
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19840023892 2020-03-20T21:11:59+00:00Z

6

NASA CONTRACTOR REPORT 16 6 5 81

I

Gui(^, ' ,rtes fox Testing
and ';Ioase Procedures

(NASA-Ch-1b6bb1) uVIDLLINLS POR TESTING AND
jj -Lp,ASL p ",U C 4j) Uj;ES (j jjj 0rmjtjcs UetieralLl	 i
Corp.) 73 p HC A04/MF AU1	 LSCI 09B

N84-31962

Unclar,
G3/u 1 21 271

Russell Molari and Mel Conway

SE-P	

y.

RECEj VE

4 ttsi FACIL11V
A^ r

CONTRACT NAS2-11555
61 6^

April, 1984

i

NASA CONTRACTOR REPORT 166581

Guidelines for Testing
and Release Procedures

Russell Molari and Mel Conway

T,

j

Prepared for
Ames Research Center
under Contract NAS2-11555

.	 E

NASA
National Aeronautics and
Space Administration
Ames Research Center
Moffett Field, California 94035

.

i

P,

page
Section 0	 SCOPE AND REVISION LEVEL 0-1
Section 1	 INTRODUCTION 1-1
1.1 DO THE TESTING THAT FITS THE PROGRAM 1-1
1.2 HOW TEST ACTIVITIES RELATE TO OTHER DEVELOPMENT

AND RELEASE ACTIVITIES 1-2
1.2.1	 The Bigger Projects 1-4
1.2.2'	 The Smaller Projects 1-4

Section 2	 GUIDELINES FOR DEVELOPING A TEST PLAN 2-1
2.1 WHEN TO DEVELOP THE TEST PLAN 2-2
2.2 WHO SHOULD BUILD THE TEST PLAN 2-5
2.3 AN OUTLINE FOR AN EFFEC'T'IVE TEST PLAN 2-6

2.3.1	 General Outline 2-6
2.3.2	 Function Checklist 2-8
2.3.3	 Function-Versus-Test Case Matrix 2-8

2.4 TEST PLAN AND TEST CASE INSPECTIONS 2-10
Section 3	 GUIDELINES FOR SELECTING AN OVERALL

TEST APPROACH 3-1
3.1 APPLICATION 3-1
3.2 SIZE OF THE STAFF 3-1
3.3 RELEASE CYCLE 3-2

Section 4	 GUIDELINES FOR EACH PHA;'	 OF TESTING 4 -1
4.1 A GENERAL SPECIFICATION FOR UNIT TESTING

OF COMPONENTS 4-2
4.1.1	 Purpose 4--3
4.1.2	 Entrance Criteria 4-3
4.1.3	 Exit Criteria 4-3
4.1.4	 Personnel 4-3
4.1.5	 Unit Testing Methods 4-4

4.1.5.1	 General Description 4-4
4.1.5.2	 Methods and How to Select Them 4-4
4.1.5.3	 Guidelines for Selection of Unit

Test Cases 4-6
4.1.5.4	 An Example of Selection of Unit

Test Cases 4-8
4.1.6	 Tools for Unit Testing 4-10
4.1.7	 Guidelines for Some Specific Environments 4-11

4.2 A GENERAL SPECIFICATION FOR INTEGRATION
TESTING OF COMPONENTS 4-14
4.2.1	 Purpose 4-15
4.2.1	 Entrance Criteria 4-15
4.2.3	 Exit Criteria 4-15
4.2.4	 Personnel 4-15
4.2.5	 Component Integration Testing Methods 4-16

4.2.5.1	 General Description 4-16
4.2.5.2	 Methods 4-16

u

n

Ai
wi

kAU
Section 0 SCOPE AND REVISION LEVEL 0-1
Section 1 INTRODUCTION 1-1
1.1 DO THE TESTING THAT FITS THE PROGRAM 1-1
1.2 HOW TEST ACTIVITIES RELATE TO OTHER DEVELOPMENT

AND RELEASE ACTIVITIES 1-2
1.2.1 The bigger Projects 1-4
1.2.2 The Smaller Projects 1-4

Section 2 GUIDELINES FOR DEVELOPING A TEST PLAN 2-1
2.1 WHEN TO DEVF,LOP THE TEST PLAN 2-2
2.2 WHO SHOULD BUILD THE TEST PLAN 2-5
2.3 AN OUTLINE FOR AN EFFECTIVE TEST PLAN 2-6

2.3.1 General Outline 2-6
2.3.2 Function Checklist 2-8
2.3.3 Function-Versus-Test Case Matrix 2-8

2.4 TEST PLAN AND TEST CASF. !NSPECTiONS 2-10
Section 3 GUIDELINES FOP SELECTING AN OVERALL

TEST APPROACH 3-1
3.1 APPLICATION 3-1
3.2 SIZE OF THE STAFF 3-1
3.3 RELEASE CYCLE 3-2

Section 4 GUIDELINES FOR EACH PHA.	 Ot TESTING 4-1
4.1 A GENERAL SPECIFICATION FOR UNli' VESTING

OF COMPONENTS 4-2
4.1.1 Purpose 4--3
4.1.2 Entrance Criteria 4-3
4.1 .3 Exit	 Cri ceria 4-3
4.1.4 Personnel 4-3
4.1.5 Unit Testing Methods 4-4

4.1.5.1	 General	 Description 4-4
4.1.5.2	 Methods and How to Select Them 4-4
4.1.5.3	 Guidelines	 for	 Selection of	 Unit

Test Cases 4-6
4.1.5.4	 An Example of	 Selection of	 Unit

Test Cakes 4-8
4.1.6 Tools for Unit Testing 4-10
4.1.7 Guidelines for Some Specific Environments 4-11

4.2 A GENERAL SPECIFICATION FOR INTEGRATION
TESTI14G OF COMPONENTS 4-14
4.2.1 Purpose 4-15
4.2.? Entrance Criteria 4-15
4.2.3 Exit	 Criteria 4-15
4.2.4 Personnel 4-15
4.2.5 Component Integration Testing Methods 4-16

4.2.5.1	 General	 Description 4-16
4.2.5.2	 Methods 4-16

. -.---% -- _"- via. . W .,...
V

TABLE OF CONVENTS
Continued

4.2.5.3 Guidelines tot Selecting Component
Integration Test Cases

4.2.6 Tools for Component Integration Testing
4.2.7 Guidelines for Some Specific Environments

4.3 A GENERAL SPECIFICATION FOR SYSTEM INTEGRATION
TESTING
4.3.1 Purpose
4.3.2 Entrance Criteria
4.3.3 Exit Criteria
4.3.4 Personnel
4.3.5 System Integration Testing Methods

4.3.5.1 General Description
4.3.5.2 Methods
4.3.5.3 Guidelines for Creating System

Integration Test Cases
4.3.6 Tools for System "Integration Testing
4.3.7 Guidelines for Some Specific Environments

4.4 A GENERAL SPECIFICATION FOR' ACCEPTANCE TESTING
e . 4 .3. Purpose
4.4.2 Entry Criteria
4.4.3 Exit Criteria
4.4.4 Personnel
4.4.5 Acceptance Testing Method

4.4.5.1 General Description
4.4.5.2 Methods

4.4.6 Tools for Acceptance Testing
4.4.7 Guidelines for Some Environments

Section 5 TOOLS AND REPORTING
5.1 OPERATING SYSTEM FEATURES
5.2 SPECIALIZED TEST TOOLS
5.3 REPORTING OF TEST ACTIVITIES
Section 6 REFERENCES
APPENDIX A GUIDELINES FOR UNIT TEST DRIVERS
APPENDIX B SAMPLE FORTRAN STUB MODULE

GENERATOR (UTSTUB)
APPENDIX C TECHNICAL MEMO: ISOLATED FAILURE

MODE TESTING
COMMENT FORM

4 -17
4-18
4 -20

4-21
4-22
	

It

4-22
4 -22
4 -23
4-23
4-23
4-24

4-26
4-26
4-28
4-30
4 -31
4-31
4-32
4-32
4-32
4-32
4-33
4-34
4 -36
5-1
5-1
5-1
5-2
6 -1
A-1

B-1

C-1

R

AV

t

0-1

c^

This document contains guidelines and procedures for testing and

I
A

release of computer software at NASA/Ames Research Center. The
guidelines and specific recommendations are specialized to the
type of software environments at Ames. Page 4-20 of this document
is a simple form to use for more information or for sending
comments.

EEVISION LEVEL

This document is version 2.0. It is a complete revision from
 version 1.0, re-organized for more extensive content.. 	 r

s

u

E

S

1

r	

(A.

M 1-1

section I
NI TRODUCTION

In a sense, all programs are created equal: they have at least 	
P

some errors in them. Since all programs have to run correctly,
those errors have to be removed during testing. This document
provides guidelines for the most efficient and useful testing
techniques in our software environments at Ames.

1.1	 DO THE TESTING THAT FITS THE PROGRAM

This is the single most important rule to follow in software
testing. Testing is a mixture of both science and art. It	 p
consumes between 30% and 50% of a project's software costs. (See
Myers and Boehm in Section 6 references) Testing will be
efficient, effective and satisfying if an approach is carefully
selected and creatively adapted for each specific environment.
This is especially true at Ames, where software project
environments vary considerably, and often are highly
research-oriented.

Some of the areas in which testing approaches must be selected or
specialized for each environment are:

• When and how each of the four most common testing
phases (unit testing, component integration testing,
system integration testing, and acceptance testing)
will fit into the project's development activities;

• When to write a test plan, who should write it, how
detailed to make it, and how to review it; 	 a ^,i

• Which approaches to use in each testing phase, who
should perform them, and how they should be reviewed;

• How to avoid over-testing or under-testing in each
phase;

• Types of non-machine review to perform;

• Which test tools to use or develop;

• How to test in difficult, environments, such as real	 s
time, multi-tzsking, distributed networks, ar
simulations.

^d

A wealth of excellent general advice is in the two classic texts

R

1-2

on testing by Myers (see references). In the context of such
general advice, this document offers guidelines for specializing
and selecting test approaches in all of the above concerns.

1.2	 HOW TEST ACTIVITIES RELATE TO OTHER DEVELQP,Mj' VNT h6D
RELEASE ACTIVITIES	 i

Testing requires pre-planning, documentation, test data and test
case preparation, test execution and debugging, reports„ng, and
error correction.

The pre-planning is always important: without pre-planning and
writing a good test plan, it can almost be guaranteed that later
test activities will appear and feel like schedule overruns. All
t:-st activities should be scheduled into the development plans.
An early, written test plan should outline the phases of testing
which will be performed, and the approaches for each phase. From
such a test plan, all activities relating to testing can then be
planned and scheduled. The accompanying diagram shows the
approximate relation between a full set of test activities and a
full set of development and software quality assurance activities.

