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IMPROVED METHODS OF VIBRATION ANALYSIS OF PRETWISTED, AIRFOIL BLADES

K. B. Subrahmanyam* and K. R. V. Kaza**
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

. Vibration analysis of pretwisted blades of asymmetric airfoil cross sec-
tion is performed by using two mixed variational approaches, one proposed by
Dean and Plass, and the other by Reissner. Numerical results obtained from
these two methods are compared to those obtained from an improved finite-
difference method developed by the authors, and also to those given by the
ordinary finite-difference method. The relative merits, convergence properties
and accuracies of all four methods are studied and discussed. The effects of
asymmetry and pretwist on natural frequencies and mode shapes are investigated.
The improved finite-difference method is shown to be far superior to the con-
ventional finite-difference method in several respects. Close lower bound
solutions are provided by the improved finite-difference method for untwisted
blades with a relatively coarse mesh while the mixed methods have not indicated
any specific bound.

INTRODUCTION

Turbine and compressor blades, helicopter rotor blades and propeller
blades are generally pretwisted and possess asymmetric airfoil cross sections.
For such blades, the centroid, center of flexure and center of torsion are
noncoincident. General displacements of an asymmetric blade, even without
pretwist, consist of translations coupled with rotations. Duncan, Ellis and
Scruton (ref. 1) showed that for long members having rigid or quasi-rigid sup-
port, the center of flexure and torsion center are very nearly coincident.
Carnegie (ref. 2) extended their work for asymmetric airfoil blades and deter-
mined the coordinates of the center of flexure with respect to the centroid of
the blade cross section. When a blade of asymmetric airfoil cross section
vibrates, coupled bending-torsion vibrations occur. Coupling between the bend-
ing motions in the two principal directions will be intensified due to pretwist
of the blade. Further, an increase in torsional rigidity, over and above that
due to St. Venant, takes place due to pretwist. For blades having low aspect
ratios and a wide range of thickness ratios, the effect of warping rigidity is
very important (ref. 3).

The foundations of the coupled flexure-torsion theories are based on the
thin-walled open section formulation and date back to 1936 when Wagner (ref. 4)
derived the relation between twisting moment and torsional rotation for the
case of nonuniform torsion. The coupled bending-torsion equations of motion
were derived by Garland (ref. 5), Gere and Lin (ref. 6), Houbolt and
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Brooks (ref. 7), Montoya (ref. 8) and Yu (ref. 9), among others, using the
classical Euler-Bernoulli theory allowing for various complexities. Using the
Timoshenko beam theory, which allows for shear deflection and rotary inertia
effects, and incorporating further complexities, the coupled equations of
motion were derived by Carnegie (ref. 10), Rao and Rao (ref. 11) and
Subrahmanyam, Kulkarni and Rao (ref. 12) among others. Recent research in hel-
icopter and turbo-prop blades indicates that the linear equations of motion are
inadequate for establishing flutter boundaries. Geometric nonlinear theory is
to be used with various degrees of complexity. Some such theories were pre-
sented by Hodges and Dowel 1 (ref. 13), Rosen and Friedmann (ref. 14), and Kaza
and Kvaternik (ref. 15) among others.

Several methods of solution of vibration problems are available. Broadly,
these are classified as belonging to either the continuum model approach or to
the discrete model approach. A comprehensive review of the work done using the
various methods in blade vibration area can be found in the review articles by
Rao (ref. 16) and Leissa (ref. 17) among others.

An examination of the published literature reveals that among the various
methods used for solution of the differential equations of motion, the first-
order finite-difference method has attracted the greatest attention while
relatively few works exist which use higher-order finite-differences. Even in
those few works using second-order central differences either the approxi-
mations made to eliminate fictitious stations were not good enough to give
accuracy superior to first-order theory results (ref. 18) or a method of using
forward or backward differences at beam boundaries was used to avoid the ficti-
tious stations (ref. 19). An improvement to the second order finite-difference
method was made by the present authors and this refined method was applied to
uncoupled vibration analysis of tapered cantilever beams in (ref. 20), and to
pretwisted tapered blades executing coupled bending-bending vibrations in
(ref. 21). However, the applicability of the method for vibration analysis of
pretwisted asymmetric blades has not been investigated.

Another area, currently receiving considerable attention, is the utilization
of mixed or hybrid variational techniques for vibration analysis. Among these
mixed variational principles, the Reissner method (ref. 22) has received the
greatest attention. For solution of the dynamic vibratory problems, the usual
way of formulating the dynamic principle is to consider the difference of the
kinetic energy and the Reissner functional, consisting of contributions from
potential and complementary energies together with the work done by the body
forces and surface tractions (ref. 23), and to minimize the same according to
the Ritz process. One thus has the flexibility to vary displacements and
stresses independently and can obtain simultaneously good distributions of all
the independent parameters. Another more flexible way of formulating the
dynamic variational functional is demonstrated by Dean and Plass (ref. 24)
where the kinetic energy effects were incorporated by using linear momentum
density in conjunction with the Reissner functional. This way to include
angular momentum and rotary inertia effects was demonstrated by the present
first author's earlier work (refs. 25 and 26), and it was observed that both
mixed variational principles (refs. 22 to 24) lead to identical results if
identical shape functions and beam kinematics were used in the analysis. How-
ever, attempts to incorporate coupling between the flexural and torsional
degrees of freedom were not made so far. An important advantage offered by
the Dean and Plass method is that one can handle the gyroscopic forces in the



vibratory problem in a straightforward manner. Since this variational prin-
ciple contains products of linear or angular momenta and the corresponding
velocities in the kinetic energy equivalent, and since the gyroscopic forces
also are functions of velocities, the variational functional possesses consist-
ently first order time derivative functions. Unlike the Reissner or potential
energy methods, which require either a transformation procedure or other more
complicated methods for solution (refs. 27 and 28), the Dean and Plass method
leads directly to a standard eigenvalue problem.

