

NASA Technical Memorandum 83780

Unsteady Transonic Flow in Cascades

Surya P. Surampudi Cleveland State University Cleveland, Ohio

and

John J. Adamczyk Lewis Research Center Cleveland, Ohio

Prepared for the

Unsteady Aerodynamics of Turbomachines and Propellers sponsored by the International Union of Theoretical and Applied Mechanics (IUTAM) Cambridge, England, September 24-27, 1984

UNSTEADY TRANSONIC FLOW IN CASCADES

Surya P. Surampudi* Cleveland State University Cleveland, Ohio

and

John J. Adamczyk National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

INTRODUCTION

There is a need for unsteady transonic air load prediction methods suitable for aeroelastic analysis of turbomachine blading. Considerable progress has been made in the development of cascade analysis for incompressible, subsonic and supersonic flows. Comparatively the progress on development of such methods for transonic flow has been slow. Verdon and Caspar¹ and Kerlick and Nixon² used numerical methods to represent aerodynamic phenomena in transonic cascade flow. The present work presents an analytical solution for unsteady transonic cascade flow valid for large reduced frequencies. This solution has been obtained by using the Wiener-Hopf technique. The details of the mathematical development of the model will be presented in another report³. The model formulation and analysis are briefly described in this paper. Based on this analysis, a parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.

*NASA Resident Research Associate; this work performed while he was an NRC-NASA Research Associate.

1

E-2272

MODEL FORMULATION AND ANALYSIS

An elementary turbomachine stage is replaced by a rectilinear two-dimensional cascade of thin airfoils. The steady relative flow approaching the cascade is assumed to be transonic, irrotational, isentropic, and inviscid. The blades are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow field. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. Since transonic fan and compressor blades are thin, it is assumed that steady flow deviates slightly from uniform base flow.

The unsteady transonic small perturbation equation can be linearized when the free stream Mach number M_1 is close to 1 and the reduced frequency k satisfies the following requirements: (i) $k \gg 1-M_1$, (ii) $k \gg (\delta)^{2/3}$ where δ is thickness ratio. The thickness camber and mean angle of attack of the blades only influence steady flow perturbations. Therefore, for the purpose of this analysis, the blades can be replaced by a set of zero thickness plates as shown in Fig. 1. The governing equation used in this analysis is the unsteady small perturbation equation given by Landahl⁴ for $M_1 = 1$.

$$k^{2} \frac{\partial^{2} \phi}{\partial \eta^{2}} - 2 \frac{\partial^{2} \phi}{\partial \xi \partial \tau} - \frac{\partial^{2} \phi}{\partial \tau^{2}} = 0$$
 (1)

(2)

where

nondimensional unsteady perturbation potential

b semi chord

U free stream velocity

x,y,t space and time coordinates

 ξ , η , τ nondimensional coordinates

k reduced frequency, ωb/U

ω frequency of blade oscillation

We assume that disturbances are prohibited from propagating upstream in transonic flow. Hence the flow downstream of the Mach wave emanating from the trailing edge of each blade does not influence the flow upstream of this wave. For this upstream portion of the flow, the cascade may be replaced by a row of semi-infinite plates as shown in Fig. 2. An analytical solution ϕ_1 to Eq. (1) for this region is obtained by using the Wiener-Hopf procedure⁵. The solution downstream of the trailing edge Mach wave is obtained by considering a backward-facing row of semi-infinite plates as shown in Fig. 3. It is assumed that the velocity component normal to the plate vanishes and that the jump in pressure across the wake region is equal and opposite to that given by the upstream solution. The analytical solution ϕ_2 to Eq. (1) for this region is again obtained by using the Wiener-Hopf procedure. Hence, when the downstream solution is added to the upstream solution, an exact solution that satisfies all of the boundary conditions for an oscillating staggered cascade is obtained

2

$$\phi_{T} = \phi_{1} + \phi_{2}$$

The nondimensional unsteady lift L and moment M acting about midchord of the reference blade (i.e, m = 0) can be expressed in terms of perturbation potential ϕ_{T} as

$$L = iK \int_{0}^{2} \Delta \phi_{T} d\xi - [\Delta \phi_{T}]_{0}^{2}$$
(4)

$$M = ik \int_{0}^{2} \xi \Delta \phi_{T} d\xi + \int_{0}^{2} \Delta \phi_{T} d\xi - [\xi \Delta \phi_{T}]_{0}^{2} - L \qquad (5)$$

where

$$\Delta \phi_{T} = \{\phi\}_{\eta=0} - \{\phi\}_{\eta=kS} - e^{-i\sigma}$$

 σ - interblade phase angle

The work done by the fluid on the cascade over a cycle of motion is a direct measurement of the susceptibility of the cascade to flutter. For a single degree of freedom, pitching or plunging motion, the nondimensional work done by the fluid on the blade is given as

$$W_1 = \pi \alpha_0 \text{ Im (M)} - \text{for pitching motion}$$

$$W_2 = \pi h_2$$
 Im (L) - for plunging motion

where α_0 and h_0 are amplitudes of pitching and plunging motions respectively, and Im means the imaginary part of bracketed quantity.

