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I. INTRODUCTION: Convex=Profile Inversion

The initial six months of research sponsored by NASA Grant
NAGW-543 has proceeded rapidly and has yielded a variety of important
results. The focus of this research is a new approach, called
“convex-profile inversién," to the interpretation of asteroid
lightcurves. This technique, developed by the principal investigator
in collaboration with R. Connelly, was introduced via the published
literature this spring and is already being recognized as the most
important contribution since that of H. N. Russell (1906) to solving
the problem of extracting information about an asteroid's shape from
its lightcurve. Except for the relative handful of objectslbbservable
with radar or during stellar occultations, lightcurves provide the
only clues to an asteroid's shape. Unfortunately, the form of a
lightcurve is influenced by the viewing/illumination geometry and the
asteroid's light-scattering behavior, as well as by its shape. Even
if we had lightcurves for an asteroid for all physically possible
Sun-Earth-asteroid configurations, it would still be impossible to
determine the asteroid's shape from disk-integrated measurements. Al1l
we can hope to do is to obtain constraints on the shapes of asteroids.

Prior to convex-profile inversion (CPI), almost all efforts to
obtain such constraints have invoked an axisymmetric shape described
by only one or two parameters. These analyses necessarily discard
much of the interesting information that distinguishes individual
lightcurves, including all odd harmonics.

CPI obtains a convex profile P from an asteroid's lightcurve.

The number of parameters that characterize the profile is limited only



by the number of Fourier harmonics used to represent the parent
lightcurve, so our inversion method can preserve much (if not all) of
the salient information contained in the parent lightcurve. Whenever
four ideal conditions are satisfied, P is an estimator for the
asteroid's "mean cross section" C, a convex set defined as the average
of all cross sections C(z) cut by planes a distance z above the
asteroid's equatorial plane. C is therefore a 2-D average of the
asteroid's 3-D shape. The ideal conditions are: (A) each curve C(z)
is convex, (B) the asteroid's scattering law is uniform and geometric,
(C) the astrocentric declinations 85, &g of the Sun and Earth are
zero and (D) the solar phase angle ¢ is known and nonzero. f(CPI‘s
geometrical conventions are such that for any given Sun-Earth-asteroid
configuration, the sign of the solar phase angle will correspond to
either retrograde or direct rotation.)

To obtain a profile from a lightcurve, we first find the
lightcurve's Fourier series: I(8) = 7§ gnefne'and define the
radius of curvature function: r(e) =} gneine, where

dn = cn/¥n (1)

and vp is a known function (Fig. 1) of the harmonic index n and the

solar phase angle ¢. The profile's cartesian coordinates are
8 . e
( -fo r(t) sin t dt, fo r(t) cos t dt).

The profile will be closed and convex only if a set of N linear
constraints, ri > 0 for 1 < i < N, are satisfied. In practice, CPI
finds that profile P which provides the least-squares estimator

for C by finding that vector, 2, of Fourier coefficients which



satisfies the constraints and is as close as possible to the

vector, %, of the unconstrained Fourier coefficients cp.
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' Figure 2 reproduces figures from Ostro and Connelly (1984)
(i) illustrating CPI's geometric conventions and (ii) showing results

for an asteroid with a D-shaped mean cross section.



Fig. 1. Geometry for two-dimensional asteroid light-
curve inversion. The asteroid is a convex profile rotat-
ing clockwise, and is shown at rotational phase 8 = 0°.
The solar phase angle ¢ is indicated, as are the aster-
oid’s illuminated (solid) and unilluminated (dotted)
portions. The asteroid’s brightness is proportional to
the orthogonal projection, in the direction of the Hoi160%-9)
Earth, of the visible, illuminated length [(8). In the {
normal-angle parameterization of the profile, the point
P(9) is on the receding (left-hand) limb and the out- i
ward normal & at P(6) points in the positive x direction ppuac :
‘when the rotational phase is 4. ' o y

i P8O +4)
..... R
2 3

Original D-shaped Results of Convex-Profile Inversion

]