.4

E

^a

Analysis, • '" s Project Coals Inspections • Develop acceptance test
Functional Specification, • Structured walkthroughs strategy
Requirements Definition t^^^	

^'^''`'^
Architecture (Prel

-•^,^^
WlPreliminary Teat Plan (with

Design of $yet") of whole system Function Checklist L accep-
test criteria)

^t/
ance

Preliminary Design ^^• Pr•1. ..ry Des1 n Inspections s "Add to Test Plan; Function-va-
of Components of easponents Test Case Matrix; test case

• Preliminary Test Plan /^ designs
Inspection J

Detailed Design "'^^• Detailed Design Inspections • Detailed Test Plan; test uses
of Components of components detailed design;	 test data

• Detailed Test Case Inspections Data Eases

^^Coding	 f6 —^• Code Inspections	 or otherD	 (review • Prepare unit test cases 	 wit)	 p	 (wit h

Components drivers, stubs, s1m0 stions,
9 classes of teat uses) and

r data
(^	 • Code Inspections of

Unit Testing of appropriate test eases(_+-+^/
Components

• Prepare coeperent	 integration
Co_ponent • Code Inspections of ^	 test cases and data (select
Integration Testing appropriate test 	 cases seque nce • prepare stub modules

tasks J

• Prepare system :.ntegration test
Sya:ea. • Code Inspeet test of eases	 (irecramentr:	 build plan;
Intt;ration Testing appropriate teas	 cotes reg:essicn d functional	 tests;

configuration centrol)	 & data

• V;:att rebressitn teat 	 cafes

L data	 ,

Atse;tsnct • Prepare ec:t;tance test)J2tce-
74:s:in; dares	 (!&:	 functional,

Fraceeural	 su i;ts;
unstructured; para::t:

pilot	 :, err: ice.;

1

i

b.

1-3
' u	 }

I,

OUTLINE OF TEST ACTIVITIES IK RELATION TO OTHER PROJECT DEVELOPMENT WORK

DEVELOMNT	 SOFTt+'AM QUALITi	 TEST
PHASES	 ASSURANCE ACTIVITIES	 ACTIVITIES

(Pepcs , for %&r: i.E:Eitf)

^^S .' z ^.}^"'.ia ^Y`'?=stir,. JC•r"-_---^
r ^^....._.^.

1-A

	

1.2.1	 The Bigg r r iec-tg

On a project which is 1Az= enough to require a team of several
programmers, or Ic= enough to span more than a year of
development, the test activities may encompass the full set of
activities shown in the diagram of Section 1.2. As the software
design progresses from functional specification to detailed
design of components, the test plan is developed from an
acceptance test strategy into a set of test case and test data
detailed designs. Four phases of testing are then performed,
including complete system integration regression testing, formal
acceptance testing, and maintenance of the test plans, data, and
tools in anticipation of the next release.

In an environment such as this it is very efficient if a portion
of the team specializes in the test activities, and performs
their work independently and in parallel with the developers.
Experienced, effective personnel are required for both types of
work.

	

1.2.2	 The Smaller Projects

On a project which requires only one or two programmers, or is
only a few months of development, the test activities may be best
if they are combined and simplified from the full set shown in
the diagram. The test plan may be included with the software
design documents. Inspections may be performed as Desk
Inspections or with the help of personnel outside the task for
critical parts. Component integration testing and system
integration testing commonly become a single test phase on
smaller projects, because of the smaller number of components.
Acceptance testing may be less formal because of a closer, more
continuous involvement of the Task Requestor or user.

Even though these Environments cannot usually support a separate
group of test personnel as in the bigger projects, an effective
approach is to obtain outside help in reviewing and/or
integration testing the most critical components or functions.
These should be selected early with the'Task Requestor or user,
and should concentrate on the components with heavy I/O or
hardware usage, complicated program interfaces, or critical user
interfaces. This is a very effective compromise which should be
used whenever possible on the smaller projects.

iy

If

j

2-1

The test plan def.4nes what the test activities will be and how to
prepare and execute them. It is developed in the following
sequence:

(1) Define what phases of testing will be performed in
relation to the project ' s specific; design components
and development plans.

(2) Outline acceptance criteria for the entire system, by
preparing a function checklist for the whole system
and developing acceptance crit e ria for each function.
Define what features of the system, if any, will D
be tested.

(3) Prepare the table of contents for the remainder of
the tGOt plan; and def ine when the various sections
cf details will be Added. Define what personnel will
perform the testing, and their relationship to the
development staff. Define what personnel will review

I{

or inspect the test plan and test cases, and with
what methods.

(4) Briefly outline the strategies, approaches, and
general test data specifications for each testing	 i
phase in a "top-down" sequence (i.e., acceptance
testing first, system integration testing next,
component integration testing next, unit nestinglast).

(5) Develop nd add the detailedp	 procedures, test cases,	 +
and test data for each testing phase in a "bottom-up" 	 p
sequence (i.e., unit testing first, etc.).

For each phase of testing', the test plan should focus on the
planning and scheduling of the following activities: 	 t.

• Gathering and generating of test data
• Establishing test libraries
• Establishing test data bases
• Choosing test tools	 e
• Scheduling test resources

t
• Executing tests	 i
• Analyzing test results 	 l
• Documenting test results

I

..	 '^	 ,.:lam . ,3^^j ns'. ^J+ ° i; .	 JqF f

a

G

9

f

rt

4

0
	 4 4

u

2-2

For each phase of testing, the test plan should also define all
of that phase's test activities, their purpose, deliverables,
responsible parties, procedures, and schedules.

2,1	 WHEN TO DEVELOP THE TES PLAN

The test plan evolves over the whole software development cycle.
At each development phase, it is updated with more detail. The
accompanying chart outlines the details which are added into the
test plan at each development phase.

T
t

i

i

}

t
r

k

E

}

t M

t,

Architecture (Preliminary
Design) of System

2-3

Z^=, at RI An Development

Analysis and Functional
Specification

Preliminary Design
of Components

Detailed Design
of Components

Coding and Unit
Testing

Component Integration
Testing

petails Added to Test Plan

• Definition of testing phases
in relation to specif ic
project plant

• System function checklist
• System acceptance criteria
• Schedules and responsibilities

• Detailed acceptance criteria
tied to requirements

• Approaches and L ost cases for
acceptance testing and system
integration testing

• Choice of test tools

• Approa ^hes and test cases for
component integration testing

• Function-vs-test case matrix
Details for all test cases
already defined

• Preliminary 6esign of all new
test tools

• Approaches and test cases
for unit testing
Detailed design of all new test
tools

• Plans for test libraries
• Plans for test Data Bases
• Scheduling of test resources

• Code and/or documentation
of unit test cases and
data and all new test tools

• Documentation of test results

• Code and/or documentation
for component integration test
cases and data

• Documentation of test results

4

f

M	 ^

J!	 k

f

i
tk

l

-4

r

a

System Integration	 . Code tend/or documentation
Testing	 for system integration !test

cases and data
• Documentation of regression test

procedures
• Revised function-vs-test case
matrix

• Documentation of test results

Software Dgve,ZgRmgnt Pba.se	 Dpt3iilg Added to Zest Plan

Acceptance Testing	 a Test scripts and
documentation of test cases and
data for acceptance testing

• Documentation of test results

A	
1'

6
e	 ^

I

i

2-5
2.2	 kZHO SHOULD BU,IT n THE TEST PLAN

The personnel who have Primary responsibility for a, test effort
should write the corresponding portions of the test plan. As
described in Section 1.2, overall test responsibility may range
from an independent test group for larger projects, to the
development team members or users for smaller projects. In all
casts, the Task Manager should also be closely involved in
building the test, plans. In general f the users should coht.ribute
the most to the test cases and test data of the higher phases of
testing (acceptance testing and system integration testing) and
development team members mostly to the lower phases. Since
acceptance test criteria are the first items to be written into
the test plan and the last to be implemented, users should be
involved at the earliest and the latest stages of the test plan,
with the development members being the heaviest involved in the
middle stages.

^j
ii

fi

t

f

PQ

2-6

2.3	 AN OUTLINE FOR AN EFFECTIYE TEST PLAN

2.3.1	 General Outline
a

The test plan contains a general set of information about the
overall system- -wide test approach, as well as a detailed
specification for each phase of testing to be performed. A

	

X	 possible outline follows.

(A) 12URROSE AND SCOPE

Define the purpose, coverage and limitations of the
test plan. Identify the organizations and personnel to
whom the requirements of the test plan apply. List the
important existing documents which relate to the design
and testing requirements for the system.

(B) OVERALL TEST PH ILOSQ RJi,^'	
4

Select the phases of testing which will be performed
(i.e., the four main phases described in these
guidelines) and state them in terms of the project's
specific desi gn and development plan. For example. if 	 atwo independent subsystems are to be developed and then
integrated, the project ' s testing may consist of all
four phases separately for each subsystem, followed by
separate component intey : ation testing, system testing, 	

a

and acceptance testing for the combined system--a total	 i
of 4 + 4 + 3 = 11 test phases in all.

(C) OVERALL COMPUTING OURONMENT

Describe the hardware and software computing
environment for the system as a whole, including all
packages and devices to which the system interfaces.

(D) QVERALL TESTING SCHEDULE

Define when each section of the test plan will be addgd
in full detail. Define when each testing phase is
expected to begin and end, and the schedules for all

	

"	 known testing activities. Schedules should relate to
the development schedule when appropriate.

(E) SPECIFICATIONS FOR EACHPH, SA E OF TF,;TING

n	
!-For each of the testing phases identified in (B), the

following is added in stages, as described in Section2.1:
• Purpose

I

4)

i f

t I

a}

j

s^

I

M	
S

u^
b

2-7	 5

• Entrance and exit criteria for the phase
• Dependencies which must be satisfied before the phase

can begin
• A brief description of the testing phase and the

approaches selected to accomplish it
• A description of the .specific computing environment

for this phase, and any resources required
- Operating system environment, any required

packages, and any related software upon which the
system or data depends

- Personnel responsibilities and requirements,
including those responsible for coordinating and
conducting the tests, those required to prepare
test drivers and inputs, those required to
evaluate the outputs, and those required to
operate equipment.

- Any training which is required for the developers,
testers, or operators

- The computers and related equipment which are
required during the testing phase, plus the
required operating time and availability for each.

• A list functions or components which will Its be
tested in this phase.
The test cases to be developed or run, and for each:
- Purpose
- Which functions in the Function List they will test
- Program logic for a program, or format and

contents for test case data
- Expected results
In preliminary versions of the test plan, this may be
simply an estimate of the number of test cases of
each type.

• Test tools which will be required for this phase of
testing. If. they are to be developed, include their
design as for any other program. If they are to be
acquired, include their source, schedule, and how
j= should be tested.

• The deliverables and methods for recording results
and reporting and correcting problems. In certain
phases, problems may be corrected directly by the
tester: Recording of the results via test logs is
always desirable. In some phases, a formal written
procedure is used for reporting a problem and
submitting the report for correction by other
personnel. The procedures should be explicitly
stated, even if informal.

• The sign-off method should be described, even if
informal. This should define which personnel (e.g.,
librarian, Task Manager, Chief Programmer, Task
Requestor) should approve each of the test results
and allow further testing phases to begin.

• Any risks associated with this phase of testing

0

2-8

should be estimated. This may include estimated
schedule impacts if certain fundamental problems are
discovered or if machines are unavailable, etc.

(F) TEST TOOLS

Describe or design any test tools which will be
required throughout cost of the testing phases, eyan if
th ey already exist in the system. Describe the source,
schedule, and testing of tools to be acquired. Include
the logic and design of tools to be developed. List
any tools which already exist in the system or
operating system, to call them to the attention of the
test personnel.

(G) FUNCTION CHECKLIST
See Section 2.3.2.

(H) FUNC'TI,QN-VS-TEST CASE MATRIX
See Section 2.3.3.

	

2,3.2	 Function Checklist

One of the simplest, most useful tools to support testing is a
terse, comprehensive list of all of the system functions. This
list can be used as a checklist for developing and executing test
cases and test procedures. It is also the basis for the
function-vs-test case matrix, described in Section 2.3.3.

