’ . : (3-33)
: 1
. _x _k  _' ku
§o = .(12.0.2 { 'n' -n' 42 [“a(woz kwod *y Wo'4]}-,'

with de/dtl_ given by formula (3-29). It follows that the perturbed
motion (3~17) comprises stable oscillations at frequencies .n.l,._ﬂ.z

about a modified helical orbit whose parameters ére shifted slightly

by the pérturbi_ng initial conditions.

To con'clud‘e_ this section, it shouid be noted .that the quantity
(ka Ve + wos) appearirig in (3-33) vgnishgs for aﬁ initial perturbation
which conserveé ene_rgy[ see the equilibrium solutiqn (2-4)] . 'Sinée
~ the basic equations (2-2) conserve eneréy,éuch an initial energy -
perturbation 'SX rema:.ns constant and could be incorporated into the
zero order energy ¥ . For energy-conserving initial perturbations
with §¥ = 0,,4 the secular terms vanish identically and the only
non-vanishing shift in (3-33) is §€©. However, this is not the case
for the ‘x;es.p'dnsé‘to pei;turbations in the magnetic field structure, as

the nexﬁ two sections will demonstrate.
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Iv. VORBITAL RESPONSE TO A SMALL CHANGE

IN THE GUIDE MAGNETIC FIELD

It haszrecently been proposed5 that the efficiency of free-eléctron
laseéers can be enhanced by an appropriate taper in the axial guide
_ maénetié field strength. 'In such a scheme, it is imporfant_to ﬁndéf-v
stand the effects of the changes in‘the éuide field on the motion of
'the electrQns} In particular, one can ésk whether the helical orbits
persist or are desﬁroyed (Sy'secular terms) as suéh chaﬂgesAbecur; "In
this sectioh,vﬁe.show by means of a calculation completly analogous.
to that in Sec. TII thaﬁ the effectsAof_a small changé in thé Quide
 magnetic field are two-fold: the parameters of the helical orbit are .
shifted slightly and oscillatiqhs about this modified orbit'oécur;‘
In addition to. the reason stated above, these results are also importapt
to the extent that they reflect a generic resilienéy of the helical _ 
orbits.in fésponsento more general magnetic perturbations.
, "~ Consider .a small change & Bo in the: guide maghetic fieid v_zﬁeré

1$8_| « B_, and define

sn - v'lel §8,

° . - pops Y . . ) ’ 7 (4-1) .
The linearized‘equations of motion [cf. (341)] then take the»fbrm -

. >
=§_.W

£)

> > ' T |
-p-ta+fa_ [0, 0, 0, ~kau, 0, 0] , (4-2)

where we treat SBO as a first-order perturbation and where the

> ~ :
_quantities A, p and g’are»given as before by (2-13), (2-17) and (2-18),
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'respectively. It is clear from (4-2) that the net effect of the
perturbation SBO on our calculations in Sec. III will be to change the

_’

vector ‘p by an amount
> : ' T .
§7 = kau S0 [o0,0,0,1, 0, 0) . : (4-3)

For simplicity, we set the initial perturbation w = 0 and take (4-3)
instead as the source of the perturbed motion.

The solution of (4-2) again takes the form

Ev’,(to) = (to).+_g’ v Je +3e2 sl

: > e >
where W (t ) is given by (3-18) and <, P and Ty (3-20) - (3-22),

provided we now take
D> e o -»> - ' i
"'N(s) = R(s) . (p+%p + a/s) . (4-5)

: -
As in Sec. III, the condition § = O implies da/dtl = 0 and

hence du/dtl =0 and.3'= 0. The condithx1;r= 0 again leads to an.
expression for the slow evolution of the phase‘e(tl), viz.,
ae ___'k,Zu2 kak ¢n
dt, - 2 xn2n2 o
_ 172

. ' (4=6)
1 X :
Fina.fl.l'y, the vector ? can be calculated and interpreted according ‘to -
.(3-32), i;e., in terms of shifts $a, Su and $68 in the parameters

a, u and G'Which characterize the unperturbed helical orbit. Our

results for-thesé shifts are

- $a _ _ —2-—%—“3 (1+x%a%) (4-7)
LY X .n.l.az '



-17=

§e

— =0 ' (4-8)
3,

Su _ _Ka(ku) , o (4-9) -

S0 ¢y’ nl ol

where the ratio form displays the rates of change of these quantities
with respect to a smoothly varying guide field. Our results imply
that the helical orbits persist in the presénce of such a smooth

variation..
V. DIAMENT'S WEAK INSTABILITY

The weak instability of.Diament2 differs somewhat from the tyéé IT
instébiliﬁy of Zadhary1 which was discussed in Sec, III. Diament takes
for the unpertqrbed mqtiOn the helicai orbit associated with the ideal-
iggé_ﬁiégler field in whicﬁ all radial dependence is ignored. ﬁe ﬁhén
treats the radiaily—depgﬁdent corrections to the:wiggler field as‘aA':
pertﬁrbation and aéks what will be the first-order éffect df these |
_realizability coxrectionSjon the idealized helical motion. As'Zachary
points outl, this approach is clearly limited to the case of:small ka.
Diament finds2 that when the idealized orbit is exponentially Stable,.
thefé remainé a weék instability associated with secular terms gro&ing
‘linearly ihAtime except for special choices of pertufbing initial |
conditidns.. He concludes from these results that realizable-wigglers
tend to induce outwardly S§iralling motion{in general. The purposé of

