-

o o .. CORE
View metadata, citation and similar papers at core.ac.uk brought to you by . C

provided by NASA Technical Reports Server

NASA Contractor Report 1772418

ICASE REPORT NO. 84-34

NASA-CR-172418
19840023918

.' T TOBR REFERFTNCE
< ‘ . | N |

0L IO 1¥ TAXEY rROM 1S pate o3

A MODEL OF ASYNCHRONOUS ITERATIVE
ALGORITHMS FOR SOLVING LARGE, SPARSE,
LINEAR SYSTEMS

Daniel A. Reed
and

Merrell L. Patrick

Contract Nos. NAS1-17070, NAS1-17130
July 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association '

5'- NASA ~ 1/3RARY 6OPY

) . CoIR i A
National Aeronautics and . GEP 1S 1984

Space Administration

LANGLEY RESEARCH CENTER
Langley Research Center : " LIBRARY, NASA
Hampton, Virginia 23665 HAMPTON, VIRGINIA

https://core.ac.uk/display/42848112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

L,

-

[
=3

[e o W

2
Tll.
Tll.

e

—

. ————
- "~ o

i e e

A Model of Asynchronous Iterative Algorithms for
Solving Large, Sparse, Linear Systems

Dansel A. Rcch

Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina 27514

Merrell L. Patn'cl:f

Department of Computer Science
Duke University
Durham, North Carolina 27706

ABSTRACT

Solving large, sparse, linear systems of equations is one of the fundamen-
tal problems in large scale scientific and engineering computation. A
model of a general class of asynchronous, iterative solution methods for
linear systems is developed. In the model, the system is solved by creat-
ing several cooperating tasks that each compute a portion of the solution
vector. This model is then analyzed to determine the expected intertask
data transfer and task computational complexity as functions of the
number of tasks. Based on the analysis, recommendations for task parti-
tioning are made. These recommendations are a function of the sparse-
ness of the linear system, its structure (i.e., randomly sparse or banded),
and dimension.

TThc research reported here was supported in part by the National
Acronautics and Space Administration under NASA Contracts No.
NAS1-17070 and No. NAS1-17130 and was performed while the authors
were visitors at ICASE, NASA Langley Research Center, Hampton, VA
23665. In addition, the second author was also supported by Control
Data Grant No. 80D05.

O e 14

Introduction
In this paper we focus on sterative methods for solving large, sparse linear systems

on MIMD computers. In related work, Adams (1] has studied parallel implementat.ic;ns
of iterative methods for the linear systems arising from finite element analysis, with p;ar-
ticular emphasis on mapping the methods on the FEM (3], an MIMD machine bei.:ng
developed at the NASA Langley Research Center. She has also developed models ,tor
predicting the performance of these algorithms and validated them using the FEM [2]
Gannon and Van Rosendale [6] have also recently proposed a parallel architecture tor
another class of iterative algorithms based on multigrid methods. Finally, Amar;_o,

Yoshida, and Aiso [5] have proposed a parallel architecture, called the Sparse Matrr.ix

Solving Machine, (SM)?, for iteratively solving sparse linear systems.

In the remainder of the paper, we precisely define both the problem and the class .Ipf
iterative methods used to solve it, and we discuss one possible implementation. We tht;,n
define a probabilistic model for predicting iteration time and an optimal number of data
partitions given the dimension and sparsity of the coeflicient matrix and the costs:;f
computation, synchronization, and communication. We conclude with graphs and ag;x-
lyses of execution time as a function of the number of métrix partitions for variéus

parameter values.

Problem Definition

Consider a linear system of equations of the form

Kz = § (1)
where K is a large N X N sparse matrix and z and f are vectors of length N. Such sys-
tems are frequently rewritten in the form

z = Az + ¢

and solved using the iteration formula

A+ = Ad) 4 ¢ (2)

where z and ¢ are N-vectors and A is another sparse N X N matrix. Although A is a

-92.

function of K, and ¢ is a function of K and the f vector, there are many ways to choose
A and c such that (2) describes a convergent iterative scheme for (1). We only assume
that they are chosen such that the sequence of iterates <z(7> converges to the solution.

Henceforth, we consider only the parallel implementation of the computation defined by

(2).

