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FOREWORD 

CHAM of North America Incorporated has performed a Rocket Injector Anoma"ly 
Study under the NASA Contract NAS3-23352. / 

The purpose of the study was to modify, test and demonstrate a computer 
code for predicting three-dimensional two-phase spray flow and combustion 
in rocket engines. The modified computer code REFLAN3D-SPRAY (REactive 
FLow ANalyzer 3-Dimensional, with two-phase spray) and results of parametric 
studies have been described in the following two volumes: 

Volume 1: Description of the Mathematical Model and 
Solution Procedure; and 

Volume 2: Results of Parametric Studies. 

Transfer of the code to NASA LeRC computer center, and preparation of a 
user's manual are recommended as next steps of the study. 

The authors wish to thank all those who have contributed to this work. ' 
In particular, thanks are due to Larry P. Cooper and Ken Davidian of the 
Communications and Propulsion Section of NASA LeRC; and to Laurence Keeton, 
Jack Keck, Kelli King, Janet Siersma, and Ronni Rossic of CHAM NA. 
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1. SUMMARY 

The liquid fuelled rocket engine combustors consist of an injector plate 
and a thrust chamber. The injector plate consists of a number of propellant 
injectors which are designed to atomize the liquid jets of reactants 
and to promote intensive mixing between the vaporized components. 

Figure 1.1 shows the schematic of the rocket engine and injector plate, 
with LOX~RPI-LOX unlike triplet injectors, considered. The purpose of 
the study was to demonstrate an analytical capability to predict the 
effects of reactant injection non uniformities (injection anomalies) on 
heat transfer to the walls. For this purpose an existing three-dimensional 
single-phase flow and combustion computer code (REFLAN3D: ~REactive FLow 
ANalyzer, 3-Dimensional) has been modified for simulating two-phase flows 
in liquid propellant rocket engines. The modified code is referred to as 
REFLAN3D-SPRAY. 

The numerical model in the final code assumes instantaneous evaporation of 
oxygen jets and treats fuel drops as discrete drops of given size spectrum. 
It accounts for the liquid fuel (kerosene) jet motion, evaporation, its 
interaction with the gaseous phase, and combustion. 

The coupling between the liquid jets and the gas-phase includes: 

.0 momentum i nteracti on between the hi gh speed 1 i qui d jets and 
gas phase; 

- energy interaction between hot reacting gases and cold evaporating 
jets; and 

.. mass transfer between the evaporating jets and gas phase. 

The veloC"ity slip between the liquid drops and the reacting gases is of 
primary importance for accurate predictions of flow and heat-transfer 
characteroj sti cs. 

The Eulerian-Lagrangean approach for simulating spray flow, evaporation and 
combustion has been selected. A nonorthogonal body fitted coordinate 
system is employed for accurate simulation of combustor geometry and near- . 
wall processes. 

1-1 
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The physical models in the care are: the k ~ E model of turbulence, 
OnE! and two step finite-rate reaction models, and six-flux radiation model. 

ThE! numerical solution procedure employs a control-volume approach, with 
staggered grid and upwind-differencing practices. The solution scheme for 
Eulerian set of equations is a modified SIMPLE algorithm. These modifications 
include inproved equation solvers, under-relaxiation practices, and order 
of solving equations for different variables. For instance, velocities 
arE! solved by a point-by-point (Jacobi) method, while all other equations 
are solved simultaneously over the whole field. 

The code has been checked for both numerical and physical considerations. 
Results of test calculations and parametric studies as well as recommendations 
for further improvements and verifications are presented in Volume II. 
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2. INTRODUCTION 

One of the significant ways in wh"ich the performance level of the rocket 
eng"ines can be improved is by the use of optimal injector design, advanced 
materials and cooling concepts that allow a significant increase in thrust 
level. Figure 2.1 illustrates typical geometry of the rocket engine and 
selected injector element configurations. Injectors usually take the form 
of a perforated disk at the head of the rocket engine combustor and can 
vary in shape and dimension. Injection characteristics are improtant for 
proper mixing, evaporation, and efficient and stable combustion. The 
objective of the present project was to develop a predictive tool for rocket 
injection anomalies study. 

In the past, the design of injectors has been primarily based on experimental 
tests, experience and intuition. More recently, injector design capability 
is being improved further by employing computer codes capable of predicting 
two-phase flow, evaporation, chemical reaction and heat transfer within 
the complE~x geometries of liquid fueled rocket einges. Performance 
characteristics of liquid oxygen/hydrocarbons (LOX/HC) propelled engines 
can be studied by simulating combustion processes for different propellant 
combinations, injector elements, cooling systems, and pressure levels. 

A research program has been initiated by the National Aeronautics and 
Space Administration at the Lewis Research Center to provide a quantitatively 
accurate numerical modeling capability for the design and development of 
luqiid fueled rocket engines. The work has been performed at CHAM of 
North America Incorporated and resulted in a three-dimensional computer 
code (REFLAN3D-SPRAY) capable of predicting two-phase liquid fuel spray, 
combustion and heat transfer in engine combustors. An existing 3-D, 
CHAM computer code was modified to incorporate Eulerian-Lagrangean technique 
for two-phase spray simulation. 

Full details of the adopted mathematical formulation, physical models, boundary 
conditions and solution procedures are described in this report. An 
accompanying report, Volume 2, describes the results of various numerical 
consistency test cases, and parametric studies as well as the recommendation 
for further improvements and verification of the code. 
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3. MATHEMATICAL BASIS 

3.1 Introduction 

This chapter describes mathematical formulation of the two-phase flow, heat 
transfer and combustion phenomena handled by the REFLAN3D -SPRAY code. In the first 

section, basic principles of the Eulerian-Lagrangean (E-L) approach are presented. 

The second and third sections provide mathematical description of the physical 

processes in Eulerian and Lagrangean frames, respectively. The formulation is 
presented in fairly general terms so as to be applicable to the wide range of 

flow situations. 

3.2 Eulerian-Lagrangean Approach 

The mathematical formulation of the two-phase flow and combustion processes 

comprises the application of Eulerian conservation equations to the gas-phase 
and Lagrangean equatitinc of droplet motion and thermal balance. The Eulerian 

part of the method involves solution of the following gas phase equations: 

- continuity equation; 
- three momentum equations; 
- energy equation; 
- turbulence kinetic energy and dissipation rate equations; 
- unburned fuel and CO mass fraction equations; 
- mixture fraction (composite fuel fraction) equation; and 

- radiation equations. 

The Lagrangean part is accomplished by integrating the droplet equations of: 

- motion; 
- heat transfer; and 
- mass balance 

along their trajectory. 

The spray combustion model assumes that the evaporating droplets act as 
spacially distributed sources of fuel vaporo The link between the phases 
involves mass, momentum and energy coupling and is mathematically expressed 
in terms of interphase transfer source terms in all Eulerian equations. 
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1 . al gor,' thm for, a gas-dropl et spray flow is presented The complete so ut,on 

in Figure 3.1. 