The objectives of the present work are: (1) to apply the first, and second
order finite-difference methods, the Dean and Plass method and the Reissner
method for the general case of vibration with coupling between bending and
torsional degrees of freedom; (2) to assess the computational advantages and
disadvantages of each method; and (3) to study the effects of pretwist and
asymmetry in coupling the component modes. Numerical results from all four
methods will be presented and comparisons will be made to those from other
existing theoretical and experimental results (refs. 29 to 33).

SYMBOLS

A area at any section
£»B,C,D matrices

A.j,B..,...I'.. arbitrary parameter in shape functions

B-j body force distribution
C torsional stiffness
C, warping rigidity

c.f. center-of-flexure of blade cross section
E Young's modulus
f-,g.,h- shape functions
G modulus of rigidity

h length of each elemental beam segment
I , , second moment of area of a cross section about x,x^

axis
I , , second moment of area of a cross section about y,ŷ

axis
I , , product of inertia of a cross section about x,x^ and

y1y1 axes
Ixx second principal moment of area of cross section about

xx- direction at root section
I second principal moment of area of cross section about

yy- direction at root section
2 2

Icf polar moment of inertia about c.f., Ixlxl
 +



IP Dean and Plass dynamic variational functional
IR dynamic Reissner functional

ID,IR time averaged values of ID and IR respectively
i,j dummy indices .
k number of terms in the assumed solutions
L length of blade
M ,M bending moments

n number of beam segments
Pn natural radian frequency
r ,r coordinates of center-of-flexure with respect to centroid at* y

any section distant n from root

rxo'rvo coordinates of center of flexure with respect to centroid at
rx,rv etc

C(

the root section . :
rcf polar radius of gyration, y/(Ixlxl

 + ̂ lyl̂  + r
x *

 r
y}

SI part of boundary over which surface fractions are prescribed
_
TI- surface fractions

t time

T kinetic energy
TQ twisting moment
9

U.j displacement field
UV,U..,U, displacement in x, y, and z directionsA y i.
v volume
P. components of linear momentum per unit volume

^xl'^vl linear momentum density along XiX-^ and y-^y^
directions, respectively

PQ angular momentum density0
x,y displacement of center-of-flexure in xx, yy directions

respectively
x,,y, displacements of centroid in *,x,, YiYi directions

respectively
'̂Y'̂ l'̂ 1 coordinates measured with respect to center of flexure and

centroid respectively



x,x, ,y,y, ;xx,yy coordinates axes through centroid and center of flexure
respectively

zz longitudinal axis
z coordinate distance measured along the length of blade from

root section
e. . strains
' J

e torsional deflection
p mass density
ii • stresses
0 warping function
Y pretwist angle
n axial fractional length z/L
( )' prime denotes differentiation with respect to z
(*) dot over a parameter represents differentiation with respect

to time, t
(*)' successive differentiation with respect to z and t

+r vi; ui i etc> 3<|)r 3UiU>AJ- '»J ±

x,y,e relative amplitudes

DEVELOPMENT OF FREQUENCY EQUATIONS

Frequency Equations by Finite-Difference Methods

For a pretwisted blade of asymmetric airfoil cross section having a total
pretwist angle Y over length L, the equations of motion (A18), appendix A,
assume the following nondimensional form:

(2)

The coefficient aj_, b^ ... hj_, 32, t>2 ••• ^2» a3 ••• ^3 are all functions
of n and are presented in appendix B.



In implementing a finite difference procedure for the solution of the
equations of motion, one substitutes the finite-difference expressions for the
derivatives in the differential equations and eliminates the fictitious sta-
tions out side the beam domain by enforcing the boundary conditions. The
resulting equations contain the displacements x-j, y-j and e-j at an arbitrary
station i. The coupled equations are then evaluated at each station of the
beam divided into n segments, i = l,2...n. One thus obtains a set of 3n
simultaneous equations.

In references 20 and 21, the present authors developed a refined procedure
for eliminating fictitious stations that arise in using second order central
differences. Use is made of the recursive relations and the finite-difference
expressions reported in reference 20 in the present investigation, and the
resulting equations are represented in the familiar form of the eigenvalue
problem

a B
Q Q
Q Q

Q
Q
E

<V
= p

Q
ti

E
Q

<V
(4)

In the preceding equation, A,, B, £, D and E. are all square matrices of order
(nxn), {x-j}, {y-j} and {e-j} are column matrices containing the linear and
torsional displacements of the n-stations and F, G, H, I, J, K and L are
diagonal. The matrix Q is a null matrix. Further, each submatrix A, B, £
or D has a band width of five for the first-order theory and seven for second-
order theory. The submatrix £ has a band width of three for first-order theory
and five for second-order theory. The matrices A, E, £, D and £ are
nonsymmetric in first and second order finite-difference applications. For
brevity elements of these matrices are not presented, but one can easily develop
these matrices with the help of references 20 and 21.

Frequency Equation from the Dean and PI ass Principle

The Dean and Plass dynamic variational functional is developed in
appendix A and has the functional relationship of the form

3 , p }M }M }j ,n,t) (5)

The parameters in the functional given by equation (5) are independent of each
other and depend only on n and t.