A slightly more sophisticated function checklist may be used
which also incorporates a matrix identifying which executable
programs support each function. This "function-vs-component"
matrix can be used to help design test cases, as well as to
facilitate tracking of the software as it is developed.

	

2.3.3	 Function-Versus-Test Case Matt'

The function-vs-test case matrix provides an additional dimension
to the function checklist. For each function within the system,
this matrix identifies which test cases will test the function.
A different matrix may be required for system integration testing
and for acceptance testing, and often even for specific
approaches within each of these pahses (e.g., a matrix
specifically to identify regression test cases).

The accompanying chart illustrates , a very simple example of this
matrix, as well as the function checklists described in Section
2.3.2. In this example of a hypothetical inventory management
system, a user can inquire, change, add, or delete a part or
assembly. The system is composed of only three executable
programs, performing inquiries, add-or-delete, and charge. Only
four test cases are used.

G	 F

K I	 ^
^ia-I

K K

^I

^+ o^
N i

K K K	 K

y ^ ^

G a"

K K

^I
^(
r.^

.: w 1^ .i	 vi Io	 1:	 ^

N S.
NN H

N Z f ^ q V

N 14 V	 h IC	 I^	 p

^.

4	 1 1a' A a

K

I

I7

G

i

ORIGINAL: PAGE 19
OF DOOR QUALITY

777i

N

	

K	
K

	

tttt i	

K

a

	

.^ i^	
K	 K

14

N

	

. V 	̂ K	 K8 ^ I

W
K	 K

Iv	 ri	 .^	 Iri	 Io	 ^	 o

2-9

1

F

I

S

a

2-10

2.4

Whenever possible, an Inspecation should be held to review a
system's test plan and its test cases. The Guidelines for
Software Inspections (see references) contains Criteria for
Materials and a Checklist for conducting these Inspections 3 The
Checklist covers five categories: specifications and overall
requirements, strategy, tools, functional coverage, and test
cases. The Inspection is designed to uncover problems related to
insufficient planning, improper or unnecessary tools, potential
over-testing or under-testing, and inappropriate approaches. 	 a

A test plan can be reviewed in a Test P],an Inspection in this way
during its preliminary stage, before test cases are fully
designed. A Test Case Inspection can then be conducted later,
when the test cases have been designed, by using the same
checklist. In many cases, however, a single Test Plan/Test Case
Inspection is sufficient.

r

i

r.

I

a

A	 0

3-1

In order to determine the best overall testing approach, the most
important considerations are:

• Application
• Size of staff
• Release cycle	 If

3.1

The application of the software system often dictates the types
of testing which should be emphasized. 	 At all stages of testing
a common-sense selection can be made which will optimize testing
for a specific application. Some guidelines include:

•	 For interactive, data entry, or editing applications,
emphasize system integration testing and acceptance
testing.

9

•	 For data basing applications and computational
systems , emphasi ze complete LCsL case coverage a. the
system integration testing phase, and during that
phase's regression testing	 (See Section 4.3).

e	 For a real time I/0, control, or data acquisition
system, emphasize unit testing; include performance

during the integration testing phases.testing	 uri g	 h	 g	 i g p ^

•	 For graphics systems, emphasize unit testing with full a
test case coverage, and full acceptance testing.

;s

•	 For software supplying or making heavy use of
operating system services, emphasize complete test
case coverage at all lower phases of testing.

3.2	 SIZE OF STAFF

For a Task with a small staff, the Task Manager or even the Task
Requestor will have to take an active role in the testing
process.	 This environment may also utilize temporary help from ..
outside the Task.	 Since such personnel may be less familiar with
the system's design that the developers, they should primarily
contribute at the system integration and acceptance testing
phases.	 Since they will be less available, the most critical
functional tests should be selected for them to prepare and run,
to make the best use of their effort. 	 When project staffing is i

small, reporting of the testing results should also be
emphasized, to allow the Task Requestor to review them as time
permits.

.Y

^i

t,

r

3-2

For projects with a larger std, the team can be sectioned into
an independent test group. Alternatively, the staff's
assignments can be arranged so that each team member performs the
testing of other members' components. A sufficient number of
users will be available to involve them in the appropriate
activities during system integration testing and acceptance
testing. Inspections of both the software and the test plan
should be possible. Configuration control will be a critical
element during testingr and a librarian should be designated.
Component integration testing should be performed using
incremental builds.

3.3	 RELEASE CAE.

Software projects span a range of expected life cycles, such as:

(1) Some projects, generally the smaller ones, are developed in
a life cycle consisting of: analysis--design steps--testing
phases--release to user. The system or program is intended
to perform its function for a short lifetime, or it has a
limited and well-defined functional specification. The
software is released oitce; and not p lanned for farther
release.

(2) Some projects are larger or have more complex
functionality, and are developed in a life cycle
consisting of: analysis--system design--design,
testing, and release of a subset of components--design,
testing, and release of a larger subset--etc, until all
components are released. This is a planned
evolutionary approach which releases the system to the
users in increasingly more complete versions.

(3) Some projects are developed for long lifetimes, and
have a life cycle consisting of: analysis--system
design--design, testing, and release of a baseline
version--design, testing, and release of a revised
version containing enhancements--etc. throughout the
lifetime. 'This approach is planned for change,
accounting for functional, user,-and technology
requirements changes.

If a single release environment such as (1) is planned, testing
should consist of the phases and approaches which are most
applicable, but generally not utilizing regression test methods
during system integration testing. These environments should
utilize a minimum number of tools. Test cases and results should
be documented while being performed, but need not be saved in all
cases.

When multiple releases, such as (2) or (3), are planned for a

A

a
1
i

a

C

.

^r r+ r

r1 	 ^''

3-3

system, a more rigorous set of test activities should be
utilized. Test approaches, configuration control, and reporting
are all more elaborate in these caves, in order to:

• Rigorously test system enhancements in each release.
• Ensure that each enhancement does not cause rippling

malfunctions throughout the system.

• Ensure that the enhancements do not adversely impact
the "unchanged" portions of the system.

• Maintain user satisfaction and confidence.

A sample scenario of such a multi-release testing cycle follows:

(a) The system is first developed and released through all four
phases of testing and accepted by the user. This first
release is copied and used as the production baseline. The
key system integration test cases and results are stored as
regression test cases for further use.

(b) Enhancements for the next release are specified and
designed. The test plan is udpated:

- New functions are added to the function checklist.

- The function-vs-test case matrix is reviewed to
eliminate irrelevant cases or specify new ones.

- New test cases are designed.

(c) A copy of the baseline is made to begin development of the
next release. The enhancements and new test cases are
developed. Unit testing and component integration testing
are performed.

(d) All new test cases for system integration testing are
run on the system under development. These test cases
and results are saved.

(e) A second copy of the baseline is made for regression
testing. Regression tests from the previous release are
run on the system under development and compared to
previous results. If necessary, these regression test
cases may be run on the second " regression" copy, with
minor modifications to either the software or the test
cases, in order to allow direct comparison with results
from the system under development. All regression test
cases and results are saved.

(f) User-oriented portions of system integration testing

r^

t

s

-s 1

`i

4

?

	yyaatt

Ytr-jp^

V

C

3-4

are performed. Independent test teams are used whenever
possible.

(g) A copy of the system under development is made in its
production format and used for acceptance testing.
Changes resulting from this acceptance testing are
returned to the system under development. 	 Cutover is
scheduled with all parties involved.

(h) Production media are produced for the new release.	 At
least one copy of the production software is saved as
the new baseline of the system.

z,

(i) The new system integration test cases and results used
a

in step (d) are selectively merged with the regression
test cases and results used in step (e), to create an
updated set of regression test for this release. 1

(j) A copy of the new baseline is made for investigating
any future production problems.	 A:;^y immediate a
corrections required during the baseline's lifetime may
bey tested with the updated set of regression tests	 (i) ;
for this release.	 These corrections should be
carefully reported, and manually merged into any new
development work for the subsequent release.

^f
(k) New enhancements for the next release begin again at

step	 (b) .
^f

The specific pystem and project environment will further dictate ")
detailed configuration control procedures, backups to be made,
etc. }(

^t

Jti

e[

w

- •a; ice``. r-^.a

1

Section- 4	 4 -1 {
roUIDELINES FQR EACH I!HAS& OF TESTING

For each phase of testing which a set of software undercjoes,
there are options as to which procedures will be best for a
specific environment. Regardless of the procedures selected, each
phase of test,'ing still has a well.-defined purpose, as well as a
definition of what is tested and what it looks like after it is

k	 tested.

The following sections provide specifications and g,, .,,ielines for
each phase of testing, covering:

•	 Purpose of this phase of testing U

Entrance criteria
•	 Exit criteria
•	 Personnel performing this phase of testing
•	 Metho(Is ► and how to select them
•	 Tools which can be used
•	 Guidelines pertaining to some specific software

I
environments.

s

y
pM

ORIGINAL PAGE IS
OF BOOR QUALITY

4.1	 A	 • .NFRAb ^.EICAT	 F.QR UNIT.N^d'	 ^'?QN T^S"I'TNG _OF COMPONENTS

e

ri

Perform
r

0 Correction

• Inspection F
Problem
Reports

clean-compile Problems
modules perform r

Code
Inspection

program
documents

or other
code
eview	 Inspected modules Run

and Unit-Tenstin Unit-Tested
Test Cases modules and

program and T0:t program
-...,	 documents Proce Ares it^,,.

on Modules documents

Detailed
Prepare	 module

Test the	 test cases

Plan
Unit-Testing
Test Cases

i

0

Its

11	 p

4-3
4.1.1 EUrpoga

Unit-testing verifies that isolated module(s) perform as
specified in functional specifications and program documents.

c	 Each new or modified modu le is unit tested in isolat M on before
being tested with the rest of the system. This is the stage in
which to exercise all the paths through the modules, since some
paths are difficult to generate in a realistic situation.

E

4.1,2	 Entranoe Criteria

• Modules have a clean compile

• Modules have been submitted for (preferably passed)
a	 a Code Inspection, Code Desk Inspection, or other
f	 code review

• Program documents associated with the modules are
4	 up-to-date

• If the modules to be tested have any logical
dependencies on other primitive madulesp those
should have already passed unit-testing

• A development system is available with compiler,
development tools, unit testing tools, and any
hardware devices required to test the modules

• The Detailed Test Plan for these modules is
up-to-date

4.1.3	 Exit Criteria

• The modules pass all logic and functionality tests
and test cases, according to the procedures selected
from Section 4.1.5

• Program documents relating to the modules are updated

• Code Inspection (or other code review) is passed

• If the project has a librarian, modules are signed
off by the librarian

4.1.4	 Personnel

At the mQdU" level., unit testing is generally the responsibility
of the gr,ogra mer. in cases where more than one programmer
develops a program, the best choice is for the most senior person
who did = write a module to be the one to unit test it. In the
case of utility modules, it is advantageous for unit testing to

A

f	 4-4	 fi

be performed by anothgr lin rela..,tted "_tea r" .

, E 4.1.5 Unit TCO ins Uthods
P

4.1.5.1 seannra.l Desc.r b -ion

The steps involved in unit testing are generally as ;Follows:

(1) Develop the modules' code, according to its detailed design,
'	 until a clean compile is obtained.

(2) Perform review (Code Inspection, Code Desk Inspection,
Structured Walkthrough, etc., as outlined below)

(3) Select a sequence in which the modules will be tester.

(4) Select test cases to be performed on each module, and a	 ".
method from which to run them.

(5) Prepare test case data and run the test cases.

(6) Perform corrections and re-test.