[ START 

J 
DATA FOF! GRID, GEOMETRY =:=J 

AND INITIAL FLOW FIELD 

~-----------l------' 

ESTABLISH INITIAL GAS FLOW FIELD~ 
SOLVING DROPLE:FREE GAS·PHASE EQ~ 

ITERATION LOOP 

SOLVE DROPLET EQUATIONS FOR A~ 
DROPLET SIZES AND ALL INJECTION P~ 

J 
CALCULATE TWO·PHASE LINK SOUR~ 

TERMS FOR THE GAS·PHASE EQUATI~ 

J 
SOLVE THE GAS·PHASE EQUATIONS w:=JTH 

THE INTERPHASE SOURCES 

'--------, 

NO 

Figure 3.1 Flow Chart of the E-L Solution Algorithm 

First grid and geometry data ay'e specified and flow field variables are 
initialized. A droplet-free solution of the gas field is then obtained at 
the begining of the iteration cycle. This flow field is used for droplet 
trajectories, size and temperature calculations. The mass, momentum and 
energy interphase source terms are then determined. These source terms are 
now incorporated into the gas field equations. The new gas flow field solution 
is used again the the solution of the droplet equation. Thus there is a 
two-way coupling between the gas and liquid phase equations. The calculation 
porcess is continued until the converged solution is obtained. 
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3.3 Basic Eulerian Equations 

3.3.1 Fluid Flow Equations 

The hydrodynamic equations are expressed in three-dimensiothal, cylindrical 

polar coordinates x-r-e, as follows~ 

E.e. + ~ (pu) + 1.. a ( pv r) + 1:.. ~ (pw) = rfI. 
at ax r ar r ae lnt (3.3-1 )* 

x-Momentum 

= -.~.I?_ + ~ (llaU) + 1.. ~ (llraV) + 1.. ~ (llaW) _ ?. _.2. {ll(.£! + 1.. ~(rv) + 1:.. aw_) + pk} 
ax ax ax r ar ax r ae ax 3 ax ax r ar r ae 

u 
+ S. t In 

r- Momentum 

(3.3-2)** 

2 
a(pv) + ~Jpuv) + 1:.. . .2. (rpv ) + 1:.. ~ (pvw) _ ~ (llav) _ 1:.. ~ (r ~) _ 1:.._.2. (H.~) 

at ax r ar r ae ax ax r ar llar r ae r ae 

-t a~;- {ll(~~~ + ~ a; (rv) + ~ ~~) + pk} + S~nt (3.3-3) 

* SeE~ Nomenclature for explanation of symbo·ls. 
**Note that for Cartesian coordinates, r~,ar == ay and 'ra _ az. 
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8-momentum 

2 
opw + .-! (puw) + !...-! (rpvw) + !.. _~ (pw ) _ .-! (lIow) _ !...-! (}lOW) _ !...-! (~ OW) 
ot oX r 3r r 08 oX 3x r or or r 38 r 08 

=-1. ~ + _£. (g. 2lL) + !...J.. {Jlr(!.. ~ _ ~)} + 1:..l. {1!.. (ow + 2 )} + 1!.. (ow + ~_ ~ _ ~) 
r 38··· 3x r 38r 3r r 38 r r oe r 08 v r 3r r 08 r 

_ pv~ 2!.. .J.. {Jl ( 3u . 1 3 1 3\ 
r - '3 r 38 ax-+ rar (rv) + r'3'~-) + pk} + S~nt 

(3.3-4) 

In the above equations, u, v and ware velocity components in the x, rand 
8 directions, respectively; p is the pressure; p and jJ are respectively the 
density and viscosity of the flu·id mixture, which may be non-uniform. The 
normal-stress terms involving bu·lk viscosity (which is zero for most fluids 
including oxygen and RPI fuel) have been omitted from the momentum equations. 

By multiplying equation (3.3-4) by r, and rearranging, a new 8 momentum 
equation can be obtained with angular velocity W == rw as a dependent 
variable. Experience indicates that some of the shear stresses expressed in 
the new form are easier to handle during numerical claculations. The 
transformed form of the 8-momentum equation is: 

8-momentum . -
2 

3pW. + .-! (puW) + !.. .-! (prvW) + L _~ (pW ) _ .J.. (Jl~) 1 3 ( 3W) 1 3 Jl 3W 
ot oX r 3r r a8 ax ax - r ar rJlay;- - r 38 (or 38) 

(3. 3-4a) 

Equation 3.3-4a is used in the code. For- laminar flows, the velocity 
components are the instantaneous ones; and ]J ;s the molecular viscosity 
of the fluid mixture. For turbulent flows, it shall be assumed that the 
same equations are valid. For such situations, the time-mean values of all 

the flow variables and fluid properties are used. and ]J is 
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now the effective viscosity(which is the molecular viscosity augmented by the 

turbulent contribution). These comments also apply to the other equations 

which shall be considered in the following sections. 

Equations (3.3-1) to (3.3-4) govern the variation· of the velocity components 

u, v, w, and the pressure p. In order to solve these equations, information 

about the variations of density p and viscosity ~ is required. This is 

discLlssed next. 

3.3.'~ Density and Viscosity 

The density is related to pressure, temperature and the composition of the 
gas mixture through an equation of state: 

(3.3-5) 

where T is the temperature of the fluid mixture, and the m.'s are the mass 
J 

fractions of the component species of the mixture. Variations of T and mj's 
are obtained either from part of the problem specification, or from the 
solution of additional differential equations. 

In REFLAN-3D, density is calculated from the following formula: 

(3.3-6) 

(3.3-7) 

and where R is the gas constant and M. is molecular weight. Summation is 
J 

taken over all species. 

For the evaluation of viscosity, laminar and turbulent flows have to be 
considered separately. For laminar flows, the viscosity is assumed to be 
a function of temperature and mixture composition: 

(3.3-8) 

For turbulent flows, however, the problem is more complicated. The turbulent 

contribution (~t) to the effective viscosity is a function of local quantities 
such as velocity gradients, etc. The evaluation of ~t'and the turbulence 
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model are discussed in the next section. 

3.4 The Turbulence Model 

3.4.1. The k'VE Model 

The k ~ E model of turbulence is most commonly used for prediction of complex 

flow problems. The basis of the model is that it solves the transport equations 

for turbulence kinetic energy and turbulence dissipation rate. 

The turbulence model incorporated into the REFLAN3D code is the high Reynolds 

number k~E two-equa t i on model recommended by Launder and Spa 1 ding (Reference 1) 0 
In the following section the governing equations are presented o Details of 
the derivation can be found in the published literature (References 1, 2, 3) 
and are not provided in this report. 

3.402 Governing Equations for the k~E Turbulence Model 

The basic differential equations for the turbulence kinetic energy k, and 

its dissipation rate E, are: 

~ (puk) + ~~.l.. (rpvk) + 1-2 (pwk) _ -2 (r E!.) 1 d (rr dk) 
dX r dr r de dX k,eff dX - r ar k,eff ar 

(3.4-1) 

.l.. (pUE) + ,~~ (rpvE) + 1-2 (PWE) _.l.. (r. E.E.) 1 d ( dE) 
dX r dr r de dX E,eff dX - r ar rrE,eff ar 

1 d (r . 1 dE) - (c G C ) / -+ E,eff rae - 1 k - ZPE E k + PEVU - r'ae (3 .. 4-2) 

In the above equations Gk is the generation term for the kinetic energy of 
turbulence and is given by: 
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= 11 {2{(~)2 + (~)2 + (ldW + ~2} + (dW + l~)2 + (~+ ~)2 
Gk I-'t dX dr r de r dX r de ar ax 

2 
+ (dW + 1:. ~ _ ~) } 

dr r de r 
(3.4-3) 

The quantities CD' C1 and C2 are constants, fk,eff and fs,eff are the effective* 
exchange coefficients for k and E, respectively, and are given by: 

(3.4-4) 

f =].l la s,eff _ eff s,eff (304-5) 

where 0k,eff and aE,eff are the effective Schmidt numbers for k and E and are 
assumed to be constant. 

3.4.3 Turbulent and Effective Viscosities 

The turbulent viscosity ].It is related to k and s, via: 

2 
].It = Co pk IE 

and, the effective viscosity is given by: 

(3.4-6 ) 

(3.4-7) 

where ].l~ is the laminar or molecular viscosity of the fluid. Often].lt is very 

large compared with ].l~, and ].leff can be taken equal to ].It without introducing 
serious errors. The first practice (equation 3.4-7) is employed in the REFLAN30 code. 

RecommE!nded va.lues (Reference 3) for the constants appearing in the above 

equations are: 

CD = 0009; 

C1 = 1.43 ; 

C2 = 1.92 ; and 

* The subscript ueffll, to denote effective values, is used explicitly when 
coefficients that are related to turbulent flows exclusively are involved, 
otherwise non-subscripted symbols will be used. 
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0k,eff = 0.90. (3.4-8 ) 

The Schmidt numbers 0s,eff for the dissipation rate of turbulence is calculated 

from: 

where K is the Von Karman constant. A value of 0.4 is assumed for K. 