The following shape functions in series form (refs. 23 and 25) are assumed
for solution of the coupled bending-bending-torsion vibration problem:

= Z A.
2 3 i A

n - R2 n
 + R3 n ) n G(t) = £ A. f.(n) 6(t)

PX1 = £ B. f, (n) H(t)
* i=l



y = E c1 f1 (n) G(t)

Pyl - E D. f . (n) H(t)

k k
Mx = E E. R4 (1-n)

1 G(t) = E E.g.(n) 6(t)x i=l 1 H i=l ' n

My = E Fi 91 (n) 6(t)

k . k
e- E G. n1 (1-R5 n) 6(t) = E G-h^n) G(t)

i=l 1 b i=l n n

k
TQ = E H. g. (n) 6(t)

k
Pe = E ^ h1 (n) H(t) (6)

The parameters RI, R;? . . . R$t G(t), H(t) etc. are defined in appendix B.
The shape functions given in equation (2) satisfy the boundary conditions
(ref. 12) applicable to a cantilever beam fixed at n = 0 and free at n = 1.
Substituting equations (6) and their appropriate derivatives into equation
(A13), eliminating the time dependence according to the averaging procedure

"'Pn
lDdt (7)

and applying the Ritz process to minimize Ip with respect to the arbitrary
parameters, that is,

a!D aID
 8lo

~3AT = "aBT = ' * ' TTT = 0> k = If2f ---- K> ^8^

one obtains the frequency equation which can be written as

A + Pn JB = 0 (9)

In equation (9), A and B are symmetric square matrices. For brevity elements
of these matrices are not presented here.



Frequency Equation from the Reissner Method

The Reissner variational functional (ref. 22) is given by

LR -Iff ds (10)

Neglecting body forces, surface tractions, shear deflection, rotary inertia,
thermal and rotational effects, one can show that (ref. 12)

2jr/P-rv*

v +v -v
- 2M M I + MI(—I I I I 1. 4 •* | | i « «x y xlyl y xlxl

2E
,2

dz dt
(11)

Using similar shape functions as were used for the Dean and Plass method and
proceeding on the same lines as described earlier, one can obtain the frequency
equation which can be written as

C + P^D = 0~ n~ (12)

Matrices C and JD are symmetric, the elements of which are not presented here
to save space.

METHOD OF SOLUTION

The eigenvalue problems given by equations (4), (9) and (12) were solved
by using a standard eigenvalue extraction routine. This library routine deter-
mines all the eigenvalues and the associated eigenvectors. For the eigenvalue
problem formulation using mixed variational approaches, certain integrations
were to be performed numerically. This was accomplished by using a 15 point
Gaussian quadrature formula. The computer programs developed in FORTRAN lan-
guage were run on an IBM 370 computer at the NASA Lewis Research Center. The
lowest ten coupled frequencies and associated mode shapes were determined for
studying the effects of asymmetry and pretwist in coupling the modes using
typical airfoil blade data (ref. 2). Results are presented and discussed in
what follows.

RESULTS AND DISCUSSION

In order to study the accuracies and computational efficiencies of the
four methods discussed in this report, airfoil blade data developed by Carnegie
(ref. 2) and used by Carnegie and others for numerical calculations (refs. 29
to 32), was adopted. Such numerical data pertaining to the typical blade pro-
file shown in figure 1 is presented in tables I and II. It may be noted that
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the coordinates of the center-of-flexure measured with respect to the centroid
assumed in this report are the experimental values (ref. 2). Further, the
values of torsional rigidity used in the present calculations are taken from
the experimental data presented by Carnegie (ref. 29). By using the numerical
data presented in tables I and II, results obtained from the four methods are
compared mutually and to those existing in the literature in what follows.

Relative Convergence Rates and Accuracies

A typical set of results obtained by using first and second-order central
difference formulations and with various mesh sizes are presented in table III.
Results given by both first and second order theories are lower bounds for an
untwisted blade. No specific bound is given by the finite-difference methods
for twisted blade cases (ref. 21).

From the results presented in table III, one can state that the conver-
gence shown by the second order theory is much more rapid than the first.
Further, the accuracy of the converged results can be assessed by comparing
the natural frequencies given by the finite-difference solution with a given
mesh size (number of beam segments) to corresponding extrapolated results using
the Richardson extrapolation procedure (ref. 34). For this purpose, the
results using n = 10, 20 and 30 in the second order theory are extrapolated
and are presented in the last column of table III. In comparison with the
extrapolated result, the first-order theory with n = 60 shows maximum errors
of the magnitudes of about 0.4 percent and 0.64 percent in the lowest seven
coupled mode frequencies for the cases Y = 0° (untwisted blade) and Y = -30°
(clockwise pretwisted blade) respectively. Corresponding maximum errors from
the second order theory are 0.075 percent and 0.322 percent when the beam is
divided into 30 segments (n = 30).

From these observations, it is concluded that the second-order theory
produces results with accuracies of practical interest with a coarse mesh size.
Results given by the second order theory with n = 30 are superior to those
from the conventional first order theory with n = 60 and thus, the extrapola-
tion procedure is not necessary when the improved second order theory is used
with a suitable mesh size.

In order to assess the relative merits of the two mixed variational prin-
ciples namely the Reissner method and the Dean and Plass method, identical
shape functions were assumed for the independent variables in both methods.
Natural frequencies were determined for the two typical values of pretwist
(Y = 0° and Y = -30°) considered earlier while using finite-difference
approaches. Natural frequencies were obtained by varying the number of terms
in the assumed solution for each shape function. The convergence shown by the
methods was found to be almost identical. These results are shown in
tables IV(a) and (b). This is an expected trend since the momentum functions
were chosen to have identical shape functions as those corresponding to the
respective displacement functions, thus, making the two variational methods
numerically equivalent. However, the flexibility of independent variations of
displacements and momenta can effectively be utilized by incorporating differ-
ent forms of shape functions as shown in reference 24 and 26, consistent with
the boundary conditions.



From the identical convergence pattern produced by both mixed variational
principles, the accuracy of the theoretical development of the Dean and Plass
functional is conclusively verified. A further comparison of the results pre-
sented in table IV to the corresponding sets presented in table III indicates
that the lowest seven coupled modes obtained by using a six-term solution of
the Dean and Plass or Reissner method agree very closely with the extrapolated
results from finite-difference solutions. Furthermore, the mixed variational
principles considered here have not shown any specific bound, and the results
presented in table IV can be seen to have an oscillatory nature.

