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FOREWORD

CHAM of North America Incorporated has performed a Rocket }njector Anomaly

/

Study under the NASA Contract NAS3-23352. f Iz
~ The purpose of the study was to modify, test and demonstrate a computer

code for predicting three-dimensional two-phase spray flow and combustion

in rocket engines. The modified computer code REFLAN3D-SPRAY (REactive
FLow ANalyzer 3-Dimensional, with two-phase spray) and results of parametric
studies have been described in the following two volumes:

Volume 1: Description of the Mathematical Model and
Solution Procedure; and
Volume 2: Results of Parametric Studies.

Transfer of the code to NASA LeRC computer center, and preparation of a
user's manual are recommended as next steps of the study.

The authors wish to thank all those who have contributed to this work.

In particular, thanks are due to Larry P. Cooper and Ken Davidian of the
Communications and Propulsion Section of NASA LeRC; and to Laurence Keeton,
Jack Keck, Kelli King, Janet Siersma, and Ronni Rossic of CHAM NA.
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1. SUMMARY

The Tiquid fuelled rocket engine combustors consist of an injector plate

and a thrust chamber. The injector plate consists of a number of propellant
injectors which are designed to atomize the Tiquid jets of reactants

and to promote intensive mixing between the vaporized components.

Figure 1.1 shows the schematic of the rocket engine and injector plate,
with LOX-RP1-LOX unlike triplet injectors, considered. The purpose of
the study was to demonstrate an analytical capability to predict the
effects of reactant injection non uniformities (injection anomalies) on
heat transfer to the walls. For this purpose an existing three-dimensional
single-phase flow and combustion computer code (REFLAN3D: 4'B§act1ve‘fgpw
ANalyzer, 3-Dimensional) has been modified for simulating two-phase flows
in Tiquid propellant rocket engines. The modified code is referred to as
REFLAN3D-SPRAY. "

The numerical model in the final code assumes instantaneous evaporation of
oxygen jets and treats fuel drops as discrete drops of given size spectrum.
It accounts for the liquid fuel (kerosene) jet motion, evaporation, its
interaction with the gaseous phase, and combustion.

The coupling between the liquid jets and the gas-phase includes:

- momentum interaction between the high speed liquid jets and
gas phase ;

- energy interaction between hot reacting gases and cold evaporating
Jjets; and
mass transfer between the evaporating jets and gas phase.

The velocity slip between the 1iquid drops and the reacting gases is of
primary importance for accurate predictions of flow and heat-transfer
characteristics.

The Eulerian-Lagrangean approach for simulating spray flow, evaporation and
combustion has been selected. A nonorthogonal body fitted coordinate
system is employed for accurate simulation of combustor geometry and near- -
wall processes.

1-1
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The physical models in the care are: the k ~ & model of turbulence,
one and two step finite-rate reaction models, and six-flux radiation model.

The numerical solution procedure employs a control-volume approach, with

staggered grid and upwind-differencing practices. The solution scheme for
Eulerian set of equations is a modified SIMPLE algorithm. These modifications

include inproved equation solvers, under-relaxiation practices, and order

of solving equations for different variables. For instance, velocities

are solved by a point-by-point (Jacobi) method, while all other equations

are solved simultaneously over the whole field.

The code has been checked for both numerical and physical considerations.

Results of test calculations and parametric studies as well as recommendations
for further improvements and verifications are presented in Volume II.
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2. INTRODUCTION

One of the significant ways in which the performance Tevel of the rocket
engines can be improved is by the use of optimal injector design, advanced
materials and cooling concepts that allow a significant increase in thrust
Tevel. Figure 2.1 illustrates typical geometry of the rocket engine and

" selected injector element configurations. Injectors usually take the form
of a perforated disk at the head of the rocket engine combustor and can

vary in shape and dimension. Injection characteristics are improtant for
proper mixing, evaporation, and efficient and stable combustion. The
objective of the present project was to develop a predictive tool for rocket
injection anomalies study.

In the past, the design of injectors has been primarily based on experimental
teSts, experience and intuition. More recently, injector design capability
is being improved further by employing computer codes capable of predicting
two-phase flow, evaporation, chemical reaction and heat transfer within

the complex geometries of 1iquid fueled rocket einges. Performance
characteristics of Tiquid oxygen/hydrocarbons (LOX/HC) propelled engines

can be studied by simulating combustion processes for different propellant
combinations, injector elements, cooling systems, and pressure levels.

A research program has been initiated by the National Aeronautics and

Space Administration at the Lewis Research Center to proVide a quantitatively
accurate numerical modeling capability for the design and development of
lugiid fueled rocket engines. The work has been performed at CHAM of

North America Incorporated and resulted in a three-dimensional computer

code (REFLAN3D-SPRAY) capable of predicting two-phase liquid fuel spray,
combustion and heat transfer in engine combustors. An existing 3-D,

CHAM computer code was modified to incorporate Eulerian-Lagrangean technique
for two-phase spray simulation.

Full details of the adopted mathematical formulation, physical models, boundary
conditions and solution procedures are described in this report. An
accompanying report, Volume 2, describes the results of various numerical
consistency test cases, and parametric studies as well as the recommendation
for further improvements and verification of the code.
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3. MATHEMATICAL BASIS

3.1 Introduction

This chapter describes mathematical formulation of the two-phase flow, heat
transfer and combustion phenomena handled by the REFLAN3D -SPRAY code. In the first
section, basic principles of the Eulerian-Lagrangean (E-L) approach are presented.
The second and third sections provide mathematical description of the physical
processes in Eulerian and Lagrangean frames, respectively. The formulation is
presented in fairly general terms so as to be applicable to the wide range of

flow situations.

3.2 Eulerian-Lagrangean Approach

The mathematical formulation of the two-phase flow and combustion processes
comprises the application of Eulerian conservation equations to the gas-phase
and Lagrangean equations of droplet motion and thermal balance. The Eulerian
part of the method involves solution of the following gas phase equations:

- continuity equation;

- three momentum equations;

- energy equation;

- turbulence kinetic energy and dissipation rate equations;
- unburned fuel and CO mass fraction equations;

- mixture fraction (composite fuel fraction) equation; and
- radiation equations.

The Lagrangean part is accomplished by integrating the droplet equations of:

- motion;
- heat transfer; and
- mass balance

along their trajectory.

The spray combustion model assumes that the evaporating droplets act as
spacially distributed sources of fuel vapor. The link between the phases
involves mass, momentum and energy coupling and is mathematically expressed
in terms of interphase transfer source terms in all Eulerian equations.



The complete solution algorithm for a gas-droplet spray flow is presented

in Figure 3.1.

START
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Figure 3.1 Flow Chart of the E-L Solution Algorithm

First grid and geometry data are specified and flow field variables are
initialized. A droplet-free solution of the gas field is then obtained at

the begining of the iteration cycle. This flow field is used for droplet
trajectories, size and temperature calculations. The mass, momentum and

energy interphase source terms are then determined. These source terms are

now incorporated into the gas field equations. The new gas flow field solution
is used again the the solution of the droplet equation. Thus there is a
two-way coupling between the gas and liquid phase equations. The calculation
porcess is continued until the conVerged solution is obtained.
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3.3 Basic Eulerian Equations

3.3.1 Fluid Flow Equations

The hydrodynamic equations are expressed in three-diménsional, cylindrical
polar coordinates x-r-8, as follows:

'Contjnuitx

00 , 8 (pu) , 1 3(pvr) ,

30 (ow) _ 1)
X T or = 1, (3.3-1)

Q2
S|

x=Momentum

9X X " ox or \ ox 36 ox or r 3P
+ g4 (3.3-2)%*
int :

r- Momentum

, 2
Apv) , Bfpuv) . 1 3 (rov7) .1 3 (pvw) _ 8 dvy 1 3, dvy 1 3 udv
ot A% B Ty T X ( x) Ty 3r (r“ar) T r —3'(r ) )
=3P 4 3 (wuy 1 3 urav ow _Wyy _zp (low v 2
ar X ( ar) * r or (S r 86 {U(ar r)} r (r 0 * r) *oow/r
2 b, 13 1 ow v
3 or {“(ax * r or (rv) + r o ) + ok} o+ Sint (3.3-3)

* See Nomenclature for explanation of symbols.
**Note that for Cartesian coordinates, r-«,3r = 3y and r3 = dz.
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6-momentum

pw . 0 (puw) . 1 3 (rovw) , 1 3 (ow") 9 (udwy 1 3 ,rpowy, 1 3 ,u ow
T o trar tEw ot Cad trar Ohe) v G

==-19op . 9 ,ouy .1 3 ur/ldv w 1 9 [ (9w W oow 1 9v
rnta b v U Ew - e Ge 2 T Gt ae -

w21 3 wdu 1B 1 (3.3-4)
r "3 rae{(7+',:5;-(PV)+F§-‘§'-)+pk}+s”.’nt

In the above equations, u, v and w are velocity components in the x, r and
e'directions, respectively; p is the pressure; p and pu are respectiVe]y the
density and viscosity of the fluid mixture, which may be non-uniform. The
normal-stress terms involving bulk viscosity (which is zero for most fluids
including oxygen and RP1 fuel) have been omitted from the momentum equations.

By multiplying equation (3.3-4) by r, and rearranging, a new © momentum
equation can be obtained with angular velocity W = rw as a dependent
variable. Experience indicates that some of the shear stresses expressed in
the new form are easier to handle during numerical claculations. The
transformed form of the 6-momentum equation is: |

9-momentum

g k2 g ) L L3
ot G tar O v gk 03D  E Bk B 2o

- % %.sg.{u(%%-+ %'BSCV) + %?-%%) + ok} +.S?nt _ (3.3-4a)

Equation 3.3-4a is used in the code. For laminar flows, the velocity
components are the instantaneous ones; and u is the molecular viscosity

of the fluid mixture. For turbulent flows, it shall be assumed that the
same equations are valid., For such situations, the time-mean values of all
the flow variables and fluid properties are used, and u is
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now the effective viscosity(which is the molecular viscosity augmented by the
turbulent contribution). These comments also apply to the other equations
which shall be considered in the following sections,

Equations (3.3-1) to (3.3-4) govern the variation- of the velocity components
‘u, v, w, and the pressure p. In order to solve these equations, information
about the variations of density p and viscosity u is required. This is
discussed next.

3.3.2 Density and Viscosity

The density is related to pressure, temperature and the composition of the
gas mixture through an equation of state:

o=p (p, Ty m) (3.3-5)

where T is the temperature of the fluid mixture, and the mj's are the mass
fractions of the component species of the mixture. Variations of T and mj's
are obtained either from part of the problem specification, or from the
solution of additional differential equations.

In REFLAN-3D, density is calculated from the following formula:

=1

o= {; (3.3-6)

L |

where = 7 (%) (3.3-7)

J

==

and where R 1is the gas constant and Mj is molecular weight. Summation is
taken over all species.

For the evaluation of viscosity, laminar and turbulent flows have to be
considered separately. For laminar flows, the viscosity is assumed to be
a function of temperature and mixture composition:

) ‘ (3.3-8)

o= (T, my

For turbulent flows, however, the problem is more complicated. The turbulent
contribution (ut) to the effective viscosity is a function of local quantities
such as velocity gradients, etc. The evaluation of ut*and the turbulence
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model are discussed in the next section.

3.4 The Turbulence Model

3.4.1 The kne Model

‘The k v ¢ model of turbulence is most commonly used for prediction of complex
flow problems. The basis of the model is that it solves the transport equations

for turbulence kinetic energy and turbulence dissipation rate.

The turbulence model incorporated into the REFLAN3D code is the high Reynolds
number kve two-equation model recommended by Launder and Spalding (Reference 1).
In the following section the governing equations are presented., Details of

the derivation can be found in the published literature (References 1, 2, 3)

and are not provided in this report.

3.4.2 Governing Equations for the kve Turbulence Model

The basic differential equations for the turbulence kinetic energy k, and
its dissipation rate e, are:

5 (ouk) , 13 (rovk)

1 5 (owk) 2 oky 1 5 T 3k

5% 5 HY T X (Tk,eff 5?0 " r or (r k,eff 5?0
1 9 1 9ky _
v 55 Tk,efr 7300 7 G - ee (3.4-1)
9 (pue) . L 3 (rpve) ;1 3 (pwe) 3 1> 1 3 de
3 BT R "% Ue,err i) " 7o (e err ar)
1 3¢ _ > .