3.5 The Energy Balance Equation, 

3.5.1 The Stagnation Enthalpy Equation 

The stagnation enthalpy ~, defined as: 

~ _= C T ~ H 1 (' 2 2 2) 
II + L.m. . + -2 u + v + W 

P J J 

is a dependent variable in the energy transport equation: 

(3.4-9) 

(3.5-1 ) 

(3.5-2) 

In the above equations, Cp is the mixture specific heat, Hj is the heat of 
combustion of the j-th species, S~ represents the sum of itll gas-phase source 

terms including thermal radiation (discussed below) and S~nt represents 
interphase energy transfer source term. 

Equation (3.5-2) has been obtained with the assumption that the exchange 
coefficients for the transport of the mixture and for heat conduction are all 
equal at a point, although they may vary from point to point. 

It should be remarked that under certain circumstances the variation of the 
specific enthalpy ~ can be obtained without solving the differential equation 
(3.5-2). For example, consider the incompressib1le flow of initially unmixed 
reactants in an enclosure with adiabatic, impermeable, non-catalytic walls 

and without any thermal radiation. A non-dimensional ~nthalpy ~h can be 
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defined as: 

tv - tvA 
CPh -

tv tv F - A 

(3.5 -3) 

where the subscripts F and A refer to the inlet fuel and oxidant streams, 

respectively. The differential equation for the variable CPh is then identical 

to that for the mixture fraction f in every respect, including the boundary 

conditions. Thus, tv and f are linearly related. If the reactants are pre­

mixed and uniform in composition, then the enthalpy must be uniform throughout. 

Once the enthalpy and the species concentrations have been determined, the 

temperature T can be determined from equation (3.5-1) viz: 

T = 1\'"- L:m/lj -} (u
2 

+ l + i) 
Cp 

(3.5-4) 

The specific heat Cp' however, is a function of temperature and the composition: 

2 3 4 Cp = l~ m. (a. + b. T + c . T + d . T + e . T ) (3. 5 -5 ) 
jJ J J J J J 

where aj, bj, cj, dj and ej are constants for each chemical specie. 

The Cp '\) T dependence is weak so the system (3.5-4) and (3.5-5) does not 
require iterations. Usually the previous iteratiori value for T is used to 

calculate Cp and then (3.5-4) is used to calculate new temperature. 

3.6 Thermal Radiation 

3.6.1 Introduction 

There exist few numerical procedures for handling the radiation integro­

differentia"1 equations. Of these the "zone method" of Hottel (Reference 4) 

and "Monte Carlo method" (Reference 5) are well known and tested. Recently 

introduced "beam tracing method" (Reference 6) at this stage of development 

is not suitable for engineering applications. All three procedures require 
significant quantities of computer time and/or storage. 

The iterative nature of reactive flow calculations requires simple and fast 

algorithms for radiation calculations. The most commonly used method for 

radiation simulation is the "flux model" originated by Schuster (Reference 7) 

and Hamaker (Reference 8) in astrophysics. Flux methods are based on the 
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use of some simplifying ossumptions for the angular variation of the radiation 

intensity. This allows the exact integra-differential radiation transport 
equation to be reduced to a system of approximate differential equations in 
the space variable only. These are ideally suited to numerical solutions 
simultaneously with the flow equations. 

The six-flux method is described below for three-dilnensional flow calculations. 

3.6.2 The Six-Flux Method 

For an absorbing-emitting grey medium in local thermodynamic equilibrium the 

radiation transport equation can be written as (Reference 9): 

Sl • 'VI = -a I + aI + -4s J Idrl . r ·r n n 4n (3.6-1 ) 

where I is the radiation intensity, Sl is a unit vector representing direction 
of radiating beam, a is absorption, s is a scattering coefficient, E = o.T4, 
and 0 is the Bolzman constant. Central to the assumption of a flux model is 

the assumed variation of the intensity with direction. Assumption of constant 
I in a quadrant centered along each (±) coordinate direction results in six 

differential equations for intensities (Reference 10). 

d~ (rI) = Y' {-(a + s)I + ~ + aE + ~ (I + J + K + L + t·1 + N)} 

d~ (r,J) = Y' {(a + s)1 + * + aE - ~. (I + J + K + L + M + N)} 

dK ., (a +s)K+aE +t(I + J + K + L + M + N) dX = 

dL (a + s)L - aE - t (I + J + K + L + M + N) dX = 

1 dM 
rae = ., (a + s)M + aE + t (I + J + K + L + M + N) 

1 dN (a + s)N - aE - t (I + J + K + L + M + N) r de = 

(3.6-2) 

-j - + .. + The I, J, K, L, M and N are the radiation fluxes in y , y ,x, x, f) ,e 
directions, respectively. 



The net radiation heat fluxes, used in the energy equation source term can be 

eva 1 ua ted from: 

Q = I J 
2 ~~.lL - - a + s + Ifr . dr y 

Qx K L :: 2 d(K + L) (3.6-3) = a + s dx 

2 I d (M + N) 
Qe = M - N ::: - a + s r de 

It can be sel~n that only composite fluxes (I + J), etco are used for the heat 
flux calculationo It is convenient, therefore, to add appropriate equations 

of the system (3.6-2) and arrive at the working equations for the "composite 
fluxes" R ,R and R viz: ----xy z 

. dR 
d (1 .x) = 

dx a::I-S dx 
S - {a (Rx - E) + -3 (2 R - R - R )} x Y z 

dR 
~ ( ___ r ___ 1) = _ r {a (R

y 
- E) + ~3 (2R

y dr . I-.J. dr 
a- s r 

s - {a (R - E) + -3 (2R - R - R )} z z x y 

where: 

1 R ::: -- (I + J) x 2 

Ry ::: } (K + L) 

Rz ::: -~ (M + N) 

(3.6-4) 

(3.6-5) 

The composite radiation-flux equations are easy to solve second order (diffusive 
type) ODEo They are coupled with the stagnation enthalpy equation through the 

presence of Rx' Ry and Rz in the source term of the latter. Indirect coupling 
to other equations also occurs through the temperature appearing in the 
emissive power E and through ~ny dependence of the coefficients a and s on the 

local quantities mfu ' mco2 ' mH2o ' etc o 

The contribution of the radiation fluxes to the stagnation-enthalpy source 
term is given by: 

(Sw) radiation = 2a {(Ry - E) + (Rx - E) + (Rz - E)} 
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Since information on the variations of the coefficients a and s with other 

quantities is often scarce and imprecise, they have simply been assumed to 

be constant in REFLAN3D. However, should knowledge of the variations be 
available, it is not a major problem to incorporate these into the code. 

It may be noted that when the absorption coefficient a is very large, Rx ' 

Ry and Rz become very nearly equal to the direct emission E. 

3.7 Chemistry Equations 

3.7.1 Reaction Models 

There are three levels of complexity for simulating the chemical kinetics in 
the REFLAN3D code: 

instantaneous reaction assumption; 

- one step reaction mechanism; and 

- two step mechanism with intermediate CO. 

The rate of chemical reaction is assumed to be governed by an Arrhenius 

expression for laminar flows, and by the "Eddy-Break-Up" model (Reference 11) 
for turbulent flows. 

Detai'ls of the combustion models and the chemistry equations are described 

below. 