Finally, a comparison of the present converged results is made to the
theoretical and experimental results available in the literature. Such a com-
parison isoshown in figure 2. Both clockwise and anticlockwise pretwists rang-
ing from 0° to 89° were considered. Results produced by finite-difference
procedure using second-order central differences with n = 30 and those pro-
duced by the Reissner and, Dean and Plass methods with K = 6 were close for
the lowest seven modes. These results agree very closely with the theoretical
results of Carnegie et al. (ref. 30) obtained by using a transformation tech-
nique and also with experimental results. Although not shown here, the mode
shapes obtained by using the various methods were also close.

Effects of. Pretwist and Asymmetry in Coupling the Modes

For blades of doubly symmetric cross section, the effect of pretwist in
coupling the two principal bending motions has been well understood in the
published literature. Rosard (ref. 35) observed the effect of pretwist on the
coupled bending-bending frequencies for the first time. Later, Carnegie et al.
(refs. 29 to 31), Rao (ref. 16) and the present authors (refs. 3, 21, and 23),
among others, studied the effect of pretwist on the natural frequencies and
mode shapes. However, the combined effects of asymmetry and pretwist on the
natural frequencies and mode shapes have not been completely understood.

In order to understand any specific coupling trends that may exist in the
coupled bending-bending-torsional frequencies of pretwisted blades of asym-
metric airfoil cross section, it is necessary to establish the coupling trends
for simple cases of blade geometry first. For this purpose, using the second
order finite-difference method with 30 beam segments, the uncoupled bending
and torsional frequencies and mode shapes were determined by assuming rxo = 0,
ry0 = 0 and Y = 0 in the general computer program. These natural frequen-
cies are presented in table V under column 2. In this table, the frequencies
of the beam vibration in the flexible plane are designated by Fl, F2, ..., F5
for the lowest five modes, those in the stiffer plane are designated by SI, S2
for the lowest two modes while Tl, T2 and T3 represent the lowest three tor-
sional frequencies in the increasing order. The coupled bending-bending fre-
quencies and the associated mode shapes were next determined by successively
assigning different pretwist angles. The coupled bending-bending frequencies
for typical pretwist angles are presented in table V under columns 3 to 6.
Although the mode shapes were determined for all the pretwists considered here,
only one such set (pretwist angle of 89°) is presented in figure. 3. Using
these uncoupled mode shapes or the coupled bending-bending mode shapes, one
can classify any coupled bending-torsion or coupled bending-bending-torsion
mode shape as belonging closely to a basic mode category. Further results
were generated for various combinations of the coordinates of asymmetry and
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pretwist angles. The modes were then classified as belonging to a basic mode
category by examining the associated mode shapes in relation to either the
uncoupled mode shapes or to the coupled bending-bending mode shapes. These
results are tabulated in tables VI to VIII. Thus, in table VI, for blades with
rxo.= 0.193 mm, ryo = 0 are presented, in table VII those for rxo = 0,
r = 1.1938 mm are shown while in table VIII, the results of general asym-
metric airfoil blade with rxo = 0.193 mm, ryo = 1.1938 mm are listed for
various angles for pretwist. It may be notea that the frequencies are not
necessarily in an increasing order as the mode number is increased since the
modes are classified as belonging to a basic mode category. Only one set of
coupled bending-bending-torsion mode shapes are presented in figure 4 for the
case Y = 89° for brevity. The general coupling trends as observed from these
results are presented below.

(1) For pretwisted blades of doubly symmetric cross section, strong
coupling exists between the second uncoupled flapwise mode (F2) and fundamental
uncoupled chordwise mode (Si). As pretwist increases, the lower frequency
decreases and the higher frequency increases to form the corresponding coupled
frequencies. Similar coupling between the uncoupled modes S2 and F5 exists
but the magnitude of frequency variations are more severe for the set (F2, SI)
than for the set (S2, F5). This frequency variation trend is consistent with
earlier observations reported in references 23 and 35. The coupled bending-
bending mode shapes obtained in the present investigation are compared to those
in reference 33. Consistent trends have been observed in all the results
compared.

(2) For untwisted blades with asymmetry about only one plane, coupling
between bending in one principal direction and torsion occurs. Results for
such a case with ry0 = 0 are shown in column 3 of table VI, and for the case
r = 0 in table Vn. From the results presented in table VI, one can
observe that the frequencies corresponding to (F2, Tl) and (F3, T2) couple in
such a way that the lower uncoupled frequency in each pair is reduced and the
higher one is increased to form the corresponding coupled bending-torsion fre-
quencies. Although not shown here, similar coupling trends exist for the pairs
(F4, T3) and (F5, T4). Similar coupling trends are observed for the coupled
modes having coupling between chordwise bending and torsional motions. This
coupling trend is shown by the frequency pair (SI, Tl) in table VII. Although
not shown, the frequency pair (T3, S2) also shows similar coupling trends.

(3) For pretwisted blades with asymmetry about only one plane, the cou-
pling trends are combinations of those discussed in (1) and (2) above. A care-
ful examination of the results presented in tables VI and VII for various
values of pretwist angles in relation to the corresponding ones in table V
indicates that a specific trend in the three close frequency values correspond-
ing to F2, SI and Tl modes exists. The frequencies corresponding to the pre-
twisted symmetric blade listed in table V will be further coupled because of
asymmetry in such a way that the lower two frequencies will be reduced and the
highest one will be increased to result in the coupled bending-bending-torsion
frequencies. Other secondary coupling trends are observed for the frequency
pair (T2, F4) when the frequencies are very close to one another, in table
VII, and for all pretwist angles in table VI. The reason for this is that the
flap-torsion coupling is more important for blades having a symmetry about the
chord (table VI) than for those with asymmetry about the chord (table VII).
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Similar coupling trends exist for the frequencies corresponding to the
frequency triplet (T3, S2, F5). However, results for these modes are not pre-
sented here because obtaining accuracy in these higher mode frequencies would
have required a greater number of beam segments.