Parallel Solution Technique

One parallel computation schema for (2) is illustrated by the diagram in Figure I.
The matrix A and the vectors ¢ and 2** 1 (denoted by XN) are partitioned into sets of
rows. A basic iteration step of the computation is then partitioned into the set of com-

putations defined symbolically by

XSET [I] = ASET [I}* XO + CSET[I] I =1,.,M.
After each basic iteration, a norm of the vector XN - XO must be checked for
convergence. If convergence has occurred or the maximum allowable number of itera-
tions has been exceeded, the iteration halts; otherwise XO is replaced by XN, and the

iteration step is repeated.

This computation schema can be realized as follows. In the main program, the
data objects and their types are declared. In addition, worker tasks, called X_TASKs,
and their controlling task, the C_TASK, are defined. The body of the main program
reads the input data, initiates the control task, which in turn initiates the worker tasks,

and prints the solution vector after the control task has terminated.

X_TASK[l] computes the components of the vector XN corresponding to XSET(I].
To accomplish this, X_TASK|I] needs the non-zero elements of A corresponding to
ASET(I], the elements of ¢ corresponding to CSET(l], and a portion of the vector XO,
specifically those elements whose subscripts are the same as the column subscripts of the
non-zero elements of A in ASET[l]. Initially, this information is sent to each of the

X_TASKs by the C_TASK. After each iteration, if convergence has not occurred, the

== e
XN A X0 c
XSET [1 [1] CSET [1]
XSET [2] ASET [2] T | — CSET [2]
I e x| |+ |-
XSET M] ASET M] CSET [M]

Figure I Partitioning of a linear system

-4-

vector XO is replaced with the vector XN. Because of this replacement, each X_TASK
must send those components of XN that it computes to the other X_TASKs that need
them. Each X_TASK then determines if the XN components just computed have con-
verged and notifies the C_TASK accordingly by sending a boolean flag. When an
X_TASK is notified by the C_TASK that all X_TASKs report convergence of their com-
ponents, it sends the current values of its XN components to the C_TASK and ter-
minates.

The role of the C_TASK is now clear. After initializiﬁg the X_TASKs and sending
them the initial data they need to iterate, it receives local convergence information from
each X_TASK, determines if global convergence has occurred, and notifies the X_TASKs
accordingly. If global convergence has occurred, the C_TASK then receives the com-

ponents of XN and terminates.
An Analytical Model of the Computation

Objectives

Because the intent of parallel computation is a reduction of the expected execution
time, we must consider the performance of the parallel, sparse, linear systems iteration
algorithm just described. Unlike sequential algorithms, the performance of a parallel
algorithm depends not only on the number of arithmetic operations but also on the
amount and frequency of intertask data transfer. Consequently, we derive formulae
describing

e the amount of data transfer among X_TASKs needed for each iteration,

e the computational complexity of each X_TASK, and

o the time to synchronize the X_TASKs.

Based on these formulae, we create a model for predicting performance as a function of

both the number and size of matrix partitions and the matrix sparsity. This perfor-

-5.

mance prediction model is then applied to both the general case of randomly sparse

matrices and an important special case, the band matrix.

Notation and Assumptions

Unless otherwise specified, we assume the elements of the matrix A are randomly
non-zero with probability P (i.e., p(a;5 0) = P). In our model of matrix sparsity,
the probability function P is determined by imposing two very weak conditions on A.
First, we require each row of A to contain at least Z non-zero elements, each randomly
distributed throughout the row. Second, each row element not known to be one of the Z

non-zero values is itself assumed to be non-zero with probability g.

Given the two conditions above, the value of P can be derived using a straightfor-

ward application of conditional probabilities. We define two events:
A: ajjis one of the Z non-zero elements in row §
B: a4 is a non-zero element with probability ¢

Then

HN) A q) = p(al'i#o)
pA) + pdB) - oA and B) .

- Z .

= 5yt "{Nl
Z

= 21 -)
N(9 + ¢

Finally, we require Z to be greater than zero. Otherwise, this sparsity model includes
matrices containing one or more identically zero rows; the consequent singularity must
be avoided.

Throughout our discussion, M denotes the number of partitions of A (i.e., the
number of X_TASKs), and b; and e¢; respectively denote the indices of the beginning and
ending rows of partition j. This notation, and that introduced throughout the

remainder of our analysis, is summarized in Table I.

