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TIME DEPENDENT WAVE ENVELOPE FINITE DIFFERENCE ANALYSIS OF SOUND PROPAGATION

Kenneth J. Baumeister
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

Abstract

A transient finite-difference wave envelope
formulation is presented for sound propagation,
without steady flow. Before the finite difference
equations are formulated, the governing wave equa-
tion is first transformed to a form whose solution
tends not to oscillate along the propagation direc-
tion. This transformation reduces the required
number of grid points by an order of magnitude.
Physically, the transformed pressure represents
the amplitude of the conventional sound wave. The
derivation for the wave envelope transient wave
equation and appropriate boundary conditions are
presented as well as the difference equations and
stability requirements. To illustrate the method,
example solutions are presented for sound propaga-
tion in a straight hard-wall duct and in a two-
dimensional straight soft-wall duct. The numerical
results are in good agreement with exact analytical
results.

Nomenclature
am'bm'cm' cell coefficients (table I)
dm'em'fm'
9m'Jm'km'

co*
AdB
Ex
f*
H*

I

Ix

J

L*
P

P

T*

t

At

U
u
V

x
AX

y
Ay

ambient speed of sound, m/sec
decrease in decibels
acoustic power
frequency, Hz
duct height, m
number of axial grid points
time averaged axial intensity

number of transverse grid points
length of duct, m
.dimensionless pressure (p*/P0C0 J
dimensionless wave envelope pressure,
P(x,y,t)

period, 1/f*, s
dimensionless time, t*/T*
time step
dimensionless axial particle velocity
wave envelope axial particle velocity

dimensionless transverse particle
velocity

dimensionless axial coordinate, x*/H*
axial grid spacing
dimensionless traverse coordinate, y*/H*
transverse grid spacing

1

Z* impedance, kg/m s
a coefficient (Eq. (25))
B coefficient (Eq. (26))
Y coefficient (Eq. (27))
c specific acoustic impedance
n dimensionless frequency (Eq. (2))
n wave envelope frequency
x effective wave length
e dimensionless resistance
* 1PO ambient.air density, kg/m

x dimensionless reactance (for e
co* angular frequency, rad/S
Subscripts

exit condition
axial grid index
transverse grid index
cell index
maximum stable time increment (Eq. (29))
ambient condition

Superscripts
* dimensional quantity
k time step
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"Steady-state" finite difference and finite
element theories-*-^ have been developed to study
sound propagation in free space and in complex
duct; with axial variations in cross-sectional
area, wall liner impedance (absorbers) and with
gradients in flow Mach number. In the "steady
state" theory, the pressure and acoustic veloci-
ties are assumed to be simple harmonic functions
of time; thus, the equations governing sound propa-
gation (linearized gas dynamic equations' (pg. 5)
become independent of time. Generally the "steady
state" finite difference and finite element numeri-
cal algorithms have been limited to low frequencies
and short ducts, because many grid points or ele-
ments were required to resolve the axial wave
length of sound and because of the large matrices
associated with the solution of time independent
equations.

In many practical situations something (a sup-
pressor's impedance or a turboprop1s blade geome-
try) needs to be optimized in some manner to obtain
the maximum sound power reduction. . In the optimi-
zation process, hundreds of calculations are often
required to determine the desired configurations.
Therefore, any significant reduction in the number
of grid points or elements in a numerical analysis
will reduce the cost of obtaining the desired
optimization.



Beginning in 1974, Baumeister^"^ developed a
wave envelope concept which was used to signifi-
cantly reduce (two orders of magnitude) the number
of grid points associated with the "steady state"
solution of high frequency sound propagation in
ducts. This concept involved a transformation of
the wave equation into a form whose solution does
not oscillate in the axial direction. The use of
the wave envelope theory' drastically cut the com-
puter costs associated with the optimization of
multi-segmented liners. Nayfeh and Kaiser"'^ ex-
tended the method for sound propagation in non-
uniform ducts and with sheared flow. Astley and
Eversman1^ applied the wave envelope approach
very successfully in finite element duct sound
transmission studies. Finally, these same authors11
made a very significant extension of the wave enve-
lope concept to describe simultaneously the induct
propagation of sound in a turbofan nacelle and its
subsequent far field radiation pattern. Conse-
quently, numerical techniques can now be employed
to study sound propagation in both the internal
and far field regions of a duct provided the sound
frequency is reasonably low.