(4) The coupling trends for pretwisted asymmetric airfoil blades present-
ed in table VIII are similar to those observed for the simpler cases considered
earlier. It has been observed that the coordinate ryo is more important '
than rxo in coupling the component modes.

(5) From the mode shapes obtained for all the cases studied in this
investigation, it is observed that the coupled modes which are well separated
from a basic torsional mode frequency are not seriously effected by the tor-
sional coupling (refer figs. 3 and 4). These mode shapes can be closely
approximated by the corresponding coupled bending-bending mode shapes. For
modes which are closer to a basic torsional mode, the extent of torsional cou-
pling must be determined.

The trailing edge deflections calculated in this investigation show close
agreement with those presented by Carnegie et al. (ref. 30). Although the
trailing edge deflections were determined for all cases of pretwist angles
studied, they are not presented in this report for brevity.

Finally, the coupled frequencies were determined for different sets of
asymmetry coordinates, (rxo = 2.54 mm, ryo = 1.1938 mm; and rxo = 0.193 mm,
ry0 = 2.54 mm), to examine whether there are any changes in the coupling
trends with large variations in these coordinates. Although these results are
not presented here, it was observed that the general coupling trends remain
unchanged.

RELATIVE COMPUTATIONAL EFFICIENCIES

In order to evaluate the relative computational efficiencies, the CPU
time required by each method for a typical blade example was determined. These
values are presented in table IX.

Comparing the CPU times required by firstand second-order finite-difference
methods for a given number of beam segments, one can state that both methods
require nearly the same amount of CPU time. The maximum variation of CPU time
between the two methods is of the order of ̂ 3 percent. If one considers the
level of accuracy for estimation of computational efficiency, the first-order
finite-difference method requires a solution with 60 beam segments to match the
accuracy of results produced by the second-order finite-difference method with
n = 30. The computation time required for first-order theory would be nearly
13 times that required by the present improved second order theory. Finally,
if one considers an extrapolation procedure as a suitable alternative, then,
both first and second order theories presented here are capable of taking the
advantage. Thus, it is preferable to use the present improved finite-difference
procedure as compared to the classical first-order theory.

When a comparison is made between the computational times required by the
Reissner and the Dean and Plass methods, one observes that the Dean and Plass
method requires nearly twice as much time as the Reissner method. For the
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particular example considered here with identical shape functions in both
methods, it has been observed that the convergence trends and accuracies given
by these two methods are identical. Thus, for the class of vibratory problems
treated here, it is advantageous to use the Reissner mixed variational princi-
ples as compared to the Dean and Plass principle. On the other hand, for solu-
tion of problems having gyroscopic forces (Coriolis accelerations), the usual
formulation by the potential energy method or the Reissner method requires a
transformation of the time dependent variables by a linear transformation to
attain the eigenvalue problem in a standard form (ref. 28) while the Dean and
Plass method seems to offer a more direct solution facility. This advantage
together with any associated computational advantages relative to the existing
approaches are yet to be assessed.

When a choice is to be made between the finite-difference procedures and
the energy methods for potential computational needs, it appears that energy
methods have a great deal to offer when computational time is the principle
constraint. As can be seen from tables III and IV, one can obtain the lowest
seven coupled modes accurately with a six-term solution using the Reissner
method. These results can be obtained in about 13 percent of the CPU time
required by the second order finite-difference method. While making this com-
parison, it may be noted that the symmetry of the matrices given by the mixed
variational principles is not effectively utilized in the solution procedure
using the IMSL routine EIGZF (ref. 36). If the symmetric nature of these
matrices were effectively used, the computation time might be further reduced.
Similarly, no advantage has been taken of the banded nature of the matrices in
using the finite-difference methods. If this advantage were utilized in the
computational scheme, some CPU time and considerable memory size might be
saved.

Finally, the mathematical implications of the various analytical methods
are considered.

In the two finite-difference procedures presented, the formulation of the
eigenvalue problem does not require great mathematical skills or judgment.
Anyone with a reasonable mathematical background can formulate and solve the
problem, once the recursive relations for elimination of the fictitious
stations are provided. These methods require no integrations and thus the
necessity of using any numerical quadrature formulae is avoided. For the class
of problems treated so far, no numerical instabilities were observed, meaning
that the finite-difference procedures lead to numerically well-posed problems.
Further, for untwisted blades, the coupled or uncoupled frequencies converge
from below and close lower bound solutions are obtained.

Considering the mixed variational principles, one starts with a mathemat-
ically stationary functional (which possesses neither a maximum nor a minimum)
rather than a minimum energy concept. Consequently, the natural frequencies
do not specify any bound but oscillate closely around a converged exact value.
The convergence rates and accuracies depend largely on the choice of shape
functions. The final equations require evaluation of definite integrals using
a numerical quadrature formula generally. Thus, some judgment and skill of
the investigator are needed when the mixed variational principles are used.
Furthermore, the matrices are usually ill-conditioned, and some form of scaling
is necessary if one wishes to evaluate the frequencies by determinant search.
While the mass and stiffness matrices are symmetric, they are not necessarily
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nonsingular. One may thus have computational problems if inversions are
needed. These problems could however be obviated by condensation or by rewrit-
ing the equations so that the elements along the leading diagonal are nonzero,
thus losing the symmetry condition. Once the mixed variational principle is
formulated and suitable shape functions are assumed, the solution procedure is
rather straightforward however.

In conclusion, each class of methods has certain distinct advantages and
one can choose a method depending on the constraints at hand, considering, the
advantages and disadvantages. All the methods presented have capabilities of
producing accuracies of practical interest. The second order finite-difference
procedure is definitely superior to the classical approach while for the class
of problems considered here, the Reissner method is superior to the Dean and
Plass principle.