3.7.2 Conservation Equation for a Chemical Species j 

The conservation equation for a chemical species j is: 

~ (pum.) + ~L .£.. (r pvm .) + l .2 (pwm .. ) _ .2 (r am .) 
ax J r r J r ae J ax j ax J 

1 a am. 1 a - -_.- (rr. --J) - -- (r. r ar J or r ae J 
1- am.. j) = R­
r ae ' J 

where mj is the mass fraction of chemical species j; Rj is the mass rate of 

creation of species j by chemical reaction, per unit volume; and rj is the 
exchange coefficient. For a chemically-inert species Rj is, by definition, 
zero. 
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3.7.3 Mixtu!'e Fraction and Inert ~ecies Equations 

The simple single-step reaction of a pair of reactants (called here for 
convenience fuel (fu) and oxidant (ox)) can be expressed in the following 
stoichiometric relation: 

1 kg fu + s kg ox + (1 + s) kg products (3.7 -2) 

where s reprE!Sents the stoichiometric oxidant/fuel ratio and is a constant 
for a given reactant pair. It should be noted that the reaction equation 
(3.7-2) does not impose any restrictions on the constitution of the reactants; 

thus the reactants may be mixtures, e.g. fuel :=: CO + H2 + N2, oxidant :=: O2 + N2. 

An important consequence of the simple chemical reaction assumption is that 
the mass ratE~s of creation by chemical reaction of fuel, oxidant, and product, 

Rfu ' Rox and Rpr ' are related through: 

Rf = R /s = -R /(1 + s) u ox pr (3.7 -3) 

These relations can be made use of to yield conservation equations that have 

zero source terms. 

It is further supposed that the exchange coefficients of fuel and oxidant are 
equal at each point in the flow, although they may still vary from point to 
point. It follows that equation (307-1) for oxygen (j:=:ox) can be divided by 

s and subtracted from the corresponding equation for fuel (j:=:fu). 

The result is: 

d~ (puy) + ~ d~ (rpvy) + ~ d~ (pwy) - d; (~~y) - ~- d~ (rr~~) - ~ d~ (r }w-) = O. 

(3.7 -4) 

(3.7 -5 ) 

This is an equation having a single dependent variable, namely y, and no source 
term; the two reaction-rate terms have cancelled out. To make equation (3.7-4) 

more general, a normalized dependent variable f ("mixture fraction") defined as: 
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Y - YA 
f::-·-- 0<y<1 

YF - YA 
(3.7-6) 

can be introduced. The F and A indices represent conditions at fuel and air 

entry, respectively (Figure 3.7-1). 

-mN2,A'···· --::J 
Inlets 

-
mN2,A'···· 

+~r~:~:;= 
+' • 

_._--.---- ----

Figure 3.7-1 Specification of Inlet Composition at F- and A-inlets 

The mixture fraction transport equation is written as: 

~ (puf) + 1:..2. (rpvf) + 1:.. ~(pwf) _ 2. (r 2i) _ 1.. ~ (rr If) 
ax r ar r ae ax fax r ar f ar 

1 a 1 af - - -" (r -. -) = 0 r ae f r ae 

-Exit 

(3.7·-7) 

The physical significance of the mixture fraction is that it represents the 

mass fraction of fuel in any form, i.e. fuel that has reacted and that has 
not. Thus, for chemically-inert flows, the mixture fraction f and the mass 

fraction of unburnt fuel mfu would be identical. 

Note that all atomic elements H, O~ C, N (inert species) are governed by 

the source free transport equation identical to that of mixture fraction 
(3.7-8). For the equal exchange coefficient, zero source terms and linearly 
related boundary values,all inert species concentrations at any location 
are linearly related to f. Stoichiometric relations provide the auxiliary 
linear relations. 
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3.7.4 Stoichiometric Relations 

The linear relation between the inert species ~ and the mixture fraction f can 

be expressed as: 

(3.7 -8) 

where ¢ stands for mC' mo' mH, mN 9 etc., A and F indices represent A and F 
inlet, respectively. 

For simple one-step reaction there are five species participating in the mixture 

composition viz: (fu, 02' N2, C0 29 H20). If two differential equations (f and 
mfu ) are solved, four additional algebraic equations can be obtained from 

relation (3.7-8)0 

If the A-jet composition consists only of air (aoxmox + (l-aox ) mN2 ) and 

F-jet of fuel (CnHm) and say water vapor (mfu,F' mH20 ,F) the linear relations 
for atomic elements are: 

mC = 12 . n I f 

mH = (It mH20F + mifF) f; 

16 
mO = aox - (aox - IS m

H20F
) f 

17 
O'n the other hand, stoichiometric relations can be written as; 

and ml :: _n~_ 
12n + m 

(3.7-9) 

(3.7-11) 

(3.7-12) 

(3.7-13) 

(3.7-14) 

Combining equation (3.7-9) and (3.7-12) mCO can be calculated. From equations 

(3.7-10) and (3.7~13) mH 0 and from (3.7-10j and (3.7-14) max can be determined. 
2 

3-15 



mH a .. 
mH a = f (9 ml + 2 F) - 9 ml m 

2 fF fu 

mca = 44 n'f - 44 nl m 
2 fu 

a 
m

a2 
= a - f (of ;x + 32 n I + 8 m I) + m fu • (32 n I + 8 m I ) 

More complex formulae can be derived for arbitrary A-inlet and F-inlet 

compos; ti on. 

Finally, since all the species mass fractions must add up to unity: 

Thus mN can be obtained. 
2 

(3.7--15) 

(3.7·-16) 

(3.7·-17) 

(3.7 .. 18) 

The technique of relating mixture composition to the mixture fraction f can 
be expressed on two examples of combustion regimes: 

- diffusion controlled (instantaneous combustion); and 
kinetically influenced reactions. 

These are described in the following sections. 

3.7.5 Equations for Diffusion-Controlled Reactions 

Before any reaction can take place, fuel and oxidant must be brought into 
physical contact with each other. It is thus expected that the reactant 
process is affected by both the rate at which mixing of the two reactants 

takes place and the rate of the chemical reaction itself. In situations 
where the fuel and oxidant are not initially mixed, the mixing rate, being 

in general much slower than the reaction rate, even in turbulent flows, 
controls the reaction process. This leads to the assumption that 
thermodynamic equilibrium prevails everywhere. Thus, wherever fuel and 
oxidant are in contact, reaction will take place until one or the other has 
been completely consumed. Since chemical kinetics need not be considered 
under these clircumstances, the complete chemical state can be determined by 

solving only one source-free conservation equation for the mixture fraction. 
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Once the f-equation (3.7-7) has been solved, the mass fractions of the other 

species can be obtained from algebraic equations. 

The mass fractions of fuel and oxygen are related to the mixture fraction 

accord-j ng to: 

o < f .5.. f st : mfu = 0 

mox = (1 f/f st ) mox,inlet 

1 > f ~ f st mfu = (f - f/fst)/{l - fst) 

mox = 0 

In the above equations, fst is the stoichiometric value of the mixture 
fraction and is given by: 

m 
fst = 1 I { 1 + s (m:~) inlet} 

(3.7--19) 

(3 .7,.20) 

(3.7--21) 

The above equation is readily obtained from equation (3.7-6), noting that for 

stoichiometric mixtures, mfu = mox/s, and consequently y = O. The physical 
significance of fst is that the locus of all points where f has the value 

fst defines the maximum reaction contour and hence the IIflame envelope ll
• 

The linear relationships between the mixture fract'ion and the various mass 

fractions can be used to calculate meO ' mH 0' etc. It should be remarked 
that these relationships are, strictly2spea~ing, valid only for instantaneous 

values. Thus, for turbulent flows, where only the time-average values of 

the mixture fractions are available, the relationships of Figure 3.7-2 can be 

used only for time-average mass fractions. This is assumed in REFLAN3D codeo 

Some inaccuracy is involved in this assumption; it can be removed to some 

extent by, for example, solving an additional differential equation for the 
mean-square fluctuations of f (References 12, 13). 
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-----------------------~wo o 1 

(A) Inlet -f (F) Inlet 

Figure 3.7-2. Diagram Showing the Variation of Mass Friction with f for a 
Diffusion-Controlled Reaction 

3.7.6 Equations for Kinetically-Influenced Reactions 

When the chemical process is not physically controlled (as, for example, in 

the case of premixed fuel and oxidant mixtures) the rate of the chemical 

reaction will be the influencing factor. Since the assumption of thermodynamic 

equilibrium can no longer be used, solution of a source-free equation alone 

is not sufficient to determine all the species mass fractions. In addition, 

a conservation equation for one of the species must be solved. This could be 

anyone of the three: mfu ' mox ' or mpr • 

In REFLAN3D, for one-step reaction, two differential equations are solved: 

that for f, equation (3.7-7), and that for mfu ' equation (3.7-1) with j = fu. 
Under some circumstances, the solution of the f-equation may not be necessary 

even though the reaction is kinetically-controlled. For example, when a fuel­

oxidant mixture of uniform compos"ition is admitted into a chamber of impermeable, 

non-catalytic walls, under steady-state conditions, the source-free equation 
has the trivial solution: f is uniform everywhere and equal to the inlet value. 

