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INTRODUCTION

The paper summarized herein presents resuits and recommendations
pertaining to characterization of the rclative radiometric calibration of the
protof]ight;Themat@g#yqpper sensor (TM/PF). TM/PF is the primary experiment

' on the Landsat~-4 satellite, launched on July 16, 1982. Some preliminary
) pre-launch and in-orbit results are also included from the fTight model (TM/F)
on Landsat-5, which was launched on March 1, 1984. The goals of the paper are:

] OutTine a common scientific methodology and terminology for
characterizing the radjometry of both TM sensors

Report on the magnitude of the most significant scurces of
radiometric variability ‘

Recommend methods for achieving the exceptional potential
inherent in the radiometric precision and accuracy of the TM
sensors.

RADIOMETRIC CHARACTERIZATION

The vadiometric characteristics of TM digital imagery that are
important for scientific interpretation include mean values of absolute and
relative calibration constants, and estimates of the uncertainty in the ‘
relative and absolute post-calibration radiances. Mean values and
uncert: inties in the pre-launch absolute radiometric calibration are discussed
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elsewhere (Barker, Ball et all., 1984), The subject paper focuses on
characterizing variability and uncertainty of TM relative radiometry,
including total variability as well as its systematic and random components.
Emphasis is placed on identifying the magnitude and types of systematic
errors, since these have the potential for being reduced during ground
processing. Estimates of innate random variability, such as the standard
deviation of a signal or its signal-to-noise ratio, are also important since
they place 1imits on the inferences that can be drawn from single and multiple
pixel radiances. However, accurate estimates of random error require the
prior removal of all types of systematic variability.

SOURCES OF RADIOMETRIC VARIABILITY

Radiometric variability in the final TM image can be divided into
three components, based on origin:

] Scene Variability (the source of potential information)
- Solar Irradiance
- Atmospheric Transmission, Absorption and Scattering
(Reflection)
- Transmission, Absorption and Reflection (Scattering) of the
Target, including Shadows

. Optical and ‘Electrical Variability of the Sensor
- Reflected Radiance from the TM Scanning Mirror
- Radiance from the TM Internal Calibrator (IC)

. Variability Introduced During Processing
- "Active Scan" Imagery
- "End-of-Scan" Shutter Calibration Data
- Housekeeping Telemetry

Once the total variability from all non-information sources is
characterized, then an evaluation can be inade as to the adequacy of the
precision for specific requirements. If the sensor has already been placed in
orbit, as with TM/PF and TM/F, then only the systematic errors fro. the sensor
and any possible additional errors introduced by data processing can be
reduced.
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ORGANIZATION OF PAPER

The table of contents for the paper is given in Table 15 at the end
of this summary. Specific ohjectives of the research effort reported in the
paper include:

e  Monitoring radiometric performance of TM sensor with time
(Sections 2 and 3)

(] Characterizing sources of within-scene varijability and
uncertainty in measuring radiance with the TM sensor (Section 4)

. Outlining possible pre-distribution methodologies for optimizing
TM radiometric calibration parameters based on scientific
information extraction requirements and un radiumetric
characteristics of the TM sensor (Section 5)

° Recommending changes in operatioral or processing procedures &d
identifying, candidates for furt:. - calibration, experimentation,
and research (Section 6).

APPROACH TO RADIOMETRIC CHARACTZRIZATION

The paper concentrates on an analysis of raw TM calibration data from
pre-Tlaunch tests and from in-orbit acquisitions. A Tibrary of approximately
one thousand pre-launch test tapes, each of which samples the equivalent of
one scene, is currently maintaiﬁed for characterization. About 25-50% have
been examined. Most of the analyses of these tapes, and of data from in-orbit
acquisitions, used a software program called TM Radiometric and Algorithmic
Performance Program (TRAPP). Required input for TRAPP analyses includes both
the raw IC calibration data from the shutter region as well as the raw
uncalibrated TM digital imagery. These raw data are not available to the
general public. They are used to characterize radiometric characteristics of
the sensor rather than performance of the processing system.
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The results of the characterization activities reported in the paper
(and summarized in the following paragraphs) derive from analyses of raw (IC
and image) data only. These results, therefore, pertain to all TM imagery
without regard to ground processing system, be it the NASA Scrai'nge Era (prior
to 15 January 1984) system, the TM Image Processing System (TIPs) (effective
after 15 January 1984) or other ground processing facilities. Discussion of
image processing techniques in response to sensor characteristics will
typically reference TIPS but are applicable universally.