CONCLUDING REMARKS

The coupled bending-bending-torsion vibrations of pretwisted blades of
asymmetric airfoil cross section are analyzed by solving the governing coupled
equations of motion using first and second-order finite-difference methods.
Alternative approaches of solving the coupled vibration problem are demonstra-
ted by employing two mixed variational approaches, one proposed by Dean and
Plass and the other by Reissner. The relative merits, convergence properties
and accuracies of all the four methods are discussed. The effects of asymmetry
and pretwist in coupling the component modes are studied. In the course of
this study, the following conclusions have emerged:

(1) The improved second order finite-difference procedure is far supe-
rior to the classical first order procedure. One can use the present improved
theory for attaining better accuracies while using smaller computation time
and effort than that required by ordinary finite-difference procedure.

(2) For untwisted blades performing coupled bending-bending-torsion
vibrations, close lower bound solutions can be obtained by using improved
finite-difference procedure. However pretwist disturbs the bound offered by
finite-difference procedures. The mixed variational approaches do not indicate
any specific bound.

(3) When identical shape functions and beam kinematics are used, the
Dean and Plass and the Reissner methods give identical results. However, the
Dean and Plass method requires more computational time.

(4) The Dean and Plass method appears to be more advantageous when gyro-
scopic effects are included in the analysis. Further investigation in this
direction appears to be necessary for utilizing the latent potential of this
relatively new variational principle.

(5) For general vibratory problems, the variational methods seem to be
more appealing in terms of computational space and time. However, some care
and judgment of the investigator are required when the mixed variational prin-
ciples are employed.
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The finite-difference method is relatively straight forward and simple.
One can apply this approach in a routine manner once the recursive relations
are given for elimination of fictitious stations.

(6) The effects of asymmetry and pretwist appear to be difficult to
understand at first sight. However, once the coupled frequencies are classi-
fied as belonging to a basic mode category as described in this work, the cou-
pling trends can easily be established.
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APPENDIX A

DEVELOPMENT OF THE DEAN AND PLASS VARIATIONAL FUNCTIONAL

The Dean and Plass dynamic variational functional (ref. 24) can be
written as

where IR$ is the Reissner functional given by (ref. 22)

IRS 'If/ «1j'ij - < <'1J» ̂

Development of the Reissner functional is presented in reference 12 for the
general case of asymmetric blade. Only the kinetic energy equivalent of the
Dean and Plass dynamic functional will be developed in what follows.

Neglecting the effects of shear deformation, the general displacement
field for coupled bending-bending-torsional motion can be written as (ref. 12)

Ux = x - y^e = Xj^ - y^e (A2)

Uy = y + x.e = y1
 + x^ (A3)

Uz = - *i*[ - yiyj + 0ce' (A4)

For the computation of the kinetic energy, one can disregard the effects of
longitudinal inertia effects in the total kinetic energy without great loss of
accuracy in the final results. It will be assumed that the longitudinal
inertia effects are negligible and thus the linear momentum densities about
x and y directions take the following forms:

Px = P Ux = P (xj - y^e) (A5)

Py = P Uy = P (yx + 8le) (A6)

Equations (A5) and (A6) contain terms associated with linear velocities x^
and y\ together with the angular velocity e. One can explicitly define
the linear and angular momenta by defining the linear momenta about x^X}, y^y
centroidal directions and angular momentum due to elastic twist independently
as follows:

Pxl = PX! (A7)
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Pyl - (A8)

(A9)

Thus

.t. dv =/ /[pxl - p^e) (Xl - Y le)+ (P + pxje) (yx + x^)
U M L _

= {L [PxlA*l + Pyl A*l + PeA°J dz

dA dz

and

j0n?-/v 0

' 2 2 2 2
PxlA + PylA +

 PeA

(A10)

dz (All)

The Reissner functional, IR$» can be reduced to the following form for the
coupled bending-bending-torsion case neglecting shear deformation, body forces,
surface fractions and warping rigidity effects:

M x - T

V ^ 2E (I , ,1 , , - I , .)v xlxl ylyl xlyly
dz

(A12)

Making use of equations (A10) to (A12) in equation (Al), the Dean and Plass
dynamic variational functional becomes

x + r e) + P -.A (yy ' yl VJ P0Ae -

M2I , , - 2M M.I . . + M2I .
M y" " ' e x vlvl ~ x v xlvl v xlxl+Mx - T e +7r+ y y - x y xiyi y xixi

T
xlx ly ly l

dz (A13)

Treating Pxi, Pyi, P0, Mx, My, T0, x, y and e as independent variables
(independent of one another but dependent on z and t) and performing the varia-
tional process (ref. 12)

= 0 (A14)
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one obtains the following equations:

Pxl = p (* + ry®) = p*l

Pyl = p

\

Pe = >< I
Xlxl

 + Iylyl)e/A='V/A

(M I i i - M ]
y = _ x ylyl y

(Vxlxl - Vxlyl*x — — «

e = T J2C
0

(A15)

/

It
Tt

-TT- (M )

3Z

2

3 Z

"y + APylrx + APe) + TI (Te^ =

= 0 at z = 0, L or x prescribed

(A16)

T~ (̂ w) = 0 at z = 0, L or y prescribedwo Z X

T = 0 at
9

z = 0, L or e prescribed

(A17)

Equations (A15) relate the linear and angular momenta to respective linear or
angular velocities, curvatures to bending moments and rate of twist to twisting
moment and torsional rigidity. These relations can alternatively be looked
upon as stress-strain relations. Equations (A16) represent the conditions of
equilibrium or motion. The first two of equations (A16) relate the time rate
changes of linear momenta per unit length to corresponding rates of loading
(forces per unit length). The last of equations (A16) equates the time rate of
change of angular momentum per unit length to the twisting moment (torque) per
unit length. Equations (A17) are the boundary conditions associated with the
present formulation. Assuming harmonic solutions for eliminating the time

18



dependence, equations (A16) are rewritten in terms of x, y and e as
follows:

El
dz

,2

dz

xlxl

El
dz

xlyl

xlyl
d2x

dz

Iz' - - pArxPn*

,x + PAPnrye

- pIcfPne

(A18)

