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PREFACE

This report presents a set of governing coupled differential equations
for a model representing a Hybrid Heavy Lift Airship (HHLA). These equations
serve as the basis of a numerical study aimed at determining the aeroelastic
stability and structural response characteristics of the HHLA. These results
will be presented in a follow on report which will represent Part II of this
study.

The research effort reported herein was carried out in the Mechanics
and Structures Department at UCLA by Dr. C. Venkatesan and Professor P. Friedmann
who served as the principal investigator.

The authors want to take this opportunity to express their gratitude to
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NOMENCLATURE

Total cross—sectional area of the blade

Lift curve slope

Acceleration of a point p on kth blade

Blade semichord

Drag coefficient for blade

Theodorsen's lift deficiency function

Drag force on envelope

Drag force per unit length on kth blade

Bending stiffness of the supporting structure in XS—YS plane
Bending stiffness of the supporting structure in XS—ZS plane
Blade offset

Unit vectors along X, Y, Z axes

Bending stiffness of blade in lead-lag

Bending stiffness of blade in flap

- Damping coefficients

Torsional stiffness of the supporting structure/blade
Distance between origin Og and C.G. of the underslung weight
Distance between hub center and C.G. of the fuselage

Distance between origin Oy and center of buoyancy of envelope
Distance between origin Og and C.G. of the envelope

Distance between C.G. of the supporting structure to the origin
Os

- Moments of inertia of the fuselage F, and F

1 2

- Principal moments of inertia per unit length of the blade about

cross-sectional axes

Inertia tensor

vii



KB ,K; - Root spring stiffness in flap and lag, representing blade
B =8 stiffness
K¢ ,K.¢ - Stiffness of the root springs representing blade torsional
B ¥C stiffness and control link stiffness
KB ’KC ~ Stiffness of root springs representing hub stiffness in flap
H ~H and lag
Ll’LZ - Lift due to rotor systems 1, 2
LB - Buoyant 1ift on envelope
LC- - Circulatory flow lift
LNC ~ Noncirculatory flow lift
L.,% - Distance between the. origin O_ of the supporting structure and
F1°7F2 s
C.G.'s of fuselages F, and F,
m - Mass per unit length of the supporting structure/blade
MFI’MFZ - Fuselage masses of fuselages Fi» Fy
Ma — Moment due to envelope
M.X,My,Mz - Elastic moments in torsion, flap and lag
N - Number of blades
NM,NM1,NM2 — Number of normal modes used in modeling the supporting structure
0 - Origin located at the center line of the supporting structure
s . _
041295 - Hub Centers
pTFl’pTFZ
~ Thrust force
P11°Pr2
Pri*PaksPp Distributed blade inertia, aerodynamic and damping forces

- dyp9pps9p  ~ Distributed blade inertia, aerodynamic and damping moments

P - Force

PIk’PAk - Inertia, aerodynémic forces of the rotor blade

Q - Moment

QIk’QAk’QDk - Inertia, aerodynamic and damping moments of the rotor blade
RH - Perturbational hub motion

R - Rotor radius

rpk ~ Position of vector at a point p on kth blade
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t ~ Time

W sV W - kth blade deformation in axial, lead-lag and flap directions

vs’ws/vsl’wsl— Elastic deflection of the supporting structure

VAk — Free stream velocity

VF ~ Forward velocity of the vehicle

W _ .

N Underslung weight

W - Weight

XA ~ Offset between the elastic center and the aerodynamic center
in blade cross-section

XI - Offset between the elastic center and the mass center in blade
.cross-section

XT - Offset between the elastic center and the tension center in blade
cross—-section

Xy - Coordinate along kth blade elastic axis

Yok’ Zok - Blade cross-sectional coordinate

O - Angle of forward tilt of the rotor plane

Bp - Blade precone angle

By - Flap angle for—kth blade

;k - Lead-lag angle for kth blade '

¢k - Torsional angle for kth blade

€ - Basis for orders of magnitude comparison associated with typical
elastic blade slopes

nok’gok -~ Blade cross-sectional principal axis coordinate

ny - 1P pode shape

8,0, - kN blade collective pitch

elc,els - Cyclic pitch components

eBk - Pretwist in blade

eGk ~ Geometric pitch in kP blade



-6 - - Rigid bod turbational rotation in yaw-pitch-roll
ezs eys exs Rigid body pertu y P
Ak - Inflow ratio at kth blade
Vi —~ Induced velocity at the kth blade cross-section
0 - Density of the material of the blade
Pa - Density of air
¢ik - Inflow angle
¢S’¢Sl - Elastic twist in supporting frame
u ~ Advance ratio
. th
by - Azimuth angle of k blade
. th
Wy - Angular velocity of k  blade
. .th

w, - Natural frequency of the supporting structure in i~ mode of

o vibration
Q - Rotor r.p.m.

Subscripts
EN - Envelope
F1,F2 - Fuselages Fl,Fz/forces acting at fuselage C.G. 0F1’0F2
H - Hub center
Hi,H2 — Forces acting at hub center OHl’OHZ of rotor systems Rl’RZ
R - Rotor, quantities refer to R system
S,s - Supporting structure, s system
S1,sl - sl system
T - Thrust force
UN - Underslung weight
W - Gravity loads
X,¥52 - X,¥,2z components

d

()’x - =
1,2,3,4,5 - Quantities refer to the corresponding coordinate system



SUMMARY

This report presents a set of governing coupled differential equations
for a model representing a Hybrid Heavy Lift Airship (HHLA). The model consists
of a bouyant envelope, multiple rotor systems, an underslung weight and thrusters,
all attached to a flexible supporting structure. The dynamic equations are
written for the individual blade with hub motions, for the rigid body motions
of the whole model and also for the flexible modes of the supporting structure.
The purpose of these equations is to serve as the basis of a numerical study
aimed at determining the aeroelastic stability and structural respomse charact-

eristics of the HHLA.



1, INTRODUCTION

Hybrid Heavy Lift Airship (HHLA) or Hybrid Heavy Lift Helicopter (HHLH) is
useful for providing heavy lift capability whose potential applications are
for logging, cbnstruction, coast guard surveilance and military heavy lift
capability. These vehicles combine a buoyant envelope lift with 1lift and
control forces generated by a multiple rotor system. A rough sketch of a
HHLA configuration is shown in Fig. 1. Such 4 configuration is different from
the conventional rotorcraft which have been considered in the past. It is
‘well known that the aeroelastic and structural dynamic response problems are
crucial for the safe design of a successful rotorcraft. Therefore it is
essential to consider the basic aeroelastic and dynamic behavior of HHLA -type
vehicles so that the potential aeroelastic instability modes and structural
dynamic features can be simulated and identified in the design process,

It has been established that rotary-wing aeroelasticity is inherently
nonlinear [Ref. 1]. Aercelastic studies performed in both industry and re-
search organization are indicative of this aspect. Thus the correct treatment
of a wide class of problems in this field requires a consistent development
of a mathematical model which includes gecmetrically nonlinear effects, due
to the inclusion of finite slopes in the inertia, structural and aerodynamic
operators. It is also well known [Ref. 2] that the unsteady aerodynamic en-
vironment in rotorcraft is complicated, Accurate mathematical models, in-
cluding the unsteady wake effects are rarely incorporated in aeroelastic
analyses. In HHLA type vehicles these difficulties will be further compounded
by interference buoyant 1ift. Therefore, it is clear that study of some basic
aeroelastic effects in HHLA type vehicles is important for the effective design
of such vehicles.

Some of the typical problems that might be encountered by the unique con-
figuration represented by HHLA type vehicles are described below.

(a) Isolated Blade Instabilities: These instabilities are of the flap-lag,

flap-pitch or coupled flap-lag-torsion type and can occur both in hover and
forward flight. Even if some existing rotor systems which are expected to
be free of these isolated blade type instabilities, a wake excited flap-pitch

or coupled flap-lag-torsion flutter can occur at low thrust and low inflow



[Refs. 2, 3 and 4]. This situation could potentially be of interest for HHLA
type vehicles when the rotors are lightly loaded and the buoyance ratio B is
large [buoyance ratio B = buoyant lift/vehicle gross weight]. Furthermore, it
is reasonable to concentrate primarily on the hover case for HHLA type vehicles
because the forward speed of HHLA type vehicles will be low (i.e. u < 0.20). It
was shown [Ref. 5] that forward flight is frequently stabilizing.

(b) Coupled Rotor/Support System Instabilities: A rotor mounted on a moving

or flexible support system can have additional instabilities when compared to

an isolated blade. On the ground a mechanical instability can occur known as
ground resonance [Refs. 2 and 6] and this instability is known to be sensitive
to the flexibility and damping of the landing gear system. In flight, the
coupled rotor/support system can experience an aeromechanical instability usual-
ly-denoted as air-resonance [Refs. 2 and 6]. All these instabilities could be
encountered in a HHLA type vehicle, because furthermore, the buoyancy effect

and the flexibility of the supporting structure could modify these instabilities
in an unexpected manner.

(c) Vibration Problems: The vibration levels in helicopters have two peaks, when

plotted as a function of.advance ratio [Ref, 6}. One peak occurs at relatively
low advance ratios and the second at high advance ratios, Since, the advance
ratio for the HHLA is low, this type of vehicle could experience considerable
vibration levels. Thus, it is necessary to estimate the vibration levels and
the resulting dynamic stresses to determine the fatigue life of the structure.

To gain a fundamental understanding of aeroelastic effects which could be
encountered on HHLA type vehicles due to their unique features (such as buoyancy,
multiple rotors, flexible supporting structure and underslung load), a study of
an idealized, simple model, representative of a typical HHLA vehicle, shown in
Figure 2, was selected. This report presents a detailed derivation of the

equations of equilibrium which cover the dynamics of this system,



2. AEROELASTIC MODEL OF AN HHLA

2.1 Introduction and Assumption

To study the basic aeroelastic problems which could be encountered in an

HHLA type configuration, a typical configuration shown schematically in Fig. 2

will be considered. The essential features of the configuration are:

(a) A flexible supporting structure with bending stiffness EIy(x) in the
Xg~Zg plane, bending stiffness EIz(x) in the Y -Xg plane (Y5 coordinate
is normal to the figure), a torsional figidity GJ(x) and a mass distri-
bution m(x).

(b) Two rotor systems capable of providing lift, each having an arbitrary
number of blades N, are attached rigidly to the ends of the flexible
structure. The distance between the center line of the structure to the
hub center for the rotor systems is hy,

(¢) Two masses Mgy, MFZ having inertias IFl and Ip,p respectively are attached
to the ends of the flexible structure. These masses and inertias represent
the helicopters. The distance between the origin 0, fixed in the supporting
structure to the C.G.'s of the fuselages Fl and F2 are 4 and

EL

EFZ respectively. The C.G. of the supporting structure is at a distance h5

from the origin O Furthermore it is assumed that the C.G.'s of the

S
supporting structure and fuselages are on the X-axis.

‘(d) A weight wUN is attached to the structure. Its C.G. is at a distance h1 from
the origin Og. This weight can move freely or it can be locked in a fixed
position with respect to the flexible structure.

(e) An envelope, providing the buoyant lift LB and drag DB acting at its center of
pressure, is attached to the structure. The center of pressure is at a dis-
tance h3 from the origin 0. The C.G. of the envelope is at a distance h4
from the origin Og.

(f) Concentrated axial loads PTl’ PT2 simulate thrusters.

Using this model, the dynamic equations of motion for the combined system
consisting of two rotors, flexible structure, buoyant envelope and load wUN are
derived. The derivation requires four ingredients: blade equations with support
motions, equations for the flexible structure connecting the rotors, equations
representing the forces and moments introduced by the envelope and finally a
representation of the dynamics of the load wUN'

Certain assumptions are introduced before writing the dynamic equations for

this system, these are given below:



(1)

(2)

(3)

(4)
(5)

(6)
(7
(8)
(9)
(10)

(11)

(12)
(13)

(14)

(15)

The rotor blades are assumed to be rigid with equivalent root springs
representing the flexibility of the blade.

The rotor blades are attached to the hub with an offset e from the axis

of rotation (Hub center).

The blade feathering axis is preconed by an angle Bp. The blade has no
torque offset, sweep or droop.

The feathering axis coincides with the elastic axis of the blade.

The blade cross-section is symmetric and has four distinct points:

elastic center, mass center, aerodynamic center and tension center (Fig. 3).
The structural damping in the blade is assumed to be of the viscous type.
The rotor shaft is rigid.

The rotor speed is constant.

The rotor consists of three or more blades.

Two-dimensional quasi-steady aerodynamics is used to obtain the aerodynamic
loads. There is no reverse flow and stall. The compressibility effect

is neglected.

The C.G. of the fuselages are on the center line of the supporting structure
such that the individual C.G.'s lie on a straight line.

The underslung mass is rigidly attached to the structure.

The elastic deformations of the supporting structure are at least one order
of magnitude lower than that of the blade deformation.

Flexible structure is modeled by using free-free beam modes with arbitrary
mass and stiffness distribution.

Aerodynamic forces and moments due to the envelope are modeled by using

the model provided in Ref. 7. Quasisteady aerodynamic theory is used for
blade aerodynamics, and aerodynamic interference between the rotor and

the envelope is neglected.

Based on these assumptions, the dynamic equations of motion for the model

are derived, using force and moment equilibrium conditions at the connecting

points as was done in Ref. 8.

2.2 Ordering Scheme

When deriving equations of motion for such a multi-rotor system, a large

number of higher order terms has to be considered. Previous research has clearly

indicated that many higher order terms can be neglected systematically by using



an ordering scheme [Refs. 1,8]. Warmbrodt and Friedmann [Ref. 8] and Levin*
have, in their derivation of coupled rotor/fuselage equations, assigned in a
judicious manner, appropriate orders of magnitude for various terms encountered
in the coupled rotor/fuselage equations. The ordering scheme employed in this
study follows this approach. By assuming fuselage rotations of order € many
additional terms will appear in the coupled rotor/fuselage equations. Such
an ordering scheme was recently used in Ref. 9. 1In the earlier derivations,
the fuselage was assumed to have only rigid body degrees of freedom and the
orders of magnitude of the corresponding perturbed quantities are O(€3/2). In
the present case, the fuselage/supporting structure is being considered flexible
and orders of magnitude are assigned also to the deformation of the supporting
structure. An order of magnitude of 0(625 is assigned to the elastic deformations
of the structure so that this effect appears in the hub motion while at the
same time the number of terms in the equations remains manageable.

The basis of the ordering scheme is a small dimensionaless parameter €
which represents typical blade slopés due to elastic deflections. It is known

that for helicopter blades € is in the range
0.1 £ e<0.2

The ordering scheme is based on the assumption that
1+ 0¢h 21

. 2 L . . . '
i.e. terms of the order of 0(e”) are neglected in comparison with unity, The
orders of magnitude for the various parameters governing this problem are given

below.

abR h h2 h3 h4 h5 QFI QFZ
y X*R 'R R -

X 1
"R R R

Fa
coswk, sinwk, R’

m

1 3 ] _
a 52‘( ) = W () =0
B2 -2 -
k x
k
1
- b}
eok’ eGk = 0(e%)

*
J. Levin, "Formulation of Helicopter Air Resonance Problem in Hover with Active
Controls", M.S. Thesis, Mechanics and Structures Department, University of
California, Los Angeles, September 1981.
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3. COORDINATE SYSTEMS

In the derivation of equations of motion of the HHLA model, various
reference coordinate systems are used. The transformation relation between
quantities referred in the various inertial, noninertial coordinate systems
to be established before deriving the equations of motion. The relation be-

tween two orthogonal coordinate systems with axes Xi’ Yi’ Zi and Xj’ Y., Z

RN
with é_,, € ., &€ ., and & ., & ., &€ ., as unit vectors along the respective axes
xi’ Tyi’ Tzi xj? yj z _
is
A A
e . e .
xi T xj
e, - = [T,.] e . (3.1)
yi 1] ¥y
e . e .-
zi zj

where [Tij]’ the transformation matrix, can be found using the Euler angles re-
quired to rotate the j-system so as to make it parallel to i-system.

The S-system (Fig.2) is an inertialsystemwhoseorigh1osisfixedatthecenterline
ofthesupportingstructureintheunperturbedstatewiththeZsaxisverticallyupwards
passing through the center of gravity of the envelope and XS is directed aft.

The Sl-system is a noninertial coordinate system whose origin is also
fixed at the same point 04 of the supporting structure. This is a body fixed coordinate
system which moves along with the body during perturbational motion. The S-
system and Sl-system coincide with each other in the unperturbed state of the
model.

The R-system is another inertial system fixed at the center OH of the
unperturbed hub. The directions of the axes of this system are parallel to
that of the S-system. It should be noted that in the development of rotor blade
equations, only one general rotor system with hub motions is considered. Con-
sequently one set of rotor coordinate systems will be defined. Thesg definitions
are valid for all the rotor systems in the model. The only difference that
will occur are the different hub motions due to the relative positions of the
hubs with respect to the origin of the S-system. This is accounted for in the
derivation by deriving a general expression for the motion of hub center 0H
due to the rigid body translation and rotation and due to the elastic defor-

mations of the supporting structure.



The l-system is a body fixed system with its origin fixed at the center
of the hub 0Oy (Fig. 4). Prior to perturbational motion the l-system coincides
with the R-system. It is assumed that the l-system and Sl-system are parallel
systems, because as pointed out earlier that the elastic deformation slopes of the

7/2).

supporting structure are of order 0(e So any small rotational motion given
to the hub fixed l-system, due to the elastic deformation of the supporting
structure, is assumed negligible.