Once the mixture fraction f and the fuel mass fraction mfu have been determined, 

the mass fraction of 02' CO 2, H20 and N2 can be obtained from stoichiometric 
relations. 
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The variation of the species mass fractions with f for a kinetically-influenced 

reaction is shown in Figure 3.7-3. 

o fst 
,-~------------:::~ 0 

(A) Inlet -f (F) Inlet 

Figure 3.7-3. Diagram Showing the Variation of Mass Fractions with f for 
a Kinetically Influenced Reaction 

NOTE: The dotted lines show the variations for a diffusion controlled 
reaction (as in Figure 3.7-2); the variation of mN is the same 
for both. 2 

3.7." Two-·Step Reacti on Model 

A general hydrocarbon (CnHm) fuel oxidation is employed in two-step parametric 
reaction scheme as follows: 

(3.7-22) 

wher(~ m and n represent CnHm-hydrocarbon composition (e.g. for C3HS n=3, m=S), 
and ~ is the reaction scheme. parameter (~=O for single step chemical reaction, 
and 11=1 for two step chemical reaction)o 

For certain cases (e.g. for heavy liquid hydrocarbons) O<A<1 can represent 

simultaneous homogeneous-heterogeneous reactions at the droplet boundary 
1 ayer. 
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· (e H eo eo H 0 and N ) involved in the above reactions There are six specles n m' 2' , 2 2 
whith have to be determined at each control cell of the combustion chamber. 

Three properties viz: mixture fraction f, defined as' a IItotal fueP (burned 

or unburned). mass fraction of unburned fuel mCnHm,.and mass.fraction of 
carbon monoxide m are obtained from the differentlal equatlons. Three 

additional equati~~s are obtained from the stoichiometric relations: 

12 12 
mC = 12 n I me H + 28 mea + 44 mea 

I n m 2 

32 
+ 44 meo 

2 

3.7.7 Reaction Rate Expressions 

Two different options are considered for the reaction rate expression: 

_ Arrhenius expression; and 

Eddy-Break-Up model (EBU). 

(3.7-23) 

The Arrhenius expression for the 
p mFU a p mox f3 

bi -mol ecul ar reacti ons can be written as: 

Rfu,L = -pAM FU ( r~FU) (M OX -) E~XP (--EjRT) (3.7-24) 

where A is reaction rate constant, r is the activation energy, R is the 
gas constant, MFU ' MOX are molecular weights and a and B are reaction order 

constants. Similar expression holds for meO combustion rate. 

For turbulent flows, apart from the usual need to use time-averaged quantities 
and effective transport coefficients, the effect of turbulence on the reaction 
rate should be separately accountE~d for. The eddy-Break-Up model of 
Spalding (Reference 11) assumes that the gas is composed of alternating 
fragments of unburned fuel and almost fully burned gas (premixed flame). The 

chemical reaction is supposed to occur on the interfaces between these two 
inkds of gragments. 

The rate of reaction is supposed to depend upon the rate at which the fragments 
of unburnt gas are broken into still smaller fragments by the action of 
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turbulence, and is taken to be proportional to the rate of decay of turbulence 

energy. Thus, the rate of reaction is: 
1: 

R = - C pg 2 E/ k fu ,EBU R (3.7-25) 

where CR is a constant, and g represents the local mean-square concentration 

fluctuations. 

The concentration fluctuation 9 can be determined by solving an additional 
equat'ion having a form similar to that for the turbulence quantities k'VE 

(References 12, 13). Magnussen (Reference 14) proposed an algebraic expression 

for g in the form: 

1/2 mox 
9 = min (mfu ' -s- (3.7-26) 

where B = 40 5 is an empirical constant. 

For turbulent flows, the lower of the two reaction rates is often taken. 

3.8 General Form of the Governi~g Differenti a 1 Equa ti ons 

All the differential equations discussed in the preceding sections are elliptic 

in nature and can be conveniently presented in the general form: 

(3.8-1)* 

* 10 As a rE!minder, note that for Cartesian coordinates: r-+oo, 3r=3y, and 
r38=3z" 

20 The differential equations for the three composite radiation-fluxes 
are of one-dimensional form. Thus the r- and 8-derivatives of this 
equation are absent for R , the x- and 8-derivatives are absent for 
Ry' and the x- and r-deriOatives are absent for Rz• 
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Table 3.8-1. Summary of Equations for Three-Dimensional Flows 

EQUATION <P 

continuity 1 

ax i a 1 x- u 
momentum 

radial y­
momentum 

v 

p 0 

P 1-1 

p 

circum- rw p 
ferential 
e-momentum 

o 

_ .£E.. + _.2.. (1-1 ~) + ~ _1- (r1-1 ~) 
ax ax ax r ar ax 

1 a ( arw) + -2 -- 1-1 - - P9 + r ae ax x 

2 a 
- 3 ax (1-1eff V • U + pk) 

a n a au) 1 a av 
- .::...c.. + -- (1-1 - + - -- (r1-1 -) ar ax ar r ar ar 

+ ~ -2_ (E. arw) 2 a1-1rw 21-1 arw 
r ae r ar - ~ a8 - ~""38 

+ pw
2 

_ ~ v _ P9 
r 2 y 

r 

- ~ + _1- (1-1 ~) + ..J.. (1-1 ~) 
ae ax ae ar ae 

I 
+ 1 a ( arw) + ~ a1-1'y' + E. ~ 

"2 as 1-1""38 rae r ae 
r 

I 

1- f . 
I 

turbulence k 
energy k 

p 1-1eff Gk - pc 

~\,eff 
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EQUA 

issi 
rate 

mixt 
frac 

fuel 
frac 

COm 
frac 

enth 

x-ra 
tion 
flux 

y-ra 
tion 
flux 

z-ra 
tion 
flux 

nON 

pation 
s 

ure 
tion 

mass 
tion 
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tion 

alpy 

dia-

dia-

dia-

¢ 

s 

f 

mfu 

mCO 

-
(\1 

Ii 

Rx 

Ry 

Hz 

-

B¢ r¢ 

]Jeff --
° s,eff 

p L 
of 

p E-
, om 
i fu 

p E-
° mCO 

L p 
on 

0 
1 -a+s 

0 1 

a+s-J. r 

0 1 -a+s 

S, Sd¢ <P . 

(C1 Gk - C2 ps) + ps IJ • U - rTld s 

0 - rTld (1 - f) 

Rchem , fu - md (1 - mfu ) 

J R + R FU,CO chem,fu ch,CO - md mCO 

~ 0v 0v 
at + 2a (R + R + R - 3E) rfId (nd - Ii) x y z 

- {a (R - E) 0 x 

+ ~ (2 R - R -
3 x y Rz)} 

- {a (R - E) 0 y 

+ r (2 R - R y x - R )} 
Z 

I 

- {a (R - E) z 0 

+ r (2 R - R z x - R )} y 
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In the above equation ¢ identifies the dependent variable; S is identically 

equal to either the mixture density p or zero; r¢ is the appropriate exchange 

coeff'icient for the variable cp; and Scp is the source term which includes both 

the sources of ¢ (positive or negative) and any other terms which cannot find 
a place on the l~ft-hand side of the equation. Table 3.8-1 summarizes the 

equations in the form they are solved for. Some notes about these equations 

now foll ow: 

For laminar flows, instantaneous values of flow variables and 

molecular values of the exchange coefficients are used. 