CHARACTERIZATION RESULTS

Post Calibration Dynamic Rangse

Pre-Taunch absolute radiometiric calibrations of the six reflective
bands on TM/F were used to identify a pre-calibration range of sensitivity for
each of the 96 channels. These results were combined with similar pre-Tlaunch
calibration ranges of sensitivity for each band in TM/PF tc provide a per band
post-calibration dynamic range for processing TM imagery on the TIPS. Each
post-calibration dynamic range is defined by the minimum spectral radiance,
RMIN, and the maximum, RMAX, for the band as given in Table 1. RMIN and RMAX
values will be up-dated based on recalibration of the integrating sphere used
for pre-ilaunch absolute zalibration and on reduction of certain systematic
errors in the raw digital data.

Between-Scerne Changes in TM/PF Gain

Data on the radiomet:ic stability of the TM/PF with time are recorded
for use in future sensor-to-sensor and sensor-to-ground absolute calibration.
Fiéure 1 gives a plot of the band-averaged gain with time for 50 scenes of
Band 4. It illustrates the least noisy of the apparent monotonic decreases in
IC-determined gain for the four bands on the¢ Primary Focal Plane (PFP). One
hypothesis is that this.asymptotic drop of 3 to 6% during 300 days in orbit is
a long-term "vacuum shift" curve. Vacuum shift has traditionally referred to
the difference between IC pulses measured during pre-launch absolute
calibration under ambient atmospheric conditions and the IC pulse vaiues
observed during pre-launcn thermal vacuum testing. This justifies the use of
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IC pulses for radiometric calibration of the PFP under the assumption that the
“vacuum shift® is due to an aptical, physical, or electrical property of the
detector and channel itseif, rather than to some characteristic of the IC
system.

Figure 2 is a plot of the band-averaged gain for Band 5 with time.
The cyclic pattern has a period of 54 days, with an rms uncertainty of about 2
days. A similar, although less well defined cyclic pattern is observed in the
other shortwave infrared (SWIR) band, i.e., Band 7 has a period of 75 days
with a rms error of about 6 days. Differences between peaks and valleys is
always less than 9% for both SWIR bands.

The origin of these cyclic patterns on the Cold Focal Plane (CFP) is
not known. One hypothesis, based on the apparent direct relationship of the
periods and the wavelengths of the SWIR bands, is that the CFP and its nptics
are moving at a fixed rate of 11 nm/yr relative to the lens on the shuiter and
the PFP. This .iypothesis is possible since the relay optics containing the
CFP were designed to be moved in order to bring it into focus with the PFP.
Since the velocity of a wave is equal to its waveiength divided by its period,
the observed periods for Bands 5 and 7 both imply a velocity of 11 nm/yr. An
additional hypothesis is required to explain the amplitude of the cyclic
patterns. One such hypothesis is that the amplitude is a function of how
close the optics are to tae diffraction limit, where it will vary with bhase.
One test of these hypotheses would be to Took for a cyclic pattern in the
third band on the CFP, namely the thermal band, and relate its period to its
wavelength. Similarly the hypothesized cyclic Band 6 variation in amplitude
should depend on the relative sizes and areas of the detectors on the CFP as
well as their wavelengths. Proof of this model for the cyclic pattern of the
SWIR bands will call for the contirued use of the IC to calibrate these bands.

Assuming perfect operation of the IC, all of these slowly varying

trends in gain have been corrected out during the calibration of the TM
imagery.
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There is an approximately 0.5% rms range of variability around these
smoothly varying curves of band-averaged gain versus time for bands 4 and 5,
While the individual curves of IC-determined gain versus time for each
individual channel appear to be even more well defined, the statistical square
root of 16 channels indicates that the radiometric predictability of
individual channels is at Jeast better than rms error of 0.2%. This
radiometric reproducibility of the TM sensor in space suggests that systematic
corrections during the ground processing of TM imagery will significantly
improve radiometry.