Equations (A18) agree with those derived earlier by Carnegie (ref. 10) for the
specialized case considered here.
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APPENDIX B

SHAPE FUNCTIONS, GEOMETRIC PROPERTIES, AND COEFFICIENTS
OF DIFFERENTIAL EQUATIONS

Shape functions:

fi(n) = n1 (RI n - R2 n
2 + RS n3)

9i = «4 (1-n)1

hi = n1 (1 - RS n)

G(t) = sin Pt

H(t) = cos Pt

Geometric properties:

rx = rxo cos Yn - ryosin Yn

ry = ryo cos Yn - i"xo
sln Yn

P
!xlxl = !yy sin Yn + IXx

Ixlyl.,LaCi«isin

Coefficients of differential equations:

The coefficients of the differential equations given by equations (10 to 12)
are given below.

ai = ^yy s^n "n + ^xx cos »n
bi = 2Y sin 2Yn (luv — IYY)
X «/«/ «" '

ci = 2Y
2 cos 2Yn (Iyy - Ixx)

d^ = (Iyy — Ixx) sin 2Yn/2

ei = 2Y cos 2Yn (Iyy - IXx)

fl = -2Y
2 sin 2Yn (Iyy - IXx)

a2 = (^yy ~ ^xx) s^n 2Yn/2

b2 = 2Y cos 2Yn (Iyy ~ ̂ xx)
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C2

0*2

62

f2

91

sin

= Iyy

-2-y sin 2yn (Iyy

-2y2 COS 2Yn (Iyy

PAL
4/E

pAL4 (rxo cos

91

(Iyy - IXx)
s n

- ryo sin yn)/E

92

02 = pAL4 (ro cos w + r

a3

sinyo

= 1; d3 = P [I

- pA (rxo cos yn - ryo sin yn)/C; n = i

A (r 0 yo)]/C

= pA (ryo cos
sin Yn)/C; h = L/n
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TABLE I. - NUMERICAL DATA FOR AIRFOIL

BLADES (ref. 30)

L = 152.40 mm (6.0 in.)
A = 589.68 sq mm (0.914 sq in.)
Ixx = 34.963 mm

4 (0.000084 in,4)
Iyy = 2792.9 mm

4 (0.00671 in.4)

E = 213.73747 GPa (31xl06 psi) ,
P = 20.3444 kg/m-3 (0.284 lbf/in.3)
rxo = 0.19304 mm (0.0076 in.)
ryo = 1.1938 mm (0.047 in.)

TABLE II. - TORSIONAL RIGIDITY OF PRETWISTED

AIRFOIL BLADE (ref. 29)

Pretwist angle,
Y>

deg

0
15
30
45
60
75
89

Torsional rigidity, C

Nm2/rad

9.1265
9.1759
9.3269
9.6282
10.0440
10.6470
11.5600

lb in.2/rad

3180.1684
3197.4
3250.0
3355.0
3500.0
3710.0
4028.0

TABLE III. - CONVERGENCE PATTERN AND COMPARISON OF COUPLED BENDING-BENDING-TORSION FREQUENCIES: FIRST- AND

SECOND ORDER FINITE-DIFFERENCE METHODS (Hz)

y

0*

-30'

Mode
number

1
2
3
4
5
6
7

1
2
3
4
5
e
7

First order finite-difference method

n o 10

95.929
581.449
836.642
1074.560
1557.277
2875.489
3064.882

103.644
384.472
1032.234
1187.743
1187.743
2622.674
3112.428

20

96.534
599.808
841.330
1076.166
1659.921
3087.379
3201.482

98.249
482.100
988.711
1109.888
1548.318
3089.437
3151.108

30

96.648
603.358
842.204
1076.468
1680.532
3091.582
3269.552

98.552
501.378
980.034
1104.447
1607.632
3129.428
3213.081

40

96.687
604.613
842.510
1076.574
1687.877
3093.051
3294.057

97.324
508.273
976.911
1102.855
1628.241
3133.785
3245.109

50

96.706
605.196
842.652
1076.623
1691.301
3093.731
3305.523

97.221
511.493
975.446
1102.162
1637.768
3135.325
3260.536

60

96.716
6D5.513
842.729
1076.650
1693.168
3094.100
3311.786

97.165
513.251
974.645
1101.796
1642.942
3136.082
3269.030

Second order finite-difference method

10

96.706
603.475
842.658
1076.654
1672.018
3093.880
3207.516

101.665
464.308
1011.948
1134.652
1490.641
3074.468
3136.994

20

96.734
605.911
842.874
1076.704
1694.623
3094.862
3313.419

98.171
507.565
981.844
1105.379
1632.749
3139.478
3272.776

30

96.737
606.141
842.895
1076.709
1696.647
3094.923
3322.705

97.554
513.490
976.653
1102.703
1647.241
3138.599
3286.343

Extrapolated

96.738
606.204
842.901
1076.710
1697.190
3094.937
3325.192

97.378
515.149
975.145
1101.983
1651.192
3138.141
3290.033



TABLE IV - COVERGENCE PATTERN OF COUPLED BENDING-BENDING-

TORSION FREQUENCIES (Hz)

(a) Reissner method and Dean and Plass method using

identical shape functions. Y = 0°

Mode
number

1
2
3
4
5
6
7

Number of terms in assumed solution, k

1

94.042
822.909
1079.098

2

96.664
573.170
842.363
1076.708
3183.905
5216.526

3

96.738
599.444
842.903
1076.708
1596.621
3107.792
5293.266

4

96.739
606.259
842.904
1076.711
1629.061
3095.274
3210.000

5

96.739
606.219
842.904
1076.711
1697.967
3051.492
3095.062

6

96.739
606.235
842.904
1076.711
1696.414
3094.935
3328.162

(b) Reissner method and Dean and Plass method. Y = -30*

Mode
number

1
2
3
4
5
6
7

Number of terms in assumed solution, k

1

94.514
623.304
1072.483

2

96.997
495.286
960.023
1097.665
3180.700
3693.199

3

97.041
515.031
962.517
1096.317
1565.746
3159.649
5559.758

4

97.041
517.281
972.845
1100.997
1600.834
3066.255
3187.625

5

97.041
517.262
972.777
1100.970
1655.388
3031.560
3154.065

6

97.041
517.267
972.809
1100.990
1653.893
3137.568
3291.277



TABLE V. - NATURAL FREQUENCIES OF DOUBLY SYMMETRIC PRETWISTED BLADES (Hz):