For turbulent flows, time-averaging values of flow variables 
and effective values of the exchange coefficients must be employed. 

The interphase transfer source terms Sd¢ will be discussed in chapter 4.6. 

3.9 Basic_ Lagrangean Equations 

3.9.1 Introduction 

Drop life histories must be calculated in order to determine heat, mass, and 

momentum transfer. This is particularly important for pressure atomized 
injectors, where a significant proportion of the initial momentum in the flow 

is carried by the liquid phase and is transferred to the gas phase only by the 

drag force on drops. Since spray calculations are complex, the computation of 

droplet characteristics is represented in a relatively simple mod~l. Droplets 
are assumed to be spherical and non-deformative ,with uniform conditions within 
each droplet volume. The droplets are divided into a number of drop size ranges 
and a system of differential equations is solved for each range. 

This chapter presents basic equations of droplet motion, heat and mass transfer. 

3.9.2 Dropl.~~t Distribution Model 

The present model assumes that the fuel is injected into the combustion 
chamber as a fully atomized spray which consists of spherical droplets. 

The droplet-size distribution within the spray is represented by a finite 
number of droplet parcels of specific droplet diameter. At the atomization 
point droplet initial sizes, velocities and temperatures are specified; these 
are subsequently tracked in a Lagrangean fashion as they traverse, heat-up 
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and vapotize within the combustion chamber. 

The number of droplets in each parcel, Nd , is calculated according to a 

specified distribution function, that relates the probability Pj of finding 

a droplet of diameter dj to the droplet diameter: 

om. P. 
Nd = Ns 1 

J (3.9-1 ) 

E P
J
. Pl TI dj3f6 

j=1 

WherE! NS is the number of droplet sizes and omi is the mass of fuel introduced 

at the injection location. 

The most commonly used distribution function is a Rosin-Rammler function 

(Reference 15) (Figure 3.9-1) defined as: 

dD D a-IDa 
PR = a -::- (=) exp (- (.::-) ) 

D D 0 
(3.9-2) 

where a is am empirical parameter (typically 1.5 < a < 3) and 0 is the main droplet 

diameter. 

d(D) 

~----------~---~----D 
Figure 3.9-1. Drop1et Size Distribution Function 

The above consideration implies that the droplet trajectory, as well as heat 
and mass transfer within the spray, can be determined from the solution of a 

set of ordinary differential equat-ions describing the behavior of each droplet 
parcel; these are given below. 
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3.9.3 Oropl~t Trajectory 

For each droplet size the momentum balance equations are written as (References 

16, 17): 

dUd Ad 
md crt = Co P2" (u - ud) lu - udl 

Where Co is the drag coefficient, u, v, ware gas velocity components, ud ' vd' 

wd are! droplet velocity components, Ad is the droplet cross-section area, 
md is the droplet mass and r is thE! droplet raidal position. 

The other terms contributing to aerodynamic forces on the droplet include: 

- pressure gradient; 
- Magnuss force; 

- Sa ffman 1 ift force; 
- Basset force; and 
- gravity forces, etc. 

These are all neglected because they are of the order of gas/droplet density ratio. 

The drag coefficients CD depends primarily on the II re l ative" Reynolds number: 

p • 0 • I U - Ud I Re = --------- (3.9-4) 
)1 

where 0 is the droplet diameter. For evaporating droplets 'CD can be calculated 
from the formu 1 a (References 18, 19) : 

(3.9-5) 

for Re up to 1000. The Spalding (transfer) number B, given by: 

B = C 6T (3.9-6) 
v QL 

3-26 



can be significant for burning solid fuel particles. For evaporating droplets B 

is close to unity. In the above equation, Cv is the specific heat of diffusing 

vapor j ~T is temperature difference, and QL is the latent heat of vaporization. 

If droplet vE!locities are established, the droplet trajectory (xd ' Yd' zd) can 

be obtained from simple relations: 

3.9.4 Droplet Heat Transfer Equation 

The vaporization process for a droplet moving in a high temperature gas 

stream is descri bed in terms of two regimes: 

heat-up period with raising droplet temperature, Td; and 

- equilibrium vaporization period with constant Td• 

A sketch of the droplet evaporation process is shown in Figure 3.9-2. 

Tgas 

INJECTION INSTANCE 

-~ 
Time 

1 ----

LATER IN LIFETIME 

Figu,oe 3.9-2. Sketch of the Droplet Heat and ~flass Transfer During the 
Vaporization Process 

At typical injection temperatures, the fuel concentration at the droplet 

surface is low and there is negligible mass transfer between the phases. 

(3.9-7) 

As the 1 iquid temperature rises the: rate of mass transfer rises too, with the 
maximum liquid temperature occuring at the surface. 
to the heat absorption for vaporization process, the 

the so called "wet bulb temperature II which is almost 

mass. 
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At this stage intensive evaporation takes place with the temperature remaining 
constant at Td• These two regimes are accounted for in the mathematical model 
of the drop heat and mass transfer processes. 

Assuming quasi-steady state conditions, uniform conditions within the 

droplet volume and spherical shape of the droplet, the heat transfer process 
can be descr-ibed by the following equation (References 20, 21, 22). 

where Nu = 2 + .06 Re O•5 PrO. 33 

d md 
QL = L Cit 

(3.9-8 ) 

(3.9-9) 

(3.9-10) 

Here, Td is the droplet temperature; K, Cd and L are thermal conductivity, 
specific heat of the liquid and latent heat of vaporization, respectively; 
QL represents the rate of the energy transfer with the evaporating mass, 
0, a and ware the Bolzman constant, droplet absorptivity and the view factor; 

Twall is the average wall temperature. The 6/PdD factor represents droplet 
area to mass ratio g 

The rate of mass transfer dm~dt is calculated from the droplet evaporation 
model which is described in the next section. 

3.9.5 Dropl.!~t Evaporation Model 

Many single droplet and spray evaporation models exist( see for instance 
References 23, 24, 25). The droplet dimunition rate is conventionally 
expressed by:: 

(3.9-11 ) 

where D is the drbplet diameter and K is the evaporation constant (Reference 
25L 

For computational purposes, equation (3.9-11) can be rewritten in terms of 
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rate of decrease of droplet diameter: 

d (0 ) 

dt 
2 

= pn-- K (3.9-12 ) 

The basic fo Y'mu 1 a for the evaporati on rate constant is expressed as (References 

25,26): 

(3.9-13) 

where Sh is the Sherwood number, KD is the diffusion coefficient, mv the mass 
fraction of vapor at the droplet surface, and m the mass fraction of vapor voo 

in thE! free stream. The Sherwood number is cal cu 1 ated from the Ranz and 

Marshal (Reference 27) formula: 

Sh = 2 + .6 Re O•5 Sc O•33 (3.9-14 ) 

For the hi gh transfer rates Sh is modifi ed by the convecti on factor and is 
expressed as: 

(3.9-15) 

where B is the Spalding (transfer) number, given by: 

Cd (T - Tsat ) 
B = -- L (3.9-16 ) 

and where Cd is the vapor specific heat and Tsat is the wet bulb absolute 
temperature. 

3.9:6 Droplet-Wall Interaction 

The treatment of droplets impinging on the combust'ion chamber walls is one 
of the important difficulties in modeling spray flames. If the droplet hits 
the solid wall, a number of possib'ilities exist, e.g. the droplet may shatter 
into small ones which become re-entrained or it may adhere in the form of 

the sphere or a thin film, which subsequently evaporates. In the present 
method it is assumed that droplets adhere at the point of impact in spherical 
form, and that the heat and mass tY'ansfer processes continue to obey equations 
(3.9-8) and (3.9-12). It is recognized however that refinement of this approach 
will ultimately be necessary. 
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4. THE NUMERICAL SOLUTION PROCEDURE 

4.1 Introduction 

The system of coupled nonlinear partial differential equations (POE) and 
ordinary differential equations (ODE) described in the preceding chapter can 

only be solved by numerical methods. 

