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With the continuing technological evolution of remote sensing from space,
it is evident that we benefit from the technology only to the degree to which
we understand the information captured in the remotely sensed image itself.
Images of the earth acquired from space vary according to the scene properties
they portray. Images are dependent on the natural variance in radiance from
the earth's surface, the effect of the atmosphere on the transfer of
radiation, and the measurement capability of the sensor. What we can learn
from orbital images depends on our ability to understand the transfer of
electromagnetic energy from the earth's crust through the atmosphere, and the
absorption, emittance, and reflectance characteristies of both organic and
inorganic materials of the earth's surface. We must also be able to
accurately register an orbital image, and the information contained therein,
to its true location on the earth's surface. Thus, with an understanding of
energy transfer from the target to the sensor and accurate procedures for
geographical registration, we have the spectral and spatial attributes of an
image that will allow us to infer the maximum amount of information from a
scene. Some techniques that generate information from an image may be
fundamental and generic in their application to the characterization of scene
properties in all images. The development of generic techniques to advance
our understanding of remotely sensed images represents an emerging, highly
sophisticated science. The National Aeronautics and Space Administration, as
an established sponsor of remote sensing technology research, has embarked on
a specialized and continuing research program in fundamental remote sensing
science. After an evaluation of major research needs, the agency has defined

two significant projects:



'

1. Scene Radiation and Atmospheric Effects Characterization (SRAEC), and

2. Mathematical Pattern Recognition and Image Analysis (MPRIA).

In 1981, NASA solicited research proposals related to the two projects
from both the NASA and external science community. After a competitive
evaluation of submitted proposals, NASA selected approximately 35 investiga-
tions and awarded funding in 1982. The investigations of both research
projects strive to improve our ﬁnderstanding of scene properties. The two
projects can be differentiated by the basic approach underlying each. The
SRAEC Project seeks to understand the fundamental relationship of energ&'
interactions between the sensor and the surface target, including the effect
of the atmosphere, to construct theoretical models predicting the radiance of
the earth's surface. Model inversions can then be applied to interpret the
information contained in a space-acquired image of measured radiance.
Conversely, the MPRIA Project seeks to develop analytical techniques that
group the radiance values contained in an image of a statistical basis to
infer the properties of the scene, ultimately to understand the condition of
the earth's surface. An important component of MPRIA lies in the development
of technique for image georegistration and recognition of texture. The
information associated with spatial patterns, or texture, of radiance in an

image may contribute substantially to the inference of scene properties.

The Fundamental Remote Sensing Science Research Program supports the long-
term goals of NASA in two significant ways. First, the techniques developed
through the program enhance our ability to learn more about the physical and
biological processes of our planet from space acquired data. Secbnd, the
results of the investigations contribute to a base of scientific understanding

needed to support the planning of new and effective sensors and flight
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programs. This report is submitted to describe the Fundamental Remote Sensing
Science Research Program and the progresses made since its initiation
appoximately two years ago. The report is represented in two parts. Part I
provides the status of the Scene Radiation and Atmospheric Effects
Characterization Project, primarily reflecting research results presented at
the Second Annual Workshop for investigators held at Colorado State University
in Fort Collins, January 9-11, 1984, Part II provides the status of the
Mathematical Pattern Recognition and Image Analysis Project, which consists of
current results and information summarized from the proceedings of the NASA
Symposium on Mathematical Pattern Recognition and Image Analysis held June 1-

3, 1983. (See Note 1)

By the end of 1984, the Land Processes Branch of the Earth Science and
Applications Division, Office of Space Science and Applications, will announce
a new opportunity for research in this continuing program. Topics for the
solicitation of research will be defined in the months ahead and will be based
on the outgrowth of results of present investigations and the fundamental
research needs of other NASA Programs that incorporate remote sensing for
earth observations.

M. Kristine Butera

Program Manager

Fundamental Remote Sensing
Science Research

NASA Headquarters
Washington, DC

(Note 1) Guseman, Jr., L. F. 1983. Proceedings of the NASA Symposium on

athematical Pattern Recogp 3 : Analysis, June 1-3, Johnson Space
Center, Houston, Texas. Contract NAS 9-16664. Texas A&M University,
Department of Mathematics, College Station, Texas.
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EXECUTIVE SUMMARY

The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is
concerned with basic research problems related to the study of the earth from
remotely sensed measurements of its surface characteristics. The program goal
is to better understand how to analyze the digital image that represents the
spatial, spectral, and temporal arrangement of these measurements for

purposing of making selected inferences about the earth.

Initiated in July of 1982, the MPRIA project contains investigations from.
twelve universities and research organizations and three NASA Centers. These
investigations are grouped in research categories called Preprocessing,

Digital Image Representation, and Object Scene Inference.

Preprocessing research is concentrating on methods for registration and
rectification of digital images. By registration we mean the process by
which two or more images are aligned so that the same point on the ground is
represented by the same pixel in each image. Rectification is the process by

which an image is brought into alignment with a map.

Given a digital image of some scene, a digital image representation is a
mathematical transformation (a model) of the image to a form that is useful
for making an inference about the scene. Often these representations are
mathematical descriptions of some characteristics of the earth's surface such
as "texture" or "shape". Other times these representations are more abstract.
For example, they may represent the image pixel values from a class of

materials in the scene by a class conditional probability density.

vii



Methods for developing a specific conclusion about the area being imaged
(the scene) are studied in the object scene inference investigations.
Generally, these conclusions can be related to mapping, inventory, or possibly

condition assessment questions.

The MPRIA project along with the Scene Radiation and Atmospheric Effects
Characterization (SRAEC) Project make up the Fundamental Remote Sensing
Science Research Program. Investigations in SRAEC are aimed at understanding
the physical scattering and absorption of electromagnetic radiation from the

earth that give rise to the digital image that is studied in MPRIA.
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1.0 The Role of Mathematical Pattern Recognition and Image Analysis Within

the Fundamental Remote Sensing Science Research Program

From the remote sensing point of view, the measurement of electromagentic
energy reflected from the Earth's surface within various wavelengths of the
spectrum provides us with a way to map a natural or cultural portion of the
Earth's surface, called the scepe, to an electronic digital image. Learning
how to analyze the scene from the information that is preserved by this
mapping is the theme of the Fundamental Remote Sensing Science Research
(FRSSR) program. The FRSSR program has chosen to begin this learning process
by dividing the studies between two program projects called Scene Radiation
and Atmospheric Effects Characterization (SRAEC) and Mathematical Pattern

Recognition and Image Analysis (MPRIA).