-6-

TableI Notation

Quantsty Definstion
A arbitrary NX N sparse matrix
b matrix semi-bandwidth
b, initial row of partition s
c arbitrary constant N-vector

AN, Z, q)

PTr(k7 J)

t{comm)
t{comp)
Tr(k, 5)

transmission time for a boolean as a function of
the number of partitions

computation time for arithmetic operations
startup time for data transmission

transmission time for one datum as a function of
the number of partitions

final row of partition j
number of matrix partitions
matrix dimension

probability that a matrix element is non-zero

probability that partition k transfers data to parti-
tion j '

probability that a matrix element is non-zero given
that it is not known to be zero

fixed partition width

communication time for one iteration at partition 5
computation time for one iteration at partition j
expected data transfer from partition & to 5
N-vector of unknowns

number of known non-zero elements in a row

-1

Data Transfer for Sparse Matrices

Given a sparse matrix A whose elements are randomly non-zero with probability
PA(N, Z, q) and two partitions j and k, we wish to determine the data transfer from parti-
tion k to partition j needed to perform one iteration. For pedagogic purposes, we con-

sider three cases of increasing generality.

e

Casc I j and k are single row partitions
Partition j requires the single value z; if and only if 04, 5 0. Since this occurs
with probability P(N, Z, g), the expected data transfer from k to j is simply
AN, 7, 9). |

Case II: j5is a multiple row partition; k ‘is not

Clearly, partition j does not need z,, if and only if a;, = O for all f in the range

b; < # < ¢;. By assumption, each matrix element is randomly non-zero. Hence,
the probability that at least one element of the column b; in partition j is non-zero
is

1 - [1' - PN, Z, q)].‘f"’f"
Because partition k contains only one row, the expected data transfer from & to j is

the same.

Case III: both jand k are multiple row partitions
This case is illustrated in Figure II. An immediate generalization of the previous
case, partition 5§ does not need anj z if 'and only if a;54 0 for ¢ in the range
bj < ¢ < ¢; and all /in the range b < l < ¢;. Consequently, the expected data
transfer from partition & to partition j is just (¢ - b; + 1) times that of case II,

namely,

Tr(k, 5) = (3)
(ex - b+ 1) [1— [I—P(N, Z, q)]ef—bi-‘.l].

Finally, the probability, Pr/(k, j), that partition 5 needs at least one element from

A
by €t
N \
N \
N \
~
S
A \
\
\
N\
~
\
Figure I

ow partitions

€t

-0-

partition k is just the probability that the submatrix delimited by rows b; and ¢,
and columns b and e;, matrix A in Figure II, is not identically zero. This probabil-
ity is just

Prlk,) = 1-[1- AN, 7, g] Lot Hambeed (@)
Although general, (3) and (4) provide little insight or intuition about data transfer
as a function of either P(N, Z, q) or M. If the partition size is constant, simpler
expressions can be obtained. Hence, we fix (¢;~ b; + 1), the partition size, at a con-
stant S = N/M for all partitions. Then replacing AN, Z, q) by its definition, we

obtain

Tr(k, 5)

f
x|z
|
r—sy
1
<
| W—

x|
I—H'i
t
|~
x

and

Prki) = 1 - [1 - q][% [1 . il%r]

Data Transfer for Band Matrices

In addition to randomly sparse matrices, there are many other sparse matrices with
discernible structure, notably band matrices. For a band matrix A with semi-bandwidth
b, a; 7 Oonlyif |- 5] < b.

Applying the sparsity model derived for the random sparsity case, the probability
Pf,’"“(N, Z, q) that a; 7= 0 is given by

P(2b,2,q if]li-4 <°b
PN, 7,q) = ~

0 otherwsse.

Unlike the random sparsity case, all elements of the band matrix are not non-zero with
equal probability. Hence, a direct substitution of P%‘""’(N, Z, q) into (3) is inappropriate.

Consider, however, a single column m of partition j where b < m < ¢;. As with

- 10 -

random sparsity, partition j does not need element z,, if and only if column m is identi-

cally zero. This occurs with probability

M- Az b<m<a
l=b

Hence, the probability that partition j needs z,, is

1 - ﬁ [l - PN, Z, Q)],

k=b,

and the expected data transfer from partition k to partition j is

éb, 1 - L: [1 - P}™N, Z, q)]] (5)

Now consider column m, shown in Figure IIl. It can only contain non-zero elements if it
lies between columns b;~ b and e¢; + b inclusive. Otherwise, it would lie outside the
intersection of the matrix band and partition 5. Moreover, column m can only cause
data transfer from partition k to partition j if it lies between columns b; and e, inclusive.