- ;1:5'3* (Te.eft 7357 = (C18y = Cpee) &/ + peW (3.4-2)

In the above equations Gk is the generation term for the kinetic energy of
turbulence and is given by:
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2 2 2 2 2
- ou ov 1 ow , V! aw . 1 3u U , 9V
6 = w25 + (G + gty (x *v Y Gt
oW Loy ﬂ)z} (3.4-3)
ar r 96 r :

_ - _ ) -
The quantities CD’ C1 and C2 are constants, Tk,eff and Fe,eff are the effective
exchange coefficients for k and ¢, respectively, and are given by:

Peff = Vert/ Ok eff (3.4-4)

Te,eff = Veft/ % eff (3.4-5)

where Gk’eff and Ge’eff are the effective Schmidt numbers for k and £ and are
assumed to be constant .

3.4.3 Turbulent and Effective Viscosities

The turbulent viscosity My is related to k and &, via:

W, = C. pkZ/e (3.4-6)
t D *
and, the effective viscosity is given by:

Heff = Mg * ¥y (3.4-7)

where Wy is the laminar or molecular viscosity of the fluid., Often Wy is very
large compared with Moo and Uapg €N be taken equal to i without introducing
serious errors, The first practice (equation 3.4-7) is employed in the REFLAN3D code.

Recommended values (Reference 3) for the constants appearing in the above
equations are:

CD = 0,09;
C1 = 1.43;
C2 = 1,92; and

* The subscript "eff", to denote effective values, is used explicitly when
coefficients that are related to turbulent flows exclusively are involved,
otherwise non-subscripted symbols will be used.
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= A4-8
O, eff 0.90. (3.4-8)

The Schmidt numbers O off for the dissipation rate of turbulence is calculated
H]
from:

2 (3.4-9)

where k is the Von Karman constant. A value of 0.4 is assumed for «.

3.5 The Energy Balance Equation

3.5.1 The Stagnation Enthalpy Equation

The- stagnation enthalpy W, defined as:

W= CpT + ijHj + ; (uz + v2 + w2) (3.5-1)

is a dependent variable in the energy transport equation:

AY] AV Y] AY) AV
3 (puh) , 1 9 (rpvh) ;1 3 (pwh) 93 I ohy 1 3 rI'n oh
X AT T T X (h ax) T roor Ch ar)
AV N
1 5 v 1 3hy _ h
- CNwgs) = Sy + Sing (3.5-2)

In the above equations, Cp is the mixture specific heat, Hj is the heat of
combustion of the j-th species, Sﬁ represents the sum of g}] gas-phase source
terms including thermal radiation (discussed below) and S?nt represents
interphase energy transfer source term.

Equation (3.5-2) has been obtained with the assumption that the exchange
coefficients for the transport of the mixture and for heat conduction are all
equal at a point, although they may vary from point to point.

It should be remarked that under certain circumstances the variation of the
specific enthalpy K can be obtained without solving the differential equation
(3.5-2). For example, consider the incompressible flow of initially unmixed
reactants in an enclosure with adiabatic, impermeable, non-catalytic walls
and without any thermal radiation. A non-dimensional enthalpy ¢h can be

3-8



defined as:
AV]

- h
Q“ (3.5-3)
- h

A

=2

¢p =

=

F

where the subscripts F and A refer to the inlet fuel and oxidant streams,
respectively. The differential equation for the variable ¢h is then identical
to that for the mixture fraction f in every respect, including the boundary
conditions. Thus, K and f are linearly related. If the reactants are pre-
mixed and uniform in composition, then the enthalpy must be uniform throughout.

Once the enthalpy and the species concentrations have been determined, the
temperature T can be determined from equation (3.5-1) viz:

B - Zm.H:i - %-(u2 + v2 + w2)

T = J

(3.5-4)

The specific heat Cp, however, is a function of temperature and the composition:

, 2 3
= 5m. .+ b.T +c¢c.T"- +d.7
Cp = Zmy (a; +byT +cy i

+ e.T4
J

) (3.5-5)
where aj, bj, cj, dj and ej are constants for each chemical specie.

The Cp v T dependence is weak so the system (3.5-4) and (3.5-5) does not
require iterations. Usually the previous iteration value for T is used to
calculate Cp and then (3.5-4) is used to calculate new temperature.

3.6 Thermal Radiation

3.6.1 Introduction

There exist few numerical procedures for handling the radiation integro-
differential equations. Of these the "zone method" of Hottel (Reference 4)
and "Monte Carlo method" (Reference 5) are well known and tested. Recently
introduced "beam tracing method" (Reference 6) at this stage of development
is not suitable for engineering applications. All three procedures require
significant quantities of computer time and/or storage.

The iterative nature of reactive flow calculations requires simple and fast
algorithms for radiation calculations. The most commonly used method for
radiation simulation is the "flux model" originated by Schuster (Reference 7)
and Hamaker (Reference 8) in astrophysics. Flux methods are based on the
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use of some simplifying assumptions for the angular variation of the radiation
intensity. This allows the exact integro-differential radiation transport
equation to be reduced to a system of approximate differential equations in
the space variable only., These are ideally suited to numerical solutions
simultaneously with the flow equations.

The six-flux method is described below for three-dimensional flow calculations.

3.6.,2 The Six-Flux Method

For an absorbing-emitting grey medium in Tocal thermodynamic equilibrium the
radiation transport equation can be written as (Reference 9):

3.Vl = -al +
...r—-a.r a

Eh ]

+ 1%- / 1dQ (3.6-1)
41

where I is the radiation intensity, ¢ is a unit vector representing direction
of radiating beam, a is absorption, s is a scattering coefficient, E = 0.T4,
and o is the Bolzman constant. Central to the assumption of a flux model is
the assumed variation of the intensity with direction. Assumption of constant
I in a quadrant centered along each (%) coordinate direction results in six

differential equations for intensities (Reference 10).

d J S
a?'(”1> = pr {-(a + s)I totak + 3-(1 +J+K+L+M+ N
il (rd) = r {(a +s)I + Jyoak - S(I+J+K+L+M+ N)}
dr ¢ r 6
dK a S
ax = ~{a+s)K+ab +Z (I +J+K+L+M+N)
n (3.6-2)
ac = - -3
X (a +s)L - aE 3 (I+J+K+L+M+N)
1dn
r do = - (a + s)M + aE + %—(I +J+K+L4+M+N)
%—%g- = (a+s)N-aFE -2 (I +J+K+L+M=+N)

The I, J, K, L, M and N are the radiation fluxes in y , y , xt,ox7, 05, 8
directions, respectively.
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The net radiation heat fluxes, used in the energy equation source term can be
evaluated from:

o _ 2 d(I +J)

Qy =l-d=-3557 1/r ° dr

Q =K-L=-- f - d(Kd: L) (3.6-3)
_ .2 1 d(M+N)

Qg =M -N=-pg 7 odv

It can be seen that only composite fluxes (I + J), etc. are used for the heat

flux calculation, It is convenient, therefore, to add appropriate equations

of the system (3.6-2) and arrive at the working equations for the "composite
il S .

fluxes" R_, Ry and RZ viz:

X
: dR
d , 1 "“xy _ . S
a——)z-(‘g-l:g-—Tx—)—-{a (RX-E)+-3—(2RX—R‘Y-RZ)}
dR
d r S
(e =) = - r {a (R, -E) +2 (2R, -R -R)} (3.6-4)
dr a+s+% dr y 3 y X z
dR
1 5 1 1 z S
F-*a-e—(a'_‘—_"s— F—-‘—é-) = - {a (RZ - E) +-3—(2RZ _RX —Ry)}
where:
R, =5 (1 +29)
_ 1
Ry = §-(K + L) (3.6-5)
_1
RZ:?(M*‘N)

The composite radiation-flux equations are easy to solve second order (diffusive
type) ODE. They are coupled with the stagnation enthalpy equation through the
presence of Rx’ Ry and RZ in the source term of the latter. Indirect coupling
to other equations also occurs through the temperature appearing in the

emissive power E and through any dependence of the coefficients a and s on the
local quantities Me, s mCOZ’ mHZO’ etc,

The contribution of the radiation fluxes to the stagnation-enthalpy source

term is given by:

(S

%) radiation = 28 {(R, - E) + (Re - E) + (R, - E)} (3.6-6)
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Since information on the variations of the coefficients a and s with other
quantities is often scarce and imprecise, they have simply been assumed to
be constant in REFLAN3D. However, should knowledge of the variations be
available, it is not a major problem to incorporate these into the code,
It may be noted that when the absorption coefficient a is very large, Rx’
Ry and RZ become very nearly equal to the direct emission E.

3.7 Chemistry Equations

3.7.1 Reaction Models

There are three levels of complexity for simulating the chemical kinetics in
the REFLAN3D code:

- instantaneous reaction assumption;
- one step reaction mechanism; and
- two step mechanism with intermediate CO.

The rate of chemical reaction is assumed to be governed by an Arrhenius
expression for laminar flows, and by the "Eddy-Break-Up" model (Reference 11)

for turbulent flows.

Details of the combustion models and the chemistry equations are described
below.

3.7.2 Conservation Equation for a Chemical Species j

The conservation equation for a chemical species j is:

3 (pum;) . 13 (rpvm.) . 1 3 (pwm,) 3 m .
X Iy Y AT 37T X (Fj ox J)

1 3 . 1 L
L e Mgy L 2, Ly g (3.7-1)

where mj is the mass fraction of chemical species j; Rj is the mass rate of
creation of species j by chemical reaction, per unit volume; and Fj is the
exchange coefficient. For a chemically-inert species Rj is, by definition,

Zero.
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3.7.3 Mixture Fraction and Inert Species Equations

The simple single-step reaction of a pair of reactants (calied here for
convenience fuel (fu) and oxidant (ox)) can be expressed in the following
stoichiometric relation:

1 kg fu + s kg ox ~ (1 + s) kg products (3.7-2)

where s represents the stoichiometric oxidant/fuel ratio and is a constant

for a given reactant pair. It should be noted that the reaction equation
(3.7-2) does not impose any restrictions on the constitution of the reactants;
thus the reactants may be mixtures, e.qg. fuel = CO + H2 + N2, oxidant = 02 + N2.

An important consequence of the simple chemical reaction assumption is that
the mass rates of creation by chemical reaction of fuel, oxidant, and product,

Rfu’ Rox and Rpr’ are related through:

Rfu = Rox/s = —Rpr/(l +s) (3.7-3)

These relations can be made use of to yield conservation equations that have
zero source terms.

It is further supposcd that the exchange coefficients of fuel and oxidant are
equal at each point in the flow, although they may still vary from point to
point. It follows that equation (3.7-1) for oxygen (j=ox) can be divided by
s and subtracted from the corresponding equation for fuel (j=fu).

The result is:

9 (puy) ;L 3 (revy) ;1 3 (pwy) 2 (Idy) 1 3, 9yy _ 1 98,13y, _
93X M o T3 T3x T r or (rrar) “r o (T F’ﬁ%) = 0.

(3.7-4)

where y = mg - m /s (3.7-5)

This is an equation having a single dependent variable, namely vy, and no source
term; the two reaction-rate terms have cancelled out. To make equation (3.7-4)

more general, a normalized dependent variable f ("mixture fraction") defined as:
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Yo

= ﬂ‘-_:.—-"?A ; 0 <Y< 1 (3.7"6)

can be introduced, The F and A indices represent conditions at fuel and air
entry, respectively (Figure 3.7-1),

‘ . O~ dp fefp Exit
(F) mfu,A’ mOX, ;_— / ¢F - ¢A fF - fA
mN2 A'.... _— ° P/ °
) ___j Inlets
(A) My, F- Mox, A - °
mN2,A""' ) }
Figure 3.7-1 Specification of Inlet Composition at F- and A-inlets
- The mixture fraction transport equation is written as:
3 (puf) . 1 0 (revf) L d(pwf) _ 3 . 3fy 1 8 . 3f
ox ¥ T T X (Ff ax) Ty oor (rFf ar)
1 3 1 3f, _
- =55 (Ff = .é_e_) =0 (3.7-7)

The physical significance of the mixture fraction is that it represents the
mass fraction of fuel in any form, i.e. fuel that has reacted and that has
not. Thus, for chemically-inert flows, the mixture fraction f and the mass
fraction of unburnt fuel Me, would be identical.

Note that all atomic elements H, 0, C, N (inert species) are governed by

the source free transport equation identical to that of mixture fraction
(3.7-8). For the equal exchange coefficient, zero source terms and linearly
related boundary values,all inert species concentrations at any location

are linearly related to f. Stoichiometric relations provide the auxiliary
linear relations,
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3.7.4 Stoichiometric Relations

The Tlinear relation between the inert species ¢ and the mixture fraction f can
be expressed as:
¢"¢A f"fA

_ (3.7-8)
Pty Tp - Ty

where ¢ stands for Mes Mys Mys Mys etc., A and F indices represent A and F
inlet, respectively.