The perturbational translational motion at the hub center OH due to the
rigid body motion and the elastic deformation of the structure is written as

RH = Rx exR_+ Ry eyR + Rz €.R (3.2)

and if ez, 6y, 92 represent the yaw-pitch-roll rotations of the structure then

the transformation matrix [TIR] can be written as

1 0 0 cosf 0 -sinb cosb sinf 0
y y z z
[TlR] = 0 coseX sinex 0 1 0 —sineZ coseZ 0
0 -sinb®_ cosb sinf 0 cosb 0 0 1
X X y y

/

Since ex, ey, SZ are of order e(e3 2), the sines and cosines can be replaced

with sin 6 = 6 and cos 6 1. Thus
1 o -0 1
z y

8y6X—GZ 1 6 (3.3)

[T %

1R}
8 6.+ 968 -6 1
zx y zy X

Rotating 2k-system is a blade fixed coordinate system which rotates with the
kth blade. This 2k-system is rotated from the l-system by the azimuth angle,
wk’ of the kth blade (Fig. 4) about Z1 axis. The transformation matrix is

coslpk sim})k 0
[Ty, = —simpk coskpk 0 _ (3.4)

0 0 1



Rotating the 2k-system by an angle -B_ (precone angle) about YZk—axis and

kth

translating the origin to the blade bearing by a distance e ngk’ gives

the 3k-system (Fig. 5). The X,, —axis is along the elastic axis of the

3k
undeformed kR blade. Since Bp is of the order 6 (g), sin Bp = Bp and
cos Bp = 1, The rotation matrix is
1 0 B
p
[T32] 0 1 0 (3.5)
- 0 1
Bp

The 4k-system (Fig. 6) is fixed in the cross-section of the kth blade. Trans-
lating 3k systemznlamount.xk éx3k gives the 4k system at the cross-section X
of the kth blade prior to elastic deformation. During elastic deformation

of the kth blade, i.e., flap, lag and torsion, the 4k system translates and
rotates with the cross-section. The origin of the 4k system after the deform-

ation is given as
e + 9 Bae TV Sga F e B (3.6

The rotation of the 4k system is obtained by Euler angles —Bk, Ck’ ¢k. These

angles represent the flap-lag-torsional rotation of the kth blade at location

bid The sequence of rotation is flap-lag-torsion. The transformation matrix

K"
[T43] is

1 0 0 cosCk sinZ;k 0 cosBk 0 sinBk
[T43] = 0 cos¢>k 51n¢k -31an coka 0 0 1 0

0 —sind)k cosq)k 0 0 1 —31n8k 0 cosBk

Since the angles ¢, , z,, B, = 0(c), the transformation matrix can be simplified
. k k> "k

by assuming sin 6 * 0 and cos 6§ = 1, and be written as

T A Y
Bl O 1

10



In our model, we have considered the blade as a tigid blade with root springs.

So, the relation between the translation and rotation is

vy = Xka and W = —(—kak) = kak (3.8)

To facilitate the description of the blade element aerodynamics, the 5k
system (Fig. 7) is defined by removing the torsional twisting of the blade

from the 4k system which gives the rotation matrix

Fl 0 0

[T54] =10 cos(—¢k) sin(—¢k) (3.9)

0 —sin(-¢k) COS(—¢k)

when ¢k is small, it can be written as

1 0 o0
(T;,1 = [0 1 -o (3.10)
0 ¢ 1

Summary of Coordinate Systems

Symbol Coordinate System Unit Vectors
S Inertial system. Origin O 8., 8,8
s Xs’ "ys’ “zs

v

fixed at the center line of
the undistrubed supporting
structure with ZS axis pass-
through the C.G. of the
envelope

~ A

S1 Noninertial body fixed. €1’ eysl’ €, c1

Origin at the point O  on the
supporting structure

~ A

R Inertial. Fixed at the un- €px’ eRy’ Rz

>

deformed hub center OH' S and

R are parallel systems

>
o>

1 Noninertial body fixed. Ori- €. eyl’ 21
gin at the center of rotor
hub Oy. S1 and 1 are
parallel systems

11



2k

3k

4k

5k

Rotates with kfh blade. Ori- & ,
%2k
gin at the center of the
rotor hub Oy

Rotates with kth blade. Ori~ & .,
%3k
gin at the k! blade pitch

bearing. Preconed. Xqp axis
coincident with blade elastic

axis in undeformed position

th

Rotates with k blade. Ori-~

Cxbk’
gin at the elastic axis of
the deformed blade cross-~

section at a distance Xy

th

Rotates with k blade. Ori~

éx5k’
gin at the elastic axis of

the deformed blade cross-

section at a distance Xy -

Torsional rotation of the

blade not included

12
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4. MOTION OF THE VEHICLE

The unconstrained vehicle has six rigid body degrees of freedom and also
has elastic deformation of the supporting structure. Before presenting the
equations of motion for the blade and the structure, it is necessary to es-
tablish certain kinematical relations between the vehicle motion and the hub
displacement, because the blade inertia and aerodynamic loads are affected by
the hub displacement. In this section, the position vector of the origin of
the hub centers 0Hl and OH2 and the rotation vector at the rotor systems, due
to the perturbations in rigid body translation and rotation, and elastic de-
formation of the supporting structure, is derived. Subsequently these expres-

sions are used in writing the blade loads.

4.1 Kinematical Relations

The sequence of perturbational motion of the vehicle model {Fig. 8], as-
sumed to take place, consists first of rigid body translation of the origin 0s of
the supporting structure, i.e. origin of the S-system, then rigid body rotation
in the sequence yaw-pitch-roll and finally in the perturbed position, the elastic
deformation of the structure. Referring to Fig. 8, the perturbational trans-
lational motion occurs along Xs’ Ys and ZS coordinate axes. After the rigid
body rotation, the body fixed axes system is referred as Sl-system. The elastic
deformations occur in the Sl-system [Fig. 9].

During rigid body perturbational translation, the origin O.S is moved through
a distance,

Rog = Ry, &, + Rys & +R e (4.1)

Then the model is rotated about Zs axis through an angle ezs representing yaw
motion, followed by a rotation eys about the yawed YS axis representing pitch.
To represent roll, a rotation exs is introduced about the yawed-pitched Xs axis.
The new position of the body axis system is Sl1. The transformation of unit

vectors from Sl-system to S-system is given by

13



e 1 -6_+68_86 6 _+8 86 é

XS Zs Xs ys ¥S 2§ Xs xsl
‘eys = ezs 1 —st+6ysezs eysl (4.2)
€28 -eys O s 1 €251

Figure 9 refers to the pertubed state of the model after rigid body motion.
It is assumed that the elastic deformations of the structure occur in this
state. The elastic deformations are bending in Xsl’ YSl plane, bending in
Xsl’ Zsl plane and torsion about XSl axis. The deformations are represented
by

1. v

sl along Ysl

2. w_, along ZS

sl
3. ¢sl along Xs

1
1

Position vector of the C.G. of the fusélage F2 (is point OFZ) after the de-

formation is

T =2 .8 _+v 2 +w é (4.3)
0F2 = “F2 “xsl sl | I sl | 82 Zsl
where the symbol ig refers to the value of the appropriate displacement
at location 2F2'
The position vector of the origin of hub in rotor system 2 (i.e. point OHZ)
after the elastic deformation is

Fonz = P2 T P2 Ver,xg,) Gxe1 “sllpp, ™ h2¢31|2F2) Cysl

4+ (h, + v

2 sl]ng) €251 (4.4)

Due to these deformations, there is also a rotation. The rotation along axes

at OFZ and OH2 are given by

) =8 =¢ 8 -w & . +v e (4.5)
OF2 OH2 SIIQFZ xsl sl,x[gFz ysl Sl,XIgFZ zsl

14



Using equations 4.1, 4.2 and 4.4, the position vector of 0H2 after the
perturbational rigid body motions and the elastic deformation, can be

written as (in the inertial system S)

R .= [R _+ (&.-h, w ) + (v -h, ¢ Y(-8_ +6_ 68 )
OH2 XS F2 72 sl,xlglF2 Sl|QF2 2 slIQ,F2 ZS XS yS
+ (h2+wslfz )(eys+ezsexs)] s
F2
+ R+ (&.,-h, w o+ (v -h, ¢ )
ys F2 2 sl,xlzF2 zs sl[gF2 2 sllgFz
+ (h2+w31|2F2)(—st+eysezs)] eys
+ [st + (QFZ_hZ wsl,xlng)(_eys) + (Vsllng—hZ ¢sl|QF2) exs
+ e 4.
(hz-l-'wslthz)] ezs (4.6)
This relation can be more compactly written as
R._=R & +R & +R & . (4.7)

0H2 X XS y ys  z zs

The perturbational displacement at the hub center OHl of the rotor system 1
can be obtained by replacing 2F2 in Eq. 4.6 by —QFl'

The velocity at OH due these perturbational motions is

2

QR - h, w

ROHZ XS 2 Sl’x|2F2 + by (eys+e Ops T0269xs)1 @

ZS8 X8 Zs8 XS XS

+ QR _+8..6 +v - h,b
ys F2 “xs SI{QFZ 2 SIIQFZ

+ h2 (_exs+eysazs +eysezs)]‘ ys

(124

IR, - 2pb wslleZ] 8, (4.8)

+

15



where ( ) indicates derivative with respect to the nondimensional parameter
¥, (¢ = Qt). The acceleration at OH2 due to these perturbational motion is

+ h2(eys+ezsexs+zezsexs+ezsexs) ®xs

2 .. v
onz = ¥ Reg = by wsl,x|2F2

~

R

g . . .
+ %R+ 0.8 +V - h &
XS F2 xs xl]ng -2 sllgF2

+h, (-6 4 6 +28 6 46 8 )] @
XS ys zs ys zs ys zs ys
+ %R -0 8 +w ] @ ' (4.9)
zs F2'ys slig zs :
F2
Equations 4.8 and 4.9 can be more compactly written as
ROHZ = (RX e s + R.y eys + RZ ezs) Q (4.10)
. ot . . )
ROHZ (R.x o + Ry eyS + RZ ezs) Q (4.11)

The perturbational velocity and acceleration at the hub center OHl can be
obtained by replacing 2F2 in Equations 4.8 and 4.9 by -fzq.

Rigid b?dy angular velocities are GZSQ about Zs axis and eysg about yawed
Ys—axis and est about yawed-pitched Xs axis. The angular velocity of the model

due to rigid body rotation alomne is

mrigid - Q(exs —eysezs) ®xs + Q(eys +9xsezs) eys

+ Q(ezs - steys) € s (4.12)

Angular velocity at 0F2 and 0H2 due to elastic deformation is (from equation 4.5)

e -w 8 + v e_ ) (4.13)
s}lle xsl sl,x[gF2 ysl sl,x|gF2 zsl

wg = 20
Combining equations (4.12) and (4.13), using equation (4.2), the angular
velocity at the rotor hub due to the elastic deformation and due to the rigid

\‘
N
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body rotation can be obtained. The angular velocity given in the s-system

is
“onp T Q(exs"eysezs) €xs + Q(eys"—exsezs) eys+ﬂ(ezs B exseys)ézs
+ * - . _ . A
Q[¢sl|2,F2 wsl,xlsz,Fz ( ezs+exseys) + Vsl,leFz(eys+ezsexs)] Cxs
+ Q[ 0 0.0 )] 4

8 -w + v (-
sll,Q,F2 zs sl,xI,Q,F2 sl,xl,q,F2 xs + ys zs eys

" g0y T Vs, He

exs + vsl,x]QFz zs

which can be simplified to

“om2 ~ Q[(exs_eysezs + ¢s1|gF2) ®xs

+ @6 +6_6 -w ) &
ys XS z8 sl,x]gF2 ys
+ . —- . A
( Zs XS yS + Vsl,xlng) 25 ] (4.14)

" The Angular acceleration is

: 2 (X3 .o " A4 N
Oomp = © [(st - eYSezs - eysezs + ¢)sl|»Q/F2) xs

+ (eys + exsezs + exsezs - wsl,xlng) eys
+ (ezs B exse}’s - exseys + vsl,xlez) ezs] (4.15)

The angular velocity and acceleration at 0Hl is obtained by replacing 2F2

by - RFI in equation (4.14) and (4.15).

Assuming the rotations due to the elastic deformation of the supporting
structure to be small compared to those due of the rigid body rotation, causes
the angular velocity at the hub to be a result of rigid body rotation alone.

Thus this expression becomes

17



B = SlG - eysezs) Sxs ¥ (eys * 0,6%28) Cys
OH2
+ 0,70, ys) zs]
and
5. =9 -6 8 -8 & )8
OH2 Xs ys zs ys zs Xs
+(0 _+6 6 +6 6 )&
ys XS 2Zs Xs Zs ys
+(® _-686 -6_6 )3
YA XS ys Xs yS ZSs

In the equations which follow the subscript s on the rotations will be

deleted, since they are in essence rigid body rotatioms.

(4.16)

(4.17)

Equations (4.8), (4.9), (4.16) and (4.17) will be used for deriving the inertia

and aerodynamic loads on the rotor blades.
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5. EQUATIONS OF MOTION FOR THE ROTOR

When modelling the behavior of rotors the individual blades are con-
sidered first, the equations of motion of the individual blade is derived by
writing the equation of'dynamic equilibrium under the action of aerodynamic,
inertia and structural loads. These equations are derived for the general
kth blade. Subsequently these equations are coupled with the fuselage motion
to provide the complete set of dynamical equations of motion for HHLA vehicle
model [Fig. 2]. '

5.1 Blade Cross-Sectional Parameters

In the derivation of the equations of motion of the blade, certain cross-
sectional parameters described below, are required. The 4k-system is the
cross-sectional coordinate system. The location of any point in the cross-
section from the origin of the 4k-system is

A A
Yok Syak T Zok Sz4k
The principal axes of the symmetric blade cross-section are rotated from the
4k-system by the geometric pitch angle eGk [Fig. 6].

The geometrical pitch angle is defined as
eGk = eBk(x) + eok + elck coswk + elsk 51nwk . (5.1)

where GBk(x) is the pretwist
eok is collective pitch

0 and elsk are cyclic pitch components

lck

If nok and gok are the principal axes coordinates, the transformation for

Yok and Zok is given by
Yok cos B¢y —sin g T ( Mok
.= (5.2)
Z . sin eGk cos eGk' Eok

19



Differentiating equation (5.2) with respect to ¥ yields

yok I . 2ok
. = eGk (5.3)
“ok Yok )
and
Yok " “Zok i . 9 Yok
. = eGk - eck (5.4)
ok yok zok

Also required are expressions which define quantities involved in performing

integration over the blade cross sectional area. Defining:

ff pdA = m ,ff pn de=mXI ,ff -p& de= 0
A Ap - ° Ar - °
‘ 2 2
ff pn da ff pg . dA = ff pm, &, dA =20
Uay ok TvB3 g OOk TvB2 Wy Tk Sk

from these, it follows that

ff PYox dA = mX; cos eGk ; ff PZ y dA = mX; sin SGk
A A

. 2 . 2
Ly 08 Ogx * ygy sin g

=
2
o

(5.5

2 2
Lipy 810 Og + Ty, cos™B¢y

=
g-N
3

'/l;r PZop Zok 98 = (Tygy — Iypy) sindg cosby

In these integrals, p is the density of the material and AT is the total

cross—-sectional area of the blade.
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5.2 Equations of Motion for the Individual Blade

Dynamic equations of equilibrium for a blade are obtained using the
Newtonian approach. The equations are obtained by combining the structural
operator with the inertial, aerodynamic and structural damping loads. Since,
the rigid, offset hinged, spring restrained model of the blade is used in
this study, the various distributed loads are integrated over the blade
length and then combined together to give the equation of motion. The
various distributed loads obtained first, are described in the following

sections.

5.2.1 Distributed Inertia Loads on the Blade

The distributed inertia loads on the kth blade are obtained by first
determining the acceleration at a general point 'P' on the blade. The loads
per unit volume are found from D'Alembert's principle and they are integrated
over the cross-section to give the distributed blade loads per unit length of
the blade.

Acceleration at a point in the blade.

The absolute acceleration at a point -'P', viewed from a translating and

rotating coordinate system with respect to an inertial frame, is given by

) (5.6)

Xr +(D.)i]? +(;

Kk ok X Guk Xr

k pk

where ﬁo is the position vector of the origin of the moving coordinate system
with respect to the inertial system.
;pk is the position vector of the point 'P' in the kth blade from the origin
of the moving reference system.and Jk is the angular velocity of the moving
coordinate system.

In the present rotor blade analysis, the inertial system is the R-system
whose origin is fixed at the undeformed hub location and the the moving reference
frame is the 2k-system whose origin moves and rotates with the blade.

The position vector of a point 'P' on the kth blade is

Took = € Seoe T Oty B T vy Bog T 8og Y Bk

* 2ok Gk (5.7)
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Transforming all the unit vectors to the 2k-system

+

Soo Vi ¥ ¥ + 2o (9]

+ 8, B0 Fu) w iy (O - Ty (B ) - BB
tag (L-BB8 +86 )] (5.8)
Applying the ordering scheme and substituting W = kak and Ve = XLy (based

on rigid blade approximation), equation (5.8) becomes

';ka =8 le+x +y (- -4 (Bp +B)) +z (-8, B, F 9,.5)]

+ 8

y2k x

Kkt Yokt Zok 0]
+622k (B, %, + kap + Yo Oy - Ck(Sp +B8)) + zok] A (5.9)

Taking the first and second derivative of Eka and applying the ordering

scheme yields

Took = g [BLBxg o+ oy < L6, (BB )0, BB b Bp Gk ~

tozg < B 0L L T 40q> ]

4 é >]

> 2o < e Ok

+ Q3 [x

y2k K * Yor < dcx

22k - o BB - OB + 05>

ok < ék

* oz < BB T B T B0t gk

Bo (B, + 8] (5.10)
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and

- 2 . . . room s s -
Took = & o (U = BBy X v <ty by (B4BL) <20,8) ~0,By

- Ogk By + B -264,8,>

tzge < B F Ol 205 F 0T T 2000 F 0500

2 * 2 ¢ e N o .
8, =200 -06_ 0 >+ z K< _eGk - &, >]

O B X F g < B o’k 7 “er’k o

2 . . v . .
07 8 i By W T B T Yo <Oy O BB 20,8 - LB+ O 2

+

g < BB HBOL + 2800 80

= VPt Vgl Gy F B+ 294,85
. . . 2 .

The angular velocity of the kth blade is

0 =0, + Q8
| k Oy zl

where GOH is the angular velocity at the hub center Oy due to the fuselage motion

and it is given by equation (4.16). The angular velocity of the kth blade in

2k system is (using equation (4.16) and noting that the R and S systems are

parallel and inertial systems)

Wop = Qeka [coswk< eX - eyez> + sinwk< ey + exez>]

+ Qeka [cos¢k< ey + 6x82> + sinll)k < -ex + 6y62>]

+ Qe22k [1 + 92]

which can be written as

Q[mx & ok + my ey2k + (1 + mz) esz] (5.12)

Wox ~
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The angular acceleration azk is

: 2/\ 13 . 0 °° .
Wop = Q € ok [coslpk <6X - Gyﬁz - eyez + Gy + 6x92> +

siny <6+ 6.6, +08, -8 +0656>]

X vy z
2 ~ .o L] ) '.. - [
+Q ey2k [coslpk <8y + exez + exez - ex + eyez> +
sin¢k<-q{+-eyez + eyez - ey - 8.8,>]
+0%a. (6 -066 -060]
€22k z Xy Xy

which can be written as

G =% 8. +0 + @

2K x Exai T Oy Syok (5.13)

z esz]
In terms of dimensionless derivative in time, ), (.) is replaced by
QZ(.) in equation (5.6).