Hence, the structure of the band matrix implies that

a.x{ by , b; - b} < m < min{ er, ¢+ b}.
Now consider the rows { associated with column m. By the definition of a band matrix,

non-zero elements in column m must lie between rows m - b and m + b inclusive. More-

over, the rows are constrained to lie within the partition 5. Hence,

ax{b,-,m—b} <1 <L min{c,-,m+b}.

Within these constraints on ! and m, P}2"{(N, Z, q) is just P(2b, Z, g). Hence, (5) reduces

to
3 P .
% [1- T - A2,z) (6)
m=3s, =py

where

8y = max{bl,, b; - b},

-11 -

b,
cj \ \
(c}. , ¢ - b) C ¢, cj) (Cj, ¢ + b)
Figure 111

Band of non-zero elements intersecting partition j

-12.

8, = min{c,, ¢ + b},

P = max{bj, m-—b},

and

Pu = miu{c,- , m+ b}.
To obtain a closed form, we again reduce the problem to one of fixed size partitions S.

Then the limits on (8) simplify to
8y = max{(k-—)S+1,(j-1)S+1- b},
8, = min {kS y IS+ b},

P = max{(j— l)S+1,m—b},

and

Py = min{jS, m + b}.

Further simplification of this summation unfortunately requires enumeration of several
cases. These cases are a function of the relationships among the matrix bandwidth, the
partition size, and the relative positions in the matrix of the partitions j and k. Fortui-
tously, those cases where § > k are symmetric with j < k. Hence, we consider only the
case j < k. Derivation of the remaining cases is still a lengthy endeavor, providing little
insight. Consequently, we simply describe the cases, using Figure IV, and enumerate the
results.
Case I (k-1)S+1 > jS+ b

Here, the submatrix determining possible data transfer from partition & to partition

J lies outside the matrix band. Consequently, the submatrix is identically zero and

no data transfer occurs. This case arises if

b -1

R + 1.

k-5 >

-13.

(G-1S+1,(-1)S+1+18)

(G-1DS+1,(-1)5+1)

Case |
— \)

(G-1S,(G-1)S-b+1) R

N

G-1)S+1

Subcase IIb Subcase Ila
SN 7N
NN NN

-— - m—

e - - e - o - ——— -
e = - = e e e = = -
e = e e = - o — -

s

NN N

(S, 5§~ b) U, US,i5+1)

Figure IV

Data transfer cases for band matrix with fixed partitions (part I)

-14 -

For the remainder of the cases, we implicitly assume that some data transfer occurs
(ie, (k-1)S+1 < jS+ b)

Casell: b < §
In this case, the partition width exceeds half the bandwidth. Two subcases, based
on possible positions of k, arise.

Subcase Ila: k > (5 + 1)

This condition, coupled with that of case II, places the determining submatrix out-

“side the band, and no data transfer occurs.

- Subcase IIb: k = (5 + 1)

Partitions 5 and k>are adjacent. Moreover, partition k is the only partition transfer-
ring data to jy such that £ > j. The expected data transfer is

Tﬂm:=b+[1-mw2%@$&#—d. (7)

Similarly, only partition j- 1 transfer data to j from the other side. Hence, if

b < S, only adjacent partitions must exchange data. This suggests that this parti-

tion size for band matrices might be well suited to a ring architecture.

The probability that partition k¥ must transfer data to partition j is again just the

probability that the submatrix is not identically zero, or

JR+%

'jR"
PTr(k:J) = H H 11 - P(Ny Zy Q)]

m=jR+1 l=m-b-
Hb+1)
[1- ANz 9]

Case Illl. b > S
The converse of case II, the partition size is less than half the matrix bandwidth.
As before, subcases based on the possible positions of partition & arise.

Subcase Illa: kS < (j-1)S+ b

Here, the determining submatrix lies completely within the band, and the expected

- 15 -

[((J.“I)S.(J'-I)S— b) ((j’I)S"'l,(J'—l)S-f-l) G-1)S+1,(-1)S+1+0b)

Subcase Illa

\ v\
(j-l)S+l\ t

~ Subcase Illc

(7S, jS- b) GS, jS) 5.5+ b)

s

Figure IV

Data transfer cases for band matrix with fixed partitions (part II)

data transfer is

s[1 - [1 - PN, 2, q)]s].
Subcase IlIb: (j-1)S+b+1 < kS < sS+ b
The determining submatrix lies partially within the matrix band, and every column
also lies partially within the band. If T denotes the column of partition 5 where the
last column of the determining submatrix intersects the right edge of the band, the

expected data transfer from partition & to jis

S - T‘[l - [1 - AN, z, q)]s]

[1 _ AN, 2 qﬂjs+b+l I 1]ks _ [1 ‘T_l
- P(Nx Z’ 6) 1 - HN, Z» q) 1 - HN» Z) Q)l |

Subcase Illc: kS 2> 5S + b
Finally, the determining submatrix can lie partially within the band with some

columns entirely outside the band. This leads to an expected data transfer of

G-k+1)s + |1 ;,(Q’;’f)"’)} [[l - PN, z, <1):|(""E“)S+"'1 - 1]-

Parallel Computational Complexity

As noted earlier, the performance of a parallel algorithm depends on both the inter-
task data transfer and the amount of computation performed by each task. Having con-

sidered the former, we turn our attention to the latter.

Each of the parallel X_TASKSs is itself just a sequential code whose two primary
constituents, inner product and convergence test, were described earlier. Consequently,
we can ‘apply standard techniques [4] to determine the complexity of each X_TASK.

The results of this analysis are shown in Table II.

We assume that all indexing and arithmetic operations require the same amount of
time C,. Combining the results for the inner product and convergence test, the compu-

tational complexity of an arbitrary X_TASK is

_17..

Table I Computational Complexity of X_TASKs

Loop | Statement Statement
Cost Coast
(1) 2C, FORI:=E [J] to B [J] DO
BEGIN
CP SUM :== 0;
(2) 20, FORK :== L [J] to U [J] DO
6C, SUM :== SUM +
ANZ [K] + X0 [cOLSUB [K]|t
4C, XN [I} := SUM + C {1}
END;
C, CONVERGED := TRUE;
(3) 20, FOR I := E [J] to B [J] DO
BEGIN ‘
5C, IF ABS (XN [1] - Xo [I}) > EPS THEN
C, CONVERGED :s= FALSE
3C, X0 {I] ;== XN [1]
END;

(1): (¢; - b + l)Cp[G(N or 2b)PA(N, Z, q) + 7] + 2C,
(2): 6C(Nor2b)P(N, Z,) + 2C,

(8): (¢f - b + 1)9C, + 3C,

JrANZ and COLSUB are vectors of the non-zero elements of A and the
corresponding column subscripts, respectively. L [J] and U [J] denote the begin-
ning and ending indices of components of these vectors belonging to partition J.

- 18 -

(e - b + 1)C{6NA(N, Z, q) + 16) + 5C, (8)

for the random matrix and

(¢ - b + 1)C{126A(N, Z, q) + 18) + 5C,
for the band matrix. The C_TASK must also check for global convergence after each
iteration. This consists of ANDing the M local convergence flags received from the
X_TASKs and requires

BM + 1)C,

operations.

Model Description

Having just determined the expected amount of data transfer among X_TASKs
(partitions), and their computational complexity, we can now define an execution time
model of the parallel, sparse matrix algorithm. This model can then be used to predict

the execution time of one iteration.

Let t{comp) denote the computational complexity of X_TASK j, t(comm) denote
the time required for task j to send and receive all data needed for the next iteration,
and #(sync) be the time required for the C_TASK to receive and test all local synchroni-

zation flags. Then the total execution time for one sparse matrix iteration is

fsync) + lgaé M{t,(comp) + t,(comm)}. (9)

Clearly, the time required to transmit or receive a datum is some function of the
number of partitions (X_TASKs) concurrently operating (e.g., if only two X_TASKs
were operating in parallel, they should be able to exchange data more quickly than if
fifty additional X_TASKs were also operating). Hence, we make both the time needed
to transmit a boolean, Cy(M), and the time to transmit an z value, C{M), functions of

M.

We now consider each component of the execution time. Given that Cy(M) denotes

the time needed to transmit a single boolean value, then {sync) is given by

- 19 -

RECEIVE FLAGS TEST FLAGS SEND FLAGS
MCy(M) + BM + 1)C, + MC(M).
Of course, t{comp) is given by (8). The communication component, t{comm) is, how-
ever, somewhat more complicated. In addition to including the interpartition data
transfer, it should also include startup costs for data transmission. That is, two parti-
tions exchanging ten data values should require less time than four partitions exchanging

five data values. This intent is reflected by the formula

t{comm) = send to other partitions (10)

+ receive from other partitions
M

= y[ernkd + camTik]

k=1
k7j

+ 5 GAMTHE, 3
k=1
ki

where C, is the startup cost for initiating a data transfer.

Given these formulae, consider the two matrix cases for which we derived closed
forms for Pr/(k, 5) and Tr(k, j), the randomly sparse matrix and the band matrix both

with fixed partition size.

Randomly Sparse Matriz

Substituting values in (10) for Pp(k,) and Tr(k, j) gives

o™ comm) =

CAM - 1) 1 - [(1 - q)[l - %H[%] +

N
20,(1»01\1/‘(}4 -0, [(1 _ q)[l) %HM

Band Matriz

For the band matrix, case IIb, we have

Ko+ 1)
t{comm) = 20,[(1-)[I—Q—Zb” ’

MREE SRR

(1— 9+gq

Conclusions Based on the Model

As we have seen, the total execution time for one sparse matrix iteration is given

by (9). For equal sized partitions, (9) simplifies to

Haync) + t{comp) + t{comm). (11)

There are two primary means of implementing communication in a parallel system,
shared memory #nd communication networks. In both cases, the delays incurred for
data transfer increase as the number of parallel tasks increase. (Shared memory suffers
from memory access conflicts, and communication networks, being nece;ssarily incomplete
connections, require additional routing of data.) Hence, it seems appropriate to make the
synchronization and data transmission costs functions of the number of partitions M

(i.e., the number of parallel X_TASKs). We used the functions

log,(M)

M)
vM

M

in the communication component of (11) to reflect the possible range of communication
costs one might encounter in a complete connection, tree, square mesh, and ring, respec-

tively.

- 21 -

Using (11) and the communication cost function, AM), we then plotted total execu-
tion time as a function of matrix sparsity, (N, Z, ¢), computation time, Cp, communica-
tion time, C; and C,, and synchronization cost, Cy, for the random sparsity case. These
plots, shown in Figures V-VII, are discussed in detail below. In all cases, the smallest

number of partitions chosen was M = 5.

Figure V

This figure shows iteration time as a function of the number of matrix partitions
(X_TASKSs) for varying communication costs. Each matrix row contains 14 non-zero ele-

ments, a typical number for a matrix arising from a finite element method.

As can be seen, there exists an optimal level of parallelism in each case. Not
surprisingly, the optimum level of parallelism declines as the communication costs
increase. Even the complete connection cannot support as many parallel tasks as there
are matrix rows. The 'rea.son_ is quite simple, as the number of partitions grows, syn-

chronization costs become prohibitive.

Figure VI

This figure shows the effect of matrix sparsity on iteration time for communication
costs proportional to VM; the lowest curve corresponds to greatest sparsity. As
expected, increasing the number of non-zero elements results in increased iteration time.
In addition, the optimum level of parallelism increases as the number of non-zero ele-

ments increases,

Figure VII

Finally, this figure shows iteration time for varying matrix sizes, again with com-

munication costs proportional to VM.

Time

Figure V. Execution time for N = 1000

Quantity

Value

QQ "Q S}

M)
1

1

M)
0
14

P L
0 =x="1000 0 =y= 160000

Number of Partitions M

Figure VI Execution time for N = 1000
Quantity Value
Cy VM
! c, 1 il
C, 1
C, vM
q 0.0,0.01,...,0.1
Time 4 4

Number of Partitions M

T

ime

Figure VII Execution time for N = 100, 500, 1000, 1500

Quantity Value
G vM
C, 1
C, 1
C, vM
q 0
Z 14

S ~ A 1 e~
0 —x= 1600 O =y= 15000V

.Number of Partitions M

- 25 -
Band Matrices

The execution time model for banded matrices, case A, is easier to analyze. We
have seen that intertask data transfer occurs only between adjacent tasks if the width of
a partition is at least as large as the matrix semi-bandwidth. If this condition is met,
the optimum number of partitions (X_TASKs) depends on the relative costs of computa-

tion and communication.

Summary

As we have seen, the performance of a parallel algorithm depends not only on the
amount of computation performed by each task but also on the amount and frequency

of intertask data transfer and task synchronization.

For a parallel implementation of iterative methods for solving sparse linear systems
of equations, we have derived the expected intertask data transfer and defined an execu-
tion time model that can be used to predict iteration time. We have applied the model
to both the general case of randomly sparse matrices and one important special case,

banded matrices.

Results of the model clearly show that the execution time of the solution methods
can be reduced by partitioning the computation into parallel subtasks. However, the
optimum number of partitions is very dependent on synchronization and communication

costs.

Acknowledgments

We are particularly indebted to Loyce Adams, Piyush Mehrotra, Terry Pratt, John
van Rosendale and Robert Voigt, our colleagues in the XFEM Research group af, ICASE,
NASA Langley Research Center, for many helpful discussions. We would also like to
thank Dennis Gannon of Purdue University and Mike Leuze of Vanderbilt University for

their ideas.

(1]

[2]

i3]

(4]

(5]

(6]

-26-

References

L. Adems, "Iterative Algorithms for Large Sparse Linear Systems on Parallel
Computers,” NASA CR-166027, NASA Langley Research Center, November 1982, (also
published as a Ph.D. dissertation, University of Virginia).

L. Adams and T. Crodkett, "Modeling Algorithm Execution Time on Processor Arrays,"
IEEE Computer, Vol. 17, No. 7, July 1984, pp. 38-44.

L. Adams and R. Voigt, "Design, Development, and Use of the Finite Element Machine,"
ICASE Report No. 83-56, NASA CR-172250, NASA Langley Research Center, October 1983,
(also published in Proc. of Conference on lLarge Scale Scientific Computations,
University of Wisconsin, 1983, Academic Press). -

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addisom-Wesley, 1974,

H. Amno, T. Yoshida, and H, Aiso, "(84)2: Sparse Matrix Solving Machine," The 10th
Arual International Symposium on Computer Architecture, ACM Sigarch Newsletter,
Vol. 11, No. 3, June 1983, pp. 213-220.

D. Gammon and J. Van Rosendale, ''Parallel Architectures for Iterative Methods of
Adaptive, Block Structured Grids," ICASE Report No. 83-39, NASA CR-172195, NASA
Langley Pesearch Center, August 1983, (also published in the Proceedings of the
Monterey Elliptic Solver Conference, Academic Press, G. Birkhoff, (ed.)).

1. Report No. NASA CR-172418 2. Government Accession No. 3. Recipient’s Catalog No.
ICASE Report No. 84-34

4. Title and Subtitle 5. Report Date

A Model of Asynchronous Iterative Algorithms for July 1984
Solving Large, Sparse, Linear Systems 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Daniel A. Reed and Merrell L. Patrick, 84-34

10. Work Unit No.

9. Performing Organization Name and Address
Institute for Computer Applications in Science

and Engineering 11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NAS1-17070, NAS1-17130
Hampton, VA 23665 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address : Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 _ 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: R. H. Tolson
Final Report

16. Abstract

Solving large, sparse, linear systems of equations 13 one of the fundamental
problems in large scale scientific and engineering computation. A model of a general
class of asynchronous, iterative solution methods for linear systems 1s developed.
In the model, the system 1s solved by creating several cooperating tasks that each
compute a portion of the solution vector. This model is then analyzed to determine
the expected intertask data transfer and task computational complexity as functions
of the number of tasks. Based on the analysis, recommendations for task partitioning
are made. These recommendations are a function of the sparseness of the linear
system, its structure (l.e., randomly sparse or banded), and dimension.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Sparse linear algebraic systems, 62 - Computer Systems
asynchronous iterative algorithms, 64 - Numerical Analysis

computational and data transfer model
Unclassified - Unlimited

19. Security Classif. (of this report} 20. Security Classif. (of this page) 21, No. of Pages 22. Price
Unclassified Unclassified 28 AO03

N-305 For sale by the National Technical Information Service, Springfield, Virgimia 22161

(W]