(7) Maintain a test. log; obtain signoff from librarian or 	 f
4iesignated peroonnel.

^'	 s

4.1.5.2 Methods and How to Select Them

The ;level of detail at which to unit test should vary according
to how critical, how widespread, or how complex a module's
function is. 9Dnp ete unit -testing should:

• Exercise all i de in the module and all bare atgr

• If the program requires operator interactions or
ink, obtain independent opinions as to whether or
not it is appropriate and understandable.

• Cause each error message (if any) to be written (to a
spooled file or a CRT). Be sure they are meaningful
and helpful; always obtain independent opinions 	 h
regarding this.

• Execute all loops the Minimum and maximum number of
times possible.

•	 Verify that any files written or fields set in shared
memory areas by the modules are correct according to
the input giver, them.	 In many cases, local commons
should be dumped with special debug cone.

t

k

r°

'V

6

4-5	 1
• Verify that any SjLtgYt1a..1,.._f l Aq modification ie done

correctly.

Possible methods to se:ect among for testing individual modules
follow.

Igglate and Completely Test with a Driver
For utilities, modules which will be utilized by many programs
(such as a file open utility), and modules which serve critical
functions (such as a module controlling a device in real time),	 i
unit testing should be accomplished by isolating the module and
calling it from a specially-written test driver. Test cases
should cover all aspects of the module's logic and performance.

isolate and Moderately Test, with a Driver
For complex modules which are not widespread utilities or which
are used in very restricted environments, unit testing should
also be done through isolating the module and calling from a test
driver. However, the coverage of the test cases need not be
totally complete. Some parameter test cases and logic path
exercises can and should be substantially reduced.

T.ef t from the Calling^Proaram
Except when the overall unit-testing sequence is chosen to
utilize the above 'driver" methods, a module which is less
rmmnlPx and which is utilized in one or very few locations can be
tested entirely from the program or module which calls it. The 	 r
calling program can be externally manipulated (if an interactive I
debugger is available) or temporarily modified to perform a
moderately complete selection of test cases. This is the best
choice for most computational programs and most applications
which do not perform wxitical I /0, data basing, or device
manipulation. This method is otherwise preferable because it
minimizes the coding of special test drivers, and it embeds the 	

t

modules in the same environment during testing that they will
have]aster during operation.

Inspections, code ray-leWs. and 'desk_ checking
Regardlese of which of the above methods is selected, some type of
non-machine review should always be done.

• On large projects, Code Inspections or Code Desk?
Inspections are strongly recommended. IyyI

i-1

• For modules performing heavy user interaction or which
interface to other incomplete software subsystems or
hardware devices, less formal structured walkthroughs
or code reviews are recommended, attended by the
personnel implementing the related subsystem or
hardware.

t

fAr
y

4-6
• For small projects or one-person tasks, the most

critical modules abould also be reviewed in a
structured walkthrough with the Task Requestor. If the
modules are complex, it is highly recommended to
perform a formal Code Inspection or Code Desk
Inspection by borrowing temporary assistance from
programmers on other tasks, with the Task Requestors'
permission.

• For less critical modules on small projects or
one-person tasks, the programmer (or a cooperative
Task Requestor) should conscientiously desk-check the
code prior to machine testing. Desk checking should
be done with the appropriate language Code Checklist
from the Guidelines for Inspections.

Non-machine checking of code is consistently a highly cost
effective use of time. Problems detected at a programmer's desk
can cost 10 to 50 times less to detect and correct than using
machine testing.

,Simulation
If a software subsystem (e.g., data base or other package) or
hardwar € device is not available at unit test timep the unit
testing should be postponed whenever possible. Constrt .^cting
simulation software is always costly and usually only partially
effective. Simulation software should be written only for
extremely critical schedules. Whenever possible, the modules
simulating a software or hardware sybsystem should be reviewed
with personnel familiar with the ultimate subsystem. The
simulation modules should allow for error conditions to occur,
and should undergo Code Inspections to prevent large efforts to
debug the simulation. Hardware devices require the simulation
modules to include timing, and they should therefore be
performance tested to measure their actual effective timing.

4.1.5.3 Guidelines for ,Selection of Unit Test Cases

The parameter cases to be used for unit testing a module can be
determined by using the list below, which defines increasingly
rigid categories of unit test cases. Proceed down the list,
writing down all the input sets necessary to satisfy each step.
For most modules, many of the steps will be redundant. Only
those input sets which are unique need then be prepared and
executed, but all of the purposes of each test must still be
checked when the olUtpvt is examined.

1. Parameter limits: Input each parameter at its upper and
lower value limits. Input parameter sets which will cause
each output value to occur at its upper and lower limits.

2. Parameter partitioning: Input one value of each

h

Y

(.

parameter to represent each of the various ranges 	
4-7

("partitions") it may take on. For example, for a
full-range integer parameter, include the negative
range, positive range, and zero. For a character
parameter, include a letter, a digit, a special symbol,
and a blank. Similarly, input parameter sets to test
the various partitions of each output value.

3. Return codes: Input a parameter set which will cause
each possible return or status code of the module to
occur. In some cases, this will require an environment
to be produced by the test driver. Operating sysitem
service calls should be simulated to produce various
return codes only if .L is critical to the module's
operation. In most cases, only the environments which
can be produced externally (e.g., device not ready,
subsystem not installed, driver not loaded, etc.) need
be tested.

4. Messages: Input parameter sets to cause each possible
message in the module to be tested once.

5. Isolated failure odes: Produce external environments
iv&IL	 contain s

i
ngle isolated error-causing problems

(such as tape not mounted, file missing or locked, etc.)
to test the proper reaction of the module. (See
Appendix C for further description).

6. Interactive :mistreatment; Modules which are interactive
should be deliberately tested with all possible illegal
action on the part of the user. (E.g., number instead
of letter input, carriage return with no input, etc.).

7. Linkages: Input parameter sets which will cause the
module to call every sub-program which it references.

8. =: Input parameter sets which will cause the module
to execute every I/0, READ, WRITE, OPEN, etc. which it
contains. FORMATS should be tested in each of their
partition ranges. Test each file for: I/O of the first
and last records, missing file and empty file.

9. Logic paths: Input parameter sets which will cause the
module to execute every test-and/or-branch path at .,,,east
once.

!fi

{

A

'}	 k

1

V

x!

b

4.1.5.4 AnaExa=le of Selection of Unit Test Cases	 4-8

For unit testing the following hypothetical FORTRAN module
(header and comments are abbreviated):

SUBROUTINE IVOUT (IVEClLENGTH,L'UNIT,IERR)
C
C PRINT AN INTEGER VECTOR IF IT IS NON-ZERO
C
C	 IVEC- INPUT-THE VECTOR
C	 LENGTH-INPUT-LENGTH OF THE VECTOR
C	 LUNIT- INPUT-PRINT OUTPUT LOGICAL UNIT NO.
C	 IERR- OUTPUT-RETURN STATUS:

"	 C	 O=SUCCESS
C	 -1=ILLEGAL LENGTH INPUT
C	 -2=ILLEGAL LUNIT INPUT
C

DIMENSION IVEC (LENGTH)
C

IERR=O
IF (LENGTH .LE.0) IERR=-1
IF (LUNIT .LE.0) IERR=-2
IF (IERR .NE.,G) GO TO 999

C
DO 1 I=1, LENGTH

IF (IVEC (I). NE. 0) GO TO 10
1 CONTINUE

C
C VECTOR IS ALL ZERO; RETURN
C

GO TO 999
C
C PRINT
C

10 WRITE (LUNIT,500) IVEC
C

500 FORMAT(/, ' NON-ZERO VECTOR',/, (518))
C

999 RETURN
4	 END

X

h

r,
H

n

Proceeding through the unit test checklist suggests the following
cases (for each case, the various suggested parameter values are
listed, separated by semicolons:

Class 1: LENGTH = 1; D (= highest dimension module can be
expected to handle)

LUNIT	 1; U (- highest logical unit which can be
expectet"

IVEC = +-32767,...

4-9
Class 2: LENGTH = 5

LUNIT = 5
IVEC = 5 * -5	 f	 5 * 0

5 * 5	 ;	 -5,0,5,-5
(tests all legal partition ranges)

Class 3: LENGTH - -1; 0	 (produces IERR = -1)
LUNIT = -1; 0	 (produces IERR = -2)
LENGTH = 5	 (produces IERR = 0)
LUNIT = 5	 (produces IERR = 0)

Class 4: None

Class 5: Place printer off-line; unload printer driver;
assign LUNIT to illegal device.

Class 6: None

Class 7: None

Class 8: LENGTH	 1	 5	 7
LUNIT = l	 ;	 5	 ; 5
IVEC = -5	 -5015,0,-5 ; -5,0,5,0,-5,0,5
(Tests WRITE statement for various partition
ranges of the FORMAT (518).)

Class 9: LENGTH = 5; 0	 (test first "IF")
LUNIT	 5; 0	 (tests second "IF")
IVEC = 0,0,0,0,0	 ; 5,5,5,5,5 (tests third "IF")

r

f

Duplicate test cases should now be eliminated. The actual test
cases to be used should be the unique subset of the above cases,
and are summarized in a test case matrix as follows:

)4

i

f1l	 I
1

i	

tr^

,-.4	 5
4

r.

ry

i

,. u

4-10 +

J=
a

1. -1 1	 5 3
2. 0 1	 5 3
3. 1 -1	 5 3
4. 1 0	 5 3
5. D U	 D*5 1
6. 7 5	 7*-5 8j 2,3
7. 5 5	 5*0 2,3,5
8. 5 5	 5*5 2,3
9. 5 5	 -5,0,5,0,-5 2,3

10. 5 5	 5*-32767 1
11. 5 5	 5*32767 1
12. Case	 (11) with printer off-line 5
13. Case	 (11) with LP driver unloaded 5
14. Case	 1,11) with LUNIT assigned to CR: 5

4.1.6	 Tools , for Unit Testing
ti

To perform complete coverage unit besting, module(s) must be
executed in a number of fixed environments to test internal
operation and outputs. For some of the methods outlined in	 j

Section 4.1.5, this requires a " test driver" program, which calls
the module with a well-defined setup of parameters, registers, 	 7
global data blocks, files, etc., and displays the output.
Appendix A outlines guidelines for writing test drivers.

b^

Testing a module in isolation also often requires a substitution
of stub modules for calls to lower-level subroutines not yet
written. Appendix B describes UTSTUB, a utility program in
SOFTLIB for building FORTRAN stub modules.

A variety of utilities within the operating systems are usual:y
heavily used during unit testing. These types of tools are 	 {
suggested in Section 5.

I

u

X 4.1.7	 Guidelines for -Some speci ig EDvi or nments	 4-11

In developing specific types of program systems, the following
general recommendations may be helpful as guidelines; individual
tasks or projects should always consider their unique
requirements.