The acceleration is

X T ooy + Wy X (w2k x rp2k)]
(5.14)

Ele

- 2= z - s
ap2k =Q [Ro.+ rp2k + 2w2k X rp2k + Wy
In equation (5.14), all the quantities except the first term is relative to
the 2k-system. The first term, i.e. the acceleration of the origin of the
2k-system is in the inertial system, as given by in equation (4.11). This

contribution can be transformed into components parallel to 2k-system, as -

indicated below.

;_;o = 92 6x2k [coswk< iix + iiyez - iizey> +
sinp, < ﬁy - ﬁxez + ﬁzex>]
+ 02 éka [cosp, < ﬁy - ﬁxez + ﬁzex> +
siny, <-ﬁx - ﬁyez + ﬁzey>]
+ 02 2 IR - ﬁyex + ﬁxey] (5.15)
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Equation (5.15) has been obtained after applying the ordering scheme. The
various terms in equations (5.12) and (5.15) contain the rigid body motion
and the elastic deformation of the supporting structure. The various other
terms in equation (5.14) are given below. These expressions are also obtained

after applying the ordering scheme.

The Coriolis Term

2 . . .
p2k = A Epy Lo Xy By - XDy - w0, X0

H e
|

2m2k X

+ VoS Wy ¢ ~ Ty (Bp + B8 = 5By t 8
= (1 + mz) (—¢keGk)>

+ zok<— (1 + “’z)('J’k - éGk)>]

oo Loy = BBy + o u -0 B8 x - wxB

+ 202

Yok ¢ R T 0 By B 0By = BBo B ~ 90

-0 (O * 850>

* 2o <R t 0L 0T T DB~ 08 ]

2,

- W
+ 20 & ok [wxxkck wyuk + prkak +

Yok Ui T Yy Ty T B By B By
- B - 8800

oz < - 08 - 08y -0y (B AT+ G F 50800

(5.16)
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The Angular Acceleration Term

2 - . c_ . .
p2k = 1 € ok [wyspxk ~ mzxkck + @ Xkck

w

MRS myd>k T 9,

* zbk< JJy - (:!z (—(bk) >]

2 - . v . .
+ Q L [mz e+ uwx - wXBka - (nxkak

+yok<dyz (_Ck - ¢k (Bp + Bk )) -
- o, @ -5 B8 >

X

_+Z <wZ (_Bp—sk)-wx>]

ok
+Qz’é [<:3xC—<:)e—<I)x+
z2k " x k’k y vk
yok<wx - (uy (-;k) >
tzg <h (40 - b (B - B+ 4L > ] (5.17)
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The Centripetal Acceleration Term

®ox

X

(ou2k X rka)

2 . _
4+ 9 I [ WX taet oo + (‘)yxkck

2 ~
= Q exzk[ -(xk + xkcuz + e + kaz)

T Yok € Ty b BB F Oy
- (-, )>
t Zok< _(-Bk_Bp + ¢ka —wze’k - szp) + ©x

0, (-8 -B,) > ]

B Uy — w0 Xl HoB X oo By

- 0%k

+ yok<— (1 + 2mz) >

+z <o+, + vy + ¢kmz>]

* Yor < Wy T, = Wl >

2
¥ <u, (B B oL ~wB - 0B -0

@, (u)y +o, +9, w) >] (5.18)
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Combining the various terms, i.e. equations (5.11), (5.15), (5.16), (5.17),

(5.18) the three components of the acceleration can be written as

2 .
a =Q {—xk - 2xk w, - e~ 2x..

‘ kck + c'oslpk Rx + sinlbk Ry
x2k

+ Yok [Ck + ¢k (Bp + Bk) + zmzck + wx¢k + éy¢k - &z

+204 208 + 208, - T
= 0 (Bt -2, By~ 0By 0By — 20 By - BBy

- w ) X
+z [B.k + Bp 95y 20,8, + Za)zBp + 0+ . + 6, 0,

+ 2&>k + 20, + 20 (ék + éGk) -B, .0y + zékik

+ Oty + WLy + 000

or in a more compact form

a = 92 [a ), y, a Gy, 8 (@ (5.19)
Px2k Prore Ok Pyg ok prk]

The three terms correspond respectively to 1) the constant part of x-component
of the acceleration over the cross-section of the blade at a distance Xy 2)
the part dependent on Yok and 3) the term dependent on RN respectively. This
separation facilitates integration of those terms over the cross-section of the
blade to vield inertia forces. It also helps in identifying the orders of
magnitude of various terms.

The y-component of the acceleration is

2 .
apka =Q {—kak - W XL+ wprxk + wykak -w,x5 toe

+ @ x - wapxk - mkaxk + thk +

cos\()k Ry + simpk (-RX) + 2uk - ZBPkak - Zuxxkﬁk
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+ Yok [-1 —Zmz —ZCk]

+ Z [¢k + 2¢kmz + wy - Bpmz - Bsz -0 -ZBk +A2¢kck
+ 20,0 + 20,0 - 20,8 =8 - ¢k]}
- 2 [aéc) +y SN (5.20)

v2k ok py2k ok Pka
The z-component of the acceleration is

2 . . .
apZZk = 0 {mxxk +oe+ wyxkck + mxxkck - wye - wyxk

Bk

+ waxkt:k + Rz +

*Yor By - by BB - 258 - LBy B + 20T, o

toL e - ©.z,]

Tozg [ BB + BT+ 2B 0T, BT~ 2 85,0,

+ 2068k BptB) + 20588 - O dy * 0Ty (ByHBY)
. 2 ) » [ » . . )
O 7 208y 2008 - 20 (B, T4, 04T, 000

by - by (B - B+ 9T +

2
+a  (-B - Bp +0,0,) -0 - wy (wy + ¢k)]}

(c)

o +y O 4, 4 () (5.21)
z2k

2 [a a, "’
=0 ok I)z2k ok P22k

Transforming these acceleration components from 2k to 3k systems yields
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= 0 +
apx3k (apx2k BP aPzzk)
2 (c) (c) (y) (y)
= 0 [a + a + +B a
Pxok P Pz2k Yok (apxzk p pzzk)
(2) (z)
+ +
Zok @pyo T Bp Bp,)]
2
a = Q a
Py3k Py2k
2 (c) ) (z)
= Q + + 5.22
[aPka Yok aPy2k Zok apy2k] ( )
a = Qz (-B_a + a )
P23k P Px2k P22k

S R O BN S

_ ) 62
p pe T %oz T Yok Bp oo %0

P Px2k Pz2k

+z,, (-8 ap(z) +a (3]
° P FxZk P22k
Before evaluating the distributed inertia forces and moments, it is worth
noting down the relative orders of magnitude of the leading terms in various

acceleration components. They are

(c) _ 0(1) . a 162) a (2)

= = - - = O
Py 2k Px2k 0 Px2k ©
(e) _ ) _ (z) _ 23) -
apy2k 0(e) s apy2k 0(1) . apy2k 0(e) (5.23)
(e) _ (v) _ (z) _ 2
Pyl = 0(¢) , apZZk 0(e) , apZZk 0(e”)

This information is useful in neglecting higher order terms even before

evaluating the integrals to obtain inertia forces and moments.

Distributed Inertia Forces

The distributed inertia force per unit length is obtained from the

D'Alembert's principle, for the kth biade
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Pry = _[f - P3y, dA (5.24)

AT
where p is the material density of the blade.
Substituting the various components of the acceleration and using the cross-
sectional parameters defined earlier, the distributed inertia forces are obtained,
in the blade fixed 3k system. The acceleration components in the 3k system

(from eq. (5.22)) are

apx3k = Qz { - X -e- Zxkék - zxkéz + ﬁx coswk f ﬁy simbk

Yl - Tt O BBy * Zézck - 'éz + 2¢kéc;k

- Z‘I’kék - ¢kék - ZéGkék - é‘GkBk

+ cosyy < q)k'e'y + 24'>kéy + ZéGkéy + Bpé'x + zepéy>

+ éinlbk< -;bkéx - 2q'>kéx - Zéckéx + Bpéy - 28péx>]

*z, (-8 4B+ B, bl * 2‘éz (B8, + 26, + zéGk + 0.0,

+ Zéz (d:)k + éGk) + &;kgk * Zé)kék o0+ ZéGkék

+ 6chk + 6y cosy, - Sx sinwk]} (5.25)
apy3k'= Qz { - x5, + szk + 2&k - ZBpékxk - Zézxkck + éz(xk + e)

+ coswk<-5x B, + B X, * iiy - 2% 8.0 >

+ sinp, < -é'y (B, + B X, = R = 2,88 >

+ Yok [-1- 262 - Zz;k]

+g o - b+ 20,8, = (B8 6, = 2By + 2T+ 20T

o
. L 3 b

25,00, - 20,8, - 0y -8 cosp - ey sinp, ] } (5.26)
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_ 2 . e ) .
apz3k = 0 {kak + Rz + Bp ( x, te + 2kak + zxkez)

+ coswk<<(xk+e)(—9y+26X) + kak(6X+29y) + ZXkaexprRX>

* .

+ sinwkfi(xk+e)(6x+26y) + Xka(By-2%J~+ 2xk§k3y - BpRy>

+ v 0 - E8, - Zikék - Ckék + 84 - BT + Bpéz

+ cosp, <8+ 2éy g, (éy - 26) + 2£k5y>

+ sinwk<15y -2 - (6 + zéy) - 26 >

B = B2+ B.0,Z, ~ 26,8 (BB - B 6,6, 28 b

+ 2z [- Bp

- 28pez (¢k + eGk) —ZBpechk

= 50 + 2058 20580 - Oadi * OB
+coshy < - 20 (0 M0G0 - 200 (B L0 0 8 )
- ¢k (ex + Zey)‘- (—Bk + ¢ka)(6y - zex) -Zspex >

+sinpy < - 28 (9 + b)) + 20, (B L0, 0,4T, 00, )
- ¢k(ey =280 - (B + 6,500 + 2ey) - 2Bpey >1}  (5.27)

Substituting equations (5.25 through 5.27) in equation (5.24) the distributed

inertia loads are evaluated. The components of these loads are

2 . . . . .
p1x3k = mf (%, + e + 2xk6z + 2xk2;k - R cosxpk - Ry srnwk ] (5.28)
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2 e .. . *
PIy3k = mf} [xkck + Zxkckez - (5 + e) ez - X5 - 2uk + 2xk8k8p4-x1coseck
+ coswk<ixk8pex + kakex + 2xkekex - Ry>
+ slnwkf(xkﬁpey + kakey + ZXkBkGy + Rx> ] (5.29)
2 . . . .
PIz3k = mf [—kak - RZ - Bp< X, + e + ZXkGZ + ZXka>

+ coswk<:BpRX»— ZXkaﬁx + (xk+e)(&y729x) - kak(8x+28y)>

o+ sinwk< BpRy - ZXkaey - (xk+e)(8x+26y) - kak(ey-Zex)> |

(5.30)

Distributed Inertia Moment

The distributed moment per unit length for the kth blade is also obtained
by D'Alembert principle by taking the integral of the vector product given

below.

dpy = ~ll: (- p(yok &4k +z, 8,0 X apk] dA (5.31)
T

The moments are also evaluated in 3k system, and are given in component form

below.

91 =[f
3k

= ).
Ty3k A

Pl - fok¢k) 33~ ok T YorPrbk T Yorhi) apy3k] da

PlCzop = YoiBrli * Yordi) 25 3

- (_yokl;k - yok¢k6k - zOk_Bk + Zokq)kck) apz3k] da

ask -l]r " PLEYot ~ YorfiBi T ZokPi T 2ot Py

(yok = zOkak) apx3k] da

33



Substituting for the acceleration components from equations (5.25) through
(5.27) and making use of the integrals given in equation (5.5) the components
of the distributed inertia moments (or torques per unit span) are evaluated.

These eXpressions are given below.

L A2y ’ o - . .
qu3k =8 {mxI cosey [_XkBk - R - Bp (x, + e+ 240 +2¢0)

+ cosl,bk<‘(xk+e) (6y—26x) - Xka (6x+28y)

- Zxkcke?_( + Bpr +.0, R, >

.

+ sinwk< - (xk+e) (6x+26y) - X0 (ey-zex)

- 2xkckey+BpRy - ¢ka>]
. ) ,— . ) . ., . _ .
+ mx SlneGk [ xkgk + Xkck + 2uk ,BPkak ,Zezxk;k

+0, (x +e)+¢ (_Bpxk +x.B + gz)
+ coslbk<,Ry - Sx(kak + XkBp) - 2xk8k6X
+ q>k>§k (-ey + 26x) >

k) - 2xk8k6y

+simpk<-'fi‘-é' (x

X y kB

P +1i'{'.kB

o, (B +20)¥]

LI )

‘ 2. 2 wo -
+ (Lygy cos Og + Lypy sin® 8500~ & + 0By + 20,8, + By

0 T B, (B -8

0, (<1720 -20) + BT,
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+ cosy, <- (5X +20 4 (éy - 26) + ZCkéy)>

+ sinwk< - (6y - Zex - (9x + zey) - 2ckex)> ]

. .

i 2 2 .e .
+ (Lypy sin” O + Lo cos™ 0., ) (¢ - ¢, + 26,6 - ez(ep+ek) -28,

+ 24)ka + 2¢kck + ZQkBGk

- ZGZBk - eGk - Gx c:osd)k - By sin\bk]

+ (IMB3 - IMBZ) sing, cosg,, [-1 - 20, - ZCk]} (5.32)

2 i :
quBk = Q {mxI coseck[ ¢k (xk + e + 2xkck + 2xkez) - Bkckxk

=L (B t R+ BPXk)
+ coswk< --q>kRz - l_’,k(xk + e) (-Sy + 26x) >
+ simpk< —¢kRy - ;k(xk + e) (Gx + 26y) > ]

+ mx sinGGk [xk +e+2xkck + 2xk6z - Rx cole)k - Ry simbk]

2 . 2 . . ..
+ (Lygy cos 0y + Lypy sin0g) [9,5, - &5, - ¢, 5, + .0

+

2 2 .ot
- 0,0 (BB - 26 S i

+ 2080k * 2By §§B

+ coswk< -ck (ex + 2ey + Ck (ey - zex) + 2ckey)

- ¢k8k (eX + 2ey)
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—¢k (¢k6y + 2¢k6y + zeery + Bpex + 2spey)

+ siny, <-g, (ey -20 -1t (6 + zey) - 25,6

6, B, (O - 26.)

- 0 (-0,6, - 26,6 - 20,6 + Bpey - zepex) >
2 2 . . .
+ (Iygqy sin' 6, + Ln) cos™0,)([B, -8, - Sp + 6.0 - zez(Bk+ep) - 9,8,

- 2¢k - ZGGk (1 + Zk) - 26z (¢k +6Gk)

- Ok T 200 Nk T Bl

- Gy coswk + ex Sinwk]

+ (IMB3 - IMBZ) sin@Gk cosGGk[ - Ck + Ck - 2¢k (Sk +Bp) - zezck - Gz

- 4006, + 20,8 + 08 + 20,8y

0B - 2,0,

L . - q

+ < - 208 - - i ;
cosy, ) . 2¢key zeckey (ep + B, )0+ 2ey) >

+ siny, < 20,8+ 20,6+ 2éGkéx - @, +6k)(6y - 28)>]}(5.33)

2 . . “ o )
= Q { mx; cosO ., (-x -e-2xr -2x6 +R_ cosj + Ry simp

ap k

)
23k k

+ mx sinGGk[q)k (xk + e + ZXka + 2xk92)

.

+ Bk (—xk;k + xkgk + GZxk)
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+ (1

+ (1

+

-2
MB3 cos eGk+

MB3 sin eGk +

+

+ coswk< -¢>ka + Bkiiy>

+ sinp < R - BR >]

N 3 2 . . 1]
Tupy S0 0G0 [= T * Bphy = 08y - 8, + 20,86,

- 20,8y - OBy~ 0By~ OBy — 255

-coswk< ¢key + 2q>k~ey + 29Gk-ey + epex + zspey >

sinp < 0,0, - 20,0, - 20,6 +80 - 280 >]
. 2. . . N ’
Lypy 05 SGk) [ -, < -Bk+5k+8p-¢kck+292 (Bk+ Bp)

¢kez + 2¢k + ZeGk + 26z (¢k + eGk) + ¢kck

205 * Nk T O t Ok

208y + 20,5y + 28,06 - 26 8 = B4y 2

T OB Sy~ by - 28 -8

-+

+

(IMB3 - IMBZ) coseGk sinSGk[

. .

cqswk < _q)key - Bke + ¢kgkex>
simpk< ¢kex - Bkey + ¢kr,key>]
—Bk + Bp + ZGZBP + ,2¢k + zeGk~

e o . .

+ 26z (¢k + eGk) + 2¢k;k + ZGchk

25,8~ 25By

+

cos¢k<§y - é;ﬁk’

+

sinyy < - éx - §yck>]}
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5.2.2 Distributed Aerodynamic Loads

Greenberg [Ref. 10] has derived expfessions for unsteady 1ift and moment .
on a two dimensional airfoil executing harmonic motion in a pulsatiﬁg stream
of incompressible fluid. This derivation is an extension of Theodorsen's un-
steady aerodynamic theory [Ref, 11]. The 1lift and moment expressions consist
of two contribﬁtions. The first contribution is due to circulatory flow and
the second one is due to noncirculatory flow. Greenberg has assumed that the
circulatory lift and noncirculatory lift are acting in the same direction, i.e.
normal to the resultant flow. However other researchers using this theory have
introduced their interpretation. For example Hodges and Ormiston [Ref. 12].
assumed that the circulatory lift acts normal to the resultant flow and the
" noncirculatory lift acts normal to the blade chord. An examination of the
élternative mathematical expressions for the unsteady lift indicates that
assuming the noncirculatéry part of the 1lift to be perpendicular to the blade
chord is somewhat more convenient. In this study it is assumed that the ‘
circulatory lift acts normal to the resultant flow and thé noncirculatory
lift acts normal to the blade chord, for mathematical converience.

The 1ift and moment expression as given by Greenberg are

i t

Lo = 21rpA bv [Voq + ovo ac(kv) e vV +
1 : .
[b( 5 -a)B+V 8Bl C(kB) +h c(ky)
it (5.35)
+ OVOB ;(kv+ﬁ) e ]
Lyc = 'rrpAbz [h+VB + V(o + B) - ab8 ] (5.36)
where LC is the circulatory lift
LNC is noncirculatory lift
Referring to Fig. 10
h is the vertical displacement of the axis of rotation (positive

downward)
is the constant part of the angle of attack
B is the time varying part of the angle of attack

is the constant part of the stream velocity
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Ovoe v is the varying.part of the stream velocity
V=V (+ geltty | .
ba is the position of the torsion axis (axis of'rotatioﬁ
of the airfoil) measured from the centér of the airfoil
section. A

The total moment due to both circulétofy and nonciréulatbry parts is

2 .1

(Lsa%Ey-.

