
"

,

NASA-CR-173839
19840023887

A Reproduced Copy

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

JUN 7 198A

LANGLEY RESl:ARCH CENTER
LlBf,ArlY Nl\c;A

'. IIAMPTON, VIRGINIA

FFNo 672 Aug 65

https://ntrs.nasa.gov/search.jsp?R=19840023887 2020-03-20T21:11:43+00:00Z

----........

Unclas
GJ/61 20107

(USA-Cil-173dJ9j Sl'£l:HYll\G lliE. BtriAVlu£I Cf jW4-3 b57
~O~CUUUENT ~I~TE~S (Drap~r (Chdcles sta~k)
.Ldb., lue.) 68 p He A04/Ml' .\()1 CSl.L 09L

CSOL-P-1915

SPECIFYING THE BEHAVIOR OF
CONCURRENT SYSTEMS

by

Frederick C. Furtak

July 23rd, 1984

\

,,'

\'

.'
•

I

;

• The Charles Stark Draper laboratory, Inc•
Cambridge, Massachusetts 02139

\,

"

,

CSDL-P-1915

SPECIFYING THE BEHAVIOR OF CONCURRENT SYSTE"S

by

Frederick C. Furtek

July 23rd, 1984

The Charles Stark Draper Laboratory, Inc.
Cambridge, Massachusetts 02139

i' ,

\.
t
I

•

ABSTRACT

A framework for rigorously specifying the behavior of concurrent
systems is proposed. It is based on the widespread view of a concurrent
system as a collection of interacting processes, but unlike previous
approaches, no assumptions are made about the mechanisms for process
synchronization and ~ommunication. One is able to describe the
behavioral constraints imposed by such mechanisms without being forced
to consider the details of process interaction. A key element of the
proposed framework is a formal language that permits the expression of a
broad range of logical and timing dependencies, many of which are
inexpressible with existing techniques. The language is based on the
five logical primitives: 'not ' , 'and', 'and_next ' , 'and_next*' and
'reverse'.

ACKNOWLEDGMENT

This work was performed as part of a joint HIT/CSDL program
sponsored by the NASA Office of Aeronautics and Space Technology
under Grant NAGW-448.

The author is indebted to Daniel Kornhauser, Nancy Lynch, Roger
Racine and James Kernan for their invaluable comments and
suggestions.

i i

•f
!
\

\

".
.'

TABLE OF CONIEtrrS

. "

S
5
6
7
9
9

1
1
2
3

Page

· . .

. . .

.

.

. .. .

· . .· . .

· . .

Traces

. .

.

Behavior
.

2.0 The System "ode1
2.1 Instances
2.2 Traces
2.3 Example of a Trace
2.~ Permitted and Prohibited
2.5 System Specification

Section

1.0 Introduction
1.1 Specifying
1.2 Background
1.3 Overv i ew

,

3.0 Types •••..•. • • • • • • •
3.1 Enumeration Types
3.2 Numeric Types
3.3 Array Types ••••
3.~ Record Types ••••
3.5 Example of a Type Definition
3.6 Process 1eclarations

· . . 9
10
11
11
12
13
''is

4.0 Synthronic Structure •••••••••••
~.1 Synchronous and Asynchronous Processes
~.2 Semantics ofa Synchronic Structure

· . . 1S
16
17

5.0 Lo~ical Specification of Uniprocess Systems
5.1 Atomic Formulas
5.2 Connectives
5.3 Concatenation
5.~ Semantics
5.5 Algebraic Properties
5.6 Examples of Statements about Uniprocess Behavior

17
19
19
20
20
27
28

· . .

•

.;.J34
• ~....

,.,.~
..-'

~

......'

?J

6.0 logical Specification of Multiprocess Systems
6.1 HPl Syntax ••••••
6.2 Templates •••••••
6.3 A Partial Order on Templates
6.4 Concatenation of Templates
6.5 Well-Structured Sets of Templates
6.6 Semantics ••••• • •••
6.7 Algebraic Properties ••••
6.8 Examples of Statements about Hultiprocess Behavior ••••
6.9 Extended MPl •••• • • • • • •••••••••
6.10 Format for logical Specifications •••• • ••

Iii

31
32
32
33
35
37
38
~7

48
50
50

.

7.0 Specification Example: The Alternating-Bit
7.1 Type Definitions ••••
7.2 Process Declarations
7.3 Synchronic Structure
7.4 Logical Specification

8.0 Conclusions
8.1 Future Work

Protocol

· .· . .
· . .

• • . . . 51
52
52
53
53

56
57

INDEX •• !J9

•

•

List of References .

Iv

60

LIST OF ILLUSTRATIONS

Figure

1. A Trace · · · · · · ·2. A Trace with Values
3· Classification of· Types · · · · · · · · · · · ·4. A Trace of Two Synchronous Processes · · · · · · · ·5. A Template ·6. Three Ordered Templates · · · · · · · · · ·7. Concatenating Two Templates · · .. ·8. Juxtaposing Two Templates · · · · · · · · · ·9. Meaning of 'P and_next Q' · · · · ·10. A Trace and its Reverse · · · · · · · · · · · ·11- A Reversed Template · · · · · . · ·12. Fitting a Template to a Trace · . · ·

v

Page

8
10
11
18
34
36
37
42
43
45
46
48

I
L

>.. I

1.0 INTRODUCTION

A concurrent system, in simplified terms, is a collection of
interacting elements. There may be as few as two or three elements, or
as many as a thousand or even a million. The elements may be as simple
as input switches or indicator lamps, or as omplex as entire
processors. They may be tightly coupled and located in close proximity
to one another. as in a highly parallel computer. or they may be loosely
coupled and widely dispersed. as in a nationwide packet-switching
network. The interactions may involve the simple synchronization of two
elements. or they may entail a complex communication governed by a
communication protocol.

A considerable number of attempts have been made to build concurrent
systems that fall at different points in this multidimensional spectrum.
Some of these attempts have succeeded. but many have been only
marginally successful and a few have been outright failures. These
experiences reflect a hard fact of life: the tools are not yet in hand
that allow us to design concurrent systems in a risk-free fashion. The
design of concurrent systems is today a difficult. risky and often
painful endeavor.

1.1 Specifying Behavior

While there are undoubtedly several reasons for this state of
affairs, one of the principal reasons must surely be our limited ability
to specify - in a precise. straightforward way - the behavior of a
concurrent system. For example. how do we express for a distributed
flight-control system the relationships and dependencies among various
sensor outputs, actuator inputs, status bJts, and mode switches? The
problem is compounded by the fact that some dependencies are functional
in nature - engine thrust is a function of throttle-lever position
while other dependencies are temporal in nature - landing gear lowered
seven seconds before expected touchdown. Still others combine both
functional and temporal requirements.

Because of this limited ability, there is no way to rigorously state
the required (intended) behavior of a concurrent system. and without
such a formal statement, there is no way to rigorously verify that the
actual behavior matches the required behavior. Moreover, there is no
way to insure that the requirements are, in fact, consistent. But
perhaps most importantly, there is no unambiguous medium for
communicating ideas among the sponsors. implementors and users of a
system.

To those who object to the need for formal techniques and argue that
the present informal methods are sufficient, there are two replies: (1)
Informal methods have not been notably successful in alleviating the

I
I

i

/'

/

i
I

!1

serious problems encountered in the design of concurrent systems. (2)
Formal (i .e., mathematical) techniques have been extraordinari Iy
successful ina variety of disciplines concerned with modelling system
behavior.· (One can only wonder where electrical and aeronautical
engineering and control theory - to name a few disciplines - would be
today without their mathematical underpinnings.)

1 .2 Background

We propose a framework for rigorously specifying the behavior of
concurrent systems. It is based on the widespread view of a concurrent
system as a collection of interacting processes [6] [7] [8] [9) [10)
[16] (17) [20) [21] [25] • In this view, the behavior of each process
is represented as a sequence of values, which - depending upon the model
- are interpreted either as states or events (actions).

Processes interact with one another, and thereby influence each
other's behavior, by anyone of a number of different m-rhanisms. It is
these synchronization and communication mechanisms that have received
the greatest attention. Semaphores (8], monitors (16], rendezvous (2]
[5] (24], path expressions [6), and exchange functions [9) [25), are
some of the methods that have been proposed and investigated. But
because all of the above approaches are tied to a particular model of
process interaction, they are limited in their generality and expressive
power. The specification framework proposed here, however, is
independent of the underlying synchronization and communication
apparatus. It permits us to describe the behavioral constraints imposed
by such mechanisms without forcing us to consider the details of process
interaction.

Although this implementation-independent approach increases
generality, it also creates a technical problem. We must now be able to
represent the composite behavior of a collection of interac~ing

processes. These behavioral representations must reflect the local
constraints imposed by individual processes, as well as the global
constraints stemming from process interaction. Moreover. it must be
possible to express essential constraints on behavior without being
forced to include superfluous constraints. For example, it should not
be necessary to assign a temporal ordering to two event occurrences if
such an ordering is not essential to system behavior - that is, if the
two occurrences are 'concurrent'. This last requirement immediately
excludes the use of sequences (linear orderings) of states or events to
represent concurrent behavior - even though such sequences are used to
describe the behavior of individual processes.

The natural solution is to use partial orders on event occurrences
(or state holdings) to represent concurrent behavior. In such partial
orders, two event occurrences are always ordered if they relate to the
same process. If they relate to two different processes, then they may
be either ordered or unordered (concurrent). Two interpretations can be

2

.."
,: .1

attached to the ordering relation. We may consider the ordering of two
occurrences to mean that the first precedes the second in time (which
assumes there is a global notion of time). Or we may consider the
ordering to mean that there is a causal connection leading from the
first to the second (which means that the first precedes the second by
every temporal measure).

The use of partial orders to represent concurrent behavior is not
novel. There has been research along these lines. [1J [10J [14J [18J
for many years. What is new in the present approach is a technique for
characterizing a set of partial orders, a technique that permits us to
express a broad range of logical and timing dependencies, many of which
are inexpressible within existing approaches.

1.3 Overview

The system model (described in Section 2) provides the basis for a
system specification. It is a multiprocess model in which the behavior
of an individual process is represented by a sequence of values drawn
from the process's 'type'. The composite behavior of an entire system
is represented by a partial order on 'instances', each of which
associates a process with a value. Instances may be interpreted either
as occurrences of events or holdings of states. A partial order on
instances is called a 'trace'.

The proposed specification technique has four major components: (1)
Type Definitions. (2) Process Declarations. O} Synchronic Structure and
(4) logical Specification. Each Type Definition (described in
Section 3) defines a set of values and a set of operations on those
values. The format for Type Definitions is provided by the mechanisms
of the Ada' programming language for declaring scalar and composite
types. Process Declarations (also described in Section 3) assigns to
each process a type.

The purpose of the Synchronic Structure and Logical Specification is
to specify, through restrictions, the set of permitted (or legal)
traces. The restrictions imposed by the Synchronic Structure (described
in Section 4) deal only with the structure of a trace when the values
associated with instances are ignored. Through the Synchronic
Structure, one can assign to a process a metric for time. which provides
the basis for expressing timing constraints.

The Logical Specification, in contrast to the Synchronic Structure.
deals only with dependencies involving I.nstance values. These
dependencies ar~ expressed in a formal language. two versions of which
are def i ned. UPL (for Un iProcess language) (descr ibed In Sect ion 5) is

Ada is a registered trademark of the U.S. Department of Defense.

3

..

.-.r.
}···.I'. :'

t 'j
• I

the simpler version but is restricted to single-process systems. I'fpt
(for l'fultiProcess language) (described in Section 6) has no restrictions
but its semantics are more complex than those of UPl. UPl introduces
the four logical primitives

not

To these four, I'fPl adds

and

reverse

In both UPl and I'fPl, the first four primitives are used to define the
five auxiliary constructs

or or_next impl ies

-'

Through these various primitives and constructs, it is possible to
express a wide range of logical and timing dependencies. However,
because these primitives and constructs are relatively 'low level', UPL
and HPL can be extended to include the following sorts of higher-level
statements (in which P and Q represent either states or events,
depending on context):

• P is followed N time units later by Q.

• Q is inevitable within N time units following P.

• Q for N time units following P.

• Following P, always Q.

• Fol lowi n9 P, Q as long as R.

• Foil owi ng p, Q unt i I R.

• Foil owi ng P, Q is repeated every Ii time uni ts.

Each of these statements represents a statement in either standard UPl
or standard HPL.

The four components of a system specification - Type Definitions,
Process Declarations, Synchronic Structure and Logical Specification
are illustrated (in Section 7) for a simple example: the
Alternating-Bit Protocol.

4

i
J
1

t

IiIIlI

.I
I

.,

, .
2.0 THE SYSTEM "ODE~

A (my I t j process) sYStem is an ordered quadruple <T.P.D.~> where

T is a set of .tx2U

P Is a set of processes

0 Is a set of process declarations

~ is a set of permItte~ traces

A type is a set of values. Process declarations is a mapping from the
set of processes to the set of types. Each process p is thus
associated. through its type. with a set of values - denoted Type(p).
Both processes and values are considered here to be atomic entities.

Although not essential. it is sometimes useful to consider two
classes of processes: event processes and state processes. The values
of an event process are interpreted as events, while the values of a
state process are viewed as states. A communication port is typical of
an event process since the values of the process are most usefully
interpreted as the events of sending and receiving particular messages.
Sensor outputs, displays. mode switches and status bits. however, are
more conveniently represented as state processes since in these cases it
is usefuito view behavior as a sequence oi states. 2 In the parlance of
modern software engineering (and the Ada programming language). a state
process would be called an 'object'.

The permitted traces of a system represent the allowed (or legal)
behaviors of the system. Each trace is a partial order on a set of
, instances' •

2.1 Instances

An instance is a triple <Plv,n> where p is a process. v is a value
in Type(p), and n is a positive integer. 3 Depending on whether p is
interpreted as an event process or state process. <p,v,n> can be viewed

2

3

Note tl:lat we are speaking here of 'local' states and not 'global'
states.