Computational
or numerical

Recommended
Method to
Perform Unit
Testing

Inspections;
isolation with unit
test drivers

Inspections or desk
check; isolation with
unit test drivers for
bottom modules; unit
test from calling
program for top
mouuules

Coverage
and
Personnel

Use complete
coverage only on
the modules accessing
the hardware;
moderate coverage
for others

Use complete coverage
only on the modules
performing numerical
utilities and which
are primarily
computational;
moderate coverage
for others

Type of
Module

Data Aquisition
or control

User interaction, Structured walkthroughs; Use independent	 r
interaction, unit test from the people to unit
data entry, or calling program test; the programmer
editors should not test

his/her own modules;

Graphics Inspections and Use independent
structured walkthroughs; people to unit test
unit test from the all user-available
calling program for functions
the user-available

a

functions; unit test
with unit test drivers
only if fundamental or t

primitive utility
graphics are part of
the system

'k.	 s
J

Type of
ModulD

Data basing
and reporting

Subsystems of
a large
project, where
other pieces
are missing

System-level
programs with
heavy ^,,;se of
operating
system
features

Coverage	 4-12
and
Personnel

Use complete coverage
only on the modules
accessing the data
base; moderate
coverage with
independent people
for others

I

Bake the simulation
available to other
subsystem groups;
involve them in
the walkthroughs

s

Use independent
people whenever
possible; use
complete coverage
for the bottom
modules, moderate
or complete
coverage for
all others

i
r

3	 (^

Recommended
Method to
Perform Unit
Testing

Inspections or desk
checks; unit test from
the calling program for
the reporting and
user-available functions;
unit-test with test
drivers for the data
base access modules

Inspections and
structured walkthroughs;
design and write
a simulation of the
missing pieces only
if the schedule allows
no other approach

Inspections or desk
checks; isolation with
unit test drivers
for modules making
the operating system
service calls; unit
test from calling
program for others

A one-person	 Desk check; use other 	 Involve the Task
task	 review methods and	 Requestor to unit

outside help on the	 test from top-down
most critical modules;	 until all user
use whichever unit	 interfaces have been
test method is	 checked
appropriate for the
application

Unit testing is very susceptible to being overdone, and can be
the largest expenditure of manpower in a project if the proper
selections are nit made and monitored. Despite expectations, if
unit testing shows results much better or worse than expected, a
manager should always be ready to modify the approach to be more
efficient. Some recommendations to help the selections be cost
effective include:

• Don't unit test to show that a program works; test to
find its errors.

• Concentrate on the most critical parts and the most
used parts.

• Involve independent people whenever possible.
k t

i

I

a	

to

a-13
• Don't unit test without a plan.

• Test results should be reproducible.

Always inspect, review, or desk check the code.

• Be practical; don't insist on checking every path in
every module.

i

x

t

7
9

•1

P

y.

r

rt

!G

it

r.

r

tt	

{
t

•	 ?I

j4	 +

I^

11

f
y	 t

I

.. yt

` q

{

u

ORIGINAL PAGE 10
OF POOR QUALITY

4-14

4.2	 A GENERAL SPECTEICATION FOR INTEGRATION TESTING
OF COMPONENTS

orrect-
ions

Unit-Tested modules
and program documents

Subsidiary modules
and related modules,'
and programs

Detailed	 Prepare
Test Plan	 the

Integration
Testing

Test Cases

Run
Integration

Testing Procedure
and Test Cases on Integration-Tested
Successively large	 Components

Groups of	 and programComponents	 Documents

Test
Cases

q

i

3q

n	 j
N	 i

1

t

`a

a,

y^

1
1

^	

a
q

t

11k

r ;°

4-15

4.2.1	 Purpogg

Component integration testing verifies the proper execution,
logic # datar control flow, external functionalit,v and interfaces
in executable programs or groups of inter-related modules,
isolated from other such groups. 	 It is performed after the g'
individual modules and subprograms have been verified. They are
consolidated into functionally related packages or executable
programs.	 These packages are fist debugged as a whale, with no
inputs, to establish that they can cycle. 	 Then, controlled
inputs are introduced to test the packages' ability to respond
properly.	 Integration testing of componeits may proceed in
several levels corresponding to successively larger groups of
subprograms within the system.

4.2.2	 Entrance Criteria

•	 All of the component modules have passed unit testing
k

x

•	 Documents associated with the prorams are up-to-date
•	 If the programs to be tested have logical

dependencies on other modules and programs, they
should have already passed integration testing s

•	 The system hardware and o... {r..are configuration is a
available)

•	 The Detailed Test Plan for the programs is up-to-date
•	 Any performance measurement tools have been

installed or designed and implemented.

4.2.3	 Exit Criteria
t

•	 The programs successfully pass all specified
integration tests without programmer intervention

•	 The program documentation has been updated, and
agrees with the program operation

•	 If the project has a Librarian, the programs are
signed off by the Librarian.

4.2.4	 Personnel

This stage of testing is ordinarily performed by one or more of
the software's programmers, or an independent team of
programmers. In larger groups, the testing is usually led by the
Chief Programmer in charge of the program.

4.2.5	 rAt ion Testing Methods	
4-16

4.2.5.1 CPDPXAI Oescrintion

The steps in component integration testing are generally as
follows:
(1) A sequence in which modules are to be combined into testable

components is selected.

(2) Test cases are prepared for component integration
testing of 4these components.

(3) The group of modules with the necessary stubs or test
drivers is constructed to isolate a subset of the
program.

(4) The component integration testing is conducted by
runn ing test cases of data and parameters on the subset.

(5) Corrections are made to the modules and their
documentation, and they are re-tested.

(K) The stubs are replaced with successively lower-level
modules, OR successively higher-level modules are added
underneath the test drivers, and further te^s4 cases are
run. This is continued until an executable program has
been completely integrated.

r

(7) The executable program is tested with whatever commands
or command procedures the user w ill be employing.

(8) For very large multi-program systems, the same
procedures are conducted with successively larger
combinations of executable programs, verifying their 	 n
interfaces with test cases.

(9) Maintain test logs; obtain signoff from librarian or
designated personnel.

4.2.5.2 Methods

In this stage of testing, the unit-tested modules are combined in
successively larger packages until an executable program is
fully-tested. This may often require integrating higher-level
modules together with "stubs", or dummy lower-level modules. In
integration testing a program or set of modules, the most
effective sequence for packaging and testing is not the same for 	 1
all progra,;ns. The best choice depends on the type of environment
with which the software must interact. The three types of
approaches from which to select are:

t	

yy

4

Ali •	 t

C)

e	 '	

^Y

1

r+m

4-17
•lop-doWn

Test from the top (main program) down (to the lower
modules) for programs which are primarily interactive.
(E.g., menus or graphics.) This allows user sequences to
be experimented with and critiqued as soon as possible.

• ^2.tt.S2ID=.tom
Test from the bottom modules up for programs which make
heavy or critical use of hardware devices, or which make
heavy or critical use of operating system services.
(E.g., a data acquisition program or a program which
relies on network services.) In addition, programs which
have any critical I/O performance criteria are also best
tested bottom-up. (E.g., programs doing heavy disk 1/0,
data base access, or primitive graphics.) This method
allows bottlenecks and critical I/O to be tested first,
allowing as much time as possible if redesign, is required.

• Sandwich tasting
Test 1,p h the highest- and lowest-level modules first for
programs which have an approximately uniform mixture of
interface types (e.g., some user interaction, some data
base I/0) with no one type being critical or
0Veri:hc^lmi ng. iheii conALl' nue testing modules successively
further from both the top and the bottom. Computational
PLUYLams should generally be tested this way. This
method allows the most commonly used types of programming 	 4
data structures and data passing techniques to 7be 	 ?'
evaluated with the least risk of late re-structuring
efforts.

The program's application and structure should be used to select
one of these three test sequences for each separate program or
set of modules. In larger systems, this selection should be made
during design activities, and written into the program's Test
Plan.

4..2.5.3 Guidelines_ for__Selecting Component Integration
Test Cases

The test cases used in component integration testing are similar
to those listed in Section 4.1.5.3 for unit testing. However,
since unit testing is already complete, the emphasis should be on
testing module interfaces. Thus, the test cases should be
composed of (refer to the checklist, Section 4.1.5.3, for
details) :

o?

q
Y

.

P

r

-

e8
^i

Class 1. PBmetsr.S^m,t8	 --	 Trst the calls to those
and	 and	 modules which were newly

Class 2. ,Rarameter	 added to the test
Partitioning	 group.

Class 3. Return Codes	 --	 Test the handling of all
codes returned from the
modules newly added to
the group.

Class 7, Linkages	 --	 Try to cause each newly-added
module to call modules
which it references.

1

The other test case classes should be included as appropriate.
Interactive, graphic display, or report generation applications
should include testing by one or more end-users to evaluate the
user interfaces top-down.

4.2.6 Tools for Compongnt „lntear.gtion' Testing

The most useful tools in component integration testing are the	 }
"test driver" and "stub module generator" programs described for
/NCO ir! I^^Ai t tcc 4-4	 Section 4:1.46 *	

i.,	

b

In multi-tasking environments, component integration testing
additionally requires using "stub tasks". A stub teA is a dummy 	 r
executable program which can run or be run by another program for
testing inter-program interfaces. The details of a stub task	 i
depend on the operating system and environment it must simulate,
but they are generally yeti aimplg programs.

As an example under RSX 11M using FORTRAN, if RESUMing of a
necond task is to be tested, a useful stub task may look lake:

PROGRAM xxxxxx
C
C STUB TASK FOR INTEGRATION-TESTING INTER-TASK "RESUME01
C

DIMENSION NAME(3)
DATA NAME/' xk','xx', ' xx'/

C
C WRITE BRIEF MESSAGE AND SUSPEND IMMEDIATELY
C
10 WRITE (1,1) NAME
1	 FORMAT (' *** >', 3A2)

CALL SUSPEND
C	 t
C IF RESUMED, JUST SUSPEND AGAIN
C	 1

GO TO 10	 i
C

END

I	 t

W`;

Q-19

This stub can now serve as a task for a program to RUN= if it is	 .
RUN first by the human tester, it can serve as a task for a
program to RESUME.	 If desired, the tester can ,ABORT the stub'
task when it first SUSPENDS. More sophisticated stubs can easily
be conceived, such as stubs which set, clear, or wait for event
flags. P

Although this example is specific to RSX-11M, it is clear that
stub tasks can be very simple. They should be ktj?t	 -e,
wherever possible, as a multi-tasking environment cannot be
well-represented by such tasks without substantial simulation	 ?
work.

a

Typical operating system utilities useful in integration testing	 {;
are suggested in Section 5.

i;

rf

i

A	 ^"

X	 ,1

k(,

t

3

I

))	

p+E

rr
I

r	
l^

e	 a

ti

8

4-20

4.2.7	 S

In developing specific types of program ;systems, the following
general recommendations may be helpful as guidelines; individual
tasks or projects should always consider their unique
requirements.

Type of System
or Environment

Data acquisition or control

Computational or numerical

User interaction, dat pt entry,
or editors

Graphics

Data basing and reporting

Subsystems of a large-project,
where other pieces are missing

System-level programs with heavy
use of operating system features

A one-person task

Recommended Sequence in
which to Perform Component
Integration Testing

Bottom-up

Sandwich

Top-down

Top-down or
Sandwich

Sandwich

Sequence depends on
the application

Sandwich or
bottom-up

Sequence depends
on the application

yN

b	 r

f

e

}	 r

1

I
rl

i!i

eat
sea	 New

Regression
Test
Cases
and
Results

Regression Test Cases

i Regression Results

^^.r -̂ ^,.% •f^.:V r /^ Jam' J/C.A " ^.;

Detailed Test Plan the System)
Integration
Testing
Test Cases,

ORIGINAL PAGE ig
r r POOR QUALITY

4-21

4.3	 D,` GENE AL SpECT C;e'TIOt1 FOR SYSTEM TNTEGR TTON' TESTTNG

Corrections
._...^ Perform

orrections

•	 ^	 a

•

•	 rcblems

Integration - Tested Components
^^.., xecutable programs or groups o

	

--..r...^p^dules	 Rung
System Integratio Software and

	

Procedures i Procedure Piles 	 Testing Procedures Documentsfor Running	 and	 Fully System
Test Cases

Integration

	

Program i User Documentation 	 Tested

Subsidiary and Related
Modules i Programs

K. iYL

4-22

	

4.3.1	 Purflone

System integration testing detects interfacey	 g	 problems and
operational, functional f and logical problems when a complete
software system is operated as a whole. It also detects problems
in the operating, program, and user documentation. For
modifications to existing software, system integration testing
also verifies that unchanged software and functions still operate
as they used to.

