4

il

@ https://ntrs.nasa.gov/search.jsp?R=19840023885 2020-03-20T21:11:23+00:00Z

NASA Contractor Report 165874

Fault Tolerant Software
Modules for SIFT

Myron Hecht and Herbert Hecht

SoHaR, Inc.
Los Angeles, California 90035

Contract NAS1-15428
July 1982

NNASNA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

NASA Contractor Report 165874

Fault Tolerant Software
Modules for SIFT

Myron Hecht and Herbert Hecht

SoHaR, Inc.
Los Angeles, California 90035

Contract NAS1-15428
July 1982

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

TABLE OF CONTENTS

1- INTRODUCT'ON.C.I...Q.lO.lll.'l.l!.l..ll.II.ll.lll'..l'...l'.lllll..l1

1.‘.

1.2.

1.3.

1.4.

2. ERROR
2.1,
2.2.
2.3,
2.4,

2.5.

Purposelcloollllli'..lllc.lIOOlIcolclconullolllolll.oll!olll.l]

Overview of Fault Tolerant Error Reporter and Global
Execu‘r've sofﬂare Q..ll.'ll..‘ll..lll.'.l..llIl....'l.-'..l..z

Organization of Repor+..3

ACknOW‘edgemeﬂ*s..cu------cov.-ac--o-.-o..--.ou--.---.o----co.4

REPORTER & e ¢ e v 0sssseeasssasssasnsttssssssaassssesssoansssssssasd
Error Reporter Acceptance Test Description.cscescecsessscscneed
Coverage of the Error Reporter Acceptance TeStTeecassansssssened
Alternate Error Reporfer......................................8
Implementation Requlremenfs...................................8

TOSflng aﬂd val'da*'on.-------.-------n---no---o---o.o-.----.l1

3. GLOBAL EXECUTIVEIOC.lIC'0l'.lll'l.!llll'.ll.Ol..‘llll.ll'..'.‘ll...'g

3.1,
3.2.
3.3,
3.4,

3.5.

Global Executive Acceptance Test DescriptioNeessecesesssnesesl9
Coverage of the Global Executive Acceptance TeStesesnrsansned2d
Alternate Global EXECUtIVEescsessassssoresssssssearsecsssessslb
implementaticn Requlremenfs..................................26

TeST'ng and ValIdaflon.-..--...-nn-...o-ocuoa----.o--.uu---..3°

APPENDIX A. Error Reporter Driver Routin@..cicssecvscssnsocnrsncoscnss 42

APPENDIX B. Global Executive Driver ROUTINESe.vassasancsassesnseanccesd9

APPENDIX C. Demonstration of Vallidation Procedures.....{..............63

REFERENCESO...'.I!.I.O.l.ll..lllll.l'QQ.ll.l..lll'lll.'lll.!..'ll..ll'l72

LIST OF FIGURES

Figure Title Page
2.1 Error Reporter Acceptance Test flow chart 5a o
2.2, Error Reporter Acceptance Test Pascal Listing 6
2.3. Alternate Error Reporter flow chart 9
2.4, Alternate Error Report Pascal Listing 10
2.5. Top Level tree for Error Reporter Fallures 13
2.6. Classes of Error Reporter Fallures 14
2.7. SIFT Conflgurations used for Fallure Validations 15
2.8, Incorrect Characterlzation of a Functional Processor 16
2.9. Final Development of Flg. 2.8. 17
3.1, Flow chart for PREGEXEC 20
3.2. Flow chart for GEXECTEST 21
3.3. Pascal LIsting for PREGEXEC and GEXECTEST 24
3.4, Flow chart for ALTGEXEC 27
3.5. Pascal |isting for ALTGEXEC 29
3.6. Top Level Fault Tree for Global Executive

Val idation 33
3.7, Classes of Global Executive Faults 34
3.8. Global Executive Detection Fallure 35
3.9. Expansion of Flg. 3.7. 36
3.10 Spurlious ldentification of a Functlional Prccessor 38
Al Organization of Program DRIVER 42a
C.1l. Error Reporter Valldation Output 64
C.2. Global Executive Valldation Output 69
c.3. Global Executlve (YALGEX) Yalidation Qutput ra

ii

LIST OF TABLES

TABLE TITLE PAGE

2,1 Faults for Which Vallidation Testing is Required 18
for the Error Reporter Acceptance Test and Alternate
Error Reporter '

3.1. validation Tests for Global Executlve Faulty 39
Processor Detection Fallure

3.2. Valldation Tests for Incorrect Retlrement Erors 41

of the Global Executive

iii

SECTION 1 = INTRODUCTION

This Is the Final Englineering Report prepared for SRI International under
Subcontract No. 14395 covering the Implementation of software fault tolerance
for critical modules of the SIFT operating software. The SIFT (Software
Implemented Fault Tolerance) Is an advanced computer concept developed by SRI
for the NASA Langley Research Center under Contract NAS1-15428 to support the
computational and reliabllity requirements of advanced fly-by-wire ftransport
alrcraft,

This report complles with the requlrements of Article 1V Item D of SRI
Subcontract No. 14395,

Although this project constituted only a minor part of the SIFT effort,
considerable advances In concepts and Implementation of software fault tolerance
were achleve under I+. These are summarized In the paragraphs Immedlately
following. Part 1.2 of the Introduction provides an overview of the specific
moduies for which fault tolerant designs were generated, the error reporter and
the global executlve., Part 1.3 describes the organization of the body of this
report, and Part 1.4 acknowledges the contribution of Individuals outside our
organization to this work.

1.1 ADVANCES IN SOFTWARE FAULT TOLERANCE IN THIS EFFORT

Because the software In the SIFT operating system Is essentlal for both
schedul Ing of application tasks and recovery from hardware fallures, special
efforts have been made to verlify thls software in a formal manner. In addition,
It Is being subjected to an extensive test program. Nevertheless, provision of
fault tolerance features was deemed desirable for selected portions of these
programs that have a key role In the recovery from failures, Note that this
software must perform In accordance with its speclification In the presence of
faults In one or more of the component computers of SIFT or In thelr
Interconnectlions,

The fault tolerance technique selected for this purpose Is that of the recovery
block [RAND75]. Specliflic Implementations of this technique to reai-time
appl Ications and the transport alrcraft environment had already been descrlbed
prior to the effort reported here [HECH76, AERO78]. The baslic structure for a
recovery block Is
Ensure T
By P
Else by Q
Else Error

where T Is an acceptance test condition, I. e. a conditlon which is expected to

be met by succesful execution of elther the primary routine P or the alternate
Q. The Internal control of the recovery block transfers to Q If the test

condition Is not met by executing P.

The effectiveness of the fault tolerance provisons depends on the coverage of
the acceptance test and the avoldance of correlated fallure mechanisms In P and
Q. Prlor work had dealt primarlly with software assoclated with a physical
process (e, g., attitude control), where the environment could be depended on to
furnlsh clues on the 'true! state of the process (e. g., by means of sensors
Independent of those that furnished the primary Input data),

The uses served by the fault tolerant modules for SIFT are of an Infrinsically
loglcal nature, dealling with the reporting of errors and the action to be taken
after positlive reports. For applications of this type, the environment does not
furnish Independent clues, and the 'truth! has to be teased out of the loglcal
process itself. Athough the routines to which fault tolerance was applled were
quite small, the work was therefore qulte challenging. The main contribution of
the effort reported here to the fleld of fault tolerant software Is the
evolution of a technique for formulating acceptance tests In loglc orlented
applications based on condltlons that are Inherently orthogonal to the loglc
Implemented by the primary routine. A very clear example of this technique Is
presented In the acceptance test for the error reporter In 2.2.

Further contrlibutlons will be found In the use of fault trees to lIdentify the
requirements for acceptance tests and to determine the completeness of the
coverage of these tests., Some |Imitations of the recovery block technlique were
encountered In constructing alternate routines that are truly Independent of the
primary ones (and also of the acceptance test) for appllications Iin which the
principal operations are additlon and subtraction (comparison}. In all cases It
was at least possible to change the order of operations and thereby to avolid
common sequence dependent fallures. Greater Independence might be achievable by
permitting alternate routines a larger scope (1. e., by letting one alternate
routine perform the computations carried out In several primary routines). This
concept seems worthy of exploration In future studles.

1.2. OVERVIEW OF THE FAULT TOLERANT ERROR REPORTER AND GLOBAL EXECUTIVE

SIFT achleves Its high rellability by use of multiple processors with an excess
of computing capacity. When a single processor falls, It Is configured out of
the system, a measure which ensures survival of the computer as a whole. Thus,
an Important function of the SIFT operating system Is the retiring of faulty
processors. A processor Is deflned as faulty If its output differs from those
of other processors for a glven task. The SIFT error reporter and global
executlve tasks collect Information on dlsagreeing processors, process It, and
designate processors for retirement to the reconfliguration task.

The error reporter analyzes error data collected by the voter to determine what
processors appear to be faulty and Indicates these In an error report. Because
a processor can not report ltself as faulty (even |f the voter data would tend
to Indict it), error reports from each processor may differ., The global
executlve reviews all error reports, and 1f two or more processors point to a
third as belng faulty, then the result Is transmitted to the reconfliguration

task.

The error reporter and global executive have been made fault tolerant by
applying the recovery block principle described In section 1.1. Both tasks have
an acceptance test and recovery block assoclated with them. Thus, there now
exlsts a primary error reporter and global executive as well as alterpates.
Very few changes were necessary to the primary routines In order to Implement
the recovery blocks, and, with the exception of the addltion of a single Integer
variable, no changes were made to the remainder of the system software.

As noted above, the error reporter acceptance test establishes that all
processors with an excessive number of disagreements with the voter output are
detected, and ensures that no properly functioning processors are designated as
faulty. The alternate error reporter operates Independently of the primary
routine, but produces an ldentical output., The acceptance test Involves
approximately twenty PASCAL statements, and the length of the alternate error
reporter Is approximately the same as the primary. Thus, nelther routine will
have a significant effect on the timing of the SIFT operating system,

The global executive acceptance test Is coded in two modules: the flrst, whlich
Is run before the primary routine, veriflies that all Input to the global
executive Is current, and the second, which Is run after the primary global
executive, checks for correct execution, |f errors are detected by elther
module of the acceptance test, the alternate global executive Is Invoked.

Executlon of each of these routines Is checked by the other. Thus, the global
executive checks on the execution of the error reporter acceptance test on each
processor by means of the frame count encoded in the error words. Similarly, an
output of the global executive which also has a frame count encoded within It Is
checked by the error reporter in the subsequent frame. Notlfication to the
system Is provided In the case of elther error.

In addition to verlfylng correct execution of thelr Immediately assoclated
primary routines, these acceptance tests can be expanded to give some Indication
of the functioning of the reconfiguration task. I[f a processor Indicated as not
working In the system status vector Is generating error reports, then obvlously,
1+ has not retired. Although dlagnosis of the dlscrepancy Is beyond the scope
of the tasks of the software developed here, an Indication Is made fo the system
that an off-normal conditlon exists, and approprliate action can be taken by the
operating system,

A major portlon of the coding effort went toward the valldation of the flve
Pascal procedures developed as part of the error reporter and global executlve
recovery blocks. Driver routines with approximately 8 to 10 times the amount of
code In these routines were deveioped In order to adequatély support the large
number of test cases which had to be run during validation.

1.3. ORGANIZATION OF THE REPORT

Sectlon 2 describes the fault tolerant error reporter. Included are a
description of the acceptance test, the error conditions which it covers, a
description of the alternate routine, Implementation requlrements for

integration of the fault tolerant error reporter Into the operating system, and
a descrlption of the software valldation. Section 3, which describes the fault
tolerant global executive, has a similar organization.

1.4 ACKNOWLEDGEMENTS

The authors wish to express thelr appreciation for the cooperation received In
this effort from personnel of SRI International and of the NASA Langley Research
Center. Mr. Jack Goldberg gave guldance and support throughout this work and
was partlicularly helpful In pointing out from time to time that there was a
forest when the effort seemed directed at indlividual trees, twigs or even
smaller manifestatlions of nature's bounty. Drs, Charles Weinstock and P.
Michael Mellar=-Smith helped with Information on the primary SIFT software, on
+he environment In which this operated, and on the Interfaces which had fo be
observed In the design of the fault tolerance provisions. To Mr. Billy L. Dove
and Mr. Nicholas D. Murray our thanks for the support of thls work and for
permitting us to participate In an Important area of fault tolerant computing.

The voter routine of each processor In SIFT malntains Its own record of the
number of disagreements from the majority of all other processors. The SIFT
error reporter marks processors as belng faulty based on the dlsagreement count
generated by the voter. The error reporter acceptance test compares the number
of recorded processor dlsagreements with the output of the error reporter, and
1f processors are Incorrectly characterized as working or falled, It Invokes the
alternate routline.