This section presents numerical techniques employed for solution of both POE 
(Eulerian equations) and ODE (Lagrangean equations) types. 

The f"inite-difference technique and a modified form of SIMPLE algorithm (RE~ference 

.28, 29) are used for solution of thE; gas phase Eulerian equations. The resulting 
system of a1gebraic equations is then solved by efficient equation 
solvers. 

The ODE equations describing the droplet behavior are first integrated 
analytically with the quasi-steady state assumption. The integration process 
is carried for each droplet class separately along its trajectory. During 

this process interphase transfer source terms for the gas-phase equations 
are calculated. This section describes both PDE and ODE solution practices 
in a detailed manner. First, however, geometry representation and space 
subdivision practice are presented. 

4.2 Geometry and Computational Grid 

4.2.1 Coordinates and Grid Lines 

The REFLAN3D code can handle both cartesian and cylindrical-polar coordinates 

in both orthogonal and non-orthogonal form. A non-orthogonality can be 

simulated only in the radial direction on the x-y (x-r) plane. The code has 
also built~in moving grid options for simulating reciprocal processes 
(compressors, I.C. engines, etc.). 

The coordinate systems considered are: 

- x-y-z cartesian coordinates (Figure 4.1); and 
- x-r-8 cylindrical polar coordinates (Figure 4.2). 
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For cylindrical coordinates y = 0 does not necessarily coincide with the axis 

of symmetry, i.e. the radius r and radial distance y at any point may differ 

by a constant. 

The foinite difference grid is formed by three sets of surfacesj perpendicular 

to coordinate directions. The nonorthogonal grid is formed by "piece-wise" 
surfaces combining r/rmax points in the x-y (x-r) plane (Figure 4.3). The 
grid distribution can be nonuniform in each coordinate direction. 

4.2.2 The ~taggered Grid Practice 

The REFLAN3D code employs the so-called staggered grid practice (References 

30, 31), in which all variables except velocities are calculated at the grid 
nodes (centers of the control volumes) (Figure 4.4). The velocity components 
arecalculatE~d at the cell faces of the control volume (designated by arrows 
in thl:! diagram). A "backward boomerang" arrangement in the code implies that 
the vl~locitiE~s placed at west, south and low cell faces are assigned to each 

i, j, k node., The appropriate grid cell areas are also staggered in a 
"backward boomerang il fashion and for each node (i ,j ,k) calculated as AW' AS and AL 
for x, y and z, respectively (Figure 4.4). 

The derivation of the finite-difference equations will be illustrated in the 

first instance for a scalar variable, using the "finite volume" approach 
emplolYed by Spalding (Reference 32). The porosity technique, used for 
representing complex geometries, allows any control volume to be fully open, 

partially open or.fully blocked. The porosity concept is presented in the 
following section. 

4.2.3 Porosity Concept 

In many engineering problems the boundaries of the domain are irregular. Also, 

there can be internal flow obstacles. In most of the known approaches 
complex curvilinear orthogonal body-fitted coordinates are used (References 
33, 34, 35) or nonorthogonal coordinates for simple geometry configurations 
are g€!nerated (Reference 36). The "finite domain" technique employs the so called 
"porosity concept ll for simulating complex geometries. In this method every 

sub-domain is characterized by a set of volume (Sv) and cell face area (SA) 
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Figure 4.5 Representation of the Porosity Concept 
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fractions (cell porosities are usually: a ~ S ~ 1) that are available to the 
fluid flow. In Figure 4.5 a typical calculation domain of the flow over an 

obstacle is presented. In the present case finite porosities a ~ S < 1 are 
specified within and around an obstacle. 

Sv = 1 for fully open volume 

a < S v < 1 for partially blocked volume 

S = a for fully blocked volume 

A sample of a control volume within the blocked region is presented in Figure 4.5a. 

The volume SvV is used for gas flow calculations. A similar rule applies 

for the area porosities SAW' SAS' SAL. 

4.3 Finite Difference Equations 

4.3.1 Motive of the Method 

The Finite DHference Equations (FDE) are obtained by integrating the Partial 

Differential Equ~tions (POE) over the finite volume (grid cell) and, for the 

transient equations, over the finite time interval. The following practices 
have been adopted for the spatial "integration of the POE's. 

- The flow variables stored at grid points are assumed to have 
stepwise profiles. 

- The "Upwind Differencing ll (UD) (References 28. 29,37) practice 
is employed for integrating convective terms. This implies that 
the scalar flow property required at the cell face is taken equal 
to that at the upstream grid point. 

- The cell-face velocity is considered as a cell-face average. 
No velocity interpolation is required for the calculation of each 
mass flux across the cell face. 

Fully conservative formulation is used for the integration of each 

quasilinear POE. This implies that all variables w~thin the 
iteration cycle are solved with the same (continuity preserving) 
fluxes. 
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For the time 'integration of the POEls a fully implicit formulation is employed, 

i.e. the values of flow variables are taken to be those which prevail at the 
current time step. 

A seven-node finite-difference relation will now be derived connecting the 

value of a dependent variable ¢p at the node P (Figure 4.6) with those at the E, 
W, N, S, Hand L neighbor nodes. Integration of the POE will result in a 
linear formula of the form: 

(4.3 .. 1) 

where dE' aW' ••• , etc. are called "'link coefficients", SU and SP are the 
linearized sources and are given by: 

is called the main (diagonal) coefficient. All the als, SU and SP are treated 
as constants. 

N 
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Figure 4.6. Control Volume Notation for Cartesian and Cylindrical Polar 
Coordinates 
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There will be a set of equations like (4.3-1), each with individual coefficients, 
for every grid point and for each of the dependent variables. 

For a single variable a system of algebraic equations will be created which, 

in the matrix form, can be expressed as: 

(4.3-3 ) 

The system can be illustrated on an example 5:3:4 (L:M:N) grid (Figure 4.7) , viz: 

./ /'" /" / / 7 
./ /' / / /' ./ 

./ 7' / / / ./ 
'./ ;,.- 7" /' /' 7' V 

M = 3 /v 
/ V 

2 v/ 
/ 

1 ~~ 
/~ 3 . 

=4 

x 
2 3 4 L=5 

Figure 4.7. Interpretation of the Storage Allocation for Three-Dimensional 
Computational Domain 

The corresponding matrix ~ to Figure 4.7 is presented in Figure 4.8. Each dot 
represents non-zero link coefficients. Diagonal lines filled with squares present 
link coefficients for the Z-cyclic (periodic) boundary conditions. 

Detailed discussion of the matrix inversion technique is discussed in 
Chapt~!r 4.5. First, however, it is necessary to obtain expressions for the 

finite difference link coefficients (elements of matrix A in Equation 4.3-3) 

by integrating general transport equation in the form: 

2..eP.. a la la 
d t + ax (pu <p) + r ar (r pv ¢) + r ae (pw¢) 

. -----v-----' 
convection terms 

a (1'.£1) 1 a .£1 1 a 1 2.P.. 
- ~x .¢ ax .. rar (r~<p_~) - rae- (1'<p rae), = S<p (4.3-4) 

diffusion terms source 
term 
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Figure 4.8 Structure of the Influence Matrix for the Three-Dimensional Calculation 
Domain (see Figure 4.7) 
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The integration is discussed in the next section. 

4.3.2 Integration Over a Control Volume 

In order to present the derivations of the finite-difference equations, first, 

the x-direction related terms (equation 4.3-5) are discussed. 

Then~ a generalization to three-dimensional form is provided. 
a grid node P and its x-direction neighbors Wand E. 