For simple one-step reaction there are five species participating in the mixture
composition viz: (fu, 02, N2, C029 HZO)' If two differential equations (f and
mfu) are solved, four additional algebraic equations can be obtained from
relation (3.7-8),

) and

If the A-jet composition consists only of air (a + (1-aox) m

oxmox N2

F-jet of fuel (CnHm) and say water vapor (mfu,F’ mHZO,F) the linear relations
for atomic elements are:
me = 12 . n' f (3.7-9)
2 f )
m - (_____m +m|f ) —— (30]"‘10)
H 18 HZOF F fF
my = a a_, - l—b:-m f (3.7-11)
0 0X ox 18 "H,0.) — .
2F T

On the other hand, stoichiometric relations .can be written as:

12

me =12 n' me, + a7 "co, , (3.7-12)
my = m' me, + Té'mHZO (3.7-13)
~ 16 32 .

Mo = Mox 18 mH20 * Zﬁ'mCOZ (3.7-14)

v = n T n]______
where n' = o7 T and m' = VI

Combining equation (3.7-9) and (3.7-12) Mep. ©an be calculated. From equations
(3.7-10) and (3.7-13) m, o and from (3.7-107 and (3.7-14) m . can be determined.
2
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mHO;

- ' 2'F .
mH20 =f (9m" + e ) - 9m me, (3.7-15)
— ] - L] -
mC02 =44 n'f - 44 n me (3.7-16)
%ox
— . SOA [} 1 . 1 1 -
m02 =a - f (fF +32n' +8m') 4 Mo, (32 n* +8m') (3.7-17)
More complex formulae can be derived for arbitrary A-inlet and F-inlet
composition.
Finally, since all the species mass fractions must add up to unity:
Mg, t Mgy tMeg +my g tmy = 1 (3.7-18)

2 2 2

ThusmN can be obtained.
2

The technique of relating mixture composition to the mixture fraction f can
be expressed on two examples of combustion regimes:

- diffusion controlled (instantaneous combustion); and

- kinetically influenced reactions.

These are described in the following sections.

3.7.5 Equations for Diffusion-Controlled Reactions

Before any reaction can take place, fuel and oxidant must be brought into
physical contact with each other. It is thus expected that the reactant
process is affected by both the rate at which mixing of the two reactants
takes place and the rate of the chemical reaction itself. In situations
where the fuel and oxidant are not initially mixed, the mixing rate, being
in general much slower than the reaction rate, even in turbulent flows,
controls the reaction process. This leads to the assumption that
thermodynamic equilibrium prevails everywhere. Thus, wherever fuel and
oxidant are in contact, reaction will take place until one or the other has
been completely consumed. Since chemical kinetics need not be considered
under these circumstances, the complete chemical state can be determined by
solving only one sdurce-free conservation equation for the mixture fraction,
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Once the f-equation (3.7-7) has been solved, the mass fractions of the other
species can be obtained from algebraic equations.

The mass fractions of fuel and oxygen are related to the mixture fraction
according to:

0 <f<fy: Mey, = 0

Mox = (1 - f/fst) Mox,inlet (3.7-19)
1>fF i-fst DoMg, = (f - f/fst)/(l - fst)

Mox = 0 (3.7-20)
In the above equations, fst is the stoichiometric value of the mixture
fraction and is given by:

mfu

fst =1/7{1+s (ﬁ;;d inlet } (3.7-21)

The above equation is readily obtained from equation (3.7-6), noting that for

stoichiometric mixtures, m_ = mox/s, and consequently vy = 0. The physical

significance of fst is thazuthe locus of all points where f has the value

fst defines the maximum reaction contour and hence the "flame envelope".

The Tinear relationships between the mixture fraction and the various mass
fractions can be used to calculate mCOZ’ My gs etc, It should be remarked
that these relationships are, strictly spea%ing, valid only for instantaneous
values. Thus, for turbulent flows, where only the time-average values of

the mixture fractions are available, the relationships of Figure 3.7-2 can be

used only for time-average mass fractions. This is assumed in REFLAN3D code,
Some inaccuracy is involved in this assumption; it can be removed to some

extent by, for example, solving an additional differential equation for the
mean-square fluctuations of f (References 12, 13).
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(1=mgy A) MN2 My, £
Mty

Mox, A Mox pr

0
0 fst 1

(A) Inlet —f (F) Inlet

Figure 3.7-2, Diagram Showing the Variation of Mass Friction with f for a
Diffusion-Controlled Reaction

3.7.6 Equations for Kinetically-Influenced Reactions

When the chemical process is not physically controlled (as, for example, in

the case of premixed fuel and oxidant mixtures) the rate of the chemical
reaction will be the influencing factor. Since the assumption of thermodynamic
equilibrium can no longer be used, solution of a source-free equation.alone

is not sufficient to determine all the species mass fractions. In addition,

a conservation equation for one of the species must be solved. This could be
any one of the three: Meys Moxe OF mpr.

fn REFLAN3D, for one-step reaction, two differential equations are solved:

that for f, equation (3.7-7), and that for Meys equation (3.7-1) with j = fu.
Under some circumstances, the solution of the f-equation may not be necessary
even though the reaction is kinetically-controllied. For example, when a fuel-
oxidant mixture of uniform composition is admitted into a chamber of impermeable,
non-catalytic walls, under steady-state conditions, the source-free equation

has the trivial solution: f is uniform everywhere and equal to the iniet value.

Once the mixture fraction f and the fuel mass fraction Me, have been determined,

the mass fraction of 02, COZ’ H20 and N2 can be obtained from stoichiometric

relations.
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The variation of the species mass fractions with f for a kinetically-influenced
reaction is shown in Figure 3.7-3.

mN2 m
““mox, A) fu, F
Mox, A
0
' 1
(A) Inlet e § (F) Iniet

Figure 3.7-3. Diagram Showing the Variation of Mass Fractions with f for
a Kinetically Influenced Reaction

NOTE: The dotted lines show the variations for a diffusion controlled

reaction (as in Figure 3.7-2); the variation of My is the same
for both, 2

3.7.7 Two-Step Reaction Model

A general hydrocarbon (CnHm) fuel oxidation is employed in two-step parametric
reaction scheme as follows:

+ 2 + 4 _
CnHm+(>\m..4 n+(1_)\)mj-—_n)02_)'>\n(:0+(1->\)nC02+nZ-lH20

AN (3.7-22)

An CO + 7 O2 - An CO2

where m and n represent CnHm-hydrocarbon composition (e.g. for C3H8 n=3, m=8),
and ) is the reaction scheme parameter (A=0 for single step chemical reaction,
and A=1 for two step chemical reaction),

For certain cases (e.g. for heavy Tiquid hydrocarbons) 0<A<l can represent
simultaneous homogeneous-~heterogeneous reactions at the droplet boundary
layer.
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i i i in the above reactions
There are six species (CnHm, COz, co, HZO and N2) involved in . b
which have to be determined at each control cell of the combustion chamber,

Three properties viz: mixture fraction f, defined as a "total fuel" (burned
or unburned), mass fraction of unburned fuel anHm’ and mass-fract1on of
‘carbon monoxide Mo are obtained from the differential equations. Three
additional equations are obtained from the stoichiometric relations:

12 12

=12 n' m, + 5y Man + 77 M
me =120 "e 1, * 28 Mco ¥ 47 oo,
my =m'm 2 (3.7-23)
H CnHm + 18 mH20

- 16 16 y 32
o = Mo, * 73 "co T T8 "W,0 T F e0,

_ m

where n' = o0 2 - and m' = oo

3.7.7 Reaction Rate Expressions

Two different options are considered for the reaction rate expression:

- Arrhenius expression; and
- Eddy-Break-Up model (EBU).

The Arrhenius expression for the bi-molecular reactions can be written as:
pMme, ¢ pm. B .

FU) m 9%y exp (-E/RT) (3.7-24)
Mey OX

Rey, 1 = =Py
where A is reaction rate constant, F is the activation energy, R is the

gas constant, MFU’ MOX are molecular weights and o and B are reaction order
constants. Similar expression holds for Mg combustion rate.

For turbulent flows, apart from the usual need to use time-averaged quantities
and effective transport coefficients, the effect of turbulence on the reaction
rate should be separately accounted for. The eddy-Break-Up model of

Spalding (Reference 11) assumes that the gas is composed of alternating
fragments of unburned fuel and almost fully burned gas (premixed flame). The

chemical reaction is supposed to occur on the interfaces between these two
inkds of gragments.

The rate of reaction is supposed to depend upon the rate at which the fragments
of unburnt gas are broken into still smaller fragments by the action of
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turbulence, and is taken to be proportional to the rate of decay of turbulence
energy. Thus, the rate of reaction is:

- % -
Rey,EBy = = Cp 9~ €/k (3.7-25)

where CR is a constant, and g represents the local mean-square concentration
“fluctuations,

The concentration fluctuation g can be determined by solving an additional
equation havihg a form similar to that for the turbulence quantities ke
(References 12, 13). Magnussen (Reference 14) proposed an algebraic expression
for g in the form:

1/2 m B m
g =min (mfu’ —%5-, I—;Q%) (3.7-26)

where B = 4.5 is an empirical constant.

For turbulent flows, the lower of the two reaction rates is often taken.

3.8 General Form of the Governing Differential Equations

A1l the differential equations discussed in the preceding sections are elliptic
in nature and can be conveniently presented in the general form:

s (8u) + £ o2 (rave) + o2 (o) - 52 (Todly - L2 (T 20y
- %.sﬁ.(r¢ %.%%g = s, (3.8-1)*%

* 1. As a reminder, note that for Cartesian coordinates: r-o«, 3rzdy, and
rof=adz,

2, The differential equations for the three composite radiation~fluxes
are of one-dimensional form, Thus the r- and 6-derivatives of this
equation are absent for R_, the x~- and 6-derivatives are absent for

Ry, and the x~ and r-derivVatives are absent for Rz'
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Table 3.8-1, Summary of Equations for Three-Dimensional Flows

: T S
EQUATION | ¢ | Byl T, S do
continuity {1 [ o | O 0 Myo = M1
[ axial xe J8p o, B 8wy 1 8 v ]
axial x u P H oX 1 oxX ( ax) * r or (rp ax) md (udo udI)
momentum
1 3 orw
P W) et
2 9
-3 ax (Hepp Vo U+ ok)
ial y- p .3 duy Lo oy | ]
rqd1a1 Y v Py M T oor * oX ( ar) * r ar (ru ar) My (Vdo VdI)
momentum
s L 9 (Larwy 2 durw 24 drw
r o r or 3 26 r3 30
UM U
: r r2 gy
2 9
=357 (epe Vo U+ oK)
. 3 3 ou J ov
circum=- rw | p u - —E»+-—-(u =) + = (U =%) m, (rw, = rw
ferential 08 3x 96 or 96 d do dI
O~momentum
1 39 orw 2 3y WOV
tzee P He) T e g
_ 2 3durw
r ar
2 l__g_(u V. U+ pk)
turbulence | k | p |Yeff | G, - pc -y k
energy k Ok .eff
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| T S, S
EQUATION ¢ o o do
dissipation} € Hoff (C1 Gk - C2 pe) + pe V. U - md £
rate € Oe,eff
mixture f U 0 - iy (1 - f)
fraction Of
fuel mass | mg, L | Rehem, fu -ty (1 -mg)
fraction %
fu
CO mass m E_ 1y R + R -, m
fraction Co ‘OmCO FU,CO “chem,fu ch,CO d "Co
. V] E._. §P_ _ W] _f\;
enthalpy |[h 5 Y 2a (RX + Ry + RZ 3E) md (hd h)
x~radia- Rx E%E' - {a (RX - F) 0
tion
flux s
+"§(2RX-R—RZ)}
. 1
y-radia- |R T - {a (R, - E) 0
tion Y a+s+;- s J
flux + §-(2 Ry - RX - RZ)}
z-radia- IR, E%E' - {a (RZ - E) 0
tion
flux S
+'3—(2RZ~RX'-Ry)}
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In the above equation ¢ identifies the dependent variable; B is identically
equal to either the mixture density p or zero; T¢ is the appropriate exchange
- coefficient for the variable ¢; and S¢ is the source term which includes both
the sources of ¢ (positive or negative) and any other terms which cannot find
a place on the lTeft-hand side of the equation. Table 3.8-1 summarizes the
equations in the form they are solved for. Some notes about these equations
now follow:

- For laminar flows, instantaneous values of flow variables and
molecular values of the exchange coefficients are used,

- For turbulent flows, time-averaging values of flow variables
and effective values of the exchange coefficients must be employed.