2.1. ERROR REPORTER ACCEPTANCE TEST

The SIFT voter routine marks Indlvidual processor dlsagreements from the
majority In an array deslgnated as errors. The error reporter sets a bit In a
word called err for each processor with an excessive number of disagreements as
reported In grrors. Blts 0 through 7 In err represent the correspondingly
numbered processors. The acceptance test checks that te error reporter was
Invoked In the prevlious subframe, and calls the alternate error reporter upon
detectlion of a discrepancy between err and errors.

Flgure 2.1 Is a flow chart of the proposed error reporter acceptance test, and
figure 2.2 Is a Pascal |Isting of the procedure which has been developed and
tested. The test counts the number of non-disagreelng processors in a counter
deslgnated as right and outvoted processors In a counter deslignated as wrong.
I+ then checks the number of dlsagreements and the operational status of every
processor designated as faulty. A Boolean variable to Invoke the alternate
error reporter Is set to TRUE If a working processor marked as faulty has fewer
than the threshold number of dlsagreements., The flnal segment adds rlght and
wrong; |f this sum does not equal the total number of processors, the acceptance
test will invoke the alternate error reporter.

If the error reporter acceptance test does not detect any fallures, It writes
the frame count In the 8 most signiflcant bits of err. When the global
executlve acceptance test checks these bits for the frame count, [t will verlfy
that the error reporter acceptance test has been executed In the current frame,
and that consequently, err reports are current, |f a dliscrepancy between the
current frame and that encoded In the 8 most signlficant bits of errc from a
particular processor s encountered, the global executlve sets a corresponding
bit In an Integer variable called mismatch along with the frame count in the 8

most significant bits. The error reporter acceptance test will then Increment
errors In the appropriate position In the subsequent frame. Thus, fallure to
execute the error reporter In the current frame will Increase the |lkellhood
that the processor will be retired by the alternate error reporter.

2.2, COVERAGE OF THE ERROR REPORTER ACCEPTANCE TEST

The error reporter acceptance test detects the following faults:

Figure 2.1.

00 for all

processors

bit set = |

is

errars(i)

<{threshold
?

Increment
errors[i]

incresent
"right®
counter

increment

"wrong”

counter

srrore(f)<
threshold

PAIMARY FATLURE
—ggt "fail”
flag.

Bl

wrong + right

yes

PRIMARY FAILURE
| —sas. . fail”
flag

ia
foil fleg sat
?

e

yos

INVOKE ALTERNATE
ERROR REPORTER

atop

5a

Flow chart of Error Repcrter Acceptance Test

21800
21900
22000
22100
22200
22300
22400
22500
22600
22650
22700
22750
22775
22800
22900
23000
23100
23200
23300
23400
23430
23460
23490
23495
23500
23600
23700
23800
23900
24000
24100
24200
24300
24400
24500
24600
24700
24800
24900
25000
25100
25900

PROCEDURE ACCEPTANCE_TEST;
(*error reporter acceptance test*)

VAR

begin

end;

EXCOUNT , WRONG, RIGHT,DIVISOR, CHECK, | , J,MISM: INTEGER;
FAILFLG:BOOLEAN;

excount:= mlsmatch dlv 256;
(*check executlon count of global exec*)
1f (framecount mod 256)<>{excount - 1) then erfalls:=true;
(*erfalls Is a global varlable which notifles
the system that the global exec has not run*)
mism:=mismatch div 256;
wrong:=0;
fallfig:=tfalse;
right:=0;
divisor:=1;
for J:=0 to maxprocessors do (*check for omission errors*)
beglin
mism:=mlsm dlv divisor
(*processor has 1 strike against It If
error reporter didn't run In prev. frame¥*)
If odd (mism) then errors[J] :=errors[J] +1;
i+ (errors[jJ<threshcld) and (working[J])
then right:=right+l;
(*count for omlssions test#)
check:=err dlv dlvisor;
(*shift err appropriate
no. of places to the right¥*)
1f odd(check) then begin
wrong:=wrong+1; (*count for omisslons test®)
if (errors[J]<threshold) and (working[jJ)
then fallflg:=true (*check for false positives#*)
end;
divisor:=divisor*2;
end;
If wrong+right<>maxprocessors +1 then fallflg:=true;
(*omlssions test¥*)
If fallflg then alt_error_reporter
else err:=err + 256 * (framecount mod 256);

Figure 2.2. Pascal |isting of Error Reporter Acceptance Test

(1) fallure to Invoke the error reporter during each frame

(2) tallure to report processors with an excesslve number of
dlsagreements as faulty to the global executive, and

(3) designation of a properly functionlng processor as faulty

The valldity of the Input to the test (e.g. framecount, working, and errors) Is
not checked, and 1t Is possible that errors In these variables could be
propagated Into err. However, to a certain extent, these failures are covered
by other processor error reports In the global executive.

The primary consideration In the design of this acceptance test was that the
veriflcation and fallure detection be performed In a manner independent of the
primary error reporter., the foliowing subsections describe the means by which
the errors |isted above are detected.

2.2.1, Fallure to Execute During Each Frame

As noted above, the global executlve acceptance test checks the frame count mod
256 encoded In the front part of each error report. Consequences of the
fallure to execute the error reporter on a glven processor are |Imlted; a
consistent pattern of fallures will be detected by means of the error reports of
other processors. Discrepancies will ultimately lead to the retiring of
processors which do not execute the error reporter. The present acceptance test
Implementation calis for the retirement of the processor I|f any other
discrepancy from the system (1.e., voter) output occurs.

Just as the global executive checks execution of the error reporter, the
converse also occurs. [f the frame count encoded In the front eight bits of
mismatch minus the frame count mod 256 Is not equal to 1, then the global
executlve acceptance test has not been executed In the previous frame, and the
system |s notifed. Fallure to execute the global executive may result In more
serious consequences than fallure to execute the error reporter, and the "one
count agalnst you" strategy described in the previous paragraph Is not
appropriate.

2.2.2. Fallure to Report Processors with an Excesslive Number of

Disagreements to the Global Executive.
In order to achleve Independence from the primary error reporter algorithm, the
acceptance test checks for this failure Indirectly by testing for the following
condltlons:

(a) the total number of processors reported as faulty Is correct, and

(b) all processors designated as faulty have greater than the threshoid
number of disagreements

In this acceptance test, the number of processors with less than the threshold
number of dlsagreements Is counted In a varlable deslgnated as rlght, and the
number having excess dlsagreements are counted on a second counter |abeld wrong.
1f the sum of wrong and rlght Is equal to the total number of processors, then
the error reporter can be shown to have performed correctly when the third part
of the acceptance test, described In the following sectlon, has not detected any
fallures. Thls acceptance test Is a particularly clear example of usling
algorithms which are orthogonal to the primary routine,

2.2.,3, Deslgnated a Properly Functlonlng Processor as Faulty

The flinal part of the acceptance test Is to ensure that all processors
designated as malfunctioning have at |east the threshold number of
disagreements, Thls determination |Is made by checking the number of
disagreements of these processors, |f any values of the array are below the
threshold for workling processors marked as faulty, then the primary error
reporter has falled, and the alternate Is Invoked.

2.3, ALTERNATE ERROR REPORTER

Independence in the structure and operation from the primary error reporter was
a chlief obJective In the alternate routine design. In addition, Its output had
to be compatible with the global executlve,

These requirements resulted In a routine which Is essentlally the Inverse of the
primary error reporfer, An alternate error word, deslgnated as grra, lIs
Initlally set ot all 1's; the alternate error reporter sets grra bits to 0 If
the number of dlsagreements [n the approprlate element of the errors array Is
less than the threshold., If there are more blts In arra than there are
processors (e,g. If there are slix processors and elght bits In arral), the
leadlng bits are set to 0., Flnally, the primary error word, err, Is set equal
to erra, locaded with frame count Information, and placed in the pre-broadcast
buffer. The complementary nature of this routine Is malntalned In the order of
setting the error word bits -- the processors are checked In ascending order
rather than the descending order used In the primary error report.Flgure 2.4.1s
a Pascal lIsting of the alternate error report,

2.4, IMPLEMENTATION REQUIREMENTS

As noted previocusly, the acceptance test and the alternate error reporTer are
short and relatively slmple procedures which were wrltten to be compatibie with
the SIFT operating system, Addltlonal local variables are requlred as shcwn In
the lIstings for the error reporter acceptance test and alternate routine. In
addltion, some modlflcatlions to the primary error reporter are necessary to
enable It to transmit processor states to the global execut]ve and execution
Information to the acceptance test. No changes In the broadcasting protocol are
requlired,

get erra bits
to all 1's

¢

D0 for atl
processors [in
ascending order)

Set appropriate
bit in erra ta
Q.

arrora{j]
<threshold
?

done?

sat leading bits
of erra to 0.

Figure 2.3, Flow chart of Alternate Error Reporter

19100
19200
19300
19400
19500
19600
19700
19800
19900
20000
20300
20400
20500
20600
20700
20800
20900
21000
21100
21300
21400
21600
*

PROCEDURE ALT_ERROR_REPORTER;
(*thils Is the alterate error reporter#)

CONST

VAR

ALLONES=3778B;

ERRA: INTEGER;

1,K: INTEGER;

begin

end;

erra:=al lones;

k:=1;

(*alternate error word#)

for 1:=0 to maxprocessors do

end;

begin

If (errors(i]J<threshold) and (working[1])
then erra:=erra-k;

k:=k*2;

erra:=erra - (allones = k + 1); (*remove leading bltsk)
err:=erra + 256%sfcount;
prebroadcast(errerr,err);

Figure 2.4.

Pascal

listing of alternate error reporter

10

2.5. ERROR REPORTER RECOVERY BLOCK VALIDATION

The major objective of the testing performed on the error reporter recovery
block was to provide a comprehensive set of cases which would demonstrate
satisfactory performance when the error reporter was functloning properly and
when It had falled. Flgure2.5shows the top level fault tree that was used to
deflne this set. The recovery block falls If the primary error reporter fails
without detection by the acceptance test, or I1f the alternate falls after being
Invoked by the error reporter acceptance test. Fallure due to an undetected
primary routine fault will occur when both the primary routine falls and the
acceptance test does not detect It. The same potential fallures affect the
acceptance test and the alternate routine and thus, they were both valldated
simulataneously.

Figure 2.6 continues the development. There are two major classes of errors:
fallure to Identlify a processor with excess disagreements, and reporting a
processor with less than two disagreements in the error report, Under the first
class of errors, one, two, or three processors could remaln unidentifled.
Further expansion of the tree shows that fallure to Identify two outvoted
processors |s caused by fallure to Identify the flrst process and fallure to
ldentify the second., Simlilarly, fallure to Identify three processors having
excess dlsagreements can be broken down Into fallure to Identify the flrst
processor and fallure to Identify the second and fallure to Identify the third.

Figure 2.7 continues this development. Any of the slix processors could be
identified as the flrst fallure. Once the validation has establIshed that the
error reporter acceptance test and alternate can correctly Identify the flrst
error comm!t+ted by the primary routine (i,e. fallure to Identify one processor
with an excess number of disagreements), valldation for the condition of two
outvoted processors can be performed by holding fixed +the first processor with
excess dlsagreeements and only varylng the second. Thus, processor 0 Is
assigned the first error, and processors 1 through flve are each, In turn, glven
an excess number of disagreements In the errors array. Similar loglc applies to
the third and fourth processors with excess disagreements.

Figure 2.8 Is a further development of the fault tree which summarlzes the
pattern in which the processors are tested. Transfer 1011 shows that all six
processors are tested for the case In which the primary error reporter falls to
detect one processor with excess disagreements. Transfer 1012 shows that wher
two disagree excesslvely, the primary error reporter Is always assumed to have
dectected an excess dlsagreement conditlon In processor 0, and that the
acceptance test and alternate are tested with the second error In processors 1
through 5. For fallure of the primary error reporter to detect a third
excesslvely disagreeing processor, transfer 1013 shows that processors 0 and 1
are assumed to be the first two, and the third occurs In processor 2, 3, 4, or
5. Flinally, for four errors, processors 0, 1, and 2 are assumed to have excess
disagreements, and the final error varles between processors 3, 4, and 5.

The fault tree for the second class of errors, spurious Iidentification of
correctly functionlining processors as having excessive dlsagreements Is shown In
flgures 2.8 and 2.9. Incorrect identification of a processor as malfunctioning
can occur when there are either no disagreements or a single disagreement.

11

Incorrect characterization of the processor can also occur when there are one,
two, or three other processors which actually have excesslively disagreed with
the voter output. As prevlously, not all processors need to be considered. The
testing scheme In thls case Is to ensure that the error reporter acceptance test
can detect a false fallure of each processor when any other processor has
falled, Table 2.1 Is a |lst of the valldatlon tests required to verlify the
correctness of the error reporter acceptance test and alternate executive based
on the fault trees described here,

Complete test required simulation of a major portion of the SIFT operating
system. The simulation program, called DRIVER, prepares the errors and worklng
arrays of the voter and err word of the error reporter based on external Inputs,
It next Invokes the acceptance test, outputs results, and invokes the alternate
1f an error Is detected. Appendix A shows a complete |Isting of the program.