	

4.3.2	 Entrance_ Criteria

I4

I

4 • All components (executable programs or groups of
modules) have passed component integration testing

'f
4 • Operatin-, program, and user documentation are

`R up-to-date and available

• Procedure files and written procedures for the
operation of the system have been prepared

• The Detailed Test Plan for the system is up-to-date	 a

• Any test cases for this phase of testing that have

-
passed detailed design are being prepared	 r

 a
• An	 test cases and their results from the previous

system release are available ("Regression
Cases")

• If the system has any logical dependencies on other
programs or modules, they should have passed all
stages of testing

R

• The system hardware and software configuration is	 y
available

• Any performance measurement tools have been
installed or designed and implemented

4.3.3 Exit Criteria	 I

• The system properly initiateso operates, and
terminates all functions, using the procedure files
or written procedures

• Successive executions of the software generate the
proper number of versions of output files, and
remove all temporary files upon exit.

• The system proceeds properly through all test cases
prepared for system integration testing, generating

y

,ri
1

a

4-23
the correct results without programmer intervention

• All test cases from the previous system release
(":egression test cases") execute properly and
produce the expected results

• Program, operator, and user documents are all updated

4.3.4 Perso=al

The most effective approach to system integration testing is to
employ a team which is all or partly made up of pe_-ns who did
not develop the new or changed software. An independent test
group (programmers and users who did not develop the system) is
best, Members of the development team who were not specifically
involved in developing the release's new functions are also a
good choice. One or more users or operators are im portant to
this type of testing. If the task or project is not large enough
to have any of these types of independent programmers to do the
system integration testing, it is best to (1) txy to involve
users or the Task Requestors, and (2) concentrate on

-.* , :rage detail in writing the test plan, test cases, and
expected results KC11 before this u,)hase of testjing begins.

Regardless of the team's makeup, it is best for the experience
!:,:_? to be a mixture ofunior and seniorj	 programmer staff. The
senior personnel are needed to effectively test and debug all
interfaces, while the junior staff should organize and run the
test cases and procedure under supervision. Both junior and
senior programming staff should observe users, in order to
evaluate the system and correct its documentation.

4.3.5

4.3.5.1 General Desg,,Kiptign

The steps in system integration testing are generally as follow:

(1) A sequence and overall approach is selected.

(2) Test cases specified in the Detailed Test Plan for 	 r
system integration testing are prepared, including any
regression tests.

(3) The system components are combined into successively
larger builds of executable programs, and the test
cases re-executed for each. Corrections are made and
re-testing is done.

(4) Regression tests and other tests are run on the entire

S -I Jr-

4-24
r	 system.

(5) Corrections are made to the programs and documents, and
re-testing is done.

(6) Maintain test logs and/or problem reports; obtain
signoff from librarian or designated personnel.

4.3.5.2 Hatho*ds

Several effective methods can be used in this phase of testing.
As in all phases of testing, some of the methods are most
effective for specific system environment. However, some or all
of the following approaches will be highly effective in each
individual environment.

• Incremental integration
• Functional testing
• Regression testing

Incremental, Integration - For medium or large size systems,
putting all of the software together at once and trying to test
it just doesn't work. To be effective, systems composed of
components of multiple executable programs, or those composed of
one very large program (with over 50 modules or so) should be
system integration tested in several successively more complete
"s" of the system components. In these environments, system	 a
integration testing is a smooth transition from component
integration testing, as shown in the overview diagram in Section
1.2. When executable program components are built and tested in
these successively larger combinations, it is important that the
plan for what will be included in each of the builds be carefully
written into the Detailed Test Plan ahead of time. For the first
"skeleton" build and for each successive build, appropriate test
cases specified in the Test Plan should be prepared and executed.
The overall sequence in which the components are collected into
builds should attempt to integrate the most critical functions
earliest (following the same guidelines as outlined in Section#
4.2.5 for compcnent integration testing). If more than "a few"
successive builds are planned, the test cases and results for
each should be organized into "regression tests", as described
below.

Regression Testing - This is the most powerful method of system
integration testing for the following environments:

• A system which will be tested-with "incremental
integration", as described above, and where the number
of successive builds is not small. Regression methods
should be used if each successive build introduces new
software and features which may possibly impact the
software and features already tested in the previous

i
i..f

v

-A.'^a	 u

4-25
build.,

a .A system which will undergo several or many releases
during its lifetime. Regression methods should be used
unless each release introduces only new, unrelated
software or functions, and each release does not
require rebuild or reconfiguration of the previous
release's software.

Regression testing consists of preparing test cases which can be
run with little or no change on two different versions of the
system; the results are compared to determine and analyze any
differences. In regression testing during "incremental
integration", test cases are run on two successive builds, and
the results are compared to verify that the software and
functions of the previous build were not affected by the new
components. In regression testing of successive releases of a
system, test cases are run on two successive releases, and the
results are compared to verify that the "unchanged" portions of
the system are still correct. In either case, the tests verify
that the remainder of the system has not "regressed", or lost its
correctness, when other small subsections are changed.

Regression testing can be done by manually running the programs
and comparing the results. it is much more efficient if the test
cd:.t U'a ta can be saved in files for easy running, and if the
results can be saved in files for easy comparison. Not all
systems lend themselves to this semi-automation, but the files
should be saved wherever practical.

Since the test cases wilfl,, be run on two slightly different
systems, some of the data will be incompatible, or will produce
results which are rightfully incompatible. The individual test
cases used for regression testing should be chosen to segment the
system's functions and software, with each test case covering a
subset of the system.

Programmers should examine all discrepancies and resolve them.
"Incremental integration" should not proceed until regression
testing of one build against its previous one is entirely
successful. If any corrections are required to the software or
the test cases during regression testing, they should all be
re-run.

When system integration testing is complete, all test cases used
for the current release should be evaluated as likely candidates
for saving as regression tests to be used in the next release.
The regression test plan saves significant test time in most
system environments, and the regression test plans and test cases
should be updated whenever possible.

Regression tests should be designed and maintained to be easily

s

P(
i

kf

3

R

4-26

run whenever maintenance changes are made on a system, even if
the changes are "small". The regression tests can be used by
maintenance programmers to check their work even before a set of
changes are collected into a release.

unction l*Testina - To verify that a system (or build) performs
All (or a subset) of its required functions and external
specifications, a specially-directed s,^t of tests should be used.
This is especially important in systems with a variety of
external functions, or systems with many users and generally not
operated by the developers. Functional Testing should be
performed by a team with one or more users, operators or the Task
Requestors, Test cases should be written as a checklist which
parallels the superset of: (1) the system's complete, written
functional specifications, and (2) the system's User's Guide or
Operating Instructions. If incremental integration is being
performed, the functional tests associated with each successive
build should be specified. Any error in the system's performance
should be recorded and analyzed separately by the development
programmers; any discrepancies in the user or operator documents
should be corrected during the functional testing. If
corrections are made to any parts of the software, &11 of the
functional tests should be repeated.

4.3.5.3 Gui de lines ijU- Cr ea ting System integration Test Cases

The following areas should all be included, using the suggestions
in Section 4.1.5.3 for unit tests, in order to design the actual
test cases:

• All inter -program control paths should be executed at
least once in each possible mode.

• Inter -program data transfer paths should be tested,
with partitioning and limit-tests similar to those fl

suggested in Section 4.1.5.3 for unit tests.

• All inputs and outputs should be tested or verified;
the recovery of the system from a missing or bad input
should be checked.

• "Isolated failure testing` ! should be performed for all
devices upon which the system depends (See Appendix C).

• "Volume testing" should be performed, testing small,
medium, and large quantities of data and numbers of
users.

• Keeping each test restricted to a given function
allows the results to clearly identify problems
encountered.

t.

li

-	 = .r A '—

a	 '^

4-27
• Performance should be tested to verify the system's

performance under physical limitations, system loadse
data throughput stress, etc.

• All interfaces to the operating personnel should be
tested for recovery from poor data, clarity of
message, and actual performance as documented.

• All diagnostic features of the system should be tested.

5	 • All features specified in the system's functional
requirements should be organized in a checklist and
Test Case Matrix with enough coverage to test each
feature.

•	 Verify that documentation is sufficient fr.r Acceptance
Testing and user and operator training.

4.3.6	 Tools for „System Integratiop Testing

System integration testing may require familiarity with many of
the operating system utilities suggested in Section 5. 	 In
addition, configuration control is an important element of this
stage of testing.	 The following special approaches may be
instrumental to efficient system integration testing:

•	 Naming conventions and version identification
conventions -- These are crucial to uniformly identify
test cases and results files; they are absolutely
essential for unequivocal identification of module
versions and successive builds of executable programs
and the whole system.

•	 Disk utilization conventions -- Separate storage
locations for components, test cases, and each
separate build or release of the system.

•	 Software librarian -- On larger projects, a central
software librarian should specialize in enforcing the
above conventions, and in maintaining the files and
monitoring or controlling their access.

•	 Command procedures -- Running of the test cases (as
well as comparisons) are considerably more efficient
if catalogued procedures can be written for repeated
operations.	 This is critical to avoid unrepeatable
situations caused by "pilot error". 	 Even short
sequences of commands should be saved -as catalogued
procedures whenever possible.

Comparisons of results for regression testing are always easier
whenever results can be captured onto files in any form.

1	 0

Comparison methods include: 	 4-28

I=
.0

• Save ASCII files, print them, compare them manually -
this may be the only way for reports which vary or
which are informally structured.

• Use file compare utilities for formatted ASCII files.

• Dump unformatted files. Most dump utilities can be
setup to output their dump to an ASCII file.
Unformatted files can then be compared by dumping them
to ASCII files, and then using standard file compare

.	 utilities on the ASCII dumps.

4.3.7	 Guidelines for Some Specific Environments

Yn wnrking in certain system environments, the following general
recommendations may be useful as guidelines; individual tasks or
projects should always consider their unique requirements.

T,esti g Approaches

0

Long-lifetime systems Rely heavily on semi-automated
Regression nesting; add new test
cases to regression tests after
each release; perform Functional
Testing after all other tests.

Interactive systems Write a full checklist of Functional
Testing test cases which match the
User's Guide or Operating
Instructions; users, operators,
or the Task Requestors should
perform the Functional Testing.

Computational or data Rely heavily on semi-automated
basing applications Regression Testing; save data

base files for comparisons.

Transaction systems Save the data base or edit file
or editors before and after performing

operations which are specified
' in written test case procedures.

t

J

I

4-29
Regression Test cases should be
prepared and saved, even if the
software is = expected to
undergo continued change, because
the software will require
repeated System Integration
Testing again each time the
operating system (or package)
undergoes a new release. It
should never be assumed that
a manufacturer will leave any
functions unchanged from one
operating system release to
another.

Use the most appropriate
methods, but involve the Task
Requestor for help in Functional
Testing; alternatively, obtain
approval to temporarily utilize
some personnel from outside the
task for Functional Testing.

System-level programs
with heavy use of
operating system
;features (or heavy
use of a package)

A one-person task
M

4

Unix systems Use the Source Code Control System t
to carefully manage version f
identification and control if
files.	 Use pipelines to capture

k the input and output of programs
onto files.