Between-Band Changes in TM/PF Gain

In addition to maintaining scene-to-scene calibration of each band,
it is also necessary to maintain band-to-band calibration. Current TIPS
procedures do ot provide for any within-band or between-band correlation of
channels. One limit on the possible between-band variability is change in
absolute gain on each of the individual bands. Apparent change in TM/PF gain,
relative to the gain determined during pre-launch absolute calibration, are
summarized for four speci%ic times in Table 2. The first time was a
pre-Taunch Thermal Vacuum (TV) test, which was designed to duplicate
conditions expected in space. The second time was the actual initial (INIT)
in-orbit measurement on that band. The difference between these two changes
in gain (INIT-TY) was equal to or Tess than 2% and is a measure of how well
the pre-launch TV tests agreed with the first measurements in space. The
third and fourth times were upon occurrence of the maximum and minimum values
of the IC-determined gain observed over the first year that Landsat-4 was in
space. The range of change (MAX<MIN) is an indication of a possible
uncertainty of 3 to 9% in the absolute radiometric calibration of the TM/PF
reflective bands, The differences between MAX-MIN values for the bands in
Table 1 are measures of the limits on possible differences in band-to-band
calibrations with time. If the IC system has been working as designed then
the radiometric calibration of TM imagery with the IC data will maintain the
absolute calibration of the bands, and therefor will also maintain the
band-to-band calibration.
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Within-Scene Variability in TM Radiometry

If radiometric calibration is done on one scene at a time, as is the
case with Scrounge era and TIPS processing, then any sources of systematic
variation which occur during the 23 seconds it takes to acquire a scene will
remain uncorrected. During initial studies of TM imagery, the following types
of within-scene variability have been identified:

] Bin-Radiance Dependence. The mean value of any specific digital
number (DN) can be mislocated by up to two levels.
Additionally, bin widths vary from nearly zero to 2 DN values.
Both effects are due to errors in the analog-to-digital (A/D)
converter's bin sizing and Jocation (threshold voltages).
Therefore, a calibration which uses more than the 8 bits of the
original data can be us¢l to more accurately estimate the mean
value of the obsarved radiance, especially during the
calibration, prior to preparing an 8«bit product tipe.

° Scan-Correlated Shifts (discussed below).
. Coherent Noise (discussed below).

e MWithin-Line Droop. "Droop" is one of 3 types of "within-Tine,
sample-location dependent noise." By comparing forward
west-to-east scans to reverse east-to-west scans, a systematic
droop of up to 1 DN was seen in Band 1 of TM/PF. There is a
possibility that droop is actually the same as one of the other
types of within-line systematic variation, namely Bright-Target
Saturation.

) Bright-Target Saturation (discussed below).

. Forward/Reverse-Scan Difference. Apparent differences between
forward and reverse scans may actually be related to the last
exposure to a bright target. If an image contains bright
objects, which are not symmetric on a scan-by-scan basis
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relative to beginning and end of obscuration of the optical axis
by the calibration shutter, then bright-target saturation
effects will cause an apparent difference in the average values
for the forward and reverse scans for the whole scene.

Reference Channels for the TM Sensors

Different channels within a band show different magnitudes for the
various sources of within-scene variability. Furthermore, the random noise in
the noisiest channel can be as much as a factor of two higher than in the
quietest channel. Those channels with the lowest apparent rms noise on the
shutter are given in Table 3. Channels with the highest rms noise, highest
value for scan-correlated shift, and highest value for coherent noise are also
Tisted. Bright-target saturation appears to have approximately the same
effect on all channels in a band, probably because it is a characteristic of
the design of the electronics. The high-noise reference channels may be
nseful for serial stripping of various types of within-scene noise.

Magnitudes for these sources of TM radiometric variability are given in Table
4 for each of the referedce channels currently identified on Landsat-4 TM/PF
end Landsat-5 TM/F.

Scan-Correlated Shifts

Scan-correlated shifts are one of two types of "between-scan
Tine-independent noise"; the other type being differences between forward and
reverse scans. These shifts are defined by the observed liscontinuity in
background level. Three most significant examples are discussed as types 4-1,
4-7 and 5-3 to indicate the satellite and band in which they occur. A
procedure for coriecting for scan-correlated shifts has been developed and
tested as part of this study. Assumptions made include:

) Shifts are constant within a Tine
° Signed magnitude is consistent within a scene

° Signed magnitude is channel specific
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A11 channels shift together within a scan
Different shift types can occur in each band

Backgrounds are not constant within a Tine or between lines
because of effects such as bright-target saturation. In this
study, two regions were used on the shutter to monitor
background; "shutter background 1" was an average of 24 or 28
pixels before dark current (DC) restoration, and "shutter
background 2" was an average of 24 or 28 pixels after DC
restore. Forward and reverse scans were separated, giving four
sets of backgrounds:

BF-BDC = Backgiround Forward Before DC
BF-ADC = Background Forward After DC
BR-BDC = Background Reverse Before DC
BR-ADC = Background Reverse After DC.