Asteroid (¢ =30°) $=30° $=-30°
3.1 T T T I O T T r T T Y 3
a_ | @ d g
£2,
g <r i ~, 1r PN 1
Q Pl \ 7N Y
22 RN N I A N N
39 N \ E Al
2 @it 4t s V4 ok L 4
= £ S} S
== v N
P |
[+ oF y T T ) T ™ n P T T
T -]
2 b e h
o .
> 6k 4 . T4 b E
e .
- 3t 1t ;\-w ) A .
3] T m— S Yo o P T A
% ‘e ' *
é .
-3, | L , I . ]
0 90 180 270 60 0 90 180 270 %0 0 90 180 270 360°

Rotational Phase

F1G. 3. Convex-profile inversion of the lightcurve obtained at & = 30° for a D-shaped, two-dimen-
sional asteroid, D. Lightcurves, radius-of-curvature functions. and convex profiles are shown in the
top, middle, and bottom rows, respectively. The left-hand column shows these quantities for D. The
other columns show results of convex-profile inversion of D's lightcurve when ¢ = 30° is assumed
(middle column) and when ¢ = —30° is assumed (right-hand column). The product profile (f) obtained
using ¢ = 30° differs from D because the Fourier representations for the lightcurve and radius-of-
curvature function (both of which contain discontinuities) have been truncated to 10 harmonics. (See
end of Section I1.C.) The severe distortion in the profile (i) obtained using ¢ = —30° occurs because the
sign of the solar phase angle is wrong. (See Section II.D.) D’s lightcurve is reproduced as the hand-
drawn, dashed curve in (d) and (g) for comparison with the model lightcurves (3. dots; ¥, computer-
drawn curves) obtained from the unconstrained and gonstrained Fourier series X and X, respectively.

In (e) and (h), dots represent # and curves represent f. The geometric conventions presented in Fig. 1
are maintained here.

FIGURE 2. Two figures from Ostro and Connelly (1984).



IT. SUMMARY OF RESEARCH PROGRESS

The overall objective of the current research is to calibrate and
apply CPI. Four tasks were specified in the work plan:

1. Invert high-quality lightcurves.

2. Calibrate CPI's sensitivity to departure from ideal geometric

conditions and to lightcurve errors.

3. Explore CPI's sensitivity to non-geometric scattering.

4. Improve CPI's computational efficiency.

As the following summaries demonstrate, progress has been
unexpectedly fruitful in elucidating the power and limitations of CPI,
in formulating tools for handling profiles as nathematica]réntities,
in suggesting novel uses of the profiles, and in developing new
approaches to testing empirical hypotheses about asteroid shapes and

scattering properties.

Inversion of Published Lightcurves

The entire asteroid Tightcurve literature has been searched and
catalogued, and lightcurves for some 50 asteroids have been digitized,
inverted, and subjected to various analyses described herein. Because
of Eqn. 1, CPI's stability with respect to odd harmonics in r(e)
deteriorates as ¢ » 0 and vy > 0 for odd n (Fig. 1). A safe rule of
thumb seems to be to suppress odd harmonics (hence symmetrizing the
profile) when '¢l < 10°. The resulting symmetrized profile Pg is
the bast available estimator for the asteroid's symmetrized mean cross
section Cs. Figure 3 shows CPI output profiles (P or Ps) and

lightcurves (y, Ys §) for seven objects. When ‘¢‘ > 10°, the chosen
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Convex profiles for seven asteroids. In the lightcurve plots,
large, rectangular symbols are the data y, the solid curve is

the ungpnstrained model §¥, and the dotted curve is the constrained
model ¥ corresponding to the profile. Sources of the lightcurves
are: Pallas, Binzel (1984) in prep.; Eleonora, Zappala and

van Houten-Groenveld (1979), A. A. Supp. 35, 220, Fig. 19;
Mandeville, Zappald et al. (1983), Icarus 56, 325, Fig. 28;
Ra-Shalom, Ostro et al. (1984), Icarus 60, in press; Ausonia,
Lagerkvist (1981), A. A. Supp. 44, 401, Fig. 3; Roxane, Lagerkvist
et al. (1982), Sun and Planetary System (Fricke and Teleki, eds.),
p. 209; Hektor, Dunlap et al. (1969), Astron. J. 74, 796, Fig. 8.
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sign of ¢ corresponds to direct rotation and a southerly view of the

asteroid.