Virtual systemis Use system features to store and
(VMS, VM, etc.) capture program input and output,

even for interactive programs.

RSX and VMS systems Do wj rely on the file version
number for distinguishing changes;
use separate directories (UICs) and
subdirectories for various builds
and releases.

Micro and Mini Systems Whenever possible, store separate
system versions for testing on
separate disk volumes; however,
do not'allow any changes to be
made anywhere except on one

L
single designated volume.

i

t

w,..:.

77

^ 2,^

a I
A

ORIGINAL. PAGE IS
OF DOOR QUALITY J,

4-30
y+

4.4	 A.Si •N 4• A . SPECIETCAT19H FOR ACCEPTANCETESTTN ,

41

l:

R

i

Perform
Correction Correction

s ^
^

Problems
z

System integration - Tested
6oftwFul System

ly
Software System Acceptance - Tested

tance

Procedures and Procedure ^'^` ""--a1► t
ISs for _Running Documents Readyi	

Run or Production Use
Si Acceptance

_ Fully- configured Media	 Test
Procedures

Program, User, and
Maintenance Man

^O^ezator Documen tation J

f
Acceptance
Test
Procedures

a

Detailed	
Prepare

Acceptance
est Plan	

Test

"Scripts"
i

k

Y

1

f

3

i

Al

'	

Sk

7

1'

4-31

4.4.1	 P,

Acceptance tests are tests used to demonstrate that the computer
program And its documentation perform according to the
performance and technical requirements in its functional
specification, and is ready to use in its intended mission. From
the viewpoint of the user, these are the most important tests in
the testing process, although the research nature of many Ames
tasks occasionally introduce some informality at this stage.
Overall system functionality is completely verified; in many	 •
cases, contractual requirements are also accepted at this stage.

4.4.2	 Entry' Criker,ia

o The system has passed all portions of system
integration testing.

6

• Operating, program, and user documentation are
up-to-date and available.

• Procedure files and written procedures for the
operation of the system are up-to-dato and available.

i
• The system has been prepared on the proper meu'ia	 i

ordinarily used for its production environment,
including any related packages or utilities.

• The proper user accounts have been setup on the	 r
system.

• The Detailed Test Plan for the system is up-to-date.

• Any acceptance test procedures and test cases are
being prepared into written test "scripts" to be
followed.

• The system hardware and software configuration is
available.

• Any performance measurement tools have been installed
and tested.

• Schedules for user participation, user training, and
system cutover have been prepared and approved, and
the required personnel are available.

• Full documentation from hardware, operating system,
and package vendors is available, as well as any
ether related Government-furnished documentation.

1

A-VI

0

	

4.4.3	 Exit !xj,t-uria

• Tt a system operztes satisfactorily in all of the
planned test procedures according to the test scripts
and user documentation.

• Successive executions of the software leave a "clean"
disk configuration.

• Successive executions of the test scripts and
repetitions by different users generate repeatable
behavior and results.

• Performance factors have been measured to be
satisfactory for system release.

• Program, operator, and user documents are all updated.

• A maintenance marsual has been prepared or updated for
the system.

• Any ,improvements suggested by the acceptance test
personnel have been recorded, categorized, discussed
with the Task Requestor, and either resolved or
scheduled for future releases.

	

4.4.4	 Rarsonnel

Acceptance testing is performed by one or more ot:

• Users
• Operators
• Task Requestor
• Maintenance personnel
• Other personnel designated by the Task Requestor.

Program development personnel should participate in the testing
only to help record problems and later anaiyre or correct them.

4.4.5 Acceptance Testing Methods

4.4.5.1 General DescriRtion

The steps generally involved in acceptance test are:

(1) The development team, in conjunction with users and the Task
Requestor, prepare written procedures and their expected
results for a number of specific system-level functions to
be acceptance-tested. These procedures are written into
test "scripts" detailed enough for a user to follow.

(2) The users to be involved in acceptance testing are

1

.kJi	 0

4-33

trained .to the extent that future new users will be.

(3) Acceptance test should then begin with an evaluation of
the development testing histtovy of the software, to
allow the Task Requestor to verify that proper
internals and "correctness" testing has been performed
in previous testing phases,

(4)	 Packagi.nd should then be reviewed by verifying media p

disk directories, sizes, files for load procedures and
document contents.

(5)	 On-line testing should then proceed using some
functional Ig" r&jr&.

(6)	 User-oriented testing should then be performed by
allowing user-level personnel to carry out, in their {
own style, a number of procedural scripts which have
been prepared in advance.

u

(7)	 Additional methods, as outlined below, are executed.
r

(8)	 Maintain problem reports and test logs; obtain signoff
from librarian and designated personnel.

r
4.4.5.2	 Uthods

One or more of the following methods should be used in acceptance
testing.

Functiona l Test Cages - As fov system integration testing, test
cases to test selected external Functions can be prepared and run I^

by the users, following the appropriate documentation. 	 This
method is desirable for selectively verifying the new functions
in successive releases of a long-lifetime system. 	 The functional
test cases should be specified in the Detailed Test Plan, and
should follow the system's functional specifications. All reports"
and screens should be included in these test cases, to ensure
final review.

procedural Script!, - Users with varying levels of familiarity
'	 should use the final documentation to follow the test procedures

which have been written into test "scripts". 	 Although the test
scripts should specify what functions to perform, how to do them,
and what to expect, the users should be allowed to interpret the
scripts, in the context of the user documentation, in their own
style.	 The amount of such testing should be proportional to both
the number of separate functions in the system and the number of
individual users.

Unstructured Testing - As a substitute for, or in addi tion to
procedural scripts, users can be invited to perform random

u	 Y

1
k

r

w+

4-34

testing of the system features based on documentation. Personnel
with varying levels of familiarity should be included, in order
to detect the types of errors that would affect novices, experts,
and maintenance programmers. Some scenarios should still be
written in this method, in order to achieve the full coverage
which procedural scripts do. This is the best approach for final
testing of system security on projects where security is an
important feature.

parallel Operation Test (cutQ1Zer ,1 - A system can be setup to be
used redundantly with a predecessor system or a previous release
for a certain period of time. The appropriate personnel should
still operate both systems, which may generate a higher demand on	

►.

the operators. Although this approach clearly accomplishes
unstructured testing, some functional test cases and procedural 	 4
scripts should also be used in cases where the circumstances
during the parallel operation do not cover all testable
functions. In addition, evaluation and comparison procedures and
tools should be written ahead of time in the Detailed Test Plano
to make sure the new system gets properly evaluated.

Pilot oration Testing - A specific production environment can
be setup for the first use of a system for a ceetain period of
4-^	 This pilot environment can be a low-risk production use or
a repeat of an already -completed production run. As with
~^ r ^ 11 - 1 nneration testing, some functional test cases,
procedural^sc,ripts, comparison procedures, and comparison tools

also be used to make sure that all testable functions are 	
a

propez.:ly covered.

Benchmark Testing - A benchmark is a set of specific test cases
which are run at acceptance test Lime to measure and evaluate a
system's performance factors. Some benchmarks are written to be
additionally run on a totally different system for comparison,
but in all cases the performance factors to be measured, as well 	 k''
as their acceptable ranges, should be completely specified along
with the t6-t cases in the Detailed Test Plan. Benchmarks used 	 g
for acceptance test are similar to system integration testing test
cases, except they should be formulated primarily by users and 	 I
the Task Reguestor. To ensure that the test is valid, a Code
Inspection ►should be .held with both the preparer and the
designer, after the design from the Detailed Test Plan is
prepared (programs coded and /or data prepared).

In addition to the above methods; measurements should be
performed during acceptance testing both to verify the system's
acceptability and to provide a baseline against which to test 	 j
changes. Always measure wall -clock performance, stora9e usage,
memory and other resource usage.

4, .4.6

4-35
Since acceptance testing is performed primarily by users,
elaborate tools should not be part of this stage; the system
being tested, or its documentation, should provide all that is
necessary to perform the testing. The configuration control
approaches outlined in Section 4.3.5 for system integration
testing should be carefully observed by all participants;
programmers and users should be especially careful to avoid
modifying any system components without the appropriate
reporting, approval, and retesting.

Performance m easurement aspects of acceptance testing may require
some special performance monitoring and measurement tools. These
are almost always specialized to the operating system or language
being used, out include elements such as:

• Overall system monitors (E.g., "SHOW" and "MONITOR"
on VAX/VMS; "RMDEMO" on RSX-11M; "METER" on RTE);

• Accounting statistics maintained by multi-user
operating systems;

• Approximate cpu-time and wall clock time measurements
which can be requested at the command language level
in most operating systems, for measuring a progra« by
subtracting "before" from "after";

• Timing calls which can be inserted into the program's 	 r
source code (usually language-dependent). When using
these types of calls, be careful to account for
whatev*r the smallest time-able increment of time is
on the machine being used. Also, .report all timing
data outside of All portions of the program which are
being timed; the I/O for reporting is always a
significant slice of time.

k

`''`

use

ORIGINAL PAQC, i.9
OF POOR QUALITY	 4-36

4.4.7 Guidalings fbr0,p Envi rb manta

The following general recommendations should be used as
guidelines; each individual task or project should always
consider their unique requirements. Checked combinations are
recommended, but ILU approaches should be eong_idgr d.

I

Functional Procedural unstruc- Parallel Pilot asnch-

	

Test	 scripts	 tired	 Operation Operation mark
TYPE Of AM ICAnCN Cases 	 Testing Testing Testing Testing 	 Notes

Data Acquisition	 X	 x	 x	 X	 x	 Parform exten-
cr Oantrol	 give timing and

parfcrmanoa
ssiasuranent

0MVUtatianal or	 x x	 x	 x	 Perform timing
Numerical measiaartents

if relevant

Litz interaction,	 x x	 x	 x	 On multi-user
data entry, or system, test
@&tars under a variety

of systarn lads

graphics	 x x	 x	 x	 x	 x	 /tsanq aWfigu-
ration aontrol
is r^oaomerdmd

Data basing	 x x	 x	 x	 bwx*r ark and
and reporting tine if rele-

vant

Systam-level x	 x	 X X	 x	 Dendsnark and
programs, with tite if rele-
hesvy use of wntl best
operating eystan tsdsr a variety
features of loads

A one-parmin x	 x	 x x	 x	 x	 All, as appro-
task priate ; use

Task Aqueemr
Q approved
outside perKn-
nal for user
testing

10rg lifetime //Owwantrate cn testing	 X
systems (of the n	 ly-rslesaed

``features

M

^r

P

1.

u

r
'r
p

1

jf

P
ie

i

•	 r

ii

5-1
feet en' 5

TOOLS ANB REPORTING

5.1	 CRERATSNG SYSTEM FEATURES

Testing requires more knowledge and use of operating system
features and utilities than any other programming activity.
Programmers involved in testing should learn these features and
utilities ahead of time. Because of their importance, the most
experienced programmers should also be part of the test team or
available for providing help. The most arsed features include:

• On-line debuggers: E.g.: SDB on UNIX; VAX/VMS FORTRAN
Debuggers; RSX-11M ODT and XDT; RSX-11M
BUG (Macro 11 deassembler and debugger
being submitted to SOFTLIB); debuggers
for microprocessor development systems.

• Compiler options: E.g.: optional-compile debug lines;
FORTRAN TRACE options; conditional
assembly debug lines: "p" option in
C compiler.