Steps in the procedure for scan-correlated shift correction include:

Separately process forward and reverse scans

Use a reference channel for each type of shift:

- Type 4-1 = Landsat-4, Band 1, Channel 4
- Type 4-7 = Landsat-4, Band 7, Channel 7
- Type 5-3 = Landsat-5, Band 3, Channel 1

Use shutter background to monitor shifts

Create a binary mask indicating the presence or absence of each
type of shift in each scan

Calculate the averaged signed magnitude of shift in each channel
for each type of shift by averaging the differences between
backgrounds at each binary t-ansacticn

Apply corrections on a line-by-line basis.
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For Landsat-4 TM/PF, the 12 August 1983 scene of San Francisco, CA
(40392-18152) was used to illustrate the two most significant types of
corrections for scan-correlated shifts. Plots were made of Tine-averaged
background before DC restore, BR-BDC, versus scan number for reverse scans.
Plots were made before and after correction for all channels in Bard 1 (Figure
3), and for all channels in Band 7 (Figure 4). Signed magnitudes of Type 4-1
shifts, also called "shift 1" or "form 1* shifts, are given in DN units next
t¢ the corrected background plots of Band 1 in Figure 3. There were
approximately 70 transitions of Type 4-1 in the 380 scans. Type 4-1 shifts
are not present in all scenes. Signed magnitudes for Type 4-7 shifts, also
called “shift 2" or "form 2" shifts, are given next to the corrected plots of
Band 7 in Figure 4. Type 4-~1 shifts are as large as 2 DN.

For Landsat-5 TM/F, a 5 March 1984 in-orbit scene of clouds over the
Atlantic Ocean (50005-16227) is used to illustrate the single most significant
Type 5-3 shift. Plots were made of shutter background BF-BDC, versus scan
number before and after correcting all channels in Band 3 (Figure 5). While
the magnitude of the largest shifts is Tower on TM/F than on TM/PF, shifts are
more uniformily present on Landsat-5 TM/F, especially in Bands 2 and 3.

Coherent Noise

Coherent Noise is a "within-scan, sample-location dependent noise",
which was made more easily quantifiable in this study by performing a Fast
Fourier Transform (FFT) on 512 minor frames (mf) of shutter data from the 3
January 1983 scene of White Sands, NM (approximate ID = 40171-17080; there is
no payload correction for this scene so scene 1D calculation is approximate).
TM/PF exhibits coherent noise in the PFP bands at two frequencies, 32.8 KHz
with a period of every 3.2 pixels, and 5.9 KHz with a period of 17.6 pixels.
Amounts of coherent noise vary depending on the channel, with the largest
integrated area under the 32 KHz peak being about 2.6 DN for Channel 16 of
Band 1, Both types of coherent noise in Landsat-4 TM/PF form sharp peaks for
PFP bands.
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Landsat-5 TM/F has a different coherent noise pattern. It does not
have a significant peak at 32 KHz. Most channels on the primary focal plane
have only one peak, or multiples of it, near 8.5 KHz. This gives spatial
periods of every 12.5 pixels, or integer fractions of 12.5 pixels.

Total Within-Scene Variability

An average of the standard deviation of background on the shutter in
"quiet scenes" for all channels in a band is given in Table 5 for both TM/PF
and TM/F, in units of rms DN, An approximate estimate of the total range of
uncertainty for raw radiance values near background can be made by multiplying
the total rms noise by six, i.e., +3 standard deviationi, The uncertainty
will be greater at the upper end of the dynamic range. The range of
uncertainty is at a Tow of about 3 DN in Band 4 for both sensors, and at a
high of about 7 DN in Band 1 of TM/PF, for these two "quiet" scenes.

The average difference between background in forward and reverse
scans in these quiet scenes is less than about 0.2 DN for both sensors. This
is part of the justification for suggesting that apparent forward-reverse
differences may be related to effects such as bright-target saturation rather
than to the direction of scan.

Bright-Target Saturation

Bright-target saturation is like coherent noise and droop in being a
“within-Tine sample-location dependent noise." It is characterized by a
memory effect after exposure to a bright target, such as a cloud. The time
constant of the hysteresis is such that the effect may Tast for thousands of
samples. There may be two separate physical effects on the detectors, one
which has a shorter time constant and decreases the detector sensitivity, and
the other which has a Tonger time constant and increases the sensitivity.