N In order to further reduce computer storage
and run times, as an alternate to the "steady-
state" theories, time dependent numerical solutions
were developed by Baumeister12"14 for harmonic
sound propagation in ducts. The transient formula-
tion generally uses a time marching solution to the
wave equation; consequently, the matrix storage re-
quirements inherent in the "steady state" formula-
tion are completely eliminated in the time depend-
ent analysis. Only the solution vectors for
pressures and velocities need be stored. By elimi-
nating the large matrix storage requirements,
numerical calculations for higher frequency sound
are now possible.

The time dependent theory has also been
applied to forms of the inhomogeneous wave equa-
tion by Maestrello, Bayliss and Turkel15 and
BaumeisterlS. White1' has extended the transient
theory by means of a mapping to variable area
ducts. The simultaneous calculation of induct and
the far field associated with a turbofan engine
and an unflanged cylindrical duct has been calcu-
lated by White1** and Hariharan and Bayliss1',
respectively.

Considering the grid point reduction of the
previously discussed wave envelope theory and the
elimination of matrix storage by the transient
solution formulation, a logical extension would be
to combine both theories. In principal, the com-
puter storage requirements could now be reduced
many orders of magnitude over previous theories
making possible calculations with higher frequen-
cies of three-dimensional fields.

To combine the theories, the wave envelope
transient wave equation arid appropriate boundary
conditions will first be derived. The theories
will be presented for a two-dimensional soft-wall
duct without mean flow. Next, the complete set of
difference equations and stability requirements
will.be presented. Finally, sample calculations
are presented for plane wave propagation in a hard-
walled straight duct and for the attenuation pro-
vided by a two-dimensional soft-walled duct.

Grid Point Problem

The propagation of sound in a duct is
described by the wave equation and appropriate
source and impedance boundary conditions. The
wave equation in a two-dimensional rectangular
duct can be expressed in dimensionless form as:

a2p+4 CDay

The "steady state" version of this wave equation
assumes P is proportional to e1u such that the
left-hand side is replaced by (i<o/c)2 P. There-
fore, as mentioned in the introduction, the "steady
state" form of Eq. (1) is independent of time.

The usual notation for pressure, distance
coordinates and speed of sound are used. These
and other symbols are defined in the nomenclature.
Here, the dimensionless speed of sound C and the
dimensionless frequency n are defined as

(2)

The asterisks denote dimensional quantities.

In a finite difference numerical analysis of
the wave equation, the continuous acoustic field
is lumped into a series of grid points (Fig. 1).
Next, the wave equation is expressed in difference
form. The difference equations are then solved by
a time marching process to obtain the pressure at
each grid point. Obviously, the more grid points
required in a solution the greater the computer
storage and run times.

Consider a hard-wall duct, infinite in extent
wave.sinusoidal in time at

The solution of
Eq. 27 is

with a plane pressure
x = 0 (P(o,t) = elw * = e'"M
Eq. 1 for the pressure yields1^

= e (3)

The finite-difference approximation_for the "steady
state" acoustic pressure in a semi-infinite hard-
wall duct12 and the analytical solution (Eq. (3))
are presented in Fig. 2 for x greater than 0 and
less than 1. By a series of numerical experiments,
the number of axial grid points, I, necessary to
obtain pressure profiles, velocity and intensities
accurate to about 4 percent were determined to be

I = 12 n (L*/H*) +• 1 (4)

Thus, for the case of unit frequency (n = 1.) and
unit duct length to height ratio (L*/H* = 1) shown
in Fig. 2, 13 grid points were necessary to de-
scribe adequately the sinusoidal form of the spa-
tial pressure dependence. If the frequency or
length is doubled, clearly twice as many points
will be required to describe the wave, since two
wave lengths of sound must be resolved. The total
grid points will be the product of I and the num-
ber of grid points J in the transverse direction.