12

P

w7

AV

JuNTivd
4103130 10N $300
1531 30NV.1d3J0V

031nJ3X3 10N S|
Y3LHOdIY HONY3

S71v4
Y31HO4IY HOW3
3AVNYALTY

seJnj|ed Jejsodey JoJI3 Joj @8I} |eAe| dO] g7 oJnb(4

7

STivd
Y31¥0d43Y HOYY3
AYYH 1 ¥d

C

17InY4 ¥318043Y
HOUY3 AYVH INd
103130 01 STivd

Vi

'Svd
Y31U0d3Y HOWY3

13

seun||e4 JojJsodey JoJJ3 4O SISSR|Q *9°C eanby 4

€ oy @ ,ﬂawx
03141 1N30! 031314N30} 03141 1N301 a3t 11N301 031 411N30 03141 1NN 03141 14301
LON H0§53008d 10N ¥0S$3004d 10N HOSSTO0U 10N 40SS3008d oM Smmuoo& 10N HOSS300%d LoN Y0SS3004d
ONIFIVIVSIO HLY ONIIYIVSIO | ON133HVSIC OuE BNI3IHOVSIO ONZ IN13OVSIC | INIIIHIVSIQ ONZ ONI33UOVSIa 1
, I |
=
—

N B 1 .
. N30
Q31311IN3CI LON 03141 IN3a1 03141 18301 quwn_mmooi
SH0SS3008d 10N SHOSS3008d 10N SHOSSI00Nd O o0t
ONIITYWSIO ¥ ONITRIVSIO € INIIRIIVSIQ 2 VS
[.

| = =)

ONIIFYIVSHa
SY 031311N301 Q3131 1N3a8
SHOSS300ud 10N SHOSS3008d
TNO)LONNS N1 ITHIVS IO

[]

¢

3uUNT1V4 NO1103130 =
YILYOIIY YOI ||\€
ILVNYILTV HO

1534 30NVL4300V

SUO|4BP| IRA BUN[]R) UO[4D048p JO} posn suojjeunbijuod 41§

ALINYY € ¥OSS3O0Ud

ALINYY ¥ ¥0SS3004d

ALINYS € YOSSII0Ud

udOu HVINGVL

ALINV4 S YHOSS3IO0Yd

ALTINVS & ¥0SS3ID0Ud

ALINY4 ¥ HOSS3I0¥d

ALINY4 ¥ HOSS300dd

ALINY4 € HOSS300¥d

ALTINV4 € YOSS300Yud

ALINYS Z ¥OSSIO0¥d

ALINY4 Z ¥0SS300Yd

#40n ¥YINBYL

ALINVS | YOSS3J0¥d

w¥Ou ¥YINAVL

lvﬂo\\

*(°Z 9unb|4

ALTINYd ¢ ¥0SSI008d

ALTINVY v YOSS3J04d

ALINVS € ¥0SS3004d

ALINYS Z YOSS3IO0Yd

ALTINVY | ¥OSS330ud

ALNYd4 0 ¥YOSSIO0Yd

w¥0u ¥YINgYL

15

Peljed se JOSS800.Ud |RUO|IOUN] B 4O UO[{RZ|JedRIRY) $98.1400U|

WV

&

v

SINIHIIBIVS IO
§533x3 SWH
HOSS3000d QuE

SN
~33YOVS 10 $S30x3
SVH Y3HIO | N3HM

a3IF0ANIQE AUDTY
=HOONI HOSS3008d

SINIWIFUIVS IO
$530x3 SVH
HOSS300ud OHZ

SINM
-3349VEIQ SS30X3
SYH Y3HIO | N3HM
031411N301 A1103Y
~HOON) HOSS 3004d

J

5

ALWWS v

SUIHIO € NIHM
314118301 AVLOFY
-HOON| HOSS3008d

_

)

WV

*g*Z eunbi4

o

ALWVS 3wV
SY3IHIO T N3HM
03131 IN301 AUOY
~HOON | H0S5S3008d

AWnv3

S UMLIO | N
Q3141IN301 AN
=~YOON! HOSS 3008d

ALMYd v
SYIHIO ON N3HM
03141 IN3AI AVIO3Y
-HOON| MOSS300ud

ﬂs

a3yl
SY Q31 411N301 %

TYNOI LONNS

16

4&— TABULAR "OR"

PROCESSOR 0
HAS EXCESS
D1 SAGREEMENTS

PROCESSOR 1
HAS EXCESS
D1SAGREEMENTS

PROCESSOR 2
HAS EXCESS
DISAGREEMENTS

PROCESSOR 3
HAS EXCESS
D1 SAGREEMENTS

PROCESSOR 4
HAS EXCESS
D ISAGREEMENTS

PROCESSOR 5
HAS EXCESS

DISAGREEMENTS

Figure 2.9, Final Development of Figure 2.8

17

TABLE 2.1.

FAULTS FOR WHICH VALIDATION TESTING IS REQUIRED

FOR THE ERROR REPORTER ACCEPTANCE TEST AND ALTERNATE ERROR REPORTER

Fault Tree
Designation

Descrlption

1011

1012

1013

1014

1110A

11108
1110C
1110D

111

Fallure to detect primary error reporter's not
Identifying a single processor as having excess
disagreements

Fallure to detect primary error reporter's not
ldentifylng a second processor as having excess
dlsagreements glven that the flrst has been Identl-
fled

Faliure to detect primary error reporter's not
Identifying a third processor as having excess
disagreements given that the first two have been
Identifled

Fallure to detect primary error reporter's not
Identlfying a fourth processor as having excess
dlsagreements glven that the first two have been
ldentifled.

Fallure to detect primary error reporter's false
identification of a functional processor as having
excess disagreements glven that no other processor
has falled,

As 1110A, glven that 1 other processor failed.

As 1110A, glven that 2 other processors falled.

As 1110A, given that 3 other processors falled.
Fallure to detect primary error reporter's false
Identification of a functional processor as having

excess dlsagreements given that one other processor
has falled.

18

SECTION 3: GLOBAL EXECUTIVE

This sectlon describes the acceptance test and alternate routine for the SIFT
global executive. The acceptance test Is coded in two modules: the first,
which Is run before the primary routine, verifies that all Input to the global
executive Is current, and the second, which Is run after the primary global
executive, checks for correct execution, |f execution errors are detected by
elther module of the acceptance test, the alternate global executive Is Invoked.

3.1, GLOBAL EXECUTIVE ACCEPTANCE TEST

The August, 1980 verslion of the SIFT operating system has the error reports for
the actlve processors contalned In the array prevotelerrerr,*] where errerr Is a
constant set to 1. The error reports themselves are contalned within the 8
least slignificant blts of each 16-bit element of prevote, and the frame count Is
encoded In the 8 most signlficant bits by means of the error reporter acceptance
test, The global executive reads successive blts of each prevote element by
shifting the word to the right. Because of this destructive read, It Is
necessary to reproduce the error report Information prlor to execution of the
primary routine. This task Is performed by the first module of the global
executive acceptance test designated PREGEXEC. PREGEXEC also checks on the
frame count which has been encoded by the error reporter acceptance test. After
execution of the primary global executive, the second module of the global
executlve acceptance test, called GEXECTEST, Is executed. GEXECTEST checks each
position of each word In an order orthogonal to the primary giobal executive.
1+ then compares this result with the approprliate bit In RECONF, the retirement
word generated by the primary routine, |f there Is a discrepancy, the alternate
global executive, ALTGEXEC, Is called. ALTGEXEC Is described In section 3,

Figures 3.1 and 3.2 are flow charts of the two modules of the global executive
acceptance tests,and fligure 3.3 contains the corresponding Iistings. The flrst
moduie of the acceptance test, PREGEXEC, checks the framecount contained in the
most signiflicant 8 bits of each error report which have been written by the
error reporter acceptance test, and then recoples the least significant half of
the word Into the most signiflcant position in order to preserve them for the
second module of the global executive acceptance test.

Those error words containing frame counts different from that of the system are
set to zero as a means of masking them from the global executive, and a fallure
counter for the processor error report Is Incremented. The subsequent executlion
of the error reporter on other processors wlll count this Indlicator as a
disagreement when writing thelir reports, an action which will result In
retirement of this processor If at least one other dlscrepancy Is detected.

Once the primary global executive has been run, the second module of the
acceptance test checks the correctness of Its executlion, and Invokes the
al ternate routine upon detection of an error. A major consideration In the
design of the acceptance test was that i+ be Independent of the primary routine.
Thus, whereas the primary checks each positlon of an error report before moving
on to the next, the acceptance test checks a glven position of all error reports

19

START

DO FOR EACH
ERROR REPORT

READ FRAME COUNT
ENCODED IN MOST
SIG. BITS OF
ERROR REPORT

DOES
IT EQUAL
CURRENT

REPRODUCE ERROR SET APPROPRIATE
REPORT FOR BIT IN mismatch
ACCEP. TEST WORD

ZERO OUT ERROR
REPORT

O /
LOOP DONE?

YES

STOP

Figure 3.1. Flow chart for PREGEXEC
20

DO FOR EACH POSI+
TION OF ALL
ERROR REPORTS

DO FOR EACH
“"|ERROR REPORT

POSITION (1/0)

ADD THIS
TO TOTAL. ’

NOTIFY SYSTEM

LOOP DONE?

A [

Figure 3.2. Flow chart of Global Executive Acceptance Test

21

SET FAIL FLAG

NO

SET FAIL FLAG

LOOP DONE?

YES

NORAML RETURN

CALL ALTERNATE
GLOBAL EXECUTIVE

]

Figure 3.2 (continued). Flow chart of Global Executlve Acceptance Test

22

pefore moving up to the next sition. A second dilfference between the primar
% oba execuglvg and the acceggance test Is the lack of an intermediate grray y

i.e. procs) for the storage of excess disagreements. Thus, once the number of
discrepancies In a gliven position has been counted, 1+ Is Immedlately compared
with the corresponding value In the reconfiguration word RECONF. If a
discrepancy Is detected, a flag Is set that will resul? In the Invocation of the
alternate routine.

If a processor Indlcated as retired In the working array Is Indicated as having
excess dlsagreements In the Input processor error reports, then one of three
conditions exists (1) a processor marked for retirement is still a functlioning
part of the system, (2) an error exists which affects the state of the workling
array, or (3) the error report(s) Input to the global executlve are not valld.
Although the global executive can detect this discrepancy I+ cannot by Itself
Isolate which of these three condltlons caused the anomaly. As a result, the
global executive acceptance test and alternate loglc note the discrepancy to the
system, but disregard the error reports In preparation of the reconf word.

3.2. COVERAGE OF THE GLOBAL EXECUTIVE ACCEPTANCE TEST

The global executive acceptance test described above detects the following
faults:

(1) fallure to Invoke the error reporter acceptance test

(2) fallure to retlire processors reported by at least two other processors
as having an excess number of disagreements with the voter result, and

(3) marking for retirement processors which do not have an excess number
of dlsagreements

Detectlon of the flrst fault occurs In the first module of the global executive
acceptance test PREGEXEC. Two probable causes of the discrepancy are: (1)
Incorrect execution of the error reporter recovery block and (2) no Invocation
of the error reporter acceptance test. In elther case, Information reaching the
global executive Is suspect, and should be disregarded. |f the rest of the
system Is properly functioning, the only penalty for no retirement at thls point
would be the unnecessary overhead necessitated by the hlgher number of actlive
but not functlional processors. Because the dlscrepancy s a processor
dlsagreement from a majority vote, It should be counted in the total of the
error reports of the other processors. |f any other single disagreement occurs,
the processor would be retired at the end of the next frame.

GEXECTEST detects both the second and third faults |isted above. The number of
processor disagreements reglstered In each processor error report are counted;
retired or self-reporting processor dlsagreements are lignored. 1 the
corresponding position In the reconfiguration word Is zero when there are two or
more reports which have bits set, or the reconflguration word has a bit set when
fewer than two (l.e. one or zero) processors are reported In the error words,
+hen a boolean varlable fallflg Is set. The alternate global executive Is
Invoked 1f failflg Is TRUE.