Adding a positive integer to an instance merely allows us to create
distinct instances having the same process and value. The choice of
positive integers is arbitrary - any countably infinite set will do.

5

",
.,

as either the occurrence of an event or the holding of a state. For the
instance <p,v,n>,

Process«p,v,n» • p

Value«p,v,n» • v

We say that Instance <p,v,n> is an instan~t 2f Process p. Depending on
the interpretation for p - as a state process or event process - <p,v,n>
may be regarded as the condition of Process p assuming Value v or as the
event of Process p performing the action represented by Value v.

2.2 Traces

A trace is a partial order on a finite set of instances su~h that
all instances belonging to the same process are totally ordered. The
restriction on the instances of a process means that the behavior of
each process is represented by a (linear) sequence of values.

The instances in a trace, like all instances, each have a positive
integer associated with them. However, since these integers have no
significance other than to distinguish instances having the same process
and v~l~e, we consider two traces to b~ identical if they differ only in
their integer assignments.

let T be a trace defining the partial order ~ over a set I of
instances. Then

Instances(T) • I

For x,y in Instances(T), x precedes (comes before) y and y follows
(~ ~) x if x<y. x and yare concurrent if x and yare unordered

with respect to ~ - that is, if neither xSy nor y~x.

Notice that the foregoing relations depend only on the partial order
defined by T and not on the process associated with each instance. That
is not the case for two concepts central to our specification approach:
the 'next l and Ilast' relations. Let Process (x)=X and Process(y)-Y.
Then y is the next instance of Y following x if y .follows x and for all
z in Instances(T),

i
I.
I

I

x is the~ instance of X preceding y if x precedes y and for all z in
Ins tances (T) ,

Ill"

z follows x and Process(z)=Process(y)

z precedes y and Proce~s(z)·Process(x)

(,

zay or z follows y

z·x or z precedes x

Note that because the instances of each process are totaliy ordered, if
there are any instances of Process Y following (preceding) In$tance XI
then there must be a next (last) instance following (preceding) x.

2.3 Example of I Trace

A typical trace is illustrated pictorially in Figure 1. Eacn vertex
represents an instance. with the vertex type indicating the associat~d

process.
o

Thus

....

Process (ao) .. A
Process (a,) .. A
Process (a2) .. "
Process{a3) .. A

Process (bo) .. 8
Process (b,) .. 8
Process{b2) .. li
Process (b 3) .. 8

An edge (arrow) leading from Instance x to Instance y means that X
precedes y. Notice that the requirement that all instances belonging to
the same process be totally ordered is satisfi~d.

The trace in Figure 1 establishes a number of relationships among
the eight instances. A few are listed here:

a;> precedes a2

a2 fol lows ao

b, precedes a3

a3 follows b,

a, and b2 are concurrent

b, and a2 are concurrent

b3 is the next instance of Process B fol lowing a,

a, is the last instance of Process A preceding b3

a3 is the next instance of Process A fOllowi ng b,

b2 is the last instance of Process B preceding a3

Note that the 'next' and 'last' relations are not, ir. general.
converses of one ?n~ther. If x is an instance of Process X. y an
instance of Proces~ Y. and X and Yare not the same process. then the
two relations

Y is the next instance of Process Y following x

7

" -,.. ; ~...;
.

\
.,

'.I •

..

Legend
_Process A

_Process B

Figure 1. A Trace

X is the last instance of Process X preceding y

are independent. Both relations may hold. neither may hold. or one may
hold without the other. For example. in Figure 1:

• b 3 is the next instance of Process B following a p and a 1 is the
last instance of Process A preceding b3 •

• b3 is not the next instance of Process B following ao' and ao is
not the last instance of Process A preceding b3 •

• a 3 is the next instance of Process A following b,. but b , is not
the last instance of Process B precedi~g 3 3 •

If X and Y happen to be the same process, then the two relations are
equivalent - they both hold or they both fail to hold. Thus. in
Figure 1,32 is the next instance of Process A following a p and at is
the last instance of Process A preceding a2 •

Although each vertex in Figure 1 is labelled with the name of an
instance. in many cases we may wish to indicate explicitlt the process
and value associated with the instance. Since the process is already
given by the vertex type, we need add only the value. Suppose. for
example, that the type of Process A is Integer and that the type of
Process B is Boolean. Suppose, furthermore. that

{
j

I
I

Va Iue (a o) .. 17
Value(a t) .. -3
Value(a 2) .. 4
Value(a 3) -9

8

Va I ue (bo) .. T
Value(b ,) • F
Value(b~) .. F
VaJuc(b 3) .. T

l,B, !.! ,.;

Then the trace in Figure 1 can be made explicit by replacing instance
names with instance values as shown in Figure 2.

2.~ Permitted and Prohibited Traces

Central to the notion of system is the idea of constrained behavior.
Exc~pt for degenerate (and uninteresting) cases and except for
malfunctions, the behavior of a system is constrained by certain bounds.
Behaviors lying within those bounds are said to be ..,permitted (or
allowed, or legal. or possible). while those lying outside those bounds
are said to be prohibited (or disallowed. or illegal. or impossible).

In our system model we have chosen to represent system behaviors as
partial orders on instances - traces. The set of permitted traces in
the d~finition of a system (see "The System Hodel" on page 5) thus
represent the permitted behaviors of the system.

2.5 Syste~ Spe~ificatlon

Having provided a formal model of system behavior. we turn now to
the task of formally specifying that behavior. The framework described
in the subsequent sections has four components. each of which can be
related to the components of the system model. Type Definitions defines
the process types, the values associated with each type, and the
operations defined on each type. Process Declarations defines the
processes and identifies their types. The Sy~chronic Structure and the
Logical Specification together define the set of permitted traces.

3.0 TYPES

A type defines a set of values and a set af operations on those
values. How then to specify a type? for a variety of reasons, it seems
prudent to adopt the mechanisms of the Ada programming language for
declaring scalar and compo~ite types. 4 These mechanisms, which are
quite extensive, provide the ability to define the sorts of structures
likely to be encountered in specifying system behavior. Furthermore. by
adopting Ada syntax. we insure compatibility of the specification

9

17

-3

4

9

Legend
• Process A

• Process B

Figure 2. A Trace with Values

language: with what is likely to become the pr.e-eminent programming
language for real-time, embedded systems.

We will not attempt to give here a complete description of the Ada
constructs for defining scalar and composite types. Any number of
references, such as (2], [5J or (24], are adequate for that purpose. It
will be helpful, however, to give a brief overview of the scalar and
composite types illustrated in Figure 3.

3.1 Enumeration Types

Type definitions take the form

type NAME is ... ,

..
The words 'type' and 'is', as well as all other lower case words in our
examples. are reserved words with special meanings in Ada and can be
used only as indicated. 'NAME' is a user-supplied word that denotes the
name of the type being declared. • •• represents the body of the type
definition and must be fil led in using an appropriate format.

4
In addition to scalar and composite types, Ada also has access,
private and task types. These are not needed for specification
purposes and are omitted from the discussion.

10

..

f
1
I
!

~ .• #*

Type .

/~
Scalor Composit•

~ ~
Discrete Real Array Record

~
Enumeration Integer

Figure 3. Classification of Types

/

t P. "ta.. ;.uN;
~ , •.. "-t ...,,_ .' 1.9-·'" :V"

\W

..

Enumeration types are the simplest types. The type definition is
merely a list of the type's values. Thus

type NAME is (VALUE1,VALUE2,VALUE3);

declares NAME to be an enumeration type with values: VALUE1, VALUE2, and
VALUE).

Of special interest is the predefined enumeration type BOOLEAN which
may be considered to have the definition:

type BOOLEAN is (FALSE,TRUE);

3.2 Numeric Types

There are two predefined numeric types, INTEGER and R~AL. These may
be used directly or subsets may be declared using the 'subtype'
statement. The statement

subtype NAME is INTEGER range M.• N;

declares NAME to be a subtype of INTEGER that has just those integers in
the range H to N inclusive as its values. A similar interpretation
holds for the statement

subtype NAME is REAL range M•• N:

3.3 Array Types

The standard format for declaring an array type is:

11

.;4k C.. A....,.,. + ;;;:Pf-'H, ... p. • .*4' ... ,'c ¥·,-1 A tw;";':- I+Jt41M,..,.,W.JIi A.I 4,.].+4 ,;,l.l- '.94(. 4 t Z!A4

•

..

type NAME is array (INOEX1_TYPE, INOEX2_TYPE) of ELEMENT_TYPE;

This statement declares NAME to be an array type whose values are
two-dimensional arrays. INDEX1 provides the indices for the first
dimension, and INDEX2 the indices for the second dimension.
ELEMENT_TYPE indicates the type of elements making up the array.

3.~ Record Types

A record is a composite object with named components. A component
of a record is accessed through its name using dot notation. If RECORD
is a record object with a component named COMPONENT, then
RECORD.COMPONENT denotes that component. The simplest format for
declaring a record type is:

type NAME is
record

COHPONENT1: COMPONENT1_TYPE;
COMPONENT2: COMPONENT2_TYPE;
COMPONENT3: COMPONENT3_TYPE;

end record;

This statement says that NAME is a record type with three components:
COMPONENT1, COMPONENT2 and COMPONENT3. COMPONENTi_TYPE indicates the
type of COMPONENTi.

It is sometimes necessary to define a record type in which part of
the structure is fixed for all objects of that type and part of the
structure is variable. Depending on the value of a special component,
called a 'discriminant', the variable part "li'iay assume one of severa)
alternative forms. The format for declaring a discriminated-record type
is:

type NAME (DISCRIMINANT: DISCRIMINANT_TYPE) is
record

COHPONENT1: COMPONENT1 TYPE;
case DISCRIMINANT is -

when DISCRIMINANT_VALUE2 c> "
COMPONENT2: COMPONENT2_TYPE;

when DISCRIMINANT_VALUE3 0>
COMPONENT3: COMPONENT3_TYPE;

end record;

Here, DISCRIMINANT is a component of the NAME record type that helps
determine the structure of the type. While COHPONENT1 is common to all
objects of the type, COMPONENT2 pertains only to those objects for which
NAME.DISCRIMINANT takes on the value DISCRIMINANT_VAlUE2, and COMPONENT3
pertains only to those objects for which NAf1E.DISCRIMINANT takes on the
value DISCRIMINANT_VALUE3.

12

"'.

..
3.5 Example of a Type Definition

The Ada syntax just described provides an extensive capability for
describing data structures, a capability that is illustrated in the
following realistic example. It is a partial definition of the cockpit
interface for a typical commercial aircraft. We emphasize that the
definition is incomplete.

type COCKPIT is
record

FLIGHT_CONTROL: FLIGHT_CONTROL_STATE;
FLIGHT_MANAGEMENT: FLIGHT_MANAGEMENT_STATE;
AIRCRAFT_SYSTEM_MANAGEMENT: AIRCRAFT_SYSTEM_MANAGEHENT_STATE;
COMMUNICATION: COMMUNICATION_STATE;

end record;

type FLIGHT_CONTROL_STATE is
record

INERTIAL: INERTIAL_STATE;
AIR_DATA: AIR_DATA_STATE;
RADIO_NAVIGATION: RADIO_NAVIGATION_STATE;
FLIGHT_DIRECTOR: FLIGHT_DIRECTOR_STATE;
PRIMAay PILOT CONTROLS: PRIMARY PILCT<ONTROLS STAT~;

SECONDARY_PILOT_CONTROLS: SECONOARY~PILOf_CONTROLS_STATE;
end record;

type INERTIAL_STATE is
record

PITCH: UNITS.DEGREES range -90.0 ••+90.0;
ROLE: UNITS.DEGREES range -180.0 ••+180.0;
HEADING: UNITS.AZIMUTH_DEGREES;
RAT~_OF_TURN: UNITS.DEGREES_PER_SECOND range -10.0 ••+10.0;
SLIP: UNITS.FEET_PER_SECOND2 range -10.0 ••+10.0:

end record;

type AIR_DATA_STATE is
record

COMPUTED_AIR_SPEED: UNITS.KNOTS range 30.0 •• 450.0;
MACH_NUMBER: REAL range 0.0 •• 0.9;
ALTITUDE: UNITS.FEET range -1000 •• 45000;
VERTICAL_SPEED: UNITS.FEET_PER_MINUTE range -6000.0 ••+6000.0;

end record:

•
I
•

type FLIGHT_DIRECTOR_STATE is
record

PITCH COHMAND: DISPLAY SCALE:
ROLL_COMMAND: DISPLAY_SCALE:
SPEED_COMMAND: DISPLAY_SCALE:
AUTOPILOT: AUTOPILOT_HODE:

end record;

13

•

type PRIHARY_PIlOT_CONTROlS_STATE is
record

ROLl_CONTROL_WHEEl: UNITS.DEGREES range -70.0 ••+70.0;
PITCH CONTROL COLUMN: UNITS.INCHES range -4.0 ••+10.0;
RUDDER PEDAL:-UNITS.INCHES range -3.0 ••+3.0;

end record;

type HODE_DISCRIMINANT is (DISENGAGED. CONTROL_WHEEl_STEERING, COHMAND):

type AUTOPILOT_MODE CAP_ENGAGE_HODE: HOoE_DISCRIMINANT) is
record

case AP_ENGAGE_r,OoE is
when DISENGAGED ->

null;
when CONTROL_WHEEL_STEERING ->

null:
when COMMAND ->

THRUST_SPEED: THRUST_SPEED_SUBHODE;
VERTICAL: VERTICAL_SUBKODE:
LATERAL: LATERAL_SUBMODE;

end record;

type THRUST_SPEED_SUBKOoE is
record

S~~ED_HOLD: BOOLEAN;
AUTO_THRUST: BOOLEAN;
COMMANDED_SPEED: KNOTS range 30.0 •• 450.0;

end record;

type VERTICAL_SUBMODE is
record

ALTITUDE_HOLD: BOOLEAN;
VERTICAL_SPEED: BOOLEAN;
VERTICAL NAV: BOOLEAN;
COMMANDED_SPEED: FEET_PER_HINUTE range -3000.0 ••+6000.0;
COMMANDED_ALTITUDE: FEET range 0•. 45000;

end record;

type LATERAL_SUBMODE is
record

HEADING_HOLD: BOOLEAN;
VORl BOOLEAN;
RNAV: BOOLEAN;
LOCALIZER: BOOLEAN;
LAND: BOOLEAN;
SELECTED COURSE: UNITS.AZIMUTH DEGREES;
COMMANDED_HEADING: UNITS.AZIHUTH_DEGREES;
RUNWAY_HEADING: UNITS.AZIMUTH_DEGREES;

end record;

14

type UNITS is
record

INCHES: REAL;
FEET: INTEGER:
FEET_PER_HINUTE: REAL;
FEET_PER_SECON02: REAL:
KNOTS: REAL;
DEGREES: REAL;
AZIHUTH_DEGREES: DEGREES range 0.0 •• 359.9;
DEGREE$_~ER_SECOND: REAL;

end record;

f-------=----·...·"".......·__=-aiS....':;..:;;.:.:;.;.:;:z:.:.-=:I::"'!_~~.'...,f·:~:<,::!,....-""'.".,....;~"'·~~~--·.,""r'~w-,.'.~-~ ..!~~';;"'".....;r,.,...~#fJ; ~ ?:::t2~!._" ,......