The interphase transfer source terms Sd¢ will be discussed in chapter 4.6,

3.9 Basic Lagrangean Equations

3.9.1‘ Introduction

Drop life histories must be calculated in order to determine heat, mass, and
momentum transfer. This is particularly important for pressure atomized
injectors, where a significant proportion of the initial momentum in the flow

is carried by the liquid phase and is transferred to the gas phase only by the
drag force on drops. Since spray calculations are complex, the computation of
droplet characteristics is represented in-a relatively simple model., Droplets
are assumed to be spherical and non-deformative .with uniform conditions within
each droplet volume. The droplets are divided into a number of drop size ranges
and a system of differential equations is solved for each range.

This chapter presents basic equations of droplet motion, heat and mass transfer.

3.9.2 Droplet Distribution Model

The present model assumes that the fuel is injected into the combustion
chamber as a fully atomized spray which consists of spherical droplets.

The droplet-size distribution within the spray is represented by a finite
number of droplet parcels of specific droplet diameter. At the atomization
point droplet initial sizes, velocities and temperatures are specified; these
are subsequently tracked in a Lagrangean fashion as they traverse, heat-up
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and vaporize within the combustion chamber.

The number of droplets in each parcel, Nyo is calculated according to a
specified distribution function, that relates the probability Pj of finding
a droplet of diameter dj to the droplet diameter:

: Sm. P.
LI (3.9-1)
Nd - NS 3 .
v P.p, md, /6
=1 4

wheré NS is the number of droplet sizes and dm, is the mass of fuel introduced

at the injection Tocation.

The most commonly used distribution function is a Rosin-Rammler function
(Reference 15) (Figure 3.9-1) defined as:

Pp=a—=(3) exp (- ) (3.9-2)
D D D

where a is an empirical parameter (typically 1,5 <a < 3) and D is the main droplet

diameter. dN
PR=—N'

d(D)

\\\\\\\¥

Figure 3.9-1. Dropiet Size Distribution Function

The above consideration implies that the droplet trajectory, as well as heat
and mass transfer within the spray, can be determined from the solution of a
set of ordinary differential equations describing the behavior of each droplet
parcel; these are given below.
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3.9.3 Droplet Trajectory

For each droplet size the momentum balance equations are written as (References

16, 17):
du
d Ad
my =5 = Cp e (U =uy) Ju-uyl
2
dv W
| A d
my —a%-= CD o ~?-(v - vd) v - vd| My = (3.9-3)

dw( Ad vy
Mg gt = Gp P (W wg) wo- gl e mg 5wy

Where CD is the drag coefficient, u, v, w are gas velocity components, Ugs Vyqo
wy are droplet velocity components, Ad is the droplet c¢ross-section area .,
my is the droplet mass and r is the droplet raidal position.

The other terms contributing to aerodynamic forces on the droplet include:

- pressure gradient;

- Magnuss force;

- Saffman Tift force;
- Basset force; and

- gravity forces, etc.

These are all neglected because they are of the order of gas/droplet density ratio.

The drag coefficients CD depends primarily on the "relative" Reynolds number:
puDQIU—U
U

e n | (3.9-4)

1]

where D is the droplet diameter. For evaporating drop1ets,CD can be calculated
from the formula (References 18,19): '

Re

0.687
CD = o7 (1 - 0.15 Re )

/ (1 +B) (3.9-5)

for Re up to 1000.> The Spalding (transfer) number B, given by:

_¢ AT
5= C,q (3.9-6)
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can be significant for burning solid fuel particles. For evaporating droplets B
is close to unity. In the above equation, CV is the specific heat of diffusing

vapor, AT is temperature difference, and QL is the Tatent heat of vaporization.

If droplet velocities are established, the droplet trajectory (xd, Yq» zd) can
be obtained from simple relations:

dx dy dr
d d 9 _
Vgr  gE = Mg (3.9-7)

——— I —

Tt~ Y T4t

3.9.4 Droplet Heat Transfer Equation

The vaporization process for a droplet moving in a high temperature gas
stream is described in terms of two regimes:

- heat-up period with raising droplet temperature, Td; and

- equilibrium vaporization period with constant Td.

A sketch of the droplet evaporation process is shown in Figure 3.9-2.

T T mfu
1 1 gas

T,
O -
° O

r r
e d
Time
' INJECTION INSTANCE LATER IN LIFETIME

Figure 3.9-2. Sketch of the Droplet Heat and Mass Transfer During the
~Vaporization Process

At typical injection temperatures, the fuel concentration at the droplet

surface is Tow and there is negligible mass transfer between the phases.

As the 1iquid temperature rises the rate of mass transfer rises too, with the
maximum 1iquid temperature occuring at the surface. Later in the process, due
to the heat absorption for vaporization process, the droplet temperature reaches
the so called "wet bulb temperature" which is almost uniform within the droplet
mass.
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At this stage intensive evaporation takes place with the temperature remaining
constant at Td. These two regimes are accounted for in the mathematical model
of the drop heat and mass transfer processes,

Assuming quasi-steady state conditions, uniform conditions within the
droplet volume and spherical shape of the droplet, the heat transfer process
can be described by the following equation (References 20, 21, 22),

d Ty 6 4 4 '
d't = D pd Cd (Nu . K (T Ll Td) bt Ga(l) (Twa'l'l - Td) - QL) (3'9-8)
where Nu =2 + .06 ReV+?® pp0+33 (3.9-9)
d md
Q= b (3.9-10)

Here, Td is the droplet temperature; K, Cd and L are thermal conductivity,
specific heat of the liquid and latent heat of vaporization, respectively;

QL represents the rate of the energy transfer with the evaporating mass,

o, a and w are the Bolzman constant, droplet absorptivity and the view factor;
Twal] is the average wall temperature. The 6/pdD factor represents droplet
area to mass ratio.

The rate of mass transfer dmp/dt is calculated from the droplet evaporation
model which is described in the next section.

3.9.5 Droplet Evaporation Model

Many single droplet and spray evaporation models exist( see for instance
References 23, 24, 25). The droplet dimunition rate is conventionally
expressed by:

T STDh . K (3.9-11)

where D 1is the droplet diameter and K is the evaporation constant (Reference
25),

For computational purposes, equation (3.9-11) can be rewritten in terms of
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rate of decrease of droplet diameter:

d (D) »
at = K (3.9-12)

The basic formula for the evaporation rate constant is expressed as (References
28, 26):
K= Sh . (pv KD) (mv - mv®) (3.9-13)

where Sh is the Sherwood number, KD is the diffusion coefficient, m,, the mass

fraction of vapor at the droplet surface, and m _ the mass fraction of vapor

v
in the free stream, The Sherwood number is calculated from the Ranz and

Marshal (Reference 27) formula:

sh =2 + .6 Re¥+d 5c0-33 (3.9-14)

For the high transfer rates Sh is modified by the convection factor and is
expressed as:

0.5

- o 0.33 B
Sh = (2 + .6 Re Sc ) - T36 (3.9-15)
where B is the Spalding (transfer) number, given by:
C. (T-T )
g = 4 sat (3.9-16)

and where Cd is the vapor specific heat and Tsat is the wet bulb absolute
temperature.

3.9.6 Droplet-Wall Interaction

The treatment of droplets impinging on the combustion chamber walls is one

of the important difficulties in modeling spray flames. If the droplet hits

the solid wall, a number of possibilities exist, e.g. the droplet may shatter
into small ones which become re-entrained or it may adhere in the form of

the sphere or a thin film, which subsequently evaporates. In the present
method it is assumed that droplets adhere at the point of impact in spherical
form, and that the heat and mass transfer processes continue to obey equations
(3.9-8) and (3.9-12). It is recognized however that refinement of this approach

will ultimately be necessary.
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4, THE NUMERICAL SOLUTION PROCEDURE

4.1 Introduction

The system of coupled nonlinear partial differential equations (PDE) and
ordinary differential equations (ODE) described in the preceding chapter can
only be solved by numerical methods.

This section presents numerical techniques employed for solution of both PDE
(Eulerian equations) and ODE (Lagrangean equations) types.

The finite-difference technique and a modified form of SIMPLE algorithm (Reference
28, 29) are used for solution of the gas phase Eulerian equations. The resulting

system of algebraic equations is then solved by efficient equation
solvers.,

The ODE equations describing the droplet behavior are first integrated
analytica]]y with the quasi-steady state assumption. The integration process
is carried for each droplet class separately along its trajectory. During
this process interphase transfer source terms for the gas-phase equations

are calculated. This section describes both PDE and ODE solution practices
in a detailed manner. First, however, geometry representation and space
subdivision practice are presented,

4.2 Geometry and Computational Grid

4,2,1 Coordinates and Grid Lines

‘The REFLAN3D code can handle both cartesian and cylindrical-polar coordinates
in both orthogonal and non-orthogonal form. A non-orthogonality can be
simulated only in the radial direction on the x-y (x-r) plane. The code has
also built~in moving grid options for simulating reciprocal processes
(compressors, I.C. engines, etc.).

The coordinate systems considered are:

- ‘X=-y-z cartesian coordinates (Figure 4.1); and

- x-r-6 cylindrical polar coordinates (Figure 4.2).
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Figure 4.3. Nonorthogonal Grid Distribution for a Typical Nozzel Geometry
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For cylindrical coordinates y = 0 does not necessarily coincide with the axis
of symmetry, i.e. the radius r and radial distance y at any point may differ
by a constant.

The finite difference grid is formed by three sets of surfaces; perpendicular
to coordinate directions. The nonorthogonal grid is formed by "piece-wise"
surfaces combining r/rmax points in the x-y (x-r) plane (Figure 4.3). The
grid distribution can be nonuniform in each coordinate direction.

4,2.2 The Staggered Grid Practice

The REFLAN3D code employs the so-called staggered grid practice (References

30, 31), in which all variables except velocities are calculated at the grid
nodes (centers of the control volumes) (Figure 4.4). The velocity components

are calculated at the cell faces of the control volume (designated by arrows

in the diagram). A "backward boomerang" arrangement in the code implies that

the velocities placed at west, south and low cell faces are assigned to each

i, J, k node., The appropriate grid cell areas are also staggered in a

"backward boomerang" fashion and for each node (i,j,k) calculated as AW’ AS and A

L
for x, y and z, respectively (Figure 4.4).

The derivation of the finite-difference equations will be illustrated in the
first instance for a scalar variable, using the "finite volume" approach
employed by Spalding (Reference 32). The porosity: technique, used for
representing complex geometries, allows any control volume to be fully open,
partially open or. fully blocked. The porosity concept is presented in the
following section.

4,2.3 Porosity Concept

In many engineering problems the boundaries of the domain are irregular. Also,
there can be internal flow obstacles. 1In most of the known approaches

complex curvilinear orthogonal body-fitted coordinates are used (References

33, 34, 35) or nonorthogonal coordinates for simple geometry configurations

are generated (Reference 36). The "finite domain" technique employs the so called
"porosity concept" for simulating complex geometries. In this method every
sub-domain is characterized by a set of volume (BV) and cell face area (BA)
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Figure 4.5 Representation of the Porosity Concept
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fractions (cell porosities are usually: 0 < 8 < 1) that are available to the
fluid flow. In Figure 4.5 a typical calculation domain of the flow over an
obstacle is presented. In the present case finite porosities 0 < g <1 are

specified within and around an obstacle,
Bv =1 for fully open volume
0 < Bv <1 for partially blocked volume

g =20 for fully blocked volume
A sample of a control volume within the blocked region is presented in Figure 4.,5a.
The volume BVV is used for gas.flow calculations. A similar rule applies

for the area porosities BAW’ BAS’ BAL'

4.3 Finite Difference Equations

4,3,1 Motive of the Method

The Finite Difference Equations (FDE) are obtained by integrating the Partial
Differential Equations (PDE) over the finite volume (grid cell) and, for the
transient equations, over the finite time interval, The following practices
have been adopted for the spatial integration of the PDE's,

- The flow variables stored at grid points are assumed to have
stepwise profiles.

- The "Upwind Differencing" (UD) (References 28, 29, 37) practice
is employed for integrating convective terms. This implies that
the scalar flow property required at the cell face is taken equal
to that at the upstream grid point.