23

05600
05700
05800
05900
06000
06100
06200
06300
06400
06500
06600
06640
06680
06690
06700
06800
06900
07000
07100
07150
07175
07200
07225
07237
07250
07300
07800
*

PROCEDURE PREGEXEC;
(*¥This procedure coples the least significant bits of the

error reporter word bits Into the most significant positions
after checking the frame number *)
VAR
excount: INTEGER;
ERR: INTEGER;
J,M: INTEGER;
begin
mlsmatch:=0; (*mIsmatch Is a global Integer
varlable used for marking
procs. not running ertask¥)
for J:=0 to maxprocessors do begln
excount:=prevote[errerr, J] dlv 256;
err:=prevotelerrerr, J] mod 256;
if excount=(framecount mod 256) then
prevotelerrerr, JJ:=257%err
(*copy least slg. blts to most sig. position
If frame count OK¥)
else mismatch:=mismatch + 1;
(*otherwise send word to error reporters in subsequent
frame¥*)
mismatch:=mlsmatch * 2;
end;
end;

Figure 3.3, Listing for Global Executive Acceptance test; PREGEXEC

2L

11000 PROCEDURE GEXECTEST;
11100 (*Global Executive Acceptance test®)

11200

11300 TYPE

11400 ZERO_ONE=0..1;

11500 VAR

11600 DIVISOR,CHECK, 1,J,SUM: INTEGER;

11700 FAILFLG:BOOLEAN;

11800 LAST_D1G:ZERO_ONE;

11900 beglin

12000 divisor:=1;

12100 fallflgs=false;

12200 for 1:=0 to maxprocessors do begln

12300 _ (*,..do for each position of report#®)
12340 (*This procedure Is written under the assumption that the primary
12380 global executive has rotated the error reports a total of 8
12420 positions. |f this Is not the case, additlional division by
12460 (8 - 1 - maxprocessors)*2 for each error report Is necessary ¥*)
12500 sum:=0;

12600 for J:=0 to maxprocessors do begin

12700 (*,..do for each error report*)
12800 last_dlg:=(prevotelerrerr, J] div divisor)
12900 mod 2;

13000 ‘ if (not working[J]) or (i=))

13100 then last_dlig:=0;

13130 if(not workingl1]) and (odd(last_dIg))
13160 then beglin

13190 recfall:=recfail+divisor;

13191 (*recfall Is a global integer
13192 showing a retired proc. working®)
13193 last_dIg:=0;

13196 end;

13200 . sum:=sum + last_dlg;

13300 end;

13400 check:=reconf dlv dlvisor;

13500 1f odd(check)

13550 then begin

13600 1f(sum<2)and(working[1]) then failflg:=true
13700 end

13800 eise [f sum>=2 then fallflg:=true;

13900 divisor:=diviscor*2;

14000 end;

14100 if fallfig then altgexec

14200 mismatch:=mlsmatch + 256*(framecount mod 256);

14250 (*Indlcate successful completion of acceptace test
14275 to error reporters of next frame ¥)

14300 end;

*

Figure 3.3 (continued). Listing of Global Executive Acceptance Test: GEXECTEST.

25

3.3. ALTERNATE GLOBAL EXECUTIVE

The alternate global executive, ALTGEXEC performs a function ldentical to the
primary routine, but In an Independent manner. The flow chart and listing for
this procedure are shown In figures 3.4 and 3.5. Input to the alternate routine
Is the same as that used by the acceptance test: I.e. the error reports
replicated by PREGEXEC. Unlike the primary routine, ALTGEXEC sums the totals of
+he dlsagreelng processors In descending order, and stores these totals In an
integer array., |If the totals In this array are less than two, then a zero Is
placed In the corresponding position of an alternate reconfliguration word,
reconfa. Otherwise, the position Is set to 1. A second difference between the
primary and alternate Is that the error words are not destructively read, and
can be saved by the system If desired. As a final step of execution, ALTGEXEC
sets the value of the primary reconflguration word to that of the alternate.
The primary reconfliguration word value can also be saved prior to execution of
this step.

3.4. |MPLEMENTATION REQUIREMENTS

Three new procedures: GEXECTEST, PREGEXEC, AND ALTGEXEC are requlired for the
operating system. PREGEXEC must be Invoked prior to the execution of the
primary global executlive (GEXECTASK), and GEXECTEST Is executed at its
completion. This latter routine will Invoke procedure ALTGEXEC, the alternate
global executive, If required. Although the routines are presently declared as
procedures, they may be changed to functions In order to be compatible with the
form of GEXECTASK.

An additional global integer varliable, called mismatch, Is required. Frame
count discepranclies detected In the PREGEXEC routine are recorded In a manner
simllar to processor error reports, l.e. by placing a "1" in the appropriate
position of the word. The error reporters of other processor will read mismatch
and Increment the error counter for the appropriate processor If PREGEXEC
reports a frame count dlsagreement.

A second global Integer varliabie designated as recfall Is used fo enable the
global executive to Indicate the unsuccessful retirement of a falled processor.
As Is the case with mismatch, the faulty processor s noted by a "1" in the
appropriate position. As noted previously, the global executive Is not capable
of determining whether the processor actually did not respond to the
reconflguration order for retirement or whether the "working" array Is Incorrect
and thus, no further action can be taken by the global executive.

Changes In the values of each element of the prevote [errerr,*] array will occur
due to the Implementation of the fault-tolerant error reporter and global
executlive. As noted previously, PREGEXEC requires the frame count be encoded In
the first half of the error report from each processor by the error reporter
recovery block. In addition, the least significant bits of the error reports
are repllicated In the most signiflicant positions by PREGEXEC. it Is not
anticlpated that these changes have any Impact on the rest of the SIFT
executlve,

26

ZERO COUNTING
ERROR COUNTING
ARRAY

CENDING ORDER

USE [NTEGER DIVID
OIVIDE TO TEST IF
BIT IN TH!S POSI-
TION SET TO 1§

LOOP DON&?

YES

Figure 3.4. Flow chart of the Alternate Giobal Executlve

27

DO FOR
EACH POSITION OF

SET THIS POSI-
TION OF reconf
TO 1

NO

~L0OP DONE?

Figure 3.4. (CONTINUED). Flow chart for ALTGEXEC.

28

08000
08100
08200
08250
08300
08400
08500
08550
08600
08700
08800
08900
09000
09100
09150
09200
09300
09400
09500
08550
09700
09800
09850
09900
10000
10100
10200
10300
10400
10500
10600
10800

PROCEDURE ALTGEXEC;
(*This |s the alternate global executlve¥*)

const
VAR

begln

end;

maxdiv=32;

RECONFA,DIVISOR,MULT, J,K,L,M: INTEGER;
ERCOUNT :PROCINT;
LAST : INTEGER;

for J:=0 to maxprocessors do ercount[j]:=0;
(*,,.Inltlal 1ze ercount*)
FOR J:= maxprocessors downto 0 do
1 working[J] then begin
(*,,.do for each error report¥)
divisor:=maxdlv;
for k:=maxprocessors downto 0 do begin
(*,..do for each posltion of report#)
If J=k then fast:=0
else last:=prevotelerrerr,j] dlv divisor;
1f odd(last) then ercounf[k£:=ercoun+[k]+l;
divisor:=divisor div 2;
end
end;
(*,..now wrlte reconfa*)

- reconfa :=0;

mult:=1;

for |1:=0 to maxprocessors do begln .
¥ ercount[1]>=2 then reconfa:=reconfatmult;
mult:=mult¥2;

end;

pre_broadcast(gexecreconf,reconfa)l;

Figure 3.5. Listing of Alternate Global Executive

29

3.5. VALIDATION

The critical nature of the global executive acceptance test and the alternate
global executlive necessitates a comprehensive set of vaiidation tests In order
+o demonstrate that the Incorporation of these routines into the SIFT executive
system do not negatively Impact the overal!l reliability.

An exhaustive set of tests would Involve testing each bit of each error report
for the appropriate response for every possible configuration of all other error
bits, the configuration of the working array, and the conflguration of the
reconf word. For six processors, there are a total of 281 trillion states of
these variables, a rather Intimidating number. However, +he need for
comprehenive testing remalns. Thus, a major portion of the testing effort was
devoted to the cholce of an appropriate subset of these varlables that would
conclusively demonstrate that the global executive recovery block does not
contaln errors.

A fault-tree methodology was used to reduce the number of tests to a manageable
number. The objective was to develop the trees to a sufficlent level such that
the primal events, l.e. those at the bottom of the tree, could be tested by a
reasonable number of cases. |f this testing showed that an Insufficlent number
of primal events exlisted to make the top event (Failure of the global executive)
true, then the valldation would be complete.

The highest level tree Is shown In figure 3.6. The top event, fallure of the
global executive recovery block, can be caused by elther (1) a fallure in the
primary global executive and fallure of the acceptance test to detect the
faliure or (2) the acceptance test Invoking the alternate routine and fallure of
the alternate routine. For the purpose of this analysls, fallure of the primary
routine is a glven, and thus, fallures of the acceptance test and the alternate
must be consldered. However, because fhese routines function together as one
unlt, they are tested together In the valldation procedure. Moreover, they both
perform the same operation, l.e. determining the number of valid Indicatlions to
discard a processor, and thus, are subject to the same types of faults. Hence,
subsequent levels of development of these fault +rees apply to both routines.

The next level of development shows the potential falled states of the
acceptance test and the alternate global executive, which, as noted above, are
the same. Two general classes of these possible fallures exlst: faiture to
identify a faulty processor (l.e. one where there are a sufficlent number of
agreeing error reports) In t+he reconf word, and failure to detect a "false
positive™ (l.e. the marking of a processor for retlirement without the required
number of agreelng error reports).

Figure 3.7 Is the tree for the first class of fallures: one, fwo or three faulty
processors remaining unidentified. Validation test 1010 will test the software
for each possible state of the error reports which would Indicate a single
processor as having falled. A large reduction In the number of states of the
error reporter words can be achleved by consideration of the criterlia for
retirement: In order for a processor Yo be retired, the error reports of two
other processors must Indicate 1+ had more than 2 dlisagreements from the majorivy
in the previous frame. Thus, If fhe recovery block can be shown to detect any
two working processors Indicating a third processor as having failed then It

30

will deslgnate this fallure if more than two processors so report.

As Is shown In flgure 3.8, fallure to Identify a single faulty processor may
occur when 0, 1, 2, or 3 processors have been retired by the reconfiguration
task. Considering all permutations of the SIFT configuration would lead to an
Impractical number of test cases, and the following logic describes the
reduction in the validation process: there Is only 1 SIFT configuration when
all processors are working, and six possible configurations If a slingle
processor Is retired. These configurations are tested with all permutations of
two processors Indicating a third as faulty. Once the valldations has establish
that the global executive can correctly Identify a failled processor with any
single processor configured out of the system, validations for two processors
conflgured out need only conslder cases where the first retirement Is held flixed
(at processor 0) and the second Is varied among the remaining 5. A similar line
of reasoning can be used to consider three retlred processors. Flgure 3.9 shows
the pattern of SIFT confliguratlons that are tested for the single faulty
processor case.

The next errors covered In this branch are the fallure to identify ftwo and three
processors as having falled. In principle an exhaustlve test should cover each
possibility of two or three processors having falled. However, as implled In
the fault tree, this can be broken into the fallure to detect the first faulty
processor, fallure to detect the second, and fallure to detect the third (If
applicable). The fallure to detect the first processor when no other processors
have falled has been covered In test 1010A, along with arguments which extend
the valldlty of this test to all states of working and reconf. Thls same
argument can be easlly extended fo cover the case of more than one processor
having falled.

Table 3.1 I1lustrates the validation tests required fto cover all fallure
possibilities under the tree 1000. The validation procedure calls for processor
0 to be deslignated as faulty by processors 1 and 2, and that processors 1 though
5 be tested in turn In a manner similar to the single processor failed
validation described above. An analagous |ine of reasoning can be used for the
validation of the third processor falled case: processors 0 and 2 designate
processor 1 as falled, processors 1 and 2 designate 0 as failed, and the third
processor can be designated from the remalning processors (2 through 5). Table
3.1 lists this procedure explicitly.

Figure 3.10 shows the development of the class of errors concerned wilth
designation of a functional processor as fauity. The possible failures
resulting In a spurious processor fallure Indication Include counting the error
report of a processor which Is not working as part of the total dlsagreement
count, counting a processor's vote on Itself, or the designation of a functional
processor on the basis of 1 or no other processor error reports. These fallures
will be tested in tests designated as 1100A, 11008, 1100C, and 1100D. A
reduction in the number of tests to be performed occurs by the fact that these
fallures will take place for any vatue of reconf. Also, because the global
executive acceptance test and alternate operate In the same statement sequence
regardless of the SIFT state (l.e. there Is no branching to dlfferent modules of
the code depending on the values of working, reconf, or the fallure of a
particular processor), the same tests apply to all values of working.

Table 3.2 shows the |I1st of validation tests and the range of workling, reconft,

31

and error reports. Tests 1100A and 1100B can be executed simultaneously with
test 1000A. Test 1100C Is executed by placing a single bit In all 36 possible
error reporter poslitions, setting the corresponding position In reconf, and
determining that both the acceptance test detects the error and the al ternate
routine functions correctly. Test 1100D is performed by setting each bit of
reconf to 1 with no bits set in the error reporfer words.