Computational Efficiency

The most time-consuming operation in CPI involves finding that
Fourier vector 2 for the lightcurve which satisfies the constraints,
ri >0, i =1to N, and is closest to the unconstrained vector x.

Our solution of this "quadratic programming problem" uses a
straightforward, but somewhat inefficient, recursive projection
algorithm. |

Lengthy experimentation with various modifications to our’
algorithm suggest that the most economically sound approach is simply
to pre-order the N constraints from the most negative rj to the most
positive rij. This yields "convexification" times between 20% and

50% of those experienced without the heuristic.

Lightcurves of Geometrically-Scattering E1lipsoids (GSE's)

In efforts to test CPI by inverting 1ightcurves'of known shape
and scattering law, we realized that whereas it was known that
lightcurves of GSE's could be generated analytically, a simple formula
for such Tlightcurves was unavailable. We derived such a formula and
discoveréd properties of GSE lightcurves that let us test the
hypothesis that a given asteroid lightcurve could be due to a GSE.
Principal results are:

1. Given the equation (gTQ5 = 1) for an axbxc GSE and

directions § and & of the Sun and Earth, the lightcurve has

the form:
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I = mabc[(e7Qe)'/(sT0s) /2 + eTqs]/2(5TQs) /2

2. At opposition (&8 =§), I? has harmonics 0 and 2 only.

3. The fractional error incurred using an opposition lightcurve
Iy to approximate a non-opposition lightcurve I satisfies:

(Ip - I)/1 < & = ptan?(¢4/2)

where ¢ is the solar phase angle and p = a/c is the ratio of
the Tongest axis to the shortest. Figure 4 plots ¢ vs. ¢ for
several values of p. For p < 4, the error is less than 1% if
¢ is only a few degrees, but is of order 10% for ¢ ~ 20°.

4, The contribution to I of harmonics other than 0 and 2 depends
on p and ¢. For any lightcurve, we can calculate é~statistic
T, and then use t© to find the minimum value of o that permits
the hypothesis that "the lightcurve can be due to a GSE" to
stand. The minimum value of p is:

omin = [(1 +3/2)2 L 112 kan(e/2)

where
M
2 2
) (a, +bp) .
T = n#0,2 < 1= (2 + éz)g
22> + 'ﬁ(a%ﬁ -
o I non

where ap and by are the Fourier cosine and sine coefficients in

the M-harmonic series for 12, Figure 5 plots curves of omin VS. T

for several values of ¢. Positions of asteroid numbers denote minimum
values of a/c required to forestall rejection of the hypothesis that

the asteroid is a GSE.
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Sensitivity of CPI to Viewing/Il1lumination Geometry

How reliable is P as an estimator for C when Condition C
(astrocentric declinations 8 and 85 of the Earth and the Sun are
zero) is violated? For any given object, the answer to this question
depends on 8g, 85, and ¢. To explore this particular type of
systematic effect, we have generated and inverted lightcurves of
GSE's for non-ideal geometries and various values of b/a and c/a which
sample the parameter space: 10° < ¢ < 80°, b/a = 0.2 and 0.4, and
0.05 < c/a < b/a.

For any given ellipsoid and solar phase angle, the fig]d of
possible viewing/illumination geometries is conveniently displayed in
a plot (Fig. 6) of 65 vs. (6g - 8g). Figure 6 shows three of
our several dozen "geometric distortion" plots, selected to f]]ustrate
a few 2-D cuts through the 5-D space. A major conclusion is that if
l&El, '65‘ > !¢1, then distortion is minimal when & is between
l¢' and -85 (i.e., when e and § are on opposite sides of the
equatorial plane) and is most severe when 85 is between ‘¢| and &g

(i.e., when s is between é and the equatorial plane).