Since both SRAEC and MPRIA are concerned with iﬂferenees about the scene,
how then do they differ? Before we attembt to give a general answer to this
question, we will illustrate one possible difference with the following

example,

Let us suppose that we wish to determine the average leaf area, which we
denoted by X, of a given species in some selected region. The average leaf
area is the one sided (or projected) area of all the leaves in a plant canopy
(for a given species) divided by the number of pixels in the area covered by
the canopy. This, of course, would be the average leaf area at the time the
measurements are taken. Furthermore, let us suppose that from our SRAEC

studies we have determined that for the jth species j = 1,2,..., M, the




model, represented by the function GJ’ that relates leaf area to the sensor

radiance values, denoted by R, is

X = GJ(R)

Presumably this model would be derived from the scattering and absorption
properties of both the plant canopy and the aﬁmosphere. In effect we hafe
inverted a mapping from the scene to the image to give a determination of the
scene property of interest to us, viz. average leaf area. However, to apply
this model it would seem that we must know in advance that we are observing a
given speeies. We therefore need yet another model, also based on our
observed radiance values, to tell us which species is being observed. This

second model is the kind of model that is studied in MPRIA.

If the species can be well separated from the radiance values then a
classification model may be a good choice. The classification model is a
partition of the space of all radiance values into the sets A1,A2,...,AM. If
R € Aj we decide that the image pixel having this radiance 1s associated with
species j. Having classified each pixel, we simply add the leaf area of éll
pixels from species j (this, of course, would be the total leaf area for
species j) and divide by the total number of pixels from that species to

calculate the desired average.

If the species can not be well separated, and this can be determined by
comparing the classifications with ground features, then the classification
model may be inappropriate since the mistakes made in attempting to classify a
pixel could introduce a substantial error in the final leaf area determination.

For this case a mixture model is an alternative choice. In this approach the



unconditional probability density of the radiance values, f, is used to

determine the species conditional densities, fj, using the model

f(R) = §E; Pr (Species jJ) fj(R)

(If the densities f, are members of a known identifiable family of densities

J

then it is possible to uniquely find each f, from knowing f.) The average leaf

J
area for species j is then gotten from the SRAEC leaf area model and the MPRIA

mixture model as follows:
E(X|Species j) = § GJ(R)fJ(R)dR

Often more than one species isrepresented by one pixel due to the coarse
resolution of the sensing instrument. When this is true neither of the above
models (classification or mixture model) holds. If the radiance values from a
given species can be represented by a weakly stationary random process along
any transect in the image, then a texture model may apply. The idea is to
model the covariance function of the radiance values along a transect as a
mixture of species conditional covariance functions. The covariance function
for a weakly stationary process is a measure of the relatedness of two pixel
radiance values taken Z units apart and it does not depend upon where the

pixels are selected along the transect. A possible form for the model is

n(z) =£: (u, - w%h, (2)IT, (2)) Pr (Species J)
j=1( 3 33Ty (2)

"'IM_-EM_: hij(Z)HiJ(Z)Pr (Species j)

i=1 j=1
149

Here h is the above mentioned covariance function (the covariance of the

mixture) and hij is the species conditional covariance between species 1 and



species j. The function II1j is the probability of observing a radiance value
from species j that is Z pixels away from a pixel of species i. The constant
uj is the mean for the jth species and u is the mean of the mixture. While
not discussed, the conditional covariances and conditional probabilities have
been "smoothed™ by the kernel that defines the sensor and atmosphere. When
this ﬁodel applies we have, in a statistical sense, the ability to represent
the total radiance from a pixel in terms of its species component radiances.
The average leaf area for species j (assuming the radiance values are normally

distributed) is

E(x|Species j) = G.(R) exp(~1/2 (R-u, g)dR
g i EXTINC 0)

B33

This example is illustative of the distinetion between SRAEC and MPRIA.
In SRAEC we are concerned with developing a theory to explain the way the
properties of the earth's surface reflect and emi£ electromagnetic radiation
through an atmosphere column to a remote sensing device. Presumably such
studies would lead to models which can be "inverted" to estimate values of
scene properties. In MPRIA we are concerned with developing yet other
models to understand scene properties that combine various representations or
models of the given data to develop an inference about the scene. The leaf
area example was a case where radiance values from the scene were transformed
to leaf area values per species by one (SRAEC) model and also transformed to
conditional density functions or a partition of the scene measurements using
yet another (MPRIA) model. Both models were then used to estimate (infer) the
average leaf area. We refer to these models, in MPRIA, as Digital Image

Representations.
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The idea that an image is, in some sense, an organization of several
representations is imbedded in the modern approach to image understanding. A
multiple level of organization is generally assumed. At the lowest level the
image is viewed in terms of representations that describe primitive structural
elements such as lines, corners, edges, or even texture. These representa-
tions are an attempt to segment the image into elements which can be combined
at another level of organization to develop representations of scene structure
or shapes. By knowing scene structure we may be able to infer which parts of
the image are, for example, the roads, the rivers, the cities, the forests,

etc.

The point is that these digital image representations along with other
inductive spectral models of the physical properties of the earth are, in a
sense, the building blocks of inference and both SRAEC and MPRIA are
contributing to the theory of object scene inference. In MPRIA we have
concentrated on extending the theories that have been proposed in computer
science, photogrammetry, statistics, mathematics and geography to develop
representations which we feel have a bearing on our problems. In SRAEC we
have used ideas from physics, meteorology, plant physiology, and other
disciplines to develop our representation theories founded on physical

processes.



2.0 Summary of MPRIA Investigations

Above we pointed out that study areas related to digital image representa-
tions, and, object scene inference are addressed within the MPRIA program.
There is yet another area of study which we have called Preprocessing. By
preprocessing we mean all preparatory manipulations of the image data that
preceed the representation phase. Presently all our preprocessing studies are

related to the registration or the rectification of images.