32

UO|4eP| IBA BA|4ND9X3 jBqolD Joj eed] jined |eae] do) *9°¢ eunbjd

kA

ELORINE
103130 1ON S300 S7Iv4 3A11003X3
1531 30NV.1d30QV IVE0T9 AYVWIYNd

@) %/ o

3u¥N7IV4 3A11ND3X3

Q3ind3X3 LON Si S71v4 3A11n03X3 IVE0T9 AUVWIYd
JAILLNO3AX3 VEOTO w019 3LVYNY3LTV . 103130 oL STIvd

N

g

—

|
' §71v4 3A11003X3
| w8019

33

-

_ﬁ Q21411N301
LON ¥0SS3008d
_ 3V qug

siined eA|4ndeX3 [eqol9 Jo sesse|)

\V,

1¢ eaunbyy

Wi

03141 IN30) a31411N3aH Q31411N301
LON H0SS3008d L1ON ¥0553004d 10N ¥0SS3008d 10N H0S53008d
031v4. ONZ 0371v4 ONZ g3V
1 N i
| I]
) ™) V
031 411N301 03141 IN301 031 411N3Q1
LON SHOSS300NJ LON S¥0$S3008d LON ¥0S$53008d
a3anvd ¢ a3Nvd 2 auvd |
l 1 J
@y
SV G31411N301 631 411N301
SH0SS 3008 LON SH0SS3008d
TVNOLLONNA HERILZ

TIvd 3LVNY3ILWY
1S31 IONVIJ3IOOV

34

Y

e4n| |84 UO|40848Q BAI4NOEXT |egolg *gg eunb)d

i

ONOR LON
BOS$3J08d G¥E

ON INHOM LON
HOS$S3008d ONZ

]

)

ON1NIOM LON
SYOSS 3008d
€ N3HM

031 41IN301 10K

i w

1ol

ONIXIOM LON

HOSSI0Yd ONZ

O RIOM
10N H0SS3008d
3NO N3HM
0313118301 LON

_

Y

rolbi > e300
JON SH0SS3008d 0 N
T NMHM
031414N30} 10N Q3131IN301 10N

@

ON 1 YHOM

SHOSS 3008d

TV NIHM
0314114304 10N

10N ¥OSS3008d

)

314118301

a3vd |

35

/¢ ounbB|4 jo uo|suedx]y °6°¢ eunb|4

ONINHOM LON
G Y0SS300Nd

ONIMYOM LON
¥ ¥0SS300ud

ONIMYOM LON
£ ¥0SS300ud

ON I MHOM LON
Z ¥0SS3004d

w40u HYINGYL

ONIRIOM LON
S Y¥0SS300¥d

ONIMHOM LON
¥ ¥0SS3J0ud

ON | NYOM LON
¢ ¥055300d

ON I RIOM LON
Z 40SS300Yd

INIMHYOM LON
I ¥0SS300ud

wd0u ¥V INGYL

ON1XIOM 10N
& ¥0SS3004d

ON1MIOM 1ON
¥ H0SS3004d

ONIXRIOM LON
£ ¥0SS3004d

ONIRIOM LON
Z ¥0SS3004d

INIORIOM LON
L ¥0SS3008d

ON1XIOM LON
0 ¥0SS3204d

wdOu HVINGYL

, 110!

36

(penujjuod) L°¢ ouanbB|4 jo uo|suedx3y °6°¢ euanb| 4

Q31411N3al LON
S ¥0553004d

31 41IN3Q1 LON
¢ Y0SS300dd

a3l 41LN3al LON
¥ ¥0SS3004d

Q31411N301 LON
¥ ¥0SS3004d

Q31411N3Q1 LON
¢ ¥0SS300Ud

Q31 411N301 1ON
¢ Y¥0SS3004d

Q31411N3a1 LON
Z ¥0SS3004d

a3131IN3A! LON
Z ¥0SS3304d

wdOu BYINGYL

Q3141LN301 1ON
1 Y0OSS300Yd

wyOu HYINGYL

0201,

37

JOSSE0044 |RUO|{DUNd B JO UO|4BD|j|juep| snojandg

8001

*0l*g eJnbi 4

SIN3IW3IZYOVSIa
J1VOIONI S1¥0d3d
HOHY3 ON N3HM
0341134 YOSS320ud

LY0d3Y ¥O¥y3 i
ATNO 30 SISvE NO
Q341134 ¥OSS300ud

_G3LNNGD ¥OSS3
~008d ONI5RIOM LON
40 1¥0d3Y HOWY3

140434 ¥OHY3
413S SINNOOD
0SS 3204d

v,

g311vd Sy @314
-1IN301 $0SS300ud
TVYNOI LONNS

B

38

Table 3.1. Valldation Tests for Global Executlve Faulty Processor Dectectlon

Fallure
TEST ERROR DESCR, worklng prevote reconf NOTE
1000A 1 FAILED PROC. 0,1,2,3 not 1 reported 0 retiring 1
UNDETECTED BY working (1st iIndlicated
PRIMARY by any 2 other
error reports)
1000B 2 FAILED PROC. 0 not working 2 reported 1 retiring 2
UNDETECTED BY {2nd Indicated (1st In any
PRIMARY by any 2 other position of
error reports) reconf)
1000C 3 FAILED PROC. 0 not working 3 reported 2 retiring 3
UNDETECTED BY (3rd Indicated (2nd In any
PR IMARY by any 2 other position of

error reports) reconf)
NOTES:

1. Fallure of the primary global executive for this condition Is manlfested by
both the following conditions: (1) one processor Is Identlfled as having excess
disagreements by the Indlvidual error reports, and (2) the primary global
executive did not mark this processor for retirement In the reconf word. This
val Idation test Is performed with 0,1,2,3 processors not working Iin order to
determine whether the acceptance test and alternate are capable of detecting a
single (or the flirst In the case of multiple) processor fallure glven any SIFT
state. 1f any more than three processors are not working, the entire computer
falls.

2. Fallure of the primary global executlve for this conditlon Is manifestedby
the following conditlions: (1) two processors are ldentifled as having excess
dlsagreements by the error reports, (2) the primary global executive marked the
first processor for retirement In reconf, and (3) the primary global executive
did not mark the second processor for retirement. Valldation testing for
detection of the first processor glven any confliguration of working with 0, 1,
or 2 processors out and no processors marked for retirement has already been
performed In 1CO0A.Thus, this valldation need only establ Ish that the acceptance
test can detect a second processor as having falled when the primary has

marked only a single processor for retirement In reconf.

3, Fallure of the primary global executlve for this condition Is manfested by
the following conditions: (1) three processors are ldentified as havlng excess
disagreements by the error reports, (2) the primary global executlve marked the
first two processors for retirement in reconf, and (3) the primary global
executive did not mark the third processor for retirement. Valldation testing
for detection of the first processor glven any conflguration of working with O,
1, or 2 processors out and no processors marked for retlrement has already been
performed I1n1000A. Valldation of the ablllty of the acceptance test to detect
the second processor fallure has been performed In1000B.Thus, this vallidation
need only establish that the acceptance test can detect a third processor as

39

having falled when the primary has . marked only two processors for
retirement In reconf.

40

Table 3.2.

TEST
1100A

11008

1100C

11000

Global Executlive

ERROR DESCR. working
PROC, RETIRED
ON BASIS OF

SELF DIAGNOSIS

0,1,2,3 not
working

PROC. RETIRED
ON BASIS OF
NOT WORKING

PROC. REPORT

1 not working

PROC. RETIRED
ON BASIS OF
ONLY 1 ERROR
REPORT

0 not working

PROC. RETIRED
ON BASIS OF
NO ERROR
REPORTS

0 not working

L1

prevote

1 other proc.
reporting
(any positlon)

1 other proc.
reporting
(any position)

1 other proc.
reporting
(any position)

no other proc.
reporting

Validation Tests for Incorrect Retirement Errors of

reconf

1 proc. marked
for retirement
(any position)

1 proc. marked
for retirement
(any position)

1 proc, marked
for retirement
(any poslition)

1 proc. marked
for retirement
(any position)

APPENDIX A. ERROR REPORTER DRIVER ROUTINES

Although both the error reporter acceptance test and the alternate routine are
relatively brlef procedures, a complete test required the simulation of a major
portion of the SIFT operating system. The simulation program, called DRIVER,
prepares the errors and worklng arrays of the voter and the err word output of
the error reporter based on externally Input data. I+ next Invokes the
acceptance test, outputs Its results to file TTY (for dlagnostic purposes), and
Invokes the procedure If an error Is detected. A complete |isting of the
program follows this description,

Figure A.1 Is a heirachical representation of the program organlzation. The
maln program first invokes procedure IOFILES which either opens a previously
written test data Input file, prepares to write a new flle, or simply accepts
Input and outputs directly to flle TTY, Each of the subsequent procedures
contaln branches for the data source and destination defined in this routine.
The maln program the Invokes procedure LIMREP, which determines the number of
Iterations (l.e. frames). FRAME COUNTER, the next procedure invoked, sets the
value of framecount agalnst which excount, the Internal counter of the error
reporter, Is compared. The program then invokes the VOTER and ERROR REPORTER
procedures which, on the baslis of input data, prepare the working and errors
arrays and the err and excount varliables. The ACCEPTANCE TEST procedure is then
run, and the alternate error reporter Is called by It In the event of the
discrepancies discussed above. Subsequent [terations repeat the process from
FRAME COUNTER through ACCEPTANCE TEST untll the repetition limit Is reached.
Upon exlting the loop, the maln program Invokes procedure which closes any of
the flles opened In |OFILES and ends the simulation. .

It should be noted that the actual error reporter acceptance test and alternate
error reporter which were tested are shown In this |isting, and that they are
not ldentical to those shown In figures 2.2 and 2.3. These latter |isting were
changed to be compatible with the SIFT operating system (by Including a
prebroadcast(errerr,err) statement) and elliminating display related statements
(e.g. outputs to TTY and the BINPARS routine which represented the error words
as binary numbers). An additlonal alteration was made to the acceptance test
routine to Include testing of the mismatch variable. None of these changes are
sufficiently significant to warrant additional valldation testing.

Appendix C contalns a sample output from this driver routine.

L2

HIATHG wesBouq 3o uorisziueBug [°y 34nbBL4

HAIYOd TH
MONNH LTV
SITId _ISAL YHTHO TS
TSOTO * JTO0V ¥O¥YE HATOA

_¥EINAOD
TNV HIENS

dEHNTT

“42a

SHTIH0I

weadoad uteuw
SVd " HIATHA

04500
Quoo
04700
Q8OO0
Qwaoo
05000

d35100
05200
05309
35400

<

N\ I an

v a3 8
Qoo

[

UV NN
oy

PROGR AM DRIVE R;

CONST

TYPE

VAR

(l

(*the following declarations are taken from
the AUGUST, 1980 VERSION OF THE SIFY
OPERATIM: SYSTHEM *)
MA PROCESSORS=5;
MAXf rame=z 50
THRESHOL D=2 ;

PROCESR=0. .MM PROCESIRS;
PROCI NT=A RRAY{PROCESSOR] OF INTEGER;
PROCEO OL=ARRA[PROCESSOR] OF BOOLE &N ;

ERR:I NTEGER;
ERRORS: PROCINT;
REPORT:PROCINT;

WO FK ING: PR OC BO OL;
framecount: INTEGE R;

the following declarations are necessary for
the error reporter recovervy block %)
ERFAILS :integxer;

the following varab les are necessry only
for the driver prcedures¥)

1,J,K:INTEGER

RPTLIMM :INTEGER;

FILEMME :PACKED ARRAY[1. .8] OF CHAR;

TITLE: PACKED A RRAY[1. .40] OF CHAR;

FIL: INTEGER;

INTREP :PROCINT;

PROCEDURE IOFILES;
{*this program sets up files for bonth input and ocoutpw
as deterined by FIL input fram t he keyboard®*)

begin

end;

writeln(tty,'Test of Error Reporter Recovery Blod');
writeln(tty,'I/0 options: tty alone(0), input file(1)');
writeln(tty,'Create File(2)');
read(tty,fil);
if £f15>0 then begin
writeln(tty,'enter filename');
readln(t ty);
readln(tty,filename);
if fil=1 then reset(input, fil ename)
else rewrite(output, fil ename);
writeln(tty,filename.’' readv');
e nd
else writeln(tty,'I/0 through terminal only');

PROCED UR E L IMREP ;
(*SET REPETITION LIMIT FOR MAN PROCED R E*)

begin

if fi1<{>1' then bezin (*promots for TY input)
writeln(tty);
writeln(tty,'enter number of repetitions’);
read(t ty rptlim); '
if fil=2 then writeln(output,rptlim);

end

else begin
read(input,rptlim);

43

writeln(tty rptlim, ' repetitions')
e nd;
rptlim:=zr ptlim-1;
end;

PROCEDURE VOTER;
(*t his procedure is to manailly imput the error{p(i]]
array generated in the voter routine#)

begin
if £i1<>1 then begin (®wty ipu?)
writeln(tty,'procedure voter «-"enter errors');
for i:=0 to mxprocessors do begin
. writeln(tty,'nunber of errors for processor ',
read(tty,errors(il);
writeln(tty,'working? (1/0) 2);
read(tty,intreo[i]);
writeln(tty);
{f f£11=2 then write(output. errars{i],intrepli]);
e nd
e nd
else
for 1:=0 to mxprocessors do (%file input®)
read(input,errors{i],intrepli]);
for 1:=0 to maxprocesasors do (*all*)
if intrep(1]<1 then working[i]:=false
else workirg[i]:=t rue;
end;