• System monitors: E.g.: SHOW, MONITOR, ACCOUNTING on	 1
VAX/VMS; RMDFMO, ATL, TAS, TAL on RSX
11m; "w", li ps-al", "dsd" on UNIX; METER
on RTE; job accounting statistics can
batch systems.

e File dump utilities

• File compare utilities (usually only useful for ASCII

	

3	 ,
files, but unformatted files can
be "dumped" into ASCII files, and
their dumps compared.)

• Source control systems: E.g.: SCCS and RCS under
Unix

• Operating systems designed for debugging: E.g.:
Motorola's EXORMACS; Intel's KDS.

i'

• File modification utilities: E.g.: ZAP on RSX-11M 	 }

5.2	 SPECIALIZED TEST TOOLS	
1

Unit testing and component integration testing are aided by	 r
having a stub meeuie generator, which can quickly create a dummy
stub module to act for any arbitrary module. SOFTLIB contains
UTSTUB, a stub module generator for FORTRAN environments. (See

A

ai

A	 0	 A-Y;

5-2
Appendix B for a description.)

Unit test drivers are more complicated and need to be rewritten
for each test situation. Guidelines for such a driver are in
Appendix A.

Stub tasks are commonly used for integration testing in
multitasking environments. An example is shown in Section 4.2.6.

Testing in the mu titaskina environment of RSX-11M when using
global event flags (or testing of a VAX/VMS program using global
event flags) may be aided by the use of EFL, a SOFTLIB utility
providing a terminal user full access to all global event flags.

Writing new test tools may often seem desirable. Test tools,
however, require substantial investments of time in order to be
generally useful. It is imperative that management permission
always be obtained before embarking on the development of any
test tool, no matter how appealing. Project schedules must
always account for these activities. SOFTLIB should always be
checked for applicable testing tools, which are continually being
collected there.

5.3	 REPORTING OF TES T ArTIVITTES

Which test cases are run on each software component version, and
what the results are, is the primary data which should be
recorded to document testing. The following approaches are
recommended;

Keep'a test log to record which test cases were run, the software
component and version, personnel, summary of results, and time
and date. A test log should be kept by each "tester", even if
the task environment does not explicitly request it. Projects
with a librarian should centralize the test logs when testing is
performed by teams.

Keep the test plan up-to-date. It should be modified each time a
new release is planned.

Keep the test cases and the r results (on-line whenever
possible). This in imperative at the system integration testing
phase, as the test cases are likely to be maintained for
regression testing.

$gport • problems on written 2roblem reports. This approach should
be used whenver the personnel performing testing are different
from the developers. Even can very small or one-person tasks, the
user or Task Requestor will perform some acceptance testing;
written software problem reports should be used at that time. In
most cases, the ploble report is much more important than any
suggested correction. Since other portions of the software may be

C3

1
5-3

simultaneously under test by other personnel, the problem report
must be manually used to determine the best correction which is
consistent with all other corrections being made.

N.

1

^j

e ^a

ORIGINAL PAGC IS
OF POOR QUALITY

6-i

•	 Myers, Glenford, Th_g Art of Softwarp' Testinj Wiley; 1979.

•	 Myers, Glenford, Software Reliability,

reference on

Wiley; 1976.

N&SA/Ames	 Inspections:

•	 Guideli2gs for Sbf_tware InaggCtions, Informatics General
Corporation NASA Contractor Report to Ames Research
Center; Nov. 25, 1983.

QtheX references on testing and related methodology:

^► 	 Deutsch, Michael, Software Verification And Validation,
Prentice-Hall; 1982.

s	 ."cordon, Edward, Managing the System Life Cycle, Yourdon
Press; 1982.

•	 Draft, Standard foy Software _Test Documentation, IEEE
Tr.n 1q82.

•	 V n0bm, Barry, "Software and Its Impact", Datamat'ion; May,
1973

7

^r

h	 t

n

1

rsp

-41P

w

A-1

A test driver calls an isolated module for testing in a controlled
environment. The driver should explicitly guarantee the values of
parameters, registers, common blocks, files, etc., and show all
outputs from the module. It should allow the programmers to
easily modify parameter values in order to cover various test
cases.

it is not necessary for a test driver to be interactive. It is
often more desirable for it to be non"inxj,ye, in order to be
simpler and thereby decrease the possibility of introducing
artificial errors through the test driver. Re-compiling a test
driver for each test case is, for many modules, a very viable
approach. Simplicity and quick development are absolute
standards to be applied in writing test drivers.

Te st drivers over 3 pages of code long should not be written, as
this indicates either the module itself is overly complex, or
that the test driver is too sophisticated, too interactive, or
too generalized.

Test drivers ordinarilv are better if hi ghly specific to the
m nA iii p being tested. If a number of related or similar modules
will be written, however, a generalized test driver may be
justified.

A skeleton for possible unit test drivers follows:

(1)
• READ parameters to be passed to the module under test
• READ two control parameters: (A) whether or not to

stop and (B) whether or not to print parameters
• IF (parameter (A) requested to stop) THEN exit with a

message
• IF (parameter (B) requested to print) THEN echo all

parameters to output
• CALL the module under test, passing the parameters
• IF (parameter (B) requested to print) THEN print all

parameters to output again
• REPEAT starting at (1) for next test case.

Unit test drivers should generally be constructed so that the
test cases of input parameter sets can be read from stored files.

4

P

R

k

I	 - .
4	 0

i

r.

tj

tt

a

B-1

$able FORTRAN Stub odule Gengrat , or, (.UTSTUB)

UTSTUB is an interactive program which produces a dummy FORTRAN
stub module useful for top-down testing purposes. It runs under
both RSX-11M and VAX/VMS, but can be easily ported to other
environments. The UTSTUB program is available from SOFTLIB.

IF UTSTUB is installed in an RSX-11M or VAX/VMS environment, it
is invoked by entering

>STUB ABCDEF

to build a stub for module ABCDEF. In other environments, it is
simply run. In either case, UTSTUB will prompt for the module's
name if it is missing from the command line or illegible.

Once invoked, UTSTUB prompts for the number of calling parameters
and the type of each parameter. Parameters may be single
variables or arrays.

UTSTUB also can provide a "debug" option. If selected, this
op tion causes the gene rated . -	 -	 TO MODULEp ^LL1D modules t0 pr 1I1L •'I;H.LL '1'tl i"1U11ULE
ABCDEF", plus all values of that module's calling parameters. If
no "debugging" is requested, the stub produced simply returns.

h

S

t

i
11i

rt YV
,k

i

tD-
f

ty

UPENDIX-C
TECHNICAL MEMO! ISOLATED FAILURE MODE TESTI

i

iF

s	 + C-1

Interoffice	 +	 ORIGINAL PAGE 19	 ^pl'ri1^tics Inc
OF POOR QUALITY

!x'10	 •

r•: SLATS Croup	 a""": Muss Holari	 June Z, 1980
Palo Alto ea:

p.	
Isolated railure Mode Testing

k

This memo describes a specific, simple testing technique which I
believe is particularly effective when used during "integration
testing" - that is, the phase of testing when software and hard

a	 .	 ware are tested together, or portions of independently -developed
software are tested together.

There are often a large number of possible failure modes of
an integrated system. Some failure modes are simple and result
from a single unacceptable condition (e.g. - hardware turned off,

^ y 	program not installed, illegal parameter value). Some failure
modes may result from a complex of unacceptable conditions (e.g. -
an iterative computation which does not converge, disk hardware
which is producing undetected read errors). Some failure

E	 sn^dno rnn»91• from 	 infernal eof v.yn ^e `'oil".+ c n 0&r "bumJ .+ Is++v vv av vr+.. . a	 .+. ,. asaw r. o	 VACdaG pa 	0	 yn \G.g• ^
^^.....^..y "46 improperly constructed file name, writing an incorrect
number of words per I /O block).

^a

^i

u

S=e failure modes are particularly easy to
be 	 investigated during integration
useful to consider in this brief scheme are
of an integrated system which are caused by
condition over which the user, operator, or
control. Miamples are:

isolate, and can
testing. The most
those failure modes
a single unacceptable
cTte'ndnt Hasẑ r t

e A required piece of hardware is turned off.

• A required piece of hardware has an incorrect switch setting.

e A required piece of hardware is not ready or is off-line
for a specific 'reason (such as a musing write -ring on a
tape).

a	 e A required system resource is not available (such as
memory)

• Sone required software is missing.

• The required result of a prior program is missing (such
as a file oxpected from a prior program) .

e Some input was not provided.

These types of cases may conceivably be quickly corrected by
the attendant, and the failing program resumed or re-run.

4

-2-	 c-2
ORIGINAL PAO^-'12
OF POOR QUALITY

teehniqua for .isolating and testing this category of failure
modes can , be simply pet»formed, as follows:

d"

• rr'4-armine the hardware and software components on which
the program relies and over which the attendant has
aom* direct control.

• Determine the componenta'corresponding unacceptable
conditions which can occur and which the attendant may
have caused and/or may be able to correct.

w	 1

r

K

e

• Cause each of these situations to occur in separate runs.

s Observe the behavior of the program and correct and
improve it as much as possible to provide highly meaning-
ful uses -oriented messages and/or a clean recovery.

As an example, consider a hypothetical tape output program. The
program relies on being ablz to write data onto a magnetic tape.
In one test run, the program is run with the tape drive turned off.
A resulting a rt and message ("open status return . -9 on
unit 1") can be improved to give the operator a second chance
with a better message ("The tape drive is off. Please tern it
an a__nd type Go to continue.") In a second test run, the tape is
mounted without a write-rin(l. A resulting abort and message
;" Z/r .o 6.,.tus return =	 on unit 1") can be improved to give the
operator another chgrsn;e with a better message ("The tape is
missing a write -rings Please re-mount it with a ring and type
GO to continue:") In a third test run, the tape drive is not to
the wron g parity or density. It is discovered that the program
continues and writes the tape anyway; the programmer must then
correct the program or the documentation.

This example indicates the underlying philosophy of this type
of isolated failure mode testing: namely, antics ate, cause_
and test the easy and simple failure modes .-- e improvements
will	 vary worthwhi,:le, as they will cover the common areas in
which operator errors affect the program. Deliberately causing
these failures during testing allows the programmer an easy,
direct way of evaluating program behavior and error codes which
mom. get "otherwise love been totally based on a hardware manual.
This will also circumvent having a programmer puzzle over error
codes at a later, more inconvenient time, trying frantically to
work in the opposite direction .(such as trying to quickly look
up error codes such as 1-82")..

This approach to testing can be effective for software ecan-
` ponants, also. ' for ixampie, coniici$er an application where one
program runs a second one. The programmer can and should
deliberately p ause test failure modes such as: the second

MAY

C"3

4 	

s
ORIGINAL PAOC

OF POOR QUALITY ...

program is not available or installed = the first program
y ^	 produces output data used by the second, and it is missing=

the second program is already active= etc.

For thema reasons * I recrmmend including this type of deliberate
"isolated failuro mode" testing whenever you do ^.itegrated	 '!
testing.

i	 x

r

:i

f

'	 R

If

1

COMMENTS

AMES DOCUMENT # 356	 77tite

NAME ­ '_	
... I	 ^,,?.G CODE

Phone­­ 	 Mail Sto-p'

HEQUESTS/CQMMENTS

Return to CDDC
M/S 233-13

	GeneralDisclaimer.pdf
	0002A01.pdf
	0002A02.pdf
	0002A03.pdf
	0002A03_.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002D13.pdf
	0002D14.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002E13.pdf
	0002E14.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf

