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PREFACE

This report presents a set of governing coupled differential equations

for a model representing a Hybrid Heavy Lift Airship (HHLA). These equations

serve as the basis of a numerical study aimed at determining the aeroelastic

stability and structural response characteristics of the HHLA. These results

will be presented in a follow on report which will represent Part II of this

s tudy.

The research effort reported herein was carried out in the Mechanics

and Structures Department at UCLA by Dr. C. Venkatesan and Professor P. Friedmann

who served as the principal investigator.

The authors want to take this opportunity to express their gratitude to

the grant monitor Dr. H. Miura for his numerous constructive comments and

suggestions.
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NOMENCLATURE

A_ - Total cross-sectional area of the blade

a - Lift curve slope

a - Acceleration of a point p on k blade

b - Blade semichord

c, - Drag coefficient for blade
do

C(k) - Theodorsen's lift deficiency function

D_ - Drag force on envelope

D, - Drag force per unit length on k blade

El - Bending stiffness of the supporting structure in X -Y plane
z s s

El - Bending stiffness of the supporting structure in X -Z plane

e - Blade offset

e ,e ,e - Unit vectors along X, Y, Z axesx y z ° ' '

El2 - Bending stiffness of blade in lead-lag

EI^ - Bending stiffness of blade in flap

go »8o >SC ~ Damping coefficientsbp bL bT

GJ - Torsional stiffness of the supporting structure/blade

h, - Distance between origin 0 and C.G. of the underslung weight

h9 - Distance between hub center and C.G. of the fuselage

h, - Distance between origin Og and center of buoyancy of envelope

h, - Distance between origin Og and C.G. of the envelope

h. - Distance between C.G. of the supporting structure to the origin
Os

I .,1 _ - Moments of inertia of the fuselage F, and ?„
FJ- F2 J- ^

Ivrm »IV,T>O ~ Principal moments of inertia per unit length of the blade aboutMDJ Miiz . ,
cross-sectional axes

[I] - Inertia tensor

vii



K0 ,Kr - Root spring stiffness in flap and lag, representing blade
PB ^B stiffness

K, ,K. - Stiffness of the root springs representing blade torsional
'B c stiffness and control link stiffness

Kft ,K - Stiffness of root springs representing hub stiffness in flap
Ĥ

L. ,L2 - Lift due to rotor systems 1, 2

L,, - Buoyant lift on envelope
D

L - Circulatory flow liftC

LNC - Noncirculatory flow lift

FZ ~ Distance between the origin Og of the supporting structure and
C.G.'s of fuselages F, and F£

m - Mass per unit length of the supporting structure/blade

MF1>MF2 ~ FuselaSe masses of fuselages F, , F2

M - Moment due to envelope
cl

M ,M ,M - Elastic moments in torsion, flap and lagx y z

N - Number of blades

NM,NM1,NM2 - Number of normal modes used in modeling the supporting structure

0 - Origin located at the center line of the supporting structure
s .

°H1'°H2 ~ Hub Centers

- Thrust force
PT1'PT2

PIk'PAk»pnk ~ Distributec^ blade inertia, aerodynamic and damping forces

q!k'qAk'qDk ~ Distributed blade inertia t aerodynamic and damping moments

P - Force

P . ,P., - Inertia, aerodynamic forces of the rotor blade
Xk AR

Q - Moment

T̂k'̂ Ak'%k ~ Inertia» aerodynamic and damping moments of the rotor blade

R^ - Perturbational hub motion

R - Rotor radius

r , - Position of vector at a point p on k blade
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t - Time

u,,v,,w, - k blade deformation in axial, lead-lag and flap directions

v ,w /v ,,w ,- Elastic deflection of the supporting structures s s i s i

V - Free stream velocity

V - Forward velocity of the vehicle
r

W - Underslung weight

W - Weight

X. - Offset between the elastic center and the aerodynamic center
in blade cross-section

XT - Offset between the elastic center and the mass center in blade
^cross-section

XT - Offset between the elastic center and the tension center in blade
cross-section

x, - Coordinate along k blade elastic axis

y , ,z , - Blade cross-sectional coordinateJok ok

a - Angle of forward tilt of the rotor plane
K.

B - Blade precone angle

B, - Flap angle fof-kth blade
K.

5, - Lead-lag angle for k blade

4>, - Torsional angle for k blade
K.

e - Basis for orders of magnitude comparison associated with typical
elastic blade slopes

D , ,C - Blade cross-sectional principal axis coordinate
OK OtC

n. - ith mode shape

6,0 - kth blade collective pitch

6, ,9, - Cyclic pitch components

0 , - Pretwist in blade

6 , - Geometric pitch in kth blade
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0 - 0 - 9 - Rigid body perturbational rotation in yaw-pitch-roll

A - Inflow ratio at k blade
k

v - Induced velocity at the k blade cross-section
K

p - Density of the material of the blade

p - Density of air
A

tj)., - Inflow angle
IK.

<(>,<{>. - Elastic twist in supporting frame
S Si.

p - Advance ratio

if) - Azimuth angle of k blade
K.

ca - Angular velocity of k blade

a). - Natural frequency of the supporting structure in i mode of
vibration

fi - Rotor r.p.m.

Subscripts

EN - Envelope

Fl,F2 - Fuselages F, ,F9/forces acting at fuselage C.G. CL,, ,C> „-1- ^ r -L F 2.

H - Hub center

H1.H2 - Forces acting at hub center 0H1,0H2 of rotor systems R,,R2

R - Rotor, quantities refer to R system

S,s - Supporting structure, s system

SI,si - si system

T - Thrust force

UN - Underslung weight

W - Gravity loads

x,y,z - x,y,z components

< > , x -4

1,2,3,4,5 - Quantities refer to the corresponding coordinate system



SUMMARY

This report presents a set of governing coupled differential equations

for a model representing a Hybrid Heavy Lift Airship (HHLA). The model consists

of a bouyant envelope, multiple rotor systems, an underslung weight and thrusters,

all attached to a flexible supporting structure. The dynamic equations are

written for the individual blade with hub motions, for the rigid body motions

of the whole model and also for the flexible modes of the supporting structure.

The purpose of these equations is to serve as the basis of a numerical study

aimed at determining the aeroelastic stability and structural response charact-

eristics of the HHLA.



1. INTRODUCTION

Hybrid Heavy Lift Airship (HHLA) or Hybrid Heavy Lift Helicopter (HHLH) is

useful for providing heavy lift capability whose potential applications are

for logging, construction, coast guard surveilance and military heavy lift

capability. These vehicles combine a buoyant envelope lift with lift and

control forces generated by a multiple rotor system. A rough sketch of a

HHLA configuration is shown in Fig. 1. Such a configuration is different from

the conventional rotorcraft which have been considered in the past. It is

well known that the aeroelastic and structural dynamic response problems are

crucial for the safe design of a successful rotorcraft. Therefore it is

essential to consider the basic aeroelastic and dynamic behavior of HHLA type

vehicles so that the potential aeroelastic instability modes and structural

dynamic features can be simulated and identified in the design process.

It has been established that rotary-wing aeroelasticity is inherently

nonlinear [Ref. 1]. Aeroelastic studies performed in both industry and re-

search organization are indicative of this aspect. Thus the correct treatment

of a wide class of problems in this field requires a consistent development

of a mathematical model which includes geometrically nonlinear effects, due

to the inclusion of finite slopes in the inertia, structural and aerodynamic

operators. It is also well known [Ref. 2] that the unsteady aerodynamic en-

vironment in rotorcraft is complicated. Accurate mathematical models, in-

cluding the unsteady wake effects are rarely incorporated in aeroelastic

analyses. In HHLA type vehicles these difficulties will be further compounded

by interference buoyant lift. Therefore, it is clear that study of some basic

aeroelastic effects in HHLA type vehicles is important for the effective design

of such vehicles.

Some of the typical problems that might be encountered by the unique con-

figuration represented by HHLA type vehicles are described below.

(a) ^solated Blade Instabilities; These instabilities are of the flap-lag,

flap-pitch or coupled flap-lag-torsion type and can occur both in hover and

forward flight. Even if some existing rotor systems which are expected to

be free of these isolated blade type instabilities, a wake excited flap-pitch

or coupled flap-lag-torsion flutter can occur at low thrust and low inflow



[Refs. 2, 3 and 4]. This situation could potentially be of interest for HHLA

type vehicles when the rotors are lightly loaded and the buoyance ratio 3 is

large [buoyance ratio g = buoyant lift/vehicle gross weight]. Furthermore, it

is reasonable to concentrate primarily on the hover case for HHLA type vehicles

because the forward speed of HHLA type vehicles will be low (i.e. y < 0.20). It

was shown [Ref. 5] that forward flight is frequently stabilizing.

(b) Coupled Rotor/Support System Instabilities; A rotor mounted on a moving

or flexible support system can have additional instabilities when compared to

an isolated blade. On the ground a mechanical instability can occur known as

ground resonance [Refs. 2 and 6] and this instability is known to be sensitive

to the flexibility and damping of the landing gear system. In flight, the

coupled rotor/support system can experience an aeromechanical instability usual-

ly denoted as air-resonance [Refs. 2 and 6]. All these instabilities could be

encountered in a HHLA type vehicle, because furthermore, the buoyancy effect

and the flexibility of the supporting structure could modify these instabilities

in an unexpected manner.

(c) Vibration Problems: The vibration levels in helicopters have two peaks, when

plotted as a function of.advance ratio [Ref. 6]. One peak occurs at relatively

low advance ratios and the second at high advance ratios, Since, the advance

ratio for the HHLA is low, this type of vehicle could experience considerable

vibration levels. Thus, it is necessary to estimate the vibration levels and

the resulting dynamic stresses to determine the fatigue life of the structure.

To gain a fundamental understanding of aeroelastic effects which could be

encountered on HHLA type vehicles due to their unique features (such as buoyancy,

multiple rotors, flexible supporting structure and underslung load), a study of

an idealized, simple model, representative of a typical HHLA vehicle, shown in

Figure 2, was selected. This report presents a detailed derivation of the

equations of equilibrium which cover the dynamics of this system.



2. AEROELASTIC MODEL OF AN HHLA

2.1 Introduction and Assumption

To study the basic aeroelastic problems which could be encountered in an

HHLA type configuration, a typical configuration shown schematically in Fig. 2

will be considered. The essential features of the configuration are:

(a) A flexible supporting structure with bending stiffness El (x) in the

XS-ZS plane, bending stiffness EIz(x) in the Ys-Xg plane (Yg coordinate

is normal to the figure), a torsional rigidity GJ(x) and a mass distri-

bution m(x) .

(b) Two rotor systems capable of providing lift, each having an arbitrary

number of.blades N, are attached rigidly to the ends of the flexible

structure. The distance between the center line of the structure to the

hub center for the rotor systems is h£.

(c) Two masses MF1, M?2 having inertias IFI and IF2 respectively are attached

to the ends of the flexible structure. These masses and inertias represent

the helicopters. The distance between the origin 0 fixed in the supporting
s

structure to the C.G.'s of the fuselages F, and F0 are i . and
•L / r-1-

H „ respectively. The C.G. of the supporting structure is at a distance h-

from the origin Og. Furthermore it is assumed that the C.G.'s of the

supporting structure and fuselages are on the X-axis.

(d) A weight W is attached to the structure. Its C.G. is at a distance h. from

the origin Og. This weight can move freely or it can be locked in a fixed

position with respect to the flexible structure.

(e) An envelope, providing the buoyant lift L and drag D acting at its center of

pressure, is attached to the structure. The center of pressure is at a dis-

tance h~ from the origin Og. The C.G. of the envelope is at a distance h,

from the origin Os.

(f) Concentrated axial loads P ., PT2 simulate thrusters.

Using this model, the dynamic equations of motion for the combined system

consisting of two rotors, flexible structure, buoyant envelope and load W are

derived. The derivation requires four ingredients: blade equations with support

motions, equations for the flexible structure connecting the rotors, equations

representing the forces and moments introduced by the envelope and finally a

representation of the dynamics of the load W .

Certain assumptions are introduced before writing the dynamic equations for

this system, these are given below:



(1) The rotor blades are assumed to be rigid with equivalent root springs

representing the flexibility of the blade.

(2) The rotor blades are attached to the hub with an offset e from the axis

of rotation (Hub center).

(3) The blade feathering axis is preconed by an angle 6 . The blade has no

torque offset, sweep or droop.

(4) The feathering axis coincides with the elastic axis of the blade.

(5) The blade cross-section is symmetric and has four distinct points:

elastic center, mass center, aerodynamic center and tension center (Fig. 3).

(6) The structural damping in the blade is assumed to be of the viscous type.

(7) The rotor shaft is rigid.

(8) The rotor speed is constant.

(9) The rotor consists of three or more blades.

(10) Two-dimensional quasi-steady aerodynamics is used to obtain the aerodynamic

loads. There is no reverse flow and stall. The compressibility effect

is neglected.

(11) The C.G. of the fuselages are on the center line of the supporting structure

such that the individual C.G.'s lie on a straight line.

(12) The underslung mass is rigidly attached to the structure.

(13) The elastic deformations of the supporting structure are at least one order

of magnitude lower than that of the blade deformation.

(14) Flexible structure is modeled by using free-free beam modes with arbitrary

mass and stiffness distribution.

(15) Aerodynamic forces and moments due to the envelope are modeled by using

the model provided in Ref. 7. Quasisteady aerodynamic theory is used for

blade aerodynamics, and aerodynamic interference between the rotor and

the envelope is neglected.

Based on these assumptions, the dynamic equations of motion for the model

are derived, using force and moment equilibrium conditions at the connecting

points as was done in Ref. 8.

2.2 Ordering Scheme

When deriving equations of motion for such a multi-rotor system, a large

number of higher order terms has to be considered. Previous research has clearly

indicated that many higher order terms can be neglected systematically by using



an ordering scheme [Refs. 1,8], Warmbrodt and Friedmann [Ref. 8] and Levin

have, in their derivation of coupled rotor/fuselage equations, assigned in a

judicious manner, appropriate orders of magnitude for various terms encountered

in the coupled rotor/fuselage equations. The ordering scheme employed in this

study follows this approach. By assuming fuselage rotations of order e many

additional terms will appear in the coupled rotor/fuselage equations. Such

an ordering scheme was recently used in Ref. 9. In the earlier derivations,

the fuselage was assumed to have only rigid body degrees of freedom and the
3/2

orders of magnitude of the corresponding perturbed quantities are 0(e ) . In

the present case, the fuselage/supporting structure is being considered flexible

and orders of magnitude are assigned also to the deformation of the supporting
2

structure. An order of magnitude of 0(e ) is assigned to the elastic deformations

of the structure so that this effect appears in the hub motion while at the

same time the number of terms in the equations remains manageable.

The basis of the ordering scheme is a small dimensionaless parameter e

which represents typical blade slopes due to elastic deflections. It is known

that for helicopter blades e is in the range

0.1 < e < 0.2

The ordering scheme is based on the assumption that

1 + 0(e2) 1 1

2
i.e. terms of the order of 0(e ) are neglected in comparison with unity. The

orders of magnitude for the various parameters governing this problem are given

below.
hl h2 h3 N h5 **! £F2 ....

