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PREFACE

With the continuing technological evolution of remote sensing from space,

it is evident that we benefit from the technology only to the degree to which

. we understand the information captured in the remotely sensed image itself.

Images of the earth acquired from space vary according to the scene properties

they portray. Images are dependent on the natural variance in radiance from

the earth's surface, the effect of the atmosphere on the transfer of

radiation, and the measurement capability of the sensor. What we can learn

from orbital images depends on our ability to understand the transfer of

electromagnetlc energy from the earth's crust through the atmosphere, and the

absorption, emittance, and reflectance characteristics of both organic and

inorganic materlals of the earth's surface. We must also be able to

accurately register an orbltal image, and the information contained therein,

to its true location on the earth's surface. Thus, with an understanding of

energy transfer from the target to the sensor and accurate procedures for

geographical registration, we have the spectral and spatial attributes of an

image that will allow us to infer the maximum amount of information from a

scene. Some techniques that generate information from an image may be

fundamental and generic in their application to the characterization of scene

properties in all images. The development of generic techniques to advance

our understanding of remotely sensed images represents an emerging, highly

sophisticated science. The National Aeronautics and Space Administration, as

an established sponsor of remote sensing technology research, has embarked on

a specialized and eontinulng research program in fundamental remote sensing

science. After an evaluation of major research needs, the agency has defined

two significant projects:
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1. Scene Radiation and Atmospheric Effects Characterization (SRAEC), and

2. Mathematical Pattern Recognition and Image Analysis (MPRIA).

In 1981, NASA sollclted research proposals related to the two projects

from both the NASA and external science community. After a competitive

evaluation of submitted proposals, NASA selected approximately 35 investlga-

tlons and awarded funding in 1982. The investigations of both research

projects strive to improve our understanding of scene properties. The two

projects can be differentiated by the basic approach underlying each. The

SRAEC Project seeks to understand the fundamental relationship of energy

interactions between the sensor and the surface target, including the effect

of the atmosphere, to construct theoretical models predicting the radiance of

the earth's surface. Model inversions can then be applled to interpret the

information contained in a space-acqulred image of measured radiance.

Conversely, the MPRIA Project seeks to develop analytical techniques that

group the radiance values contained in an image of a statistical basis to

infer the properties of the scene, ultimately to understand the condition of

the earth's surface. An important component of MPRIA lles in the development

of technique for image georeglstratlon and recognition of texture. The

information associated with spatial patterns, or texture, of radiance in an

image may contribute substantially to the inference of scene properties.

The Fundamental Remote Sensing Science Research Program supports the lonE- _

term goals of NASA in two significant ways. First, the techniques developed

through the program enhance our ability to learn more about the physical and

biological processes of our planet from space acquired data. Second, the

results of the investigations contribute to a base of scientific understanding

needed to support the planning of new and effective sensors and flight
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programs.Thisreportis submittedto desorlbetheFundamentalRemoteSensing

Science Research Program and the progresses made since its initiation

appoxlmately two years ago. The report is represented in two parts. Part I

provides the status of the Scene Radiation and Atmospheric Effects

Characterization Project, primarily reflectlng research results presented at

the Second Annual Workshop for investigators held at Colorado State University

in FortColllns,January9-11,1984.PartII providesthestatusof the

MathematicalPatternRecognitionand ImageAnalyslsProject,whichconsistsof

currentresultsand informationsummarizedfromthe proceedingsof the NASA

Symposiumon MathematicalPatternRecognitionand ImageAnalysisheldJune I-

3, 1983. (SeeNote1)

By the end of 1984, the Land Processes Branch of the Earth Science and

Applications Division, Office of Space Science and Applications, will announce

a new opportunity for research in this continuing program. Topics for the

sollcitation of research will be defined in the months ahead and will be based

on the outgrowth of results of present investigations and the fundamental

research needs of other NASA Programs that incorporate remote sensing for

earth observations.

M. KrlstlneButera
ProgramManager
FundamentalRemoteSensing
ScienceResearch

, NASAHeadquarters
Washington,DC

(Note I) Guseman,Jr., L.F. 1983. Proceedingsof the NASA SvmDoslumon
MathematicalPatternReco_n_tlonand YmRge Analysis, June 1-3, JohnsonSpace
Center,Houston,Texas. ContractNAS 9-16664. Texas A&M University,
Departmentof Mathematics,CollegeStation,Texas.
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EXECUTIVE SUMMARY

TheMathematicalPatternRecognitionand ImageAnalysis(MPRIA)Projectis

concernedwith basicresearchproblemsrelatedto the studyof theearthfrom

remotelysensedmeasurementsof its surfacecharacteristics.The programgoal

is to betterunderstandhow to analyzethe_ thatrepresentsthe

spatial,spectral,and temporalarrangementof thesemeasurementsfor

purposingof makingselectedinferencesabouttheearth.

Initiated in July of 1982, the MPRIA project contains investigations from

twelve universities and research organizations and three NASA Centers. These

investigations are grouped in research categories called Preorocessln_,

Di_it_l Image Representation, and 0b_ect Scene Inference.

Preprocessing research is concentrating on methods for registration and

rectification of digital images. By registration we mean the process by

which two or more images are aligned so that the same point on the ground is

represented by the same pixel in each image. Rectification is the process by

which an image is brought into alignment with a map.

Given a digital image of some scene, a digital image representation is a

mathematical transformation (a model) of the image to a form that is useful

for making an inference about the scene. Often these representations are

mathematical descriptions of some characteristics of the earth's surface such

as "texture" or "shape". Other times these representations are more abstract.

For example, they may represent the image pixel values from a class of

materials in the scene by a class conditional probability density.
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Methods for developing a specific ooncluslon about the area being imaged

(the scene) are studied in the object scene inference investigations.

Generally, these conclusions can be related to mapping, inventory, or possibly

condltlonassessment questions.

The HPRIA project along with the Scene Radiation and Atmospheric Effects

Characterization (SRAEC) Project make up the Fundamental Remote Sensing

Science Research Program. Investigations in SRAEC are aimed at understanding

the physical scattering and absorption of electromagnetic radiation from the

earth that give rise to the digital image that is studied in HPRIA.
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1.0 The Role of MathematicalPatternRecognitionand Image AnalysisWithin

the FundamentalRemote SensingScienceResearchProgram

From the remote sensing point of view, the measurement of electromagentic

energy reflected from the Earth's surface within various wavelengths of the

spectrum provides us with a way to map a natural or cultural portion of the

Earth's surface, called the scene, to an electronic digital lJ_g_. Learning

how to analyze the scene from the information that is preserved by this

mapping is the theme of the Fundamental Remote Sensing Science Research

(FRSSR) program. The FRSSR program has chosen to begin this learning process

by dividing the studies between two program projects called Scene Radiation

and Atmospheric Effects Characterization (SRAEC) and Mathematical Pattern

Recognition and Image Analysis (MPRIA).