- The cell-face velocity is considered as a cell-face average.
No velocity interpolation is required for the calculation of each
mass flux across the cell face.

- Fully conservative formulation is used for the integration of each
quasilinear PDE. This implies that all variables wlithin the
iteration cycle are solved with the same (continuity preserving)
fluxes.
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For the time integration of the PDE's a fully implicit formulation is employed,
i.e. the values of flow variables are taken to be those which prevail at the
current time step.

A seven-node finite-difference relation will now be derived connecting the
value of a dependent variable ¢p at the node P (Figure 4.6) with those at the E,
W, N, S, H and L neighbor nodes. Integration of the PDE will result in a

linear formula of the form:

apdp = apdp + Audy taydy t aghs taydy ta g + su¢ (4.3-1)

where Qps Bps oo etc. are called "link coefficients", SU and SP are the
linearized sources and are given by:

+ a, - SP

Ap = ap t Ay taytagtayta-oby (4.3-2)

is called the main (diagonal) coefficient. A1l the a's, SU and SP are treated
as constants.

Figure 4.6, Control Volume Notation for Cartesian and Cylindrical Polar
Coordinates



There will be a set of equations like (4.3-1), each with individual coefficients,
for every grid point and for each of the dependent variables.

For a single variable a system of algebraic equations will be created which,
in the matrix form, can be expressed as:

Ap=S (4.3-3)

The system can be illustrated on an example 5:3:4 (L:M:N) grid (Figure 4.7), viz:

Yy
l/ﬁ/' o
e
L
M=3 //

/ 2

2 // /

Tk

1 2 x
1 2 3 4 L=5

Figure 4.7. Interpretation of the Storage Allocation for Three-Dimensional
Computational Domain

The corresponding matrix A to Figure 4.7 is presented in Figure 4.8. Each dot
represents non-zero link coefficients. Diagonal Tines filled with squares present
Tink coefficients for the Z-cyclic (periodic) boundary conditions,

Detailed discussion of the matrix inversion technique is discussed in
Chapter 4.5, First, however, it is necessary to obtain expressions for the
finite difference link coefficients (elements of matrix A in Equation 4.3-3)
by integrating general transport equation in the form:

'Q%%'+ 5%'(DU¢) P18 (rovo) + %—5%-(pw¢?

r ar
convectioﬁwzerms
o ,... 23 1 9 39 1 3 1 3¢y _
-l ) -t Foar T o) - F 3w U vse) < S (4.3-4)
Y
diffusion terms source
term
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The integration is discussed in the next section.

4,3.2 Integration Over a Control Volume

In order to present the derivations of the finite-difference equations, first,

the x~direction related terms (equation 4.3-5) are discussed.

op¢ , 9 _ 0 3
=t 5 (oud) = 5;'(T¢ 5%9 *S,

Then, a génera1ization to three-dimensional form is provided.
a grid node P and its x-direction neighbors W and E.

5X 5Xq
i $n
|
I
1
1
i - . - - s
W :CX: / "’C
3 —
|
-
-~ ) TS PR - — A
/
Aw/ // P
/ !
L ax | )

(4.3-5)

Figure 4.9 shows

Figure 4.9. Control Vo]ume and Notation for a One-Dimensional Transport

Equation Integration

The rectangular region represents the control volume used for the integration.
At the w- and e-cell faces,convective fluxes Ca and Cé are defined as:

X _ X _
Cw = (puA)w and Ce = (puA)e

where p is an "upwind" density:
Py ifuy, >0
pP: if Uy <0

and -“the A's represent cell face area, i.e.

AyhAz for cartesian coordinates
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Integration of equation (4.3-5) in time and once in space yields:

0
{00 VOL) = (00 VOL)_ 4 (qugh), - (pugh), +

At
- 9y My - | -
.1, aX)e (A.T, Bx)i Sp - VoL (4.3-9)

Derivatives in the diffusion terms (in curly brackets) can be replaced by
the appropriate finite-difference formulae:

‘ o - ¢

Dy E P
(AT 52)6“ Pe Toe Tox_ " e (¢p - 9p) (4.3-10)
and

: ¢op - ¢
(AT ) = A, 0, Tt =0, (0p - ¢y (4.3-11)

w P

where De = Ae T e/6XE and Dw = Aw T w/GXw are called "diffusion link coefficients".

¢ ¢

The T', and I', are calculated from appropriate Tinear interpolations

e ow
between the node point values. The source term S¢ > whenever possible, is
linearized in the' form:
S, . VOL = SU, + . , o3~
s SUy + Py . 9 (4.3-12)

The upwind differencing practice is employed for approximating convective

terms;
’ .

¢P if Ce >0
(OU¢A)e = C .9
L¢E ifC, <0

e
. (4.3-13)
v ¢P if Cw <90
(pu¢A)w = C, -1
L¢w if Cw >0
which can be rewritten using the following notation:
Ka,b] = max (a,b) (4,3-14)
as (pu¢A)e * ﬂo’ Ceﬂ op ¥ [0’ 'Céﬂ O
(4.3-15)

o, B o+ o, ] oy
4-10
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Finally, equation (4.3-9) becomes:

i, - 1% + o, ¢ op+ flo, c B op - [o,c Jo, - Lo, -cTo,

(4.3-16)
- De (q)E = q)p) + DW ((;bp - <I>w) = SU¢’ + Spq) . ¢P
: . pVOL
where M = At
Oy O (4,3-17)
c0_ p VOL
and M= i

The integrated equation (4.3-16), analogous to equation 4.3-1, can be written

as.:
a by = ache + a by, + SU, + M3 (4,3-18)
pPp ¥ ApPE T by T Y P _
where ap = M+ ap tay - SP¢ (4.3-19)
and ap = De + [0, —Ceﬂ (4.3-20)
a =D, + EO, Cwﬂ (4,3-21)

Superscript "o" indicates "old time step" value.

The above one-dimensional treatment of the differential equation (4.3-9)
can now be generalized to thrée—dimensiona] flows, Consider the finite-
difference equation:

apdp = aghp + ady +aydy * aghs + aydy + ayop + SUy + W09 (4.3-22)
The various a, coefficients are given by:
ap =ag tay taytagta,ta + M - Py (4.3-23)
ag =D, + Lo, - ¢,
a, =D, + o, C, 1
ay =0, + o, -1 (4.3-24)
ag = DS + ﬁb, CS ﬂ

ay = 0y + [0, ¢, ]

2 =Dy + 0, -Gy 4-11



The convective C's and diffusive D's fluxes for the y and z directions are
calculated from the expressions similar to that of equations (4.3-11) and (4.3-6).

4,3.3 Modifications for Non-Orthogonality of Grid

Figure 4,10a shows an example of the computational domain with nonorthogonal
grid at the downstream part of the chamber. The non-orthogonality is allowed
only in the axial (x-r) plane. Figure 4.10b depicts a selected control volume
of the grid in the non-orthogonal region.7 '

The inclination of the cell face from the horizontal direction is denoted by
an angle a. o varies with radius such that o = 0 at the axis of the chamber,
and o = O ax at the north wall of the chamber.

The net convective flux of fluid across the inclined south face of the control
cell shown in Figure 4,10 is:

Cs = ng A . Vp - 0 Ay - U (4.3-25)

where AS = horizontal projection of the area of the inclined north face; and
Asx = vertical projection of the inclined north face area.

AS and ASX are related to each other such that:

Asx = AS . tan o ' (4.3-26)

The axial velocity at the south cell face Ug is calculated from a linear

interpolation between the Ups Ups Ug and Ugp velocities., Similar expressions
can be derived for the north face. Note that in the orthogonal regions, A
is zero and therefore equation (4.3-25) reduces to the standard convective

flux.

SX

=g ALV (4.3-27)
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4.3.4 The Momentum Equations

The momentum equations have a finite-difference form similar to that of the
general ¢-equation (4.3-20); but two main differences exist. First, the
velocity components are at "staggered" grid locations ; therefore, the control
volumes used for the velocity components are different from those for the
‘other dependent variables. Second, the pressure-gradient term which forms a
source of momentum is given a special treatment.

Figure 4.11 presents a typical control volume arrangement for the u-velocity
equation integration.

NW o — Ne
Y CY
QCNW }N
I ]
. | x
CW | % Ce e
I w * . P ——t— °
oy y
,Cw C{}
! N\
. Controi Volume
SW o Ll Se Up

Figure 4.11, Control Volume Arrangement for Integration of u-Momentum

Note that the pressure node is always in the center of the ¢=control volume.
However, the velocity for a nonuniform grid is not necessarily placed in the
middle of the u-control volume,

The finite difference equation form of the x-momentum equation is, with the
pressure gradient term written out separately from other momentum sources:
- : _ _ "0 0
Aplip = ApUp *+ ayly + ayuy +agig +aguy +aju +SU - A (pp - opy) + MU
(4.3-28)

If velocities are solved by Jacobi iteration, it is desirable to rearrange
the above equation to the following form:

*0. 0
Lo- aEuE + auy + aNuN + asuS + dHuH + aju + SU + Mu DU (p. - pr)
p ap prip W
where: (4.3-29)
Aw
DUpE 3 (4.3-30)
p,u
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The link coefficients can be written as:

ap = ag + ay + ay + g + ay + ay + M- SPu

ag = 5 {(0y *+ D) + fo., -c - c’;'ﬂ}

a, = .5 {(DID +D) + fo, C’S + C’v(vﬂ}

ay =5 (0, +0,) +Lo., - ¢ Te lo., - o 1 (4.3-31)
ag = .5 {(0g +0g) +[o., cg% fo., ¢/ 13

+

ay = .5 {00, +0,) « Lo, - cfB+lo., -cp 12

_ - Z z -
a = .5 {0y +0,) +fo., ¢ 0 Lo, cf T
The r and 6 momentum equations have similar finite difference form.

Note that the convective parts of s 8gs Ay and ay link coefficients are
calculated for both convective subfluxes separately (see Figure 4.11). In the
alternative approach , first a net convective flux is calculated as a sum of

two subfluxes and then upwind principle is employed, e.g.:

_ Y oY
= 5 (0, +D )+ lo., -¢¥ -c¥ 1) (4.3-32)

aN n

This practice is used in several existing and widely used codes , e.g. CORA3,
TEACH, COM3D and STARPIC.

Figure 4.12 presents comparison between the practices for a selected flow

configuration (¢¥ +¢Y <0 ¢y o+ ¢Y >0
g (¢ Cp and Cy, + C} ) |
UN UN
o NW e N o NW o N
y y y
c y
§Nw [Cn chw 1§
! ! ! "
=F____.__._1—-—-— [ -_—r - [ ) —
y y y y
C C
} | =P } Cw | ©
| ! | I
U
s U
o SW oS . ——S 3
(a) REFLAN (LINKS WITH Uy, Ug and Uy {b) OTHER (LINKS WITH Uy and Uy ONLY)

Figure 4.12. Convective Link Coefficients for UP - Momentum Equations
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In recirculation regions, the practice employed in REFLAN3D retains convective
Tinks with both North and South neighbor velocities Uys Uge Other practices
maintain the Tlink only with u '

NQ

The practice used in REFLAN3D code is based on a full conservation principle,
and, by employing more links, it is also more accurate than the other practices
mentioned earlier. A similar treatment yields the 1ink coefficients for

radial v and circumferential w velocity components.

The momentum equations are solved by using a modified version of the SIMPLE
algorithm (Reference 28). 1In SIMPLE, the momentum equations are first
solved with a guessed pressure distribution, denoted by p*, to giVe a first
approximation to the velocity fields, u*, v* and w* (the starred-Ve]ocity
fie1ds). These velocities are approximate because they do not in general
satisfy the continuity equation. Corrections to the pressure and velocity
fields are then obtained from the solution of pressure-correction equations
which are derived from the continuity equations (see Section 4.3.5 below).
These corrections are such that the resulting velocities reduce continuity
errors. The iterative is continued until convergence.

4.3.5 The Continuity Equation: Pressure-Correction Equation

It has been mentioned above that the velocities obtained from the momentum
equations do not satisfy the continuity equation, and therefore require
correction. The correction of velocities and pressure is discussed in this
section.