Quantitative Comparison of Profiles

Recognizing the desirability of quantifying the relationship
between profiles rather than merely making verbal statements of
subjective impressions, the principal investigator surveyed approaches
to this type of problem within the pattern-recognition literature. It
seems appropriate to define the distance Q between any two profiles P,

and Py as
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obtained when Condition C (

of each array of profiles).

for three sets of values of b/a, c/a, and g@.

= 0) is violated yields profiles
that deviate from the ellipsoid's mean cross section (C, at the origin

shows some contours of constant $gor constant 55
Earth is north of the equator except within the stippled area.
Distortion is minimal within the region "MIN."

The three arrays illustrate distortion
The, bottom right figure

Note that the
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Q = 10 min |d;/dqg - dpe?®rot/d,,
Orot

where di is the vector of complex Fourier coefficients in the
expansion of Pij's radius-of-curvature function and djo is the
constant, or zero-harmonic term, in that expansion. This distance
measure is rotation- and scale-invariant and defines a Euclidean

metric.

Measures of Noncircularity and Elongation

We define (i) the "noncircularity" Q¢ as the distance between a
given profile and a circle, and the "maximum breadth ratioJ-B as the
ratio of a profile's maximum breadth to its minimum breadth. These
statistics incorporate all the information in a parent lightcurve, and
are now being calculated for all our asteroid profiles.

In the past, the lightcurve amplitude Am has been used as a
measure of an asteroid's noncircularity and elongation. This approach
would be justified if every asteroid were a geométrical]y scattering
ellipsoid and every lightcurve were obtained at zero solar phase angle
and under equatorial geometry. For the purpose of using actual
lightcurves to compare the shapes of real asteroids, the statistics
Qc and B are a priori preferable to Am and also permit a distinction
between noncircularity and elongation. As a case in point, compare
the pairs of values of Am, Qc, and B8 for two lightcurves of
15 Eunomia at different solar phase angles (Fig. 7), and note values

of Q¢ and B for the profiles in Fig. 3.
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F1G. 7. Convex profiles for asteroid 15 Eunomia. Lightcurves obtained at solar phase angles ¢ =
—12° (Fig. 8 of Groeneveld and Kuiper, 1954) and ¢ = —21° (Fig. 14 of van Houten-Groeneveld and
van Houten, 1958) were digitized and inverted as described in-the text. The signs for ¢ correspond to
retrograde rotation, as deduced by the cited authors. (See Section I1.D.) In each of the top figures, the
large rectangular symbols are the lightcurve data y, the solid curve represents the lightcurve y derived
from the unconstrained Fourier fit and the tiny dots represent the lightcurve § derived from the
constrained fit, i.e., from the convex-profile inversion. In the middie figures, the radius-of-curvature
functions #and # are represented by symbols and soiid curves, respectively. The profiles are shown at
rotational phase 4 = (°, and the geometrical conventions given in Fig. | are maintained here. Hence, at
secondary lightcurve maximum (8 ~ 320°), each profile would be rotated clockwise ~320° and the
uppermost side would face toward Earth (i.e., toward the top of the page). The relation between the
rotational phases of the two profiles (and of the corresponding lightcurves and radius-of-curvature
functions) was chosen to maximize the cross-correlation between #8) for ¢ = ~12° and 9 for ¢ =
—21°. (This approach might prove useful in refining estimates of asteroid rotation periods.) In these
and all other inversions presented in this paper, each Fourier series was truncated to M = 10 harmon-
ics and the inequality constraints (8) were eaforced at N = 96 equally spaced values of 9.