In order to facilitate the interpretation of data in terms of
bright-target saturation, a TM scene was chosen which had one "solid"
formation of clouds, n. ely the 12 August 1983 scene of San Francisco, CA
(40392-18152). A solid formation of clouds along the coast of the Pacific
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Ocean is present on the western side of this scene. It starts about scan 80
and then reaches eastward until there is nearly 75% cloud-cover in the lower
quarcer of the scene. If there were no bright-target saturation effects, then
the background in the shutter region may have the same total rms variability
as seen in the quiet scene (Table 5), the same near zero values for the
difference between forward and reverse scans, and an independence from scan
number after correction for scan-correlated shifts. This may in fact be the
case for the SWIR bands, however PFP bands show an increase of about 0.5 DN in
rms variability on the shutter, and up to a 2.5 DN difference for forward
minus reverse background after DC restore in Band 2 (1:ble 6). This increases
the uncertainty in the calibration of the raw radiance to a ra'ge of from 6 to
9 DN, and introduces a scene-dependence on this uncertainty. In addition, the
four background plots of shutter background versus scan number in Figures 6
and 7 show a direct relationship with the distribution of the clouds.

One model for bright-target saturation effects relates them to the
distance from the end of bright target, or cloud. This hypothesis was tested
in this study and the results are shown in Figure 8, where the backgrounds
from all four regions on the shutter are plotted against the distances from
the cloud edge. The initial 1000 mf undershoot and a 6000 mf overshoot
suggests that all of this background data can be fit on a single slowly
varying curve, thereby justifying the two component model mentioned above.

Within-Scene Variability by Channel

Examples of the magnitudes of the various types of noise in the TM
sunsors are summarized by channel in Tables 7 through 13.

RECOMMENDATIONS

While the recommendations Tisted in summary form in Table 14 contain
ideas from many people, including scientific investigators on NASA's team for
characterizing the quality of the imagery from the sensors on Landsat-4 and
Landsat-5, they are the creation and sole responsibility of the auther. These
recommendations have not been approved by either the Landsat Science Office or
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the Landsat Project. Evaluation, and possible implementation, of the
recommendations will pose significant difficulties both during the research
period before the transition of the TIPS from NASA to NOAA near the end of
1984, and afterwards, during the operational period.
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TABLE 14
RECOMMENDATIONS
TM RADIOMETRIC CHARACTERIZATION

6.1 ENGINEERING CHARACTERIZATION

6.1.1

6.1.2

6.1.3

6.1.4

RECALIBRATE INTEGRATING SPHERE USED IN PRE-LAUNCH
CALIBRATION

48" TM Integrating Sphere

- SBRC

- GSFC

- NBS

Two 30" MSS Spheres

MMR 8-Band Field Radiometer

ANALYZE RELATIVE RADIOMETRY OF PRE-LAUNCH DATA ON 42 TRACK
TAPES : '

EMPLOY ENGINEERING MODEL TM TESTS TO INVESTIGATE SOURCE OF

Bin-Radiance Dependence (Unequal Bins)
Coherent Noise (Stationary and Time-Dependent)
Within-Line Droop

Bright Target Saturation (Recovery)
Scan-Correlated Shifts

IC Pulse Temperature-Dependence

"Secondary" Light Pulse in Calibration Region
Apparent Gain Changes with Time

PRODUCE FINAL REPORT DESCRIBING TM PERFORMANCE
CHARACTERISTICS
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6.2 FLIGHT SEGMENT OPERATIONS

6.2.1 INSTITUTE CHANGES IN OPERATIONAL PROCEDURES
) Stop Routine Operation of IC Automatic Sequencer
[ Alternate Black Body Temperatures "T2" and “T3"
° Set Qutgassing Strategy at 20% Band 6 Gain Loss

6.2.2 PERFORM IN-ORBIT CALIBRATION TESTS
o Calibrate Temperature-Dependence of IC Pulses

6.2.3 PERFORM IN-ORBIT CHARACTERIZATION TESTSS
[} Redundant Power Supply Noise
e  Manual IC Operation with Automatic Sequencer Off
o "Override" Back-up IC Operation
. Coherent Noise Phasing Relative to Midscan Pulse
) Noise with DC Restoration Off

6.2.4 PERFORM IN-ORBIT SCIENTIFIC MISSION TESTS

Subsampled Extension of Swath Width, No Shutter
Bidirectional Reflectance by O0ff-Nadir Pointing
Intensive Single Site Acquisition by Pointing
TM/F and TM/PF Stero by Pointing