= 0(1), , , , , , ,,

= 0(1>~

ok' Gk

*
J. Levin, "Formulation of Helicopter Air Resonance Problem in Hover with Active
Controls", M.S. Thesis, Mechanics and Structures Department, University of
California, Los Angeles, September 1981.
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3. COORDINATE SYSTEMS

In the derivation of equations of motion of the HHLA model, various

reference coordinate systems are used. The transformation relation between

quantities referred in the various inertial, noninertial coordinate systems

to be established before deriving the equations of motion. The relation be-

tween two orthogonal coordinate systems with axes X., Y., Z. and X., Y., Z.

with

is
-xi'

e" . , e1 . and e ., e" . , e . as unit vectors along the respective axes
yi' zi xj' yj' zj 6 v

XI

.yj (3.1)

where [T..], the transformation matrix, can be found using the Euler angles re-

quired to rotate the j-system so as to make it parallel to i-system.

The S-system (Fig. 2) is an inertial system whose origin 0 is fixed at the center line

of the supporting structure in the unperturbed state with the Z axis vertically upwardss

passing through the center of gravity of the envelope and X is directed aft.

The Si-system is a noninertial coordinate system whose origin is also

fixed at the same point Og of the supporting structure. This is a body fixed coordinate

system which moves along with the body during perturbational motion. The S-

system and Si-system coincide with each other in the unperturbed state of the

model.

The R-system is another inertial system fixed at the center 0 of the

unperturbed hub. The directions of the axes of this system are parallel to

that of the S-system. It should be noted that in the development of rotor blade

equations, only one general rotor system with hub motions is considered. Con-

sequently one set of rotor coordinate systems will be defined. These definitions

are valid for all the rotor systems in the model. The only difference that

will occur are the different hub motions due to the relative positions of the

hubs with respect to the origin of the S-system. This is accounted for in the

derivation by deriving a general expression for the motion of hub center (X.

due to the rigid body translation and rotation and due to the elastic defor-

mations of the supporting structure.



The 1-system is a body fixed system with its origin fixed at the center

of the hub OH (Fig. 4). Prior to perturbational motion the 1-system coincides

with the R-system. It is assumed that the 1-system and Si-system are parallel

systems, because as pointed out earlier that the elastic deformation slopes of the
7/2supporting structure are of order 0(e ). So any small rotational motion given

to the hub fixed 1-system, due to the elastic deformation of the supporting

structure, is assumed negligible.'

The perturbational translational motion at the hub center CL, due to the

rigid body motion and the elastic deformation of the structure is written as

L=R e n + R e „ + R e _
TI x xR y yR z zR

(3.2)

and if 6 , 6 , 0 represent the yaw-pitch-roll rotations of the structure then

the transformation matrix [T,R] can be written as

cos6 sin6 0
z z

-sin6 cos6 0
z z

3/2
Since 6 , 6 , 6 are of order 6(e ), the sines and cosines can be replaced

with sin 6 ̂  e and cos 6 - 1. Thus

1 0 0

0 cos6 sin6
x x

0 -sin6 cos6
x x_

cos6 0 -siney y
0 1 0

sin6 0 cos6y y.

z y

e e -e i ey x z x

e e +e e e -e -i
z x y z y x

(3.3)

Rotating 2k-system is a blade fixed coordinate system which rotates with the

kth blade. This 2k-system is rotated from the 1-system by the azimuth angle,

\\), , of the k*-*1 blade (Fig. 4) about Z, axis. The transformation matrix is
K J-

0

-sinij;, cosijj, 0

0 0 1

(3.4)



Rotating the 2k-system by an angle -3 (precone angle) about Y9,-axis and
P Z.K.

th **translating the origin to the k blade bearing by a distance e e ~, , gives

the 3k-system (Fig. 5). The X.,,-axis is along the elastic axis of the

undeformed k1" blade. Since 3 is of the order S(e), sin 3 - 6 and
P P P

cos 3 - 1. The rotation matrix is
P

1

0

L'3P

0

1

0

P
0 (3.5)

The 4k-system (Fig. 6) is fixed in the cross-section of the k blade. Trans-

lating 3k system an amount x, e ,, gives the 4k system at the cross-section x,

of the k blade prior to elastic deformation. During elastic deformation

of the k blade, i.e., flap, lag and torsion, the 4k system translates and

rotates with the cross-section. The origin of the 4k system after the deform-

ation is given as

(X + O ex3, + v e + w e _ (3.6)

The rotation of the 4k system is obtained by Euler angles -&,, £, , 4>, • These
th

angles represent the flap-lag-torsional rotation of the k blade at location

x, . The sequence of rotation is flap-lag-torsion. The transformation matrix
K

1 0 0

0 cosd>, sind),rk Tk

0 -sin<j>, cost)).

cos?, sin?, 0
k k

-sin?, cos?, 0
k k

cos3.k

0

-sing,

0

1

0

sin3.
K

0

cos3k _

Since the angles <f>, , ?, , 3k - 9(e), the transformation matrix can be simplified

by assuming sin 8 - Q and cos 8 - 1, and be written as

(3.7)

10



In our model, we have considered the blade as a rigid blade with root springs.

So, the relation between the translation and rotation is

Vk = and wk = -(-xkBk) = (3.8)

To facilitate the description of the blade element aerodynamics, the 5k

system (Fig. 7) is defined by removing the torsional twisting of the blade

from the 4k system which gives the rotation matrix

[T54'

1 0 0

0 cos(-cf>k) sin(-<f>k)

0 -sin(-<j>k> cos(-<(>k)

(3.9)

when <j>, is small, it can be written as

1 0 0

0 1 -<i>.

Summary of Coordinate Systems

(3.10)

SI

Coordinate System

Inertial system. Origin 0

fixed at the center line of

the undistrubed supporting

structure with Z axis pass-

through the C.G. of the

envelope

Noninertial body fixed.

Origin at the point 0 on the
S

supporting structure

Inertial. Fixed at the un-

deformed hub center 0,,. S and

R are parallel systems

Noninertial body fixed. Ori-

gin at the center of rotor

hub 0H. SI and 1 are

parallel systems

11

Unit Vectors

xs' ys' zs

i i.c i » c nxsl ysl zsl

6Ry' 6Rz

, ,
xl

e , , e ,
yl zl



2k Rotates with k< blade. Ori- g^, Sy2k,

gin at the center of the

rotor hub Ojj

3k Rotates with kth blade. Ori-

gin at the kth blade pitch

bearing. Preconed. x,, axis

coincident with blade elastic

axis in undeformed position

4k Rotates with kth blade. Ori- e ,. , e .. , e ,.x4k y4k z4k
gin at the elastic axis of

the deformed blade cross-

section at a distance x,

5k Rotates with kth blade. Ori- ex5k> £ 5k>

gin at the elastic axis of

the deformed blade cross-

section at a distance x,.

Torsional rotation of the

blade not included

12



4. MOTION OF THE VEHICLE

The unconstrained vehicle has six rigid body degrees of freedom and also

has elastic deformation of the supporting structure. Before presenting the

equations of motion for the blade and the structure, it is necessary to es-

tablish certain kinematical relations between the vehicle motion and the hub

displacement, because the blade inertia and aerodynamic loads are affected by

the hub displacement. In this section, the position vector of the origin of

the hub centers CL.. and CL.- and the rotation vector at the rotor systems, due

to the perturbations in rigid body translation and rotation, and elastic de-

formation of the supporting structure, is derived. Subsequently these expres-

sions are used in writing the blade loads.

4.1 Kinematical Relations

The sequence of perturbational motion of the vehicle model [Fig. 8], as-

sumed to take place, consists first of rigid body translation of the origin 0 of
s

the supporting structure, i.e. origin of the S-system, then rigid body rotation

in the sequence yaw-pitch-roll and finally in the perturbed position, the elastic

deformation of the structure. Referring to Fig. 8, the perturbational trans-

lational motion occurs along X , Y and Z coordinate axes. After the rigid
S S S

body rotation, the body fixed axes system is referred as Si-system. The elastic

deformations occur in the Si-system [Fig. 9].

During rigid body perturbational translation, the origin 0 is moved through
S

a distance,

J L = R e + R e + R e (4.1)
Os xs xs ys ys zs zs

Then the model is rotated about Z axis through an angle 6 representing yaw
S Z S

motion, followed by a rotation 8 about the yawed Y axis representing pitch.
y s s

To represent roll, a rotation 6 is introduced about the yawed-pitched X axis.
XS S

The new position of the body axis system is SI. The transformation of unit

vectors from Si-system to S-system is given by
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< exs

ys

zs

zs

-0ys

3 +e e e 46 e •zs xs ys ys zs xs

i -e +e e
xs ys zs

xs

"xsl

"ysl

'zsl

(4.2)

Figure 9 refers to the pertubed state of the model after rigid body motion.

It is assumed that the elastic deformations of the structure occur in this

state. The elastic deformations are bending in X ,, Y plane, bending in

X ., Z , plane and torsion about X . axis. The deformations are represented

by

1. vsl along Ysl

2. wsl along Zj j l

3. <fr s l along Xsl

Position vector of the C.G. of the fuselage F0 (is point CL,0) after the de-
L r Z

formation is

OF2 £ e , + v ,F2 xsl si ysl
4 w ,si (4.3)

where the symbol jo refers to the value of the appropriate displacement
F2

at location ^o*

The position vector of the origin of hub in rotor system 2 (i.e. point 0 „)

after the elastic deformation is

OH2 exsl ysl

4- (h0 4 w i ) e ,
2 sl ZS1

(4.4)

Due to these deformations, there is also a rotation. The rotation along axes

at 0 „ and Ou,, are given byr 2. n£

sl , (4'5)
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Using equations 4.1, 4.2 and 4.4, the position vector of 0 „ after the

perturbational rigid body motions and the elastic deformation, can be

written as (in the inertial system S)

XOH2 l xs ^ Wsl,x|£F2

i0+w ., )(0 46 6 )] e2 si [£ „ ys zs xs xs

+ [R + (JL,0-h0 w . | )6 + (v , I -h.
ys F2 2 s l , x | A ' zs slk 2

+6 6 )] exs ys zs ' J ys

+ [R + (^o-ho w T I ) (-0 ) + (v , I -h_ <(> . I ) 6
zs F2 2 s l , x | j l

/ v ys' s l l« , 2 sll

+ (h,+wc l, )] e (4.6)
2 slU zs

This relation can be more compactly written as

= R e + R g + R g (4.7)
x xs y ys z zs

The perturbational displacement at the hub center 0 of the rotor system 1
nJL

can be obtained by replacing I in Eq. 4.6 by -JL,-, •

The velocity at 0 „ due these perturbational motions is
nZ

•

R™O = n[R - h0 w . , + h. (0 +6 6 +6 9 )] eOH2 L xs 2 s l ,x | j^ „ 2 ys zs xs zs xs xs

+ fl[R +«,.,„ 6 + v . | - h-$ , |ys F2 xs sl|£F2 2Ysl|j,F2

+ h0 (-e +e e +e e )]• e2 xs ys zs ys zs ys

- ̂ ,9 + w . | ] e (4.8)
zs F2 ys sl|£F2 zs

15



where ( ) indicates derivative with respect to the nondimensional parameter

ijj, (^ = fit). The acceleration at 0 „ due to these perturbational motion is

= ft2[R - h0 w . I + h0(6 +6 6 +26 6 6 6 ) e
xs 2 sl,x|£ £ 2 ys zs xs zs xs+ zs xs xs

+ Q2[R + JL.-B + v . I - h, i|>.
xs F2 xs xlk 2 s

+ h, (-6 +96 + 26* 6 +6 6 )] e
2 xs ys zs ys zs ys zs ys

+ fi[R - £__e + w , , ] e (4.9)
zs F2 ys slkF2

 zs

Equations 4.8 and 4.9 can be more compactly written as

•

R,™ = (R e + R e + R e ) n (4.10)
OH2 x xs y ys z zs

Rnuo = (R e + R e + R g ) n2 (4.11)OH2 x xs y ys z zs

The perturbational velocity and acceleration at the hub center CL.. can be

obtained by replacing iL̂ , i-n Equations 4.8 and 4.9 by -%^ .
• •

Rigid body angular velocities are 6 £2 about Z axis and 6 Q, about yawed
ZS S y S

Y -axis and 6 fi about yawed-pitched X axis. The angular velocity of the model
S XS S

due to rigid body rotation alone is

. , = f2(6 -6 6 ) e + fi(0 +8 6 ) e
id xs ys zs xs ys xs zs ys

+ n(9 - 6 6 ) e (4.12)zs xs ys zs v

Angular velocity at 0 „ and 0 „ due to elastic deformation is (from equation 4.5)

e . _ w , | e . + v . | e1 .) (4.13), | e . _ w , | e . v . | e .
slk xsl sl'xlilF2

 ys sl'xUF2
 zsl

Combining equations (4. 12) and (4.13), using equation (4.2), the angular

velocity at the rotor hub due to the elastic deformation and due to the rigid

16



body rotation can be obtained. The angular velocity given in the s-system

is

mo -0 9 ) e + fi(0 +8 0 ) g +0(6 -8 8 )e
OH2 xs ys zs xs ys xs zs ys zs xs ys zs

+ ft [<J , I „ - w . I (-8 +8 8 ) + v , I „ (8 +0 8 ) ] tTsl|£F2 sl,xl&F2
 v zs xs ys sl.xU 2

V ys zs xs xs

+ ft[<J> . i e - w . I . + v . i (-e ^ 0 8 ) ] ^LyslUF2 zs sl,xUF2 sl,x|£F2
v xs + ys zs' e

+ v , . . ]e
xs sl,x£ zs

which can be simplified to

= ft[(0 -0 0 + <fc , , ) exs ys zs sll^.-.^ xs

+ ( 8 + 0 0 - w , | ) eys xs zs sl,x|£F2 ' ys

+ (8 -88 + v , i ) e ] (4.14)
zs xs ys sl,x|j) j zs

The Angular acceleration is

• f\ •» *• **

oLTI- = ft [ (0 -00 -88 + <(> , I o ) eOH2 xs ys zs ys zs si '* _ xs

+ ( 8 +88 +00 - w , I ) eys xs zs xs zs s l , x l o . ys
r i

+ ( 8 - 8 0 - 0 0 + ^ , 1 0 ) 6 ] (4.15)zs xs ys xs ys sl,x|*' „ zs

The angular velocity and acceleration at 0U1 is obtained by replacing £_0Ml r 2.

by - «,„. in equation (4.14) and (4.15).
r 1

Assuming the rotations due to the elastic deformation of the supporting

structure to be small compared to those due of the rigid body rotation, causes

the angular velocity at the hub to be a result of rigid body rotation alone.

Thus this expression becomes

17



n[ (6 - e e ) g + (e + e e ) Ixs ys zs xs ^s xs

+ (6 -0 0 ) e ] (4.16)
zs xs ys zs

and

OJ,UO = n [ ( 0 -6 6 -0 0 ) eOH2 xs ys zs ys zs xs

+ ( 6 + 0 0 + 0 0 ) i
ys xs zs xs zs ys

+ ( 6 - 8 8 - 8 8 ) e ] (4.17)
zs xs ys xs ys zs

In the equations which follow the subscript s on the rotations will be

deleted, since they are in essence rigid body rotations.