FIGURE 7. Lightcurve amplitude Am, noncircularity Qc, and maximum breadth
ratio /& for two independent lightcurves of 15 Eunomia have been
added to this reproduction of Fig. 7 from Ostro and Connelly (1984).
Note also the average of the two profiles, and its values of Rcand A.
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Algebraic Manipulation of Profiles

To the extent that ideal conditions are satisfied, profiles
obtained for different solar phase angles should be similar. In
different words, they should not be "far apart" because each is an
estimator for the asteroid's (unique) mean cross section. Therefore
it makes sense to obtain appropriately weighted averages of
independent profiles. In practice, this is most easily done by
manipulating the Fourier vectors di for ri(6) corresponding to the
Pj. Thus, CPI is able to combine the information contained in any
number of independent lightcurves to yield a 2-D average of an

asteroid's 3-D shape. Figure 7 shows the average of two Eundmia profiles.

Sensitivity of CPI to Non-Geometric Scattering and Non-Convexity

Efforts are underway to calibrate the distortion introduced into
a profile P as an estimator for the mean cross section C when ideal
conditions A (convexity) and B (geometric scattering) are violated.
J. Lambert (Univ. of New Mexico) has used a numerical integration
routine to generate lightcurves of ellipsoids havingynon-geometric
scattering laws, for various geometries; His lightcurves, which
include a few "standard" GSE's, are being inverted at Cornell. First
results indicate that 1imb darkening results in a profile that is more
elongated than the parent ellipsoid's mean cross section. In other
words, P is "less circular" than C. In contrast, departure from ideal
viewing/illumination geometry (Condition C) frequently causes P to be
more circular than C (Fig. 6). Perhaps these two systematic effects

offset each other. In any event, given adequate prior knowledge of
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viewing/illumination geometry or scattering law, we can try to correct
P for non-ideal conditions via ad hoc addition or subtraction of some
fraction of a circle.

In a different experiment, M. A. Barucci (Instituto de
Astrofisica Spaziale, Consiglio Nazionale delle Ricerche, Rome) has
generated laboratory lightcurves of a stone fragment for a variety of
viewing/illumination geometries. The lightcurves have been inverted

at Cornell, and photographs of the fragment have been requested from

Barucci to provide a “"ground truth” fiducial for calibration of CPI.

Propagation of Lightcurve Noise into Profile Error

The previous paragraphs have focused on systematic sources of
error in P, i.e., on distortion in f;caused by departure from ideal
conditions. Since actual lightcurves are contaminated with
measurement errors, any profile obtained via CPI may be corrupted
accordingly, and it is necessary to examine the nature of this error
propagation.

Whereas actual lightcurve measurement errors may arise from
systematic sources (e.g., sky-background removal, intermittent cirrus,
imperfect color matches between asteroid and comparison star, etc.) as
well as from photon-counting stochastic errors, one can always compute
an "effective" standard deviation in the overall noise due to all
sources. As this standard deviation becomes an increasingly large
fraction of the 1ightcurve amplitude, P will become increasingly
distorted. The distortion will be magnified if the lightcurve

contains big gaps or is sampled at an insufficient rate.
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We have investigated the three effects of noise, gaps, and
undersampling, acting alone and in concert, on profiles obtained from
lightcurves of GSE's and the D-shaped object in Fig. 2. Propagation
of statistical error is being modeled by using a random number
generator to produce Gaussian noise samples, scaling the standard
deviation to some fraction of the lightcurve amplitude, adding the
noise to the lightcurve, and doing the inversion. This entire process
is repeated to build up a family of realizations of the random process
in the form of a set of profiles, Pj. The distortion in the Pj is
evident visually and can be quantified by the distances of the Pj
from C. Figure 8 illustrates some results of five-profile sihﬁ]ations
on GSE lightcurves. (Distortion is worse for the D-shaped object.)

At this point, an appropriate guideline seems to be that
lightcurves targeted for CPI should be sampled at intervals no larger
than 5° and should have noise levels < 3% of the lightcurve
amplitude. Since CPI's ideal conditions on viewing/illumination
geometry, etc., will rarely be satisfied exactly, it'c]early is vital
that the lightcurve data be of high quality.