The continuity equation is:

(ow) = 0 (4.3-33)

Q
Dl

3 13 1
5 (Pu) = (ovr) + =
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It can be written in the finite difference form as:

0 VOL ppOVOLO

P X X oY oY, Z o eE )
X - R + Ce Cw + Cn CS + Ch C] 0. (4.3-34)

where (to remind) Cz = (puA) (4,3-35)

e’ oo

Again, to start with, a one-dimensional problem is considered, From the
momentum equations, the following relationships are obtained:

Ug = Ug* + DU, (pp - pﬁ) (4,3-36)*
and

U= DU (pp - p\) (4,3-37)*
W W w P W °

Here p' is the pressure-correction, and DU's. are the pressure-difference
coefficients which were calculated from equation (4.3-30) during the solution
of the momentum equations.

For compressible flows additional density correction is performed. The
correction practice employed is based on the pressure density relation:

= pk .2.)_9. t
p = p* + (ap) . p (4.3-38)

where (%%) is calculated from equation of state.

Substitution of p (4.3-38) and u (4.3-36 and 37) into the mass conservation
equation (4.3-34) results in:

VOL (x4 30 pry EEi,YEEi. # (u* + DU (pt - pi ). + 281y A 4+
At \P op 'p’ T At e e ‘\PE 7 PpliiPe T 5 Pal Ao
- * - 9P
(ue +ou, (pp - py)) (o, + 5p Pu) Ay e (4.3-39)

** Equations (4.3-36) and (4.3-37) are approximate forms of the momentum equations.
The exact form would be:

b = Ug* + DU (P = pE) * 7 ay (uy

- *
i Uy )

where i indicates summation over the neighboring nodes; and a; are the
finite-difference 1ink coefficients from equation (4.3-29).
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If an upwind differencing practice is used for cell-face density calculations
and ignoring terms of order p'2, the pressure correction equation can be written

as follows:

[ ) -*_.0 )
aPPP = aEuE + awuw + aNuN + asuS + aHuH + aLuL + SU + M M (4.3 40)

VoL

where ap = FF— - 5p ay + ap + ay + ag + ay + a

ay =0, A, DU + fo., u IA

W . (3p/3p)

ap = oo A, DU, +l0., U A, . (30/3p)

e
ay = 0, A DV +L0., v IR . (3p/0p) | (4.3-41)
ag = pg A, DV + 0., v ]A, . (ao/ap) s
ay = o A, DH + lo., w iAo (3p/3p) |
a, = oy Ay Dy + lo., W1IA] . (3p/03p)

The source term SU represents net mass flux imbalance of the u*, v*, w*-velocity
field. Thus:

Z*

] (4.3-42)

.o VARNEPS G4
"C "Cw +C —CS +Ch-C

The purpose of the pressure-correction equation is to reduce this mass source
to zero. When these sources are everywhere zero, the solution is just p' = O.

After solving equation (4.3-40) the corrected velocities are obtained from
equations (4.3-36) and (4.3-37). (Similar equations hold for the v- and w-

velocities.) Density is corrected via equation (4.3-30), and pressure, from:

p=p*+p' (4.3-43)
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In the derivation of equation (4.3-40), the approximate form of the momentum
equation has been used. However, no error is thereby introduced. In a
converged solution for a steady-state problem, the mass-sources and the pressure
corrections will have become zero (in reality, a relatively small number) in

the final iteration so that the so]uiion is independent of what actually went
.into the derivation of the pressure-correction equation.

Note that after solving p', correcting velocities and calculating new,

. . &
continuity obeying, convective fluxes the remaining equations k, €, h ... , etc.
can be solved in a fully conservative formulation.

4.4 The Radiation-Flux Equations

The differential equations for the three composite radiation fluxes Rx’ Ry

and R, equation (3.6~4) is much simpler than the general equation (3.8-1).
The equation for the x-direction flux RX can be written as:

dR
a%—(? —ago +S=0 (4.4-1)
where T = 1/(a+s) (4.4-2)
and § = a(RX - E) + S(RX - Ry)/Z (4.4-3)

The finite difference form of this equation is obtained by integration over
the x-direction Tength of the control volume. The integral of the source
term S is expressed as (SU + SP . RXP) as before, ‘and the complete finite-
difference equation can be written as:

ap RXp = ay RX tay RX + SU (4.4-4)
e W
where ap = ay +ap - SP
a, = T /oxg (4.4-5)
aw = Fw/oxw

The distances 6xe and SXé are defined in Figure 4.9,

Similar equations can be obtained for the y-direction and z-direction fluxes

R, and Rz’ respectively.
y ' 4-19



4,5 Solution Method of the Complete Equation Set

For the NX, NY, NZ grid and NVAR dependent variables (u, v, w, p, k, €, % vee)
to be solved for,the finite difference equation set can be written in the
matrix form as: '

As = B (4.5-1)
where s is the solution vector containing all the unknown velocities, pressures,
enthalpies, concentrations, etc., B is the "source" vector and A is the
coefficient matrix of the form:

]

Figure 4.8, Matrix Arrangement
for the Complete
Equation Set

- N
where the form of Du’ Dv, «so Submatrices is as that on Figure 4.8.

It is seen that the matrix A has a large and extremely sparse structure. For
a typical 3-dimensional problem with 20 x 20 x 20 grid and 10 dependent
variables (80 000 algebraic equations) matrix A has 64 million elements. Of
these, less than 48,000 are non-zero.

Utilization of any direct solvers, such as Gaussian elimination (Reference 40)
or band solvers (Reference 41), even for much smaller systems is inpractical
for the following reasons:

a) prohibitive storage;

b) such a solver would have to employ partial pivoting because of
zeros along the diagonal;

c) solution time of direct solvers 1is proportional to the number
of unknowns to the power 2 to 3; and

d) the equation system is nonlinear so that several matrix inversions

would be required,
4-20



The only alternative solution algorithm is to solve the (4.3-3) equations
separately for each dependent.variable. Even in this case, solution of
equation (4.3-3) for three-dimensional flows is a formidable task.

It has been mentioned before that the momentum equations are solved by the
Jacobi, point-by-point algorithm (References 40, 42). The remaining equations
including p'-equation, are solved simultaneously by the so-called "Whole Field"
solution process at all control cells within the calculation domain.

The simultaneous solution practice employed in the REFLAN3D code is described
in the following section,

4.5.1 The Whole Field Solution Practice

In last five years, the commonly used "Alternating Direction Implicit" ADI,
method (References 38, 24) for the solution of a system of algebraic equations
has been replaced by Whole Field Solvers (WFS).

Spalding and his coworkers (Reference 60, 61) have devised and used a WFS
which is similar to Stone's Strongly Implicit Procedure, SIP, (Reference 44)
but completely free from any adjustable (conVergence—promotor) parameter called
a-parameter. Subsequently Gosman and others (Reference 45 to 48) have
investigated effectiveness of the WFS. A1l of these solvers are itenative
field traverse methods involving a forward march for assembling the solver
coefficients and backward march for back substitution. However due to the
inconvenience of indexing practices, the marching directions are not

reversed or alternated, as a result these solvers are not symmetric.

A new fully symmetric solver which is totally independent of the o-parameter
has been recently developed at CHAM by Przekwas (Reference 49) and employed
in the REFLAN3D code.
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Figure 4.13 illustrates the grid node arrangement and the nomenclature for
the WFS discussion,

1Pj+1

k+1
1 i+ 1

-8 E

® |1
S

Figure 4.13. Grid Node Nomenclature for the WFS Discussion
with'the is J, k indices omitted the FD equation:can be expressed as:
AP T Apbig P agi P adi P aghyg Y ayhiag Y Adg t (4.5-2)

The solution algorithm of the z-symmetric 3-D WF solver for the system of the
FD equations (4.5-2) can be summarized as follows.

Forward March: i) calculate ¢ independent modified coefficients (in increasing

i, j, k order)

E = aE/D
N = aN/D
H = aH/D
L = aL/D
D=ap-ay ki -ag Ny

ji) calculate the modified right-hand-side (in the order as above).

BB = (SU +ay Ny g9q1 501 * Miia®ion ka1 ¥ Lioa®io1, ke * BByp) ¥

+ag (EJ._1¢>].+1’J._1 + Hj-l¢j-1,k+l + Lj-1¢j-1,k-1 + BBJ._l))/D (4.5-4)
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Backsubstitution: 1iii) solve:stridiagonal equations (in decreasing i J order).

Oy T My T BB TRy T gy
using TDMA or CTDMA (see next section) along each k-line,

iv) return to ii until number of sweeps or convergence criteria has been reached.

This method has an additional advantage of implicit treatment of the periodic
boundary conditions in the z-direction. It is also generally faster than any
of the earlier mentioned practices.

In the following section a TDMA (Tri-Diagonal Matrix Algorithm) and CTDMA
(Cyclic-TDMA) are discussed. The algebraic equation (4.5-5) along any z-line
(k=1 ... NZ) can be expressed in general form as:

Ao * By + Cpdpar = Dy (4.5-6)
where Ak = Lk
B, =1
‘ (4.5-7)
Cp = Hy
D, = BB

k' @i T N0y
and can be used as a basis for the following discussion.

4,5.2 The TDMA Algorithm

The solution algorithm consists of two steps:

a) forward march: where the TDMA coefficients are calculated as follows:

-Ck
“% T B + A O
ko Tkl k=1, 2, ... NZ (4.5-8)
o = ok~ AP
k Bk + Akak-l
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b) back-substitution: where ¢ values are calculated as follows:

vz = Bz

k= NZ-1, NZ=2, ..., 2, 1 (4.5-9)
P = O Pan * By

4,5.3 The CTDMA Algorithm

The Cyclic-TDMA algorithm is used to solve the system of equations with
periodic (cyclic) boundary conditions., Figure 4,14 presents a grid arrangement

with cyclic boundary conditions.

N1 N 1 2 3 k=1 k k1 N—1 N 1 2
l T T
I [ [ ] [ [ ] [ ] ® l
I ° ° L ° . l ° |
L / / \ el
A1dy+B1P1+CyPp=Dy AN ON—1 By PN +CN g =Dy

A Oyt Br P+ Ck Dray = Dk

Figure 4.14. Grid Arrangement and Equation Forms for Cyclic Boundary Conditions

Note that the (k-1) neighbor of ¢1 TS yze Detailed description of cyclic
boundary conditions is discussed in chapter 5. Here only the solution algorithm
is outlined. Similarly as for TDMA the solution algorithm consists of two steps:

a) forward march - where the CTDMA coefficients are calculated as
foilows:
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for k =1

oy =D, /B, F =Dy
By = C;/B; and 6 = Cyy (4.5-10)
o = Al/Bl H = BNZ
for k = 2, ..., NZ-1
O = (DO = A g My P ® Fren = Gpe1%a1
B = C /M, and 6, = By g (4,5-11)
O = A o 1My He = Heor - Geor 9
where a =B - AB (4.5-12)
b) back-substitution - where ¢ values are calculated:
Pz - Gz = Ayg) - oy
NZ = Hyzo1 = (Gyzog + Ay Gyzep * Oyzet) (4.5-13)
and
b = O = By druy = Oy Oz k = NZ-1, NZ=2, ..., 2,1 (4.5-14)

4.,5.4 Under-Relaxation

The calculation procedure described above involves the solution of nonlinear
differential equations expressed in the form of the linearized finite-difference
equations, Therefore, an iterative procedure has to be applied to continuously
update the coefficients until a converged solution is obtained. If the changes
in the values of the variables from one iteration to the next are large, there
is a possibility that convergence may not be achieved at all, To keep these
changes sufficiently small, the dependent variables are suitably under-relaxed.
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There are two under-relaxation practices employed:

1. inertial under-relaxation of dependent variables (u, v, ky, € ...);

and

2. direct under-relaxation for secondary variables (u, P).

Inertial under-relaxation of the dependent variables is achieved by adding

an inertial term viz: I¢(¢ - ¢*) to the finite equation in the following

manner:

) = Zag o, + SU + I@;¢*
Zan - SP + I¢

where suffix n denotes all cell neighbors, and supscript * denotes previous

(4.5-15)

iteration value of ¢. The "“inertia term" I is calculated as:

[ = EZ%QE- | (4.5-16)
Fo

where p is the fluid density, VOL is the grid cell volume and AtF¢ is the
"false" time step specified for each dependent variable ¢. The main features
of equation (4.5-15) can be summarized as:

1. In a converged solution ¢ = ¢*, and therefore the final solution of
the finite difference equation is not affected by the magnitude of I.

2. %EMQL~has the dimension of flow rate.
Fo
3. The smaller the value of At the heavier is the under-relaxation.

F¢?
4, I¢* and I are included in SU and SP components of the source term
so that the general form of the equation remains as Equation 4.5-2.