Since both SRAEC and MPRIA are concerned with inferences about the scene,

how then do they differ? Before we attempt to give a general answer to this

question, we will illustrate one possible difference with the following

example.

Let us suppose that we wish to determine the average leaf area, which we

denoted by X, of a given species in some selected region. The average leaf

area is the one sided (or projected) area of all the leaves in a plant canopy

(for a given species) divided by the number of pixels in the area covered by

the canopy. This, of course, would be the average leaf area at the time the

measurements are taken. Furthermore, let us suppose that from our SRAEC

studies we have determined that for the jth species J = 1,2,..., M, the

s
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model, represented by the function Gj, that relates leaf area to the sensor

radiance values, denoted by R, is

x = aj(R)

Presumably this model would be derived from the scattering and absorption

properties of both the plant canopy and the atmosphere. In effect we have
J

inverted a mapping from the scene to the image to give a determination of the

scene property of interest to us, vlz. average leaf area. However, to apply

this model it would seem that we must know in advance that we are observing a

given species. We therefore need yet another model, also based on our

observed radiance values, to tell us which species is being observed. This

second model is the kind of model that is studied in MPRIA.

If the species can be well separated from the radiance values then a

classlficationmodelmay be a good choice. The classification model is a

partition of the space of all radiance values into the sets AI,A2,...,_. If

R s Aj we decide that the image plxel having this radiance is associated with

species J. Having classified each pixel, we simply add the leaf area of all

pixels from species J (this, of course, would be the total leaf area for

species J) and divide by the total number of pixels from that species to

calculate the desired average.

If the species can not be well separated, and this can be determined by

comparing the classifications with ground features, then the classification

model may be inappropriate since the mistakes made in attempting to classify a

pixel could introduce a substantial error in the final leaf area determination.

For this case a mixture_is an alternative choice. In this approach the



unconditlonalprobabilitydensityof theradiancevalues,f, is used to

determinethe speciesconditlonaldensities,fj,usingthemodel

f(R) =_ Pr (SpeciesJ) fj(R)

(If thedensitiesfj are membersof a known_L_1_Ej_family of densities

, then it is possible to uniquely find each fj from knowing f.) The average leaf

area for species j is then gotten from the SRAEC leaf area model and the MPRIA

mixture model as follows:

E(XISpeciesJ) = J Gj(R)fj(R)dR

Oftenmorethanone speciesisrepresentedby onepixeldue to thecoarse

resolutlonof the sensinginstrument.When thisis trueneitherof theabove

models(classlficatlonor mixturemodel)holds. If the radiancevaluesfroma

givenspeciescanbe representedby a weaklystationaryrandomprocessalone

any transectin the image,thena texturemodelmay apply. The ideais to

modelthe covariancefunctionof the radiancevaluesalonga transectas a

mixtureof speciesconditionalcovarlancefunctions.The covariancefunction

for a weaklystationaryprocessis a measureof therelatednessof two pixel

radiancevaluestaken Z unitsapartand it doesnotdependuponwherethe

pixelsare selectedalongthe transect.A posslbleformfor themodelis

h(Z) = _(uj- u)_hjj(Z)ITjj(Z_Pr (Species j)
j=1

p

+ _ _ hlj(Z)nlj(Z)Pr(SpeciesJ)
i=I J=1
i_j

Here h is the above mentioned oovariance function (the covariance of the

mixture) and hi_d is the species conditional covarianee between species i and



species J. The function Ilij is the probability of observing a radiance value

from species J that is Z pixels away from a pixel of species i. The constant

uj is the mean for the jth species and u is the mean of the mixture. While

not discussed, the conditional covariances and conditional probabilities have

been "smoothed" by the kernel that defines the sensor and atmosphere. When

this model applies we have, in a statistical sense, the ability to represent

the total radiance from a pixel in terms of its species component radiances.

The average leaf area for species J (assuming the radiance values are normally

distributed) is

_" 1 exp(- 1/2 _2_ dRE(xlSpecies J) = Gj(R) 2whjj(o) hjjYo)

This example is illustative of the distinction between SRAEC and MPRIA.

In SRAEC we are concerned with developing a theory to explain the way the

properties of the earth's surface reflect and emit electromagnetic radiation

through an atmosphere column to a remote sensing device. Presumably such

studies would lead to models which can be "inverted" to estimate values of

scene properties. In MPRIA we are concerned with developing yet other

models to understand scene properties that combine various representations or

models of the given data to develop an_about the scene. The leaf

area example was a case where radiance values from the scene were transformed

to leaf area values per species by one (SRAEC) model and also transformed to

conditional density functions or a partition of the scene measurements using

yet another (MPRIA) model. Both models were then used to estimate (infer) the

average leaf area. We refer to these models, in MPRIA, as Di£ital Imag_

ReDresentations.
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The idea that an imageis,in some sense, an organizationof several

representationsis imbeddedin the modern approachto image understanding. A

multiplelevel of organizationis generallyassumed. At the lowest level the

image is viewed in terms of representationsthat describeprimitivestructural

elements such as llnes, corners,edges, or even texture. These representa-

' tions are an attempt to segment the image into elementswhich can be combined

at anotherlevel of organizationto developrepresentationsof scene structure

or shapes. By knowingscene structurewe may be able to infer which parts of

the image are, for example, the roads, the rivers,the cities,the forests,

etc.

The point is that these digital image representations along with other

inductive spectral models of the physical properties of the earth are, in a

sense, the building blocks of inference and both SRAEC and MPRIA are

contributing to the theory of ob_t seen_ inferencg. In MPRIA we have

concentrated on extending the theories that have been proposed in computer

science, photogrammetry, statistics, mathematics and geography to develop

representations which we feel have a bearing on our problems. In SRAEC we

have used ideas from physics, meteorology, plant physiology, and other

disciplines to develop our representation theories founded on physlcal

processes.



2.0 Summary of MPRIA Investigations

Above we pointed out that study areas related to digital image representa-

tions, and, object scene inference are addressed within the MPRIA program.