I
•1
!

·i
I
I
i,
i.,
t
i

!

type DISPLAY_SCALE is REAL range -100.0 ••+100.0:

3.6 Process Declarations

Once an appropriate set of types has been defined, the processes of
a system can be declared. There are three possible formats for a
process declaration:

PROCESS_NAME is of type TYPE_NAME:

PROCESS_NAME is an event process of type TYPE_NAME:

PROCESS_NAME is a state process of type TYPE_NAME;

The first format is used when the values defined by TYPE_NAHE are to be
left uninterpreted. the second means that the values are to be
interpreted as events, while the third means that the values are to be
interpreted as states.

4.0 SYN~HRONIC STRUCTURE

The purpose ot a synchronic structure - described in this section
and a logical specification - described in t~~ next section - is to
specify. through restrictions. the set of permitted traces .. The two
types of specifications, however, provide two different sorts of
restrictions. The constraints imposed by a synchronic structure deal
only with the structure of a trace when the values associated with each
instance are ignored. For example, one might want to require that
between any two instances belonging to Process A there are 7 instances
belonging to Process B. This restriction says nothing whatsoever about
values. A logical specification, on the other hand, deals entirely with

15

-

dependencies involving values. Example: If Process A takes on Value v1,
then the next value taken on by Process B is v2.

The class of restrictions that we have chosen to call 'synchronic'
is quite large and encompasses many extremely complex relationships. We
will not attempt to specify all such restrictions, but will focus
instead on a subset of those restrictions that permit us to express
logical and timing dependencies in a unified way.

4.1 Synchronous and Asynchronous Processes

So far we have said nothing about time. We have spoken only of
instances and partial orders on instances. It is clear, however, that
in order to specify real-time behavior, a way must be found to express
timing dependencies.

An obvious approach is to augment the definition of a trace by
adding durations either to instances - for a state process - or to edges
- for an event process. In the first case, the duration represents the
duration of a state holding, whi Ie in the second case the duration
represents the elapsed time between t~~ ~vent occurrence~. This
approach, while perhaps workable, intiod~c~s a second level of discourse
for expressing timing dependencies. It means having to express logical
relationships and timing relationships using two separate sets of
notions, a troublesome situation when the logic and timing of system
behavior are intertwined, as is often the case.

By following a slightly different course, it is possible to ~xpress

both logical and ti~ing requirements within a single, unified framework.
This is <.lccomplished by attaching to a process a granularit)' (of time).
For example, we might declare Process A to have a granularity of one
nanosecond. If Process A is a state process, then each instance of
Process A represents a state holding having a duration of one
nanosecond. A state holding with a longer duration is represented as a
sequence of instances. Thus, to represent a holding of five
nanoseconds, five consecutive instances are required. If Process A is
an event process, then one nanosecond represents the elapsed time
separating two successive occurrences of Process A. To represent an
elapsed time greater than one nanosecond, it is necessary to separate
the two occurrences by the appropriate number of instanceJ. (To
accomplish this, null events may have to be introduced.)

The format for the synchronic structure of a system is a list of
declarations, each of which is in one of the following two fort,ls:

PROCESS_NAME is synchronous with granularity T;

PROCESS_NAME is asynchronous;

16 -

•

.,.....

The meaning of the first statement is apparent. The second statement
says that there is no metric for time associated with the sequence of
instances representing the behavior of PROCESS_NAME •.A single system
may contain both synchronous and asynchronous processes~ and among the
synchronous processes there may be several distinct granularities.
There is one restriction. however. when there are multiple
granularities. We require that for any two granularities T1 and T2 •

either T1 is an integer multiple of T2 or vice versa. This restriction
is necessitated by the semantics of a synchronic structure.

4.2 Semantics of a SynchronIc Structure

As we noted earlier, one of the purposes of a synchronic structure
is to restrict the set of permitted traces. We describe now the form
that that restriction takes.

Suppose that A and B are two synchronous processes with
granularities TA and TB, respectively. Assume that TA~TB and let
n-TA/TB• This means that there are n instances of Process B for every
instance of Process A. How can this property be expressed as a
restriction on traces? The approach adopted is to require each instance
of Process A to be concurrent with n instances of Process B. This idea
is illus.trated in Figure 4 for the ca,Se I A/Te-5. Notice that ther", ore
exactly five instances of Process B - b3 , b4 , bs • bG and b7 - concurrent
with a,. The remaining instances of Process B either precede a, or
follow a,. .

The reader will also note that our requirement does not strictly
hold for ao and a2 • There are only three instances of Process B - boo
b, and b2 - concurrent with ao' and likewise only three instances of
Process B - ba, bg and b,o - concurrent with a2 • This problem, which is
related to the finite nature of a trace, is purely technical and can be
remedied by a more precise statement of the requirement. The
restatement, which will also clear up some other details, is deferred to
a subsequent paper.

5.0 LOGICAL SPECIFICATION QF UNIPROCESS SYSTEMS

In Section 6 we describe a language, called MPL (for MultiProcess
language). for specifying both logical and timing dependencies in the
context of the system model introduced earlier. Before addressing the
multiprocess case, however, it is useful to consider first the
uniprocess case - that is, the case where 3 system has just a single

17

PtQ,.. ' R.

-

• I:
~

b3

b..

bs

bs

bJ

be Legend

I
.~e$$A

bg .~.ssB

blOOz

Figure 4. A Trace of Two SynchronQus Processes

process. Although the syntax of the languages is essentially the same
for both cases, the semantics for uniprocess systems is simpler.
requiring less mathematical apparatus. One valuable benefit of this
two-step approach is that it permits us to see how the concepts for
uniprocess systems generalize in a natural way to multiprocess systems.

Because we are dealing with systems having a single process, the
system model can be greatly simplified. A (yniproces$) system is an
ordered pair <V,~> where V is a set of values and ~ is a set of
permitted value sequences. each of which is of finite length. As in the
multiprocess case. values may be interpreted as states or events, or
they may simply be left uninterpreted. In addition. the system may be
viewed as synchronous or asynchronous.

18

• S.1 A~ic Formulas

UPL (for UniProcess language) is the language for expressing logical
and tirming relationships for uniprocess systems, and, like any language,
it must: have a set of basic building blocks. These are called J!9!!lle
f2rmur••• Although the precise syntax for these formulas is nClt
importamt in the present discussion, each such formula must define a
predicate on the set of values. The subset of values for which the
formula;Q holds (is true) is denoted Values(Q). For example, if V is
the se~ of integers and Q is the formula 3<X<7, where X represents the
system process, then Values(Q}-{4,5.6}.

S.2 Connectfves

UPL is an extension of the language of Boolean expressions. It has
four basic connectives: the familiar Boolean connectives 'and' and
'not'. ~he new binary connective 'and_next' and the new unary connective
'and_~xt*'. The additional connectives 'or', 'or_next', 'or_next.',
'implies' and 'implies_next' are defined as abbreviations:

As a notational convenience when writing long expressions, we adopt
the foWlowing shortened forms for the various connectives:

not ...

and A

and_next A

and_next* A

or V

or_next V

or_next* V

implies ->

19

..
Note that since 'and_next' is a binary connective while 'and_next*' is a
unary connective, no confusion should arise from using the same symbol
for both connectives. The same observation ,ilpplies to 'or_next' and
'or_next*'.

S.3 Concatenation

In order to define the semantics for UPL, we need some familiar
concepts from formal language theory. (See Hopcroft and Ullman [19J.)
If Q and ~ are sequences, then uS denotes their concatenation. ~

denotes the null string, for which the properties ~QCQ and Q~.Q hold for
all strings u. If A and B are each a set of sequences, then

A'B • {u~lu is in A and ~ is in B}

Thus, if A = lab, bb} and B • {b, a, bab}, then A'B • {abb. aba. abbab,
bbb, bba. bbbab}.

If A isa set of sequences. then p,O"'tq and J\1"'A t - 1'A for i>O. HIC

closure of A. denoted A', is the set consisting of the null sequence ~

and all finite-length sequences obtained by concatenating sequences in
A. Equivalently,

5.4 Semantics

Each formula of UPL ultimately represents a predicate on V· (the set
of finite-length value sequences). Thus, the ultimate meaning of a
formula of UPL is given by the set of value sequences that satisfy the
formula. In order to define this set, however, we need to introduce two
intermediate quantities for each formula. For a formula P, In(P) and
Ex(P). which are both subsets of V', represent the 'Included' and
'Excluded' value sequences, respectively, associated with P. In(P) and
Ex(P) are defined inductively, first for atomic formulas and then for
formulas constructed using each of the four basic connectives. In what
fo 11 ows. Bo (p) denotes In (p) U Ex (P) •

20

•
f

..

•
t

5.4.1 "eanlng of atomIc formulas

Each atomic formula will eventually be interpreted as a predicate on
value sequences. Recall, however. that initially each atomic formula
represents a predicate on (individual) ValU&5. and that Values(P)
denotes the set of values that satisfy the atomic formula P. Now
interpret each value in Values(P) and in V (the set of all values) as a
sequence of length one. Then,s

In (p) • Va 1ues (P)

EX(P) • V - Values(P)

In(P) is. thus. the set of those sequences of length one whose (only)
value satisfies P. Ex(P) i~ the set of those sequences of length one
whose (only) value does not satisfy P.

5.4.2 Meaning of 'not l

The connective 'not' merely interchanges the included and excluded
sets for an expression. Thus.

In (not P) • Ex (P)

Ex (not P) • In (P)

5.4.3 Meaning of 'and'

The definitions of the included and excluded sets for 'P ~nd Q' is
consistent with the usual intuition about 'and':

In(P and Q) • In(P) n In(Q)

Ex (p and Q) Ex (P) U Ex (Q)

... .

Thus. a sequence is in In (P and Q) if it is in both In (P) and In (Q) •
The definition of Ex(P and Q) is motivated by the need to have
In (P or Q) • In (P) U In (Q) (see be low) •

Note that if we stopped at this point without introducing the
non-classical connectives 'and_next' and 'and_next*', we would have the
semantics of cia:.sical logic. Let us call a formula classical if it is
constructed from the set of atomic formulas using only the classical
connectives 'and'. 'or'. 'not' and 'implies'. Then for each classical
for~ula P, In(P) consists of the set of values that satisfy P in the
classical sense. while Ex(P). which is just the set-theoretic complement
(with respect to V) of In(P). consists of the set of values th3t do not

5 If A and B are sets. then A • B is the set co·/taining those elements
that are in A but not in B.

21

..

'1

•

•

..

satisfy P in the classical sense. Hence, when 'and_next' and
'and_next icl are excluded, 'and', 'orl, Inot l and limplies l can still be
used in the classical way.

When 'and next' and land next*1 do become involved, however, In(P)
and Ex(P) are-no longer nece;sarily complements of one another, and
interpreting the effects of the classical connectives on In(P) and Ex(P)
sometimes requires a little thought.

5.4.4 Heanlng of 'and_next'

Expressions involvi~g the phrase land next l are common in everyday
life: "First we'll do this, and next weIll do that." This notion of
temporal ordering is captured mathematically using concatenation. If Q

and ~ are two sequences, then u~ embodies the idea '0 and next pl. This
theme provides the basis for our definition of the included and excluded
sets for 'P and_next Q':6

In (P and_next Q) - In (P) ·In (Q)

Ex (P and_nex t Q) .. Ex (p) •Bo (Q) U Bo (p) •Ex (Q)

Each sequence in In(P and next Q) thus consists of a sequence from In(P)
'and '"!ext' a sequence from In{Q). The aefinition of EX(Pand_next Q) is
meant to parallel the definition of ExCP and Q). Hence, a sequence is
in ExCP and next Q) if it consists of a sequence from BoCP) followed by
a sequence from Bo(Q) such that either the first sequence is in Ex(P) or
the second sequence is in Ex(Q).

To illustrate the definitions for land next l , consider the situation
where In(P)={a}. Exep)={b,c}. In(Q)-{a,b} and Ex(Q)-{c}. Then

In(P and_next Q) '" faa, ab}

Ex{P and_next Q) '" {ba, bb, be, ca, cb, cc, ac}

Note that all the sequences in InCP). Ex{P), In(Q) and ExeQ) are of
length one, while all the sequences in both InCP and_next Q) and
ExCP and_next Q) are of length two. This is an illustration of a
general property: If all the sequences in In(P) and Ex(P) are of length
m and all the sequences in In(Q) and Ex(Q) of length n. then all the
sequences in both InCP and_next Q) and ExCP and_next Q) are of length
m+n •

We noted earlier that for the case when P is a classical formula,
In(P) and Ex(P) are the set-theoretic complements (with respect to V) of
one another. We now consider some of the ways in which that simple
relationship breaks down when the connective 'and_next' is introduced.
Assume P. Q. Rand S to be classical formulas throughout the discussion.

.
"

l "
I'

6 Reca 11 that Bo CP) ... In CP) U Ex (p) •

22

..

•

Now let F represent the formula 'P and_next Q'. Since In(F) and Ex(F)
are not subsets of V, they cannot be set-theoretic complements with
respect to V: But they are set-theoretic complements with respect to
V2. In fact, if P1 ••• Pn are all classical formulas and F represents
the formula 'P 1 and_next ••• and_next Pn'. then In(F) and Ex(F) are
set-theoretic complements with respect to Vn•

Now let F represent the formula 'P and (Q and_next R) '. Applying
the above definitions, we have

In (F) • In (P) n (In (Q) 'In (R»

Ex(F) '" Ex(P) U (Ex(Q) 'Bo(R» U (Bo(Q) 'Ex(R»

Since In(P) contains only sequences of length one and In(Q) 'In(R) only
sequences of length two, In(F) is empty. Ex(F) , on the other hand, is.
in general, non-empty and contains an assortment of sequences of length
one and length two. There is little that can be said about the
relationship between In(F) and Ex(F). They are not set-theoretic
complements with respect to any interesting set. They are, however.
mutually exclusive. But this is not always the case.

let a, b, c, d and e be arbitrary values, and let P, Q, Rand S b~

defined such that

a is in In (p)
b is in In (Q)
c is in Ex (Q)
c is in In (R)
d is in Ex (R)
e is in Ex (S)

Now let F represent the formula

«PV (Pl1Q) }lIQ) A (RV «RVS) AS)}

(The meanings of 'or' and 'or_next' are given below.) It is easily
verified that the sequence abcde is in both In(F) and Ex!F). Although
this example may seem counter-intuitive. it presents no problem in
defining the semantics for UPL and, in fact, there is a natural
interpretation for it (see Section 5.4.11).

In order to express such temporal relations as "until". "as long as"
and "following", we need the ability to represent for a formula P the
following infinite expression: 7

The included set for this expression, obtained using the definitions
already give , is

23

{~} U In{P) U In(P) 'In(P) U In(P) 'In{P) 'In{P) U

while the excluded set is

~ n Ex(P) n Ex(P and_next P) n Ex(P and_next P and_next P) n

The first quantity is just (In(P»·. while the second quantity reduces
to the null set. We are thus led to the following meaning for
'and_next* P'. our represention for the above infinite expression:

In (and_next* P) • (In (P»·

Notice that for the special case when P is a classical formula.
In(and_next* P) is just the set of all value sequences a such that each
value in a satisfies P.

5.4.6 Meaning of 'or'

The connectives 'or', 'or_next'. 'or_next*'. 'implies' and
'implies_next' are all abbreviations for expressions involvin9 the four
~asic co~~ect;ves 'not'. 'and'. 'and_next' and 'and_next*'. The
meanings of these five additional connectives. therefore. follo\'1
directly from the preceding definitions.

For the connective 'or'. we have

In (P or Q) • In (p) U In (Q)

Ex(P or Q) • Ex(P) n Ex(Q)

A sequence is thus in In(P or Q) if it is in either In(P) or In(Q).

5.4.7 Meaning of 'or_next'

By applying the appropriate manipulations to the meaning of
'and_next'. we obtain for 'or_next'.

In(P or_next Q) • In(P) 'Bo(Q) U Bo(P) 'In(Q)

Ex(P or_next Q) • Ex(P) -Ex(Q)

A sequence is in In(P or_next Q) if it consists of a sequence from BO(P)
followed by a sequence from Bo(Q) such that either the first sequence is
in In(P) or the second sequence is in In(Q). Each sequence in

i
I··

7 A denotes the 'null formula'. By convention. In(A)·{~} and ExL0-••
~ denotes the empty set.

24 -

•

..

~ :lI'CI!IIIiA:::':;;";,,o;;:=e::lt="-= ·_-"'~·J."'''_·•__",rJ.:Io::;;.l=-;•..-.-v.-=::.!.-..~!:_~ ,::::'~:"":.':t;:i s;:;,:4i':""V4'\I'''~ I;,. ,4;i4iiil4{JV,lWII!) .¥=t4TV;J""~ h ",'> ~$?-'d:::~.1t.:.4"':_~~~M. ,

I
. !

Ex(P or next Q) consists of a sequence from Ex(P) land next' a sequence
from Ex(Q) •

As an illustration, consider the same example we gave for
'and_next', where In(P)·{a}, Ex(P).{b,c}, In(Q)-{a,b} and Ex(Q)-{c}.
Then

In(P or_next Q) - faa, ab, ac, ba, ca. bb. cb}

Ex(P or_next Q) - {be, cc}

5.4.8 Heanlng of lor_next*'

The definitions for 'or_next*' parallel those for 'and_next*':

Ex (or_next* P) • (Ex(P»,

For the special case when P is a classical formula, Ex{or_next* P)
consists of all value sequences Q such that each value in Q satisfies
'not pl.

The connective 'implies', which is used almost exclusively in the
context of classical formulas, has a meaning that is consistent with
that usage:

In{P impl ies Q) 8: Ex (P) U In (Q)

Ex (P impl ies Q) = In (P) n Ex (Q) - .

5.4.10 Meaning of 'impl ies_next '

In specifying the logical behavior of systems, one repeatedly finds
the need to express the dependency: "Whenever Behavior 1 occurs, it
must be immediately followed by Behavior 2." If we assume Behavior 1 to
be represented by Formula P and Behavior 2 by Formula Q, then. as shown
below. this dependency can be expressed as Ip implies_next QI. The
definitions that permit this interpretation are:

In(P implies_next Q) 8: ExtP) "Bo(Q) U Bo(P) "In(Q)

Ex(P implies_next Q) 8: In(P) "Ex(Q)

As an illustration. consider once again the example given above where
In(P)={a}, Ex(P}={b,c}, In(Q)={a,b} and Ex(Q)"{c}. Then

25

./
"

•

..

In(P implies_next Q) • {ba, bb, be, ea, eb, ee, aa, ab}

Ex(P implies_next Q) • lac}

5.~.11 Satisfaction and Truth

In the preceding sections, we have shown how to calculate the
quantities In(P) and Ex{P) for any formula P in UPL. Recall. however,
that ultimately a formula is to be interpreted as a predicate on V' and
that the ultimate meaning of a formula is given by the set of value
sequences that 'satisfy' it. We now define, with the aid of Ex(P) , what
it means for a sequence of values to 'satisfy' a formula P of UPL. We
select Ex(P). rather than In(P), for the role because we are interested
in expressing properties that constrain. or restrict. the set of
permitted value sequences. It is the excluded sequences of a formula
that provide these restrictions.

•

A sequence of values a satisfies a formula P of UPL if and only if a
contains no member of Ex(P) as a subsequence. 8 Thus. if ~ is in Ex(P)
and ~ is an extension of ~ (~ contains ~ as a subsequence). then Y
cannot satisfy P. To illustrate this idea. consider the example used
several times earlier in which In{P)={a}. Ex(P)={b,c}, In(Q)={a,b} and
Ex(Q)-{c}. Let F represent the expression 'P implies_next Q'. As noted
above, Ex(F)={ac}. A sequence, therefore, .satTsfies F if and only if it
does not have ac as a subsequence. Examples of such sequences are: A,
a, b. c. ca. bb, abc, abab and abbca. Examples of sequences that do not
satisfy Fare: ac, aac, acb, aacc and bbacb.

The reader will note that because satisfaction is defined using only
Ex{P), the possibility that In(P) and Ex{P) may not be set-theoretic
complements or that they may intersect presents no technical problems.
Some situations do arise, however, that do not exist in classical logic.
but 'make sense' in the context of our model •. For example, if P is a
formula in UPL, then it is possible for a sequence of values to satisfy
both P and ~p. o~ to satisfy neither P nor ~p.9 To illustrate. let F
represent the formula 'P implies_next Q' where P and Q are classical
formuias. Because all the sequences in both In(F) and Ex(F) are of
length two. all sequences of length one satisfy. by default, both F and
~F. This is natural. If a formula of UPL expresses a constraint on
sequences of length n, then we expect all sequences of length less than
n to satisfy the formula by default. Now consider any formula F for
wh i ch In (F) and Ex (F) are both non-empty. Let a be a member of In (F)
~nd ~ a member of Ex(F). The sequence u~ then has subsequences in both

I

~ .
•

8

9

Sequence u is a subsegut::llce of sequence .~ if and on 1y if there ex is t
sequences ~ and 0 such that ~=~uo.

Do not confuse the statement ' ... does not satisfy P' with the
statement ' ... satisfies ~P'. The first statement says~that a has a
subsequence that is in Ex(P), while the second says that no
sLibsequence of ... is in Ex (... P) •

26

-

;
.;.

~..' ':"'\'''':":":.~!!:=::c::=.::..:~".,
",

!
I
I

·"'·~'·.:1·:.""'''Y-''''''''~''~'''~~:'-·''''"'1'''''''''''~~''''''''''''l..,'''''''"~""-.~~I>'t"7·7""'''<'''''''_''''c"'l'II!I!.}"I!-"!!I';;""lt!,.,~....''''''._....,..,.''__~~

ill

..

In(F) and Ex{F). But since In(F)·Ex(~F). ap has subsequences in both
Ex(F) and Ex(~F) and hence satisfies neither F nor ~F. This too is
natural. If a formula of UPL expresses a constraint on sequences of
length n. then we expect there to be sequences of length greater than n
that violate the constraints of F in one location and violate the
constraints of ~F in ar."ther location •

Tbe last order of business in providing the semantics for UPL is the
notion of 'truth'. A formula P of UPL is !rY! (with regard to a given
system) if and only if every permitted value sequence satisfies P. In
other words, P is true if and only if no permitted sequence has a member
of E~(P) as a subsequence. True formulas thus specify, by restriction.
the set of permitted value sequences, and they are the mechanism by
which a logical specification constrains system behavior.

5.S Algebraic Properties

In much of the preceding discussion, we have tacitly made use of
certain 'algebraic' properties of UPl. For example, in writing "
and_next P and_next P' we assumed that 'and_next' represents, in some
sense. an associative operator. Let us say that two formulas of UPl are
'equal'jf their included and excluded sets 31"e the same. Then the
following algebraic properties involving the classical operations A, V
and' follow from the above definitions.

xAx=x and xVx=x

xAy=yAx and xVy=yVx

xA(yAz)=(xAy)Az and xV (yVz) = (xVy) Vz

xA(xVy)=x and xV(xAy)=x

xA {yVz)" (x/\y) V(xAz) and xV (yllz) =(xVy) A(xVz)

(i dempotence)

(commutativl tV)

(associativity)

(absorpt ion)

(distributivity)

(DeMorgan's Laws)

(involution)

An algebra satisfying these properties is called a DeHorgan algebra.
(See Balbes and Dwinger [1], Chapter XI.) The interesting thing about a
Oet'iorgan algebra is that it satisfies nearly all the usual properties of
a Boolean algebra. In fact, it would be a Boolean algebra with the
addition of the law of the Excluded Middle: xV~x=1.

The properties that involve the non-classical connectives A. V are:

......

xA(y~z)=(x6y)6z and xV(yVt)=(xVy)Vz

27

(associativity)

(DeMorgan's Laws)

•

..

5.6 Examples of Statements about Unlprocess Behavior

Having provided the formal semantics for UPL, we now show how some
common logical/temporal dependencies can be expressed within UPL. For
simplicity, we assume in the following examples that P, Q and Rare
classical formulas - that is, formulas constructed from the set of
atomic formulas using only the connectives 'and', 'or ' , Inot' and
'implies L

• In addition, we define T (F) to be an atomic formula that is
satisfied by all (no) values.

5.6.1 Example 1 (Invarlance)

The simplest assertion that one can make about system behavior has
the form: lip is true ll

, where P is a classical formula. From the
semantics provided above, it follows that P is true if and only if every
value in every permitted value sequence satisfies P. Therefore, saying
that P is true is equivalent to saying that P is always true. A
statement that is always true is commonly called an invariant.

5.6.2 Example 2

Con~ider the statement:

lip is followed three values later by Q."

This is a shorthand way of saying: IIIf a value satisfies P, then the
third value following this value must satisfy Q." Or expressed a little
differently: IIIf a value satisfying P is (immediately) followed by two
arbitrary values, then the next value must satisfy Q". When stated in
this way, the dependency is seen to have the same meaning as the
fol lowing two (equivalent) formulas of UPL:

(p and_next T and_next T) implies_next Q

P implies_next (F or_next For_next Q)

5.6.3 Example 3 (Inevitability)

Consider the statement:

"Q is inevitable within three values following P."

In other words: "If a value satisfies P, then at least one of the next
three values must satisfy Q.II Expressed a little differently: IIIf a
value satisfies P, then the next value or the next value or the next
value must satisfy Q.II When put this way, the statement has a direct
translation into UPL:

28

r~"-"'-:""~'v'~"":"~'" '
lr~..c -.
i
i

......~~--
" ,

•

..

..

Note the parallel with the second formula in Example 2. Note also that
this approach to expressing inevitability does not generalize to
•unbounded' inevitability. To express "Q is inevitable following P"
would require the infinite expression: IIp implies_next {Q or_next Q
or_next "''' •

5.6." Example It

Consider the statement:

"Q for three values following P."

Or equivalently: "If a value satisfies P, then the next value and the
next value and the next value must all o;atisfy Q", the obvious
translation of which is:

This formula, however, does not precisely capture the intended meaning
of the above statement. The formula expresses a constraint on value
sequences of length four (and, by extension, to sequences of length
greater than four), but places no constraints on sequences of length
less than four. For example, if the first value of a length-two
sequence satisfies P, then the formula imposes no restrictions on the
second value - it may, or may not, satisfy Q~ A formula that correctly
expresses the intended meaning of the above statement is the following:

P implies_next Q

and

and

5.6.5 Example 5 (following)

Consider the statement:

"Following P, Q."

This is shorthand for: "If a value satisfies p. then all future values
must satisfy Q". Or put another way: If a value satisfying P is
followed by a finite number (including zero) of arbitrary values, then
the next value must satisfy Q." When expressed in this way. the
statement can be transl~ted directly into UPL as:

29

'.", ;,.,.,. ':."'- "\:........'...A"".""l*'"""'.....'"'.':""_.,. ~
._" •. I'.~ ,,- . .,..,,»._..~,.' ,

·1.

5.6.6 Example 6 (as long as)

•

•

Consiaer the statement:

"Following p. Q as long as R."

This is another way of saying: IIIf a value satisfies p. then any
following value must satisfy Q if that value and all intervening values
satisfy R." Or put another way: "If a value satisfying P is
(immediately) followed by a finite number (including zero) of
consecutive values satisfying R. then the last value (in the sequence of
consecutive values satisfying R) must satisfy Q.II In UPl the statement
becomes:

(P and_next (and_next* R» implies_next (R implies Q)

5.6.7 Example 7 (until)

Consider the statement:

"Following p. Q unti 1 R."

Which is to say: "If a value satisfies p. then any following value must
satisfy Q provided that no intervening value satisfies R." Or
equivalently: "If a value satisfying P is (immediately) followed by a
finite number (including zero) of consecutive values satisfying 'not RI

•

then the next value must satisfy Q." The corresponding formula in UPl
is:

5.6.8 Example 8

Consider the statement:

"Q holds for all odd-numbered values following P."

Thus, if a value satisfies p. then the first, third, fifth ••• value
following that value must satisfy Q. This constraint is expressed in
UPL as:

5.6.9 Remarks

We make two observations about the preceding examples. F~rst•
except for Example 1, each statement is in the form of an implication
stating what must be true in the future given some current condition.
It should be clear, however. that there are analogous statements
involving past behavior. For example. "Preceding p. Q" is the
counterpart to "Following P, Q". Such statements. which are .as

30

ir,

;.,.....~....~ '-,
t

\

•

I
I
I

t
I
I
j

legitimate as those predicting future behavior. are expressible within
UPl because the language has no fundamental bias towards either the past
or the future •

The second observation about the above examples concerns their
interpretation when the system process is declared to be synchronous and
is assigned a granularity. With such a declaration. formulas of UPL
take on a temporal meaning. Suppose. for example. that the system
process is declared to be synchronous with a granularity of one
millisecond. Then the formulas in Examples 2. 3 and 4 can be
reinterpreted as follows:

lip is followed three milliseconds later by Q."

"Q is inevitable within three milliseconds following P. II

"Q for three milliseconds following P."

Such is the way in which logical and timing constraints are integrated
into a single framework.

,
6.0 LOGICAL SPECIFICATION OF MULTIPROCESS SYSTEMS

HPL (for MultiProcess Language) is the language for specifying both
logical and timing dependencies in multiprocess systems. It has much in
common with UPL. Except for the addition of a unary connective (called
'reverse'). the syntax of HPL is identical to that of UPL. The basic
connectives 'not'. 'and'. 'and_next' and 'and_next*' are used in the
same way, while the auxiliary connectives 'or', 'or_next'. 'or_next*,
I implies' and 'implies_next' are defined as the same abbreviations.

Like the uniprocess case. the semantics for each formula P of MPL is
given by the two sets In(P) and Ex(P) which, again like the uniprocess
case. are defined inductively. first for atomic formulas and then for
formulas constructed using each of the basic connectives. Furthermore.
In{P) and Ex{P) retain their original forms - as expressions involving.
union. intersection and concatenation - when P is constructed using any
of the original UPL connectives. For example. Ex{P and next Q) •
Ex (P) ·Bo (Q) U Bo (P) •Ex (Q) j n both the uni process and th; mul t i process
case. However, because the formulas of MPL are eventually to be
interpreted as predicates on (partially ordered) traces rather than
predicates on (totally ordered) value sequences, it is necessary to use
a different type of structure within the included and excluded sets for
a formula P. In the uniprocess case, In(P) and Ex{M are each a set of
value sequences. whi Ie in the mUltiprocess case. In{P) and EX(P) are
each a set of trace-like objects. called 'templates'. This change from
sequences to templates entails two modifications to uniprocess

31

.'. ',,&:,~JlI;:~:~ .• _' • _.
.~$.,$I."""";"'l1;,···"'· r.

"

,. ,
r
I
~,

f.

semantics: (1) the included and excluded sets for atomic formulas must
be redefined and (2) the notion of concatenation must be adapted to
templates.

The following sections focus primarily on the structure of
templates. their use in included and excluded sets, and their ultimate
interpretation as 'templates' for traces.

6.1 MPL Syntax

As in the case of uniprocess systems. we assume the existence of a
set of atomic formulas. As above, we are not concerned with the
particular syntax for atomic formulas, but we do assume that each atomic
formula Q is associated with a unique process - denoted Process{Q) - and
represents a predicate on the values belongi~g to Process(Q) 's type.
The subset of values in Type (Process (Q» for which Q holds (is true) is
denoted Values(Q).

Composite formulas of HPl are constructed from the set of atomic
formulas using the four basic connectives of UPl - 'not'. 'and'.
'and_next' and 'and_next* - plus the new unary connective 'reverse'
denoted -. The auxiliary conne~Lives 'or', 'or next'. 'or next*.
'implies' and 'implies_next' retain their origi~al meaning; as
abbreviations.

6.2 Templates

Informally, a 'template' is a directed graph whose vertices are
instances 10 and whose edges (arrows) come in two types: those labelled
'next' and those labelled 'last'. Formally, a template is an ordered
triple <I,N,L> where I is a finite set of instances and where Nand l
are each a set of directed edges on I. Although there are no
restrictions on the structure of a template, only those templates that
correspond to partial orders - those without (directed) circuits - will
be of interest. For a template <I,N,l>.

, "

"

10 Recall that an instance is a triple <p,v,n> where p is a process. v
is a value in Type(p), and n is a positive integer.

32

Instances«I.N.l» • I

Next«I.N.l» m N

last«I.N.l» • l

The head (1l1l) of a template is the set of those instances that have no
emergent (entrant) edges. The null template <~.~.~> Is denoted by ~.

To illustrate these ideas. let T be the template depicted in Figure 5.
Then

Head(T) - {x6 • x7}

Tail (T) • {xo ' x,}

Next(T) - {<xO,x2>. <x"x3>, <X2 ,X4>, <X 3 .X4>}

last(T) = {<x4 ,xS>' <x S ,x6 >, <xS ,x7>}

6.3 A Partial Order on Templates

In defining In(P) and Ex(P) for a formula P of HPl. we will make use
of a partial order on templates which is intended to capture the idea of
one template being a 'simpler' or less 'restrictive' version of another.
The ordering depends on the notion of a 'morphism' between two
templates.

let T, a~d T2 be templates. A mapping ~ from Instances (T,) to
Instances(T~) is called a morphism from T, to T2 if for all x,y in
Ins tances (T~) •

• Process (x) .. Process (1\1 (x))

• Va 1ue (x) .. Va Iue (.:. (x»

• <x,y> in Next (T,) => <1jI (x) .~ (y) > in Next (T2)

• <x,y> in last (T,) => <1\1 (x) .~ (y) > in Last (T 2)

• x in Head (T,) -> IjI (x) in Head (T 2)

• x in Ta i 1 (T,) ..> IjI (x) in Tai I (T2)

33

J
.

~
I'
.~

f;',

,

I
(,

+.""'~
~
~ "

'"t '..
I
"

.'
• L;.

t•
"

~; .. ,-" '\ . . '

Xo •

i
c:

• X,

(

Figure 5. A T~mpl~te

If the mapping ~ is one-to-one, then the morphism is also said to be
one- to-one. 11

We now use the notion of morphism to define the partial order S on
templates. 12 If T1 and T2 are templates, then T1ST2 if and only if at
least one of the following conditions holds:

(1) T1 and T2 are both the null template.

(2) T1 and T2 are both non-null and there exists a one-to-one
morphism from T1 to T2 •

(3) T1 and T2 are both non-null and there exists a morphism from T1
to T2 but no morphism from T2 to T1 •

We note first that the null template h is isolated by S from a\l other
templates. Condition 2 says, in effect, that there is an exact copy
(except for instance numbering) of T1 embedded in T2 and that the head
(tail) of this copy is contained in the head (tail) of T2 • Condition 3

11

12

A mapping ~ is one-to-one if distinct elements in the domain of ~

have distinct images under ~.

In claiming that S is a partial order, we consider two templates to
be identical if they differ only in their instance numbers.

34

i .--........._- -,._-_." -._. All·

: 1
~ i
~, ,

,
~ . ' ..),,,'

..

says that there is a 'collapsed' version ~f T1 embedded in T2 and that
the head (tail) of this version is contained in the head (tail) of T2 •
Condition 3 also requires that there be no similar version of T2
embedded i n T1 •

To illustrate the concept of template ordering. consider the three
templates in Figure 6. Assume that like-named instances in sep3rate
templates have the same process and value. Assume. furthermore. that
Process(xo)-Process(xo') and that Value(xo)-Value(xo ') Notice that an
identical copy of T1 is embedded in T2 and that the head (tail) of this
copy 1s contained in the head (tail) of T2 • Thus. T1ST2 ~I Condition 2.
(This relationship also follows from Condition 3 if x1 and x2 in T2
differ in either process or value.) Now notice that there is a
'collapsed' version of T2 embedded in T3 and that the head (tail) of
this version is contained in the head (tail) of T3 • Notice also that
there is no similar version of T3 embedded in T2 (assuming that x1 and
x2 differ in either process or value). Hence, T2ST3 by Condition 3.

To help motivate the last requirement in C~ndition 3, suppose that
x, and x2 in template T2 of Figure 6 have the same process and value.
There is then a morphism from Ti ia f

"

Now if the last requirement in
Condition 3 were omitted, it would follow that T2ST , • But because T1ST2
by Condition 2, the anti symmetry property of S would be violated.
Hence. the need for the last requirement in Condition 3.

6.4 Concatenation of Templates

Concatenation of templates is analogous to concatenation of
sequences. If T~ and T2 are templates, then T1 'T2 • <I,N,L> where '3

I Instances(T ,) U Instances (T 2)

N = Next(T ,) U Next(T2) U (Head (T ,) X Tail (T 2»

L = Last(T,) U Last(T2)

T, 'T2 is thus obtained by connecting the nead of T, to the tal I of T2
with a set of 'next' edges.

As an illustration of concatenation, consider the two templates T,
and T2 in Figure 7. T, consists of ',he instances xo ' x" x2 and x3 and
the two edges connecting those instances. T2 consists of the instances
x4 ' xS ' x6 and x7 and the three edges connecting those instances. T, 'T2
is the composite graph obtained by connecting T, to T2 with the two
edges <x 2 ,x 4> and <x 3 .x 4>, which,are indicated by dashed lines.

13 X denotes Cartesian product.

35

<0'+ '.._.-._--

1 0
'

i

, .' -111

,.. -:--:

(c) Template T3

...~,
(b) Template T2

(a) Template T,

Figure 6. Three Ordered Templates

As in the case of sequences, sets of templates can also be
'concatenated'. If T1 and T2 are each a set of templates, then T

1
'T

2
is

the set of all those templates T for which there exist T
1

in "1 and T
2in T2 such that Instances (T I) n Instances (T

2
) •• and T

1
'T

2
ST. 14

(Note that {T I } '{T2 } jf {T 1 ·T2 }.) Tn and T' are defined as before for
sequences.

When concatenating two templates, we want to consider them as two
separate and distinct objects. This cannot be done. however, when
there is a naming conflict between the instances of the two
templates. - Thus the requirement in the above definition that
Instances(T,) and Instances{T) be disjoint. For the sets of
templates we wi II pe consider ng, no concatenated templates wi II be
lost because of this restrict on since it will always be possible to
replace conflicting templates by equivalent, non-conflicting ones.

36

;
J
\
1 -
•

',''..:_, --~ -,

$S ,,4.. ,I:

X, next X3

• ... ,,.. ,
','>",...,~

,". last

..."x"
.'~

,", ~
,

• next
...

Xo x2

Template T, Template T2

Figure 7. Concatenating Two Templates

6.S Well-Structured Sets of Te~plates

As already noted, In(P) and Ex(P), for a formula P of HPL, will be
def i neo ,as5cts of templates_ These sets ...IiH turn out to have two
important properties: 'upward closure' and the 'minimality condition'.

Let X be a set of elements partially ordered by s. X is said to be
upwardly closed (with respect to S) if

xSy and x in X => Y in X

X satisfies the minimality condition (with respect to s) if for each
element y in X there exists a minimal element x of X such that xSy.15
When X is both upwardly closed and satisfies the minimality condition,
we say that it is well structured. An important property of a
well-structured set X is that it can be characterized by its set of
minimal elements - denoted Min(X) _

The following are four important results relating to well-structured
sets of templates_

PROPERTY 1. If 1'1 and 1'2 are well-structured sets of templates, then
T1U1'2 , T1nT2 and T1-1'2 are also well-structured sets of templates.

In other words, the operations of union, intersection and concatenation
preserve weli-structuredness.

15 Note that a minimal element - unlike a minimum element - need not be
unique. A set may have more than one minimal element_

37

.~

~~

---~-
--~

,4W' - ~t~.:-_L:~.,~-~~--;..q±¥;:~:::_

•

..

PROPERTY 2. If T, and T2 are well-structured sets of templates. then

Hin(T,UT2) • Hin(Hin(T,) U Hin(T2»

Thus. to find the minimal templates of T,UT2 we need only look for the
. minimal templates in Hin(T,) U Hin(T2).

PROPERTY,. If Tt and T2 are well-structured sets of templates. then
Hin(T , nT2) • Hin(A) where A is the set of templates T for which there
exist templates T, and T2 such that

• T, S T by morphism~, and T2 S T by morphism ~2

• Each instance in T is the image under "', of an instance in T, or
the image under +2 of an instance in T2 •

• Each 'next' ('last') edge in T is the image under ~, of a 'next'
('last') edge in T t or the image under "'2 of a 'next' ('last')
edge in T2 •

Property 3 says something non-obvious. It says that to find the minimal
templates of Tt nT2 we do not look for the min.imal templates in Hin(T,) n
Hin(T2). Instead, we look among the templates formed by 'merging' a
template from Hin(T t) and a template from Hin(T2).

PROPERTY 4. If Tt and T2 are well-structured sets of templates, then

The minimal templates of T,'T2 can, thus, all be found in
Hin(T,) ·Hin(T2).

6.6 Semantics

Each formula of MPL will ultimately represent a predicate on the set
of traces. Thus, the ultimate meaning of a formula in HPL is given by
the set of traces that satisfy the formula. However, as in the case of
UPL. we need first to intruduce the intermediate quantities In(P) and
Ex(P) for each formula P of NPl. For UPL, the$e quantities were sets of
sequences, but for HPL they are sets of templates. As with UPL. In(P)
and Ex(P) are defined inductively. first for atomic formulas and then

38

for formulas constructed using each of the five basic connectives.
(Recall that we now have an additional basic connective. 'reverse'.)

...

J---------..._"....................""".....,......."M,""",'P"'" "",," • '.,. ~." t.:~·~h.!,(' ""_...... is... ':;1'

jl
1.I
i,
I

For all cases. In(P) and Ex(P) will be well-structured sets of
templates. The definitions of these two quantities for the case when P
Is an atomic formula will insure that the property is met for the basic
building blocks of HPL. The definitions of In(P) and Ex(P) for
composite formulas will all be expressed In terms of the operations of
union. intersection and concatenation. each of which preserves
well-structuredness (Property 1). By having the Included and excluded
sets of all formulas well-structured. we are able to understand the
meanings of the various connectives in terms of their effects on minimal
templates.

6.6.1 "eanlng of atomic formulas

Let P be an atomic formula. p. therefore. has associated with it a
process - denoted Process(P) - and a set of values - denoted Values(P).
Let V· Type(Process(P». For the uniprocess case. In(P) is defined as
the set of those sequences of length one whose (only) value is in
Va lues (P). Ex (P) is def i ned as the set of those sequences of I ength one
whose (only) value is in V-Values(P).

For the multiprocess case, InCP) is the set of all those templates T
for whic" there exists an instance x such that

• Process(x) = Process(P)

• Value(x) is in Values(P)

• <{x},~,~> S T

In other words, In{P) is the set of all those templates T that have
embedded within them an isolated instance x such that Process(x) •
Process{P) and Value(x) is in Values(P). (Note that x is in both the
head and tail of T.) From the definition it follows that In(P) is well
structured and, therefore, is characterized by its minimal templates.
These are easily described. They are all templates of the form
<{x},<l>,<l» where Process (x) '" Process{P) and where Value(x) is in
Values{P). These minimal templates are in one-to-one correspondence
(ignor1ng instance numbers) with the length-one sequences that define
In(P) for the uniprocess case.

Ex (P) in the mu It iprocess case j s the set of a II those tempI ates T
for which there exists an instance x such that

• e ",.-

• Process(x) = Process(P)

.. • Va Iue (x) is in V-Va 1ues (P)

39

·i.~~.'r'''''.~:;:: .,;CP·P;*":~_O::"7·"1"4"'.'1~.'~''''',lIIlIIjAI!!I'J''A!IlIf4'''''';,IIlII!J''',~d£2!:!'.k__'''J~''''.&•
• ,> ' ••

..

..

Ex(P) is. thus. the set of all those templates T that have embedded
within them an isolated instance x such that Process (x) • Procp-~s(P) and
Value(x) is in V-Values(P). Like In(P) , Ex(P) is well-structur~d and
its minimal templates are easily described. They are all templates of
the form <{x},~,~> where Process (x) • Process(P) and wh~re Value(x) Is
in V-Values (P).

6.6.2 Heaning of 'not '

As in the uniprocess case, the connective 'not ' simply interchanges
the included a~d excluded sets of an expression. Thus,

In (not p) • Ex (P)

Ex (not p) • In (P)

6.6.3 Heaning of 'and'

The definitions of the included and excluded sets for Ip and Q' have
the same forms used for the uniprocess case:

In (P and Q) • In (P) n In (Q)

Ex (p and Q) = Ex (P) U Ex <6>
Thus, a template is in In(P and Q) if it is in both In(P) and In(Q) , and
is in Ex(P and Q) if it is in either Ex(P) or Ex(Q). To understand
these definitions and to see how they differ from the ones given earlier
for UPL. let us look at the definitions in terms of minimal templates.

Suppose that P and Q are atomic formulas. Then the minimal
templates in In(P), In(Q), Ex(P) and Ex (Q}' are all of the form
<{x},~,~>. From Property 3, it follows that Nin(In(P and Q» contains
two classes of templates:

(1) those in Nin(In(P»0 Hin(In(Q»

(2) those of the form <{x,y},~,~> such that <{x},~,~> is in
Hin(In(P» but not Hin(In(Q» and <{y},~,<1» is in l1in(In(Q» but
not Hi n (In (P»

In analyzing these classes, two cases need to be considered:
Process(P) a Process(Q) and Process(P) _ Process(~. When Process(P) •
Process(Q), the templates in Hin(In(P» nMin(In(Q» are in one-to-one
correspondence (ignoring instance numbers) with the values in Values(P)
n Values(Q). This corresponds to the classical, uniprocess case. The
templates in the second class above, however, represent a divergence
from the classical, uniprocess view. 16 When Process(P) • Process(Q),
these templates are in one-to-one correspondence with pairs of values
{x,y} such that x is in Values (P)-Values(Q) and y is in
Values (Q)-Values(P) • (Such 'nonclassical' templates turn out to be
useful in expressing certain logical dependencies.) For the case abvve

I
;
i
t
I

•

~"'f!(!\!!~~~:;:C"", ""'e:._.,.¥4 'lrl',..-""""'.~.Af~•..., ~'""!,-;"'*+*"" 'I"1 ""W· ·~?'i"'~-r:-::'T·~::" '- r"'">:'-"'*""'".•"':':"~.~, , ,.""'• .., w""'.'!'"....,., _ ..,..~""'., #')':'"".,.""-."",..;:..-,"'(%1I'I)lI!)I!.J,,-e.;lJ!I.,X""lIl!l.""."""1··..ia:;~,¥,..;4_' " .,r;&IIiII.A.
~"~";'",~ __,,< .. ,"_.:..... .•. "....-...... _.._. .,1 " I c" \:!

when Process(P) ~ Process(Q). the templates In the second class are the
only templates in Hln(In(P and Q» since l1in(In(P)) n Hin(In(Q» is
empty. These templates are all templates of the form <{x,y}.~.~> such
that <(x}.~.~> is in Hin(In(P» and <{y}.~,~> is in Hin(In(Q»).

The situation regarding Ex(P and_next Q) is considerably simpler
than that for In(P and_next P). From Property 2. we see that

Hin(Ex(P and Q» E Hin(Ex(P» U Hin(Ex(Q»

(for both atomic and non-atomic formulas). Thus. the definition of
Ex(P and_next Q) for HPL corresponds completely to the definition for
UPL.

Having considered the case when P and Q are both atomic. let us
consider a second special case. Suppose that the templates in In(P) and
In(Q) are Independent in the sense that no instance appearing in a
template of In(P) has the same process and value as an instance
appearing in a template of In(Q). From Property 3. it follows that
Hin(In(P and Q»= Hin(A) where A is the set of composite templates
obtained by 'juxtaposing' a template from In(P} with a template from
In(Q). For example. if Hin(In(P» consists of the single template shown
in Figure 8(a). if Hin(In(Q)} consists of the single template shown in
Figure 8(b) and if Xo and Xl differ from x2 and x3 in either process or
value, then Min(In(P and Q» consists of thecornposite template shown in
Figure 8 (c) •

6.6.4 Heaning of 'and_next'

The meaning of 'and_next' in the context of MPL parallels the
definition given earlier for UPL. There is no change in the expressions
defining the included and excluded sets but concatenation now applies to
templates instead of sequences. Hence

In (P and_nex t Q) In (p) 'In (Q)

..

Ex(P and_next Q) = Ex(P) ·Bo(Q) U Bo(P) ·Ex(Q)

Each template in In(P and_next Q) thus consists of a template from In(P)
land next' a template from In(Q). It template is in Ex(P and_next Q) if
it consists of a template from Bo(P) land next' a template from Bo(Q)
such that either the first template is in Ex(P} or the second template
is in Ex (Q) •

As we did 'for 'and'. 1et us cons i der the spec ia 1 case when P and Q
are both atomic. The minimal templates in In(P), In(Q). Ex(P) and Ex(Q)
are then all of the form <{x}.~,~>. From Property 4. it follows that
the templates in Min(In(P and_next Q» are all those with the structure

16 This departure from UPL changes the meanings of certain formulas
representing invariants (see ~ection 6.8.1).

41

'I

)(0. next)(1

(0) Template 1

•
)(2 •

(b) Template 2

)(0 ••__"_e_xf_..........)(,

(c) Composite Template

Figure 8. Juxtaposing Two Templates

<{x.Y}, {<>c.y>}. <1» sUCn that <{x},4>.cl» is in Hin(In(P» and <{y}.<I>.cl»
is in Hin(In(Q». It also follows that the templates in
Hin(Ex(P and_next Q» are all those with the structure <{x.y}. {<x.y>}.
cl» such that either (1) <{X},<!l.c!l> ;s in Hin(Ex(P» and <{y},cl>.cl» is in
Hin(Bo(Q» or (2) <(x}.<!l.cl» is in Hin(Bo(P» and <{y}.cl>.cl» is in
Hin(Ex(Q». As an illustration. let Hin(In(P» consist of t:,e two
single-instance templates shown in Figure 9(a). Hin(Ex(P» the
single-instance template in Figure 9 (b) • Hin(In(Q» the two
single-instance templates in Figure 9(c). and Hin(Ex(Q» the
single-instance template in Figure 9 (d) • Then Hin(In(P and_next Q»
consists of the four single-edge templates in Figure 9(e) and
Hin(Ex(P and_next Q» the five single-edge templates in Figure 9(f).
Note the parallel with the UPL example in Section 5.4.4. There. the
elements of In(P and_next Q) and Ex(P and_next Q) are value sequences of
length two. Here, the elements of Hin(In(P and next Q» and
Hin(Ex(P and_next Q» are templates. each consisting of two instances
connected by a 'next' edge.

The principles illustrated for the case when P and Q are both atomic
extend in a straightforward way to the case when either P or Q ;s
non-atomic.

6.6.5 Meaning of 'and_next*'

As in the uniprocess case, there is a need to represent the infinite
formula:

A or P or (P and_next P) or (p and_next P and_next P) or

42

- '. ~

-

exo eX1

(a) Template!: in Min(ln(P»

-(b)· Templcrl~s in Min(Ex(P»

(c) Templates in Min(ln(O»

(d) Templates in Min(Ex(O»

(e) Templafes in Min{In{P and_next Q»

.....
4,
i
i
,

(f) Templates in Min(Ex(P and_next 0»

Figure 9. Meaning of op and_next QI

(t next· ~x .. Xs

As before, the included set for this formula is given by the infinite
expression

{~} U In(P) U In(?) 'In(P) U In(P) 'In(P) 'In(P) U

while the excluded set is given by

• n Ex(P) n Ix(P and_next P) n Ex(P and_next P and_next P) n

The first quantity is still just (In(P»', while the second quantity
still reduces to the null set. Hence, the expressi~ns defining the

43

-

lS:q', .. i.c,a.QC,Q&:;a:a;:;:s;;;:;:;41x.-s:;:,. _

i Wi

included and excluded sets for 'and_next* Pl. which represents the above
infinite formula. remain the same:

In(and_next* P) .. (In(P»·

For the special case when P is an atomic formula. Hin(In(and next* P»
is just the set of all 'linear' templates whose instances belong to
In(P) and whose edges are labelled with 'next'.

6.6.6 Meaning of 'reverse'

Although a template is defined as having two types of edges. 'next'
and 'last'. the discussion so far has focused only on the first type.
To see how 'last' edges enter the picture. consider what would happen if
all the arrows in a trace were reversed. This is equivalent to
reversing the past and future. If Instance x precedes (follows)
Instance y in the original trace. then x follows (precedes) y in the
reversed trace. Moreover. if x is the last instance of Process X
preceding y in the original trace. then x is the next instance of
Process X following y in the reversed trace. Similarly. if x is the
next instance of Process X following y in the original trace. then x is
the last instance of Process X preceding y in the reversed trace. As an
i i lustratLon. consider the two templates ;:; Figure 10. Ea~h is the
reverse of the other. Observe that ao pfe~~d~~b~ in the left trace b~t

follows b3 in the right trace. Note also that a 3 is the next instance
of Process A following b, in the left trace but is the last instance of
Process A preceding b, in the right trace.

These observations motivate the definitions for the 'reverse '
connective. whose purpose is to reverse the 'polarity' of a formula P of
HPL. This polarity reversal is accomplished by performing a simple
transformation on each edge in each template of In(P) and Ex(P). If we
take a 'next' edge from Instance x to Instance y to mean intuitively
that y is a next instance following x, and if we take a 'last' edge
from x to y to mean intuitively that x is a last instance preceding y,
then it is clear from the above discussion that the appropriate
transformation is:

x next y

x last y

-->

-->

y last x

y next x

These transformations are reflected in the following definitions for
'reverse pi.'7

In (reverse Q) {<I,L-l,N"'>I<I,N,L> is in In(Q)}

Ex (reverse Q) .. {<I,L-1,N"'>I<I,N,L> is in Ex(Q)}

As an illustration of these definitions, suppose that the template
depicted in Figure 5 on page 34 is in In(Q). Then the 'reversed'

44

-

Legend
• Prtx:ess A

_Process B

..

,
!
r
t

Figure 10. A Trace and its Reverse

templat~ ~hown in Figure 11 is in In (reverse Q). To construct the
template ofF-igure 5 in the fir-st place, let Po ••• P7 be atomic
formulas such that Process (Xi) = Process(P j) and Value(x j) is in
Values (P j) for 0~i~7. The template is then contained in In(Q) where Q is
the formula:

«Po and_next P2) and (PI and_next P3» and_next

(reverse «PG and P7) and_next Ps and_next P4»

6.6.] Meanings of auxiliary connectives

The connectives 'or', 'or_next', 'or_next*', 'implies' and
I implies next' are all abbreviations for expressions involving the four
basic co~nectives 'not', 'and', 'and_next' and 'and_next*'. The
meanings of these additional connectives, therefore, follow directly
from the preceding definitions. We list here those meanings a~d refer
the reader to the uniprocess discussion for a further elaboration.

In(PorQ) >= In(P)UIn(Q)

Ex (p or Q) >= Ex (P) n Ex (Q)

17 R- 1 denotes the converse of the binary relation R. <x,Y> is in R- 1

if and only if <y,x> is in R.

45

--
?

•
, :

- .;
~

SI
'A"4....,...
~
i

•....
t

"-_..,...,,,.,.-,,-.,_ ...,.,... ...,.-~~~~,'.~-.""'-:-'J -~:.-'_.:~-/- .. ,',., ...-'!"'.~"" -,.,itIl"••,.:';"."....:~~'":":.w.,.v,-.....f"O. ..--:,,:,y'!J'.,..'t~"'..,~~,..,.;'.C~f--:._~'"lo'·,·?_··· .. '":... _~·W'rr .-AO, ..,. ---:p "~"'!""'!-1
.'Ol!"")jE, *""".' t. - - . , t , ,; t

.' .•..•• ,- .•..__. -··-.-.·,,-'.··.·r.·- ,..... ·,....,~ '-... _ ~, ..~

x,

ic;

Figure 11. A Reversed Template

In(P or_next Q) • In{P) 'Bo(Q) U Bo (P) •In (Q)

Ex (p or_next Q) D Ex (P) •Ex (Q)

In (or_next* P) II: ell

Ex (or_next* P) • (Ex(P»'

In (P implies Q) = Ex (P) U In (Q)

Ex (P implies Q) ... In (P) n Ex (Q)

In (P implies_next Q) Ex (P) •Bo (Q) U Bo(P) 'In(Q)

Ex (P impl ies_next Q) II: In{P) 'Ex(Q)

6.6.8 Satisfaction and Truth

In defining the semantics for UPL, we said that a sequence of values
Q 'satisfies' a formula P if u contains no member of Ex(P) as a

46

~ I
!
1

.. I
f

I

..

subsequence. A parallel notion is used for HPl. The definition her.e is
stated not in terms of a value sequence containing a subsequence, but in
terms of a trace having a template that 'fits' it.

A template T fl11 a trace Z if there exists a mapping + from
Instances(T) to Instances(Z) such that for all x,y in Instances(T),

• Process(x} - Process(~(x»

• Va I ue (x) - Va 1ue (ljI(x»

• <x,y> in Next(T) -> -II(y) is the next instance of Process(y)
following +(x) within Z

• <x, y> in last (T) -> -II (x) is the 1as tins tance of Process (x)
preceding +(y) within Z

Consider the template, trace and mapping'" (indicated by dashed lines)
depicted in Figure 12. Assume that like-named instances in the template
and trace have the same process and v~lue. Thus, the process and value
of a2 in the template and the proc~ss and value of a2 in the trace are
the same. Now observe that for eat:h 'next' edge <x,y> in the template,
-II(y) is the next instance of Process(y) following "'(x) within the
template. Specifically, a 3 is the next instance of Process A following
"2' and d3 is the next ins tance of Proces~.;' f~ Il~w i n9 bl' i10t i ce a 1so
that for each 'last' edge <x,y> in the template, "'(x) is the last
instance of Process (x) preceding "'{x) within the template. In
particular, bo is the last instance of Process B preceding a2 • We
conclude that the template fits the trace.

Using the notion of a template 'fitting' a trace, we define the
concept of satisfaction. A trace Z satisfies a formula P of HPL if and
only if there is no template in Ex(P) that fits Z. A formula P of HPL
is true (with respect to a given system) if ~nd only if every permitted
trace satisfies P.

Justification for our practice of using the minimal elements of a
set of templates to represent that set is provided by Property 6. which
is a direct consequence of Property 5.

PROPERTY 5. Let T1 and T2 be templates and let Z be a trace. Then

T1ST2 and T2 fits Z => T1 fits Z

PROPERTY 6. A trace Z satisfies a formula P of MPL if and only if there
is no template in t1in!Ex(P» that fits Z.

-_ .__~/'b1
"~-7 -----

•. QJ

:':~'~""~"~'(

Legend
_Process A

_Process B

1: ~. ", .- -~ 1 r··~-·-" . t ';". ",.'

......

Co bo

- - ------ ---
bo

-II) 01 b,.2

, l

(a) A Template (b) A Troce

Figure 12. Fitting a Template to a Trace

6.7 Algebraic Properties

. i.

All the algebraic propc"ties listed for.UPl carryover to HPL.
Thus, the operations of 'not', 'and' and 'or' form a DeMorgan algebra on
the formulas of MPL (in the sense described above). Moreover,
'and_next' and 'or_next' are associative and satisfy DeMorgan's Laws.

~.

,.
..
I
{ 6.8 Examples of Statements about Multiprocess Behavior

t

I
I

MPL is capable of expressing a broad range of complex logical and
timing dependencies. An attempt to del ineate the expressive power of
MPL, however, is beyond the present scope. We limit ourselves instead
to discussing how the examples given earlier for UPL translate to the
multiprocess case.

6.8.1 Invarlance

An invariant (in both the uniprocess and multiprocess case) isa
true formula constructed from atomic formulas belonging to a single
process using only the connectives 'and', 'or' and 'not'. For the
uniprocess case, the meaning of an invariant Q (interpreted as a true
formula) is straightforward: Every value in every permitted value

48

......~~".,.,.".~
• ' ~.'.'" .,,...._".,,_,••. J~ ~

•

.. -

. ,

sequence must satisfy Q. For the multiprocess case. there is a slight
variation.

In giving the meaning earlier for the connectiv~ land', we observed
that when P and Q are both atomic formulas belonging to the same
process. In(P and Q) contains certain templates that have no analog in
the uniprocess case. These nonclassical templates do not affect the
interpretation of 'P and Q' since it is Ex(P and Q) - not In(P and Q)
that determines which traces satisfy the formula. The situation is
reversed, however, for the formula 'P or QI because the nonclassical
templates now appear in Ex(P or Q). Suppose, for example, that P and Q
are atomic formulas belonging to Process A and that vo ' v j ' v2 and v3
are the values of A's type. Suppose, furthermore, that:'s

Hi n (In (p» = {{vo}, {v,}}

Hi n (Ex (P» .. {{v
2
}, {v

3
}}

Hi n (In (Q» .. ({vo}, {v2}}

Hin(Ex(Q» .. {{v,}, {v
3

} }

It then follows that:

Min(In(P or Q) = {{vol , {v,}, {v2 }}

Min (Ex (P or Q» = {{v3 } , {v"v2}}

The single-instance template {v3} in Min(Ex(P or Q) haS a counterpart in
the uniprocess case, but the two-instance template {v"v2} has no such
counterpart. Let us consider what each template says. The first says
that Process A can never take on the value v3 in a permitted trace. The
second says, in effect, that Process A can never take on the values v,
and v 2 in tbe same permitted trace.

A I ittle reflection reveals the difference in interpreting the
formula 'P or Q' for the uniprocess and multiprocess cases. For the
uniprocess case, 'P or Q' means that 'P or Q' holds tor all values of
Process A 1n a permitted vatue sequence. For the multiprocess case,
Ip or Q' means that either P holds for all values of Process A or Q
holds for all values of Process A in a permitted trace. (This
difference in interpreting the connective 'or' e,'tends to the case when
P and Q are non-atomic formulas.)

• 18

~
.f"PfI

"'_1---~....
~

Since only one process is being considered and since the templates
under discussion contain no edges, Wt! represent each template by the
values associated with its instances.

........"'_.... ~._ __," .,~•• '<•..~;;~...",...._',...,..,.........".·.~v.~.'~ ..:r•. _·."·_c."'I.-."" ...--"."'.-...,..,"'.t,.-../.'.... "'.·.·~••""""'_.""',"'¥i''''').....(A........-.'..., ..."t.....,··".'t~:--'I"'j

~ " ,

'--~'---

I
1
t·
t
t
'"t:r.
f ', /.
,..A!

"

•
.~

,
.--

" '--
~~.

I.'
I

6.8.2 Other Examples

Examples 2 through 8 in Section 5.6 carryover to the multiprocess
case with little change. One difference applies to the formulas in
Examples 1. 4. 5 and 8. Since we are no longer dealing with just a
single process. the atomic formula T. which is universally true in the
unlprocess case. must be replaced by an atomic formula that is
associated with a particular process. Thus. in Example 2. the atomic
formula T must be replaced by TA where A Is the process associated with
either the atomic formula P or the atomic formula Q. T, is satisfied by
all the values In Type(A).

Although the five basic connectives and five auxiliary connectives
of HPl provide a concise and powerful set of primitives for specifying
multiprocess behavior. it often awkward to express certain relationships
in terms of thes~ primitives alone. For this reason. we permit
higher-level constructs to be introduced. Some suggested ones are the
following: (Their translation into standard formulas of HPl Should be
app"l't:nt from the discussions in SectIons. 5.6 and 6.8.)

• P followed N time_units later_by Q.

• Q inevitable_within N time_units following P.

• Q for N time_units folie-wing P.

• Followi ng p. Q.

• Followi ng P, Q as_long_as R.

• Following p. Q unti I R.

• Following P, Q repeated_every N time_units.

6.10 Format for logical Specifications

Each of the first three components of a system specification - type
declarations. process declarations and synchronic structure - have a
syntax that either is borrowed directly from the Ada programming
language or is adapted from Ada. That convention is followed again for
the logical specification. The format for a logical specification is:

so

specification SYSTEM_NAHE is

r--.....,......,.......·....,'_·,..\ ------_.
,I
,i
!

.. ··.<·;·"''';';;·-'i'Ar·~~----·'·~·-'''--'','--~· ,.,~.,.' ""'<'-'{",":"""~"~'''~''''':'"'.''''''''~:~?''':t:: 'f~_~......::.~_~'_:.:,,~"'":_~"'~-'''''r'''';

"

•

I

• 1

declaration1;
declaration2;
declaration3;

begin

HPL statement1:
HPL statement2:
HPL statement3:

end;

Each declaration, which has the form of an Ada object declaration,
provides a variable, universally quantified over a specified type, for
use in the HPL statements.

7.0 SPECIFICATION EXAMPLE: THE ALTERNATING-BIT PROTQCOL

The alternating-bit protocol [3) [4] [15] [22] [23) provides a
simple mechanism for achieving reliable communication over an unreliable
channel. We consider the simplified case in which a 'source' accepts
'messages' for transmission to a 'destination'. To each accepted
message, the source attaches a 'bit' and then transmits the resulting
'packet' repeatedly until an acknowledgement with the same bit is
received. After such an acknowledgement, the source accepts a new
message for transmission but this time the bit attached to the message
is reversed (hence the name of the protocol).

Seven asynchronous, event processes are used to model the source,
destination and initializer:

SOURCE_INPUT - input port for messages

TRANSMISSION_ACK .. acknowledges transmission of message

SOURCE_SEND - transmitting port for packets

SOURCE_RECEIVE" receiving port for acknowledgement bits

DESTINATION_RECEIVE - receiving port for packets

DESTINATION_SEND - transmitting port for acknowledgement bits

DESTINATION_OUTPUT - output port for messages.

51

-

INITIALIZER - initializes source and destination

We present the formal specification of the alternating-bit protocol in
terms of the constraints imposed on these seven processes. The next
four sections contain. respectively: type definitions. process
declarations. synchronic structure and logical specification.

7.1 Type Definitions

type ftESSAGE_TYPE is INTEGER;

type PACKET_TYPE is
record

MESSAGE: MESSAGE_TYPE;
BIT: BOOLEAN;

end record;

type ACKNOWLEDGE_TYPE is BOOLEAN;

type INITIALIZE_TYPE is (INIT);

1.2 Process Declarations

SOURCE_INPUT is event process of MESSAGE_TYPE; 19

TRANSMISSr(l"l_ACK is event process of ACKNOWLEDGE_TYPE;

SOURCE_SEND is event process of PACKET~TYPE;

SOURCE_RECEIVE is event process of ACKNOWLEDGE_TYPE;

DESTINATION_RECEIVE is event process of PACKET_TYPE;

__c

c .,

DESTINATION_SEND is event process of ACKNOWLEDGE_TYPE;

DESTINATION_OUTPUT is event process of MESSAGE_TYPE;

INITIALIZER is event process of INITIALIZCTYPE;

19 In addition to the values in its type, we assume that each event
process may also take on the value NULL. NULL is distinct from all
other values in a type and is used to indicate the absence of all
(non-nul I) values.