PROCED URE BINPARS(VAR NWM:INTHKER); :
(*procedure to represent an integer as a 16 bit string *)
var
binr: array[0..15] of integer; .
tnm:integer;
divis,i,j:integer;
byte: packed array[{1..20] of char;
begin
. divi £ =32768;
if nm>65535 then begzin
writeln(tty,'overflos');
nun:=num mod 65535;
end;
tnum:=num;
J:=0;
for 1:=215 downto 0 do begin
if trum div divis>=1 t hen begin
tnum:=t num mod divis;
binrfi] =1
e nd
else binr{i]:=0;
divis:=divis div 2;
Ji=j+ 1,
if vbinr[i] =1 then byte[]j):='1"'
else byte[jl:='0"';
if (1 mod 4=0) then bexin
ji=i+ 1,
bvtel jl:="' ';
end;
e nd;
writeln(tty byte);
writeln(tty);
Ly

e nd;

procedure error_reporter;
(*t his procdure is to manually input the report{p{i]]

array

assumed to be generayted by the e ror reporter®)

VAR EXCOUNT:I NTEGER;

begin
if fi1<> then begin (% ty input#®)
writeln(tty);

(#initialize the frame coaunt %)
writeln(tty, framecount is',framecount:2,' enter execution')
read(tty ., xcount);

(% rror reporter would be increment ing

its own frae counter here #)
writeln(tty,'title');
readln(tty);
readln(tty,titl e);
writeln(tty);
if f1122 then write(output,excount,titl e);
writeln(tty,'procedire error repoter -- enter report’)3
err:=z0;
for i:= maxprocessors downto 0 do bezin
writeln(tty,'proc',i:2,' err rpt.(1/0) =');
read(tty report{il);
err:zerr¥2;
if (not workim([i]) or (report{i]>0)
t hen err:zerr+1;
{f fil=2 then write(output,report{i])
end;
writeln(tty);
errizerr + 25fexceaunt; (% ombine error and execution ct ¥)
if fil=2 then write(output.err);
end
else begzin
(#file input *)
read(input,excount,tifl e);
for i:=maxprocessors downto 0 do
read(input.report{i]);

read(input,err)

e nd;

writeln(tty);

writeln(tty , ,titl e);

writeln(tty,'frame no.',framecaunt:3,'execution ,excount:3);

writeln(tty);

writeln(tty,'processor':15,'voter error':20,'error report':20,
'working' :20);

for 1:=0 to maxprocessors do begin
writeln(tty);
writeln(tty d:10,errors(i]:20,report[i]:20,

intrep{i]:20);

e nd;

writeln(tty);

writeln(tty,'primary error words ',err:5);

binpars(err);

end;

PROCEDUR E FRAME_C OUNTER;
(*This procedure is to simulate the execution counter on the
error reporter acceptance test by means of manual input *)

begin

ks

2300

[VERVSH VS VS PV V]
<

XN R RN NN
B
o
o

f‘ranecmnt::t‘ranecmnuh-
end;

PROCED IRE CLOSKFILES;
(#Close the input or outpw files if necessy?)
begin
i1f fil=1 then close(input);
if fil1=2 then close (output);
end;

PROCEDURE ALT_E RROR_reportER;
(#*this is the alterate error reporter¥#)

CONST
ALLONES=377B;
VAR
ERRA:INTEGER; (%aternate error word)
I,K:INTEER;
begin
writeln(tty);
writeln(tty,'alterate error reporter invoked');
erra:zallones;
k:z=1;
for 1i:=0 to mxprocessors do
begin
if (errors(i] <t hreshold) and (workingli])
t hen erra:zerra-k;
k:=k%*2;
end;
erra:zerra - (allones - k + 1); (*remove leading bits*)
writeln(tty,'alternate error word=',erra:5);
err:zerra + 256 framecaunt;
binpars(err);
writeln(tty)
end;

PROCEDUWR E ACCEPTANCE_TEST;

(®*error reporter accetance test%)

VAR
EXC OUNT, WRON , RIGHT.DIVISOR,CHECK,I.J:INTEGER;
FAIIFLG: BOOLE AN ;

begin

excount:z err div 256;
err:zerr mod 256;
if excauunt=framecount then begin
wrong:=0;
failflg:=false;
right:=0;
divisori=1;
for j:=0 to maxprocessors do (*hed&k for omissionerrorsr)
begin)
if (errors{ jl1<threshold and (workingi j})
then right:zright+1;
(*count for omissions test=
check:=zerr div divisor; .
(#shift err appropriace
no. of places to the rignt=

16

p24100:30000

24100
214200
24300
24400
)

24500
2U600
24700
24800
21900
25000
25100
25200
25300
25400
25500
25600
2570 0
2580 0
25900
26 000
26100
26200
26300
26400
26500
26 60 0
26700
268 0
2690 0
27000
27100
27200
27300
*

if odd(chedt) then begin
wrong:=wrong+1; (% ount for omissions test®)
if (errors(jl<threshold) and (workingl j1)
then failflg:=true (%hedk for false poaitives¥

end;
divisor:izdivisor*2;
end;
if wrom+rightd{>maxprocessors +1 t hen failflg:=t rue; \
(*omi ssions testh)
if failflg thenalt_error_reporter
else writeln(tty,'error reporter O0K'):
e nd
else begin
writeln(tty);
writeln(tty,'primary error reporter did not run');
alt error reporter;
writeln{(tty);
end;
end;

(*MATIN PRCCED IR E*)

BEGIN
IOFI LE S;
L IMREP ;
REPE AT
frame_C OUNTER
VO TER;
ERROR_REPORTER;
ACCEPTANCE_TEST:
UNTIL framecoaunt>RPTLIM;
CLOSFFILES;
E ND. .

Lg

APPENDIX B, GLOBAL EXECUTIVE DRIVER ROUTINES

A significantly larger set of test cases was necessary for the global executive
val idation, and thus, Its driver routine, GEXEC, used flle Input exclusively for
the validation test Input data. Two routines were used to Input test data:
INGEX, which accepted data directiy from a terminal for generation of a small
number of test cases, and MVTEST, which had an Internal procedure for generation
of a larger number of cases.

Program INGEX consists of 5 procedures: BINPARS, which represents Infegers as
16-b1+ binary numbers, CONV, which converts the Input error reports and retiring
processors Into integers (err and reconf) used by the giobal executive, PRELIM,
which opens a flle for the test cases, OUTFILE, which writes the data to the
file, and INDATA, which issues prompts to file TTY and processes the resultant
input, The program first opens a flle with procedure PRELIM, and then accepts
Input and writes to the file until the user speclified number of test cases has
been reached, and then saves the flle for use by GEXEC.

MVTEST Is composed of 4 procedures: ZERO, which zeros out the error reporter
representation array for a new case, MVINIT which initlalizes an array
contalning all possible test cases for a gliven number of faulty processors,
DISP, which performs additional processing and writes the cases to an output
file, and MATCH, which selects a single test case from the possibilities
generated by MY. Modlflcations to the main procedure, MATCH, and DISP were made
for the generation of test cases for various configurations of the system (i.e.
values of working) and number of processors becoming faulty In the current frame
as described In section 3.5.

Program GEXEC contains 7 procedures: BINPARS, which was described above,
PREGEXEC, the first module of the global executive acceptance test, ALTGEXEC,
the alternate global executive, GEXECTEST, the second (and main) module of the
acceptance test, INFILE, which reads files created by either INGEX or MVTEST,
and PRELIM, which opens the files used by GEXEC, After PRELIM opens a file, the
program flow Is from INDATA, which prepares the Input for the acceptance tests
and alternate routine (I1f necessary), to PREGEXEC, GEXECTEST, and ALTGEXEC (If
invoked by GEXECTEST). This sequence Is repeated untlil the end of file
conditlon Is reached,

A modlfication of GEXEC, designated VALGEX, was used for creating a more terse
output, This was necessitated by the large number of test cases (almost two
thousand).

As was the case with the error reporter, modiflcations of the PREGEXEC,
GEXECTEST, and ALTGEXEC procedures were made to remove all TTY 1/0, make the
output of the routines compatible with the SIFT operating system, and to include
references to the mismatch variable described In sectlons 2 and 3. These minor
alterations are not expected to affect the correctness of the routines as
established by this validation.

LIstings of INGEX, MVTEST, and GEXEC follow this description, and the output of
GEXEC Is described In Appendix C,

L9

PROGRAM INGEX

50

00100
00200
00300
00400
00500
00600
00r00
0000
00900
01000
0100
0120
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
0800
0300
03000
03100
03200
03300
03400
0% 00
03600
03700
0300
0300
0 4000
04100
0l200
04300
o400
04500
0400
owoo
o400
000
05000
05100
05200
05300
05400
05%0 0
05600
05700
05800

PROGR AM I NGEX;

CONST
maxprocessorsz=5;
TYPE
proces rr=0, .maxprocessors;
procintzarray[processor] of integer;
VAR

FILEMME : PAKED ARRAY[1. .8] OF CHAR;
CASENAME : PAXED ARRAY(1. .401 OF CHAR;
CASENO,MAXCASE, FRAMECOUNT: I NT EG ER;

NWM REC.NUMOUT. NWMPROC,REP ROC, FAULTPROC,
NWMFXOLT,PROCRET,PROCOUT :PROCESIR;
TVEC,I NTREP,RETIR ING: PROCINT;
ERRORS:ARRAY[PROCESSOR] OF PROCINT;

PROCEDURE BINPARS(VAR NWM :INTEGER);
(#*procedure to represent an integer as a 16 bit strine
var

binr: array[0..15] of integer;

tnum:integer;

divis,i.j:integer;

bvte: packed array[1. .20] of char;

begin
divi 22 =32768;
if num>65535 then bezin
writeln(tty,'overflai');
nun:=nun mod 65535;
e nd;
tnum:=num;
Ji=0;
for 1i:=z15 downto 0 do bezin
if tnum div divis>=! then begin
tnum:=t num mod divis;
binr[i]:=1
end
else binrf[il]:=0;
divisi=divis div 2;
MEE RS
if binr{i] =1 then byte(Jj]l:="1"
else bvte[jl:='0";
if (i mod 4=0) then begin
Jizj+ 1
bytel jl:="' *;
end;
end;
writeln(tty);
writeln(tty byte);
writeln(tty);
end;

FUNCTION COW (ARA :PROCINT): INTEGER;
VAR 1,j,kiinteger;
begin

1
0

R G

H

H

1:=0 to maxprocessors do begin
k:zk+arayl[l] *j;
Ji=3%2;

5 [1]

0

51

05900
0 60 00
06100
0600
06300
06400
06500
06600
06700
06800
0690 0
07000
07100
07200
07300
07400
07500
07600
0700
07800
07900
08000
08100
0800
08300
08400
08500
08600
0870
08&@ 0
08w 0
09000
09100
09200
09300
09400
09500
09600
0970 0
09 &0
0900
10000
10100
10200
10300
10 400
10500
10600
10700
10800
10900
100
1100
1200
1300
woo
1500
1600
1700
1800

W od b ek~ d nd o wd

end;
convi=k;
end;

PROCED IR E PREL IM;
begin
writeln(tty,'Enter file name');
readln(tty);
read(t ty,f il ename);
writeln(tty,'Enter totad number of orocessors');
read(tty nhumproc);
writeln(tty,'Enter number of cases');
read(t ty ,maxcase);
end;

PROCED IR E QUTFI LE;
(*write output to file and report to ttyt)
VAR prevote,j, k,recorf ,numfault:intezer;
begin ' :
writeln(output.casename);
writeln(tty,'case ',casenmame);
writeln(tty);
for k:=20 to mxprocessors do write(output.intreo(k]);
writeln(tty,'working status');
for k:=z0 to maxprocessors do write(tty,intre[k]);
writeln(tty);
for k:=0to maxproessrs do begin
for 1:=0 to maxprocessors do tvec[jl:=errors(k,j];
prevoter=conv(tvec) + 256#framecaunt;
writeln(tty,'error report for proocssor ',k:2);
binpars(prevote);
write(output.prevote);
end;
reconf:=zconv(retirim) + 256%¥ ramecaint;
writeln(tty,'Reconfiguration word');
binpars(reconf);
writeln(output,recomf);
end;

PROCED IR E I NDATA;
(*This procdure does the actual test case input¥)
VAR im,n,j:integer;
begin
writeln(tty,"'enter case name');
readln(tty);
read(t ty £ asename) ;
writeln(tty,'Enter framecaint');
read(t ty ,framecaint);
for m:=0 to maxprocessors do begin
intrep(m]:=0;
retiringe{ml:=0;)
for n:=0 to maxprocessors do errors[m,n}:=0;
end;