Next, a concept is considered which eliminates
the direct dependency of the number of axial grid
points on "n and L'*/H*.



Wave Envelope Equation

Consider the example case of a soft-wall duct
with an L*/H* of 3 and an inlet plane wave with
a dimensionless frequency n equal to 1. A typi-
cal pressure (real part) profile in a suppressor
duct is shown in Fig. 3 by the heavy solid line,
while the dashed lines represent the envelope of
the solid pressure wave amplitude. The pressure
amplitude decreases in the axial direction down
the length of the duct because of acoustic energy
dissipation at the suppressor wall. However, the
basic axial variation of the pressure is similar
to that in a hard-wall duct. Thus, the number of
grid points (open circles in Fig. 3) still depends
on frequency n and the dimensionless duct length
L*/H* (Eq. (4)).

From Eq. (4), the number of grid points I
needed would be about 37. However, if the basic
wave equation could be transformed so .that it would
describe the envelope (dashed lines) of the pres-
sure rather than the pressure wave itself, the 37
point requirement could be greatly reduced. As
shown in Fig. 3, five points are used to describe
the pressure envelope.

The assumption is now made that the pressure
P(x,y,t) can be separated into the following

P(x,y,t) = p(x,y,t) e-i2irn
+x

(5)

where p(x,y,t) represents the envelope of the
pressure wave as shown by the dashed line in Fig. 3
and where

n = H*/x* (6)

with x* representing the effective axial wave-
length of the pressure in the duct. Substituting
Eq. (5) into the wave Eq. (1) yields a new time
dependent governing differential equation called
the time dependent wave envelope equation:

(7)

In free filed applications, the axial wave
length x* is known. Thus, the use of the wave
envelope concept is relatively straightforward.
However, in soft-wall ducts where multi-modal prop-
agation occurs, the axial wave length x* is not
known precisely; therefore, the problem of picking
n to exactly define the wave length must be con-
sidered. In the "steady-state" wave envelope solu-
tion presented5, x* in the soft-wall duct was
assumed equal to x* for a plane wave in a hard- :
wall duct. This assumption was found to yield
excellent results in the "steady-state" wave length
solution. Therefore, the same assumption will be
used here in the solution of Eq. (7).

As shown in Ref. 5 (Fig. 4), it is necessary
only to pick a value of x* or (n

+) in the vi- ,
cinity of the average wave length to get large
savings in the grid points required for a finite-
difference analysis. Therefore, for a plane wave .
source as considered herein, n

+ will be assumed to
equal n- In a problem where the source might be

some higher order mode, n+ would be assumed to be
a value associated with that mode.

Governing Equations and Boundary Conditions

Besides the wave envelope Eq. (7), the equa-
tions for the acoustic velocity, soft-wall boundary
conditions, and acoustic intensity are required to
obtain an expression for the attenuation of a soft-
wall duct. These equations are now presented.

Linearized Momentum Equation

In the absence of mean flow, the x and y
dimensionless momentum equations can be written as

_
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or in terms of the wave envelope parameters
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(8)

(9)

(10)

(11)

Wall Boundary Condition

In the transverse direction, the acoustic
impedance at the wall shown in Fig. 1 is defined
as the ratio of pressure to the transverse velocity

z* P
V (12)

Substituting Eq. (12) into Eq. (9) to eliminate V
yields

_a_P _ _ _n iP_
ay ~ c at

or in terms of the wave envelope parameters

(13)

(14)ay c at

Equation (14) sets the pressure gradient along the
upper and lower walls.

Exit Impedance

In a manner similar to the wall impedance, the
axial impedance at the.duct exit can be defined as

P(L*/H*. y.t)
U(L*/H*, y,t) (15)

Again, substituting Eq. (15) into Eq. (8) yields

If. = _ _n_j>P
ax " c 3t

or substituting Eq. (5) into Eq. (16) yields

3x at

(16)

(17)

For the plane wave propagation to be considered
herein, $e is taken as 1, which is exact for plane



wave propagation in an infinite hard-wall duct.
Also choosing te to be 1 has lead to close agree-
ment between numerical and analytical results for
plane wave propagation into a soft-wall duct^.