Current error-propagation work is focusing on actual asteroid
1ightcurves, with the objective of placing formal errors on Q. and B

as well as on the profiles themselves.
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FIGURE 8, Error propagation into profiles obtained from lightcurves of a
GSE with b/a = 0.4, c/a = 0.2, and 6 = 85 = 0. Sets of
five simulation prof11es are 1abe1ed with the sampling interval
in degrees, the noise level (expressed as a percentage of the
lightcurve amplitude), and the distance @ from the parent
ellipsoid's mean cross section. “INTER-EX OUT" denotes
deletion of four, 40° inter-extremum sections of data, and "MIN
QUT" denotes deletion of a 40° section of data centered on one
minimum.

5% noise 8% noise

5% naise 5% noise

MIN QUT

U]

5% noise

JL=21
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ITI. FUNDING STATUS

Spending during the current report period was at the anticipated
rate. A graduate student in Applied and Engineering Physics, Mark
Dorogi, was hired full time over the summer as a research assistant.
A Physics senior, Anthony Ferro, will be employed as a part-time

programmer this fall.

IV. PUBLICATION OF RESULTS

The following papers report results of the research supported
under NAGW-543:
1. Convex Profiles from Asteroid Lightcurves, S. J. Ostro and
R. Connelly, Icarus 57, 443-463 (1984).
2. Ellipsoids and Lightcurves, R. Connelly and S. J. Ostro,

Geometriae Dedicata, in press (1984).

A paper (abstract appended) reporting some of the more recent
results has been submitted to the 1984 Meeting of the Division for
Planetary Sciences of the American Astronomical Society.

Additionally, the principal investigator has’given seminars on
CPI at the Arecibo Observatory, the Planetary Science Institute

(Tucson), the Jet Propulision Laboratory, and Cornell.
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Abstract of paper submitted to the 16th Annual Meeting of the Division
for Planetary Sciences of the American Astronomical Society: '

Convex-Profile Inversion of Asteroid Lightcurves:
Calibration and Application of the Method

S. J. Ostro, M. D. Dorogi, and R. Connelly (Cornell)

Convex-profile inversion (Ostro and Connelly, 1984,
Icarus 57, 443) is a method for obtaining a convex
profile, P from asteroid lightcurve data. Whenever
four ideal conditions are satisfied, P is an estimator
for the asteroid's "mean cross sectlon C, a convex set
defined as the average of all cross sect1ons C(z) cut
by planes a distance z above the asteroid's equator1a]
plane. C is therefore a 2-D average of the asteroid’ s
3-D shape. The ideal conditions are: (A) each curve’
C(z) is convex, (B) the asteroid's scattering law is
uniform and geometric, (C) the astrocentric
declinations &8s, 6 of the Sun and Earth are zero,
and (D) the solar phase angle ¢ # 0. The method has
been tested by inverting lightcurves generated
analytxca]]y for geometrically scattering ellipsoids
(GSE's) with semiaxes a > b > ¢c. 'Using a suitably
defined "distance measure" to quantify the difference
between any two profiles, we have calibrated the
deviation of P from C for GSE's as a function of
lightcurve noise level, rotation-phase sampling
interval A8, and departure from ideal conditions. The
coup!ing between these factors is considerable. If the
rms noise due to all sources is ~ 3% of the
lightcurve's peak-to- va]]ey amplitude, then P = C if
A8 < 5°, If l5E] é¢|, then distortion of
P is minimal when GE 1s between 0 and -55 but
severe when &g is between O and 6g. We currently
are calculating P for high-quality, published
lightcurves. The "distance" between P and a circle
provides a gauge of the asteroid's nonsphericity and
(in contrast to the lightcurve amplitude) incorporates
all the information contained in the lightcurve. This
research was supported by NASA Grant NAGW-543 (SdJO,
MDD) and NSF Grant MCS77-01740 (RC).