We will now summarize some of the accomplishments within these three
research areas. For a detailed technical discussion of the accomplishments up
to June 1983, the reéder should refer to "Proceedings of the NASA Symposium on
Mathematical Pattern Recognition and Imagé Analysis," June 1-3, 1983 (c.f.
footnote in the Preface). There will be another proéeedings published after
the 1984 June symposium, which will present a detailed documentation of the

second year's effort.

Our summary will point out the primary individual who is responsible for
the investigation by underlining the last name in the following text. The names

of the researchers along with their investigation titles are given in Table 1.

TABLE 1.

MPRIA INVESTIGATIONS

——ANSTITUTION/JINVESTIGATOR INVESTIGATION
IEXAS AS&M
L. F. Guseman & L. L. Schumaker Spline Classification Methods
E. Parzen Quantile Data Analysis of Image Data
W. B. Smith ’ Discrimination Relative to Measures of

- Non-~normality



MPRIA INVESTIGATIONS (Continued)

— INSTITUTION/INVESTIGATOR

H., J. Newton

U OF TEXAS

C. N. Morris

PURDUE
E. M. Mikhail

LNK

L.N. Kanal

U _OF MARYLAND

L. S. Davis

U_OF HOUSTON

C. Peters

HUNTER COLLEGE
A. H, Strahler
SRL

G. B. Smith

K. S. Shanmugan

Repeated-Measures Analysis of Image
Data

An Empirical Bayes Approach to Spatial
: Analysis

Simulation Aspects in the Study of
Rectification of Satellite Scanner
Data

Analysis of Subpixel Registration
Accuracy

Image Matching Using Generalized Hough
Transforms

Mixture models for Dependent
Observations

Relating Spatial Patterns In Image Data
- to Seene Characteristics

Shape from Shading: An Assessment

The Influence of Sensor and Flight
- Paramter on Texture in Radar Images



MPRIA INVESTIGATIONS (Continued)

INVESTIGATION

—— INSTITUTION/INVESTIGATOR.

U OF CALIF. AT SANTA BARBARA

W. R. Tobler

JSC

R. P. Heydorn
D. W. Scott/Rice University
A, G. Houston

R. F. Gunst/Southern Methodist
- University

JPL
J. P. Held

M. Naraghi

NSTL

D. D. Dow

2.1 Preprocessing

Fractal Models of Texture

Estimating Location Parameters in a
Mixture Model

Multivariate Density Estimation and
Remote Sensing

Estimation with Classifier as Auxiliary‘
Variable :

Crop Area Estimation Based on Remotely
Sensed Data with an Accurate but
Costly Subsample

SAR Speckle Noise Reduction Using
Wiener Filter

Autoregressive Models for Use in Scene
Segmentation

Progress in the Scene~to-Map
- Registration

Recognizing that the sensor pointing errors are a major source of

error when attempting to register or rectify images Mikhail has developed

a general sensor/platform error model. From the model we can compute the

ground position of the image pixels given the values of the parameters in

the model. Registration or rectification accuracy can therefore be



studied by introducing errors into these parameters and thereby obtain an
understanding of how accurately these parameters need to be estimated.
Presumébly, these parameters can be estimated from ground control points,
énd 8o, e.g., one can study rectification/registration errors as a
function of the number, placement, and location accuracy of ground
control points. The model is now being used to rectify two frames of MSS
Landsat data fromiscenes over Kansas and Louisiana and to study the .
effect of varying the number of control p&ints on rectification accuracy.
Some early results suggest that for these scenes using fifteen (15)
control points RMS errors are about 70 meters., With an additional fifty
(50) control poihts only a minor improvement (about 3~4 meters) was noted
in the RMS error. Dow has attempted to rectify this s;me data using a
mapping developed f;om the grouhd control points. This mapping was not

based on the use of a sensor/platform error model.

Kanal is considering the problem of registering two images to
subpixel accuracy. This effort is concerned with methods for estimating
registration accuracy at the subpixel level. Most recently, the work has
followed two main approaches. Both of these approaches are aimed at
accurate estimation of edge positions. These estimates will then be used
to match lines between a reference image and a sensed image to provide a
registration. First, the work on determining the subpixel location of an
edge given the set of observed edge pixels has been extended. In the
first year of the study, procedures were developed for estimating the
error in subpixel edge position given the correct digitization of an
edge. Parts of that work have been extended to allow for errors in the
detection of edge pixels. For small numbers of incorrectly detected edge

pixels, a description of the possible erronecus digital lines has been



developed. Procedures for computing various types of error estimates
using this sét have been developed and are currently being tested. The
geometric structure, in polar coordinate space, of the regions h
corresponding to the various digital lines has been examined. Various
results relevant to the analysis of line position errors for lafger
numbers of incorrectly detected edge pixels have been developed using

this geometric information.

Procedures for directly estimating straight edge subpixel positions
giveﬁ the approximate location of the edge have been developed. This
work uses polynomial fitting explicitly incorporating the eonstraints of
straightness, known approximate position of edges, and known orientation
of edges. The methods are currently being tested on the LANDSAT data.
The subpixel estimates will be used directly for estimatiﬁg‘éﬁbéixel edge
positions as well as estimating edge pixels to use as input to an
algorithm for computing subpixel edge location from the edge pixels.

These results will be compared to determine the most suitable algorithm.

When two images have been acquired over the same area on the ground
but spaced over a large time span or have been acquired by two different
sensors, the images often cannot be reliably matched, or registered,
using traditional registration algorithms based on either intensity or
edge correlation. For such cases Davis has proposed the following

approach to registrétion:

(1) The images are first segmented into regions that have distinct

structural or textural properties.
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(2) The segments are analyzed by an expert vision system that has
;vailable to it detailed, but highly specific, models for the
entities that will appear in the scene as viewed through a
particular sensor. The result of this analysis is that the
regions produced by the segmentation are labeled (i.e.,
classified); furthermore, the initial segmentation is re-analyzed

and refined.

(3) The final interpreted regions are used by a matching algorithm to

fegister the images.

In the area of segmentation, algorithms for extracting both compact
and elongated regions from images have been developed. Also, robust
representations of image texture based on correlation of ranked data have

been developed.