Entrance Condition

The boundary condition at the source plane
P(o,y,t) allows for transverse variations in pres-
sure; however, as mentioned earlier, the numerical
technique will be compared later to previous solu-
tions in which the pressure and acoustic velocities
were assumed tQ be plane waves at the entrance and
to vary as e1^"*. Therefore, the source boundary
condition used here is

P(o,y,t) = p(o,y,t) = e

Initial Condition

i2llt t > o (18)

For times equal or less than zero, the duct is
assumed quiescent, that is, the acoustic pressure
and velocities are taken to be zero. For times
greater than zero, the application of the noise
source (e.g., Eq. (18)) will drive the pressures
in the duct.

Acoustic Intensity

The sound power that leaves a duct and reaches
the far field is related to the time-averaged
acoustic intensity, defined as

I = 1/2RE (P/ei2llt) x (U/ei2llt) (19)
x ( )

where the bar represents the complex conjugate.

The total dimensionless acoustic power is the
integral of the intensity across the test section

Ex = Ix (x,y) dy (20)

represented by the usual central differences i
timp and <;nflr.p^">^ltime and space

10- (2TTT1 (22)

where i and j denote the space indices, k the
time index, and AX, Ay and At are the space and
time mesh spacing, respectively. All spacings are
assumed constant. The time is defined as

,-k+l tk + At (23)

Solving Eq. (24) for P* . yields

k+1

. i B I k
2AXaJ Pi-l,j

where

- P
k-1 (24)

By definition, the sound attenuation can be written
as

AdB = 10 Iog10 (Ex/Eo) (21)
+ 2 2B = 4nn At /n

(25)

(26)

Next, the difference form of these equations will
be presented.

Difference Equations

Instead of a continuous solution for pressure
in space and time, the finite-difference approxima-
tions will determine the pressure at isolated grid
points in space as shown in Fig. 1 and at discrete
time steps At. Starting from the known initial
conditions at t = 0 and the boundary conditions,
the finite difference algorithm will march out the
solution to later times. The development for the
algorithm that applies to each cell in Fig. 1 will
now be discussed.

Central Region (Cell 1)

Away from the duct boundaries, in cell 1 of
Fig. 1, the first and second derivatives in the
wave envelope equation (e.g., Eq. (7)) can be

Y = (2nAtn /n) (27)

Equation (24) is an algorithm which permits
marching-out solutions from known values of pres-
sure at times associated with k and k-1. The
procedure is explicit since all the past values
of Pk are known as the new values of k+1 are
computed. For the special case at t = o, the
values of the pressure associated with the k-1
value are zero from the assumed initial condition.

Boundary Condition (Cells 2 to 6)

The expression for the difference equations at
the wall boundaries are complicated by the impe-
dance conditions and the change in geometry of the
cells 2 to 6 in Fig. 1. The governing difference
equations can be developed by an integration proc-
ess in which the wave envelope equation (e.g.,
Eq. (9)) is integrated over the area of the cells
and time. The procedure for the temporal and



spatial integrati
documented"'12.

ration over the cell area is fully

. For ease in bookkeeping the solution for
P. . for the various cells is written in the
general form

.,LI -

b P.m i,j

dm pi,:
[I' - «c
LI - <*f

Mc_+,—«_x+1Jlnm o a

iem
+ e_ - m\ _k

m a

r^k-1Pi,3 (28)

where the values of the coefficients am, bm, etc.
for the various cells are listed in Table I. In
particular, substituting the values of the coeffi-
cients for cell 1 in Table I into Eq. (28) will
reproduce Eq. (24).