The direct under-relaxation practice is implemented by calculating the under-
relaxed ¢u-va1ue as a weighted average of just-calculated ¢-value and previous
iteration ¢*-value in the form:

u

0" = g0 + (1 - ay) o (4.5-17)

where a¢ is the under-relaxation factor for ¢ variable and has the value
between zero and one (o = 1 implies no under-relaxation).
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4,5.5 Calculation of Residual Errors and Convergence Criteria

The residual errors are calculated for the equations of all dependent variables
at each control cell, in the following manner:

€¢P = Zan ¢n + SU - SP ¢P* - (Zan) ¢P* (4.5-18)

where €¢P stands for the residual error in the equation of variable ¢ at point
P, and summation is taken over all 1ink coefficients; N, E, W, S, H, ...

The above equation is obtained from equation 4.5-16 by transferring all terms
to the right-hand-side and equating them to the residual error. Three major
quantities can provide the information on the convergence of the solution
obtained and can be printed by the REFLAN3D code at any iteration. These are:

1, Maximum residual error
RESMAX = max,(e¢_ ) (4,5-19)
ijk ijk
2. Global residual error

RESSUM = X

€ (4.5-20)
ijk  "ijk

3. Global absolute residual error

RESSUMABS = I [€¢ I (4.5-21)
ijk ijk
Additionally an absolute difference between two consecutive iteration
p-values is calculated as:
= - * -
DIFMAX Tgi (¢ijk ¢1jk ) (4.5-22)

which is searched for over the entire calculation domain.

The solution is regarded as converged when all above quantities take values
below their prescribed Timits. Usually it requires reduction of two, three
and sometimes four orders of magnitude of the residual before this occurs.
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4.6 Integration of the Lagrangean Equations

4,6.1 Integration Practice

The Lagrangean equations for the droplet motion, heat and mass transfer (see
Chapter 3.9) can be expressed in a general form of ordinary differential
equation (ODE) as:

d ¢ i . “
—d-.'E— o= -E.. (¢g - d)d) + F (4.&)-1

where ¢g‘and ¢d represent gas~-phase and droplet property, respectively.,
The E and F coefficients in general Lagrangean equation (4.6-1) can be
obtained from equations governing droplet momentum (3.9-3), energy (3.9-8)
and mass (3.9-11) conservation. The solution practice for the Lagrangean
and Eulerian ones is totally different. The PDE's of the Eulerian part
are solved as a boundary value problem while the ODE's of the Lagrangean
part represent an initial value problem,

Several techniques for solving a system of coupled ODE's of the droplet behavior

have been used, including integration formulae (Reference 50), second order
predictor-corrector schemes (References 51, 52), and fourth order Runge-Kutta (R-K)
scheme (Reference 53, 54) and analitical integration techniques (Reference 20, 21, 22).

In this study equations (4.5-1) are;solved analytically. This technique offers
considerable economy in computing time in comparison with the iterative fourth
order R-K scheme (Reference 53).

Integration of equation (4.6-1), assuming the gas property ¢g is constant over
the time of integration, yieids:

o= by - (g - 0g) exp (- %3) +EF (1 -exp (- éi) ) (4.6-2)
where At is the time interval. It is worthy to note that the E factor represents
a characteristic time scale (or relaxation time) for the process. If, during

the integration process, the time scale ratio At/E is larger than say 20, the

exp (~At/E) is smaller than 2.10'9 and the integration effort of equation

(4.6-2) is greatly simplified.
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4.6.2 Droplet Trajectory

After determining droplet velocity at time t + At, the droplet position at
time t + At is determined from:

- _ =0 ¥ o 0y At
Xd - Xd + (Ud - Ud ) '2-_- (406-3)

where ido is the droplet position at the beginning of the time increment and

Ud0 is its initial velocity (at ido).

Figure 4.6-1 depicts consecutive droplet positions along its trajectory crossing

the orthogonal Eulerian grid cells. The integration process starts at the cell
surface (position il in Figure 4.6-1) where cell droplet inlet properties

u, , v, , W
d dIN d

s T , D , are solved,
N d d

IN IN IN

.N .NE-
AX

v
YMy § N ////

|
W -——Lip of -—.-L.J—E oE AY
Va2 V X'4 X4
:ﬁ_.——l===ﬁ"'
o1 X5 d2
YMp TVP
XMp XMg

Figure 4,6-1., Droplet Trajectory Passing the Computational Cell

Next the estimate for the time interval for the integration process is
calculated as:

(U, +U)/2 (v +Vy)/2 U )
M=o o Min (e — d 4 (4.6-4)

AX : Ay > AX * A

where OInNT € 1 is the parameter approximately specifying the number of
integration interval before the droplet reaches the exit position at the grid
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cell face. As an example, in uniform gas and droplet velocity field, OrnT = 1/5
would imply five time steps within the grid cell.

Then the new droplet velocities, temperature and diameter are calculated from
equation 4.6-1 and new droplet position is established from equation 4.6-3,
(point 2 in Figure 4.6-11). Next, integration time interval At is calculated
again and the integration process is repeated until droplet crosses the cell
face (point 4 in Figure 4.6-1).

At this stage linear interpolation is employed between points 3 and 4 to find
droplet properties (ud, Vs Wyo Td’ Dd) at the cell face (point 4 in Figure
4.6-1). A droplet exit point "Ex" has been found and the integration procedure
is completed by calculating interphase sources between the liquid and gas phase.
The mass transfer, for example, is calculated as:

oy (Odrn - Dae

o=

) (4.6-5)

INT d

where hd is the number of droplets traversing the grid cell in unit time.

Detailed discussion of the interphase source calculation is discussed in the
following section.

The exit droplet position in the P grid cell (point 4 in Figure 4.6-1) is
considered as an entry point for E-grid cell and the integration process

starts again. The droplet trajectory is traced until the first of the following
conditions is met,

a) droplet diameter diminishes to zero; ,
b) droplet Teaves through the exit of the calculation domain; or
c) droplet hits the chamber wall where it evaporates,

A special treatment is required for tracking the droplet on a nonorthogonal

grid. Figure 4.6-2 depicts a typical droplet trajectory and its inlet (IN)
and exit (EX) cell boundary intersection locations,
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Figure 4.6-2. Droplet Tracking on Nonorthogonal Grid

In the case of orthogonal coordinates the cell boundaries XME, XMP, YMN, YMP

(Figure 4.6-2) were constant within the grid cell and independent on the
droplet location. For nonorthogonal coordinates, however, at every integration
step a continuous update of YMP and YMN as a function of X, = droplet location
is required,

Also the interpolation process of the Exit droplet position (point 4 in
Figure 4.6-2 ) requires the solution of two algebraic equations viz:

- droplet trajectory equation; and
- grid cell face plane equation.

4,7 Interphase Transfer Source Terms

In the philosophy of the Eulerian-lLagrangean approach, the droplets are regarded
as source of mass, momentum and energy to the conveying gaseous phase. The source
terms are incorporated into the gas flow equations, providing the influence of

the droplet spray on the gas velocity and temperature fields,

In each grid cell crossed by the droplet trajectory,appropriate interphase

sources are calculated based on the droplet mass, momentum and energy
difference between the inlet and the outlet from the cell.
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The number of particles per unit time, which enter at port i and have an
initial mass ng is given by:

S. V., (4.6-7)

where md is the total droplet mass inflow rate, Xj is the fraction of droplet

mass which enters at port j, and Yi is the fraction of droplet mass with

initial diameter Di‘ The number flow rate of spherical droplets with initial

diameter Di” along a given trajectory is calculated as:

(Mgl
3

Pa D

where Py is the droplet density.

n
y

(4.6-8)
T

This value is constant along a droplet trajectory, provided no droplet coalescence
or shattering takes place.

Assuming the droplets are spherical, the continuity source term, Amd, representing
the net efflux rate of droplet mass to the gas phase, is given by:

Amd =

S

. 3 3 ’ .
? }; h'lJ ((pd D )EX - (pd D )INL) (4-6"9)
where the summations are performed over all trajectories crossing the grid cell.
The "EX" and "INL" subscripts refer to the droplet exit from and inlet into the
control volume (Figure 4.6-2). The source terms for the remaining dependent
variables ¢ (u, vy w, k, €, %, mj ...) are calculated from the following

expression:
SinT,0 = Mg (94 - @) (4.6-10)

where 5d and ¢ represent average ¢-property of the liquid and gas phase in the
control volume, respectively. Note that the above formula can be conveniently
linearized as:

SUpnT,0 = Ang « b4

S

(4.6-11)
PINT, 0 = = ATy
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With the assumption that the mass is transferred from 1iquid to -the gaseous
phase ( md > 0). A simple way to calculate droplet average property $d is to
take i i

h an.average from the inlet ¢d,INL and exit ¢d,EX to the control volume and
then weighted on all droplet sizes. Some of the droplet properties remain
constant during the integration period and average $d can be specified directly

These include:

b, =1

_d s for f and mfu

¢d = de ° Tsat + HFU . fOY‘ h

5d = ( s for k, € and mCO

where de and HFU are droplet specific heat, and droplet mass heat of
combustion.

4.7.1 Interphase Momentum Transfer

There are two mechanisms of the momentum transfer between the liquid and vapor.

1) momentum transfer with the associated mass:

Am (Gd - J) (4’.6"12)
2) frictional momentum transfer:
£y (0,2 - i-2) (4.6-13)

The second mechanism has not been incorporated in the present version of the
code and 1is planned to be included in the future calculations. Nonlinear
characters of the friction terms requires special linearization practice for the
momentum equation source terms. The linearization practice for thése terms

should be implemented in the following manner:

a) the source term can be expressed as:

*
= * .a..§.u—. - * =
Sy, = Su + = ’ (u - u*)
fy (G5 - 0%) - 2 f |i*] @ - a%) (4.6-14)

b) appropriate source terms for the u-momentum equation. should

be added as follows:

su, + fp (0,7 + 2dx|ar - a+) (4.6-15)

SUu

SP

- *
u SPu 2 fD u
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5. BOUNDARY CONDITIONS AND THEIR TREATMENT

5.1 Introduction

In order to completely specify the mathematical problem it is necessary to
supply the conditions at the boundaries of the solution domain for all the
dependent variables., These conditions are usually either specification of
fhe value of the dependent variable at the boundary, or the value of the

associated flux or a relation between the two.

Figure 5.1 presents an example of the computational domain and appropriate
boundary conditions which may in general include:

1. inlet of gaseous or 1iquid species (fuel, air, steam, etc.);

2. exits plane;

3. center-lines and/or symmetry planes;

4, periodic boundary conditions; and

5. solid walls,

Wall
LOX — [ ————
T
RP1 — EEEEEEEEEEEQ§Q
Lox e e NN AN
RP1 —n e N
i —
S ==—~-—-- "N
:::Eszgii :
Inlets
3

Figure 5.1. Computational Domain and Boundary Condition Specification
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For each dependent variable,at all boundaries,appropriate modifications of the
finite difference equation at the "near boundary" nodes is required. For most
of the dependent variables the boundary conditions are implemented by modifying

¢ of the finite difference equation:

the source terms SU¢ and SP
b
4 3q % * U

% = T3 : (5.1-1)
g 4 70

These modification practices are discussed in the following sections.

5.2 Inlet With Specified Flow Rate

At the inlet the amount of incoming mass flow rate mIN through the boundary
cell face and the incoming ¢B property should be specified. In this case

the finite-difference coefficient connecting the boundary node to its
neighboring internal node is set to zero and then the SU, and SP, source terms

) ¢
are modified as:
SU¢ = SU¢ + mIN ¢B (5.2-1)
SP¢ = SP¢ - mIN (5.2-2)

The pressure correction equation is not modified in this manner. A Tink

coefficient with the boundary node is set to zero for p'-equations,

5.3 Symmetry Plane or Axis

At symmetry plane a zero mass flux mIN'= 0 is assumed. The modification is
implemented by setting the appropriate coefficient te zero (Figure 5.2) and
no modification is required to the source terms.

oS

Figure 5.2. ag = 0 at the Symmetry Plane
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Gas phase injectors, or liquid spray injections with instantaneous evaporation
assumption, are treated in a similar way. The T1iquid spray injection for

which the Lagrangean droplet tracking is employed do not require specification
boundary conditions in Eulerian meaning. Instead an appropriate initial droplet
condition. should be specified.

5.4 Exit Boundary

Where the fluid flows out of the calculation domain, information about most of the
dependent variables is often not available. However, since it is the process
occurring in the calculation domain that decide the values of the variables

which the outgoing fluid will carry, information is not strictly required at

such boundaries. To treat these boundaries, the boundary coefficients are

simply set to zero.