.this section is to properly interpret the seécular terms and to show
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this conclusion to be erroneous.
Following Diamentz, we take for the unperturbed magnetic field

the common approximation
B, = B, cos(kz -~ &) , B? = B,, sin (kz - ¢) , B,3 = Bg » (5-1) -

which is the limit of (2-1) as r -» 0. The radially-dependent corrections

to (5=1), i.e., the terms which must be added to yield (2-1), are thus

$B, = B,, [2 I‘]'_ ‘kr) - 1] cos' (kz - ¢)‘ ' | (5-2)»
§B, = B [2 (kr)—1 I, (kr) - 1] sin (kz ~ @) ' ' (5—3}
¢ w 1 : ] r . -
SB% = -'-2‘B,‘Il (kr) sin (kz - #) ’ o Il(5-4)

and are to be treated as a small perturbation. The limiting field
(5~-1) admits a steady-étate helical orbit as a solution of the

equations of motion (2-2) which again takes the form

1

R ow =[a, $hhat+e T, g lut + kYo, 0, kau , ﬁlT.

5-5)
Howéver, relétionsA(2-5) between the parameters a and u now simplifies

to

o=l . + . - ' ' : , '
¥k =0 2 (ka) la, . : . (5-6).
- We ‘now prbceed with a multiplthime-scale perturbation calculation

of-the'first-ordef correction to the helical motion (5-5), following

closely our work .in Secs. III and IV.
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The linearized equations of motion take the form [cf. (4-2)] o

> > -
w w

-_3'--'t,,q' + B8 r (5-7)

= A' .

_where henceforth a prime will denote association with the approximation
(5-1) . The matrix A' has exactly the same structure as the_mati:ix A
given by (2-13), but the definitions of the parameters&, X, K, ¥

must bé modified ‘as follows:

) -1 .22 ; - -
o' =-¥  k'u" ’ s —_n_o+21r1ku .
| (5-8)
. . : + .
K' =+ka ’ v’ .=—.ﬂ.w » L e
In fact, most of our earlier calculations can be adopted without
c'ha_r{ge provided that the replacements (5-8) are made; in particular,
the formul'as.'given in the Appendi-x for the entries in the cofactor:
matrix R(s) remain valid. 'The characteristic respbnse fréqu'encies

_Ql,nz' of the equilibrium helical orbit now simplify to

.(li = x-_lku Y V(Jli)z = (¥ xu -,n,;))[.x"'lku' -qn, 1+ _kzaz)]f .

(5-9)
and the condition for .exponential iﬁ;tability reduces to _(nz")z in
_ (5-9) being negati\}e; -
The vectors 3‘ andﬂg'.in (5-7) again arise from the slow-time-s_cale

term a?o/‘atl; with (2-17) and (2-18) simplifying to the expressions
p' =Xda/dtl_ [ l., 0, 0, 0,_(10, (=ka) ~ (¥ 1ku -_n_o)]

rxtaesar [0, %, 1,0,0,07% , . (510
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N . _ o _ . |
I = - a7t (¥ Lea -q ) aasat, [o, x, 1, 0, 0, 0]" . (5-11)
The source term Z in (5=7) is due to the realizability corr-ections

(5-2) ~ (5-4) and takes the form
2 =2 ICE
a7 1, k) - 1] [0, 0, 0, 1, 0, 0] .

K: ;u.ﬂ.w[Z ka (1 + k

(5-12)

From the form of (5~7), we see that the net effect of K is again to
‘modify the vector‘g', just as in SAec. IV. For simplicity, we ‘ag_ain
set ;.J)c;: 0. Since the rest of the calcuiation proceeds' e'xactlyv‘vas: 1n
Séc. Iv, we "‘s.;hall $i.mp1y state and interpret the results;

The slow phase precession is found to be

2
ae kn

2a—2
at

) [2 ka (1 + k- ) I, (ka) - 1] . (5-13)7

1 ¥ea
with da/dtl and du/dtl both zero. The shifts Sa, §6, Su in the

idealized helical orbit parameters (5-5) are as follows:

0N 22 o .
$a = ¥ A +ka) [2ka(l+k2a2)I (ka)-l]:'
(.’ k%a | '
| (5-14)
Y- = 0 ' ' 4 N (5-15)
_n - - . . .
Su = -u ____!3- [ 2 ka (L +k 2% I, (ka) —1] . (5-16)

(.Q.i)
As in the previous sections , the corresponding perturbed motion is now

. nonsecular.