There is yet another area of study which we have called _. By

preprocessing we mean all preparatory manipulations of the image data that

preceed the representation phase. Presently all our preprocesslng studies are

related to the registration or the rectification of images.

We will nowsummarize some of the aocompllshments within these three

research areas. For a detailed technical discussion of the accomplishments up

to June 1983, the reader should refer to "Proceedings of the NASA Symposium on

Mathematical Pattern Recognition and Image Analysls," June I-3, 1983 (c.f.

footnote in the Preface). There will be another proceedings published after

the 1984 June symposium, which will present a detailed dooumentatlon of the

second year's effort.

Our summary will point out the primary individual who is responsible for

the investigation by underlining the last name in the followlng text. The names

of the researchers along with their investigation titles are given in Table I.

TABLE I.

MPRIAINVESTIGATIONS

INSTITUTION/INVESTIGATOR INVEST,_QAT_ON ,

TEXASA&M

L. F. Gusaman& L. L. Schumaker SpllneClassificationMethods

E. Parzen QuantileData Analyslsof ImageData

W. B. Smith _ Discrimination Relative to Measures of
Non-normallty
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MPRIAINVESTIGATIONS(Continued)

•INSTITUTION/INVESTIGATOR . INVESTIGATION

H. J. Newton Repeated-MeasuresAnalyslsof Image
•Data

a

u oF TEXAS

C. N. Morris An EmpirloalBayesApproachto Spatlal
Analysis

PURDUE

E. M. Mikhall SimulationAspectsin the Studyof
Rectificationof SatelliteSQanner
Data

LNK

L.N.Kanal Analysisof SubplxelReglstratlon
Acaurac¥

L. S. Davis ImageMatchingUsingGeneralizedHouEh
Transforms

U OF HOUSTON

C. Peters MixturemodelsforDependent
Observations

h_NTERCOLLEGE

A. H. Strahler RelatingSpatialPatternsIn ImageData
. to SceneCharacteristics

sRI

G. B. Smith ShapefromShading: An Assessment

U OF KANSAS

K. S. ShanmuEan The Influence of Sensor and FliEht
Paramter on Texture in Radar Images
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MPRIAINVESTIGATIONS(Contlnued)

INSTITUTION/INVESTIGATOR INVESTIGATION _

U OF CALIF.AT SANTABARBA_

W. R. Tobler FractalModelsof Texture
b

Jsc

R. P. Heydorn EstimatingLocationParametersin a
MixtureModel

D. W. Scott/RiceUniversity MultivariateDensityEstimationand
RemoteSensing

A. G._Houston EstimationwithClassifieras Auxiliary
Variable ,.

R. F. Gunst/SouthernMethodist CropAreaEstimationBasedon Remotely
University SensedDatawith an Aecuratebut

CostlySubsample

JPL

J. P. Held SAR Speckle Noise Reductlon Using
Wlener Fllter

M. Naraghl AutoregresslveModelsfor Use in Scene
Segmentation

NSTL

D. D. Dew Progress in the Scene-to-Map
Registration

2.1 PreDrocessln_

Recognizingthatthesensorpointingerrorsare a majorsourceof

errorwhen attemptingto registeror rectifyimagesMikhallhas developed

a generalsensor/platformerrormodel. From themodelwe can computethe

groundpositionof theimageplxelsgiventhevaluesof theparametersin

themodel. Registrationor rectificationaccuracycan thereforebe



studied by introducing errors into these parameters and thereby obtain an

understanding of how accurately these parameters need to be estimated.

Presumably, these parameters can be estimated from ground control points,

and so, e.g., one can study rectlflcatlon/reglstratlon errors as a

function of the number, placement, and locatlon accuracy of ground
a

control points. The model is now being used to rectify two frames of HSS

Landsat data from scenes over Kansas and Louisiana and to study the

effect of varying the number of control points on rectification accuracy.

Some early results suggest that for these scenes using fifteen (15)

control points RHS errors are about 70 meters. With an additional fifty

(50) control points only a minor improvement (about 3-4 meters) was noted

in the RHS error. Dow has attempted to rectify this same data using a

mapping developed from the ground control points. This mapping was not

based on the use of a sensor/platform error model.

Kanalls considering the problem of registering two images to

subplxel accuracy. This effort is concerned with methods for estimating

registration accuracy at the subplxel level. Host recently, the work has

followed two main approaches. Both of these approaches are aimed at

accurate estimation of edge positions. These estimates will then be used

to match lines between a reference image and a sensed image to provide a

registration. First, the work on determining the subplxel location of an

edge given the set of observed edge pixels has been extended. In the

first year of the study, procedures were developed for estimating the

error in subplxel edge position given the correct digitization of an

edge. Parts of that work have been extended to allow for errors in the

detection of edge pixels. For small numbers of incorrectly detected edge

plxels, a description of the posslble erroneous digital llnes has been
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developed. Procedures for oomputlng varlous types of error estimates

using this set have been developed and are currently being tested. The

geometric structure, in polar coordinate space, of the regions

corresponding to the various digital lines has been examined. Various

results relevant to the analysis of llne position errors for larger

numbers of incorrectly detected edge plxels have been developed using

this geometric information.

Procedures for directly estimating straight edge subpixel positions

given the approximate location of the edge have been developed. This

work uses polynomial fitting explicitly inoorporatlng the constraints of

straightness, known approximate position of edges, and known orientation

of edges. The methods are currently being tested on the LANDSAT data.

The subplxel estimates will be used directly for estimating subpixel edge

positions as well as estimating edge plxels to use as input to an

algorithm for computing subpixel edge location from the edge plxels.

These results will be compared to determine the most suitable algorithm.

When two images have been acquired over the same area on the ground

but spaced over a large time span or have been acquired by two different

sensors, the images often cannot be reliably matched, or registered,

using tradltlonalregistrationalgorithmsbased on either intensityor

edge correlation. For such oases _has proposedthe following

approachto registration:

(1) The images are first segmented into regions that have distinct

structural or textural properties.
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(2) The segments are analyzed by an expert vision system that has

availableto it detailed,but highlyspecific,modelsfor the

entitiesthatwillappearin the sceneas viewedthrougha

particularsensor.Theresultof thisanalysisis thatthe

regionsproducedby the segmentationare labeled(i.e.,

classified);furthermore,the inltlalsegmentationis re-analyzed

andrefined.