Finally, this registration research has developed matching algorithms
for image registration that are capable of utilizing both the structural
information concerning the appearance of image regions and the semantic
information computed by the expert vision system to register images.
These algorithms involve Hough transform techniques for estimating the
parameters of the registration. (Hough transforms are discussed further

on page 18.)

2.2 Digital Image Representation
A digital image that is produced in remote sensing applications is a
two dimensional array of, generally, vector valued measurements (radiance

values). If the array is associated with "one look" of the sensor, then an

11



element (one entry) of the array is a vector of as many measurements as
there are measurement channels on the sensor. For example on the TM sensor
of Landsat 4 and Landsat 5 there are seven (7) channels. The array in this
case would have elements which are 7 dimensional vectors. Often false
color images are made from the digital image. In this case one might pick
three channels from the seven and assign a primary color intensity to a

channel value to produce the color image.

If, however, the array is obtained by registering a time sequence of
looks then an element of the array is a vector which is a sequence of
measurements., Returning to our TM sensor example, imagine that the
sensor looks at the same area on the ground at time, t1, time t2, ete,
The first seven entries in the vector are the measurements at time t, the

1

next seven are the measurements at time t2, ete.

The fact that in remote sensing we are often dealing with arrays that
are vector valued, as apposed to a panchromatic image, means that even
when we ignore the spatial arrangement of the elements - i.e., treat the
elements independently - we can obtain a considerable amount of

information about the scene.

In discussing the representation studieé we will single out those
which are spectral and those which are spectral-spatial in nature. (The
word spectral is derived from the fact that each vector element is a
measurement from a wavelength interval in the electromagnetic spectrum.)
For the spectral case we can take a random sample of array elements to
develop the representation. For the spectral-spatial case we must keep
tfack of the location of each element in the array or at least keep

track of locations in a local neighborhood of a given element.
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2.2.1 ectral Represe ns
These studies have concentrated on probability density function repre-

sentations for the variety of classes that are represented in the data.

As an exploratory tool to understand the structure of the density
functions, Scott has developed a four dimensional color computer graphic
program in thch three dimensions in the data are each represented by a
color and the fourth dimension is represented by time, i.e., a sequence
of images 1is produced. He has also developed a new density estimator
called the average shiftéd histogram that can be computed many times

faster than the well known kernel estimator.

Guseman and Schumaker are using B-spline theory to estimate density

functions with the aim of computing a Bayes classification boundary.
Since the Bayes boundary turns out to Be the set of zeros of a linear
eombinatioﬂ of splines, this approach leads to a computationally
efficient method, at least in the case of univariate density functions.
The technique is being extended to the multivariate case where

the Bayes boundary 1s a "zero contour or zero surface."™ Given the Bayes
boundary, the method alsé leads to a computationally efficient estiﬁate
of the probability of misclassification. A B-spline is a piecewise
continuous polynomial that satisfies certalin regularity conditions at the
break points (knots). The "B" refers to the fact that these splines are

used as basis functions'in the approximation process.

The unconditional probability density function of the measurements,
which will be called the mixture density, in an image can often be
described as a linear (convex) combination of conditional densities. A

13



given conditional density describes the measurements from one and only
one class of materials on the ground. When these conditional densities
are members of a known identifiable family (and real data suggests that
this is of'ten the case) then the conditional densities can be uniquely
derived from the unconditional density. The representation of the
mixture density as this linear combination of conditional densities is
called a mixture model. Heydorn is taking this mixture model approach
for determining representations for the image data. The current studies
are concentrating on families whose members are translates of functions
whose Fourier or Laplace transform is a rational function. Exponential,
gamma, and beta families are examples that have these characteristics. A
method has been developed based on a Caratheodory representation theorem
for determining the number of conditional densities in the mixture and
the invidual translation values. More recently studies have concentrated

on constrained B-spline estimation methods to derive estimators of these

quantities.
2.2.2 Spectral-Spatial Representations

One of the properties of a scene that is presumably used by human image
interpreters is texture. One possible representation for texture is to
model it using a spatial statistics model also called the random field
model. Naraghi has proposed the random field model for texture with the
aim of segmenting a scene into texture types. 1In this model an array
element is modeled as a linear combination of surrounding array elements
(i.e., an autoregressive formulation). Having modeled each texture class
in this way, a Bayesian classification scheme is then used to segment the

scene into texture class groups.
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Shanmugan has also proposed an autpregressive texture model. In his
model, however, an array element is modeled as a linear combination of
piecewise continuous functions centered on surrounding array locations.
The philosophy behind this approach says that texture is made up of a
random arrangement of primitive elements. The primitive elements are the
above piecewise linear functions. Texture models of this kind are then

used to define a texture edge for segmenting the scene.

Another approach for constructing a texture model based on "randomized"
primitive elements has been taken by Tobler. Tobler considers a fractionai
Brownian motion model, which is a form of a fractal model. This model can
be derived by operating on a brownian motive process using a certain

smoothing kernel.

Whenever a spatial statistics model for texture is proposed for a
vector valued array, massive data management and computational problems
can occur. Newton is studying models based on parallel transects with

the idea of only using the correlation along the transect.

Texture appears to be a phenomenon that depends upon the spatial
resolution of the instrument that is viewing the scene. At fine
resolution often one type of texture is visually apparent; but, at
another resolution another texture type is apparent. The effect of
resolution in various scene models is being studied by Strahler. He has
begun by introducing a concept of local variance which can be estimated
from image values by starting with a fine resolution image, and while
successively degrading the resolution, computing the average variance

from radiance values in a moving window. Over forested areas these

15
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studies have shown that the local variance peaks when the resolution of
the instrument approximates the average size of tree crown. Over
agricultural areas the peaking tends to occur around resolutions related
to average field sizes. For residential areas where there is a variety
of object sizes in the scene, the curves of local variance versus resolu-

tion, appear to broaden out; but, each curve still has a single peak.

Another application of a spectral-spatial representation is considered
by Peters. In this study a mixture model that uses the local spatial
properties is proposed. The array values along a given row are placed in
groups of varying sizes, The idea here is that one would construct these
groups from elements belonging to a single agricultural field or
belonging to some homogeneous region in the scene. And, since fields or
homogeneous areas can vary in size, the sizes of the groups are treated
as random observations. This model has been derived under the so-called
exchangeability hypothesis which implies that the probabilty density
functions of the array elements in the group is independent of the
location of the elements. Approximations to groups that have a Markovian

structure are considered using the exchangeability hypothesis.