If the work done over a cycle is positive, the cascade receives energy from the flow and becomes unstable. But if the sign of the work is negative, the cascade is doing work on the fluid and is thus stable. This stability criteria is studied over a range of reduced frequencies, stagger angles, solidities and locations of pitching axis.

RESULTS AND DISCUSSION

A computer code was developed to obtain the unsteady lift and moment acting on a cascade of blades at Mach number equal to 1. A transonic similarity law was used to compare the results of the present analysis at Mach numbers other than 1 to the results obtained from other linearized cascade analyses. The absolute value of unsteady lift $(1L/\pi k^2)$ and unsteady moment $(1M/\pi k^2)$ are plotted for various values of reduced frequency in Figs. 4 and 5. The present analysis results are compared with the results of Smith's⁶ analysis in Fig. 4 for Mach number = 0.9 and with the results of Adamczyk and Goldstein' for Mach number = 1.1 in Fig. 5. It is observed that the results obtained from the present analysis are in good agreement with the results from the other analyses.

The work W₂ done by the fluid on the cascade over a cycle for plunging motion always remained negative and cascade remains stable. Hence the results of plunging motion are not presented here. The work W_1 per cycle for a cascade undergoing simple harmonic pitching motion is plotted for various values

(6)

(3)

of interblade phase angles in Fig. 6. The parameter varied in Fig. 6(a) is reduced frequency based on semichord from a value of 0.25 to 2.0. It is observed that the cascade tends to become more stable as reduced frequency is increased. Fig. 6(b) shows the effect of solidity of the cascade on stability. Increasing the solidity has a slight destabilizing effect on cascade. Stagger angle also plays an important role in setting the stability boundary. Its influence on the stability is shown in Fig. 6(c). It is noted that the stability of the cascade can be increased by reducing stagger angle. The effect of pitching axis location is shown in Fig. 6(d). It is observed that a rearward shift of pitching axis decreases the stability of the cascade. The aerodynamic model developed in this analysis can be coupled with a structural model allowing one to study the forced vibration characteristics of the blades in transonic flow.

REFERENCES

- 1. Verdon, J. M. and Caspar, J. R. (1982). Development of a Linear Aerodynamic Analysis for Unsteady Transonic Cascades, NASA CR-168038.
- Kerlick, G. D. and Nixon, D. (1982). A High Frequency Transonic Small Disturbance Code for Unsteady Flows in a Cascade, paper 82-0955, AIAA/ASME 3rd Joint Thermophysics Fluids, Plasma and Heat Transfer Conference, St. Louis, Missouri.
- 3. Surampudi, S. P. and Adamczyk, J. J. Unsteady Transonic Flow over Cascades, to be published.
- 4. Landahl, M. (1961). Unsteady Transonic Flow, Pergammon Press.
- 5. Noble, B. (1958). Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, Pergammon Press.
- 6. Smith, S. N. (1973). Discrete Frequency Sound Generation in Axial Flow . Turbomachines. ARC R and M 3709.
- 7. Adamczyk, J. J. and Goldstein, M. E. (1978). Unsteady Flow in a Supersonic Cascade with Subsonic Leading Edge Locus, AIAA J., <u>16</u>, 1248.

4

Figure 1. - Cascade configuration.

ugure 4. - Comparison of results with Smith analysis.

analysis.

ر

1. Report No.	2. Government Accession	No. 3.	Recipient's Catalog No.	<u> </u>	
NASA TM-83780					
4. Title and Subtitle		5.	5. Report Date		
Unsteady Transonic Flow in Cascades		. 6.	6. Performing Organization Code 505-31-08		
7. Author(s)		8.	8. Performing Organization Report No. E~2272		
Surya P. Surampudi and Joh	10.	10. Work Unit No.			
9. Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135		on 11.	11. Contract or Grant No.		
		13.	13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address			Technical Memo	orandum	
National Aeronautics and S Washington, D.C. 20546	on 14.	Sponsoring Agency Coc	ie		
Surva P. Surampudi, NASA Lewis Resident Research Associate and Cleveland State University, Cleveland, Ohio 44115; John J. Adamczyk, NASA Lewis Research Center. Prepared for Unsteady Aerodynamics of Turbomachines and Propellers sponsored by the International Union of Theoretical and Applied Mechanics (IUTAM), Cambridge, England, September 24-27, 1984. (This research was done while author was an NRC-NASA Research Associate at Lewis.) 18. Abstract There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blading at transonic speeds. The present report pre- sents the results of such an analysis in which the steady relative flow approach- ing a cascade of thin airfoils is assumed to be transonic, irrotational, and isentropic. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat-conducting continuity and momentum equations. The resulting equations are solved by employ- ing the Weiner-Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach number equal to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.					
17. Key Words (Suggested by Author(s))		18. Distribution Statement			
Unsteady transonic flow in cascades		Unclassified - unlimited STAR Category 02			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this p Unclassifi	ed	21. No. of pages	22. Price*	

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 SPECIAL FOURTH CLASS MAIL BOOK

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

> > 4

NASA

POSTMASTER

If Undeliverable (Section 158 Postal Manual) Do Not Return