These results admit the following interpretation when exponential
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instability is absent. An electron assumed to be executing an

idealized helical orbit satisfies relation (5-6),

ke = a Fxania . R (5-17)

w

whereas, in the presence of the realizability corrections'(5—2) - (5-4),
the prbper relation between a and u is (2-5), i.e.,
2 =2

¥l ku = o ’_" 20, 1, (ka) (1+k 2% . (5-18)

' The electron in question is therefore not on the heliéal orbit appro-

priaﬁe td its perfurbéd state and so, in acéordance qualitatiﬁely Wifh. |
our rsults.in'Secs. III a;d iV, it.seeks out this ﬁroper helical o
orbit by_shifting itsAorBit parameters aﬂd by oscillating stably abbu;
this modified helix. To support this interpretation, set a = (a' + §a)
and u.¥ (u' + §u) in (5-17) and (5-18);'with Sé and §u given by (5-14)
and (5-16j, respeétively._:Updn subtraction of (5-17) from (5-18),

the‘consistehcy-condition is seen to be

¥ lkgud '(kaz)—l_n_w §a = = (ka)-;nw[z ka (1 +k-2a-2)11(ka) - 1] .

(5-19)

To leadingvorder'in.(ka); i.e., in the small expansion parameter, the
dominaht'cbntribution to the left-hand side of (5-19) comes from §a and
condition (5-19) is found to be verified. |

In conclusion, it shpuld be stressed that realizable wigglers do

not induce outwardly spiralling motion in general. We have shown here

that the secular terms found by biament2 are just’an artifact of a
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direct perturbation calcdlation and that they disappear in a more
refined analysis. Diament's assertion2 that,.evgn if the secular

- growth weré bounded, the ;lectrons would typically strike the wali of
the drift tube before turning around, ié not correct. The radial

: excursion associated with the shift (5~14) and the amplitude of the
stable'oscillations is of the same order of smallness as the peftuiba-
tion parémeter (ka); ahd'thetsﬁallness of (ka) is a necessér}

pierequisite-fdr Diament 's analysis to be valid.
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APPENDIX: ENTRIES IN ‘THE COFACTOR MATRIX -

In this Appendix, we summarize thecentries in R(s), the transpose

of the matrix of cofactors for (A - sI). Each of the thirty-six

. entries below results from the evaluation of an appropriate .five—-by—_fiVe _

determinant.

11 -

"z
13
| 14
15

16

21.

. 22

23
24

25

26.

31

[

n

- (Ya)~

.‘s2 8-1Ka [‘P +'(ka)—13] .

- szx"lkka [‘I’+ (ka)_lS} .

- 52 x-l { s2 + X-lK' [ka + (ka)-l] } .

'-'sy-l [Ssz;x_lx'(‘{i— kaS)] .
sg'}[}p s2 4 (fka_)"lx(Y-kaS )] .
s (¥ a)"._l[kus2 fru (92 +¥7KRA) TP (a v D] .

. _-s"{ .s4: ,_+_' s2[‘k(‘{w+ xlamlyy +¥71 (kak -}()] N R } .

- sK (‘Xa)—l[sz '—x"la( -¥ " ku (S +ka‘P)] | .

.S (Xa)—l{sz[x-lku + (_ka)-l‘}’] + X-zkukak} ‘ .

! (s2 +Y—1kal<) [s2 - ‘l‘l (o + kuS’)] - (Zla)“lsz-‘ll'2

82 (327t [Tty ¥ hav- ¥ k] (P TR (e k)

247 (¥ kak-ah .



32

33

34

35

36

42
43
44
45
46
51

52

53

54
55

56

41"

i

[}

]

]

i K. B il ]

i

-24~

- s¥ ka (s - ¥ ) .

S £ 28 TR s FI e e ey

- (xzka)—.l["( + ku( $ + kay )] } .

- s_x—l (‘i’s2 - xqékuk) .

Sy (37 k-5 ¥R (W)

- h‘*l ..54 - (ka‘X)-l sz. [ X_ll(-!-.'ﬂ) - x-lkaOl )

F (3% K (ot kad) .
- 512{«'52 “+ i'lq K [xa+ (ko) 7]+ ¥ “kuk [¢+ xa™? S]} .
s3k;]TK(S+ ka'¥ ) . |
-sPk( S +xa¥ )y .
R R T I

-s2 [ 352 - 37N (P - ka¥)] :

s2 [‘P52+ (-Klfa)nl k-(‘l"-kaS)] .
s3 (ké)‘l (oY - ‘J"lkux)' .

szk-?K(sz - ‘&'lc()" . |

-2k (s? - if'?o() .

s2 ka)™t (¥ s? - ¥R .

',--S,[-S‘}fs2 (2 + ¥ hak- ¥ ) - ¥ % K-(cta+u‘P)]' .

- s‘{ & [ p? + A7) - (¥ Kixa +u¥ ) I |
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62

63

Rea

65

66

1

n-

s

-

~25-
3 (o(_‘k— ¥ “Hkuk) ..
s2ka (52,‘-“6"1&). .
2ean(s? - ¥ T .
2 (et - 3Tl
s [ ¢ ?S S -8 2 (o + )]
s s 2[(ka)l(\\’3+3 m-x"o(]

- (-sza).—lk( o+ ku Ag) }
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