52

:----

..

..

•

•

...~-===ra;;''''';::::';;;~:::';'-;;;..., _.,-~~'--:-.__ ,.-.,";,- _ _""!"..,.._ _.,;:.' ·_:,.',:'"',..,,'~·· ,....,··-"r'·.~· ':,.,...... ..':'_:.A"',,~'- ..--, ''''"'-''''..,''~,...,.":P:- ...,..•"'""'-_·--~-- r':'t' .. -·..·....-":"- ;,' '''F.' sa. _'!'t.•_~""""--"""_~
.~ ----.....,.~. _ .. ,- .,- ~-."'".~'''~.... i ~ "-,....•~~., .. ,, '. • i..

7.3 Synchronic Structure

SOURCE_INPUT is asynchronous;

TRANSMISSION_ACK is asynchronous;

SOURCE_SEND is asynchronous;

SOURCE_RECEIVE is asynchronous;

DESTINATION_RECEIVE is asynchronous;

DESTINATION_SEND is asynchronous;

DESTINATION_OUTPUT is asynchronous;

INITIALIZER is asynchronous;

7.4 logical Specification

specification ALTERNATIt.lli_Sn_PROTOCOL i .s, ;

HSG: HESSAGE_TYPE:
BIT: ACKNOWLEDGEMENT_TYPE;

begin

Following
SOURCE_INPUT/=NULL.
SOURCE_INPUT=NULL

unt i I
TRANSHISSION_ACK/=NULL;

A new message is not given to the source until
the preceding message is acknowledged. 20

20 A double dash (--J is the Ada convention for a comment.

53

r..
"j

'j
I

I
.!

•

•
..

~

•

. Following
INITIALIZER-INIT,
SOURCE_SENO-NULL

unti I
SOURCE_INPUT/-NULL:

Following initialization, no packets are
sent before the first message is sent.

INITIALIZER-INIT
and next

(and_n;xt* SOURCE_INPUT-NULL)
and_next

SOURCE_INPUT-HSG
implies next

SOURCE_SEND.HESSAGE=MSG and SOURCE_SEND.BITsO:

The bit of the first packet sent following
initialization is O.

Following
SOURCE_SEND.MESSAGE-MSG and SOURCE_SEND.BIT-BIT,
SOlJRr.E_SEND .MESSAGE=HSG and SOUiU:,E_SEni) •BIT-BIT

unli I
SOURCE_RECEIVE-BIT;

A packet is sent repeatedly until appropriate
acknowledgement is received.

SOURCE_SENO.HESSAGE-HSG and SOURCE_SEND.SIT-SIT
and_next

SOURCE_RECEIVE=BIT,
impl ies_next

TRANSMISSION_ACK-1:

-- When a packet is acknowledged, the transmission of
-- the message is acknowledged.

Following
SOURCE_SEND.MESSAGE=MSG and SOURCE_SEND.BIT-SIT

and_next
SOURCE_RECEIVE=BIT,
SOURCE_SEND=NULL

as_'ong_as
SOURCE_INPUT=NULL;

Once a packet is acknowledged. no new packets
are sent before a new message is provided.

54

iji¥ilflU , " :" ~ ---e:t-

t· .'

.-

lit. ""'..'''''''<:~.r-"'"~~~)'-r:~''''' 9"'" '''74),.

..

..

SOURCE_SEND.BIT-BIT
and next

(and_next* SOURCE_SEND-NULL)
and next

SOURCE-INPUT-HSG
implies_next

SOURCE_SEND.HESSAGE-HSG and SOURCE_SEND.BIT-(not BIT);

-- The bit for a new packet is alternated.

Following
INITIALIZER-INIT,
DESTINATION_OUTPUT=NULL and DESTINATION_SEND-NULL

as_long_as
DESTINATION_RECEIVE-NULL:

No messages are received and no acknowledgments
are sent before the first packet following
initialization is received.

INITIALIZER=INIT
and next

(and_n;xt* DESTINATION_RECEIVE=NUlL)
and next

DESTINATION_RECEIVE .MESSAGE-MSG and DESTINATION_RECEIVE. BITaO
impl i es_next

DESTINATION_OUTPUT=MSG and DESTINATION_SEND-O;

If the first packet following initialization
has a 0 bit, then the message ;5 received
and 0 is acknowledged.

Followi ng
DESTINATION_SEND=BIT,
DESTINATION SEND=BIT

unti I
DESTINATION_RECEIVE.BIT=(not BIT);

The same acknowledgment is sent repeatedly until a packet
with an alternated bit is received •

55

-

•

"

DESTINATION_RECEIVE.BIT-BIT
and next

(and_next* DESTINATION_RECEIVE-~ULL)
and next

DESTINATION_RECEIVE.HESSAGE-HSG and DESTINATION_RECEIVE.BIT-(not BIT)
implies_next

DESTINATION_OUTPUT-HSG and DESTINATION_SENO-(not BIT);

When a change occurs in the bit of a received packet.
the message is supplied to the output and the new
bit is acknowledged.

Following
DESTINATION_RECEIVE.HESSAGE-HSG and DESTINATION_RECEIVE.BIT-BIT

and next
DESTINATION_OUTPUT-MSG.
DESTINATION_OUTPUT-NULL

as_long_as
DESTINATION_RECEIVE.BIT/-(not BIT);

A message is supplied to the destination out~ut only
when there is a bit change on the received packet.

end;

8.0 CONCLUSIONS

We have described a rigorous framework for specifying the behavior
of concurrent system,. Among its features are:

• Generality

• Expressiveness

• Naturalness

•

..

The generality stems from a model of system behavior that introduces a
minimal set of primitive concepts - just values and processes - and
makes a minim~1 assumption - the behavior of a proces~ is repr~sented by
a linear sequence of values. The expressiveness reflects the approach
adopted to specify the permitted traces of a system. Through the
synchronic structure and logical specification. it is possible to
express an extremely broad range of logical and timing dependencies.
Hany of these dependencies are simply not expressible with any other
existing technique. The naturalness (or readability) results from the

56

i.:',

,

-

..

absence of arcane notation and obscure terminology. There is very
little new notation and the only new terminology consists of the
connectives 'and_next', 'and_next*', 'or_next', 'or_next*',
'implies next' and 'reverse'. The technical meanings of these
connectives closely parallels their informal, intuitive mp.anings. The
readability of a specification is enhanced when HPL is extended to
include such higher-level constructs as "following", "until" and "as
long as".

8.1 Future Work

Further development of the specification framework needs to proceed
along several lines:

• Improvements and Extensions

• Verification Capabilities

• Hierarchical Specification

• larger Hethodologies

The need to improve and extend the framework will inevitably arise as
applications experience is gained. One area in need of improvement that
has already been identified is the synchronic structure, which is
presently limited in the sorts of synchronic relationships it can
express.

The desire to rigorously verify system behavior has provided much of
the impetus for the present effort, and without,a deductive capability
the present framework remains incomplete. Such a capability has already
been provided for a precursor to the present theory [11] [12] [13], and
it is possible that some of principles underlying this earlier effort
may generalize to the present case.

Composing (or decomposing) a specification in a hierarchical fashion
is the most effective way of dealing with complexity. Appropriate
mechanisms for 'connecting' different levels of~ hierarchical
specification need to be developed.

Although formal specifications of intended behavior and actual
behavior are important elements in the design of a system, to be used
effectively, they must be integrated with other clements in the system
development process. The ultimate goal is a unified methodology
encompassing:

• Specification of Mission Requirements

• Specification of Functional Requirements

57

-

•

•

f
i

j.
I
i

.,.:""".". NO •.~.,"...........""".""""""'7"'1'."'".,.,....#....."'P"ll4¢PI••$4_"'l'.....~.. "".............-.,'P~r..~~

"",",,. .. -•. _ ,.'" I.':~; ,

• Specification of Behav ior .' J Requirements

• Design

• Verification

• Testing

• Configuration Control

• Maintenance

58 -

•

•

<P,t

INDEX

atomic formula (HPl) 32
atomic fo~mula (UPl) 19

classical formula 21
closure 20
comes after 6
comes before 6
concatenation of sequences 20
concatenation of templates 35
concurrent instances 6

0
DeHorgan algebra 27

G
fits 47
follows 6

granularity 16

~7·"':"'\l'!'l{I'1··""'·....l...., "'''.MII!lI.FI!lIQlP''~,.,''''''''='....4£''''d....4itUl....'''''''''WF.,.,~'7..
~. .• .•. I •

...

independence 41
instance 5
instance of 6
invariant 28. 48

juxtaposing templates 41

last instance 6

minimality condition 37
morphism 33

next instance 6

object 5

• ..ea
~
~,.. ..-~
•

e:

head 33

59

permitted
permi tted
precedes
process

trace
value
6

5

5
sequence 18

i

a

process declaration 5

satisfies (HPl) 47
satisfies (UPl) 26
system (multiprocess) 5
system (uniprocess) 18

tai I 33
template 32
trace 6
true formula (HPl) 47
true formula (UPL) 27
type 5

60

0
upwardly closed 37

[3
value 5. 18

~
well-structured set of

templates 37

t,

,'i

LIST OF REFERENCES

Pl'~~'-~-~~

: I.)

!
!Pi

~

t-

• ---

..., .
,A

~
~
,..~.....
~
i
,_.

~

1. Balbes, R. and Dwinger, P.,Dlstributive Lattices, University of
Missouri Press, 1914, Chapter XI.

2. Barnes, J.G.P., Programming in Ada, Addison-Wesley, 1981.

3. Bartlett, K.A., Scantlebury, R.A. and Wi Ikinson, P.T., "A Note on
Rei iable Full-Duplex Transmission over Half-Duplex Links",
Communications of the ACM, Vol. 12, No.5, Hay 1969, pp. 260-261.

It. Bochmann, G.V. and Geesei, J., "A Unified Hethod for. the
Specification and Verification of Protocols", proceedingsIElp
Congress, Toronto, Canada, August 1977, pp. 229-234.

5. Booch, G., Software Engineering with Ada, Benjamin/Cummings, 1983.

6. Campbell, R.H. and Haberman, A.N., "The Specification of Process
Synchronization by Path Expressions", lecture Notes in Computer
Science 16., 1974, pp. 89-102.

7. Chen, B., Event-Based Specification and Verification of pistributed
_Systems, University of Maryland, (PhD thesis) ,1982.

8. DiJkstra,-E.W., "Co-Operating SeC/venti-a I Processes", Structured
prQgramming~ Academic Press, 1968, pp. 43-112.

9. Fitzwater, D.R. and lave, P., "The Use Qf Formal Asynchronous
Process Specifications in a System Development Process", 6th Texas
Conference on Computer Systems, November 1977, pp. 28/21-28/30.

10. Furtek, F.C., The logic of Systems, -Hassachusetts Institute of
Technology laboratory for Computer Science Technical Report
HITllCS/TR-170, December 1976.

11. Furtek, F.C., liThe Theory of Constraints", submitted for
publ ication.

12. Furtek, F.C., "A Necessary and Sufficient Condition for a Product
Relation to be Total", Journal of Combinatorjal Theory - Series A,
November 1984, (to appear) .

13. Furtek, F.C .. "Constraint logic", 1983 Conference on Information
Sciences and Systems, The Johns Hopkins University, March 1983,
pp .\,491-494 •

14. Greif, 1., "A language for Formal Problem Specification",
t2mr0unicatiOOS-Qf the AC~, Vol. 20, No. 12, December 1977 •
pp. 931-935.

15. Hailpern, 8. and Owicki, S., "Verifying Network Protocols Using
Temporal logic", ~~s j980 Irends aaOppljcatjQns SympQsium

61

.,

•

Qn Computer Network f'rQtocoJs. NatiQnal Sureau of Standards.
Gaithersburg, HD. Hay 1980. pp. 18-28.

16. Hoare, C.A.R •• "Monitors: An Operating System Structuring Concept".
Communications of the ACM. Vol. 17. No. 10. October 1974.
pp. 549-557.

17. Hoare, C.A.R •• "Communicating Sequential Processes". kPmmunjcations
Of the ACH. Vol. 21. No.8. August 1978, pp. 666-617-.

18. Holt. A.W. et al., final Report of the Information System Theory
Proie~t, Technical Report No. RADC-TR-68-305. Rome Air Development
Cente_r.Griffis Air force Base, New York, September 1968.

19. Hopcroft, J.E. and Ullman. J.D •• forma) Languages and their Relation
to Automata. Addison-Wesley. 1969.

20. Lynch. N.A. and Ft~cher. M.J •• "On Describing the Behavior and
Implementati~n of Distributed Systems", Th.eoretica) Compyter
Science, Vol. 13. 1981. pp. 147-171.

21. Misra. J. and Chandy, K.It •• "Proofs of Netwo,)rks of Processes". lill
Transactions on Software Engineering, Vol. SE-7. No.4. July 1981.
pp • 147-171.

22. Scnwar;tz, R.l. and Mel I iar-Smith. p.• "' ••. "Temporal logic
Specification of Distributed Systems", The 2nd International
Conference on Distributed Compyting Systems. Paris. April 1981.
pp. 446-454.

23. Sunshine, C.A. et al., "Specification and Verification of
Communication Protocols in AFFIRM Using State Transition Hodets".
IEEE Transactions on Software Engineering. Vol. SE-8. No.5.
September 1982. pp. 460-489.

24. United States Department of Defense, Reference Manya! for the Ad~

Programming Language, ANSI/HIL STD-1815A. 22 January 1983.

25. Zave, P., "An Operational Approach to 'Requirements Specification for
Embedded Systems", IEEE Transactions on Software Engineering.
Vol. 5(-8, No.3, Hay 1982, pp. 250-269. .

62

-.--,.......""'.-~.... , ,- .- -.

3 1176 01324 4646