Parzen is exploring the use of statistics based on quantiles as a
possible method for representing the image data. In this approach a
square neighborhood of an array element is first defined and then a
sample quantile function is computed using the values in the neighborhood.
From this quantile function a number of statistics are derived. Some of
these statistics are the median, the interquantile range, the information
quantile function, and ratios and differences of these quantities. The

idea behind this approach is that one can derive good discriminating

16



features for a ground class from the quantile function. Empirical
studies with agricultural data suggest that features derived in this way
can separate many crop types and natural vegetation., Besides being
useful for developing feature representations for the data, these
quantile methods can also be used to test certain hypotheses about the

form of the class conditional density functions.

Texture is one property that can be used to describe a scene, and
shape is another (c.f. page 18). Smith (SRI) is considering the problem
of reconstructing 3D surface shape from 2D imagery. He showed what 3D
shape information is available in an image although his information is
insufficient to allow direct reconstruction of the 3D surface shape. He
has therefore approached the problem using the predict and verify
paradigm. Using DTM (Digital Terrain Model) data (obtained from say,
matching a stereo pair) he constructed a representation of the surface.
This representation is used to predict the shape information that can be
obtained from the image directly. Verification allows him to assess
where the surface model is correct and where it needs to be adjusted.

(It also allows assessment of the quality of the DTM data.) Large
surface models are computationally expensive, while multipatch models
have joining problems. He has found computationally effective means for
creating large surface models of natural terrain. At present he is using
these surface models for image prediction and is investigating methods
for adjusting the model at those places where it incorrectly predicts the

image information.

Held is studying the problem of removing speckle in synthetic

aperture radar (SAR) images using Weiner filter theory. This filter is
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2.3

*

determined from the power spectral density functions (psd) of the scene
and the noise. (The psd is the Fourier Transform of the autocorrelation
function.) The noise psd in this case is modeled by a delta function

plus a band limited white noise term,

Ob i ferenc

The classification of objects in the scene based on the radiance
values is often done to produce a labeled map of the scene or to obtain
an inventory of a class of objects in the scene. Classifications based
on linear discriminant functions are appealing since the number of
parameters that needs to be determined is small in comparison to other
discriminant functions. If, however, a linear function is assumed when
in fact the correct discriminant is nonlinear, then less than optimal
performance can be expected. Smith (Texas A&M) is studying the
robustness of linear discriminants when the linearity assumption is
violated. To study robustness he has chosen a model for the class
conditional densities that is a mixture of normals. With this model he
computes the Bayes risk and compares it with the risk when a linear

discriminant is used.

The Bayes classification rule is based on the posterior probability
for each class in the scene. It is sometimes possible to determine these
posterior probabilities from the spectral values alone without knowing
the class prior probabilities. The general class of methods that
estimate the posteriors in this way are often called empirical Bayes
methods. Morris is considering empirical Bayes methods to derive the
label for a given pixel by considering the labels of surrounding pixels.

The idea is based on the notion of an affinity matrix and the Stein
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shrinkage estimator. The affinity matrix is used to smooth posterior
probability estimates based on neighboring pixels. These smoothed
estimates along with the original estimates are linearly combined to form
the Stein shrinkage estimate. Depending on the variances of the smoothed
and unsmoothed estimates, the Stein shrinkage estimator will tend to

"shrink®™ toward one estimate or other.

One way to inventory a scene is to first classify the objects in the
scene and then simply count the objects which have been classified to a
given class. The method, however, can give a biased estimate when
classification errors are committed. Given a small sample of ground
truth observations, one can regress an estimate based on this sample
against the classifier-derived estimate to obtain an unbiased estimate.
This kind of a regression estimator can have a better sampling efficiency
than does the estimator just based on the ground truth random sample.
When the regression is linear the sampling efficiency can be measured by
the correlation between the two estimates. Houston is studying
regression estimators of the general kind. He is also comparing this
regression estimator with the so-called calibration estimator, where the
order of the regression is reversed, the ratio estimator, and the
stratified estimator. This latter estimator is not a regression
estimator., Comparisons are being made among these estimators to
understand the situations where a given estimator is best. The ratio
estimator projects the classifier-derived value to a ground truth value
based on ratio of estimates of these quantities. The stratified
estimator uses the classifier to create two strata. A weighted sum of
stratum ground truth derived estimates is then used as the final

estimate,
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Along these lines, Gunst is investigating the errors-in-variables
model for relating classifier-derived estimates and ground observations.
This approach further assumes errors in the ground observations and
requires an additional parameter. This parameter takes the form of the
ratio of the variance of errors in the ground observations to the
variance of the classifier-derived estimates. The latter variance is due

to training sample variation.

3.0 Summary of Accomplishments

The MPRIA program project has been continuing for approximately 1-1/2
years. During that time each investigator has made substantial progress in
establishing a theoretical foundation for his work, Many of the investigators
have been or are now beginning to test their theories on remotely sensed data.
In a few cases computer programs have been developed which could be transported

to other researchers in the country interested in applying these ideas in

their studies.

We now summarize some of the specific accomplishments that have occurred in

the program,

3.1 Preprocessing
By using a set of control points which can be located in both the
image and on a map of the ground being imaged, it is possible by methods
of interpolation, to approximately rectify the image to the ground. The
control points, e.g., are used to determine the coefficients in the
polynomials, or splines, or whatever interpolation function is used.
This approach is an attempt to approximate the function that created the

mapping between ground and the image without explicitly modeling the
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3.2

imaging device (the sensor and the sensor platform). It is therefore
worthwhile to ask if significant improvement in rectification can be
achieved by an explicit model of this kind. This model would be a
parametric model that models as closely as possible the geometric and
physical processes that produced the imagery. Such a model is being
developed for the MSS and TM sensors used in the Landsat series by
Mikhail. This model is now to the point where it can be used to rectify
imagery using control points to estimate the parameters in the model. In
a preliminary study where two MSS images were rectified (one scene being
in Kansas and the other in Louisiana) the RMS error was about 68 meters
for the Kansas site and T2 meters for the Louisiana site, using 15
control points to estimate model parameters. The errors dropped slightly
(3 to 4 meters) when the number of control points was increased to 81 for
the Kansas site and to 70 for the Louisiana site. With 15 control
points, it was therefore possible to rectify the images to less that 1

pixel RMS error.