M= mp,b” [ba b +V ba(a + 8) ~ Vb (3 - a)B b (%

+ 2mp, vb? (a + %9 {Voa + -UVbac(kv) HOvE
HIbCF-a) B+ VBT el + h clky)

+ ooV Bel,,,) etvt) T 5

B
where M is the pitching moment abouﬁ'the axis of rotgtign_(posit%ve nose up).
For low frequency oscillatioés of the rotor b;adeé, the reduced frequency, .-,
k, is low and one can introduce the assumption that the Theodorsen's lift.
deficiency function c(k) is unityl .This is equivglent‘to the_quasisteady as-
sumption. Furthermore from Figs. 3.and 10 one hag ‘ ‘

ba = -b + xA-f

ol

b . .
=Xy -3 : . (5.38)

Substituting for 'ba' from equation (5.38) and replacing c(k) by dnity, the lift

and moment equations become

LC = ZWpA bv[h + V(? +B) + (b - XA)B] A (5.39)

Lyc = ™0, b2 [ﬁ + VB + V(a + B) - (x, "g)é] . (5.40)

. . ' . 2_'
M=p, b2 {(x, ~ D) [+ V(@ +B) +VB - (x, - DEI-V B -2 E)

+21rpAbeA[t.1+v(on+B) + (b —xA)é] ' ' . ‘ (5.41)

Equations (5.39) - (5.41) can be rewritten in a modified form by replacing the
quantity 2m by the incompressible 1lift curve slope 'a', also replacing o + B
by &, which represents the total effective angle of attack, where @ represents

-
the constant part thus & = B ;a = B and
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ab-V[fl+v-&+(b-xA)é] (5.42)

Lc =Py
L=ty apl(h+va+va-x -b 3 (5.43)
NC © 2 Pa < AT 2 .
1 2 by ¢ t- = b . Vb > b2 o
M=prab{(XA_E)[h+Va+V°‘"(XA—f)a]"_a'é_ a}
+ a Pa bV X, [h+ Vo + (b - x, al (5.44)

Next the various velocity components, relative to the oscillating rotor blade-
have to be identified. Let vAk be the free stream velocity and VECk be the
velocity at any point on the elastic axis of the kth blade due to its oscillation,

the net air flow velocity for the k™M blade is then

7= T - Ten _ (5.45)

For a rotor blade in forward fiight with constant velocity, the free stream
velocity is A

\ = VF coso. + vk) e (5.46)

Ak - (VF sino,

R

R “Rx Rz

where VF is the forward velocity of the model
o is the angle of forward tiit of the rotor plane
Vi is the induced velocity

Equation (5.46) can be written in terms of nondimensional quantities .y and
Ak where U is the advance ratio = Vg cosaR/QR and Ak is the inflow ratio =
(vF sinay + vk)/QR. Hence

-~

Vap = QR(ueRx - Ak eRz) (5.47)

This velocity can be written in terms of components along the 2k-system
Vo = MR {[coswk<u + ‘Akey > + sin, < u(eyex -6,) -Akex>] € 9K

+ [cos¢k< u(ey Gx - Gz) -Akex >+ sinwk< -y - Ak6y3>] eka
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+ [u(e'y + ezex} - Ak] esz} (5.48)

The velocity at any point on the elastic axis due to blade deformation is

Ve = RO'H + %pk + ak X Epk (5.49)
where ILIOH is the velocity of the hub center
%pk is the velocity of the point 'p' on the elastic axis of the blade
as seen in the rotating reference frame
(T)k is the angular velocity of the rotating reference frame
and Epk =e o + (g +u) 2x3k + W, €z3k + v, 2y3k (5.50)

The various terms in equation (5.49), in 2k system, are

. . .

rpk = Qf (-Bkaxk + uk) e o1 + xk?;k e-y2k + kak ez2k} : (5.51)

(Based on rigid blade assumption, i.e. w, = kak and v, = kak), and

|

Ry = 2le o [cosb <R+ R G, - RO >+

simpk< Ry - Rxez + Rzey>]

+

N - >
eka { coslbk < Ry Rxez + Rzex +

sin) <-R_-R6O6_ + RO >]
c X y 2z z'y

+

e, o [Rz - Ry6x + Rxey] } | (5.52)

and
g X oo = ey [-x 0y - X, 5,8, + cospy <B (B x, + Bx) >

+ sinp, < -6 (Bpxk + kak) > 1]

+ eka [xk + e + xkez']
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+ 'eZZk[ xk'Ck < coswkeg + simpkay>

- (xk+e) < cosgl)k (eywxez) + sinlpk (,—9x+8y92)>]}
. - (5.53)
Combining equations (5.51) - (5.53)
Vecak = el Gy T XHE, +uy - BBk

+ coswk.< R+ Ryez - Rzey + ey (stp +x,.8)>

+ sinp, < Ry - RXGZ +RO - ex (kap + kak) >

+

ng2k { xk%k + xl.c tet Xkéz + coslbk< l.zy - 1'{xez + I.{zex>
+ sinp, < - ;tx - f.(yez + f{zey>}

+ 9, 1 xkék '+_1'1z - fzyex + fzxey

- (xk + e)< coslpk (éy +6Xéz) + sinl,()k (.—éx +6yéz) >

+ x L, <cosy, 6 + sinp 9y>} . (5.54)
Substituting ed_uations (5.48) and (5.54) in equation (5.45) and applying the
ordering scheme yields -

"'VZk = Q{ex2k [Xka a +ez) _uk+Bkaxk + cosll)k< HR = Rx>

. - - - o 3\
+ siny, < -URG >\k RO Ry +x,8, (Bp +8.2>1

+ eka { X - e - xkez - xk?;k + cos¢k<'— uRez - Ry - kaex>

+ sinl})k< -uR + Rx>]
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te o[- kak - XkR -R + uRey - cogwk<:xk;kex - (% +e) ey>
- sinll)k<xKCk6y +(x +e) 8 >] } . (5.55)

This velocity is again transformed into components along the 5k system where
5k system is defined as the one whose origin is fixed in the deformed blade
elastic axis and rotated from 4k system by removing ‘the elastic torsic_mal. ‘

rotation. In the 5k system, the velocity components are

Ve = Mo eh == BB T 6L IR - R )
xkc.k&k + cosll)k < MR — ,I‘{x> .
'+_sén¢k < - pRck -‘uRez - ﬁy -‘AkRex + ix;k>}(5.56)
Vysk = Q[‘l"k "?‘xkik - xkéz + cospy < - “Réz - I'{y - WRZ, >
+ sinwk< - uRv; éx> ] .(5.57)
Ve, = 0l- xkék':— MR + RO - R - %0, B+ 8)

- cosh <x L0 = (x +e) 6+ (B +B IR -RH>

- s;nwk<xk;key + (xk + e) ex + (8p + Bk)(-pkéz = Ry) >]

(5.58)
For the evaluation of the unsteady aerodynamic forces and moments, the
various velocity terms in equations (5;42) - (5.44) have to be identified.
Figure 11 shows that
V= -V g5k h'=V . and o =8, +¢ (5.59)

Substltutlng these in the lift and moment expressions, the 1oads per unit 1ength

on t:he kth blade becomes

Lok = 0a abe5k = Vs * Vyse Ogi + o) = (b = %) (8 + 991 (5.60)
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2 . . .

ab [V g = Vyse Bge + 9 = Vg Ogye + 909

1
Nk 2 Pa

by .z w2
- Gy - 7} (B + 8 071 (5.61)

M= Pa20 Vo Xy L= Vg Vg By +) = B - %) By + 001
a 2 bt ¢ ' ..
7 AP L D) IV, gV 5 Oty ) Voo Bty )0
. b . " 2
- x, - D By + b 9%
b [ . [ 4 bz 'y . 2
t3 Vg G t ) 0 -5 Gg + 0% 5.62)

The drag force D, is

k
Cdo 2
Dk = pAaAb «( - ) ['VySk + Vsz] (5.63)
The inflow angle ¢ik is »
. . -
¢, = tan ' (EE) (5.64)
y5k

According to the assumption made previously, the circulatory lift acts normal
to the resultant flow and the noncirculatory lift acts normal to the blade
chord. Resolving the 1lift and drag forces along the 5k system (Fig. 11),

the force components per unit . length are

pAy5k = Py ab Vog [V + Vog Og + ) = (b = x,) (8 +6,)0) sind
1 2 * . . .
"3 Pa3b [Vog 7 Vs Oge + % = Vg Oy +6p)
W_(x "h)(.é-‘*'a;)-ﬂzlsin(e +¢.)
A 2 Gk k Gk K
cdo 2 2 .
- ppab (—) [VySk + Vsz] cosd ., (5.65)
.pAZSk = pAab'VySk {- V. sk + VySk(eGk-ku)—(b—xA)‘eGkﬂ’k)Q] Cosd)ik

1 i 2 . v Y
70 ab [V g = Vg Oge + 98 - Vg Gge + )

-Gy = ) B + ) 971 cosOg + 9
44



“do 2 2
- DAa1>( ‘;f') [Vy5k +V, g ) sind,, (5.66)
and the torsional moment, per unit length is

U - Pa2P Vysic X4 TVs ¥ Vg B + 8= (b=x,) (B 49, )]

+
N|—

2 ‘b - - L] .
paab [ (x, -2) [V, g - Vst Ogicttied) Yy Bt )9
b . . 2
- (x, - DG + 6 o)

. . ’ 2 '
b . . 2
Vy5k (eGk + ¢k)Q - §-(eGk + ¢k) Q71 (5.67)

rojo

Assuming that angle ¢ik is 'small, the following approximations are made.

s1ndyy = Pip = Vosi/Vysi
cos(bik ~ 1

And also
sin(eGk + ¢k) = 31n6Gk + ¢k coseGk

cos(eGk + ¢k) = cosGGk - ¢k sineGk

Note that V_. /V .. is 0 s 0(c), 8. 1s 0(%) and (22 15 02’2
e a 25k’ VysK is 0(e), ¢ik is £), ck 1S € an 2 ) is 0(e .

Using these approximations, the force components per unit length become

pAy5k = Paab Vo5 [V 50 = Vo By + O +(b-x,) (B, 44,00 ]
C
do 2
- pad (7)) Voo

1 2 .
2 P22 Vo5 = Voge Og 80 8 -Vog  Gg + 0

" - 2
- (x, - %) (Bg + ¢y ) @ Jsinb  + ¢ cosB, ] (5.68)
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s AP Vysic b Vasic * Vysi Oge + 9 = (b - x) B +¢,) 2]

v

1 2 - <. .

70420 Vg = Vg Coe ¥ 9 @ = Voo, Oy + 00

—x -2 6. +6) 9% lcosd ., - 6 sing.. ] (5.69)
A" 2 COg+ o ok ~ 9 sinfg : '

Where the appropriate velocity components have to be substituted in these

equations. These velocity components are given in equations (5.56)-(5.58).

The aerodynamic forces per unit length of the blade, in component form are
c

2 do, 2 ° .
= p, 2 b {.-T[xk 1+ 2t +20)) + 2xke]

o,
X [B <O 0 ~ B+ 5

(®

ok ¥ o)

- T (B + B +8.06, 0>

L (B + B <0 + 0, = B, ]

+

- x [B <= MR+ e(6, +6,) +uRO, - R >

AR F o B T B + ) - (BB +6 84>

+ (—uRBy + Rz) <6Gk + ¢k - Bk + EkeGk>

+

T By + B, ) <AR>+ B b (B + 6]

—)\kR <-}\kR+e (0

ck + .¢k) + uRey - RZ >

+

(uRey_ - Rz) < —)\kR + e eGk + uRey - Rz >>

)

)\kR b (eGk + ¢k
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c [ ]
—cw%[2£9hkmmgumz+%n

.2 o » . . . 7 . ..
=% (80 - 088 + 0y B * & = B +2,8,8,]

6y< )\kR - uRGy + Rz>
+ T (B, + B <URGB + B

- eGk<- eGy + (Bp + Bk)(uR - Rx)

+

(=9 + B) < UR(B + B) >

MEO = T (B + 0 MR (B + B)

+6y<e6Gk+pR9y—Rz>-

+ (8,0, - & (Bp + B’k)) < - uR (Bp +8)> ]

AR <R (Bp + Bk) + 05 (-uRZ, -~ WRO - Ry) - uR€k¢k >

)\kR < R (Bp + Bk) >

+

le(®g, + ) + URey R ] <'11R(£3p + B>

+

HUR (B +8) b (g + 0]

2c

-simpk[ —_—

2 [Xk<uR"(1+ck+Gz)—Rx>+euR]

. 2 o i . )
= X DBy = BgiBiby - By Oy + & - B - 055,81
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4

- x [B <~ R Bg + 0 * Ry

+ 6X < AkR - pRey + Rz>

+

Sy (fSp + Bk) < - uR (8 + ¢k) >
LR eb  + (Bp + B) (-WR9, - Ry) >
+ kaex - 6X< eeGk + uRey - Rz>]

- AR < - R B *+ 00 + O Ry

+ (WRB - R)) <= WR (B + 6]

¢ : .
+ cos&bk simpk [ -2 ——23 {ur (uRCk + uRGZ + Ry ) ]

g e
%) [26y6x ]

LN { —ex < 2uR (ep + Sk) - zuRckeGk>

+ ey < AR (B * ¢k)>]

uRBGk eey - uR (Bp + Bk) < uRGGk + uRcbk >

+

-+

2 uRB, R (fsp +8) ]

2, 2

2 oom . 2.2 2
+ cos Y [xk X, { ?.By (Bp + Bk) uR - uRszery]—r\— YR (iBp + Bk)

]
y
+ WR (Sp + Bk) < - WRGy (GGk + 4>k) + eGk (-Ry - uRBZ) >]

2 20 2 . N .
+ gi - + .0 -
sin tpk [x] 8 "+ X [ pRBGk (,ex C] y) uR‘kax]

L4

- uRGGk < eex + (Bp + Bk) (-uRez - Ry) >

(o4
do 2.2 °
- = <y’R —szRX>]}\
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1 2.2 - . _ .
-5 p,ab Q- {- Xk[ (Bk - (eGk + ¢k)) < 51n8Gk +.¢k COSeGk> - CkeGk sinGGk]

+ sing (uRé'y - iiz) - cosy, [ - x, (é'y - éx) sinf
+ [URE, - R (B, + ®)] < sindy + ¢, cos8 >

- uaékeck sinGGk]
- st [x, (B, +0.) sindy - (R (B, + B,)

+ UR (eGk + ¢)k) ] < sinB,, + q>k cosGGk>+ pRCkGGk sinGGk] }
(5.70)

N 2, 2 )
Pp o T PaR BN [0 o - B P h Bt @) - L B8 +0,0,

>4+ 066 1]

+ L <8 Bk z Gk

) <Ok * %

) + uRGy - RZ - )\kRCk

+x [ -AkR + e(OGk + ¢k

+e<By +9o, -B > +b(O, +9¢)]-elR

- cosgpk [ - xkzey

+ Xy [ uR (Bp + Bk) +'6Gk (—}JRCk - Ry - uRez)v-- uRCkfbk
Ly SHR (va +B8) > + 6, <- URG - R, - uRO >
+ (¢k - Bk) <= uRck>] + euR(Bp + Bk) + )\kRuRCk]
. 2°
- sin\bk [xk GX

.

T [RGB +9) F R B - MR By + 4 Ty

- R Oy - MR<B, +
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+e<~ uR(({)Gk + ¢k) > + )\kRuR

) + gRey - Rz >

- MR < e(fg + 0

- MR Db (8, + ¢k)]

.+ coslbk sinwk[ xkuRey

- UR<UR(B p+Bk) + eck(—uRck—Ry—uRez)—uRck¢k >

+ uRZ;k < UR(O ) > —pRGGk< —uRez - Ry > ]

Gk+¢k
- 2 2.2 . 2 .
+ cos™Y, [ -WwRg (Bp + Bk)]+ sin"y, [ - X, HRO_

- UR< - uR(GGk + ¢k) + RxeGk> - uR RXGGk] }

1 2.2 o 2
5 PyabQ {-xk< B = O + 90>

- cosy, <URB, - MR (B, +b)>

- sinwk< - uR(Bp + Bk) - uR(éGk + ék)> } coseGk
(5.71)

It can be seen from the expressions for the aerodynamic forces that the con-
tribution due to (éGk + ;ﬁk) associated with equation (5.40) is absent because

of ordering scheme. Equation (5.71) can be written as

Py = pf\l) + piz) cosB (5.72)
z5k z5k z5k
where (1) o 1 (2)
Py Sk represents the circulatory term and Py represents the non-
z

circulatory term.

The aerodynamic moment perunit length can be written as
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2
_ .1.)_ (2) _ b . ve 2 _l'_ 2
+ &, -7 Pa o 8 Bge + &) & 30,20

(L)
X,P
A Asz

i

x5k

1
*3

2b .. > 2 .
pAab 5 (eGk + (bk) Q°{ - X, - e- coslj}k uRCk—51nwkuR}

(5.73)

ek T 0% "Bt T

2 2 '
N ab xA{xk (e K (eGk +¢k) - Ck(sp + Bk)

Aokt S8t b~ B 8.0 )

+
<@
D

+ X [~>\kR + e(eGk + ¢k) + uRBy - Rz - AkRz;k
L+ e<eGk + ¢k - Bk>+ b (eGk + ¢k)] - eAkR
~cosy, [- %28+ x [UR(B_ +B)
cosvy k oy TR PR, TRy
+ eGk (—uRCk- Ry - uRG ) - uRde)k
+ z;k< HR (sp + Bk)>+ eGk< - uRz;k ~ Ry - uRez>
(9 = B URD )T + euR(B +8,) + N RuRT, ]

X 2 .
- s:.ml}k [xk Bx + X [-uR(SGk + ¢>k) ‘

R 8o - MR (Og + ) [ - MRB 0.

- “R<6Gk + 4 - ék> + l;xe'Gk |

R < Gy (B + 00 - Ty (B + B 6,80, > )
+ er < - uR (BGk + ¢k) > + kauR |

- IR < e v(eGk,+ ) + paey - R >- uR.b(GGkﬁbk) 1
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+ coslbk sinll)k [xkpRBy - uRn<uR(B§+Bk)+6Gk(—uRCk-Ry-uRez)—uRCk¢k>

- uRSz - Ry>]

+ uRi;k<uR (eGk + ¢k) > - pReGk <

2 2.2 L 2 *
+ cos wk [-¥"R Ty (Bp + BR)J + sin wk [~ xkuRSX

- MR < - UR (6Gk + ¢k) + Rxeck > - R RxeGk]

2.2 b o Y .
pAabsz (x, - ){—xk< Bk-(eck+¢k)>

1
2 AT 2

- costpk < uRék - R (eGk + ¢k)>

- sy < - WR (B + B - MR (B + $,)%)

- % (éGk +'$k)

(éGk + ék) { - x, - e - cosf URG, - sinwkuR}
(5.74)

These aerodynamic force and moment.expressions are transformed into components

in 3k system because the blade dynamic equations of motion are written in

3k system. The appropriate compoﬁents are

b =-Z P -B . p
A 7
Ax3k k ySk k Asz (5.75)
p =p, (5.76)
Ay3k AySk
P =p -B.Z. p = p
A.sz Asz k°k Ay5k 'Asz _ (5.77)
q ~ = q (5.78)
Ayax AkSk
q = Ck q, (5.79)
Ay3k x5k
Q = Bk Q, . (5.80)
z3k x5k
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5.2.3 Distributed Structural Damping Loads

The structural damping incorporated in this analysis.is of a viscous

equivalent type. The damping forces per unit span of the blade for flap, lag

and torsion are respectively given as

Flap P x é g (5.81)
Dz3k k™ k Sg

Lead-lag p = -Qx & g (5.82)

Torsion ¢ = —Qé-g (5.83)
Dx3k k ST

No attempt is made to eliminate these terms by considering the ordering
schemes since these terms serve the purpose of determining the effect of

damping on stability.

5.2.4 Rotor Blade Equations

In this section, the individual blade equations of motion are presented.
For the rigid, offset hinged, spring restrained blade model used in this study,
the distributed inertia, aerodynamic and structural damping loads are integrated
over the length of the blade and moment equilibrium at the spring restrained
hinge is enforced. The loads due to inertia, aerodynamic and damping, integrated
over the biade span, are given in the following sections. Finally the blade

equations are obtained by enforcing moment equilibrium at the root of the blade.

Inertia Loads

The forces and moments at the blade root due to the inertia forces are

Prak 2[) Prax 4% (5.84)

R-e
Qgy = fo Caggy * Toap ¥ Py ) 9% (5.85)

where §I3k are the distributed inertia force on the kth blade and aI3k is the
distributed inertia moment about the elastic axis. These quantities are derived

in previous sections of this report.
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Recall that the position vector of any point "p" on the deformed elastic

axis of the blade is given by

Toak = et ) Cug F RS e By ey (5.86)

and u, is the axial displacement primarily due to geometric shortening

k
X
k
1 2 2
u =-3 '[o (Ck +Bk)dxk
1 2 2
= -3 % (;k + Bk ) (5.87)
and .
uy = - X (Ckﬁk + BkBk) (5.88)

It is assumed that the inflow is constant over the disk and the pretwist of the
blade is zero. Hence in integrations over the blade span A and eGk remain
constants., Mass per unit length of the blade is also assumed to be constant.

The components of the inertia forces at the root of the blade in 3k system

are
2 R 2 . 2 .
P =m0? [ B L ey e+ (Rmed 95 (Roe)
I 2 2 z 2 k
x3k
- (R-e) < Rx cosl{)k + Ry sinlpk > ] (5.89)
2 (R;e)z . v . .
PI .=mSZ [___2—_<Ck-*-zgkez_ez_Z;k-f.zﬁksp>
y3k
(R-e) eb +2—(R;e)i[;;, +Bé]+ (R-e)X .e
- z 2 kk k k 1%°5%:k
' (R_e)z . . e o o
+ cosq)k <S5 < spex + Bkex + ZBkGX > - (R-e) Ry >
(R—e)2 P . e . .
+ sinp, < S < Bpey + Bkey + ZBkey > + (F{—e) R > 1 (5.90)
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2 . (R-e) 2

™l
{

4

4

(R-e)?
2

(R-e) RZ ~ Bp< (1+262+2Ck)+(R—e)e>

°°§Wk < (R-e) [Bp Ex + e(§y - Zéx)}

.

-~—-—(R =€) | 22, 6
10

> ~ (Gy - ZSX) + Ck (Sx + 28y)j
ing. < (R- R - e(®. + 20
31nwk (R-e) [SpRy e( <t 2 y)]

(R-e)2
2

20 )1>1

(5.91)"

[2;k6y + (SX +‘26y) f Ck(ey -

The components of the inertia moments, after applying the ordering scheme, are

R v/;R_e 1,3 ik Pry, 7 PIy3k) T
- ';k{"ﬂz [ 'g%iﬁék‘ *(&ﬁza'ﬁ"z
- Bp < (R"§)3 | + (R;e)z e + (R"g)s Zéz —(i% 2, >
+ cos!,bk (R;e) Bpﬁx "4£§:§lz zékéx SB;El,.(@ - Zéx)
P Bl G iay - Bl § s
+ sinp, < 335223 Bpﬁy - ($~§)3 Zék-y _ 5§_§lw.(e +26 )
- &—?Ee @, + 2éy> - @;;;ﬁ 5 G, - 2051}
R A RIS SN )
LB._g_)., g, + ~(§'—§?—~ 2(z,z, 48,80+ & §) 28,8
+ cosy, < LE:%li Bpgx + &E:%li Bkag N ﬁB:%li .Zékéx - $§~§l-Ry>
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3 3 3 2
(R-3) n (R-3) o (R-e) .. (R-e)
simpk< =5 Bpey + skey + s 2e3key + R >]}
Q% { o [-®e? 5 oo
mxy cosbp L - "5 B - (R-e) R,
2
- Bp <Q‘Te>— + (R-e) e+iR—"§)—-2ck R= g) 29 >
2 2 2
(R-e) (R-e)™ (R-e)
T RO T T RS P T 98,

(R—e)2 " . " .
coswk < 5 (ey - 26X) + (R-e) e (By - 28x)

2 2 * -
(R-e) “ . (R-e)
T2 Ck (ex + Zey) - 2 2L:kex

+(Ree) (BE + 0 H) >

2 . - " .
sin\l)k < - B-e) (GX + 28y) - (R-e) e (Gx + zey)

2
2 2 . s
_ (R-e) N Sy (R-e)
5 &y (ey_- 26 = zgkey

+(R-e) (BR - OR)>]

2 2 .,
CEO SN SO RN SO (T 5, + BB

m x 51n6G 2 K 5 x -~ 2

I k

2
(R-e) . (R~ e) (R—e) "
- ZBka — 28 C + — ez

2

+ (Ree) 6+ Bo2) e) by (B + B + (Ree) OR,

2
. (R—e) % (R-e)" 2 &
cosy, < (R-e) Ry - == 8, (?p + Bk) - ZBkeX

C 2 . .
(R-e)
+ T ¢ (-ey + zex)>

(R—e)2 ,

(—R'i , B+ B8 - F 280

sirul)k < - (R-e) Rx ~

(R-e)” 8 ,
o by (6 4+ 20) > ]
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y3k

4

1]

-+

2 2 " 143 . .
(R-e) [ (Iypy cos™ By + Tygy sinOoy [-0 + 5,8y + 25,8,

OBy - O B (& - 8)

coslpk < - (ex + 26y+2;k ( 5y - zex) + 2;key) >

sinlpk < - (Gy - 28x - &y (Gx + 26y) - ZCkGX) > ]

(IMB3 sinzeck + Iygo cosZGGk) [¢k - 5k + 2¢kéz
S0, B+ 8 - 28+ 20,5,
+ 2¢k&k + chéck - Zézék - gGk
_6x cosy, - 5y sinwk 1
(Typy = Tup) sinfgy cosbgy (-1 - Zéz - Z&k]] (5.92)
R-e
.}; (qu3k * P PLyge (e + ) pIz3k) P
Bk{mQ2 [ (R_§)3 + <R';')2 e + <R”§)3 Zéz + LR-_gﬁ Z&k
- LB:glf-ﬁx cosll)k - nggli iy sinwk]}
[ (R-§)3 ;- (R—;)2 :
- B, < (R'§)3 + (R_z)z e + (R°§)3 zéz +(R;§)i— -2;,k >
cos\bk < Sg:gli Béﬁx - igzgli-Zikéx +(B:§li— (6y - Zéx)
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2 L4 3 .
(R-e)” 5 (R-e)” =
+ > e (ey - 26X) - 3 Ty (6x + 26y)>

2 3 3 .
. @ 3 . R 22 R-e) g L 28
+ sing, < 7 BpRy 3 ZEkey 3 (ex + y)

2 .. 3 ..
- AR o6, 4 20) - B o @ -20) >0 G99

) dx

3% K

- X C P
k °1
z3k k X

. R-e
Q = -I. (q + (x, +u)p
B o Iz3k k k Iy3k

3 : 3 3, 2 .
_~2 . (R-e) (R-e) : (R-e) . _ (R-e) :
= [t 326, - 8 7 9,

L ®e)? p ®ee)’

(R—e)3
k 3 3

2(z,5, + BB + 28,8

. . 2 (X
280 - (R-e)” R >

@2 o5, R’y | (®-e)
k'x 2 y

3 Bpex + 3 Bkex 3

+ coswk <

3. 3 3, 2
e (R-e) (R-e)” , % . (R-e) * (R-e) =
+osingy <SS B0 4 ST B0 b o 28,8 4 o R

3 2 3 . 3
(R-e) (R-e) (R-~e) (R-e)
[ 3 + > e + 3 26Z +-———§——

. 2 -
- { mQ ZCk
2 2

(R-e)° _ (R=e) ™ =

- ———E—T'Rx cos\bk - Ry sinwk]}

(5.94)

The order of magnitude of leading terms in these expressions for the loads are

listed below for convenience

and

P 0(g) 3 PI = 0(¢g)
y3k z3k

1 Q1) s P

x3k I

oy 3 Q@ =0E 3 q =0

‘QI )
x3k y3k z3k

The loads at the root due to distributed aerodynamic loads are
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Pase = j; Ppgk ¥

and

=l

R-e
A3k j; (a3 * Tp3ic X Pagid) 3%y

3 [ ]
- 2 (R-e)” _ _
PAx3k——oAabﬂ B {3 (B + & = B + Ty B +0)-2, (B +B)
+ ez + Ck(GGk+¢ B ) + 6 e ]
(R_e)z ' . .
+-———§—— [—AkR + e(eGk + ¢k) + uRey - RZ - Achk

+ eﬂeck + ¢k - Bk) + b(eGk +.¢k) 1 - (R-e)eKkR

3 .
- cosy, (- B o 4 ﬁﬁ—ﬁl— [ WR (B +8, 748, (-URT, R RS )

- uRck¢k + T HR (Bp + Bk)
+ 0. (-uRg, - Ry - uRGZ) - HRG, ¢, - Bk)]

+ (R-e)[eur(Bp + Bk) + AkRuRCk]J

. 3 . . .
- sinp [ -(—R;‘B*—)— o + B2l (R- e) [“HR (B +,) + R 8 RO, )T,

uRSZBGk - UR (eGk + ¢k - Bk ) + RxeGk

MR < B b)) - L (BB + 68>

Gk

+

(R-e) [ -euR (6 )+ XkRuR

ek t %

UR < e (eGk+¢k) + uRey - gz >

R b (B + 6,0 1]

2 -
(R-e)
[ s uRey

+

coswk sin\pk
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+ (R-e) [-MR < WR (Bp +B) + 20 (-uRck—Ry—uRQZ) >
- 2uRG 6, 1]

+ coszlpk [ - (R-e) uzkzgk (Bp + Bk)]

2 . . .
+ sinzwk [ - -(—R:-;;)—- uRe - (R—e)uR<—pR(GGk+¢k) + 2Rxeck>]}

_%pAabzﬂze.k[— (Re) <sk-—(e +(;)k)>
- COSU;IL; [ (R-e) <pRék - R (eGk + ¢k)>]

.= sin'l,uk [ (R-e) < - uR(Bp + Bk) - R (éGk + q;k)>] ] coseGk

) : c oy 3

- oAabQZ‘ck{—% [———(R‘;) ]
- (Re) [3k<6 +¢i(_8k]
_ (R- e)

U8, AR+ AR (8 + 4 - B)

+ (-uRE +R) 6 ]

+

(R-e) [FAkR <= MR >

————(R —e) e 0

- cosg’;k [

Gk

—(R;e’—[akuR(s +3k)+(q>k+ek)uR(s + 8]

+ (R-e) [- A RUR (Bp + Sk) - A RR (Bp + Bk) 11

. 2¢c _ 2
- siny | ad° (R g) R
3
- & g) (- 6 <O l” B9 e) (B, < ~HR (Bgte,)>]
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+ (R-e) [ - AR (-uR (8, +6))~uRE (uRey - éz)]]

®-e)?
+ cosyy sinyy [~ 5 ey (- uRGGk)

+ (R-e) [ ~ uR (Bp + B) < uROy + RO >]]

+ cos-zlpk [ (R-e) y 2g2 3 + B,) 2

2 .
. 2 R-
+sin’y [ (- g0, )

Cc
- 2 e [uRM )

+'% pAezbZQZ-gk { (r-e) [ - “ReGk sineGk] (-'coswk)}
(5.95)
c 3 . . 2
P, =paabﬂz{-%[ﬁ'—g—)——(1+2gk+zez)+2ig—‘%)— e]
v3k
(R—e)

(6 <Og + & = B+ g (B + 4
S b (B R 0,9, >
o, B) <G - A
S o o+ elogra) + 86, - R,
‘+ MR <O ¥ O - ék+ ;’k(eck“L &) - g (BB
+'ézeGk >

+ (- uRey + Rz) < eGk + ¢k - Bk + CkeGk >

o (Bt B) <-AR>+ B b (6 + 9]
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- - A < - + +d - n >
(R-e) I kR AR e(eG] ]) + uRO R
+ - <o + -R >
(URS R) Al R e O | + UR6 R

= A Bb (O + 0]

2¢c 2 .
do (R-g) »
costpk [ " [ 5 ( WRZ, + uRez + Ry) ]

3 L]
(R-e) -
[-B,6 -z 066 + ey (eGk +¢k—B

3 Ky T “k’x ek 10+ SOy

2 . .
(R-e) -
——— [Bk < uR(BP + Bk) + eGk( URCk—URGZ—Ry)—¢kURCk>

-8B < - ¢] : >
- )\kR uRy+RZ

+ Ck(Bp +B8) <R (Bp +8) >

- eGk<- e9y+ (Bp+8k)( uR—RX) >

-0 B <R (Bp+6k)>

- AkRey - T (eGk + ¢k) uR(Bp+Bk)

+ ey < eeGk + URGY - Rz>
N (B+B)) < -LR(E +8) > ]
+ (Ree) [-WR<UR(E+B) + Oy (-LRT,~RO R )~IRT, ¢, >
+ (UR@Y - ﬁz) <R (BP + Bk) - WRZ, O, >
- AR O<IR ( Bp + 8>

+le (eGk + ¢k) + uRey - Rz] < uR(Bp +Bk)>

+ R (BP + Bk) b(GGk + ¢k) 11
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. 2Cd0 (R_e)?_ . . 4
- 31nwk [ 2 [ > < uR (1 + Ck + Gz) - Rx > + epR(R-e)]
LR’ Lo g e b (6 40 - B -6 t6]
» 3 k'x T Gk7ky X Gk k k Gk’k'x
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(R~e) o -
-5 OB <R B 0+ 6 R >

< - >
-f ex AkR uRGy + R,

+
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= B< €8, + (B + B (-UROR) >

+ )\kRex - ex < eGGk + LlRGy - RZ > ]

+ (R-e) [ - >\kR < -uR (eck + Gk) + eGk Rx >

+ (uRey - R) < -R (6Gk + ) >11]

' 2¢ .
+ cosp, siny, [ - do 1 (R-e) 1R (RE, + URS, + R) ]
EEE ST
3 vy X
2 R
(R-e)
i — [ —ex < 2uR (Bp + Bk) - ZURCkGGk>

.

+ ey < -uR (eGk+ ¢k)>]

+ (R-e) [ WRO,, eey - UR(Bp+Bk) (MRO +URY, )
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(R-e) 2
[—'—3 8

2
+ cos wk y

(R_e)z . .
- { 26y (Bp + Bk) MR - uRckGery]

2.2 2
+(R-e) [UR (B + B
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+ IR (B + B) < -WRL (8 + 0 + 8y (<R -URO 2] ]

3
(R-e)” 2 2
[—==—¢

L2
+ sin wk .

(R-e)2 . . .
e [_uReGk (6, + Ckey) - MR$, 8 ]

+ (R-e) [- WRO,, < eb + (Bp + 8, ) (-uRE - Ry) >

do 2.2 .
-— < WR - 2u1RR>]]}

(R—e)z .. . .
B [ (Bk - (eGk +¢,)) < sinBy, + ¢ cosf, >

- CkeGk_ sinfg, ]
+ (R-e) sinGGk (uaey - Rz)
2

- coswk [ - (R-S)

(Gy - SX) sineGk

+ (R-e) [ (uRék uR(SGk + ¢k)) (sineGk + 9y cosBGk)

- uRCkBGk sinGGk] ]

2 .
. R- 2 .
Slnwk [ S——gl—'(ex + ey) 51n6Gk

(R-e) [ (uR(B, + By) + UR(By+0))
(sineGk + ¢k cosGGk)

+ uRckGGk sinGGk] ]} (5.96)
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0,0 T ok O Oy~ B>+ 8,81

(R_e)z .
— [ - )\kR + e (eGk + ek) + uRey -R - kagk
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+ (R-e) [-UR<UR(BP + B ) + 28 (—MRCk‘RY'URBé) >

Gk

- ZURCk‘bk} )

+

cos’yy [ - (Ree) WRg, (B + 6]

(R-e)”
2

i 2 . L
+ sin ka [ ~ uRGX - (R-e) R < ~ uR(GGk+¢k) + ZRxeGk>] }

2 .
1 2.2 (R~e) PO °
4—2 pAabQ I - <Bk (BGk+¢k)>

cos, [ (R-e) < WRB, = 4R (B, + 9,) > ]

siml.;k [ (R-e)< - uR(8p+Bk) - uR(eGk+q.)k) >1] (:oseGk
(5.97)

The aerodynamic moments at. the blade root are

R-e
Q = _/. (q + XL, P - x8 ) dx
Ak 0 A KRBy KR TA Tk
2 (R—e)h - M
* 8,000 F ok <Bar T B~ B > 19,095,]
(R-e)>

+

+e(eGk+¢k—ék)+b(GGk+¢sk)]

2
(R-e) -
+ 5 el XKR)
4 .
{(R~e)
- cosy, [ - 7 E)y
(R—fa)3 >
+ =5 [RGB+ B) + 8, (-URZ, - R~ URG))
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a 3
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(R-e)>

-2 [ B < - MR+ e(By+0) + RO - R_>
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70



Ree)d
3 [<3k-(eck+¢k) >( sin@Gk+¢)kcosGGk

1 2.2 2
+ 3 pyab R B (1+ck){—

- ngGk sineck]

(R-e)
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Neglecting higher order terms
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4 . 3
+p,av0’ gr ( B2 g+ -8y + & (aw

3
- cosy, [ B2 ur 8+ 8]

(B-e)>

3 .
- sty [ B2 o oaw o, + 6) + ] + B2

KkRuR]

2
+ coswk simbk [ - Sg:gl—- quz (Bp + Bk)]

2
+ sinzwk [ SB:gl__ n2g? g + 00 13

(5.100)

The orders of magnitude of the leading terms in the various aerodynamic loads

are given for convenience

3/2

P = 0"
Ax3k
P = 0(63/2)
Ay
1/2
P = 0(e )
Az3k
3/2
Q =0(e™" ")
A3k o
QA _ 0(81/2)
y3k
Q, = 0(83/2)
z3k

Damping Force

Instead of assuming a distributed damping force representing the structural
damping of the blade, one can assume a damping force proportional to the

velocity and it is provided at the root of the blade. It can be written as
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Flap Q = + Q8B g (5.101)
Dy3k k SF

Lead-lag @ = - ¢z g (5.102)
Dz3k k 5L

Torsion Q = - ¢, g (5.103)
Dx3k ] k ®Sp

These damping forces are proportional to the rate of change in angles in flap,
lead-lag and torsion. Reason for this type of assumption is that in the
present study the blade is modeled as a rigid blade with root springs.

Equations of Motion

Using the moment equilibrium condition at the blade root, the equations of
motion for the kP blade can be written as follows.
Flap: The flap equation is

M + Q + Q + Q =0 (5.104)
B Iy3k Ay3k Dy3k

Lead-lag: The lead-lag equation is

M + Q + Q + Q = Q (5.105)
k0 Tz Aask Dask
Torsion: The torsion equation is
M, +Q + Q +Q =0 (5.106)
% Tak A3k Pxdk

The elastic restoring moments due to the root springs are given in Appendix.

The results are summarized below.

MBk = wk—?fﬁ‘l Kg + Ry (1(C - Kg) sinzeck}

+ (wzﬁ R (K]; - KB) sinGGk cos.eGk
Mck =~ (ij“,‘sk) { K - Ry (K, - KB)sinzeck}

- ﬂ%‘,‘c—k) Ry (K, - Kp) sind ., cosB.,
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where KBHKBB KCHKCB
K, = ; K. =
B Kg +1<B ’ 4 KC +Kc
H B H B
l/KBB - l/KCB
R =
1 (1/1(B + 1/1<‘3 ) - (l/KI; + 1/KC )
B H B H
A'" = 1+ R, (1-R,) inze (K —K)Z/KK
= 1 17 ST ¥ex Vg T gl MR
For an articulated blade
K, K
P CT’C ¢B
KB = KC = K‘bl = 0 an K¢2 = W
C B
For a hingeless blade
K¢CK¢B
K¢2 = 0 and ch1 = K¢ +K¢
C B
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6. EQUATIONS OF MOTION OF THE SUPPORTING STRUCTURE

6.1 General

The supporting structure,- to which the envelope and the rotors of the HHLA
vehicle modeled in this study (Fig. 2) are attached, is assumed to be flexible.
The degrees of freedom associated with the supporting structure consist there-
fore of both rigid body and flexible degrees of freedom, The structure is
idealized as a free-free beam and is represented by relatively few number of
bending and torsional free vibration modes. The derivation of the equations of
motion consists of two parts.

1) One part representing the rigid body degrees of freedom,

2) A second part representing the flexible modes of the structure.

In dealing with these two contributions to the total motion it is assumed
that rigid body motions occur first. After establishing a perturbed state, con-
sisting of rigid body translation and rotation, the elastic deformations are
superposed. Thus the equations representing the rigid body degrees of freedom
are written in S-system and the equations of motion representing the elastic
structure are written in Sl-system, see Figs. 8 and 9. To write the equationms,
various external loads have to be identified and properly transformed to the

corresponding coordinate systems.

6.2 Loads
The various external loads acting on the model are illustrated in Fig. 12,
1. The rotor loads ‘at hub center OHl and 0H2°
2. Aerodynamic loads on the envelope acting at the center of buoyancy 0c
and a static buoyant lift.
Thruster loads acting at OFl and OF2'
4. Gravity loads acting at the respective center of mass of underslung
weight, envelope weight, fuselages weight and the supporting structure
weight. The respective center of mass locations are denoted by Oyy,

0 0

Ogy> Opys Opys Og-

6.2.1 Rotor Loads

The loads acting on the rotor blades are inertia and the aerodynamic loads.
These distributed loads are transformed into forces and moments acting at the

blade root. The moments are balanced by root springs and dampers. The loads
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on the kP blade are derived in Chapter 5 and are given in 3k coordinate system.
They are given in equations (5.89)-(5.100). Net combined loads acting at the

root of the blade are

Pag = Prax ¥ Pask . | (6.1)

Qqp = Qpgp + Q3 + a3y (6.2)

These loads are transformed into loads acting parallel to 2k system, using the

following transformation.

Paks = (T3] Py (6.3)
Qi = [Ta3] Qg (6.4)
where P2k3 and Q2k3 are forces and moments acting at the blade root (i.e.

origin of the 3k system) whose components are given in 2k system. Transforming

these loads into loads acting at the origin of the 2k system (i.e. hub center,

either OHl or 0H2)
Pok = Poxs - ' (6.3)
Qi = Quez + (e By * Pyyy) (6.6)
Pok ™ By = B, Poad e + Pumyon * BugtBPigide o

(6.7)

Ui = Qar = B, Ladeon ¥ Yaccyor ¥ (QatB %aid e,k

~ ~

*lme (g ¥ B Prgi) Cppit e Py eyl (648)

Again tranéforming these loads to 1 system
BRI LT R (6.9)
Qe = [Ty5] Qe (6.10)
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Expanding

a1}

1k = 1eoSPy < Pugy = By Py 7 - sy Pyl

> + coswk P .. 1 e

+ [51nlbk <P y3k) °y1

x3k Bp Pz3k

~

+ [PZ3k + Bp Px3k} e 1 (6.11)

A~

Qi = o [e08Vy < Quaye = By Qugpe 7 = STy < Qugy = @By b8Py )]

+

eyl [Slnwk < Qx3k - Bp Qz3k >t coswk < QyBk—e(P23k+8pr3k)>]

*e,1 L5 + B, Qua + e Pyl (6.12)

These loads are acting origin of the 1 system i.e. either at Oyp OF 0H2 de-
pending on the rotor system. Total load due to all the blades in the two

rotor systems are

N
Rotor System 1 PlHl = 2: Py (6.13)
k=1
— N —
Qe = 2 O (6.14)
k=1 .
— - N -
Rotor System 2 PlHZ = 2: Plk (6.15)
k=1
- N - '
Qup = 2 Yy | (6.16)

The summation is over the number of blades in the individual rotor systems. As
it was pointed out earlier that §1k anq alk will be different for different
blades and also for different rotor systems.

Transforming the loads acting at Ole to the point Opq (C.G. of.fuselage F1)

and that at 0,, to the point Op, (C.G. of fuselage F2),

H2
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Pir1 = Pomn (6.17)

Qr1 = Qm * (ry &1 ¥ Pryy)
=Qyq +[-h, P e ,+h B e ] (6.18)
1H1 2 "y xsl 2 X1m1 ysl
where P is the y-component of the vector §1Hl and P is the x-component
Y1H1 *1H1

of the vector §1Hl' It should be noted that according to our initial assumption
the 1 system and the S1 system are assumed to be parallel. Similarly for the

second Totor system

Piv2 = Pimo (6.19)
Qpz = Qup + (hy e,y % Pryy)
= Qu, + [-h, P e . +h, P e .1 (6.20)
1H2 2 Y1u2 xsl 2 X1y ysl

The loads presented in equations (6.17)-(6.20) are acting at the points 0Fl and
OFZ. The components of these loads are given in 1 system (Sl system), both

the 1 system and S1 system are parallel systems. The components of these loads
will be used in writing the equations of motion representing the elastié modes

of the supporting structure. Writing these loads in terms of loads in the 3k

system
- N .
PlFl = 2: { e [costpk < Px3k - B Psz > - 51ml)k PyBk]
k=1 P

+'eyl [simpk <P g - Bp P oo >+ cosd}k Py3k]

+e,y [P g + Bp Px3k] } _ (6.21)
_ N R .
Qp1 = égi{ ey [eosty < Quqy = B, Q3 > - singy < Qg

-e (®yg t BP0

—hz (simpk < Px3k - Bp Pz3k > + coskay3k)]
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+oepy [einh, < Qg - B, Qg >+ cospy < Qg

- e(B gy * Bp Pesi) ”
¥ by (coshy < Pray - By Pask”
- sinlbk Py3k)]
+e,y [0, + B, Qx3k-+ e ? g3 _ : (6.22)

The. expressions P and alFl represent the forces and moments.due to rotor.

1Fl

systems Rl1, These loads act at the point OF on the supporting structure.

. 1
Similarly, the loads due to the rotor system R2 are §1F2 and ale. These loads

act at this point O, on the supporting structure. Since the rotor loads are

F2
derived for a general rotor system, the expressions for these loads given in

equations (6.21) and (6.22) are valid for both rotor systems Rl and R2. How-

ever the components Px3k’ could be different for

Py3k’ Pz3k’,Qx3k’ Qy3k’ 3k
the two rotor systems dépending on the operating conditions and various other

rotor parameters.,

The rotor leads P will be used in writing the equations

‘ w1’ Qr1e Piroe Qipo ‘
of motion of the vehicle and the supporting structure., Hence, it is convenient
to refer these loads in the body fixed S1 coordinate system. From equations )
(6.21) and (6.22) it can be seen that these rotor loads are given as components
along the hub fixed 1 system. By definitibn, the hub fixed 1 system and the
body fixed S1 system are parallel. Therefore in subsequént parts of this report
these rotor loads will be referred as §SlF1 for ﬁlFl’ alel for 61f1, P for

- - - S1r2
P and Q for Q . Again these loads are transformed into components along
1F2 S1r2 1F2 ;

the S system acting at point O_ on the stfucture. Finally the individual rotor

S
loads are added together to get the total rotor loads,
The total rotor loads at Og are (components along S system)

P

sr = [Ts 1] Poyp1 + [T g1) Pgipn (6.23)
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Qp = IT5 s11 [Qgqp1 = %1 eys1 X Pgypp)

+ [Tg s1) WQuipg * %5y exs1 * Pgip

1 (6.24)

where'[Ts,51

Sl system to inertial S system.

] is the transformation matrix relating the body fixed noninertial

1 6 6_-6 6 6_+06
y X z zZ' Xy
[TS,Sl] = ez 1 ezey_ex
-6 S 1
y x .

where Gx, ey, Qz represent the Euler angles for rigid body rotatiom,

6.2.2 Aerodynamic Loads Due to the Enveldpe
 The aerddynamic loads of the envelope are the buoyancy loads acting along

the body axes. These are denoted respectively By §EN and aEN'

- -~ -~ A .s5 A
= +
PEN Px Cxsl + Py eyél t P, et Pz s

s. ~ ) s ~ S\
(PX -~ esz ) e 1t (Py + 06 P ) e + (P, + P, )eZS

sl ysl
(6.25)
QEN R ®xs1 ¥ Qy eysl +Q, e ( )
These loads act at the.center of buoyancy OCL The components of the dynamic
loads are defined as [Ref. 7]
- 2/3 ., _ 2/3 L G213
Forces P = Cx qV T, Py = Cy qV s PZ : Cz qV (6.27)
- - o =C qV 6.28
Moments Q =€ aV , Qy c,av Q, o 4 ( )

Where V is the volume of the_envelope
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q is the dynamic pressure

s ., . .
Pz is the static 1ift on the envelope acting along Zs axis

and are coefficients

C c
X, Y z’ 2,, m, n

Transforming these loads to the point O, on the supporting structure

S

P P (6.29)

S1EN ~ TEN

Qsyeny = Qy + (hy e, 3 X PRy

Q. + [-h sy o 6 pS)a
Qe + [ 3 (Py + GXPZ) e th (PX esz)eysl] (6.30)

1 3
Expanding
B 2/3 sy 2 2/3 s,
P = -
S1EN (CX av eYPZ ) exsl + (Cy av + exPz ) eysl
v q v %yt - (6.31)
. z z” “zsl
0 2/3 S ~
= (C - -
QSlEN ( 5 4 v h3 CY av h3exPz ) ®xsl
+(C_qV+h,C_ q v¥/3 o p 5)3
m 3 x y z ' ysl
+ Cn qV e, sl (6.32)
Writing these loads, along the S system, acting at OS
Porn = [Ts,51) Psimn (6.33)
- (6.34)

Qen = Ts,51) U1en

6.2.3 Thruster Loads

Two thrusters simulated by thruster forces are assumed to act at the C.G.

of the fuselages Fl and F2 i.e. 0Fl and OF2' They are

A~

Prpr =~ Pp ey 34 Prpp T 7 Prepg (6.35)
Transforming these forces to the C.G. of the structure OS and combining them
PSlT = -2 Pre 1 (6.36)
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in the S coordinate system

P = 1P (6.37)

st = [Tg,s1) Psip

6.2.4 Gravity Loads

The gravity loads are due to the various masses which constitute the
" A
HHLA model. There loads act along ~e o direction, at the respective centers

of mass. The various contributions are:

Fuselage
The gravity loads on the two fuselages act at OFl and OFZ' These are
Purt 7 7 ¥p1 ©ge (6.38)
Purz = 7 Vp2 %8 : (6.39)

Transforming these loads to the point OS on the structure and adding them

PSWF = —(wFl + sz) e s (6.40)

- ~ -

€ + RFZ Cxsl X PWFZ

Qsur = “%p1 ®xs1 * Pyl
where §SWF is the grayity force

QSWF is' the moment at 0S due to the gravity forces.

(_QSWF"= (—QFl gxs - elel gys + ey'QFl gzs) x (—wFl gzs)
+ (£F2 gxs + ez’Q'FZ gys - eyQFZ gzs) x (_wFZ gzs)
- (ezzFl wFl - 6z'QFZ WFZ) gxs
+ (g Wop F gy Wpo) éys (6.41)
Underslung Weight

It is assumed that the underslung mass is rigidly attached to the support-
ing structure. The gravity force on this mass acts at its C.G.'OUN at a

A
distance -h,e

17zsl from 0

g
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The loads due to this mass at 0S (in S system) are

>

swon =~ "un ©zs (6.42)

cll
!

Qquuy = ~ My © x (- Wy e,

zsl

n

- hl(ezex + ey) ®xs hl(ezey - ex)eys—hlezs)x(‘wUNezs)

h1 (ezey - GX) wUN S h1 (ezex + ey) WUN eys (6.43)

Envelope Weight

~

The gravity load on the envelope acting at its C.G., OEN is _wEN S It
is located at a distance hh azsl from OS. Transforming this load to the
point OS on the structure,

Pswen = 7 YN ®zs ' (6.44)
-— - ~ _1 ~
Qswen = P4 ®zs1 *(Ven ©54)

]

[h4 (GZGX + Gy) et h4 (ezey - GX) eys + h4 ezs] X

~

(-Wpy €z

- b, (626y - BX) wEN e T h& (SZBX + ey)wENeys (6.45)

Supporting Structure Weight

The gravity force on the supporting structure is acting at its C.G., QS'

~
in e, s direction, it is given by

Pous = Wg e, (6.46)

Qs = 5 sl

zs
= (h5 e s + ez h5 eyS - Sy h5 ezs) X (—WS ezs)
= (rez h5 WS e + h5 s eys) (6.47)
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6.3 Rigid Body Equations of Motion

Using the various loads derived in S coordinate system, the rigid body

translational and rotational equations of motion can be written in the S

system.

Let the rigid body perturbational translational motion of the point O

be

~ ~ ~
R =R e + R e + R e.
s XS XS y8 ys zs zs

Then the translational equations of motion become

al

R = Por * Popn * Por * Pour * Powun * Pswen t Psws

where W = wEN + wUN + wFl + WF2 + WS

WS is the supporting structure weight.

* The equations of motion for the rotational degrees of freedom are

d

ar [T ol = Qg * Qgpy * Qgup + Qyun * Quen + Ysus

_ 5T
where [I] = [TSL s] [IS + IFl + 1F2 + IEN + IUN] [Tsl,S]

and @ = Q[(ex - ezey) € s + (ey + ezex) eys + (ez - eyex) ezé]

The individual inertia tensors are given by

Structure: F—I ~1 -1 ) ra 0]
XX Xy X2z
ws 2
(Il = -1 I R ¢ + = {0 h
s yx yy vz g 5
-1 -1 1 0 0
L zx zy zz_| S |
Fuselage: I 0 -1 0 0
XX Xz
-
Fl 2
= —_— L
(1] s 0 Iy 0 {+—= [0 1
_Ixz 0 Izz F1l 0 0
b - o=
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(6.50)




— —
F—i 0 -1 ] 0 0 0
XX X2z
W
F2 2
I = —_—
[ F2] 0 Iyy 0 + 2 0 le 0
-1 0 I o o 22
Xz Z{_} F2 F2

The first matrix is defined about the body axes.

1 :
Envelope — —W r-2 _T
I -I -1 h 0 0
XX Xy Xz 4
W
= EN 2 .
(I = Lox Iyy -1, * 5 0 h, 0
__-sz -Izy Izz___ EN __0 0 0__
Underslung weight:
I -1 -I h 0 0
XX Xy Xz 1
W
= UN 2
[Tyy! = Lox Iy "Ly + 0 by 0
L_jlzx —Izy Izz UN LS 0 0__

6.4 Equations of Motion for Elastic Modes

The flexible supporting structure is assumed to be a free-free beam
idealized by a small number of modes of vibration. The structure can have
bending vibration in the two planes and a torsional vibration about its
longitudinal axis. These elastic modes are assumed to occur in S1 coor-
dinate system, and therefore the equations of motion are written in S1 system.
Furthermore the structure is assumed to vibrate about its equilibrium position.

Bepding_in X1~ ysl_plane [Fig. 9]

The elastic deformation at any point on the structure due to the bending

deformation is written as -

S

v (x ) = ig: n,(x ) €, () (6.51)
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where ni is the mode shape, Ei is the generalized coordinate or normal coordinate
and NM is the number of modes. A

The equations of motion written, in normal coordinate, are
tud{er + PRI {8} = {q} : : (6.52)

Where {Q} represents the generalized forces

PMJ is the generalized mass

[PKJ is the generalized stiffness

It is assumed that these vibration modes are small compared to the rigid body
perturbational motion. So there is no coupling between the vibration modes. The
generalized forces are (force at a location x modal displacement at the same
location or moment x slope of the modal displacement curve)

ni(x

% = Pysien 71 * Qsirr Ni,xUr) * Pysaupr N5 Ger)

+

Pysirz M1%2) * Qsira MixU2) F Pysiurz Mg G

* Posien M105) * Qgipy r’;,x(os) + [Pogiwen * Bystwund N3 (0g)

3
+f £z Posiws Ny (¥) dx
_QFl

Terms with suffix 'S1W' refer to gravity loads referred in S1 system. A typical

element of the mass matrix and stiffness matrix are

') W
I e , "FL 2 2
Mg '_/. ng MG mydx + ==y B F L, Ny e ()
-2 Fl
F1
W 2 2
+ F2 ong (Bpp) + 1, oy Gpy)
2 F2
W
EN 2 2
+ — . (0 + I . 0
g nl ( S) ZZEN nl,X ( S)
W
UN 2 2
+ — n, (0) +1I n (0.)
g MY 2z Mix S
L
2 F2
and K., = ~[; ng m (x) n, dx

Fl
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where W is the ith mode natural frequency of the supporting structure
m is the mass of the structure/unit length

Bending Xy ~ 24 plane

The elastic deformation at any point is given by

NM1

w (x )= 2 n(xy) E.(t) : . (6.53)
s sl” - {=NM41 i* sl i

The form equation of motion.is similar to equation (6.46). The generalized

forces are

¢

Q4 = Prs1rn MirD) * Qsimn My x Bp) * Qstuon Mg, x O

g)

(2.,) +Q (0y)

+ Posir2 Mip

ys1r2 Ni,x Fp2? F Ysiwen Ni,x

+ Posien N1(09) + Qgipy Ny x (O -

Typical elements of the mass and stiffness matrix are

2 W
- [ P _F1 2 2
My "./:1 Ny mg(x) nydx + g Gpp) * Tyypr Ny ey

F2
2

yyF2 ni,x(l

2
=2 By + T )

F2

.2(0 )

2
+ ni (OS) + InyN n1,x S

W
YEn L 2
*5 P Ny x (Og)

and
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Torsion

The torsional vibration of the supporting structure is about x4 axis

[Fig. 9]. The twist at any section due to the torsional deformation is given
by the normal modes ni(x) as '

ggf
b (x ) = o n, (x ;) &,.(t) (6.54)
s sl {=NM141 i sl i

The torsional vibration equation in normal mode is
rrd (€} + kI (&} = {q : (6.55)

The generalized force Qi's are

Q4 = Uik i) * Qsire M%) * Qsien Ny O9)

* ey Ms Og) F Uerwun M3 (0g)
Typical members of [IJ and [KJ matrices are

L

_ F2 2 2
Lii = J[z Ny I ny e+ Topr Ny Gppd * Ty Ny Ggp)
Fl
+ I n2 (0) +T nz (0.)
xxEN i S xxUN i S
1 W
EN 2, ., uN 2 2
S h, ng (0 + z h"n; (0g)
and _ ) RFZ
Kii = 0 .I:Q Ny Is(x) ny dx
Fl

where Is is the moment of inertia of the structure per unit length about its

longitudinal axis.
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7. CONCLUDING REMARKS

A complete set of dynamical equations of motion for a simple model of
HHLA were derived in this report. These equations can be used to study the
stability of HHLA and to obtain the various response quantities at different
stations on the vehicle, For convenience, the equation numbers are summarized

below with the physical degree of freedom which it represents.

Blade equations

Flap Equation (5.104)
Lead-Lag Equation (5.105)
Torsion Equation (5.106)

Supporting Structure equations

Rigid body translation Equation (6.49)
Rigid body rotation Equation (6.50)
Bending in X 1761 plane Equation (6.52)
Bending in X 17241 plane Equation (6.52)
Torsion about x , axis Equation (6.55)

The coupled rotor/body equations of motion which have been derived in this
study have considerable versatility and can be used to model a number of diverse
rotary-wing configurations, which are listed below:

(a) 1Isolated rotor blade aeroelastic stability.

(b) Coupled rotor/fuselage dynamics for a single rotor.

(c) Response cyclic, collective and higher harmonic control inputs.

(d) Stability analysis of a tandem rotor system connected by a flexible
structure.

(e) Dynamics, aeroelasticity, and aeroelastic response of a Hybrid Heavy

Lift Airship.

Depending on the type of system which one intends to aﬁalyze the complete
equations presented in this document have to be simplified to fit the specific
application. '

In a sequel to this report entitled "Aeroelastic Effects in Multirotor
Vehicles, Part II: Method of Solution and Results Illustrating Coupled Rotor/

Body Aeromechanical Stability'", two separate coupled rotor/body problems are
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solved with considerable detail. In the first case the equations are used
to predict the aeromechanical stability problem of a single rotor helicopter
in ground resonance, including the effect of the aerodynamic forces. For
this case high quality experimental results are available, and the agreement
between theory and test was found to be quite good. In the second case, the
stability of a simplified model vehicle (Fig. 2) representing an HHLA type
vehicle in hover is analyzed, and the basic aeroelastic characteristics of
such a vehicle are obtained.

The various details of the solution such as: evaluation of the equilibrium
position, stability equations in multiblade coordinates and appropriate methods
of solution are given in the second report, which constitutes a sequel to the

present report.
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Sketch Showing the Main Ingredients of the Aerocelastic Model
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Appendix A: Equivalent Structural Model for
Offset Hinged Spring Restrained Blades

A.1 General

In this Appendix the expressions for the elastic restoring moments acting at
the hinge of a spring restrained blade are obtained. The root springs are re-
presentative of blade structural flexibility or they can represent flextures built
into the blade, thus the model simulates the elastic properties of the configuration
shown in Fig. A.1. The various expressions for the elastic restoring moments in
flap, lead-lag and torsion, respectively, are derived. Subsequently these expres-
sions are compared to similar equations obtained in previous studies. In this
comparison both elastic hingeless blades as well as spring restrained equivalent
models are considered. Furthermore it should be noted that the maiﬁ advantage in
using this simple model -for an HHLA type vehicle consists of the capability of the
model, to capture the essential behavior of both hingeless and articulated rotor
configurations.

Ormiston and Hodges [Ref. 13] have derived one of the first models of this type,
however Ref. 13 was restricted to the equivalent model of a hingeless spring re-
strained blade having only flap and lag degrees of freedom. The present model
represents an extension of Ref. 13, to the case where both torsional blade flexi-
bility as well as pitch link flexibility areAincorporated in the blade model.

Peters [Ref. 14] has also derived a flap-lag model .similar to Ormiston and
Hodges. In both studies,Refs. 13 and 14, the flexibility of the hub has been also
considered. A careful study of these two References reveals some descrepancies,
which are associated primarily with the hub flexibility. The expressions for
hub flexibility are also derived for our model since it was felt that these could be
useful in some potential application. The final moment expressipns obtained in this
study are capable of representing the coupled flap-lag-torsional motion of both
hingeless and articulated blades.

This Appendix is divided .into three sections. In the first section the moment
expressions, excluding hub flexibility, are derived for a spring restrained blade.
The second section treats-the special form of these equations for the case of ‘an
articulated blade. Finally the last section presents the moment equations for

the blade including hub flexibility.
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A.2 Moment Equations for a Hingeless Blade

The flexible elastic blade is modeled as a rigid blade with three orthogonal
springs located at the root of the blade. These springs represent the flexibility
of the blade. in flap, lead-lag and torsion, respectively. In addition to these
three springs, a torsional spring, in board of these three springs, is introduced
to represent the control system or pitch link flexibility, see Fig. Al. It is
assumed that the orientation of these springs does not change as the blade under-
goes reorientation due to flap, lag and torsional motion. Consequently, the
f&llowing question can be immediately raised. Since the torsion or twist of the
blade is assumed to occur about the elastic axis of the blade which can have a
different orientation as the blade flaps and lags, the spring representing the
torsional stiffness of the blade should also change its orientation? The answer
to this question is negative. Since the model is intended to represent a hingeless
cantilevered bladeAfor which the slope of the elastic axis at the root is always
zero, irrespective of blade orientation. In our model, the torsional stiffness of
the blade 1s represented. by an equivalent torsional spring at the root. Hence, its
orientation does not change with the blade motion. The spring stiffness are KBB for
flaping, KEB for lead-lag, K¢B for torsion and K¢c for the pitch link flexibility.
From the physics of the problem it is clear that these springs are all torsional
type springs.

In deriving these equations the sign convention is important. All counter

clock-wise rotations and moments are taken as positive. The restoring moment
in any torsional spring, due to a positive displacement (i.e., rotation), is
clock-wise and hence negative.

Another important ingredient in this derivation is the coordinate system. Let
X,y,2z be an orthogonal triad attached to the undeformed blade with zero pitch angle.
The X-axis is along the elastic axis of the blade as shown in Fig. A2. The X', Y',
Z' system represents another orthogonal triad, rotated through an angle 6 about
X-axis in.thecounterfélock-wise direction. The angle 6 represents the collective
pitch of the blade shown in Fig. A2. The root springs representing the blade flexi-
bility are oriented as follows: KBB along Y' axis, KCB along Z' axis and K¢B, ch
along X' axis.

Using this information the expressions for the moments are derived next.

To derive the expressions for the restoring moments of the springs, due to
blade motion, the total angular displacement of the blade has to be decomposed
into components along the.directions of the spring restrained hinges., The rotation-

al (angular) displacement components are then multiplied by the corresponding spring
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stiffness to yield the appropriate moments about the hinges. Finally, the various
moment vectors are expressed in terms of the component acting along the undeformed
blade axes X, Y and Z respectively. These expressions are then compared with the
results obtained in previous studies.

To arrive at the deformed blade orientation from the undeformed position a
specific sequence of rotations are followed, namely flap, lag and torsion. The unit
vectors in the directions of the undeformed and deformed blade coordinate systems
are related by an Euler angle transformation which is derived below.

The flap rotation is assumed to take place first, thus the X,Y,Z axes system
is rotated through an angle (-B), in the clockwise direction, about Y-axis repre-
senting the flap hinge of the blade shown in Fig. A3. Components of the angular

displacement (~B) along X', Y', Z' axes can be obtained using the transformation

&, 1 0 0 8

x X

2, = 0 cosH sin e (A.1)
.y y

e , 0 -sinb cosf 8

z z

~ ~ ~

A A
where 8 , e ,, e , and e_, e , e are unit vectors along X', Y', 2' and X, Y, Z axes
x' 7y z x* Ty z
respectively.

Components of (-B) along X', Y', Z' axes are along

X' -0
¥' - —Bcosb
Z' - Bsinb - (A.2)

Due to this rotation (-B), the coordinate system is rotated to a new position

X5 Yl’ Zl shown in Fig. A3. The transformation of unit vectors between the two

systems is given by

e cosB 0 -sinf exl
é = 0 1 0 e (A.3)
y yl
eZ sinf 0 cosf ezl

The lag rotation is assumed to take place next, the system Xl’ ¥ Z1
is rotated about Zq axis through angle (g), in the counter clock-wise direction,
representing lead-lag motion of the blade, shown in Fig. A.4. Equation (A.3) is

used to obtain the components of the angular displacement 'z' along X,Y,Z axes.
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These components are

along X - - Zsinf
Y -0
Z - gcosB (A.4)

These components along X,Y,Z are transformed into components along the dir-

ection of the spring axes X',Y',z' using equation (A.l). These components

are:
along X' - -LsinB
v' - CcosBsind
7' - TcosBcosh (A.5)
Next the Xl’ Yl, Zl axes system is rotated to a new position Xz, YZ’ 22

shown in Fig. A4. The relation between the unit vectors along XZ’ YZ’ Z2

and X;, Y;, Z; systems is given by

e cosg -sing 0 eX2
eyl = sing cosg 0 ey2 (A.6)
€21 0 0 ! ezZ

Combining equations (A.6) and (A.3), the transformation of unit vectors between

X2, YZ’ Z, and X, Y, Z systems; given below is obtained.

2
e cosBcosl -cosBsing -sinB €
8 = sin cos 0 (] (A.7)
ey C g v2
e, sinfcosi -sinfsing cosB e

Finally the torsional rotation is assumed to take ‘place. To represent torsion,
the blade is rotated through an angle (¢) in the counter clock-wise direction

along the X, axis, as shown in Fig. A5. The components of the angular dis-

2
placement (¢) along X, Y, Z system are obtained using equation (A.7). These

components are respectively:

along X -~ ¢cosBcosy
Y - ¢sing
Z - ¢sinBcosg (A.8)
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These components are again transformed in the X', Y' 6 Z' directions using

equation (A.l). The corresponding components are

along X' - ¢cosBcosg
Y' - ¢sinfcosb + $sinBsinBcosy
Z' - -¢singsin® + ¢cosbsinBcosy (A.9)

The total twist of the various springs oriented along X', ¥', Z' axes 1is
obtained by adding equations (A.2), (A.5) and (A.9). The various components

can be identified as:

along X' - -gsinB + ¢cosBcost
Y' - -Bcos® + CcosBsin® + ¢sinZcosb
+ ¢sinBcoslsind
Z' - Bsin® + CcosBcosfd - ¢sinZsind

+ ¢sinBcosZcosd (A.10)

In the model shown in Fig. Al, the springs representing the torsional
stiffness of the blade and the pitch link stiffness are in series and are
along X' axis. These two springs can be combined and can be represented by
an equivalent spring of stiffness K, = K, . K, /(K, + K hen K, i

q P g ness ) ¢B ¢C ( ¢B ¢C), when b is very
large,thenK¢ becomes K¢ . The restoring moments in the springs, gue to
’ B

the flap, lag and torsional rotation of the blade can be written as

M, = -K¢ (-ZsinB + ¢cosBcosy)

M= K (-Bcos® + LcosBsin® + ¢sinfcosb + ¢sinBcosfsing)
B

le = _KC (Bsine + CCOSBCOSG - ¢sin§sin6 + ¢SinBCOSEC056) (A-ll)
B

Transformation of these moments along the undeformed blade axes (X,Y,Z), yields
the torsional, flapping and lead-lag restoring moments, associated with blade

motion. These are:
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Torsional moment

M
X

- ¥ (-gsinB + ¢cosPcosy)

Flapping moment

My = —KB cosB (-BcosH + TcosBsing + ¢sinZcosd + ¢dsinBcosisind)
B
+ KE sin® (Bsin® + ZcosBcosd - ¢sinZsin® + $sinBcosfcosh)
B
Lead-lag moment
Mz = _KBB sin® (-BcosB + ZcosPsin® + ¢sinfcosd + ¢sinBcosfsind)

—KQB cos@ (Bsinf + ZcosBcash - dsinZein® + dsinBcoslcosh)
(a.12)
Assuming B and { are small angles and making the approximation sinB = B,

sinf = ¢, cosB = 1 and cosf = 1, equation (A.12) can be simplified to yield

M= —K¢(-CB + ¢)
My = —Kg cosB (-BcosH + gsinb + PLcosO + $Bsinb)
B + Ry sin® (Bsin® + Zcos® - ¢Csind + ¢BcosbH) (A.13)
B
Mz = —KB sinB (-BcosO + ZsinB + $Zcosb + ¢Bsind)
B
—KC cos® (Bsin® + fcos® - ¢rsin® + ¢Bcosh)
B

Rearranging the terms,

Mx = —K¢ (-zB + )

My = (B - ¢;)(KBB c0326 + KCB sin29) + (¢ + d)B)(KcB - KBB) sinfcosH

M= -(g + 9B) (Kg sin’0 + K, cosze) - (B -90)(K, - Kg ) sinBcosH
2 B B B B

(a.14)
Equation (A.l4) represents the torsional, flap and lag restoring moments of
the springs due to the flap, lag and torsional motion of the blade.

These expressions for the restoring moments acting on the spring re-
strained model of the blade are compared with results published in previous
studies. For completeness these comparisons are carried out for both spring
restrained models of a hingeless blade and fully elastic representations of

the hingeless blade.
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Ormiston and Hodges [Ref. 13] presented moment expressions for a spring
restrained model of a rotor blade representing a hingeless blade. They have
also taken hub flexibility into account. In order to compare the results
obtained in Ref. 13 with the expression obtained in this report, the hub stiff-
ness is allowed to become infinite, thus only the simplified expressions are
compared. Recall that the torsional degree of freedom was not considered

in Ref. 13, The expressions [Ref. 13] for the restoring moments are:
Flapping moment (Eq. 44 of Ref., 13)

M
y

—B(KB c0528 + KE sin26) ~ Q(KC - KB )sinBcosH (a)
B B B B

Lead-lag moment (Eq. 45 of Ref. 13)

M
b4

-C(xg sin?0 + ke, cos?6) - Blxy - Kg ) sindcosd (b

Setting ¢ = 0 in Egs. (A.1l4)  yields

MX = K¢B B
My = B(KBB cosze + K;B sin25)4-§(KCB - KBB) sinBcosH
2 2
M = -g(K sin"8 + K cos B) - B(K - Ka ) sinBcosH (A.15)

By comparing equations (a) and (b) with equation (A.1l5), we find there 1is a
negative sign in the expression for My' The reason for this discrepancy is
that the authors of Ref. 13 used different sign convention. In their

case, My clockwise is positive and Mz counter clock-wise is also positive.
The authors of Ref. 13 have used this sign convention because their objective
was to derive a blade model which was a simple analog to the flexible blade
equations (hingeless) which were derived by Houbolt and Brooks [Ref. 15] who
have employed the same sign convention for My and Mz' The expression of the
present study are also compared with the results of an elastic blade model.
The moment expressions obtained by Rosen and Friedmann [Ref. 16] for an

elastic blade are (Eqs. (15) of Ref. 16)

M
X

GJ( + v w )
¢,x ,XX ,X

M

y —(EI_2 - EI3) sinecose(v’xx + ¢w )

» XX

.2 2
—(EI2 sin" 0 + EI3 cos 6)(w’XX - ¢v,xx)

117



M= (EI2 - EI3) sinecose(vﬁxx - ¢V’xx)

sin28) (v __ + ¢w ) (c)

+ (EI cosZG + EI
2 XX , XX

3
where v, w, ¢ represent the glastic lead-lag displacement, flap displacement
and twist at any section of the blade, and the quantities EIZ’ EI3, GJ
represent lead-lag, flap and torsional stiffness of the blade.