Equations (4.8), (4.9), (4.16) and (4.17) will be used for deriving the inertia

and aerodynamic loads on the rotor blades.
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5. EQUATIONS OF MOTION FOR THE ROTOR

When modelling the behavior of rotors the individual blades are con-

sidered first, the equations of motion of the individual blade is derived by

writing the equation of dynamic equilibrium under the action of aerodynamic,

inertia and structural loads. These equations are derived for the general

kth blade. Subsequently these equations are coupled with the fuselage motion

to provide the complete set of dynamical equations of motion for HHLA vehicle

model [Fig. 2].

5.1 Blade Cross-Sectional Parameters

In the derivation of the equations of motion of the blade, certain cross-

sectional parameters described below, are required. The 4k-system is the

cross-sectional coordinate system. The location of any point in the cross-

section from the origin of the 4k-system is

y , e ,, + z . § ,.
'ok y4k ok • z4k

The principal axes of the symmetric blade cross-section are rotated from the

4k-system by the geometric pitch angle 9_, [Fig. 6].

The geometrical pitch angle is defined as

Gk = 9Bk(x) + 9ok + 9lck isk

where 9fik(x) is the pretwist

0 , is collective pitch

6, , and 9, , are cyclic pitch components

If ri and E. are the principal axes coordinates, the transformation for
OK OK.

yok and Zok is 8iven by

"ok

ok

cos

sin 9Gk

-sin

cos 9GkJ

'ok

'ok

(5.2)
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Differentiating equation (5.2) with respect to ij> yields

-ok
k

ok

(5.3)

and

ok
Gk

-z .ok
- eGk

.yok

ok

(5.4)-

Also required are expressions which define quantities involved in performing

integration over the blade cross sectional area. Defining:

pdA = m
' -A/Am

 PT1°k I '-A/A_
= 0

-/I "/IAT
from these, it follows that

v , dA = mXT cos 8IL Gk ; ft
-/>/A™

Sin 6 Gk

dA =

'AT
P2okdA IMB3

2
cos 6

ff pZok Zok ̂  = (IMB3 -

Gk

sin6Gk cos9Gk

(5.5)

In these integrals, p is the density of the material and A_ is the total

cross-sectional area of the blade.
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5.2 Equations of Motion for the Individual Blade

Dynamic equations of equilibrium for a blade are obtained using the

Newtonian approach. The equations are obtained by combining the structural

operator with the inertial, aerodynamic and structural damping loads. Since,

the rigid, offset hinged, spring restrained model of the blade is used in

this study, the various distributed loads are integrated over the blade

length and then combined together to give the equation of motion. The

various distributed loads obtained first, are described in the following

sections.

5.2.1 Distributed Inertia Loads on the Blade

The distributed inertia loads on the kth blade are obtained by first

determining the acceleration at a general point 'P' on the blade. The loads

per unit volume are found from D'Alembert's principle and they are integrated

over the cross-section to give the distributed blade loads per unit length of

the blade.

Acceleration at a point in the blade.

The absolute acceleration at a point 'P ', viewed from a translating and

rotating coordinate system with respect to an inertial frame, is given by
it .t • »

a . = R + r . + 2oJ. x r , + a), x r , + a), x (0), x r , ) (5.6)
pk o pk k pk k pk k k pk

where R is the position vector of the origin of the moving coordinate system

with respect to the inertial system.

r , is the position vector of the point 'P' in the kth blade from the originP _

of the moving reference system.and oj, is the angular velocity of the moving

coordinate system.

In the present rotor blade analysis, the inertial system is the R-system

whose origin is fixed at the undeformed hub location and the the moving reference

frame is the 2k-system whose origin moves and rotates with the blade.

The position vector of a point 'P' on the kC blade is

P2k =
 e Sx2k + < W ax3k + Vk Sy3k + Wk §z3k + yok

Zok z4k (5.7)
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Transforming all the unit vectors to the 2k-system

t(e + x + - + y '-

[ v k + y o k + z o k

uk> + wk

(5-8)

Applying the ordering scheme and substituting w, = x, g, and v, = x. £, (based

on rigid blade approximation), equation (5.8) becomes

' te + Xk + yok (^k -*k «p + ̂ k^ + Zok (-6p A + *k5k>]

[Vk + ̂ k + Zok <-*k)]

k Xk + xkep + yok (*k - ?k(&p + »k» + Zok] . (5'9)

Taking the first and second derivative of r -i. and applying the ordering

scheme yields

zok<

z , < -4>. - e.,. > ]
ok Tk Gk

z . < -B B, + B 4>. c, + B <f>, L - $, 9_.ok p k p k k p k k k Gk

+9Gk
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and

zok

Xk

zok

- 2Gk*k

The angular velocity of the k blade is

w. = oJ. + fie ,
k 0R zl

are

where WQ is the angular velocity at the hub center Ojj due to the fuselage motion
H (.̂

and it is given by equation (4.16). The angular velocity of the k blade in

2k system is (using equation (4.16) and noting that the R and S systems

parallel and inertial systems)

oL, = fie 01 [cosik < 9 - 6 9 > + sinik < 9 + 6 8 >]
2k x2k k x y z Tk y x z

+ fie „, [cosij;. < 9 + 0 9 > + sinij;, < -0 + 6 6 >]
y2k Tk y x z k x y z

which can be written as

"2k - «K gx2k + "y gy2k + (1 + wz} Sz2k]
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The angular acceleration toov is
2. K.

oL, = ft2 e ., [cosijj. <0 -66 -06 +6 + 0 0 > +2k x2k k x y z y z y xz

slink <6 +06 +00 - 6 + 6 6 >]k y x z x z x y z

+ ft2 e 0, [costy. <6 +60 +60 -0 + 6 0 > +y 2 k r k y x z x z x y z

. <-e + e e +e© -0 - e e >]k x y z y z y x z

+ 'ft e 01 [0 - 0 0 - 0 0 jz2k z x y x y

which can be written as

oL, = n2[d) e 0, + d> e „. + w e „. ] (5.13)2k x x2k y y2k z z2k

•
In terms of dimensionless derivative in time, (tj;) , ( ) is replaced by

fi ( ) in equation (5.6).

The acceleration is

a 01 = JJ [R . + r 01 + 2ca01 x r 01 + OJ0, x r 0. + a),, x (co01 x r „. )]p2k o p2k 2k p2k 2k p2k 2k 2k p2k

(5. 14)

In equation (5.14), all the quantities except the first term is relative to

the 2k-system. The first term, i.e. the acceleration of the origin of the

2k-system is in the inertial system, as given by in equation (4.11). This

contribution can be transformed into components parallel to 2k-system, as

indicated below.

R = ft2 e „, [cosik <R +R0 - R 6 > +o x2k k x y z z y

sinik < R - R 6 + R 6 > ]rk y x z z x J

+ Q2 e „. [cosif), <R - R 0 + R 6 > +y2k L yk y x z z x

sinij;, < - R - R 6 + R 6 > ]rk x y z z y '

+ ft2 e .. [R - R 9 + R 0 ] (5.15)z2k z y x x y
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Equation (5.15) has been obtained after applying the ordering scheme. The

various terms in equations (5.12) and (5.15) contain the rigid body motion

and the elastic deformation of the supporting structure. The various other

terms in equation (5.14) are given below. These expressions are also obtained

after applying the ordering scheme.

The Coriolis Term

Sx2k ta)y xk

6Gk>

Uk - P B k X k + WzUk - "z Vk Xk

rt • • •

e „. [ CD x. ?. - 0) u. + co g g x. +
z2k x k k y k y p k k

zok

(5.16)
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The Angular Acceleration Term

"2k X 'P2k = °2 gx2k [<VpXk ~ ^zxk^k + M ^^k

. , -ok yYk z

<o e
y
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The Centripetal Acceleration Term

"2k

y . < -(-£. - 4>, (g. + B )-w C, ) + <u <)>,•'ok k Tk k ^ z \f. xTk

Z ok <

yok<

27

-coz(-3p-3k)>]

— GJ x.z

Vk

yok< ( 0y + Vz " Wx^k>

zok < wx (-\ - B
P

 + *k5k - wz\ - Wz V - \

(5.18)



Combining the various terms, i.e. equations (5.11), (5.15), (5.16), (5.17),

(5.18) the three components of the acceleration can be written as

ap = ̂2 {'Xk - 2xk "z - e - 2xA + C°S\ *x + sla*k *y
x2k

+ y , [£, + <}>. (3 + 3, ) + 2<u r + a> * + a> <j> - <i>
•'ok k k p k z k xYk yrk z

Zok

or in a more compact form

The three terms correspond respectively to 1) the constant part of x-component

of the acceleration over the cross-section of the blade at a distance x^, 2)

the part dependent on y , and 3) the term dependent on z . respectively. This

separation facilitates integration of those terms over the cross-section of the

blade to yield inertia forces. It also helps in identifying the orders of

magnitude of various terms .

The y-component of the acceleration is

ap = fi2 {-Vk - "ẑ k + VP
xk + wyBkxk -

Ry + sin̂  (-Rx)
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Zok [<t>k

+ yok a + zok a ] (5.20)
y2k OK Py2k °K Py2k

The z-component of the acceleration is

2 . . .
a_, = fi i<u x, + co e + W x, C + w x. C, - oo e - ca x.
Pz2k x k x y k"k x k k y y k

+ 2co x. £. + R +3, x.
x k k z k k

Gk

zok [- *A + VA + 2 S \ k + ^ p ^ k k - 2

o k p o k pok Fz2k ok pz2k

Transforming these acceleration components from 2k to 3k systems yields
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[a (C) + B an
(c) + y „ (a<y) + B a <*>)

Px2k .P. Pz2k y<* Px2k P Pz2k

+ z , (aD
(z) + B a (z))]

°k Px2k P Pz2k

[an
(c) + y . an

(y) + z , a (z)] (5.22)
Py2k yok Py2k ok Py2k

J

= fi2 [-B a (C) + aD
(c) + y . (-6 a (y) + a (^)

P Px2k Pz2k >ok P Px2k Pz2k

+ z . (-6 ap
(z) +a (Z))]

ok P Px2k Pz2k

Before evaluating the distributed inertia forces and moments, it is worth

noting down the relative orders of magnitude of the leading terms in various

acceleration components . They are

a (C)
Px2k

a (C)
Py2k

aPz2k

= 0(1)

= 0(e)

= 0(e)

' aPx2k

, a (y> =
Py2k

3Pz2k =

0(e)

0(1)

0(e)

. 'a (Z) =
Px2k

, a (Z) =
Py2k

, a (Z) =
PZ2k

0(e)

0(e)

0(e2)

(5.23)

This information is useful in neglecting higher order terms even before

evaluating the integrals to obtain inertia forces and moments.

Distributed Inertia Forces

The distributed inertia force per unit length is obtained from the

D'Alembert's principle, for the kth blade
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•sAT
where p is the material density of the blade.

Substituting the various components of the acceleration and using the cross-

sectional parameters defined earlier, the distributed inertia forces are obtained,

in the blade fixed 3k system. The acceleration components in the 3k system

(from eq. (5.22)) are

= - Xk - e - 2xA - Vz + \ C°S\ + \ Sin\

yok[?k - "he + *k<V*k> - *k*k + 26Vk - 9'z + 'VGk

2 * - * - 2 - e '

+ cosik < <b. 9 + 24>, 0 + 29_, 6 +B6 + 2 B 0 >k Yk y Tk y Gk y p x p y

2ok

Gk)

Py3k k k k k k

+C08*k<-5x ( B p + e k ) K

k y p k

• « • *

• i • *

yok [-1 -

(5'25)

Gk - x - y ] } (5V26)
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2xk9z>

-f cos*k< (xk+e) (-6y+26x)

(xk+e) (6x+26y) +

+ cosfy. < 6 +29 + ?, (0 - 29 ) + 2?, 6 >
k x y ^k y x k y

2ok

29Gk*k

* 2 * 2 * 2e_, - ez - 9
Gk x y

• • • •

((>. (6 + 29 ) - (-B, +<(>,?,) (6 - 29 ) -2g 6 >rk x y k k k y x p x

Substituting equations (5.25 through 5.27) in equation (5.24) the distributed

inertia loads are evaluated. The components of these loads are

- Ry sin̂  ] (5.28)
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%3k = " [X^k + 2z - <*k + e ) \ ~ xk?k - 2\ + 2xk\ V

+ 2Wx - V

+ 2Wy + V ]

+ simk < g R - 2x. ?, 6 - (x. +e) (6 +29 ) - x, ?. (6 -20 ) > ]yk Mp y k^k y k '^ x yy k k y x J

(5.30)

Distributed Inertia Moment

The distributed moment per unit length for the k blade is also obtained

by D'Alembert principle by taking the integral of the vector product given

below.

^ik • ff [- p(y0k Vk + zok ̂ 4^ x s
Pk

] dA (5-31)
AT

The moments are also evaluated in 3k system, and are given in component form

below.

~ p[(yok - "ok̂ ) aPz3k -
 (zok - y0k

pk?k
 + y0A

) a
Py3k

] dA

a
Pz3k

]

a
Py3k

a
Px3k

]
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Substituting for the acceleration components from equations (5.25) through

(5.27) and making use of the integrals given in equation (5.5) the components

of the distributed inertia moments (or torques per unit span) are evaluated.

These expressions are given below.

(xk

(xk+e)

V

f). < R - e (x. g, + x, e ) - 2x, e, ek y x k k k p k k x

<(), x. (-9 + 29 ) >Tk k v y x'

-

+ sinib, < - R - 6 (x, B . x, B, ) - 2x, &, 6rk x y k p + k k k k

Gk
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< - (6 +26 + £, (6 - 29 ) + 2C 6 ) >k x y k y x k y

- (0y - 26x - Ck (6x + 26y) -

Gk 2 6Gk>

- k - Gk - x

(IMB3 - IMB2) Sin6Gk COS9Gk ^ ~ 2 'Q Z ~ 2?k ]} (5 '32)

Ry

cos2eGk + 1^2 sin2eGk)

20y + CR (6y

(6x
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}>, ($ 9 + 2<}), 6 + 26 „ 6 + B 9 + 2g 6 )
k k y k y Gk y p x p y

(6x+26y) -

(9y -

- 29Gkex

(IMB3 SinGGk + TMB2

- 2°Gk ' ^ - 26z

- 6 cosijj. + 9 .y k x k

(IMB3 - IMB2> sln9Gk COs9Gk

36

(ex + 26y)

p k y

Xz3k I Gk k z y

• •
+ mxT sin9_. [d>, (x. + e + 2x. t, + 2x, 6 )I Gk rk k k k k z



COSV

(IMB3

+-'cosi|), «)>, 6 + 2(j>.-9 + 26_,-e +36 + 2B 6 >'Tk Yk y Yk y Gk y p x p y

<IHB3

• •

26Gk + 29z

Vk

• • .

Gk

(IMB3 - IMB2) COs8Gk slneGk
[ k

26 Gk

, <e - e 5, >k y x k

(5.34)
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5.2.2 Distributed Aerodynamic Loads

Greenberg [Ref . 10] has derived expressions for unsteady lift and moment

on a two dimensional airfoil executing harmonic motion in a pulsating stream

of incompressible fluid. This derivation is an extension of Theodorsen's un-

steady aerodynamic theory [Ref. 11]. The lift and moment expressions consist

of two contributions. The first contribution is due to circulatory flow and

the second one is due to noncirculatory flow. Greenberg has assumed that the

circulatory lift and noncirculatory lift are acting in the same direction, i.e.

normal to the resultant flow. .However other researchers using this theory have

introduced their interpretation. For example Hodges and Ormiston [Ref. 12].

assumed that the circulatory lift acts normal to the resultant flow and the

noncirculatory lift acts normal to the blade chord. An examination of the

alternative mathematical expressions for the unsteady lift indicates that

assuming the noncirculatory part of the lift to be perpendicular to the blade

chord is somewhat more convenient. In this study it is assumed that the

circulatory lift acts normal to the resultant .flow and the noncirculatory

lift acts normal to the blade chord, for mathematical convenience.

The lift and moment expression as given by Greenberg are

L_ = 2irp, bV [V a + oV ac(k ) elWvt +
C. A o o v

[b( | - a) 3 + VQ6] c(kg) + h c(kh)

LNC = 7rpAb
2 [ h + Vg + V(a + g) - abg ] (5.36)

where L is the circulatory lift
C
LN is noncirculatory lift

Referring to Fig. 10

h is the vertical displacement of the axis of rotation (positive

downward)

a is the constant part of the angle of attack

g is the time varying part of the angle of attack

V is the constant part of the stream velocity
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0V e v is the varying part of the stream velocity

V = VQ (1 + ae
ia)vt)

ba is the position of the torsion axis (axis of rotation

of the airfoil) measured from the center of the airfoil

section.

The total moment due to both circulatory and noncirculatory parts is

M = irpAb
2 [ ba h + V ba(a + B) - Vb ( |- - a)B - b2 ( ~ + a2)B] • • -

.+ 2irpA Vb
2 (a + -j) { VQa + -crtMxcCkp e1"vt ; ; - -

+ [b( \ - a) 3 + VQB] c(kg) . '+ h c(kh) .;_ .......

where M is the pitching moment about the axis of rotation (positive nose up) .

For low frequency oscillations of the rotor blades, the reduced frequency,

k, is low and one can introduce the assumption that the Theodorsen's lift

deficiency function c(k) is unity. .This is equivalent to the quasisteady as-

sumption. Furthermore from Figs. 3 and 10 one has,

ba = -b + XA + j = XA - | . (5.38)

Substituting for 'ba' from equation (5.38) and replacing c(k) by unity, the lift

and moment equations become

. " - . ' . • • • • •
LC = 2irpA bV [ h + V(a + B) + (b - XA)B ] (5.39)

LNC = TTPA b
2 [ h + ve + v(a + B) - (XA - |)B ] (5.40)

2
M = 7rpA b

2 { (XA - |) [ h + V(o + 3) + V3 - (XA - |)g]- v | 3 - | B>

• • '

+ 2irp. b Vx. [ h + V(a + g) + (b - x )g ] (5.41)
A A A -

Equations (5.39) - (5.41) can be rewritten in a modified form by replacing the

quantity 2ir by the incompressible lift curve slope 'a', also replacing a + B

by a, which represents the total effective angle of attack, where a represents
• * •• »•

the constant part thus a = B ; a = B and •- .
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Lc = pA a b V [ h + Va + (b - XA) a ] (5.42)

LNC = | PA a b
2 [ h + Va + Va - (XA - |) a ] (5.43)

9 ••

M = | PA a b
2 { (XA - |) [ h + V5 + Va - (XA - |) a ] - ™ a - ~ a }

. •_
+ a p b V x [ h + Va + (b - x a ] (5.44)

A A A

Next the various velocity components, relative to the oscillating rotor blade

have to be identified. Let V be the free stream velocity and V_,,, be the

velocity at any point on the elastic axis of the kth blade due to its oscillation,

the net air flow velocity for the kc" blade is then

V = V - V (5 45>k Ak VECk •̂'o;

For a rotor blade in forward flight with constant velocity, the free stream

velocity is

VAk = VF cosaR £RX - (VF sinaR + vfc) ̂ (5.46)

where V is the forward velocity of the model
r

a_ is the angle of forward tilt of the rotor plane

V, is the induced velocity

Equation (5.46) can be written in terms of nondimensional quantities y and

X, where y is the advance ratio = V,-, cosa_/f2R and \. is the inflow ratio =
k t K. K.

sina + v, )/fiR. Hence
Jx K.

This velocity can be written in terms of components along the 2k-system

y(ey ex - ez) -xkex > + s±^<- y -
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(5.48)

The velocity at any point on the elastic axis due to blade deformation is

* •
(5'A9)

where RQ is the velocity of the hub center
H•

r is the velocity of the point 'p' on the elastic axis of the blade

as seen in the rotating reference frame

0) is the angular velocity of the rotating reference frame

and ?pk - e ax2k + (xk + V ;x3k + wk *z3k + Vk ay3k (5'50)

The various terms in equation (5.49), in 2k system, are

(Based on rigid blade assumption, i.e. w, = x, g, and v, = x^C,! and

< R + R 6 - R 6 > +
x y z z y

sinik <R - R 6 +R6 >]k y x z z y

^ . . .
+ e 0 1 [ cosik <R -R6 + R 0 > +y2k k y x z z x

. . •
sinijj < - R - R 8 + R 6 > ]

c x y z z y

+ e „. [R - R 6 + R 6 ] } (5.52)
z2k z y x x y

and
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- (x +e) < cosik (9 4fl 9 ) + sini|), (-9 43 9 )>]}K K . y x z k x y z

, (5.53)

Combining equations (5.51) - (5.53)

• •

/„_,«. = He A, { - x. C ~ x, C 9 + u, -
El Z.K. "X^IC \C K If K 7 If

+ cos\K <R +R6 -R6 +9 (x,B + x, &, ) >k x y z z y y v k p k k

+ sinij;. <R - R 8 +R9 -6 (x,B + x, B, ) >k y x z z x x v k p k k '

S * 9 9 '

+ fie ,. { x^C + x + e + x. 9 + cos<k <R - R 9 + R 9 >. y / k T c k . k k z T k y x z z x

. < - R - R 9 + R 9 > }k x y z z y

+ fie 0, { Xj 3 ,'+ R - R 9 + R 9z2k k k z y x . x y

• . « •
e) < cosi|;k (6y +6x9z) + sin^ (-8x +6y9z) >

cos^k 6x + sin<J;k 9y > } (5.54)

Substituting equations (5.48) and (5.54) in equation (5.45) and applying the

ordering scheme yields

- Ry

ê 0] [ -x. - e - x. 6 - x. C, + cosif), < - pR0 - R - X, R6 >y2k K k z k k Tk z y k x

•: + sinif) < -yR + R >]
K. X
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y

e) 9x>]} (5.55)

This velocity is again transformed into components along the 5k system where

5k system is defined as the one whose origin is fixed in the deformed blade

elastic axis and rotated from 4k system by removing the elastic torsional

rotation. In the 5k system, the velocity components are

Vx5k = fi{- e\ - "k - VA + (3p +ek)(-XkR - Rz +

Ry - XkR6x + Rx?k>}(5.56)

Vy5k = ̂ [- \ -e-X - X + co«*k<- pRB8 - Ry -

< -yR.+ R >] (5.57)
X

Vz5k ' fi[- Xkk - \R + ̂ R6y - Rz -

(xk + e) x + (ep + V (^Rgz - V

For the evaluation of the unsteady aerodynamic forces and moments, the

various velocity terms in equations (5.42) - (5.44) have to be identified.

Figure 11 shows that

V = -Vy5k ; h = Vz5k and 5 = 8^ + «,. (5.59)

Substituting these in the lift and moment expressions, the loads per unit length

on the k blade becomes

LCk = PA abVy5k ^ Vz5k + Vy5k (6Gk + V " (b * V (^Gk + *k}^ (5'60)
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LNCk - PA313 [ Vz5k - *y5k (9Gk + *k> - Vy5k

(5.61)

\ " P A a b Vy5k XA [ - Vz5k + Vy5k <9Gk + *k> ~ <b ~ XA> (9Gk + *k)fl

.f

T>

V P- - Wck + Vn] (5.62)

The drag force D, is

The inflow angle <f -k is

'\ . tan-i (!^) ' (
y5k

According to the assumption made previously, the circulatory lift acts normal

to the resultant flow and the noncirculatory lift acts normal to the blade

chord. Resolving the lift and drag forces along the 5k system (Fig. 11),

the force components per unit length are

pA = -p. ab V c, [ -V c. + V ,. (901 + <J>. ) - (b - xJO-.-Hj), )S
A _ A y5k z5k y5k Gk k A Gk k
y5k

_ I 2 ' ' *
2 A z5k y5k Gk k y5k Gk k

Cos<}> . (5.65)

z5k

I PA a b' [ ^z5k - Vy5k (^Gk + ^ ~ \5k (6Gk + V

cos(9Gk + *k>
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- P A a b ( -f2 ) [V2 + Vz
2

5k] sin<t>.k (5.66)

and the torsional moment, per unit length is

PA a b v?5k XA [ ~Vz5k

(XA - 7> [

Assuming that angle 4>., is small, the following approximations are made.

sincj)., = 4>., = V c, /V c,ik ik z5k y5k

cos<f».k -

And also

sin(6Gk

i CH 3/9
Note that Vz5k/Vy5k is 0(e), <fr±k is 0(e), 6Gk is OCe'

5) and ( -|2. ) is 0(e ).

Using these approximations, the force components per unit length become

P = PA
ab Vz5k [Vz5k - Vy5k (9Gk + V+̂ 'V <«&#*>* ]

- p A a b ( ̂2.) V
2,

A a y5k

- ' - - (8Gk + *kj

- (XA - I> (9Gk + V ^] [sin6GK + *k COs6Gk
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PA 3 b Vy5k l - Vz5k + Vy5k (9Gk + V ' (b ' ^ (8Gk + *k>

- Vy5k <9Gk + V ° ~ %k (9Gk

b " " 2
- (x, - —) (9_. +<(>,) fi J [cos9_. - d>. sin9_, ] (5.69)

A 2 Gk k Gk Tk Gk

Where the appropriate velocity components have to be substituted in these

equations. These velocity components are given in equations (5.56)-(5.58).

The aerodynamic forces per unit length of the blade, in component form are

p = PA a bfi
2 { r- -|2. [ Xk

2 (i + 2^k + 29z) + 2xke ]
y5k

e (9Gk

(9Gk

Gk + *k - \ + \ (BGk + V
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Ry)]

<6Gk

<B Ry) -

6 . < X, R - yR6 + R >
y k y z

- 6 G k < - e 6 y +

(9Gk

+ 6 y < e yR6 -

X k R < y R - Ry) -

(yR0y - Rz) < yR

yR

yR

2c ,

\

xfc < yR,(l eyR



" V

A k R < - y R

- 2 UR6z + Ry ) 1

y < -yR (6Gk

eey - yR <Sp

COS V1 2

» 9 2

(6p + Bk) Gk

ce

2 2y V - 2yR R > 1
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PA a

<yR6y -

[yRBk - MR 0Gk + +)] < sin8Gk

(8x+8y) si

] < sln6Gk + *k "-^ + yR?k6Gk Sin6Gk]

(5.70)

PA a b { x k [ 9Gk + *k - \ + (6Gk

- COS*k C ~

- Ry -

k). > + 6Gk< - MR?k - Ry

(4>k -

xk [ - »R(GGk + ^ + Rx 9Gk - ^R (9Gk
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e < - yR(6Gk + <frk) > + AkRyR

- yR < e(6Gk + <|>k) + yR6y

+ cosifj, sinijj [ x yR6
K. K K.

- Ry

- yR < - yR(6Gk + *k) + R^ > - yR

- yR

+ 3k) - yR(9Gk + *fc) > >
 cos6

Gk

(5.71)

It can be seen from the expressions for the aerodynamic forces that the con-

tribution due to (9Gk + 4O associated with equation (5.40) is absent because

of ordering scheme. Equation (5.71) can be written as

PA = P11} + pf} cos6Gk (5-72)Az5k z5k Az5k GK

where p. represents the circulatory term and p^ represents the non-
Az5k Az5k

circulatory term.

The aerodynamic moment perunit length can be written as
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I (°Gk + V ^ { - Xk -

(5.73)

- R -

(<Ck -

(6Gk

- M R <

-t-

yR6 - R >-y z
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- yR

(eGk

(Bp

- MR < - yR (6Gk + Ok) + Rx6Gk > - yR

- yR

- yR (g + Bk) - yR

»

2" PA a b 2" ° (8Gk + *k) { ~ Xk ~

(5.74)

These aerodynamic force and moment expressions are transformed into components

in 3k system because the blade dynamic equations of motion are written in

3k system. The appropriate components are

PA = ~ ?k PA ~ Bk PA cs 7C-V
Ax3k k y5k R z5k C5-°;

PA = PA (5'76)
y3k y5k

PA = PA ~ \?k PA ~ PA n 77)
z3k z5k Ay5k z5k ° ;

q - = q C5.78)
x3k x5k

q = ̂ k qA (5.79)
y3k x5k

qA = Bt qA • (5.80)
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5.2.3 Distributed Structural Damping Loads

The structural damping incorporated in this analysis is of a viscous

equivalent type. The damping forces per unit span of the blade for flap, lag

and torsion are respectively given as

Lead-lag p = - f c g (5.82)

Torsion qD = -Jty^gg (5.83)
x jk 1

No attempt is made to eliminate these terms by .considering the ordering

schemes since these terms serve the purpose of determining the effect of

damping on stability.

5.2.4 Rotor Blade Equations

In this section, the individual blade equations of motion are presented.

For the rigid, offset hinged, spring restrained blade model used in this study,

the distributed inertia, aerodynamic and structural damping loads are integrated

over the length of the blade and moment equilibrium at the spring restrained

hinge is enforced. The loads due to inertia, aerodynamic and damping, integrated

over the blade span, are given in the following sections. Finally the blade

equations are obtained by enforcing moment equilibrium at the root of the blade.

Inertia Loads

The forces and moments at the blade root due to the inertia forces are

rR-
JJPI3k= Pl3kdxk

> dxk (5'85)

where PTo, are the distributed inertia force on the k blade and qo, is the

distributed inertia moment about the elastic axis. These quantities are derived

in previous sections of this report.
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Recall that the position vector of any point "p" on the deformed elastic

axis of the blade is given by

(xk + V ax3k + Vk ^Sk + XA az3k (5'86)

and u, is the axial displacement primarily due to geometric shortening
K.

r
uk ' - \ J dxk

-- Xk(Sc + \) (5'87)

and

"k = -xk(sA + W (5-88)

It is assumed that the inflow is constant over the disk and the pretwist of the

blade is zero. Hence in integrations over the blade span X and 8 . remain
\j K

constants. Mass per unit length of the blade is also assumed to be constant.

The components of the inertia forces at the root of the blade in 3k system

are

P m v f f { uteji + (R . e) e + utsii 2; + (*^£ 2'
I i. 7. i K

- (R-e) < R co sty. + R sinijj > ] (5.89)
x K. y K

-(R-e)

2

P x

,2
(R-e) k'> ] (5.90)



2
P = mO [- =- j _ (R_e) R - ft < -- (1+26 +2?, ) + (R-e)e

z3k • 2 R

*" »t *

+ cosip < (R-e) [g R + e(6 - 26 ) ]
K. p X y x

< (R-e) [B R - e(8 t 26 )]K. p y x y

(5.91)

The components of the inertia moments, after applying the ordering scheme, are

e

(9y -

* ,g g } (R-e)3 ' fi
WkH 3 2BkBp

3 * ' (R-e)2 "~
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(R-e)3 ' ' , (R-e)2

3~ 2Bk9y + "I

coseGk - (R-e)

(R-e)2 _ , . (R-e)2 " , , (R-e)2

— - ~ ~
,
*k8z

+ costy (9 - 26 ) + (R-e) e (6 - 26 )
y X y X

(R-e)

+ sin4>, <
tC

&$- (6 + 26 )2 x y

(R-e)'
2

(R-e)

(9y -

(R-e) e (6 + 26 )
x y

(R-e)

(R-e) e6 (B + .) + (R-e) * R
p 1C K. Z

(R-e)

+ ̂  *k <-;y
- (R-e)

2ey)
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(IMB3 " 6Gk

- (8

26y) -

(IMB3 MB2

• 0

- 6 Gk

-6 cos;/;, - 0 sin*. ]
x Tk y Tk

(IMB3 sin9Gk cos9Gk (5.92)

y3k

-R-e

I (<!T

Jo Z y3k Lx3k

3 2

(R-e)2 . "

3 z 3 bk

v.K~6) o y- n i v.R""fi.) /Q
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e (y -

<e
7 3
_ e(0 + 29 ) - -- ? (6 - 26 ) > ] (5.93)

x . y K. y •**•

z3k

fR-e

- I (qi-'
,. + (xk + V PI ..z3k y3k

dx...
x3k

(R-e)
3

(R-e)J 3 (R-e)" g
3~ z ~ 2 z

(R-e)
-

(R-e) (R-e)

, „ ,i, <: (R-e)3 R o . (R-e)3 o S . (R-e)3 ' ' (R-e)2 1'
+ COS<J>. < 5 P 0 H r ft t) + ;; 2fS- fc) - r R >

k 3 p x 3 k x 3 k x 2 y

<IS=|i l&e +-^8.0 +I5-|il2;.e +^|^R>

(5.94)

The order of magnitude of leading terms in these expressions for the loads are

listed below for convenience

y3k
0(e) ; 0(e)

z3k
and

x3k
; Q = 0(e) ; QT = 0(e)

y3k ±z3k

The loads at the root due to distributed aerodynamic loads are
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and

A3k -/.
-/.

PA 01 dxiA3k k

- - -
(qA3k + rp3k X PA3k} dxk

[9Gk <9Gk + V -

z G k

*
e(6Gk + b ( 6 G k + V

(B

- Ry -

(R-e)[eyr(B

Rx9Gk

- MR (6Gk + <ok) z G k

(R-e) [ -eyR

yR < e (0 ,+4> ) +

• •
yR b (9Gk + *k) 1 1

cosifj sin<K
K K.

yR6
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+ (R-e) L-yR < MR (3p + 3k) +

- (R-e)

sin2<J;k - (R-e)yR<-

^2 ..

- ( 9 Gk +

[ (R-e) < yRJ^ - yR (eGk + (j^) > ]

(R-e) < - yR(3

°do r (R-e)3

— ~

.3 .

cos6Gk

H-

(-yR6y + Rz)

(R-e)

(R-e)
2

(R-e)

2
(B

(B

(6

2cdo (R-e)2

yR
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(R-e) [ - AR (-yR

+ (R-e) [ - yR (gp + f^) < yRQ^ + yR<t>k > ] ]

(R-e) y2R2

(5.95)

P. = P abf i { - - , ~A 01 a a L 3y3k
[ ^- (1 +

(R-e) 3 '
V

Gk V

r.Gk

• •
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2c.
(R < yR eyR(R-e)

(R_e)

e < X. R - yR9 + R >x k y z

+ A. R0 - 9 < 60... + yR0 - R > ]k x x Gk y z

(pR0y -

2cdo+ cos^. sintjj, [ — [ (R-e) yR (yRC + yR0 + R ) ]
K. K, 3. K. Z V

3 y x

2yR (B

y < -V* ( 6 Gk +

(R-e) [ yR©-, e0 - yR(3 HGk y p

cos 0y
2

20y (Bp + 3k)

+ (R-e) [ yV (6 +
P
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(6p + 6k)

[-yR8Gk

+ (R-e) [- yR6 < eO + (g + 0 )(-yR0 - R ) >
(jK, X p K Z y

y2R2 - 2yR

V _, ,2 P A a b fl { (R-e)
- ( 6 G k + V ) < s i n e G k + < ! ) k C O S 0 G k >

sineGk

+ (R-e) sine , (yRG - R )
\yK. y Z

^sL. (ey - ex) smeGk

(R-e)

sin6Gk

(9x + V

- (R-e) [ (yR(6,

(sin6Gk

(5.96)



Gk

z G k ]

(R-e)
(9Gk + V - R

z -

- (R-e) e

(R e)3 '- cos<J,k [ — 9y

- Ry -

Gk - Ry -

+ (R-e) [ e yR (3 + g, ) + A.RyRC;, ] ]
p K K K

/ x J •

(R-e)' (6Gk

Rx9Gk

+ (R-e) [ - eyR (6 + < j > ) + A R y R

- yR< e

- yR b (

yR0y -
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(R-e) [-v

pk [ - (R-e) U R < ; k (g

2
- (R-e) yR < -

The aerodynamic moments at the blade root are

x3k -'o x3k z3k y3k

4 e

(9Gk

(R-e)

* •

^ > 3 ] cos6Gk

(5,97)

. t UR(6 + 6) + 8 (-yR^ - R
y
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Gk

[eyR(B

[ (R"e) 0k A x

(R-e)' t -PR (eGk + V + RxeGk

ck(eGk e z e G k >]

(R-e)'
e < - y cj.k)

- yR < e (6Gk + cf>k) + yR8y - RZ > - yR b ] - ]

(R-e)- yR6

,
"

t - yR< yR (6 - Ry -

-yR6 -

cosl<k[ -

s±n
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(R-e)
(9

2 2 i (R-e)

Gk

3

Rx6Gk R

- cosi|,k< - yR (9 + < f > >

(R - yR(3p + 3k) -

ta 4

(R-e
4 l pk " °Gk

2e

(6 z G k

Gk (6Gk

e _,z Gk

(-yRey + RZ) < eGk

b (6Gk

yR9y -

(yR8y - yR6y -

- X k R b

2c
PR8z y
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V 8Gk

Gk - V

(-6y)

Gk - V

(B

(9Gk e6Gk+

(0

(yR0y - Rz)<yR (Bp + ek)

(3 + 6, ) b
P k

2cdo r (R-e)
3

<yR (R-e)

Gk eGkckex
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9 G k < e 9 x +
- V

[ - A k R < - y R

+ (yR6 - R ) <
y z *ji\. iv

2c , ,2
+ cosik simp [ — ^ ^' [yR < yR£ + yR6 + R >]

k k. a 2 K z y

(R e)4 ' '
- *- T 26 64 y x

(R-e)
3 yR(B

- yR

2. r (R-e)A ' 2cos \b, [ -—-r— 6
k ^ y

(R-e);

6Gk(-Ry-yR9z)

eex + .(6p + 3k)(-yR6z - Ry)

y2R2 - 2yR R
'
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p A ab Bk (1 +

sin8Gk

- Rz)

(6y -

q

~ (6 + 6)

- (MR(3p + 3k)

(sin9Gk + 4>k cos9Gk)

(eGk + V - ck (3p + Bk)

Gk

(R-e)e(_X k R)

Gk
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(R-e)

- sim|»k < (R-e) [-

T (bck + V fi2 I PA a

- ( R - e ) e

- (R-e) < yRC, cosij^, + pR sin^ > }
K. tC K.

(5.98)

/•R-e

, = J (IA .v
 + xkBk PA ,. ' (xk + uk} PA _.) dxky3k Jo y3k x3k z3k

Neglecting higher order terms

fR-e
Q =1 - x p dx

y3k J0 z3k

* •

• •

2
- (— A, R,)- — — ,
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[yR(B - R -

>*

Gk - R -

RxeGk - yR (eGk

[e

- yR< e

- yR b (

t

yR(P

cos

Ry -

- R
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k -
2 _ yR

[ ]iRBk - yR 0Gk +

o

[-yR (B + Bk) - yR

(5.99)

x.-e
QA . = / (qA .. + (xk + uk} PA .. - Vk PA .. } dxk
z3k •'o z3k y3k x3k

Neglecting higher order terms

-R-e

A n, I K. A »• K. it A n. K
z3k -'o y3k x3k

where

PA = ~?k PA ~ 6k PA = ~ ?k PA ~ 3k PA
x3k k y5k fc Az5k k y3k Az3k

thus

QA > - / (xk PA .. + xkek^k PA .. } dxkz3k Jo y3k z3k

e_. >z Gk

- X, R3 LMk k Gk yk' H y z
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Gk + *k - (9Gk

e(6Gk

- R ) < -A. R + eS-, + yR0 - R >y z k Gk K y z

b(9Gk

- cos*,. [k L a < yR£, + yR9 + R > ]k z y

• •

(AkR - yR9y + Rz) (-6y) yR

- e 6 y +

<B

(9Gk + V

6 (e601 + yR6 - R )
y Gk y z

(R-e)' yR - Ry)
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(yR8y - Rz) < yR <Bp

(a +iiR6y . - <B

yR (Bp + Bk> b

< y R ( 1 eyR]

,4 • •

4 LMk x " G k ^ k y x

,„ v3
-yR

> - 9., 5, 8,. 1

3 G k V

- yR6 (Bp + Bk>

Gk - V

- V

- yR

2c
+ costJJ, slink [- —, -

K. K. 3-
[ yR < yRC + yRO + R > ]

K. 2 y

. ^.w v4 y x

yR

y < ^R (6Gk + V
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2

eey - y (Bp + ek)(9Gk + <ck)

Rx

t £=f ey
2

(- Ry -

sin\

- Ry)

~ < y2R2 - 2yR

2
\ pAa bV { - ^rsi.

2

(yRe .y

- sin6 Gk

- yR (9^ + *k>K8lnflGk

(sin6Gk + *k cos6Gk)
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(-XR)k -k

k t ̂ "f UR (Bp

3 2
[- 2yR (0 + 4>)

2
(R~̂  y2R2 (B

2
y2R2 (Q +

(5.100)

The orders of magnitude of the leading terms in the various aerodynamic loads

are given for convenience

PA = 0(£
3/2)

x3k

P = 0(e3/2)
Ay3k

PA = OCe1/2)
z3k

QA = 0(e3/2)
x3k

QA =0(£
1/2)

y3k

QA = 0(£
3/2)

z3k

Damping Force

Instead of assuming a distributed damping force representing the structural

damping of the blade, one can assume a damping force proportional to the

velocity and it is provided at the root of the blade. It can be written as
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Flap Q = + J2 3 g (5.101)
Dy3k k SF

•

Lead-lag Q = - R ? g (5.102)
Dz3k k SL

•

Torsion Q_ = - ft $ g (5.103)
x3k * bT

These damping forces are proportional to the rate of change in angles in flap,

lead-lag and torsion. Reason for this type of assumption is that in the

present study the blade is modeled as a rigid blade with root springs .

Equations of Motion

Using the moment equilibrium condition at the blade root, the equations of

motion for the ktn blade can be written as follows.

F lap ; The flap equation is

M + Q + Q + Q =0 (5.104)
Ay3k Dy3k

Lead-lag : The lead-lag equation is

M + Q + Q + Q =0 (5.105)
k̂ z3k z3k z3k

Torsion: The torsion equation is

M. + QT + Q. + Q.. =0 (5.106)
\ x3k x3k x3k

The elastic restoring moments due to the root springs are given in Appendix.

The results are summarized below.

\

k r 2 ,

' " R (K " R)sinA I ^ " Gk

Rl (Kr - V Sln8Gk C°sSGk
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\ = -

where KQ KD K Kr
H eB K.

K +K ' ? K +K

Rl
(1/KD + 1/K,

For an articulated blade

Kn = K_ = K. =0 and K,

For a hingeless blade
K, K,

*»„

K. = 0 and K,
i KA +K^1 <!>„ 4
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6. EQUATIONS OF MOTION OF THE SUPPORTING STRUCTURE

6.1 General

The supporting structure, to which the envelope and the rotors of the HHLA

vehicle modeled in this study (Fig. 2) are attached, is assumed to be flexible.

The degrees of freedom associated with the supporting structure consist there-

fore of both rigid body and flexible degrees of freedom. The structure is

idealized as a free-free beam and is represented by relatively few number of

bending and torsional free vibration modes. The derivation of the equations of

motion consists of two parts.

1) One part representing the rigid body degrees of freedom.

2) A second part representing the flexible modes of the structure.

In dealing with these two contributions to the total motion it is assumed

that rigid body motions occur first. After establishing a perturbed state, con-

sisting of rigid body translation and rotation, the elastic deformations are

superposed. Thus the equations representing the rigid body degrees of freedom

are written in S-system and the equations of motion representing the elastic

structure are written in Si-system, see Figs. 8 and 9. To write the equations,

various external loads have to be identified and properly transformed to the

corresponding coordinate systems.

6.2 Loads

The various external loads acting on the model are illustrated in Fig. 12.

1. The rotor loads at hub center Ojj, and 0 „.

2. Aerodynamic loads on the envelope acting at the center of buoyancy O^

and a static buoyant lift.

3. Thruster loads acting at 0F1 and 0_2.

4. Gravity loads acting at the respective center of mass of underslung

weight, envelope weight, fuselages weight and the supporting structure

weight. The respective center of mass locations are denoted by

°EN> °F1' °F2' °S'

6.2.1 Rotor Loads

The loads acting on the rotor blades are inertia and the aerodynamic loads.

These distributed loads are transformed into forces and moments acting at the

blade root. The moments are balanced by root springs and dampers. The loads
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on the k blade are derived in Chapter 5 and are given in 3k coordinate system.

They are given in equations (5 .89)-(5 .100) . Net combined loads acting at the

root of the blade are

P3k - PI3k + PA3k - <6'1>

(6'2)

These loads are transformed into loads acting parallel to 2k system, using the

following transformation.

P2k3 = [T231
 P3k (6'3)

2̂k3 - tT23] Q3k
 (6'A)

where P_, and Q are forces and moments acting at the blade root (i.e.
£ 1C j *- K,3

origin of the 3k system) whose components are given in 2k system. Transforming

these loads into loads acting at the origin of the 2k system (i.e. hub center,

either OHI or 0^)

(6'6)

P2k = (Px3k - Bp Pz3k)ex2k + Py3key2k + (PZ3k
+BpPx3k)eZ2k

(6,7)

4- r_e (p + 8 P } e 4 - o p1 v
 Z3k

 pp x3k' y2k T e ry3k

Again transforming these loads to 1 system

P = TT 1 P (69)•STI, L ^ i n J - t o i - \*-/»-//

= [T12]
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Expanding

Pnl = [cos\f), < P , - 3 P > - sinik P _, ] e nIk rk x3k p z3k rk y3k xl

Qlk

+ [simj;, < P _, - g P > + cosip. P ,, ] e 1k x3k p z3k Tk y3k yl

[Pz3k

e Py3k] (6'12)

These loads are acting origin of the 1 system i.e. either at 0.., or 0T70 de-nJ. Hz

pending on the rotor system. Total load due to all the blades in the two

rotor systems are
N _

Rotor System 1 PI ^ = "£, PIJ, (6.13)
k=l

N
Rotor System 2 P1R2 = ^ Plk (6.15)

k=l

N

The summation is over the number of blades in the individual rotor systems. As

it was pointed out earlier that P.., and Q-, will be different for different

blades and also for different rotor systems.

Transforming the loads acting at Oy, to the point Op, (C.G. of fuselage Fl)

and that at 0H2 to the point 0F2 (C.G. of fuselage F2),
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(6.17)

(h2 *zsi x ^m'

[-h2 Py1R1 ̂ sl + h2 Pxm %sl] (6'18)

where P is the y-component of the vector P1U1 and P is the x-component
y1H1

of the vector P]Hn • It should be noted that according to our initial assumption

the 1 system and the SI system are assumed to be parallel. Similarly for the

second rotor system

P1F2 = Pm (6.19)

= + (h2 azsl X flH2)

+ [-h. P e , + h. P e J (6.20)
2 .y xsl 2 x yslj

The loads presented in equations (6 .17)-(6 .20) are acting at the points 0_ and

0 . The components of these loads are given in 1 system (SI system) , both
F2
the 1 system and SI system are parallel systems . The components of these loads

will be used in writing the equations of motion representing the elastic modes

of the supporting structure. Writing these loads in terms of loads in the 3k

system

51 t e n [COST);, < P Q 1 - B P ,. > - sini); P ,, ]r rn , Q1- ,. - ,,
xl rk x3k p z3k rk y3k

K. JL

Bp Qz3k > - Sin^k < Qy3k
.~~ -L

-e (Pz3k+

-h2 (3±nl()k < Px3k ~ gp Pz3k > + C°SVy3k)]
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+ e . [sinik < Q , - (3 Q 0 1 > + cos\i>. < Q „.
yl k x3k p Xz3k rk Xy3k

- e(P z3k

Py3k) ]

Py3k] } (6'22)

The expressions Pip-, and QIFI represent the forces and moments due to rotor

systems Rl. These loads act at the point 0_., on the supporting structure,
r i

Similarly, the loads due to the rotor system R2 are P-i-pp and Q, „» . These loads

act at this point OF? on the supporting structure * Since the rotor loads are

derived for a general rotor system, the expressions for these loads given in

equations (6.21) and (6.22) are valid for both rotor systems Rl and R2 . How-

ever the components Px3k, Py3k> Pz3k, Qx3k> Qy3k> Qz3k could be different for

the two rotor systems depending on the operating conditions and various other

rotor parameters.

The rotor leads PIFI » ̂1F1' 1̂F2' 1̂F2 wil^ be used in writing the equations

of motion of the vehicle and the supporting structure. Hence, it is convenient

to refer these loads in the body fixed Si coordinate system. From equations

(6.21) and (6.22) it can be seen that these rotor loads are given as components

along the hub fixed 1 system. By definition, the hub fixed 1 system and the

body fixed SI system are parallel. Therefore in subsequent parts of this report

these rotor loads will be referred as P0 for P1T,, , (L for Q, „, , P0 for
S1F2

P1170 and Q-, for Q1T,0. Again these loads are transformed into components along
-Lr<c 1F2 •*•" .
the S system acting at point 0 on the structure. Finally the individual rotor

O

loads are added together to get the total rotor loads,

The total rotor loads at Og are (components along S system)

?SR = [TS,S1] ?S1F1 + tTS,Sl] 5 <6'23)
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QSR [TS,S1] [QS1F1 exSl X PS1F1]

[TS,S1] PS1F2]

where [T .. ] is the transformation matrix relating the body fixed noninertial
o 9 o -L

SI system to inertial S system.

[TS,S1J

e 8 -ey x z e e +6
z x y

z y x

where 6 , 9 , 6 represent the Euler angles for rigid body rotation.

6.2.2 Aerodynamic Loads Due to the Envelope

The aerodynamic loads of the envelope are the buoyancy loads acting along

the body axes. These are denoted respectively by P N and Q .

„„ = P e n+P e .., + P e . - + P eEN x xsl y ysl z zsl z zs

= (P - 6 P S ) e 1 + ( P + 6 P
S ) e , + (P +PS)ev x y z xsl y x z ysl z z zs

(6.25)

. = Q e . + Q e , + Q e
bi x xsl y ysl z zsl

(6.26)

These loads act at the center of buoyancy Op . The components of the dynamic
Li

loads are defined as [Ref . 7]

Forces P = C q V2 /3 , P = C q V2 /3 , P - C q V2 /3 (6.27)x x y y z z

Moments Q

Where V is the volume of the envelope

q V , Q = C q VM ' xv m
q V (6.28)
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q is the dynamic pressure

c

P is the static lift on the envelope acting along Z axis
z s

and c , cn are coefficients
x, y, z £, m, n

Transforming these loads to the point 0 on the supporting structure
O

PS1EN = PEN (6.29)

- QEN + (h3

Expanding

.

Q + [-h (P + 9 Ps) e .. + h, (P - 6 Ps)e v] (6.30)EN 3 y x z xsl 3 x y z ysl

Pq1 = (C q V 2 / 3 - 6 p S ) e , + (C qV
2/3

 + 9P
S) S ,

S1EN x ^ y z xsl y x z ysl

+ (C q V + Ps) e . (6.31)
z z zsl

v - h3 cy q v
2/3

v + hs cx i v

C * V (6'32)n

Writing these loads, along the S system, acting at 0
O

PSEN = fTS,Sl] P (6'33)

= CTs,si] QSIEN (6'34)

6̂ .2.3 Thruster Loads

Two thrusters simulated by thruster forces are assumed to act at the C.G.

of the fuselages Fl and F2 i.e. ()„, and 0 . They are
r J. r L

?TF1 - - PT axsl and ?TF2 - - fT \sl (6'35)

Transforming these forces to the C.G. of the structure 0 and combining them
O

= - 2 PT ̂  (6'36)
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in the S coordinate system

PST - [TS,S1] PS1T (6'37)

6.2.4 Gravity Loads

The gravity loads are due to the various masses which constitute the
s\

HHLA model. There loads act along -e direction, at the respective centers
z s

of mass. The various contributions are:

Fuselage

The gravity loads on the two fuselages act at (X,.. and 0 „. These are

?WF1 - - WF1 ̂ zs (6'38)

PWF2 - - WF2 ;zs (6'39)

Transforming these loads to the point 0_ on the structure and adding them
O

PSWF - -(WF1 + V *zs (6'40)

QSWF = ~V exsl X PWF1 + AF2 6xsl X PWF2

where Pgup i-s tne gravity force

:'"s C^e moment at Og due to the gravity forces.

= (-̂ i ^ - 6 £,„-, e + 8 £„, e ) x (-W,,̂  e )
Fl xs z Fl ys y Fl zs Fl zs

- (8z£Fl WF1 - 6z^F2 WF2) xs

+ <-£Fl WF1 + £F2 WF2> ^ys (

Underslung Weight

It is assumed that the underslung mass is rigidly attached to the support-

ing structure. The gravity force on this mass acts at its C.G.' 0.. at a

distance -h,e . from 0_.
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The loads due to this mass at 0 (in S system) are
O

- - WUN *zs

= - hl zsl X (- WUN

= (- hn(e 9 + Q ) e - hXS 6 - e )e -hne )x(-VJ e )
1 z x y xs 1 z y x ys 1 zs UN zs

= h.. (0 6 - 0 ) Wm, e - h, (6 9 + 0 ) W11M e (6.43)
1 z y x UN xs 1 z x y UN ys

Envelope Weight

The gravity load on the envelope acting at its C.G., 0_M is -W e . It
HilN t)JN ZS

is located at a distance h, e ^ from 0_. Transforming this load to the

point 0 on the structure,

p = _ W e (6.44)SWEN EN zs VD.HH;

= [h. (9 9 + 6 ) e + h, (0 9 - 0 ) e + h, e ] x
4 z x y xs 4 z y x ys 4 zs

(-WEN

WEN

Supporting Structure Weight

The gravity force on the supporting structure is acting at its C.G., 0 t
'Os\

in -e direction, it is given by
zs

P = -W e (6.46)
SWS S zs

CL,,., = hc e , x (-W e )XSWS 5 xsl s zs

= (hc e + 0 hc e - 6 hc e ) x (-Wc e )5 xs z 5 ys y 5 zs S zs

= (-0 h. W e + h W e ) (6.47)
z 5 S xs 5 S ys
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6.3 Rigid Body Equations of Motion

Using the various loads derived in S coordinate system, the rigid body

translational and rotational equations of motion can be written in the S

system.

Let the rigid body perturbational translational motion of the point 0
O

be

R=R e +R e -f R e
s xs xs ys ys zs zs

Then the translational equations of motion become

— p=p + p + p + P + P + P + P
g s SR *SEN ST SWF SWUN SWEN SWS

where W =wnere w +W +i- wpl -t-

W is the supporting structure weight .
o

''SWS

The equations of motion for the rotational degrees of freedom are

-^ [I ffll = QSR + QgEN + QCOT + Qcurm + Qct,™ + QC

where [I] = [!„, JTri_ + I_, + !„„ + I,

and a) = S

The individual inertia tensors are given by

Structure:

-f ipl + Ip2 £N

- 6 6 ) e +(6 + 6 e ) e +(6 - 6 9 ) e ]
x z y xs y z x ys z y x zsj

Fuselage:

(6.48)

(6.49)

(6.50)

I
XX

-I
yx

zx

I
XX

0

xz

-I -I
xy xz

I . -I
yy yz

-i izy zz

0 -Ixz

I 0yy

0 Izz

W
s
g

S

W

g

Fl

__£_

0

0

0

0

0

0

0 0

hs 0

0 h^

0 0

9

*F1 °

j

° AF1
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[IF2] =
XX

0 -I
XZ

yy

- I
ZZ

WF2
g

F2

0

0

0

0

2
F2

0

0

Q

4
The first matrix is defined about the body axes.

[I ] =EN

Underslung weight:

[I 1UN

I -I -Ixx xy xz

-I I -I
yx yy yz

-I -I Izx zy zz

.1 -I -Ixx xy xz

-I I -Iyx yy yz

-I -I Izx zy zz

6.4 Equations of Motion for Elastic Modes

EN

EN
0 0 . 0

w.UN

UN 0 0 0

The flexible supporting structure is assumed to be a free-free beam

idealized by a small number of modes of vibration. The structure can have

bending vibration in the two planes and a torsional vibration about its

longitudinal axis. These elastic modes are assumed to occur in SI coor-

dinate system, and therefore the equations of motion are written in SI system.

Furthermore the structure is assumed to vibrate about its equilibrium position.

Bending in xgl - ygl plane [Fig. 9]

The elastic deformation at any point on the structure due to the bending

deformation is written as

NM

V'sl' ?i (6.51)
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where r\. is the mode shape, £. is the generalized coordinate or normal coordinate

and NM is the number of modes.

The equations of motion written, in normal coordinate, are

{?} = {Q} (6.52)

Where {Q} represents the generalized forces

is the generalized mass

is the generalized stiffness

It is assumed that these vibration modes are small compared to the rigid body

perturbational motion. So there is no coupling between the vibration modes. The

generalized forces are (force at a location x modal displacement at the same

location or moment x slope of the modal displacement curve)

Qi - PySlFl W + QzSlFl Vx^Fl' + PySlWFl W

+ PySlF2 W + QZS1F2
 T1i,x(£F2) + PySlWF2 V*F2>

+ PySlEN W + QzSlEN T1i,x(°S) + [PySlWEN + PySlWUN] W

r"L PySlWS VX) dx

Terms with suffix 'S1W' refer to gravity loads referred in SI system. A typical

element of the mass matrix and stiffness matrix are

V n±
2 (̂ F2) + i

g *

w

2 r ̂ 2
and K. . = 0). I n . m (x) n . dx

11 i J is i
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where co. is the ic" mode natural frequency of the supporting structure

m is the mass of
s

Bending x .. - z plane

m is the mass of the structure/unit length
S

The elastic deformation at any point is given by

NM1
wc(x ,) = £ n,(x ,) C.(0 . (6.53)
S S ' i=NM+l S 1

The form equation of motion is similar to equation (6.46). The generalized

forces are

Qi = pzsm W + Q
ysm ni>x (*F1) + QySlwuN n.jX(os)

+ PzSlF2 ni(£F2) + QySlF2 ni,x (£F2
) + QySlWEN ̂ i,x(0S>

+ PzSlEN rli
(0S) +QySlENni,x ̂  '

Typical elements of the mass and stiffness matrix are

-*F2

(0s>

(os)

and

"8
(x) ni
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Torsion

The torsional vibration of the supporting structure is about x 7 axis
S.L

[Fig. 9]. The twist at any section due to the torsional deformation is given

by the normal modes ri . (x) as

NM2
*s (*sl> = E n, (x ) 5 (t) (6.54)
S S

The torsional vibration equation in normal mode is

MJ (5> + TK-J {?} = {Q} (6.55)

The generalized force Q.'s are

Qi = QxSlFl W + QXS1F2 V V
 + QxSlEN "i (°S)

ii <0s} +

Typical members of flj and [~K^ matrices are

.£

/

V7F2
 n± is(x) n.

'* '

n± is(x) n. dx + ixxpl n± (£F1) + ixxF2 n±

1, (Oq) +
1 o

WEN , 2 2 ,n , . WTO , 2 2 . ,h. ri. CO,;) H h, n. (0_)e 4 'a S s 1 !i S

Fl

where I is the moment of inertia of the structure per unit length about its
S

longitudinal axis.
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7. CONCLUDING REMARKS

A complete set of dynamical equations of motion for a simple model of

HHLA were derived in this report. These equations can be used to study the

stability of HHLA and to obtain the various response quantities at different

stations on the vehicle. For convenience, the equation numbers are summarized

below with the physical degree of freedom which it represents.

Blade equations

Flap Equation (5.104)

Lead-Lag Equation (5.105)

Torsion Equation (5.106)

Supporting Structure equations

Rigid body translation Equation (6.49)

Rigid body rotation Equation (6.50)

Bending in x ,-y , plane Equation (6.52)

Bending in x .-z .. plane Equation (6.52)

Torsion about x . axis Equation (6.55)

The coupled rotor/body equations of motion which have been derived in this

study have considerable versatility and can be used to model a number of diverse

rotary-wing configurations, which are listed below:

(a) Isolated rotor blade aeroelastic stability.

(b) Coupled rotor/fuselage dynamics for a single rotor.

(c) Response cyclic, collective and higher harmonic control inputs.

(d) Stability analysis of a tandem rotor system connected by a flexible

structure.

(e) Dynamics, aeroelasticity, and aeroelastic response of a Hybrid Heavy

Lift Airship.

Depending on the type of system which one intends to analyze the complete

equations presented in this document have to be simplified to fit the specific

application.

In a sequel to this report entitled "Aeroelastic Effects in Multirotor

Vehicles, Part II: Method of Solution and Results Illustrating Coupled Rotor/

Body Aeromechanical Stability", two separate coupled rotor/body problems are

96



solved with considerable detail. In the first case the equations are used

to predict the aeromechanical stability problem of a single rotor helicopter

in ground resonance, including the effect of the aerodynamic forces. For

this case high quality experimental results are available, and the agreement

between theory and test was found to be quite good. In the second case, the

stability of a simplified model vehicle (Fig. 2) representing an HHLA type

vehicle in hover is analyzed, and the basic aeroelastic characteristics of

such a vehicle are obtained.

The various details of the solution such as: evaluation of the equilibrium

position, stability equations in multiblade coordinates and appropriate methods

of solution are given in the second report, which constitutes a sequel to the

present report.
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Figure 4 .  D i s t u r b e d  Rotor Hub and  R u t o r  

B l a d e  Coordinate Sys terns 
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Figure 7. Deformed kth Blade Cross-Section Coordinate Systems 
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V(t)

Figure 10. Geometry for Oscillating Airfoil in Pulsating Flow
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Figure 11. Relative Flow Velocities

L£ - Circulatory Lift Normal to the Resultant Flow

LNC - Noncirculatory Lift Normal to the Blade Chord
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Appendix A; Equivalent Structural Model for

Offset Hinged Spring Restrained Blades

A.1 General

In this Appendix the expressions for the elastic restoring moments acting at

the hinge of a spring restrained blade are obtained. The root springs are re-

presentative of blade structural flexibility or they can represent flextures built

into the blade, thus the model simulates the elastic properties of the configuration

shown in Fig. A.I. The various expressions for the elastic restoring moments in

flap, lead-lag and torsion, respectively, are derived. Subsequently these expres-

sions are compared to similar equations obtained in previous studies. In this

comparison both elastic hingeless blades as well as spring restrained equivalent

models are considered. Furthermore it should be noted that the main advantage in

using this simple model for an HHLA type vehicle consists of the capability of the

model, to capture the essential behavior of both hingeless and articulated rotor

configurations.

Ormiston and Hodges [Ref. 13] have derived one of the first models of this type,

however Ref. 13 was restricted to the equivalent model of a hingeless spring re-

strained blade having only flap and lag degrees of freedom. The present model

represents an extension of Ref. 13, to the case where both torsional blade flexi-

bility as well as pitch link flexibility are incorporated in the blade model.

Peters [Ref. 14] has also derived a flap-lag model similar to Ormiston and

Hodges. In both studies, Refs. 13 and 14, the flexibility of the hub has been also

considered. A careful study of these two References reveals some descrepancies,

which are associated primarily with the hub flexibility . The expressions for

hub flexibility are also derived for our model since it was felt that these could be

useful in some/potential application. The final moment expressions obtained in this

study are capable of representing the coupled flap-lag-torsional motion of both

hingeless and articulated blades.

This Appendix is divided-into three sections. In the first section the moment

expressions, excluding hub flexibility, are derived for a spring restrained blade.

The second section treats .the special form of these equations for the case of an

articulated blade. Finally the last section presents the moment equations for

the blade including hub flexibility.
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A.2 Moment Equations for a Hingeless Blade

The flexible elastic blade is modeled as a rigid blade with three orthogonal

springs located at the root of the blade. These springs represent the flexibility

of the blade.in flap, lead-lag and torsion, respectively. In addition to these

three springs, a torsional spring, in board of these three springs, is introduced

to represent the control system or pitch link flexibility, see Fig. Al. It is

assumed that the orientation of these springs does not change as the blade under-

goes reorientation due to flap, lag and torsional motion. Consequently, the

following question can be immediately raised. Since the torsion or twist of the

blade is assumed to occur about the elastic axis of the blade which can have a

different orientation as the blade flaps and lags, the spring representing the

torsional stiffness of the blade should also change its orientation? The answer

to this question is negative. Since the model is intended to represent a hingeless

cantilevered blade for which the slope of the elastic axis at the root is always

zero, irrespective of blade orientation. In our model, the torsional stiffness of

the blade is represented by an equivalent torsional spring at the root. Hence, its

orientation does not change with the blade motion. The spring stiffness are Ko for
B

flaping, K£ for lead-lag, K^ for torsion and KA for the pitch link flexibility.
B B ~

From the physics of the problem it is clear that these springs are all torsional

type springs.

In deriving these equations the sign convention is important. All counter

clock-wise rotations and moments are taken as positive. The restoring moment

in any torsional spring, due to a positive displacement (i.e., rotation), is

clock-wise and hence negative.

Another important ingredient in this derivation is the coordinate system. Let

x,y,z be an orthogonal triad attached to the undeformed blade with zero pitch angle.

The X-axis is along the elastic axis of the blade as shown in Fig. A2. The X', Y',

Z1 system represents another orthogonal triad, rotated through an angle 8 about

X-axis in the counter clock-wise direction. The angle 0 represents the collective

pitch of the blade shown in Fig. A2. The root springs representing the blade flexi-

bility are oriented as follows: KQ along Y1 axis, Kr along Z' axis and K^ , KA-
PB ^B VB yC

along X' axis.

Using this information the expressions for the moments are derived next.

To derive the expressions for the restoring moments of the springs, due to

blade motion, the total angular displacement of the blade has to be decomposed

into components along the directions of the spring restrained hinges. The rotation-

al (angular) displacement components are then multiplied by the corresponding spring
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stiffness to yield the appropriate moments about the hinges. Finally, the various

moment vectors are expressed in terms of the component acting along the undeformed

blade axes X, Y and Z respectively. These expressions are then compared with the

results obtained in previous studies .

To arrive at the deformed blade orientation from the undeformed position a

specific sequence of rotations are followed, namely flap, lag and torsion. The unit

vectors in the directions of the undeformed and deformed blade coordinate systems

are related by an Euler angle transformation which is derived below.

The flap rotation is assumed to take place first, thus the X,Y,Z axes system

is rotated through an angle (-3), in the clockwise direction, about Y-axis repre-

senting the flap hinge of the blade shown in Fig. A3. Components of the angular

displacement (-B) along X', Y', Z1 axes can be obtained using the transformation

(A.I)

\
a ,]x'
/s
e ,.y
/N
e ,

V z )

S =

-

1 0 0

0 cosG sinG

0 -sin8 cosO
— _

\

£

X

^

y
ê

z

and e e , e are unit vectors along X', Y', Z' and X, Y, Z axes
y zwhere e , e ,,x y

respectively.

Components of (-3) along X', Y', Z' axes are along

X1 - 0

Y' - -gcos6

Z' - Bsin6 (A. 2)

Due to this rotation (-3) , the coordinate system is rotated to a new position

X.., Y Z shown in Fig. A3. The transformation of unit vectors between the two

systems is given by

ex
*.e.y
/N
e

z

=

cos3 0 -sing

0 1 0

sing 0 cosB_

'xl

'zl

(A.3)

The lag rotation is assumed to take place next, the system X^, Y^, Z^

is rotated about Z-, axis through angle (?), in the counter clock-wise direction,

representing lead-lag motion of the blade, shown in Fig. A.A. Equation (A.3) is

used to obtain the components of the angular displacement '£' along X,Y,Z axes.

113



These components are

X - -

Y - 0

Z -

along

(A.4)

These components along X,Y,Z are transformed into components along the dir-

ection of the spring axes X'»Y'>Z' using equation (A.I). These components

are:

along x1 --

' - CcosBcosO (A. 5)

Next the X,, Y, , Z, axes system is rotated to a new position X_ , Y~, Z_

shown in Fig. A4 . The relation between the unit vectors along X«, Y«> Z«

and X-, , Y,, Z, systems is given by

Sxl

V
g
zl .

=

cos? -sin? 0

sin£ cost; 0

0 0 1
.

ex2

ey2
e „
z2

(A.6)

Combining equations (A.6) and (A.3), the transformation of unit vectors between

X:_, Y , Z. and X, Y, Z systems; given below is obtained.

cosPcos? -cos3sin£ -sing

sinC cos? 0

sin(3cos£ -singsint; cosB

'x2

"z2

(A.7)

Finally the torsional rotation is assumed to take 'place. To represent torsion,

the blade is rotated through an angle (<J>) in the counter clock-wise direction

along the X_ axis, as shown in Fig. A5. The components of the angular dis-

placement (4>) along X, Y, Z system are obtained using equation (A.7) . These

components are respectively:

along X - <j)cos3cosC

Y -

Z - (A.8)
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These components are again transformed in the X', Y', Z' directions using

equation (A.I). The corresponding components are

along X' - (ficosgcos?

Y' - <J>sinCcos6 + <j)sin9sinBcost;

Z' -- <j>sin£sin9 + <t>cos9sin3cos£ (A. 9)

The total twist of the various springs oriented along X', Y', Z' axes is

obtained by adding equations (A. 2), (A. 5) and (A. 9). The various components

can be identified as:

along X' - -£sin|3 + <J>cos3cos£

Y' -- gcosQ + Ccos3sin8 + (|>sin£cose

+ <j>sin(3cosi;sin9

Z' - gsin9 + ?cosBcos9 - (JisinCsinO

+ 4>sinBcos£cos9 (A. 10)

In the model shown in Fig. Al, the springs representing the torsional

stiffness of the blade and the pitch link stiffness are in series and are

along X' axis. These two springs can be combined and can be represented by

an equivalent spring of stiffness K, = K , . K, / (K , + K, )., when K, is very
Y Tg TC ^B TQ yp

large, thenK, becomes K, . The restoring moments in the springs, due to

the flap, lag and torsional rotation of the blade can be written as

M , = -K, (-Csing + <J>cosBcosi;)

M ' = -KD (-3cos6

M , = -K-. (SsinG + CcosgcosG - <t>sin£sine + (jJsinBcos^cosG) (A. 11)
Cfi

Transformation of these moments along the undeformed blade axes (X,Y,Z), yields

the torsional, flapping and lead-lag restoring moments, associated with blade

motion. These are:
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Torsional moment

M = - K, (-£sinB + (t>cosBcos£)
X T

Flapping moment

KQ cos6 C-8cos8 + C,cos8sia8 + (J!si.ut,c.os8
y

+ K_ sin6 (Bsin6 + £cosBcos6 _ <J>sin?sin8 + 4>sinBcosCcos9)

Lead-lag moment

M = -Kg sin8 (-Bcos9 + £cosBsin6 + (JisinCjcosO + 4>sinBcos£sin6)
^ B

-Kc, cosQ (SsiaS + C,c.Qs8cos9 - (|)stn.C,sio.8 + ̂ siaBcosCcosQ)

Assuming B and £ are small angles and making the approximation sinB - B,

- C,, cosB - 1 and cos£ ~ 1, equation (A. 12) can be simplified to yield

M = -K, (-£B + <!>)
x 9

M = -Kg cos8 (-Bcos8 + ?sin6 + 4>£cos6 + 4>Bsin8)

+ Kr sinB (Bsin8 + ?cos6 - <J>£sinB + ^BcosB) (A.13)

M = -Ko sin6 (-gcosO + Csin6 + <f)?cos6 + 4>Bsin6)
Z Pg

-Kr cos6 (3sin6 + ?cos6 - <J>?sin9 + 4>6cos6)
^B

Rearranging the terms,

M = -K (-CB + (f>)
x \p

M = (B - <j)?)(KR cos2e + Kr sin 6) + (t, + <|>B) (Kr - Kg ) sin6cos6
y PB ^B ^B B

M = -(^ + <j>B)(KR sin
26 + Kr cos29) - (B - <K) (Kr - Kg ) sin6cos6

z PB ^B ^B B
(A.14)

Eqiiation (A.14) represents the torsional, flap and lag restoring moments of

th£ springs due to the flap, lag and torsional motion of the blade.

These expressions for the restoring moments acting on the spring re-

stfained model of the blade are compared with results published in previous

studies. For completeness these comparisons are carried out for both spring

restrained models of a hingeless blade and fully elastic representations of

th£ hingeless blade.
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Onniston and Hodges [Ref. 13] presented moment expressions for a spring

restrained model of a rotor blade representing a hingeless blade. They have

also taken hub flexibility into account. In order to compare the results

obtained in Ref. 13 with the expression obtained in this report, the hub stiff-

ness is allowed to become infinite, thus only the simplified expressions are

compared. Recall that the torsional degree of freedom was not considered

in Ref. 13. The expressions [Ref. 13] for the restoring moments are:

Flapping moment (Eq. 44 of Ref. 13)

M = -3(Kg cos26 + Kc sin26) - £(Kr - KR )sin6cos6 (a)
y B B B PB

Lead-lag moment (Eq. 45 of Ref. 13)

M = -£(Kn sin26 + Kr cos26) - g(Kc - Kg ) sinOcosO (b)
z PB B B B

Setting 4> = 0 in Eqs. (A.14)'yields

Mx = K0>B «

M = B(K0 cos26 + Kr sin20) + C(Kr - KR ) sin6cos6
y PB S ?B PB

M = -?(Kft sin20 + Kr cos26) - g(Kr - KR ) sinScose (A.15)
2 PB ^B ^B PB

By comparing equations (a) and (b) with equation (A.15), we find there is a

negative sign in the expression for M . The reason for this discrepancy is

that the authors of Ref. 13 used different sign convention. In their

case, M clockwise is positive and M counter clock-wise is also positive.

The authors of Ref. 13 have used this sign convention because their objective

was to derive a blade model which was a simple analog to the flexible blade

equations (hingeless) which were derived by Houbolt and Brooks [Ref. 15] who

have employed the same sign convention for M and M . The expression of they z

present study are also compared with the results of an elastic blade model.

The moment expressions obtained by Rosen and Friedmann [Ref. 16] for an

elastic blade are (Eqs. (15) of Ref. 16)

M = GJ(4> + v w )
x ,x jXX >x

M = -(El, - El,) sin0cos6(v + <J>w )
y L. O y AA , AA.

-(EI2 sin29 + EI3
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M = (El - EI-) sin6cos9(w - <pv )
Z £- -J j XX j XX

+ (EI0 cos26 + El- sin28)(v + <j)w ) (c)2 3 ,xx Y ,xx

where v, w, (j> represent the elastic lead-lag displacement, flap displacement

and twist at any section of the blade, and the quantities EI_, EI-, GJ

represent lead-lag, flap and torsional stiffness of the blade.

The expressions obtained in Ref. 16 represent the applied moments, thus

to obtain the restoring moments Equation (c) have to be multiplied by (-1)

and the resulting expressions are compared with Eqs. (A.14). The expressions

for M and M are the same, however there is a sign difference in the ex-

pression for torsional moment. The expression derived in this study contains

a term (<f>-CB) while the corresponding term in Ref. 16 is (<p + v w ).

This discrepancy is due to a different sequence of rotation followed by Rosen

and Friedmann [Ref. 16]. The sequence of rotations adopted in Ref. 16 was

lead-lag, flap and torsion. When a sequence of flap, lead-lag and torsion,

such as employed in the present study is used, the results of Ref. 16 are in

agreement with the results obtained in this study. Equations (c), representing

a hingeless blade, with Eqs. (A.14) corresponding to the rigid, offset hinged

spring restrained blade model one can identify a number equivalence relations,

which provide some physical insight. These equivalence relations are given

below. For torsion one has

GJ(<f> - v w ) = K,(c|> - £B) (A. 16)
,X ,XX ,X (p

where

K = K K / (K. + K, )

If the pitch link flexibility is very large, i.e. K, ->• °° then K, becomes

K, . We shall consider only K. in Eq. (A.16) because Rosen and Friedmann have(p (p
not considered the pitch link flexibility. Thus equation (A.16) should be

rewritten as

Comparison of the various other terms yields

(El - El )(v + <|>w ) = (K - K )U + B*) (A. 18)
L J >XX )XX ^TJ Pg

El (w - cj>v ) = K (6 - (j>O (A. 19)
f. ,XX ,AX (

118



El (w - <frv ) = Kg (B - c|>£) (A.20)
J , AA , A A r-*Tj

(El - El )(w - 4>v ) = (Kj- - Kg )(B - cf>O (A.21)
Z J j XX 4 XX S>-Q r-'g

El (v + <j)w ) = Kc (C + <)>B) (A.22)
£. j XX , A A "R

El (v + <|>w ) = Kg (C + 4>B) (A.23)
J j A A j AX T5

Setting ()) = 0 in equations (A.19), (A.20), (A.22) and (A,23) yields

El- w = Kr g2 ,xx CB
M

El. w = Ko B
3 ,xx PB

EI0 v = Kr ?2 ,xx CB
S

El- v = KR £ . (A.24)
3 ,xx 3B

S

Examination of these expressions reveals that Kr- , Ko represent the lead-
^B- PB

lag and flap stiffness EI_, El- respectively and g,^ correspond to the

curvatures in the elastic blade analysis. Comparison of the appropriate terms

in equation (A.17) reveals

GJ = K,

w v = B ' (A.25)
>x

This comparison indicates that both w and w can be identified as
j XX y A

quantities corresponding to the flapping angle B in the rigid spring

restrained blade model. This statement requires further clarification.

The comparison outlined above indicates that when dealing with moment

terms, such as El w , B has the role of the curvature. However when
y XX
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examining the role of g in the various transformations relating the unit

vectors of the deformed and undeformed states of the blade the role of 8

corresponds to w in the flexible blade equations. Furthermore it can be
>x

seen that <f> in an elastic blade corresponds (j) in a rigid blade model, this
>x

is due to the fact that the torsional moment in an elastic blade is defined

as GJ(}> whereas in the spring restrained blade model the torsional elastic
>x

restoring moment is K,<j>.

A.3 Moment Equations for an Articulated Blade

A typical articulated blade, which has no root springs in flap and lag

will not experience elastic restoring moments in about these hinges. Therefore

the model proposed for this case, shown in Fig. A6, involves only a torsional

spring and no springs for flap and lag. In the model shown in Fig. A6, two

torsional springs are provided. The spring K, represents the blade torsional<PB
stiffness and KJ. represents the control link stiffness. These are aligned

VC
along the undeformed blade axis x. Since the blade can perform flap and lag

motions during operation, the spring KJ. can orient itself along any direction
VB

in space provided the pitch link is inboard of flap and lag hinges. The spring

Kj. remains along the undeformed x-axis. If the pitch link is outboard of

^
leading and flap hinges, then both K, and KA change their orientation as the

'HB vc
blade undergoes flap and lag motion. Therefore one needs to consider two

cases: (a) pitch link inboard of flap and lag hinges and (b) pitch link out-

board of flap and lag hinges.

Case (a) Pitch Link Inboard of Flap and Lag Hinges

Consider Fig. A.6 numbers 1, 2, 3 refer to three nodes. At node 2, the

two springs K^ and KJ, are connected. The springs are oriented along the
TT5 T I"1D ij

undeformed elastic axis (X-axis of the coordinate system). In this case, since

the pitch link is inboard of flap and lag hinges, only K^ takes on different
VB

orientation as the blade undergoes flap and lead-lag deformation.

Assume that the blade has undergone a flap deflection (-3) and a lag

deflection (£) respectively, as shown in Fig. A7. The new position of the

elastic axis is X_ and the deformed coordinate system is X~, Y_, Z_. The

spring associated with blade torsional stiffness, KA , is now oriented along
VB

the X0 axis and the spring associated with pitch link stiffness, KA is oriented
i <PC

along the undeformed axis, i.e. X-axis. For this case one may write a stiffness

matrix relating moments to angular rotations as indicated in Eq. (A.26).
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This stiffness matrix relates the generalized displacements (rotations along X,

Y,Z directions) and the moments at nodes 1,2,3. In equation (A.26), M re-
^ x » y » 2

presents the moments along X,Y,Z axes at node i and 4> represents the ro-

tations along X , Y , Z axes at node i.

The equivalent stiffnesses of the system in torsion are obtained from the

solution of this matrix equation. The conditions under which this equation is

solved are
3 3 3<J> = A = <b =0 Node 3 is fixedx y z

and
2 2 2

M = M = M = 0 No external moment at node 2
x y z

When trying to solve the matrix equation under these conditions the individual

equations for M , M , M become redundant. This redundancy is due to the rigid

body degrees of freedom being included in the model. The physical reason for this

redundancy is due to the fact that the moment along the Y and Z axes cannot be

resisted by this spring model. In order to overcome this difficulty, it is as-

sumed that the flap and lead-lag angles are very small while the spring K^ is

oriented along the undeformed elastic axis, i.e., X-axis. The springs KA and

K, are in series and are oriented along X-axis and can be combined. For this

model, the relation between the torsional moment and the twist <j> of the blade

becomes

M = [K, K, / ( K , + K, ) ] < ) >
x 4> 9 * <p

= K , < j > (A.27)
<J>

Case (b) Pitch Link Outboard of Flap-Lag Hinges

When the pitch link is outboard of the flap-lag hinges both the springs

Ki and K, are always oriented in the same direction, from which the following
B C

relation between torsional moment and elastic twist is obtained.

+ KA )]* (A.28)

Therefore for an articulated blade, notwithstanding whether the flap and lag

hinges are inboard or outboard of the pitch link, the relation between the

torsional moment and the elastic twist is given by

m ( A > 2 9 )
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Combining this result with the result for a hingeless blade, discussed

previously, the general elastic restoring moment expressions become;

Torsion: M = - KA.. (<j> - £B) - K-<b?$

Flap- M = (3 - <K)(KR cos
28 + Kr sin29) + (<j>3 + ?)(KC -Kg ~)s±nQcosQy PB B B PB

Lead-lag: M = -(£ 4- 4>B) (KR sin 6 + Kr cos 9) - (B - <f>O (Kr -Kg )sin6cos0B z ^ ^ ^ v PB c,B £,B PB

. . ' (A.30)

For a hingeless blade

for an articulated blade

K^ =0, Kg = 0, K? = 0

and KA KA

A.4 Elastic Restoring Moments on a Rigid Blade with Root Springs and Hub

Flexibility

In this section, the elastic restoring moments due to the root springs

and due to the hub flexibility are derived. The model for this system based

on equivalent springs is illustrated in Fig. A8. There are two sets of ortho-

gonal springs, springs with stiffness K^ , Kr and K^ which represent the
PB ^B VB

blade stiffness in flap,-lead-lag and torsion, respectively. The spring

constant K,* represents the stiffness of the pitch link system and Kr and
VC ^H

Kg are the stiffnesses of the hub in flap and lead-lag directions. The hub
H

is assumed to be torsionally rigid. The X , Y , Z axis system represents the

undeformed blade coordinates with the X-axis oriented along the elastic

axis. The system X1, Y', Z' corresponds to the X, Y, Z axis system after

a counter clock-wise rotation about the X-axis by an angle 9. The angle

6 represents the collective pitch of the blade.
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The orientation of the various springs is as follows: K is along

Z-axis, KR is along Y-axis, KR is along Y'-axis, K is along Z'--axis,

K, and K, are along X-axis (see Fig. A8). The numbers 1, 2, 3 in Fig.

A8 refer to the three nodes. The blade spring system is attached to the

hub spring system at node 2.

The relation between the moments and the angular displacements for this

equivalent spring system describing the combined blade and hub is given by

the matrix equation (A.31), on the next page.

In equation (A.31) M , M , M refer to the elastic moments at node ix y z

in the X , Y , Z directions, respectively and <j> , (j> , <J> refer to the angular
x y z

displacements at node i in the X , Y , Z directions, respectively. The various

moments are obtained in terms of the angular displacements by solving this

matrix equation subject to the following conditions:

When the hub is fixed, the angular displacements at node 3 are zero and then

cj>3 = <j>3 = <j)3 = 0 (A.32)

Since there is no external moment at node 2,

M2 = M2 = M2 = 0 (A.33)x y z

Solving the matrix equation, Eq. (A.31) subject to the conditions given in

2 2 2equations (A.32) and (A.33) and recognizing that M = M = M =0 one
x y z

obtains

-(K cos29+KD sin20) cf)1 - (K. - K )

-(K + K cos 0 + K_ sin 6). <j> - (K0 - K ) sin6cos0(f) (A.34)
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(Kg - Kr )sin9cos8 4> - (KB cos2

B B z B
sin20)

- cj>2 (KRz P sin6cos8- (KR + KR cos28 + Kr siti20)4>2

ts ti ^ 'r

(A.35)

(A.36)

2 2 2 'From Eqs. (A.34), (A.35) and (A.36) <f> , <J> and 4> can be expressed in termsx y z

of <j>x, * , < / > z , thus

(A.37)

*«

d)

y

Kg +Kg cos28 -(Kg -K? )

4-Kr, sin 8 sin8cos8

-(Kg - K? ) Kr, +KC cos28

sin6 cos 6 +KR sin28
B

1
'

(Kg -Kr )sin8cos8(()1
PB ^B z

2 2 1
+ (Kg cos 6+Kj- sin 8)<}>

(A.38)
where

A = %c o s + K g sin^XKo +Kft coS
26+Kr sin26)-(KR -Kr )2sin26cos2e

P P P ^ P ^

K^ Kg +K^ (KR cos28+Kr sin28)+K3 (Kg sin20+K? cos20)+K? Kg (A. 39)

From Equation (A. 38)

= |- {[Kg (K. cos28+Kg sin28)+K>- Kg l^1 + Kg (Kg -Kr )sin0cos0<|)1]
A PH ^B PB S PB 2 PH PB B y

(A.40)
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1+ [K, (KR cos26+Kr sin26)+Kft Kr ] (f)1 } (A. 41)
2 ^ P ^ P ^

and

<t>2 = T ^ K r (KR -1C
y A ^H PB

2 2 2 1 1 1
Substituting for <f> » $ > $ in terms of <f> , 4> , 4> in equation (A. 31), and writing

1 1 1the expressions for M , M , M , one obtains the torsional moment
z y X

KA KA
1 B C 1

M = „ ... <t>x K<j) +K,j, Yx
B C

(A. 42)

The flap moment can be written as

M Ks (KR cos
26+Kr sin20) + KB Kr Kc }

P P <» . P ^ P

(Kr -KR KR cos6sin6 (A. 43)

The lead-lag moment can be expressed as

(Kr -KR ) Kr Ko sinOcosQ (A. 44)

In the last three equations represents angular displacementsJ> , <j) ,
x y z

given at node 1 along X,Y,Z axis. These angular displacements can be related

to the flap, lead-lag and -torsional rotations of the blade. The flap angle

(-3) is about the undeformed Y-axis, the lead-lag angle (<f>) is about the Z axis

after it has undergone flapping deformation and the torsion (£) is along X-axis

after the flap and lag deformations have taken place. Resolving these angular

displacements along X,Y,Z axis, using equations (A. 4) and (A. 8) together with

the fact that (-B) is along Y-axis, the components of the angular displacement

(or rotation) about the X,Y and Z axis are

= -r,sin$ + cjicosgcost;

<(> =

$ =

-g + <J>sinz;

£cosg + <j>sin3cosr,
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Introducing the small angle assumptions for $, £ and <j> , equations (A. 45) become

< = - CS + <f

(A. 46)

Substituting these in equations (A. 42), (A. 43) , and (A. 44) , the elastic moments

are obtained

M = W+9P) {K K (K Cos
2g'+ K sin29) + Kr Ko Kr

Z A "=>TT PlI LrTl P« *̂ TT *-*« ^

~>' (Rr - Ko ) Kr Ko sin9cos6 (A. 47)
A ^"B PB ^H PH

(g-({>0 tK R (R cos28 + K_ sin29)+KR Kr KR }A ?H PH PB ?B
 7 PB ?B PH

(Kr - KR ) Kr Ko sin6cos6 (A. 48)
'' P ^ P

(A'49)

Equations (A.47), (A.48), and (A.49) can be written in an alternative form, i.e.

in terms of equivalent stiffness in flap, lag and torsion respectively.

Defining KA K,
B YC

(j) Ko, +KA

\\

K, " B
Kr +Kr

H B
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equations (A. 47), (A.A8), (A. 49) with the superscript 1 deleted, can be

written as

M = !£±4§! {K - R(Kr - K0) sin
26} + 1M?1 R (K _ K ) sinecos6 (A. 50)

z A, r, C P A, 5 6

M = _ (B-<K) {KQ + R(K_ - Kfi) sin
26} - ̂ ŜJ. R (K - KR) sinOcosS (A.51)

y A, B C B A, C B

M = K, (<(> - £B) (A.52)z <J>

where
I/Kg - 1/K?

R =
(I/Kg + I/Kg ) - (1/Kj. + 1/K? )

and A' = 1 + R (1 - R) sin29 (K - Kg)2/Kg K?

When the hub stiffness are very largeRbecomes unity and the moment equations

reduce to those obtained previously. When the blade stiffness is very large, R

reduces to zero. These moment expressions have to be multiplied by (-1) to

obtain the restoring moments of the springs.

Peters [Ref. 14] has given the moment expressions for a spring model

including hub flexibility. The torsional degree of freedom was not consid-

ered in Ref. 14, thus when substituting <j> = 0, equations (A.50) - (A.51)

reduce to the equations given by Peters.

Combining the results for an articulated blade and for an elastic blade,

general expressions for moment are given below.

The restoring moment in flap is

K • (B'4'C) (K, + R(K - K.) Sin26)+ R(K . K
A' '' ' (A.53,

The restoring lead-lag moment is

_ R (K K ) Sin2e} _
R(K v

A' ,.
(A. 54)

The restoring torsional moment is

M
x = '

 K<), (* - ?P) - 4. (A. 55)
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For an articulated blade
K 4 > K 4 >

and =

For a hingeless blade K, = 0

K IT If V If Vn -̂rt 1\_^*_ ^ i * V i

~e KB +KB ' ~? K^ +K^ ' ^ K^ +K(J

1/Kp - 1/KC
R = 1 2

(1/KR + I/JO ) - (1/K + 1/K_ )

and A' = 1 + R (1 - R) sin29 (K - KQ)
2/K K0
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A l .  Equivalent Spring Restrained Blade Model 



Y'

*• Y

X, X'

Figure A2. Undeformed Axes

Y.Y,

Figure A3 Flap Angle

tZ1<Z2

X2' X3

Figure A4. Lead-Lag Angle Figure A5. Torsion Angle
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Figure A6. Articulated Blade Model

Figure A7. Orientation of the Deformed Blade After Flap and Lag Motion
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X, X'

Z'

Figure A8. Equivalent Spring Restrained Blade Model With Hub
Flexibility
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