(%, ,.Prepare the intrep army#*)
writeln(tty,'How many processors are not working?');
read(tty numout);
if numout>0 t hen begin

writeln(tty,'which proessors not workim?');
for 1{:=1 to nmnumout do begin

read(tty ,procout);

52

11900 intrep(procout]:=z1;

120 00 end;

12100 end;

12200 (%, ,.Prepare the e rors arrav¥®)

12300 writeln(tty ,'How many processors are faulty?');

12400 Ji:=03

125 00 readln{(tty nunfault);

12600 if numfault>0 t hen repeat

12700 Ji=i+ 1

12800 writeln(tty,'wrong processor', j:3);

12900 writeln(tty,'which pro®ssor is faultv?');

130 00 read(tty,faul t@mroc);

13100 writeln(tty,'how many processors report it as faul ty?');
1320 0 read(tty,numproc);

13300 writeln(tty,'which proe®ssors reported it?');
13400 for i:=1 to nmumproec do begin

13500 read(tty,r eproc);

136 00 errors(reproc, faul tpr oc]:=1;

13700 end

13800 until j=numfault;

13900 writeln(tty);

14000 writeln(tty,'Summary of Error Reports of all processors');
14100 writeln(tty ,'Reporting Faulty');

14200 writeln(tty ,'processors processors');

14300 writeln(tty);

1440 0 for i:=0 to mxprocessors do begin

14500 writeln(tty);

14600 write(tty, :3," ')

14700 for m:=0 to maxprocessors do

14800 write(tty,errors[1i,ml:3);

14900 end;

15 000 (%, ..Prepare the reconf word)

15100 writeln(tty);

15200 writeln(tty);

15300 writeln(tty,'How many processors are reconfigured out?’);
15 400 read(t ty numrec);

15500 if numrec>0 then bezin

15600 writeln(tty,'which proessors are reconf izured out?');
1570 0 for i:=1 to numrec do begin

53

15700 for i:=1 to numrec do begin
15800 read(tty,promet);
1590 0 retirine{procret]:=1;
16 000 end;

16100 end;

16200 end;

16300

16400 (*MAIN PROCED UR E*)

16500 begin

16600 prelim;

1670 0 if numoroc=maxprocessors then begin
16800 rewr ite{output,filename};

1690 0 for caseno:=1 to maxcase do begin
17000 indataj

17100 out file;

17200 end;

17300 close(output);

1T 400 end

17500 else writeln(tty,'change maxprocessors, current value is',
17600 maxproces sors);

17700 end.
#*

54

PROGRAM MVTEST

55

00100
00200
00300
00400
00500
Q0600
Qo700
0800
0®@00
0®30
009690
0099
01000
01050
01100
0180
01200
0130
01300
01400
01500
01600
01700
018 00
01900
01950
02000
0200
02200
02300
02400
02500
02600
02700
02800

o
3
(=)
o

[0
2D
OO

(o]

wyy
Nvo oo

Ll L) W W) o W) W
ww
Eﬁtﬁwm
ogwo™

“4‘1‘3{3\11;
B2 ¢

(UY)

&ﬂw
oCouoCau
[SNsNoReNs]

—~ OO QOO0 OO0OCOLOOOOCOO0COO0Oo
+
<

J U400
J4200
04300
0L4dd D
Q400
04620
Q47G0
%00

PR OGR AM MVTEST;
CONST MAXPROCESXIRS=5;

VAR

maxv=1l;

kount, kw:int
reconf:integ

exer;
er;

filenane: npacked array[1..8] of chanr;
working: array[0. .maxprocessors] of integer;
MV: ARRAY(O. .M PROCESSORS,0. .MAXV] OF INTEGER;
(* THE W ARRAY COLUMNS WILL BE USED INE TO
FORM THE DIFFERENT COMBINATIONS OF ERFOR
) REPORTS REQUIRED FOR THE VALIIA TION #)
E:ARRAY[O. .MAXPROCESDRS,0. .MAXPROCESORS] OF INTEGER;
. (* E IS THE ARRAY REPRESENTING ERFOR REPORTS ¥*)
A:ARRAY[O. .1,0. .MAXV] OF INTKER;
(# A IS THE ARRAY FOR MARKING WHICH PROCS REPORT *)

PROCEDURE ZERO;

(* zero the
VARTI,

begin

e-nd;

J:INTEKER;

e array %)

for i:=20 to mxprocessors do
for 1:=0 to maxprocessors do

ef(1.31:=0;

PROCEDURE MVINIT;
(% initialize the mv and asciated a arays ¥)
VARI,J,K,L,M:INTEGER

begin

(t

*)
E ND;

for 1:20 to maxprocessors do
for m:=0 to maxv domv(l.m]:=0;

J:=0
f

:
or i:=z0 to mxprocessors - 1 do
for k:=i+1 to maxprocessors do begin

end;

mv(i.]]
nv{k,jl

HE 3 I

e _a

for 1:=0 to maxprocessors do workim([1]:=0;

working 0]:
working 1]:
working kwl:

PROCEDURE DISP(VAR L.J:INTHEGER);
Wwrite the outpu file for use by GEXEC %)
VAR I,K,M,S:INTEGER;

(t

begin

kount: zkount
writeln(outp
alo,

+ 13
ut, ‘proe',]
11:2,a(1,1]

:2,' outvoted;
2,' reporting,

proges’',
oroc., 0 failure repcrt

for i:=0 to maxprocessors do write(output,workim{i]);
for 1:=0 to maxprocessors do begin

HE
3:=0
for

end;

H
H
k:=0 to maxprocessors do begin

s:=eli
m:z=m*2;

56

. k] ¥mes;

04900
05000
05100
0500
05203
05206
05209
05212
05215
05300
05400
05%00
05600
05700
05800
05900
06000
06100
06200
062 30
06260
06290
06291
06292
069l
06298
06300
06400
06500
06800
06700
06800
06900
07000
0700
07200
07300
07400
07415
07430
07460
07480
07500
07600
0700
0780
0790 0
*

s:=8 + 256 kount;
write(output.=);
end;
reconf:=r econf + 256%kount;
(#*, ..formore than 1 proec. out, reconf should have
constant s added to it:

1 - for one proe. out
3 - for two procs., ont
?7 - for 3 procs. out *)

writeln(output,reconf);
end;
PROCED UR E MATCH;
VAR I,J,K,L,M:INTEGER

begin
for 1:=0 to maxv do (®*, .1 is col. of mv#*)
for j:=0 to maxprocessors do begin
Zero;
for 1:=0 to mxprocessors do
e[i.3]:=mv{i .1];
(* mark proes 0 and | excess disagreenents here#)
e[8,03):=21;
e[5,07:=1;
e[4,2]:=1;
e[5,2]:=1;
e(4,1]:=1;
e(5,1):=1;
disp(L,J});
e nd;
end;
(*MAIN PROCED R E#)
BEGIN
writeln(tty,'2 processors tet, enter filename');
readln(tty);
read(t ty ,filename);
rewrite(output, filename);
kount: =0;
writeln(tty,'enter reconf');
read(tty reconf);
(%
writeln(tty,'which add tional. proe. out? ');
read(t ty ,kw);
*)
MVINIT;
M ATCH:
close(output);
writeln(tty,'file camplete');
END.

57

PROGRAM GEXEC

58

00100
0000
00300
00400
00500
00600
00700
0000
0mWO0O0
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900
03000
03100
03200
03300
03400
03500
03600
03700
0300
03900
04000
04100
04200
04300
04400
04500
04600
04700
04800
04900
05000
05100
0500
05300
05400
*

PR OGR AM GEXEC;

(*This is the set of routines assocli ated with the global

exeautive *)

CONST
MAXPROCESSORS=5;
maxsubfrane=50;
threshold=2;
max hu fs=1;
errerr=1;

TYPE
processor=0, .maxprocessors;
procint=array[processor] of integer;
prochool=array[processor] of boolean:
buffer=0. .maxbufs;

VAR
WORK ING:PROCBOOL;
FRAMECOUNT, CASENOQO: INTEGER;
PREVOTE: ARRAY[BUFFER] OF PROCINT;
RECONF :INTEGER;

PROCEDURE BINPARS(VAR NUM:INTEGER);
(*procedure to represent an integer as a 16 bit string
var
binr: array[0..15] of integer;
tnum:i nteger;
divis,i,}:integer;
byte: packed arrav[1..20] of char;
bealn
divis:=32768;
if num>65535 then beain
writeln(tty,.overflow,.);
num:=nun mod 65535;
end;
t num :=num;
te=03
for 1i:=15 downto O do beagin
if trum div divis>=1 then beain
tnum:=trum mod divis;
binr{i]:=1
end
else binr[i]:=0;
divisi=divis div 2
Fe=t+1;
ifbinr[i] =1 then bvtelt]:=.1.
else byte[t]l:=0.;
if (1 mod 4=0) then beain
YTi=t+1;
b_\/te[.‘?]1=- -’
end:
end;
writeln(tty,byte);
writeln(tty);

59

*)

05500
05600
05700
05800
05900
06000
06100
06200
06300
064 00
06500
06 60 0
06700
06800
06900
07000
07100
07200
07300
07800
07900
08000
08100
08200
08250
08300
08400
08500
08550
08600
08700
08800
0890
09000
09100
09150
09200
09300
09400
09500
09550
09700
09800
09850
09900
10000
10100
10200
10300
10400
10500
10600
10700
10800

end;

PROCEDURE PREGEXEC;

(*This procedure copies the least sianificant bits of the
error reporter word bits into the most sianificant pnositions
after checking the frame number *)

VAR

heagin

end;

excount: INTEGER;
ERR:INTEGER;
J,M:INTEGER;

for }1:=0 to maxorocessors do hegin
excount:=prevotel[errerr,t] div 256;
err:=prevotelerrerr,t] mod 256;
if excount=framecaunt then
prevote{errerr,i]:=257*err
else writeln(tty,.processor.,t:3,. excount mismatch.);
end;

PROCEDURE AL TGEXEC;
(*This is the alternate globhal executive*)

const
VAR

begin

end;

maxdiv=32;

RECONFA,DIVISOR, MULT, 3,K,L, M: INTEGER;
ERCOUNT: PROCINT;
LAST: INTEGER;

for 1:=0 to maxprocessors do ercount[i]:=0;
(*...dnitialize e count*)
FOR J:= maxprocessors downto 0 do
if working[1] then begin
(*. ..do for each ermr report#*)
divisor:=maxdiv;
for k:=maxprocessors downto O do beain
(*,..do for each position of report*)
if 1=k then last:=z0
else last:=prevote[errerr,1] div divisor;
if odd(last) then ercount[k]:=ercount[k]+;
divisor:i=divisor div 2;
end
end;
{(*...now wite reconfa*)
reconfa :=0;
mult:=1;
for 1:=0 to maxprocessors do begin
if ercount{l]>=2 then reconfa:=reconfa+mult;
mult:=mult*2;
end:
writeln(tty,.alternate reconf word,):
binpars (reconfa);

60

10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000
12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14 000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16 000
16100
16200

PROCEDURE GEXECTEST ;
(*Global Executive Acceptance test*)

TYR

VAR

beain

end;

ZERO_ONE=0..1;

DIVISOR, CHECK,I,J,SWM :INTEGER;
FAILFL G: BO OLEAN;
LAST DIG: ZERO_ONE;

divisor:=1;
fallflg:=false;
for 1:=0 tomaxprocessors do beain
(*...do for each position of report*)
(*implement error word shifts here*)
sum:=0;
for 31:=0 to maxorocessors do begin
(*...do for each error report*)
last dig:=(prevotelerrerr.t] div divisor)
- mod 23
if (not working[i]) or (i=1)
then last dig:=0;
sum:=sun + last dia;
end;
check: =reconf div divisor;
if odd(check) then beain
if(sumn<2)and(workina[i]) then failflg:=true
end
else if sum>=2 then failflg:=true;
divisor:=divi sor*2;
end;
if failflg then altaexec
else writeln(tty,.alobal Exeautive 0K,);

PROCEDURE INFILE;
(*Read data from file input after main procedure has opened it¥*)

var

beain

casename:packed array[1. .40] of char;
intrep:procint;
k:integer;

readln(input,c asename);

for k:=0 to maxprocessors do read(input,intrep(k]);
for k:=0 to maxprocessors do read(input,prevotelerrerr,k]);
readln(input,reconf);

writeln(ttv);

writeln(tty);

writeln(tty,casename);

write(tty,.Case.,caseno:3,. Enter framecount .);
read(t ty ,framecount);

writeln(tty);

writeln(tty,.Failed processorsa.);

61

16300
16400
16 500
16600
16700
16 800
16900
17000
17100
17200
17300
17400
17 500
17600
17700
17800
17900
18000
18100
18200
18300
18400
18500
18600
18700
18800
18900
19000
19100
19200
19300
19400
19500
19600
19700
19800
19900
20000

*

for k:=0 to maxprocessors do beqgin
write(tty,intrep[k]:3);
if intrep[k]=1 then working[k]:=false
else workina[kli=true;

end;

writeln(tty);

for k:=0 to maxprocessors do beain
writeln(tty,.error report for processora., k:3);
binpars{(prevotelerrerr,k]);

end;

writeln(tty,.Reconfiauration Word.);

binpars (reconf);

end;

PROCEDURE PREL IM;
(*Initial orampts and opening of data file*)
var filename:packed array[1..8] of char;

beain
writeln(tty,.Global Executive Recovery Block Driver --.);
writeln(tty,.Enter Data File,.);
readIn(tty);
read(tty,filename);
reset(input, fil ename);
end;

(*MAIN PROCEDURE*)
beain
prelim;
caseno:=0;
while not eof (input) do bkegin
caseno:=caseno+1;
infile;
pregexec;
gexectest
end;
writeln(tty,.Tests Comlete,);
close(inout);
end.