Stability

In the explicit time marching approach used
here, round-off errors can grow in an unbounded
fashion and destroy the solution if the time incre-
ment At is taken too large. The von Neumann
method is often used to study the stability of the
difference approximations to the wave equation.
Application of the von Neumann method^ (pg. 104)
to Eq. (22) requires that the time increment be of
the form

n i

il + AX

(29)

for n+ small, Eq. (29) reduces to the conven-
tional CFL (Courant, Friedrichs and Levy) condi-
tion. Because of possible effects of boundary con-
ditions, some numerical experimentation was used to
check the validity of Eq. (29).

"Steady State"

Recall, at the start of the numerical calcula-
tion, the acoustic pressures and velocities were
assumed zero throughout the duct and a pressure
source begins a harmonic oscillation at x = o for
t > o. The transient numerical calculation must
be started and continued in time until the initial
acoustic transient has died out. This subject has
been treated extensively1 '. For plane wave
propagation, as shown in these references, the
transient solution for pressure equals the "steady-
state" Fourier transform solution when

t > n (L*/H*)

Axial Velocity and Intensity

(30)

The axial velocity (Eq. (10)), acoustic in-
tensity (Eq. (19)), and the sound attenuation
(Eq. (21)] can be quite easily expressed in differ-
ence fornr~°. In these cases, the pressure and
velocity are now assumed to be at "steady state"

condition and are now functions of
Eq. (10) becomes

or

ai2irt Thus,

2AX / n

The intensity, (Eq. (19)), can be written as

i2irt

(31)

(32)

,,,>
(33)

where the bar over p represents the complex
conjugate.

Next, the total dimensionless power is deter-
mined according to Eq. (20)

LAST-1
(34)

j=2

and finally the attenuation is

AdB = 10 Iog10(-ll (35)
El

i

Sample Calculations

In two sample problems to follow, the time-
dependent wave envelope results will be compared
to closed form analytical' solutions. First, the
simple case of plane waves propagating down a hard-
wall one-dimensional duct is presented. This case
allows comparison of the numerical and analytical
pressure profiles down the length of the duct. The
second example compares the numerical and analyti-
cal predictions of the attenuation in a soft-wall
two-dimensional duct.

One-Dimensional Hard-Wall Duct

Numerical and analytical values of the pres-
sure were computed for the special case of a hard-
wall duct with a L*/H* of 1, n of 1 and an
inlet plane wave. The analytical value from
Eq. (5) yields

P(x.y.t)
"ê r- io.o (36)

As seen in Fig. 4, the agreement between the
numerical and analytical results is reasonable. A
comparison with Fig. 2 indicates the essential dif-
ferences between the transformed numerical solution
and the conventional numerical solution for the
same problem.

Two-Dimensional Soft-Wal.1 Duct

As another example of the transient wave
envelope formulation, the noise attenuation at the
optimum point (point of maximum attenuation in the
impedance plane) is now calculated for a two-
dimensional duct with L*/H* values varying



between 0.5 and 6 and input plane waves with dimen- 5.
sionless frequencies n of 1, 2, and 5. This
range of dimensionless parameters essentially
covers the practical range of application to turbo-
jet exhaust suppressors.

For a plane entrance pressure profile the
closed form analytical results show that the values
of specific acoustic wall impedance c associated
with the optimum impedance used in the numerical . 6.
analysis were determined from the analytical
techniques23'24 and are listed in Table II.

The numerically calculated attenuations are
compared to the corresponding analytical 7.
results23'24 which are applicable to infinite
ducts. The numerical results (symbols) and the
analytical results (lines) for the maximum attenu-
ation are shown in Fig. 5. The analytical and 8.
numerical results are in very good agreement. A
slight deviation occurred at the very high attenu-
ation associated with the low frequency case n = 1
at L*/H* of 4. For the low frequency case, it is
suggested that more points be employed. 9:

Based on the wave envelope concept, the numer-
ical calculations shown in Fig. 5 used 30 grid
points in the axial direction. For n = 5 and
L*/H* = 6, the standard finite difference technique 10.
required 360 grid points, according to Eq. (5).
Thus, for a J = 10, the total number of grid
points has been reduced from 3600 to 300 when the
wave envelope concept is employed. This represents
an order of magnitude savings in computer storage
and computational time. 11.