Digi sen

Many natural and cultural scenes contain a large number of objects
which when taken individually may be hard to recognize, but when
considered in groups they seem to have characteristic properties.
Texture appears to be this kind of a phenomenon. If one could segment a
scene by forming texture groupings, then it may be possible to focus on

just the parts of the scene that are of interest.

While the definition of texture is still controversial, it would seem
that it is, roughly, some kind of repetitive arrangement of elemental

shapes (primitives) over a given area. Since the arrangement seems to
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have a "random quality", it is perhaps natural to try to represent
texture by some kind of random process. This random process need not
reproduce each radiance value from the scene but rather lead to a model
which maps all the radiance values in some region to a few numbers which

can be used to discriminate texture types.

In MPRIA we are in the early formative stages of understanding
texture in remotely sensed images. Our first attempts have adapted some
concepts of a random process. Shanmugan, for example, trys to model
texture using a few primitive functions that occur randomly and are
weighted and added to form the random process. It is, however, not clear
from his model how one might select the set of primitive functions or if
the selection should depend upon the texture type being modeled.
Strahler's work may shed some light on the question. He has developed an
approach for estimating an optimal size for a resolution cell in a
texture which has a bearing on the selection of suitable primitive
functions, By knowing how this size varies in an image one could adjust
the size to optimize texture identification, Tobler's work with fractals
also suggests that a random process can lead to a model for texture, as
evidenced by the fact that such models produce very realistic simulations

of natural terrain.

Whereas texture is a property that relates to a collection of objects,
where the arrangement of the objects is the important characteristic,
shape 1s a property that relates to individual objects. In MPRIA we have
looked at certain fundamental questions related to shape. First of all,
Smith (SRI) has considered the problem of being able to recover a three

dimensional object from only shadow information in a two dimensional

22



image. While a lot can be learned just from observing the shadows, the
object cannot be totally reconstructed from just that data. Smith is
therefore considering using a model to predict the shape of the object in
hopes of being able to add "a priori® information in this reconstruction
process. Davis is also using models to determine certain shapes in an
image. In this approach, a contour (a two dimensional outline of an
object) is taken from one image and used as a model to find a similar
contour in another image. This is done by translating, rotating and
perhaps topologically distorting the contour until it matches with a
contour in the second image. The actual approach is called the

generalized Hough transform.

Many of the inferences one would like to make about the scene are
based on a statistical argument. The example in Section 1.0 where we
estimated average leaf area per species is one illustration. These kinds
of inferences often depend upon the probability densities of the classes
of interest in the scene. Representations of the scene in terms of these
class conditional densities are therefore useful. One way to derive this
kind of a representation is to obtain a sample of ground truth observa-
tions from each class in the scene and derive the class conditional
densities using these samples. The problem with this approach is that
the.ground truth sample is often not available. There are, fortunately,
some interesting theorems in statistics which suggest that one might be
able to derive the class conditional distributions without having the
ground sample. These theorems are known as the identifiability theorems
for mixture models. The applicability of these theorems has been tested
using remotely sensed data from agricultural sites and have been found in

many situations to be good approximations to reality.
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To apply a mixture model, one must knéw in advance the family of
densities that describes each of the class conditional densities. One
must also be able to estimate the number of component densities in the
mixture. With regard to the first problem, Scott has developed a
computer graphic approach that allows one to display density contours of
up to four variables. By looking at sample data it is often possible to
spot certain characteristics of the multivariate nature of these
densities. Often dominant directions in the variable space suggest that
certain projections or other transformations are warranted. This
programming has reached the stage where the computer software could be
available to other researchers interested in multivariate density
representations. Heydorn is addressing the problem of estimating the
number of components in the mixture for families of densities that appear
to typically represent some of the skewed nature of real class conditional
densities. He has been able to show that for several families of
univariate densities the number of components can be computed., The

extension to multivariate densities has as yet not been attempted.

3.3 Object Scene Inference
One of the more basic applications of remotely sensed data is to use
it to increase the precision of a given sample survey. An example is as

follows:

The objective is to estimate the number of aspen trees in a given
forest. From a random sample in which a survey team counts the
number of aspen trees growing in randomly selected tracts, one can
obtain an estimate within a certain precision. By using in addition

classifications of tree types over many more tracts, it is possible
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to derive an estimate of the same quantity using just the remotely
sensed data. The first estimator can be considered as unbiased, but
with large variance (low precision) since only a few tracts are used.
Of course by increasing the number of tracts used the precisipn would
increase, but this is generally an expensive option. The second
estimator has a small variance, since the number of tracts used is
large, but since the classifications are seldom error free, the
estimator is generally biased. By developing a regression using
these two estimators, it is possible to derive another estimator
which captures the unbiasedness of the first estimator and some of

the low variance properties of the second estimator.

While general problems of this type have been studied in statisties for
some time, there are still a number of unresolved theoretical questions
related to this remote sensing application. Houston is considering this
type of a regression problem along with other estimators; specifically,
the poststratified and the ratio estimators, in an attempt to understand
their behavior in terms of the classifier design and the probability
distribution structure of the remotely sensed data. By studying several
simulated cases he has found, for example, that when one compares the
regression estimator with the stratified estimator the former is
generally better (has lower variance) unless the underlying class
conditional probability distributions are highly overlapped (the classes
are difficult to discriminate from the remotely sensed data). One of the
goals of these studies is to develop a theory of classifier design which
will lead to highly efficient (low variance) area estimation models and

to develop estimation methods for the parameters in these models.
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4,0 Schedule of Events

The major technical meetings in the MPRIA program are the symposiums which
are held each June and the workshops., The first symposium was held June 1-3,
1983, at the NASA Johnson Space»Center, Houston, Texas. The proceedings from
that symposiumm have been published. In 1983, there were also two workshops
for the purpose of reviewing the program. One was held January 27-28, and was
devoted to the more mathematical and statistical investigations in the
program. The other was held February 3-4, and covered the pattern recognition
studies. This year, in preparation for the program renewal, the workshops
will be devoted to special topics which are intended to explore new possible
study areas that should be included in future work. One workshop on
multivariate spline models was held February 15-16, 1984, Another on computer
graphics is being planned for this spring or early summer. Other workshops

are also being planned.