The expressions obtained in Ref. 16 represent the applied moments, thus
to obtain the restoring moments Equation (¢) have to be multiplied by (-1)
and the resulting expressions are compared with Eqs. (A.l4). The expressions
for My and MZ are the same, however there is a sign difference in the ex-
pression for torsional moment. The expression derived in this study contains
~a term ($-ZB) while the corresponding term in Ref. 16 is (¢,x + V,xxw,x)'
This discrepancy is due to a different sequence of rotation followed by Rosen
and Friedmann [Ref. 16]. The sequence of rotations adopted in Ref. 16 was
lead-lag, flap and torsion. When a sequence of flap, lead-lag and torsion,
such as employed in the present study is used, the results of Ref. 16 are in
agreement with the results obtained in this study. Equations (c¢), representing
a hingeless blade, with Eqs. (A.14) corresponding to the rigid, offset hinged
spring restrained blade model one can identify a number equivalence relations,
which provide some physical insight. These equivalence relations are given

below. For torsion one has

GI( o = V 4V ) = Kyl0 = 2B) (A.16)

where
Ko = Kog Kog /Ko, * Ko

If the pitch link flexibility is very large, i.e. K¢ -+ © then K, becomes

¢

K¢ . We shall consider only K¢ in Eq. (A.16) becauge Rosen and Friedmann have
no% considered the pitch link f?exibility. Thus equation (A.16) should be

rewritten as

» XX,

CI(O =V W ) = Ky (9 - EB) (a.17)
i B.

Comparison of the various other terms yields

(BT = BI (Y o + 09 00 = (K = Kg )( + 60) (A.18)

EI, (w -¢v _.) =K_ (B - ¢0) (A.19)



EI3(W b = OV ) = KBB (B - ¢1) (A.20)

(EIZ - EI3)(w,xx - ¢v,xx) = (KCB - KBB)(B - ¢0) (A.21)
EIZ (V,xx + ¢w,xx) = KQB (T + ¢8) (A.22)
EI3 (V,XX + ¢w,xx = KBB (T + ¢B) (A.23)

Setting ¢ = 0 in equations (A.19), (A.20), (A.22) and (A.23) yields

EIZ w,xx = KCBB
EI3 w,xx B KBBB
ElI, v = K

Examination of these expressions reveals that KE » Kg_ represent the lead-

- 7B
lag and flap stiffness EIZ,‘EI3 respectively and B,z correspond to the
curvatures in the elastic blade analysis. Comparison of the appropriate terms

in equation (A.17) reveals

GJ = K
4>B
¢,x = ¢
Vo T B ’ (A.25)

This comparison indicates that both w’ % and w’x can be identified as
quantities corresponding to the flapping angle B in the rigid spring
restrained blade model. This statement requires further clarification.
The comparison outlined above indicates that when dealing with moment

terms, such as EI w xx’lB has the role of the curvature. However when
>
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examining the role of B in the various transformations relating the unit
vectors of the deformed and undeformed states of the blade the role of B
corresponds to w,X in the flexible blade equations. Furthermore it can be
seen that ¢,x in an elastic blade corresponds ¢ in a rigid blade model, this
is due to the fact that the torsional moment in an elastic blade is defined
as G.Iq)’X whereas in the spring restrained blade model the torsional elastic

¢.

restoring moment is K

¢

A.3 Moment Equations for an Articulated Blade

A typical articulated blade, which has no root springs in flap and lag
will not experience elastic restoring moments in about these hinges. Therefore
the model proposed for this case, shown in Fig. A6, invoives only a torsional
spring and no springs for flap and lag. In the model shown in Fig. A6, two
torsional springs are provided. The spring K, represents the blade torsional
stiffness and K¢ represents the control link stiffness. These are aligned
along the undeformed blade axis x. Since the blade can perform flap and lag
motions during operation, the spring K¢B can orient itself along any direction
in space provided the pitch link is inboard of flap and lag hinges. The spring
K¢C remains along the undeformed x-axis. If the pitch link is outboard of
leading and flap hinges, then both K¢ and K¢ change their orientation as the
blade undergoes flap and lag motion. Therefore one needs to consider two
cases: (a) pitch link inboard of flap and lag hinges and (b) pitch link out-
board of flap and lag hinges.

Case (a) Pitch Link Inboard of Flap and Lag Hinges

Consider Fig. A.6 numbers 1, 2, 3 refer to three nodes. At node 2, the
two springs K¢B and K¢C are connected. The springs are oriented along the
undeformed elastic axis (X-axis of the coordinate system). In this case, since
the pitch link is inboard of flap and lag hinges, only K¢ takes on different
orientation as the blade undergoes flap and lead-lag deformation.

Assume that the blade has undergone a flap deflection (-8) and a lag
deflection (7) respectively, as shown in Fig. A7. The new position of the
elastic axis is X2 and the deformed coordinate system is X2, YZ’ ZZ' The
spring associated with blade torsional stiffness, Kg » is now oriented along
the X2 axis and the spring associated with pitch link stiffness, K¢ is oriented
along the undeformed axis, i.e. X-axis. For this case one may write a stiffness

matrix relating moments to angular rotations as indicated in Eq. (A.26).
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—

K¢ cosZBcoszC
B

K¢BcosBCOSCsinc Ky sinZC
B

2
- cosBcoslsing - sin“g -K4 sinBcosfsinZ
g oy ‘0

-K¢ cosBcoszCsinB -Kg sinBcosgsing —K¢ sinZBcoszC
B B B

0 0 0
0 0 0
0 Q 0

Symmetric

2. .2 2
KQBcosBcos zsinB K¢BsinBCosCSinC K¢B51n BcosT
~-K, 28c 2; ~K4 ‘cosBcosCsing -K, cosBe szCsinB + cosZBCOSZC
¢Bcos os K¢B s n ¢B o K¢C K@B

2
cosfcosZsing sin“g
K¢B K¢B

2
cosB Lsin sinBcosgsing
K¢B sBcos B K¢B

—K¢C 0
0 0
0 0

K¢ sinchoszc
B

o

(A.26)
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This stiffness matrix relates the generalized displacements {(rotations along X,

Y,Z directions) and the moments at nodes 1,2,3. 1In equation (A.26), M; v,z re-
. s’ b
presents the moments along X,Y,Z axes at node i and ¢; v,z represents the ro-
b bl

tations along X,Y,Z axes at node i.
The equivalent stiffnesses of the system in torsion are obtained from the
solution of this matrix equation. The conditions under which this equation is

solved are

3 3_ .3 _ . .
¢x = ¢y = ¢z =0 Node 3 is fixed
and
2 2 2
Mx = My = Mz =0 No external moment at node 2

When trying to solve the matrix equation under these conditions the individual

. i i
equations for M, M
X"y

, M; become redundant. This redundancy is due to the rigid
body degrees of freedom being included in the model. The physical reason for this
redundancy is due to the fact that the moment along the Y and Z axes cannot be
resisted by this spring model. In order to overcome this difficulty, it is as-
sumed that the flap and lead-lag angles are very small while .the spring K¢ is
oriented along the undeformed elastic axis, i.e., X~axis. The springs K¢ and

K¢ are in series and are oriented along X-axis and can be combined. For this

model, the relation between the torsional moment and the twist ¢ of the blade

becomes

=
|

= [K¢B K¢C/ (K¢B + K¢c)]¢

K¢¢ (A.27)

Case (b) Pitch Link Outboard of Flap-Lag Hinges

When the pitch link is outboard of the flap-lag hinges both the springs
K¢ and K¢ are always oriented in the same direction, from which the following
C
relation between torsional moment and elastic twist is obtained.
M =I[K, K /&, +K, )¢ (A.28)
x o O "t % '
Therefore for an articulated blade, notwithstanding whether the flap and lag

hinges are inboard or outboard of the pitch link, the relation between the

torsional moment and the elastic twist is given by

/(X, +K,)]¢ (A.29)

" o Co,

x T oy Bog

]
=
=~
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Combining this result with the result for a hingeless blade, discussed

previously, the general elastic restoring moment expressions become;

- Kpy (& = TB) - Ky,0

Torsion: MX

Flap: M

. B - ¢C)(KBBCOS?G + KCBsinze) + (6B + C)(KCB-KBB)sinecose

Lead-lag: M -(¢ + ¢B)(KBB sinze + KEB cosze) - (B - ¢§)(KCB-K8B)sin6co§6

(A.30)

z

For a hingeless blade

K¢CK¢B
OandK¢1= W

“,

for an articulated blade

1
o
=

w

I
o
~

LR

It
o

K¢l

and K¢CK¢B

Ko, %5 + Ry
2 Koty

A.4 Elastic Restoring Moments on a Rigid Blade with Root Springs and Hub

Flexibility
In this section, the elastic restoring moments due to the root springs

and due to the hub flexibility are derived. The model for this system based
on equivalent springs is illustrated in Fig. A8. There are two sets of ortho-
gonal springs, springs with stiffness_KB , KC and K¢B which represent the
blade stiffness in flap, - lead-lag and torsion, respectively. The spring
constant K¢ represents the stiffness of the pitch link system and Kr and
KBH are the stiffnesses of the hub in flap and lead-lag directions. The hub
is assumed to be torsionally rigid. The X,Y,Z axis system represents the
undeformed blade coordinates with the X-axis oriented along the elastic

axis. The system X', Y', Z' corresponds to the X, Y, Z axis system after-

a counter clock-wise rotation about the X-axis by an angle 6. The angle

0 represents the collective pitch of the blade.



The orientation of the various springs is as follows: K is along
. H
Z-axis, K, 1is along Y-axis, K, 1is along Y'-axis, K is along Z'--axis,
By By tp
K, and K, are along X-axis (see Fig. A8). The numbers 1, 2, 3 in Fig.

dDB ¢C
A8 refer to the three nodes. The blade spring system is attached to the
hub spring syétem at node 2.
| The relation between the moments and the angular displacements for this
equivalent spring system describing the combined blade and hub is given by
the matrix equation (A.31), on the next page.

In equation (A.31) Mi, M;, Mi refer to the elastic moments at node i
in the X,Y,Z directions, respectively and ¢i, ¢;, ¢i refer to the angular
displacements at node i in the X,Y,7Z directions, respectively. The various
moments are obtainéd in terms of the angular displacements by solving this
matrix equation subject to the following conditions:

When the hub is fixed, the angular displacements at node 3 are zero and then

¢3 = ¢3 = ¢3 =0 . (A.32)

M2 = Mf, =M =0 (4.33)

Solving the matrix equation, Eq. (A.31) subject to the conditions given in

equations (A.32) and (A.33) and recognizing that Mi = M; = Mi = 0 one

obtains

-(K cosze+K sinze) ¢1 - (K, -K_ ) sin8cos@¢l
[ Bg z By Ly y

sin20). ¢Z - (g - K, sinecosecbi (A.34)

-(K. + K cosze + KB
B B B B

Ly C
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1A

(~ 2 2
KCBCOS 8+KBBsin ] (KBB—KCB)sinecose ]

Kp sin26+K8 c0526 0
B B

Symmetric

'—(KC cosze+Kg sinze)
B B

_(KBB—KCB)SlnBCOSB

Ky +Kg cosze+KB sin26
H B B

_(KB -Kg )sinBcosb 0 0 o] 0
B B

[=}
[=]
[=1

2 2
—(K, sin“8+Kg cos“9) 0
tB “8y
0 - 0 0o 0
K¢B
(Ko -K, )sinBcosf 0 -K. 0 0
Bp Cp %y

2 2
+Kp cos“0+K, sin® O 0 -K 0
Kg gy Ty By

Ko o0 0 e
Ry, O 0
Kg, ©

K¢C_

(A.31)




1 2 . 2 1
-(Kg =~ Ky )sinBcosB ¢ - (Kg cos™® + Ky sin“8) ¢~ =
BB (o z BB CB y

2 . 2 . 2 2
- ¢z (KBB - KCB) sinBcosf~ (gBH + KBB cos 6 + KCB sin 6)¢y
(A.35)

1 2
- Ky 0 = -y ¥Ry 0 (A.36)

2 ’ .
From Egs. (A.34), (A.35) and (A.36) ¢§, ¢y and ¢: can be expressed in terms

1 1 1
of ¢, g5 9, thus

2 1
b = K¢B/(K¢B + K¢C)»¢X (A.37)
ﬂpz- . x 29 (Ke K, ) ] ( K. cos20 + Kg sinZ8)6)
b BH SBCOS - BB_ CB ( CBCOS BB31n ¢Z
+K§Bsin28 sinbcosb +(KBB—KLB)sin9coseQ;
- ¢ 1
A
¢2 —(Kﬁ - KCV) Ky +K cosze (KB —K; )éinecos6¢l
y B B H B B °B z
sin9c659 +K sinze +( c0326+K sih26)¢l
| 1 L By J K18}3 8 y
(A.38)
where

g
{

' , 2 2 2 . 2 2
= (K, +K cos%+— 31n%ﬂ(K +Ky cos 8+K, sin“8)~(Ka -Kr ) “sin“Bcos“8
CH KBB BH BB ZB BB CB

2 . 2 e 2 2
KCHKBH+KCH(KBBCOS 6+K€B51n 9)+KBH(KBBs1n 6+KCBC°S 6)+KCBKBB | (A.39)

From Equation (A.38)

2 1 2 . 2 1 , 1
¢z = Z'{[KBH(KEBCOS 6+KBB51n e)+KCBKBB]¢z + KBH(KSB—K§3)51n6cose¢y}

(A.40)
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and\

2 1 . Pt 2 . 2 1
=-{K, (Kq - fcosbd + [K, (K 84K 8)+Kp K .
¢y A{ Ty BB KtB)31n cos % [ CH( BBCOS €B31n ) BB CB] ¢y } (A.41)
. . 2 2 2, 1 1 1,
Substituting for ¢y’ ¢z’ ¢x in terms of ¢y, ¢Z, ¢x in equation (A.31), and writing
the expressions for Mi, Mi, Mi, one obtains the torsional moment
Ko %o
1 B 'C 1
M = o—— ¢ (A.42)
X + X
Kd)BKdJC
The flap moment can be written as
1
Mt = ’ {K; Kg (Kq cos’6+K sin’0) + Kg Ky Kg }
y = 1 R Ke,(Rey g sin B Ke Xey
1
¢z
- — (XK ~Kp ) K, K cosOsinb (A.43)

The lead-lag moment can be expressed as

2 2
{K, K, (X, cos"6+K, sin“8) + K, Kg Kr }

(K ~Kp ) K, Ko sinfcosH (A.44)
Ty Bp’ Ly By

B

In the last three equations ¢i, ¢;, ¢i represents angular displacements
given at node 1 along X,Y,Z axis. These angular displacements can be related
to the flap, lead-lag and -torsional rotations of the blade. The flap angle
(-B) is about the undeformed Y-axis, the lead-lag angle (¢) is about the Z axis
after it has undergone flapping deformation and the torsion (Z) is along X-axis
after the flap and lag deformations have taken place. Resolving these angular
displacements along X,Y,Z axis, using equations (A.4) and (A.8) together with
the fact that (-B) is along Y-axis, the components of the angular displacement

(or rotation) about the X,Y and Z axis are

¢i = —zsing + ¢cosBcosg
¢$ = -8 + ¢sing
¢i = rcosB + ¢sinBcosg (A.45)
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Introducing the small angle assumptions for §, ¢ and ¢, equations (A.45) become

1

.= -TB+0

1—'—-

by = - B+ 0z

1

6, = ©+ 08 (a.46)

Substituting these in equations (A.42), (A.43), and (A.44), the elastic moments

are obtained

uo - {208) {KCHKBH(KCBcosze'+ KBBsinze) + Ky Kg K }
+ LB—?Q— (KCB - KBB) KQHKBHsinecose 7 (A.47)
M}l, = - (—B%Q {KCHKBH (KBBcdsze + KCBsiﬁze)'-f-KBBKCBKBH}
i} Q_‘Z@A g, = Kg ) kCHKBH sinBcos8 (A.48)
k- ;:—{;C— ¢ -8 (a.49)
B 9c

Equations (A.47), (A.48), and (A.49) can be written in an alternative form, i.e.

in terms of equivalent stiffness in flap, lag and torsion respectively.

Defining K¢ K¢
B 'C

K, = ———
¢ K. +K
¢B¢C

" Ka K
« . _u's
B~ Kg +K
BHBB
K, K

« . m'B
Q_KC+K€
H B
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equations (A.47), (A.48), (A.49) with the superscript 1 deleted, can be

written as

M = (T+68) {K. -~ R(K, - K,) sinze} + (B-98) R (K_ - K,) sinfcosB (A.50)
z A' z; C B A' C 8
M = - (B-¢L) {Kk, + R(K, - K,) sinze} - 5519@1—R (K, - K,) sinfcos® (A.51)
y Al B zC B X g B
M = K¢ ¢ - k) (A.52)
where
1/Kp - 1/K
R = 8B CB
1/Kp, + 1/K - (/X + 1/K, )
( / BB / BH) EB CH
and A' = 1 + R (1 - R) sin’8 x, - 1<8)2/1<B K,

When the hub stiffness are very largeR becomes unity and the moment equations
reduce to those obtained previously. When the blade stiffness is very large, R
reduces to zero. These moment expressions have to be multiplied by (-1) to
obtain the restoring moments of theAsprings.

Peters [Ref. 14] has given the moment expressions for a spring model
including hub flexibility. The torsional degree of freedom was not consid-
ered in Ref. 14, thus when substituting ¢ = 0, equations (A.50) - (A.51)

reduce to the equations given by Peters.

Combining the results for an articulated blade and for an elastic blade,
general expressions for moment are given below.

The restoring moment in flap is

w - (80D

. X {KB + R(KC - KB) sin29}+ ~(EﬂﬁlR(K - KB) sinfcosH

A 4
(A.53)
The restoring lead-lag moment is

Mz = - SEngl—{K - R (X, - K,) sinze} - B-05) R(K, -K,) sinBcosH
(A.54%)
The restoring torsional moment is
M= - K¢1 (¢ - ZB) - K¢2¢ (A.55)
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For an articulated blade

b Op
KB = KC = Kq)l =0 and K¢2 = W
C B
For a hingeless blade K¢ =0
2
K, K K_K
(- mfs o Taly
B KB +KB i z K_ +K >
H PB by g
1/kg - 1/kg
R = B B
(1/K, + 1/K, ) - (1/R_ + 1/K_)
BB BH (2N (a8

and A'

K, K

2 2
1 +R (1 -R) sin" 6 (KC - KB) /KCK
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Figure Al.

Equivalent Spring Restrained Blade Model
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Figure A6. Articulated Blade Model
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Figure A7. Orientation of the Deformed Blade After Flap and Lag Motion
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Figure A8. Equivalent Spring Restrained Blade Model With Hub
Flexibility
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