Concluding Remarks

Transient finite difference solutions using
the wave envelope concept are presented for plane 12.
wave sound propagation in a one-dimensional hard-
wall duct and a two-dimensional soft-wall duct for
zero Mach number. The results show the numerical
procedure to be in agreement with the corresponding
exact analytical results. 13.

The wave envelope approach to the numerical
problem reduces the number of grid points in the
difference solution by an order of magnitude com-
pared to the conventional difference technique.
Table III shows the large reduction in computer 14.
storage requirements by employing both the tran-
sient and wave envelope techniques as compared to
the conventional "steady-state" theory. Clearly,
numerical solutions for acoustic propagation in
complex ducts can now be determined with reasonable 15.
storage and computational times.
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TABLE I. - COEFFICIENTS IN DIFFERENCE EQUATIONS

Cell
index,
m

1

2

3

4

5

6

%

2

(ix)

al

al

2al

2al
2al

bm

1

2

0

1

2

0

Difference elements3

cm

r n
~2f + (ir)]

ci
ci
ci
ci
ci

dm

1

0

2

1

0

2

em

2

(Ix)

el

el

0

0

0

fm

0

n AV
~ C At

n Ay_
C At

2

~ CgAtAX

f2 + f4

Vf4

9m

0

n Ay_
C At

n Ay
C At

2

CgAtAX

92
 + 94

93
 + 94

Jm

0

0

0

+ 2
HTI Tl "J"

AX

J4

4̂

km

1

kl

kl

i
AX

k4

k4

1m

0

0 :

0

1

AX

A

A

mm

1
IAX"

ml

ml

0

0

0

TABLE II. - OPTIMUM IMPEDANCE

AND ATTENUATION FOR UNIFORM

RECTANGULAR INFINITE DUCT

WITH PLANE WAVE INPUT,

c = 6 + ix

Tl

1

2

5

L*/H*

0.5
1
2
3
4

.5
1
2
3
4
6

.5
1
2
3
4
5
6

a

0.23
.46
.78
.9
.92

.34

.47

.86
1.32
1.71
2.0

.6

.84
1.28
1.35
1.72
2.12
2.55

X

-0.55
- .92
-1.05
- .93
- .85

- .86
-1.32
-2.0
-2.35
-2.33
-1.9

-1.53
-2.2
-3.5
-3.87
-4.3
-5.1
-5.5

Analytical
attenuation,

-AdB

4.0
8.2
22.6
39.9
56

2.2
3.2
6.7
12.0
18.8
34.8

1.1
1.7
2.5
3.4
5.0
6.3
7.9



TABLE III. - GRID POINT AND STORAGE REQUIREMENTS (REAL

AND IMAGINARY) FOR n = 6, L*/H* = 5, J = 10

Method

Steady state^
Steady state wave

envelope4
Transient^
Transient wave envelope

Grid
points

3600
100

3610
310

Matrix

26xl06
20,000

0
0

Solution
vector

7200
200

7220
620

Total
storage

26xl06
20,200

14,440
1,240
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Figure 1. - Grid-point representation of two dimentional duct.
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Figure 2. - Analytical and numerical pressure
profiles for one dimensional sound propa-
gation in hard-wall duct, n = 1.
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OSCILLATION)
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Figure 3. - Typical pressure profile for sound prop-
agation in a soft-wall duct for dimension I ess
frequency n = 1 and duct length L*/H:': = 3.

1.0

—o~
REAL PART
IMAGINARY PART

LJ-I r
2: .5
CO
CO

Q-

o

O
O<
CO
CO

a
o
CO

-
DATA POINTS DENOTE NUMERICAL CALCULATIONS

LINES DENOTE EXACT ANALYSIS

-.5
0 .5 1.0

DIMENSIONLESS AXIAL COORDINATE, x

Figure 4. - Analytical and numerical dimension-
less acoustic pressure profiles for sound
propagating in a hard wall duct. (r| = 1,
L*/H*-1. 1-5, J-10, t=5.0, At =
0.5xAtmax).
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J- 20, t -5 .0, A t = 0 . 5 x A t a ).
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