TM/F and MSS/F (High Gain) Bathymetry

TM Single S/C Stero

- Fore/Aft

- Side-to~Side

6.3 TIPS GROUND PROCESSING

6.3.1 PROVIDE FOR FUTURE CHANGE IN RADIOMETRIC CALIBRATION
PARAMETERS
] Post~Calibration Dynamic Range (RMIN, RMAX)
] Spectral Radiance for each IC Lamp Level
° Averaged Pulse for each IC Lamp Level
° Pre-Launch Gains and Offsets
° Calculated Pre-Launch Nominal IC Pulses
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6.3.2 PROVIDE FOR CHANGES IN IC SYSTEMATIC RADIOMETRIC CORRECTION
PROCEDURES INVOLVING
¢  Two Background Shutter Collects (avoid DC Restore)
e Within-Scene Corrections
- Bin-Radiance Dependence
- Coherent Noise
- Scan-Correlated Shifts
e  Background Outliers (Incomplete Obscuration)
(1 "Secondary" Light Pulses in Calibration Region
- Search 80 of 148 mf Collect Window
. Pulse Integration Parameters
- Optimize Integration Width (near 39 mf)
] Pulse Averaging
- Separate Forward and Reverse Scans
0 Lamp State Options
- Reject 111 State for any Regression
- Omit 000 State when possible
- Omit Shutter Background when possible
- Permit any States and Background
] IC Pulse Temperature-Dependence
] Between-Channel Correlations
- Between-Band Absolute Radiometry
- Quality Assurance Redundancy Check
Within-Pass Smoothing
Between-Date Smoothing
Reference Channels or Variance Weighting
Statistical Quality Indices

o & e o

6.3.3 MODIFY HISTORGRAM EQUALIZATION PROCEDURE TO PROVIDE FOR
) Optional 1st Pass HDT-RT Histogram
0 Line-by-1ine Systematic Correction
] 2nd Pass HDT-RT 11-Bit Histogram

HDT-AT 11-Bit Histogram and File

Histogram Reference to "Quiet" Channel

Histogram Mounitoring of IC quality

Weighting of IC and Histogram Constants

HDT-PT Histogram File for each Band
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6.3.4

6.3.5

6.3.6

6.3.7

6.3.8

MODIFY GEOMETRIC PROCESSING PROCEDURES TC PROVIDE FOR

Single Pass Image Rectification (Geodetic) Product
Geocoded Map Compatibility

- UTM Resampling as Standard

Single Puss Cubic 3pline Resampling

Image Coordinate File for GCPs

Relative GCPs

Alternative Global GCP Library Build

PROVIDE THREE-SECTIONED POST-CALIBRATION DYNAMIC RANGE

MODIFY IMAGE CALIBRATION PROCEDURE TO PROVIDE FOR

Non-Ad jacent Channel Replacement Algorithm
Probabilistic Approach

PROVIDE THE FOLLOWING PRODUCTS

Semi-weekly Tapes of Raw Calibration Data
Semi-weekly "Unity" CCT-AT

Special "Unity" CCT-AT of Calibration Region
Reprocessed "Reference” Scenes

History Tapes of Calibration Constants
Selected HDT~RT Copies

Extra Band(s) of Binary Data

Extra Band(s) of 8-Bijt Data

Tapes at Reduced Resolution

Cloud-free Global TM Archive by Season
"Unity" HDT-AT and CCT-AT as Standard, with PDC

RESEARCH AND DEVELOP PROCEDURES FOR

Within-Line Processing

Band 6 Processing

Ingestion of Foreign TM Tapes

Full Interval Radiometric Processing

Creation and Processing of Pre~Launch Data

GPC Test to Reduce Control Point Neighborhood Size
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6.4

DEVELOP PROCEDURES FOR POSSIBLE CONTINGENCY EXPERIMENTS

] SCIENTIFIC EXPERIMENTS
- Lunar Radiometric Calibration
- Stero and Bidirectional Reflectance
- Time-of-Day Orbital Changes
- Revisit Frequency Requirements
- Utility of Mixed Spatial Resolution

o  ENGINEERING EXPERIMENTS
-  Band 6 Sensitivity at 70K
- Focus Test on Inchworms over GCPs
- Tests of Giobal Position System Utility
-  Tests of On-Board Computer Options
- Alternative Lamp and Power Supply Tests
- Recalibration Before and After In-Orbit Repair
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