5.0 Publications
The following is a list of publications resulting from MPRIA studies.

Journal Articles

R. F. Gunst, Toward a Balanced Assessment of Collinarity Diagnostics,

American Statistician, 38, (to appear, May 1984).

R. F. Gunst and R. L. Eubank, Regression Diagnostics and Approximate
Inference Procedures for Penalized Least Squares Estimators, submitted

to JASA.

M. Y. Lakshminarayan and R. F. Gunst, Estimation of Parameters in Linear
Structural Relationships: Sensitivity to the Choice of the Ratio of

Error Variances, Biometrika (to appear in 1984).
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M. Naraghi, Scene Segmentation Using Autoregressive Models, submitted to

IEEE Trans., Pattern Analysis and Machine Intelligence.

L. L. Schumaker, C. K. Chui and R. H. Wang, On Spaces of Piecewise
Polynomials with Boundary Conditions. II.Type-1 Triangulations, in
Second Edmonton Conference on Approximation Theory, Ditzian et al., eds.

CMS Vol. 3, AMS, Providence, 1984, 51-66.

L. L. Schumaker, C. K. Chui and R. H. Wang, On Spaces of Piecewise
Polynomials with Boundary Conditions, III,Type-2 Triangulations, in
Second Edmonton Conference on Approximation Theory, Ditzian et al., eds.

CMS Vol. 3, AMS, Providence, 1984, 67-80.

D. W. Scott, Frequency Poloygons: Theory and Application, submitted to

JASA.

K. S. Shanmugan, Influence of Sensor and Flight Parameters on the
Textural Properties of Radar Images, to be published in IEEE

Transactions on Geosciences and Remote Sensing.

W. B, Smith and M. W. Riggs, Akaike Information and Missing Multinormal

Data, submitted to Statistical and Probability Letters.

W. B, Smith and K., K. Moore, Distribution and Simulation of the Rank

Transform Method, submitted to Comm. in Stat. B.

P. Spector and H, J. Newton, Box's Correction for Toeplitz Error

Covariance Matrices, submitted for publication.

G. Terrell and D. W. Scott, Oversmooth Nonparametric Density Estimates,

submitted to JASA,

27



S osi S

M. A. Calabrese and R. E. Murphy, "Improving Our Understanding of the

Remote Sensing Process," with Presentation at the 1983 IGARSS Symposium.

L. S. Davis and A. Rosenfeld, Image Processing Using Hough Transforms,
Proc., of the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M

University, College Station, Texas, February 3-4, 1983.

L. Davis, Fu-pei Hu, V. Hwang, and L. Kitchen, Image Matching Using
Generalized Hough Transforms, Proc. of the NASA/MPRIA Symposium,

NASA/Johnson Space Center, Houston, Texas, June 1-3, 1983.

D. Dow, Progress in the Scene-to-Map Registration Task, Proc. of the
NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University, College

Station, Texas, February 3-4, 1983.

D. Dow, Progress in the Scene-to-Map Registration Investigation, Proc. of

NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3,

1983.

L. F. Guseman, Jr., and L, Schumaker, Spline Classification Methods, Proc.
of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas,

June 1-3, 1983.

D. Held, Reduction and Utilization of Speckle Noise in SAR Imagery, Proc.
of the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University,

College Station, Texas, February 3-4, 1983.

R. Heydorn, NASA Fundamental Research Program in MPRIA, Proc. of 15th

Symposium on Interface for Computer Sciences and Statisties, March 1983.
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R. Heydorn and R. Basu, Estimating Location Parameters in a Mixture Model,
Proc. of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston,

Texas, June 1-3, 1983.

T. H. Joo and D. N. Held, SAR Speckle Noise Reduction Using Wiener Filter,
Proc. of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston,

Texas, June 1-3, 1983.

Laveen N. Kanal, Subpixel Registration Accuracy and Modeling, Proc. of the
NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University, College

Station, Texas, February 3-4, 1983.

H. Kostal, "Localized Shrinkage Factors and Minimax Results," in
Proceedings of the NASA/MPRIA Workshop, L. Guseman, ed., Texas A&M

University (1983) pp. 109-114.

H. Kostal, "Empirical Bayes Methods for Time and Spatial Series,"
contributed paper to the ASA Annual Meeting; Toronto, Canada, August 15-

18, 1983.

David Lavine, Laveen Kanal, Carlos A. Berenstein, Analysis of Subpixel
Registration Accuracy, Proc. of the NASA/MPRIA Symposium, NASA/Johnson

Space Center, Houston, Texas, June 1-3, 1983.

E. M, Mikhail and Fidel D. Paderes, Jr., Aspects of Simulation for
Rectification Studies, Proc. of the NASA/MPRIA Workshop: Pattern
Recognition, Texas A&M University, College Station, Texas, February 3-4,

1983.
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E. M. Mikhail and Fidel C. Paderes, Jr., "Simulation Aspects in the Study
of Rectification of Satellite Scanner Data", Proc. of the NASA/MPRIA

Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3, 1983.

C. N. Morris, "A Minimax Approach to Spatial Estimation Using Affinity

Matrices," in Proceedings of the NASA/MPRIA Workshop, L. Guseman, ed.,
Texas A&M University (1983) pp. 101-108.

C. N. Morris and H. Kostal, "An Empirical Bayes Approach to Spatial

Analysis," in Proceedings of the NASA/MPRIA Symposium, L. Guseman, ed.,

Johnson Space Center, Houston, Texas (1983) pp. 143-165.

C. N. Morris, "Spatial Estimation from Remotely Sensed Data via Empirical

Bayes Models," invited paper to be presented at the Computer Science and

Atlanta, Georgia, March 14-16, 1984.

M. Naraghi, Autoregressive Models for Use in Scene Segmentation, Proc. of
the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June

1-3, 1983.