(3) The finalinterpretedregionsare usedby a matchingalgorithmto

registertheimages.

In the area of segmentation, algorithms for extracting both compact

and elongated regions from images have been developed. Also, robust

representations of image texture based on correlation of ranked data have

been developed.

Finally,thisregistrationresearchhas developedmatchingalgorithms

for imageregistrationthatare capableof utilizingboththe structural

informationconcerningthe appearanceof imageregionsand the semantic

informationcomputedby the expertvisionsystemto registerimages.

These algorithms involve Hough transform techniques for estimating the

parameters of the registration. (Hough transforms are discussed further

on page 18.)

2.2 Digital Image ReDresentatlo_

A digital image that is produced in remote sensing applications is a

two dimensional array of, generally, vector valued measurements (radiance

values). If the array is associated with "one look" of the sensor, then an

ii



element (one entry) of the array is a vector of as many measurements as

there are measurement channels on the sensor. For example on the TM sensor

of Landsat 4 and Landsat 5 there are seven (7) channels. The array in this

case would have elements which are 7 dimensional vectors. Often false

color images are made from the digital image. In this case one might pick

three channels from the seven and assign a primary color intensity to a

channel value to produce the color image.

If, however, the array is obtained by registering a time sequence of

looks then an element of the array is a vector which is a sequence of

measurements. Returning to our TM sensor example, imagine that the

sensor looks at the same area on the ground at time, tl, time t2, etc.

The first seven entries in the vector are the measurements at time tI the

next seven are the measurements at time t2, etc.

The fact that in remote sensing we are often dealing with arrays that

are vector valued, as apposed to a panchromatic image, means that even

when we ignore the spatial arrangement of the elements - i.e., treat the

elements independently - we can obtain a considerable amount of

information about the scene.

In discussing the representation studies we will single out those

which are spectral and those which 8re spectral-spatial in nature. (The

word spectral is derived from the fact that each vector element is a

measurement from a wavelength interval in the electromagnetic spectrum.)

For the spectral case we can take a random sample of array elements to

develop the representation. For the spectral-spatial case we must keep

track of the location of each element in the array or at least keep

track of locations in a local neighborhood of a given element.

12



2.2.1 S_eotral RePresentations

These studies have concentrated on probability density function repre-

sentations for the variety of classes that are represented in the data.

As an exploratory tool to understand the structure of the density

functions, _has developed a four dimensional color computer graphic

program in which three dimensions in the data are each represented by a

color and the fourth dimension is represented by time, i.e., a sequence

of images is produced. He has also developed a new density estimator

called the average shifted histogram that can be computed many times

faster than the well known kernel estimator.

Gus_manand Sch_makerare usingB-spllnetheoryto estimatedensity

functionswiththe aim of computinga Bayesclasslficatlonboundary.

SincetheBayesboundaryturnsout to be the set of zerosof a linear

combinationof spllnes,thisapproachleadsto a computationally

efficientmethod,at leastin the caseof unlvarlatedensityfunctions.

The techniqueis beingextendedto the multivariateeasewhere

the Bayesboundaryis a "zerocontouror zerosurface."Giventhe Bayes

boundary,themethodalsoleadsto a computatlonallyefficientestimate

of the probability of mlsclasslfication. A B-spllne is a plecewlse

continuous polynomial that satisfies certain regularity conditions at the

break points (knots). The "B" refers to the fact that these spllnes are

used as basis functions in the approximation process.

The unconditional probability density function of the measurements,

which will be called the mixture density, in an image can often be

described as a linear (convex) combination of conditional densities. A

13



given conditional density describes the measurements from one and only

one class of materials on the ground. When these conditional densities

are members of a known identifiable family (and real data suggests that

this is often the case) then the conditional densities can be uniquely

derived from the unconditional density. The representation of the

mixture density as this linear combination of conditional densities is

called a mixture model. Hevdorn is taking this mixture model approach

for determining representations for the image data. The current studies

are concentrating on families whose members are translates of functions

whose Fourier or Laplace transform is a rational function. Exponential,

gamma, and beta families are examples that have these characteristics. A

method has been developed based on a Caratheodory representation theorem

for determining the number of conditional densities in the mixture and

the invidual translation values. More recently studies have concentrated

on constrained B-spline estimation methods to derive estimators of these

quantities.

2.2.2 Spectral-Spatial Representations

One of the properties of a scene that is presumably used by human image

interpreters is texture. One possible representation for texture is to

model it using a spatial statistics model also called the random field

model. Nara_hi has proposed the random field model for texture with the

aim of segmenting a scene into texture types. In this model an array

element is modeled as a linear combination of surrounding array elements

(i.e., an autoregressive formulation). Having modeled each texture class

in this way, a Bayesian classification scheme is then used to segment the

scene into texture class groups.
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Shanmugan has also proposed an autoregressive texture model. In his

model, however, an array element is modeled as a linear combination of

piecewise continuous functions centered on surrounding array locations.

The philosophy behind this approach says that texture is made up of a

random arrangement of primitive elements. The primitive elements are the

, above piecewise linear functions. Texture models of this kind are then

used to define a texture edge for segmenting the scene.

Another approach for constructing a texture model based on "randomized"

primitive elements has been taken by Tobler. Tobler considers a fractional

Brownian motion model, which is a form of a fractal model. This model can

be derived by operating on a brownian motive process using a certain

smoothing kernel.

Whenever a spatial statistics model for texture is proposed for a

vector valued array, massive data management and computational problems

can occur. Newton is studying models based on parallel transects with

the idea of only using the correlation along the transect.

Texture appears to be a phenomenon that depends upon the spatial

resolution of the instrument that is viewing the scene. At fine

resolution often one type of texture is visually apparent; but, at

another resolution another texture type is apparent. The effect of

resolution in various scene models is being studied by _. He has

begun by introducing a concept of local variance which can be estimated

from image values by starting with a fine resolution image, snd while

successively degrading the resolution, computing the average variance

from radiance values in a moving window. Over forested areas these
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studies have shown that the local variance peaks when the resolution of

the instrument approximates the average size of tree crown. Over

agricultural areas the peaking tends to occur around resolutions related

to average field sizes. For residential areas where there is a variety

of object sizes in the scene, the curves of local variance versus resolu-

tion, appear to broaden out; but, each curve still has a single peak.

Another application of a spectral-spatial representation is considered

by P_. In this study a mixture model that uses the local spatial

properties is proposed. The array values along a given row are placed in

groups of varying sizes. The idea here is that one would construct these

groups from elements belonging to a single agricultural field or

belonging to some homogeneous region in the scene. And, since fields or

homogeneous areas can vary in size, the sizes of the groups are treated

as random observations. This model has been derived under the so-called

exchangeability hypothesis which implies that the probabilty density

functions of the array elements in the group is independent of the

location of the elements. Approximations to groups that have a Markovian

structure are considered using the exchangeability hypothesis.

Parz_ is exploring the use of statistics based on quantiles as a

possible method for representing the image data. In this approach a

square neighborhood of an array element is first defined and then a

sample quantile function is computed using the values in the neighborhood.

From this quantile function a number of statistics are derived. Some of

these statistics are the median, the interquantile range, the information

quantile function, and ratios and differences of these quantities. The

idea behind this approach is that one can derive good discriminating
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features for a ground class from the quantile function. Empirical

studies with agricultural data suggest that features derived in this way

can separate many crop types and natural vegetation. Besides being

useful for developing feature representations for the data, these

quantile methods can also be used to test certain hypotheses about the

form of the class conditional density functions.

Texture is one property that can be used to describe a scene, and

shape is another (c.f. page 18). Smith (SRI) is considering the problem

of reconstructing 3D surface shape from 2D imagery. He showed what 3D

shape information is available in an image although his information is

insufficient to allow direct reconstruction of the 3D surface shape. He

has therefore approached the problem using the predict and verify

paradigm. Using DTM (Digital Terrain Model) data (obtained from say,

matching a stereo pair) he constructed a representation of the surface.

This representation is used to predict the shape information that can be

obtained from the image directly. Verification allows him to assess

where the surface model is correct and where it needs to be adjusted.

(It also allows assessment of the quality of the DTM data.) Large

surface models are computationally expensive, while multlpatoh models

have joining problems. He has found oomputatlonally effective means for

creating large surface models of natural terrain. At present he is using

these surface models for image prediction and is investigating methods

for adjusting the model at those places where it incorrectly predicts the

image information.

Held is studying the problem of removing speckle in synthetic

aperture radar (SAR) images using Weiner filter theory. This filter is
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determined from the power spectral density functions (psd) of the scene

and the noise. (The psd is the Fourier Transform of the autocorrelation

function.) The noise psd in this case is modeled by a delta function

plus a band limited white noise term.

2.3 Object Scene Inferenc_

The classification of objects in the scene based on the radiance

values is often done to produce a labeled map of the scene or to obtain

an inventory of a class of objects in the scene. Classifications based

on linear discriminant functions are appealing since the number of

parameters that needs to be determined is small in comparison to other

discriminant functions. If, however, a linear function is assumed when

in fact the correct discriminant is nonlinear, then less than optimal

performance can be expected. Smith (Texas A&M) is studying the

robustness of linear discriminants when the linearity assumption is

violated. To study robustness he has chosen a model for the class

conditional densities that is a mixture of normals. With this model he

computes the Bayes risk and compares it with the risk when a linear

discriminant is used.

The Bayes classification rule is based on the posterior probability

for each class in the scene. It is sometimes possible to determine these

posterior probabilities from the spectral values alone without knowing

the class prior probabilities. The general class of methods that

estimate the posteriors in this way are often called empirical Bayes

methods. Morris is considering empirical Bayes methods to derive the

label for a given pixel by considering the labels of surrounding pixels.

The idea is based on the notion of an affinity matrix and the Stein

18



shrinkage estimator. The affinity matrix is used to smooth posterior

probability estimates based on neighboring pixels. These smoothed

estimates along with the original estimates are linearly combined to form

the Stein shrinkage estimate. Depending on the variances of the smoothed

and unsmoothed estimates, the Stein shrinkage estimator will tend to

"shrink" toward one estimate or other.

One way to inventory a scene is to first classify the objects in the

scene and then simply count the objects which have been classified to a

given class. The method, however, can give a biased estimate when

classification errors are committed. Given a small sample of ground

truth observations, one can regress an estimate based on this sample

against the classifier-derived estimate to obtain an unbiased estimate.

This kind of a regression estimator can have a better sampling efficiency

than does the estimator just based on the ground truth random sample.

When the regression is linear the sampling efficiency can be measured by

the correlation between the two estimates. Houston is studying

regression estimators of the general kind. He is also comparing this

regression estimator with the so-called calibration estimator, where the

order of the regression is reversed, the ratio estimator, and the

stratified estimator. This latter estimator is not a regression

estimator. Comparisons are being made among these estimators to

understand the situations where a given estimator is best. The ratio

estimator projects the classifier-derived value to a ground truth value

based on ratio of estimates of these quantities. The stratified

estimator uses the classifier to create two strata. A weighted sum of

stratum ground truth derived estimates is then used as the final

estimate.
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Along these lines, Gunstis investigating the errors-in-variables

model for relating classifier-derived estimates and ground observations.

This approach further assumes errors in the ground observations and

requires an additional parameter. This parameter takes the form of the

ratio of the variance of errors in the ground observations to the

variance of the classifier-derived estimates. The latter variance is due

to training sample variation.

3.0 Summary of Accomplishments

The MPRIA program project has been continuing for approximately I-I/2

years. During that time each investigator has made substantial progress in

establishing a theoretical foundation for his work. Many of the investigators

have been or are now beginning to test their theories on remotely sensed data.

In a few cases computer programs have been developed which could be transported

to other researchers in the country interested in applying these ideas in

their studies.

We now summarize some of the specific accomplishments that have occurred in

the program.

3.1 Preorocessing

By using a set of control points which can be located in both the

image and on a map of the ground being imaged, it is possible by methods

of interpolation, to approximately rectify the image to the ground. The

control points, e.g., are used to determine the coefficients in the

polynomials, or splines, or whatever interpolation function is used.

This approach is an attempt to approximate the function that created the

mapping between ground and the image without explicitly modeling the
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imaging device (the sensor and the sensor platform). It is therefore

worthwhile to ask if significant improvement in rectification can be

achieved by an explicit model of this kind. This model would be a

parametric model that models as closely as possible the geometric and

physical processes that produced the imagery. Such a model is being

developed for the MSS and TM sensors used in the Landsat series by

_. This model is now to the point where it can be used to rectify

imagery using control points to estimate the parameters in the model. In

a preliminary study where two MSS images were rectified (one scene being

in Kansas and the other in Louisiana) the RMS error was about 68 meters

for the Kansas site and 72 meters for the Louisiana site, using 15

control points to estimate model parameters. The errors dropped slightly

(3 to 4 meters) when the number of control points was increased to 81 for

the Kansas site and to 70 for the Louisiana site. With 15 control

points, it was therefore possible to rectify the images to less that I

pixel RMS error.

3.2 Digital Image Representation

Many natural and cultural scenes contain a large number of objects

which when taken individually may be hard to recognize, but when

considered in groups they seem to have characteristic properties.

Texture appears to be this kind of a phenomenon. If one could segment a

scene by forming texture groupings, then it may be possible to focus on

just the parts of the scene that are of interest.

While the definition of texture is still controversial, it would seem

that it is, roughly, some kind of repetitive arrangement of elemental

shapes (primitives) over a given area. Since the arrangement seems to
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have a "random quality", it is perhaps natural to try to represent

texture by some kind of random process. This random process need not

reproduce each radiance value from the scene but rather lead to a model

which maps all the radiance values in some region to a few numbers which

can be used to discriminate texture types.

In MPRIA we are in the early formative stages of understanding

texture in remotely sensed images. Our first attempts have adapted some

concepts of a random process. Shanmu_an, for example, trys to model

texture using a few primitive functions that occur randomly and are

weighted and added to form the random process. It is, however, not clear

from his model how one might select the set of primitive functions or if

the selection should depend upon the texture type being modeled.

_work may shed some light on the question. He has developed an

approach for estimating an optimal size for a resolution cell in a

texture which has a bearing on the selection of suitable primitive

functions. By knowing how this size varies in an image one could adjust

the size to optimize texture identification. Tobler's work with fractals

also suggests that a random process can lead to a model for texture, as

evidenced by the fact that such models produce very realistic simulations

of natural terrain.

Whereas texture is a property that relates to a collection of objects,

where the arrangement of the objects is the important characteristic,

shape is a property that relates to individual objects. In MPRIA we have

looked at certain fundamental questions related to shape. First of all,

Smith (SRI) has considered the problem of being able to recover a three

dimensional object from only shadow information in a two dimensional
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image. While a lot can be learned Just from observing the shadows, the

object cannot be totally reconstructed from just that data. Smith is

therefore considering using a model to predict the shape of the object in

hopes of being able to add "a priori" information in this reconstruction

process. Davis ls also using models to determine certain shapes in an

image. In this approach, a contour (a two dimensional outline of an

object) is taken from one image and used as a model to find a similar

contour in another image. This is done by translating, rotating and

perhaps topologically distorting the contour until it matches with a

contour in the second image. The actual approach is called the

generalized Hough transform.

Many of the inferencesone wouldlike to make about the scene are

based on a statisticalargument. The examplein SectionI.0 where we

estimatedaverageleaf area per speciesis one illustration. These kinds

of inferencesoften dependupon the probabilitydensitiesof the classes

of interestin the scene. Representationsof the scene in terms of these

class conditionaldensitiesare thereforeuseful. One way to derive this

kind of a representationis to obtain a sample of ground truth observa-

tions from each class in the scene and derive the class conditional

densitiesusing these samples. The problemwith this approachis that

the ground truth sample is often not available. There are, fortunately,

some interestingtheoremsin statisticswhich suggestthat one might be

able to derive the class conditionaldistributionswithouthaving the

ground sample. These theoremsare known as the identifiabilltytheorems

for mixturemodels. The applicabilityof these theoremshas been tested

using remotelysenseddata from agriculturalsites and have been found in

many situationsto be good approximationsto reality.
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To apply a mixture model, one must know in advance the family of

densities that describes each of the class conditional densities. One

must also be able to estimate the number of component densities in the

mixture. With regard to the first problem, Scott has developed a

computer graphic approach that allows one to display density contours of

up to four variables. By looking at sample data it is often possible to

spot certain characteristics of the multivariate nature of these

densities. Often dominant directions in the variable space suggest that

certain projections or other transformations are warranted. This

programming has reached the stage where the computer software could be

available to other researchers interested in multivariate density

representations. Hevdorn is addressing the problem of estimating the

number of components in the mixture for families of densities that appear

to typically represent some of the skewed nature of real class conditional

densities. He has been able to show that for several families of

univarlate densities the number of components can be computed. The

extension to multivariate densities has as yet not been attempted.

3.3 Ob_eot Scene Inference

One of the more basic applications of remotely sensed data is to use

it to increase the precision of a given sample survey. An example is as

follows:

The objective is to estimate the number of aspen trees in a given

forest. From a random sample in which a survey team counts the

number of aspen trees growing in randomly selected tracts, one can

obtain an estimate within a certain precision. By using in addition

classifications of tree types over many more tracts, it is possible
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to derive an estimate of the same quantity using Just the remotely

sensed data. The first estimator can be considered as unbiased, but

with large variance (low precision) since only a few tracts are used.

Of course by increasing the number of tracts used the precision would

increase, but this is generally an expensive option. The second

estimator has a small variance, since the number of tracts used is

large, but since the classifications are seldom error free, the

estimator is generally biased. By developing a regression using

these two estimators, it is possible to derive another estimator

which captures the unbiasedness of the first estimator and some of

the low variance properties of the second estimator.

While general problems of this type have been studied in statistics for

some time, there are still a number of unresolved theoretical questions

related to this remote sensing application. Houston is considering this

type of a regression problem along with other estimators; specifically,

the poststratified and the ratio estimators, in an attempt to understand

their behavior in terms of the classifier design and the probability

distribution structure of the remotely sensed data. By studying several

simulated cases he has found, for example, that when one compares the

regression estimator with the stratified estimator the former is

generally better (has lower variance) unless the underlying class

conditional probability distributions are highly overlapped (the classes

are difficult to discriminate from the remotely sensed data). One of the

goals of these studies is to develop a theory of classifier design which

will lead to highly efficient (low variance) area estimation models and

to develop estimation methods for the parameters in these models.
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4.0 Schedule of Events

The major technical meetings in the MPRIA program are the symposiums which

are held each June and the workshops. The first symposium was held June I-3,

1983, at the NASA Johnson Space Center, Houston, Texas. The proceedings from

that symposiumm_have been published. In 1983, there were also two workshops

for the purpose of reviewing the program. One was held January 27-28, and was

devoted to the more mathematical and statistical investigations in the

program. The other was held February 3-4, and covered the pattern recognition

studies. This year, in preparation for the program renewal_ the workshops

will be devoted to special topics which are intended to explore new possible

study areas that should be included in future work. One workshop on

multivariate spline models was held February 15-16, 1984. Another on computer

graphics is being planned for this spring or early summer. Other workshops

are also being planned.

5.0 Publications

The following is a list of publications resulting from MPRIA studies.

Journal Article_

R. F. Gunst, Toward a Balanced Assessment of Collinarity Diagnostics,

American Statistician, _8, (to appear, May 1984).

R. F. Gunst and R. L. Eubank, Regression Diagnostics and Approximate

Inference Procedures for Penalized Least Squares Estimators, submitted

to JASA.

M. Y. Lakshminarayan and R. F. Gunst, Estimation of Parameters in Linear

Structural Relationships: Sensitivity to the Choice of the Ratio of

Error Variances, Biometrika (to appear in 1984).
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M. Naraghi, Scene Segmentation Using Autoregressive Models, submitted to

IEEE Trans., Pattern Analysis and Machine Intelligence.

L. L. Schumaker, C. K. Chui and R. H. Wang, On Spaces of Piecewise

Polynomials with Boundary Conditions. II.Type-1 Triangulations, in

_econd Edmonton Conference on Approximation Theory, Ditzianetal., eds.

CMS Vol. 3, AMS, Providence, 1984, 51-66.

L. L. Schumaker, C. K. Chui and R. H. Wang, On Spaces of Piecewise

Polynomials with Boundary Conditions. III.Type-2 Triangulations, in

Second Edmonton Conference on Approximation Theory, Ditzian etal., eds.

CMS Vol. 3, AMS, Providence, 1984, 67-80.

D. W. Scott, Frequency Poloygons: Theory and Application, submitted to

JASA.

K. S. Shanmugan, Influence of Sensor and Flight Parameters on the

Textural Properties of Radar Images, to be published in IEEE

Transactions on Geosciences and Remote Sensing.

W. B. Smith and M. W. Riggs, Akaike Information and Missing Multinormal

Data, submitted to Statistical and Probability Letters.

W. B. Smith and K. K. Moore, Distribution and Simulation of the Rank

Transform Method, submitted to Comm. in Stat. B.

P. Spector and H. J. Newton, Box's Correction for Toeplitz Error

Covariance Matrices, submitted for publication.

G. Terrell and D. W. Scott, Oversmooth Nonparametric Density Estimates,

submitted to JASA.

27



Symposia and Conferen0_s

M. A. Calabrese and R. E. Murphy, "Improving Our Understanding of the

Remote Sensing Process," with Presentation at the 1983 IGARSS Symposium.

L. S. Davis and A. Rosenfeld, Image Processing Using Hough Transforms,

Proc. of the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M

University, College Station, Texas, February 3-4, 1983.

L. Davis, Fu-pei Hu, V. Hwang, and L. Kitchen, Image Matching Using

Generalized Hough Transforms, Proc. of the NASA/MPRIA Symposium,

NASA/Johnson Space Center, Houston, Texas, June I-3, 1983.

D. Dow, Progress in the Scene-to-Map Registration Task, Proc. of the

NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University, College

Station, Texas, February 3-4, 1983.

D. Dow, Progress in the Scene-to-Map Registration Investigation, Proc. of

NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June I-3,

1983.

L. F. Guseman, Jr., and L. Schumaker, Spline Classification Methods, Proc.

of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas,

June I-3, 1983.

D. Held, Reduction and Utilization of Speckle Noise in SAR Imagery, Proo.

of the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University,

College Station, Texas, February 3-4, 1983.

R. Heydorn, NASA Fundamental Research Program in MPRIA, Proc. of 15th

Symposium on Interface for Computer Sciences and Statistics, March 1983.
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R. Heydorn and R. Basu, Estimating Location Parameters in a Mixture Model,

Proc. of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston,

Texas, June I-3, 1983.

T. H. Joo and D. N. Held, SAR Speckle Noise Reduction Using Wiener Filter,

Proc. of the NASA]MPRIA Symposium, NASA]Johnson Space Center, Houston,

Texas, June I-3, 1983.

Laveen N. Kanal, Subpixel Registration Accuracy and Modeling, Proc. of the

HASA]MPRIA Workshop: Pattern Recognition, Texas A&M University, College

Station, Texas, February 3-4, 1983.

H. Kostal, "Localized Shrinkage Factors and Minimax Results," in

_roceedings of the NASAIMPRIA Workshop, L. Guseman, ed., Texas A&M

University (1983) pp. 109-114.

H. Kostal, "Empirical Bayes Methods for Time and Spatial Series,"

contributed paper to the ASA Annual Meeting; Toronto, Canada, August 15-

18, 1983.

David Lavine, Laveen Kanal, Carlos A. Berenstein, Analysis of Subpixel

Registration Accuracy, Proc. of the NASA/MPRIA Symposium, NASA/Johnson

Space Center, Houston, Texas, June I-3, 1983.

E. M. Mikhail and Fidel D. Paderes, Jr., Aspects of Simulation for

Rectification Studies, Proc. of the NASA/MPRIA Workshop: Pattern

Recognition, Texas A&M University, College Station, Texas, February 3-4,

1983.
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E. M. Mikhail and Fidel C. Paderes, Jr., "Simulation Aspects in the Study

of Rectification of Satellite Scanner Data", Proc. of the NASA/MPRIA

Symposium, NASA/Johnson Space Center, Houston, Texas, June I-3, 1983.

C. N. Morris, "A Minimax Approach to Spatial Estimation Using Affinity

Matrices," in Proceedln£s of the NASA/MPRIA Workshop, L. Guseman, ed.,

Texas A&M University (1983) pp. 101-108.

C. N. Morris and H. Kostal, "An Empirical Bayes Approach to Spatial

Analysis," in Proceedings of the NASA/MPRIA SvmDosi,_m,L. Guseman, ed.,

Johnson Space Center, Houston, Texas (1983) PP. 143-165.

C. N. Morris, "Spatial Estimation from Remotely Sensed Data via Empirical

Bayes Models," invited paper to be presented at the Computer Science and

Statistics; 16th Symposium on the Interface_ Wm_ge Processin_ Session;

Atlanta, Georgia, March 14-16, 1984.

M. Naraghi, Autoregressive Models for Use in Scene Segmentation, Proc. of

the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June

I-3, 1983.