SECOND ORDER FINITE-DIFFERENCE METHOD n = 30, rxo = ryo = 0

Mode
number,

classification

1 (Fl)
2 (F2)
3 (SI)
4 (Tl)
5 (F3)
6 (T2)
7 (F4)
8 (T3)
9 (S2)
10 (F5)

Uncoupled
bending and

torsion modes
rxo = ryo = Y = °

96.738
606.158
864.603
1051.080
1696.742
3153.229
3323.060
5255.263
5417.605
5488.150

Coupled bending-bending modes and uncoupled
torsion modes

Y = 30°

97.558
513.908
1014.142

a!062.557
1648.125

a3187.661
3281.225

a5312.648
5242.015
5815.830

Y = 45°

98.417
454.448
1136.247

a!079.585
1600.250

a3238.745
3234.039

a5397.786
5149.207
6086.129

Y = 60°

99.319
403.476
1250.120

al!02.668
1562.417

a3307.992
3176.773

a5513.196
5047.868
6417.764

Y = 89°

100.255
330.908
1282.718

al!82.920
1674.196

a3548.748
3071.047

a5914.446
4815.582
7315.336

Uncoupled torsional frequency of pretwisted blade.

TABLE VI. - COUPLED FREQUENCIES (Hz.) OF PRETWISTED BLADES WITH

ASYMMETRY ABOUT ONE PLANE: rxo = 0.193 mm, rvo = 0'yo

Mode
number

1
2
3
4
5
6
7

Uncoupled
frequency

rxo =
 ryo = Y = 0

96.738 (Fl)
606.158 (F2)
864.603 (SI)
1051.080 (Tl)
1696.742 (F3)
3153.229 (T2)
3323.060 (F4)

Coupled
bending-
torsion
frequency,
Y = 0

96.737
606.142

a864.603
1051.095
1696.647
3153.270
3322.728

Coupled bending-bending-torsion
frequency

Y = 30°

97.558
513.891
1013.977
1062.743
1648.040
3187.303
3281.327

Y = 45°

98.417
454.432
1136.514
1079.348
1600.157
3245.592
3226.973

Y = 60°

99.319
403.461
1250.296
1102.544
1562.299
3309.104
3175.471

Y = 89°

100.255
330.898
1283.036
1182.623
1674.142
3549.324
3070.251

Uncoupled flexural mode in chordwise direction.
\



TABLE VII. - COUPLED FREQUENCIES (Hz) OF PRETWISTED BLADES WITH
ASYMMETRY ABOUT ONE PLANE: rxo = 0, ryo = 1.1938 mm

Mode
number

1
2
3
4
5
6
7

Uncoupled
frequency...̂ .,.;.

rxo = ryo = Y = 0

96.738 (Fl)
606.158 (F2)
864.603 (SI)
1051.080 (Tl)
1696.742 (F3)
3153.229 (T2)
3323.060 (F4)~

Coupled
bend ing-
torsion
frequency,

Y = 0
a96.738

a606.158
842.893
1076.696

a!696.742
3094.865

a3323.060

Coupled bending-bending-torsion
frequency

Y = 30°

97.556
513.342
974.417
1105.563
1647.418
3131.506
3290.388

Y = 45°

98.412
454.127
1170.423
1047.110
1599.494
3270.061
3166.320

Y = 60°

99.311
403.354
1264.208
1088.446
1561.908
3304.629
3154.937

Y = 89°

100.246
330.907
1289.706
1174.069
1671.711
3542.868
3069.589

Uncoupled flexural mode in flapwise direction.

TABLE VIII. - COUPLED BENDING-BENDING-TORSION FREQUENCIES OF ASYMMETRIC
AIRFOIL BLADE (Hz): rxn = 0.193 mm, rvo = 1.1938 mm

Mode
number

1
2
3
4
5
6
7

Uncoupled
frequency

rxo = ryo = Y = 0

96.738 (Fl)
606.158 (F2)
864.603 (SI)
1051.080 (Tl)
1696.742 (F3)
3153.229 (T2
3323.060 (F4)

Coupled bending-bending-torsion frequency

Y = 0

96.737
606.141
842.895
1076.709
1696.647
3094.922
3322.705

Y = 30°

97.557
513.162
972.178
1108.465
1647.424
3124.353
3294.018

Y = 45°

98.413
453.978
1174.357
1043.971
1599.445
3277.243
3154.608

Y = 60°

99.313
403.259
1267.441
1085.937
1562.017
3308.751
3145.672

Y = 89°

100.246
330.896
1292.688
1170.910
1672.784
3539.662
3067.755



TABLE IX. - COMPARISON OF CPU TIMES (milliseconds) REQUIRED BY DIFFERENT
METHODS FOR PRETWISTED AIRFOIL BLADE CASE USING EIGZF ROUTINE:

Y = -30°, rxo = 0.193 mm, ryo = 1.1938 mm

Number
of beam
segments

n

10
20
30
40
50
60

Finite-difference method

I order

831
5 550

17 736
41 484
76 966
225 838

II order

856
5390

17014

Number of
terms in
assumed

solutions
K

1
2
3
4
5
6

Mixed variational principle

Reissner

59
215
490
924

1494
2193

Dean and PI ass

84
348
847
1639
2881
4410



Figure L - Cross-section of asymmetrical airfoil blade showing position of the centroid and center-of-flexure.
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