M. Naraghi, Random Field Models for Use in Scene Segmentation, Proc. of
the NASA/MPRIA Workshop: MATH/STAT, Texas A&M University, College

Station, Texas, January 27-28, 1983

H. J. Newton, Confidenee'Bands for Autoregressive Spectra, Am. Stat.

Assoc., National Meeting, Toronto, 1983.
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F., C, Paderes, Jr., for E. M, Mikhail, "Registration/Rectification of
Remotely Sensed Data," Program kickoff meeting for the Fundamental
Research Program in Mathematical Pattern Recognition and Image Analysis,

NASA Lunar Planetary Institute, Houston, Texas, August 10-11, 1982,

F. C. Paderes, Jr., and E. M, Mikhail, "Photogrammetric Aspects of
Satellite Imageries," Proceedings of The American Society of Photogrammetry

Fall convention, Salt Lake City, Utah, September 19-23, 1983.

F. C. Paderes, Jr., and E., M, Mikhail, "Rectification of Single and
Overlapping Frames of Satellite Scanner Data," Paper to be presented at
the XVth International Society for Photogrammetry and Remote Sensing

Congress at Rio de Janeiro, Brazil, June 11-29, 1984,

E. Parzen, FUN.STAT and Statistical Image Representations, Proc. of the
NASA/MPRIA Workshop: MATH/STAT, Texas A&M University, College Station,

Texas, January 27-28, 1983.

E. Parzen, Statistical Image Representations: Non-Gaussian Classification,
Proc. of the NASA/MPRIA Workshop: MATH/STAT, Texas A&M University,

College Station, Texas, January 27-28, 1983.

E. Parzen, Quantile Data Analysis of Image Data, Proc. of the NASA/MPRIA

Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3, 1983.

E. Parzen, Repeated Measures Analysis of Image Data, Proc. of the
NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3,

1983.
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C. Peters, Consistency and Other Large Sample Properties of Maximum
Likelihood Estimates of Mixture Parameters, Proc. of the NASA/MPRIA
Workshop on Density Estimation, Texas A&M University, College Station,

Texas, March 1982,

C. Peters and H. P, Decell, Jr., Co-variance Hypotheses of LANDSAT Data,
Proc. of the NASA/MPRIA Workshop, MATH/STAT, Texas A&M University,

College Station, Texas, January 1982.

C. Peters, Mixture Models for Dependent Observations, Proc. of the
NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3,

1983.

L. L. Schumaker, Second Edmonton Conference on Approximation Theory, On

space of piecewise polynomials with boundary conditions, June 1982,

L. L. Schumaker, SIAM Stanford, Special session on surfaces, July 1982,

Spaces of piecewise polynomials.

L. L. Schumaker, International Conference on Surface Fitting, Lake Garda,

Italy, June 1983. Five one-hour lectures.

L. L. Schumaker, Conference on Numerical Analysis, University of Dundee,

Scotland, June 1983. Computing the zeros of splines.

L. L. Schumaker, SIAM Computer Aided Design Conference, RPI, Troy, New

York, June 1983, Surface fitting.

L. L. Schumaker, Fitting of Histograms, Numerical Analysis Conference,

Texas Tech. University, Lubbock, Texas, September 1983,
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L. L. Schumaker, NASA SRAEC Meeting, Colorado State University, Fort

Collins, Colorado, January 9-11, 1984, Splines and applications.

D. W. Scott, Multivariable Density Estimation and Remote Sensing, Proc. of
the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June

1-3, 1983.

D. W. Scott and J. R. Thompson, Probability Estimation in Higher
Dimension, Proc. of 15th Symposium on Interface of Computer Science and

Statisties, March 1983.

D. W. Scott, "Review of Some Results in Bivariate Density Estimation."
Proc., of NASA Workshop on Density Estimation and Function Smoothing, pp.

165-194, March 1982.

D. W. Scott, "Optimal Meshes for Histrograms Using Variable-Width Bins,"

poster session, ASA Annual Meeting, Cincinnati, Ohio, August 16-19, 1982.

D. W. Scott, Average Shifted Histograms: Effective Nonparametric Estimation,

Rice Technical Report.

K. M. Shanmugan, Textural Edge Detection and Sensitivity Analysis, Proc.
of the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University,

College Station, Texas, February 3-U4, 1983.

K. M. Shanmugan, "A Frequency Domain Model for Markov Texture Fields,"
presented at the 1983 Systems, Man and Cybernetrics Conference, New Delhi,

India, December 27, 1983 - January T, 1984,

Grahame Smith, Approaches to Image Registration and Segmentation, Proc. of
the NASA/MPRIA Workshop: Pattern Recognition, Texas A&M University, College

Station, Texas, February 3-4, 1983.
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Grahame Smith, Shape from Shading: An Assessment, Proc. of the
NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas, June 1-3,

1983.

Grahame Smith, The Relationship Between Image Irradiance and Surface
Orientation, presented at the Computer Vision and Pattern Recognition

Conference, Washington, D.C., June 19-23, 1983,

W. B. Smith, Discrimination Relative to Measures of Non-Normality, Proc.
of the NASA/MPRIA Symposium, NASA/Johnson Space Center, Houston, Texas,

June 1-3, 1983.

A. H. Strahler, W. R. Tobler, and C. E. Woodcock, Improving Spatial
Modeling in Remote Sensing, Proc. of the NASA/MPRIA Workshop: Pattern
Recognition, Texas A&M University, College Station, Texas, February 3-4,

1983.

A. H. Strahler and C. E, Woodcock, Relating Spatial Patterns in Image Data
to Scene Characteristics, Proc. of the NASA/MPRIA Symposium, NASA/Johnson

Space Center, Houston, Texas, June 1-3, 1983.

J. R. Thompson and D. Scott, Nonparametric Probability Density Estimation
for Data Analysis in Several Dimensions, Proc. of 27th Conference on

Design of Experiments in Army Research Development and Testing, June 1983.

Miscellaneous Reports
R. S. Chhikara, and A, G. Houston, Estimation with Classifier as Auxiliary
Variable, NASA/Lockheed Technical Report (being revised for submission to

" technical journal).
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L. S. Davis, and L. Kitchen, Image matching using generalized Hough
transforms, F. Hu, V. Huang, University of Maryland, Center for

Automation Research, TR-27, October 1983.

D. Harwood, M. Subbarao, and L. S. Davis, Texture classification by local
rank correlation, University of Maryland, Computer Science, TR-1314,

August 1983.
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