62

APPENDIX C. DEMONSTRATION OF VALIDATION PROCEDURES

This appendix contalins examples of output which demonstrate the manner In which
the fault-tolerant software for the error reporter and the global executive were
valldated. Sectlon C.1. describes the output from DRIVER used to demonstrate
the correctness of the error reporter, and section C.2 describes the GEXEC
output which showed the proper operation of the fault tolerant global executlive.

C.1. Error Reporter Validation

Figure C.1 Is the output generated by the DRIVER program using data for 1
processor out. A total of five "frames" (l.e. test cases) are shown, The first
ilne Is the abbreviated title "proc 1 exc undtctd err", which Is the designation
for processor no. 1 having an excess number of errors undetected by the primary
error reporter, The next |ine shows the value of framecount and excount (which
were taken to be the same for the cases shown here). The next item on the
output Is a table showing the number of errors counted by the voter, the error
reporter output (0 = no excess disagreements, 1 = excess disagreements), and the
worklng status (0 = not working, 1 = working) for each of the six processors.
The following |ine shows the Integer vaiue of the error word Including the frame
count encoded in the 8 most significant bits, and immedlately below It [Is the
binary representation produced by procedure BINPARS (see appendix B).

Because the primary error report (contained in the file) was Incorrect, the
error reporter acceptance test Invoked the alternate, which generated an error
report whose Integer value (not Including the frame count) Is shown on the next
iine and whose binary representation (Including the frame count) is shown
Immediately below,

This partlcular case demonstrates that the acceptance test can detect fallure of
the primary error reporter to note an excess number of disagreements In
processor 1 when no other processors have falled and when all are working.
Succeeding cases shown In this output demonstrate that failure of the primary
routine to detect excess dlsagreements for processors 2, 3, 4, and 5 when no
processors have been retired or have become faulty In this frame, The entlire
valldation sequence described In sectlon 2.5 conslists of performing a sequence
similar to this for processors 0 through 6 when 1, 2, or 3 additional processors
become faulty In the current frame and when 1, 2, or 3 other processors have
been retired. Although these validations were performed, they are not Included
In this report for the sake of brevity.

63

errl r eady
5 repetitions

proc 1 exe¢ undt ctd errr

frame m. 1lexecution 1
processor voter error

0 0
1 3
2 | 0
3

y 0
5 : 0

primary error word= 256
0000 0001 0000 0000

alterate e ror reporter invoked
alt ernate error words 2
0000 0001 0000 0010

proc 2 exc undtctd err
frame m. 2execution 2

procesr voter error
0 0
1 0
2 5
3 0
4 0
5 0

primary error word= §12
0000 0010 0000 0000

alterate error reporter invoked
alt ernate e ror words Yy
0000 0010 0000 0100

error report

error

0

0

report
0

0 -

FIGURE C.1. Error Reporter Yalidation Output

E4

workim

working

prce 3 exc undtctd disgr

frame m. 3execution 3
procesor ‘voter error error report WO rk 1ru
0 0 0 1
1 _ ' 0 0 1
2 0 0 1
3 4 0 1
4 . o 0 1
5 | : 0 0 1

primary error word= 768
0000 0011 0000 0000

alterate error reporter invoked
alt ernate error words 8
0000 0011 0000 1000

proc 4§ exec undtctd err |
frame no. Udexecution 4

processor voter error error report workirg

0 0 0 1

1 0 0 1

2 0 0 1

3 0 0 1

] 6 0 1

5 0 0 1
proary erro words 1024
22006 0100 0000 0000

alterate error reporter iavoked

lt ernate error words 1o
JACG Y90 0001Y 00900

O Wwop

Figure C.1. (continued) Error Reporter Validation Qutput

65

proc 5 exc undtctd err
frame no. 5execution 5

procesor ~voter error

0 0
1 0
2 0
3 0
. .

4 * 0
5 , 3

primary error word= 1280
0000 0101 0000 0000

alterate error reporter invoked
alternate error words 32
0000 0101 0010 0000

Figure C.1. (continued) Error Reporter Validation Output

66

error report

workirng

-

C.2. Global Executlve

Figure C.2 shows an excerpt from the output generated by program GEXEC. Two
cases are shown from an MVTEST generated flle containing cases In which
processor 1 Is marked as having falled by processors 5 and 6, and 1 additional
processor |s marked for retirement In the reconfiguration word by the primary
global executive, The first line shows the title of the case, l.e. "proc 0
outvoted; procs 0, 1 reporting™ . Thus, processor 0 [s marked as having excess
disagreements by processors 0 and 1, and processor 1 Is Indicated as having
excess dlsagreements In the error reports of processors 5 and 6. The second
line of the output is the frame count check, which, In this case Is matches the
execution count so that PREGEXEC finds that all error reports are current.

The following line gives the configuration of the system, and shows that no
processors are falled (I1.e. retired). The following 6 output Iitems are the
binary representations of the six processor error reports. The error report
from processor 0 Is marking Itself for retirement; the report from processor 1
agrees. No processors are Indicated as faulty In the error reports of
processors 2 and 3, but processors 4 and 5 Indicate that processor 1 should be
retired.

The next Item Is the reconflguration word generated by the primary global
executive, I+ Indicates that processor 0 should be retired, and that the
current frame count Is 1 (In bit+ position 8). The global executive acceptance
test detects an error, and Invokes the alternate routine, which marks processor
1 for retirement as shown In the last output Item. '

This particular case demonstrates that the acceptance test can detect the error
of simultaneously Incorrectiy marking a functional processor as for retlirement
(processor 0) and not detecting a falled processor (processor 1). The second
case shown In figure C.2 shows that processors 0, 1, 4, and 5 all Indicate that
processor 1 should be retired, but that the primary reconfliguration word marks
processor 0 for retirement. Once again, the recovery block can detect and
correct the error.

Close to 2,000 cases of this type were run, and In order to reduce the amount of
output, GEXEC was modifled to show only the case title, whether or not a
processor which should have been retired was still generating error reports,
whether the primary global executive output was accepted, and If not, the value
of the alternate acceptance test was shown. Figure C.3 shows the beginning of
such an output for fallure to detect one faulty processor when one other was
retired, The flrst item on the page Is the prompt generated by the modIifled
GEXEC program for the data file name, The next Items show that the
reconfiguration word Is glven as O throughout the flle (l.e. no processors are
marked for retirement by the primary global executive In this set of test cases)
and that processor 1 is Indicated as not working. The set of possiblilities
generated within GEXEC did not exclude processors marking themselves for
retirement or having not working processors generating error reports. Thus, the
first test case of figure C.3, processors 0 and 1 marking processor 0 for
retirement, Because this condition would not lead to the retirement of
processor 0, the primary error word Is correct. In the secord case, processor 1
Is Indlcated as having excess dlsagreements by processors 0 and 1. Because
processor 1 should have been retired, this is possibly a serious condition, and

67

the global executive Indicates that there may be a problem (by itself, the
global executive can not diagnose and trace the problem) to the system in the
message "retlired processor working"™, In the third case, the error report from a
retired processor along wlth only one other processor indicates that a third
should be marked for retirement., This Is not a sufficiently strong case for
retiring processor 2, so the reconfiguration word Is correct.

68

proc 0 outvoted; proecs 0 1 reportirm
Case 1 Enter framecount 1

Failed précessor's
0 0O 0 0 0 0O

error report for processor 0

0000 0001 0000 0001

error report for processor 1

0000 0001 0000 0001

error report for proessor 2

0000 0001 0000 0000

error report for processor 3

0000 0001 0000 0000

error report for proaessor i

0000 0001 0000 0010

error report for pro@®ssor 5

0000 0001 0000 GO10

Re configuration Word ~

0000 0001 0000 0001

alternate reconf word

0000 0000 0000 0O1%O

Flgure C.2.

Global Executive Valldation Cutput

69

proc 1 outvoted; procs 0 1 report;rg
Case 2 Enter framecaint 2

Failed proessors

o 0 ¢ 0 o0 ©
error report for procssor 0
0000 0010 0000 0010

error report for proessor 1
0000 0Q10 0000 0010

error report for processor 2
0000 0010 0000 0000

error report for processor 3
0000 0010 0000 00QOQO0

error report for processor i
0000 0010 0000 0010

error report for processor 5
0000 0010 0000 0010

Re configuration Word
0000 0011 0000 0001

alternate rec onf word
0000 0000 0000 0010

Figure C.2. (continued) Global Executive Valldation Qutput

70

R

recaonf and workim held constant
Reconfiquration word (reconf)
0000 0001 VYOO 0OQ0

Procesmr statuses; 0 working/ 1 failed
v 1 0 0o 0 0

proc U ontvoted; procs U 1 renmortim
dlobal Exeauitive 0OK

proc 1 outvoted; nrocs U 1 reponrting
retired nroc., workim
qlobal Exeaitive OK

proc 2 outvoted; procs 0 1 reportim
global Exeaitive OK

proc 3 outvoted; procss U 1 reporting - ™
global Execftive 0K

proc 4 outvoted; procs 0 1l reportim
global Exeartive OK

proc 5 outvoted; procs 0 1 reportim
gdlobal Exeaitive OK

proc 0 outvoted; procs 0 2 reportim
global Exeartive 0K S

. proc 1 outvoted; procs 0 2 reportim
{- retired pro!c. wo Ik i m

retired proc. workim

qlobal Exeartive 0K

. proc 2 outvoted; procs 0 2 reportim
' global Exeaitive OK

proc 3 outroted; procs 0 2 reportim
alternate reconf word
QU000 0000 0000 1000

proc 4 outvoted; procs 0 2 reportim
alternate rieconf wo rd
0000 0000 0001 0000

proc 5 outvoted; procs U0 2 reportim
alternate reconf word
0000 2000 0010 Q000

proc 0 outvoted; nrocs 0 3 reportim
globhal fxeaitive OK :

proc 1 outvoted; procs ¢ 3 reportim
retired nroc. workim

retired proc. workim

7Jlobal fxeaitive 0OR

nroc 2 nutvoted; procs
alternate reconf word
0Jdn 2000 DOV nlav

Figure C.3. Global Executive (VALGEX) Valldation Qutput
71

) 3 renortim

AERQ78

Aerospace Corp., Fault Tolerant Software Study, NASA Contractor Report No.
145298, Advanced Programs Divislion, Aerospace Corp., February, 1978

HECH76

H. Hecht, "Fau!t Tolerant Software for Real Time Appllications"™, ACM Computing
Surveys, Vol. 8, No. 4, p. 391, December, 1976

RAND75

B. Randell, "System Structure for Software Fault Tolerance"™, 1EEE Transactions
on_Software Englneering, Vol. SE=1, No. 2, p. 220, June, 1975

72

1. Report No. 2. Government Acce;sibn No. 3. Recipient’s Catalog No.
165874

4. Title and Subtitle eport Date

5 R
April 1981

Fault Tolerant Software Modules for SIFT 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Myron Hecht and Herbert Hecht SoHaR-TR-81-04

10. Work Unit No.

9. Performing Organization Name and Address

SoHaR, Inc.
1040 South LaJolla Ave. 11. Contract or Grant No.
Los Angeles, CA 90035 NAS1-15428

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

Final Engineering Report
NASA-Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665

15. Suppiementary Notes

16. Abstract

The Recovery Block technique for fault-tolerant software was applied to the operating
system of the SIFT fault-tolerant computer. The original operating system serves to
implement algorithms for hardware fault tolerance, and has been subjected to rigorous
logical analysis, but does not incorporate redundancy for tolerating its own faults,
(e.g., programming errors). Fault-tree analysis was used to validate acceptance tests
for application to alternate (redundant) versions of several operating system functions.
The tests and several alternate program versions were implemented in Pascal. This
application of the Recovery Block technique was more difficult than usual because the
subject program was essentially logical in nature. Some limitations were encountered
in constructing alternate routines that are truly independent of the primary ones

and also of the acceptance test.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement
Fault-Tolerant Software, Recovery Blocks,

Fault-Tolerant Computers, Fault-Tree
Analysis, Software Validation

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

N-305