M. Naraghi, Random Field Models for Use in Scene Segmentation, Proc. of

the NASA/MPRIA Workshop: MATH/STAT, Texas A&M University, College

Station, Texas, January 27-28, 1983

H. J. Newton, Confidence Bands for Autoregressive Spectra, Am. Stat.

Assoc., National Meeting, Toronto, 1983.
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F. C. Paderes,Jr.,forE. M' Mikhail,"Registratlon/Rectificatlonof

RemotelySensedData," Programkickoffmeetingfor theFundamental

ResearchProgramin MathematicalPatternRecognitionand ImageAnalysis,

NASALunarPlanetaryInstitute,Houston,Texas,August10-11,1982.

F. C. Paderes, Jr., and E. M. Mikhail, "Photogrammetric Aspects of

Satellite Imageries," Proceedings of The American Society of Photogrammetry

Fall convention, Salt Lake City, Utah, September 19-23, 1983.

F. C. Paderes, Jr., and E. M. Mikhail, "Rectification of Single and

Overlapping Frames of Satellite Scanner Data," Paper to be presented at

the XVth International Society for Photogrammetry and Remote Sensing

Congress at Rio de Janeiro, Brazil, June 11-29, 1984.

E. Parzen, FUN.STAT and Statistical Image Representations, Proc. of the

NASA/MPRIA Workshop: MATH/STAT, Texas A&M University, College Station,

Texas, January 27-28, 1983.

E. Parzen, Statistical Image Representations: Non-Gaussian Classification,

Proc. of the NASA/MPRIA Workshop: MATH/STAT, Texas A&M University,

College Station, Texas, January 27-28, 1983.

E. Parzen, Quantile Data Analysis of Image Data, Proc. of the NASA/MPRIA

, Symposium, NASA/Johnson Space Center, Houston, Texas, June I-3, 1983.

E. Parzen, Repeated Measures Analysis of Image Data, Proe. of the

NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3,

1983.
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C. Peters, Consistency and Other Large Sample Properties of Maximum

Likelihood Estimates of Mixture Parameters, Proc. of the NASA/MPRIA

Workshop on Density Estimation, Texas A&M University, College Station,

Texas, March 1982.

C. Peters and H. P. Decell, Jr., Co-varlance Hypotheses of LANDSAT Data,

Proc. of the NASA/MPRIA Workshop, MATH/STAT, Texas A&M University,

College Station, Texas, January 1982.

C. Peters, Mixture Models for Dependent Observations, Proc. of the

NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June I-3,

1983.

L. L. Schumaker, Second Edmonton Conference on Approximation Theory, On

space of piecewise polynomials with boundary conditions, June 1982.

L. L. Schumaker, SIAM Stanford, Special session on surfaces, July 1982,

Spaces of piecewise polynomials.

L. L. Schumaker, International Conference on Surface Fitting, Lake Garda,

Italy, June 1983. Five one-hour lectures.

L. L. Schumaker, Conference on Numerical Analysis, University of Dundee,

Scotland, June 1983. Computing the zeros of splines.

L. L. Schumaker, SIAM Computer Aided Design Conference, RPI, Troy, New

York, June 1983, Surface fitting.

L. L. Schumaker, Fitting of Histograms, Numerical Analysis Conference,

Texas Tech. University, Lubbock, Texas, September 1983.
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L. L. Schumaker, NASA SRAEC Meeting, Colorado State University, Fort

Collins, Colorado, January 9-11, 1984, Splines and applications.

D. W. Scott, Multivariable Density Estimation and Remote Sensing, Proc. of

the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June

I-3, 1983.

D. W. Scott and J. R. Thompson, Probability Estimation in Higher

Dimension, Proc. of 15th Symposium on Interface of Computer Science and

Statistics, March 1983.

D. W. Scott, "Review of Some Results in Bivariate Density Estimation."

Proc. of NASA Workshop on Density Estimation and Function Smoothing, pp.

165-194, March 1982.

D. W. Scott, "Optimal Meshes for Histrograms Using Varlable-Width Bins,"

poster session, ASA Annual Meeting, Cincinnati, Ohio, August 16-19, 1982.

D. W. Scott, Average Shifted Histograms: Effective Nonparametric Estimation,

Rice Technical Report.

K. M. Shanmugan, Textural Edge Detection and Sensitivity Analysis, Proc.

of the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University,

College Station, Texas, February 3-4, 1983.

K. M. Shanmugan, "A Frequency Domain Model for Markov Texture Fields,"

presented at the 1983 Systems, Man and Cybernetrics Conference, New Delhi,

India, December 27, 1983 - January 7, 1984.

Grahame Smith, Approaches to Image Registration and Segmentation, Proc. of

the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University, College

Station, Texas, February 3-4, 1983.
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Grahame Smith, Shape from Shading: An Assessment, Proc. of the

NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June I-3,

1983.

Grahame Smith, The Relationship Between Image Irradiance and Surface

Orientation, presented at the Computer Vision and Pattern Recognition

Conference, Washington, D.C., June 19-23, 1983.

W. B. Smith, Discrimination Relative to Measures of Non-Normality, Proc.

of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas,

June I-3, 1983.

A. H. Strahler, W. R. Tobler, and C. E. Woodcock, Improving Spatial

Modeling in Remote Sensing, Proc. of the NASA/MPRIA Workshop: Pattern

Recognition, Texas A&M University, College Station, Texas, February 3-4,

1983.

A. H. Strahler and C. E. Woodcock, Relating Spatial Patterns in Image Data

to Scene Characteristics, Proc. of the NASA/MPRIA Symposium, NASA/Johnson

Space Center, Houston, Texas, June I-3, 1983.

J. R. Thompson and D. Scott, Nonparametric Probability Density Estimation

for Data Analysis in Several Dimensions, Proc. of 27th Conference on

Design of Experiments in Army Research Development and Testing, June 1983.

Miscellaneous Revor$_

R. S. Chhikara, and A. G. Houston, Estimation with Classifier as Auxiliary

Variable, NASA/Lockheed Technical Report (being revised for submission to

technical journal).
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L. S. Davis, and L. Kitchen, Image matching using generalized Hough

transforms, F. Hu, V. Huang, University of Maryland, Center for

Automation Research, TR-27, October 1983.

D. Harwood, M. Subbarao, and L. S. Davis, Texture classification by local

rank correlation, University of Maryland, Computer Science, TR-1314,
!

August 1983.
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