If a fixed exit pressuke boundary condition is specified, the velocity normal to
the exit plane is solved for at the exit boundary and the pressure correction

p' -~ link coefficient with the exit boundary is calculated. A specified
pressure correction p'E= 0 at the exit boundary is employed,

5.5 Periodic Boundary Conditions

The periodic (cyclic) boundary conditions appear in the circumferential
direction if the two ends of the calculation domain in the z-direction join
up with one another. This can occur in a polar-coordinate direction in which
the whole angular extent from 0 to 360° is to be considered (Figure 5.3a), or
when "repetition" is present in the flow pattern in the angular coordinate
direction (Figure 5.3b), '

The general rule is that whenever identical conditions are to be expected at
z=0and z = Tast z, and finite flow is to be expected at that surface, then
the boundaries are cyclic.

In this circumstance, the boundary conditions can be specified as follows:

- - z _ .z
g = by , dyp = 1 and C1 = Cy (5.5-1)

where indices HB and LB denote High Boundary (k = N) and Low Boundary (k = 1),
¢? is the convective flux in the z-direction.
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CYCLIC CONDITIONS FOR 8 = 120° SECTOR

K+1

180°

Figure 5.3. Grid Notation for Periodic Boundary Conditions in Z-Direction

5.6 Wall Boundaries

At the solid walls, the velocity normal to the wall and appropriate convective and
diffusive fluxes are set to zero. The boundary conditions which can be easily
specified at the solid walls (Figure 5.4) include:

VB = 0, (5.6-1)
% |. i | )
3 | 0 (¢ = F, mg, and mCO) (5.6-2)
LSS LSS S S LSS S S SS S L Ll
Ay ®
W _{Yr P _|Je E
[
i
|DS

Figure 5.4, Grid Cell Adjacent to the Solid Wall
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The boundary conditions for velocity components parallel to the wall; for k,
N . .
e and h require special "near wall" treatment.

There are two important features that distinguish near-wall regions from other
parts of the flow field. Firstly, there are steep gradients of most of the
flow properties, and secondly, the turbulent Reynolds number is Tow so that
the effects of molecular viscosity can influence the shear stresses,
production dissipation and transport of turbulence energy.

The vigorous incorporation of these effects requires a prohibitively fine
finite-difference grid in the vicinity of the wall,

An alternative approach, however, is available which bridges the near wall
region and the outer edge of the viscous sublayer by using the "wall functions".

These are described below.

5.6.1 Wall Functions

The wall functions described by Patankar and Spalding (Reference 55), Launder
and Spalding (References 1, 56) and more recently by Launder (Reference 57)
are derived from experimental and analytical knowledge of the one-dimensional
Couette flow which exists near the wall. A semi-empirical universal function
of nondimensional distance normal to the wall y+, is:

p Sy .u
ye - T (5.6-3)

In the above definition Sy is the distance normal to the wall (Figure 5.4 )
and u,. is the "friction velocity" given by:

172

up = <%ﬂ> (5.6-4)

In the internal sublayer (y+ > 11,63) the velocity variation may be described
by a logarthmic relationship (see Schlichting (Reference 58)) i.e.:

u,
G=—-an (Ey") (5.6-5)

where £ = 9,793 and ¢ = 0.4187 are experimentally determined constants,
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In both the viscous (y+ < 11.63) and internal (y+ > 11.63) sublayers, the
shear stress is calculated from the product of effective viscosity Vo £f and
normal velocity gradient 3u/dy, i.e.:

du, (5.6-6)

. U for y+ < 11.63 ( \
where u = 5,6-7
eff +
Meurb for y > 11.63

_Near the wall, the transport equation for the turbulent kinetic energy, k,
reduces to a balance between the local production and dissipation of k
(References 1, 56) to give:

aiiy?

5y) © ee (5.6-8)

g (

The velocity gradient may be replaced from equation (5.6-6) and the dissipation
rate from:

Y
]Jt = (lu p '-8—-' (506"9)
to give:
- el/2 2
Ty © L“ pk=pu; (5.6-10)

Hence, it follows from equation (5.6-5)
o C 1/4 k 1/2 u .
S (5.6-11)
= An (Ey")

Ty

5.6.2 Velocity Boundary Conditions

Equation (5.6-11) is introduced into the finite-difference equation (5.1-1)

by setting the value of the 1ink coefficient ay (connecting point p with the
W AwaH where Awa11 is the
cell wall area over which T, acts. For the velocity normal to the wall the

wall node B) to zero, and adding to SP, the term 1

same process'is applied, but the normal shear stress is set to zero,
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5.6.3 Turbulence Variables

Due to the steep velocity gradients near the solid walls the assumption of linear
variation of u is inaccurate and can cause incorrect evaluation of the turbulence
generation rate G. To overcome this, the generation term near the wall is written as

- ou -
Gy = Tw 3y (5.6-12)
where T_ is evaluated according to equation (5.6-11). This is incorporated

into the difference equation (5.1-1) by setting the link coefficient a  to
zero and modifying the source terms as follows:

%%_ (5.6-13)
2
o CDk

SUk = Tw

SP, = -
k. T

(5.6-14)

gl&

The diffusion of the dissipation rate of turbulence at the wall is a little
difficult to express. Instead of attempting to calculate Pwa]] for €, use is
made of the fact that the length scale % varies linearly with distance in the
neighborhood of a wall, Thus, the practice is to "fix" the value of e at the
near-wall grid point in accordance with:

3/4 K 3/2 (8)

e =C (5.6-15)

D

The fixing of ¢ (and similarly for other quantities) can be done by the use

of the following expressions forrSUE and SP€ of the near-wall point:
- 10 *

SU8 = 10 c

(5.6-16)

and sp_ = - 1010

When such large values of SU and SP are present, the actual value of a normal
Fwa]] is immaterial,

*Instead of 1010, any suitable large number may be used, as long as it is
ensured that the other terms in the finite-difference equation are negligible
compared to these two terms.
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5.6,4 Stagnation Enthalpy

For turbulent flow, expressions have been developed, similar in form, to
equation 5.6-11, in order to evaluate the heat flux qw across the wall boundary
layer; the one employed here is due to Jayatillaka (Reference 57) and writes:

+ 1 L -1 dTw
4, = - L (By7) + b o (5,6-17)
A | .
9T

where H}ﬂ'is the normal temperature gradient, The term, Ph, expresses the

contribution of the Taminar sublayer to the total resistance and is calculated
as:

ol o, =1/4
=9 .2 _ 11 X 5.6-18
P—9{O-1+{G} ( )

h h
where e and o, are laminar and turbulent Prandtl numbers, respectively.

For laminar flow (y+ < 11.63) the corresponding expression for the heat flux
is:

g = - = .M (5.6-19)
Equation (5.1-1) for h is modified by breaking the 1ink between the near-wall

nodes and adding to SUh the term qw. Awa]],where Awa]] is the cell-wall area
through which qw is transferred.

5.7 Boundary Conditions for the Radiation Equations

A provision of zero gradient of net radiative heat fluxes at the calculation
domain boundaries is provided as the default case. This is achieved by

making relevant boundary link coefficients to zero. Other boundary specifications
can be handled by the modifications of the near-boundary source terms. This

is outlined below.
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Making the boundary coefficient zero implies that (FdRX/dx) for the boundary

cell surface is made zero. This can be seen to be equal to —QX/2 from equation
3.6-3.

Thus, the required source-term modification for the cell close to the boundary
‘can be stated as the inclusion of »QX/Z for the boundary as an additional source
term. For various particular cases, this will involve the following additional
contributions to SU and SP.

Svmmetry Plane

At a symmetry plane, QX is zero by definition. Hence no modification of SU
and SP is needed.

Non-Reflecting Boundary

If the outgoing radiation leaves the calculation domain without reflection
and if the incoming radiation, equal to, say L, is given, from the definitions
of RX and QX,

..Qx/2 =] - RX (5.7--1)

Thus the additional SU should be L (which is given) and the additional SP
should be -1,

Wall Boundary

If €y is the emissivity of the wall and Ew the black-body emissive power at
the wall temperature, the flux leaving the wall, say L, is given by:

L + (1 - g) K (5.7-2)

= by
emitted reflected

Again, via the definitions of QX and Rx’ the following relation is obtained
from equation (5.7-2):

Q ey £
7o) By - ) Ry (5.7-3)

. S (
2 W W
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Thus, {ew Ew/(2 - ew)} becomes the additional SU while {-sw/(z - ew)} is the
additional SP,

The y- and z-direction fluxes are treated in a similar manner. It should,

however, be remarked that for the radial direction the additional source

‘term for the y-direction flux is (mrQy/Z), where r is the radius of the
boundary surface.
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6. NOMENCLLATURE

A LA Area of the grid cell (W-face, E-face, ...)

w,

Faees
a - Absorption coefficient for radiation
Apsdpsese - Finite difference 1ink coefficient (E-east, W-west, N-north, ...)
.aox - Oxygen mass fraction in oxidizer
»aj - Polynomian coefficient for cp-calculation
B - Eddy-Break-Up model constant
bj - Polynomian coefficient for cp-calculation
C - Convective flux
Cl,Cz,CD - Turbulence model constants
CP - Specific heat of mixture at constant pressure
Cj - Polynomian coefficient for cp~calculation
D - Droplet diameter
DU,DV,DW - Pressure-difference coefficients
dj - Polynomian coefficient for cp-calculation
E - Activation energy in the Arrhenius reaction rate law (Chapter 3.7); or
Black body emissive power (Chapter 3.6); or |
A constant in the Taw of the wall (Chapter 5)
f - Mixture fraction
Gk - Generation rate of turbulence energy
g - Concentration fluctuation
Hj - Heat of combustion for j-th species
[ - Stagnation enthalpy
I - Fa]se_inertia term (Chapter 4.,5); or
Radiation flux in the positive x-direction (Chapter 3.6)
J - Radiation flux in the negative x-direction
K - Radiation flux in the positive r~direction
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k - Kinetic energy of turbulence
L - Radiation flux in the negative r-direction
M . Mixture molecular weight (Chapter 3.3); or
Radiation flux in the positive z-direction (Chapter 3.6); or

Mass of the control volume (Chapter 4.3)

Mj - Molecular weight of species j

mj | - Mass fraction of species J

m - Coefficient in hydrocarbon composition (Cn Hm) specification
N - Radiation flux in the negative z-direction

NS - - Number of species participating in the mixture composition

n - Coefficient in hydrocarbon composition (Cn Hm) specification
P - Resistance of the laminar sublayer (Chapter 5.6); or

Pre-exponential factor in Arrhenius reaction rate expression
(Chapter 3.7)

p - Pressure

p' - Pressure correction

Qx,Qy,Q7 - Net radiative heat fluxes inthe x, y and z (or 6) directions

Rj - Mass rate of creation of species j by chemical reaction
R - Universal gas constant
Rx’Ry’Rz - Composite radiation fluxes (dependent variables) in the x, vy,
z {(or 0) directions
r ~ = Distance from axis of symmetry
S - Source term
Su, Sp - Parts of linearized source term
s - Mass ratio of stoichiometric osidant/fuel proportions (Chapter 3.7); or

- Radiation scattering coefficient (Chapter 3.6)
T - Absolute temperature
t ~ Time
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Us V, W

Greek Symbols

- Velocity components in the x, y and z (or ©) directions

- Velocity vector

Angular velocity (W = rw)
Coordinate distances

Dimensionless distance from the wall

o
Y
r

Ax Ay, Az

8% ,8y,02
£

€

Subscripts

A
d

eff

EBU

fu

Relaxation factor
Mey ~ mox/s
Diffusion coefficient

x-direction, y-direction and 6 (or z) direction lengths of a
control volume

Xx-, y- and z-direction distances between the node points
The dissipation rate pf turbulence

Wall emissivity

Coordinate distance

Von Karman constant

Viscosity

Density

Laminar Prandtl/Schmidt number (Chapter 3.8); or
Stefan-Bolzman constant (Chapter 3.6)

The general dependent variable |

Spherical angle

Air inlet

Droplet

Effective value

East side (x+) neighbor
Eddy-break-up

Fuel |
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S X by

int

N

()4

pr
stoich
S

t

Fuel inlet

High size (z ') neighbor
Stagnation enthalpy
Interphase value

Species J

Kinetic energy of turbﬁ]ence
Low size (z ) neighbor
liquid

Laminar

North side (y'+) neighbor
Oxygen

Products

Stoichimetric

South side (y ) neighbor
Turbulent

Vapour

West side (x ) neighbor
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