I n , 
I 
I 

L-----.. i----- -
~~---t w I ~ e " ___ -

•• x I . /,t' " eX' e I ,'. 
PI L --_.- e 

/"" "L----.-- ---- -- ---~Ae 
E w 

/ 

" 

(4.3-5 ) 

Figure 4.9 shows 

Figure 4.9. Control Volume and Notation for a One-Dimensional Transport 
Equation Integration 

The rectangular region represents the control volume used for the integration. 

At the w- and e-cell faces,convective fluxes c~ and C; are defined as: 

C: = (puA)w and C~ = (puA)e 

WherE! pis an "upwi nd" density: 

'f' > 0 1 uw _ 

and· the A IS 

{

/:,y/:,z 
represent ce 11 face area, i.e. 

for cartesian coordinates 
A -
w rM/':,8 for cylindrical-polar coordinates 
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Integration of equation (4.3-5) in time and once in space yields: 

(p~ VOL) - (p~ VOl)o + (pu~A) - (pu~A)w + 
~t ~ e 

(4.3-9) 

Derivatives in the diffusion terms (in curly brackets) can be replaced by 

the appropriate finite~difference formulae: 

d~ ~E - ~p 
(Ar~3X)e~Ae!r~e aXE =De(~E-<Pp) (4.3-10) 

and 

(4.3-11) 

The r¢e and f<pw are calculated from appropriate linear interpolations 
betwe(~n the node point values. The source term S<p ' whenever possible, is 

linearized in the form: 

The upwind differencing practice is employed for approximating convective 

terms: 

·r if Ce ~ ° 
{ pu<PA)e ::o! Ce 

<PE if Ce < 0 

-rp if Cw < 0 

(pu<PA)w ::o! Cw 
~W if C > 0 w-

which can be rewritten using the following notation: 

[a,b] = max (a,b) 

as {pu~A}e ~~ ~o, Ce] ~p + [0, -Ce] ~E 

and {pu<PA)w ~~ [0, cwD ~W + [0, -Cw] <PW 
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Final'ly, equation {4.3-9} becomes: 

{4.3-16} 

. pVOL 
where M = Llt 

and °0 f)oVOL 0 
M = Llt 

{4.3-17} 

The integrated equation (4.3-16), analogous to equation 4.3-1, can be written 

as: 

{4.3-18} 

{4.3-19} 

{4.3-20} 

{4.3-21} 

Superscript "0" indicates "old tim(~ step" value. 

The above one-dimensional treatment of the differential equation {4.3-9} 
can now be generalized to three-dimensional flows. Consider the finite­
difference equation: 

apcJl p = aEcJl E -I- aWcJlW + aNcJlN + aScJlS + aHcJlH + aLcJl L + SUcp + M°cJl~ {4.3.·22} 

The various ai coefficients are given by: . 
ap = aE + aW + aN + as + aH + aL + M {4.3··23} 

aE = De + [0, - Ce ] 

aW = Dw + [0, Cw ] 

aN = Dn + UO, -Cn] 
{4.3·,24} 

as = Ds + [0, Cs ] 

aH = Dh + [0, -Ch] 

aL = D'I + [0:, -C,] 
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The convective CiS and diffusive Dis fluxes for the y and z directions are 
calculated from the expressions similar to that of equations (4.3-11) and (4.3-6). 

4.3.3 Modifications for Non-Ortho~nality of Grid 

Figure 4.10a shows an example of the computational domain with nonorthogonal 

grid at the downstream part of the chamber. The non-orthogonality is allowed 
only in the axial (x-r) plane. Figure 4.10b depicts a selected control voluma 
of the grid in the non-orthogonal region. 

The inclination of the cell face from the horizontal direction is denoted by 
an angle a. a varies with radius such that a = 0 at the axis of the chamber, 
and a = a at the north wall of the chamber. max 

The net convective flux of fluid across the inclined south face of the control 
cell shown in Figure 40 10 is: 

(4.3-25) 

where As = horizontal projection of the area of the inclined north face; and 

Asx = vertical projection of the inclined north face area. 

As and Asx are related to each other such that: 

(4.3-26) 

The axial velocity at the south cell face Us ;s calculated from a linear 

interpolation between the up' uE' Us and uSE velocitieso Similar expressions 
can b(~ derived for the north face. Note that in the orthogonal regi ons, Asx 

is zero and therefore equation (4.3-25) reduces to the standard convective 
flux. 

C = p As v ssp ( 4.3-27) 
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4.3.4 The Momentum Equations 

The momentum equations have a fi nite-difference form simil ar to that of the 

general ¢-equation (4.3-20); but two main differences exist. First, the 
veloeity components are at "staggered" grid 1 ocat ions; therefore, the control 

volumes used for the velocity components are different from those for the 
other dependE!nt vari abl es. Second, the pressure-gradient term which forms a 
sourc(~ of momentum is given a special treatment. 

Figure 4.11 presents a typical control volume arrangement for the u-velocity 

equation integration. 
NW. N. 

SW. s. 

.E 

u . Control Volume p 

Figure 4.11. Control Volume Arrangement for Integration of u-Momentum 

Note that the pressure node is always in the center of the ¢~control volume. 
However, the velocity for a nonunHorm grid is not necessarily placed in the 
middle of the u-control volume. 

The finite difference equation form of the x-momentum equation is, with the 
pressure gradient term written out separately from other momentum sources: 

apu p = aEu E + aWu W + aNu N + aSu S + aHu H + aLu L + SUu - Aw (pp - pW) + ~ou~ 

(4.:3-28) 

If velocities are solved by Jacobi iteration, it is desirable to rearrange 
the above equation to the following form: 

aEu E + aWu W + aNu N + aSu S + aHu H + aLu L + SU + ~ouo 
up = a

p 
- OU p( Pp - Pl~) 

(4.3-29) where: 
A 

OU :: _w_ 
p ap,u 

(4.3-30) 
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The link coefficients can be written as: 

ap = aE + aW + aN + as + aH + aL + M - SPu 

aE = .5 {(De + 0p) + [0., -e~ - e~'l} 

a =.5 {( 0 + 0 ) + [0, eX + eX ~ } 
W P w P w 

aN =.5 {(On +Onw) +[0., - e~]+ [0., - e~wJl} 

as = .. 5 {( 0 s + 0 S w) + [ 0., ct'] + [0., C~ n} 
aH = .5 {(Oh + Op) + [0., - c~ll+Ro., -c~w] } 

aL = ,,5 {(D l + Op) + [00, e~.n + lo., -cfw'n } 

The rand e momentum equations have similar finite difference form. 

(4.3-31) 

Note that the convective parts of aN' as' aH and aL link coefficients are 
calculated for both convective subfluxes separately (see Figure 4.11). In the 
alternative approach, first a net convective flux is calculated as a sum of 

two subfluxes and then upwind principle is employed, e.g o : 

(4.3-32) 

This practice is used in several existing and widely used codes, e.g. CORA3, 

TEACH~, eOM30 and STARPIC. 

FigurE~ 4.12 presentiS comparison between the practices for a selected flow 

configuration (Cy + Cy 
< 0 and Cy 

+ C
y 

> 0) 
W P NW N 

NW 
UN 

-,...- N 

Y 
ItCNW IIC~ 
II , 

W Up P 
~ 

t C~_ I C~ 
I T I 

sw 
Us 

s --"-- s 

(a) REFLAN (LINKS WITH UN' Us and UW) (b) OTHER (LINKS WITH UN and Uw ONLY) 

Figure 4.12. Convective Link Coefficients for Up - Momentum Equations 
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In redrculation regions, the practice employed in REFLAN3D retains convect'ive 
links with both North and South neighbor velocities uN' uS. Other practices 
maintain the link only with uN. 

The practice used in REFLAN3D code is based on a full conservation principle, 
and, by emplo.ying more links, it is also more accurate than the other practices 
mentioned earlier. A similar treatment yields the link coefficients for 
radial v and circumferential w velocity components. 

The momentum equations are solved by using a modif'ied version of the SIMPLE 
algorithm (Reference 28). In SIMPL~ the momentum equations are first 
solved with a guessed pressure distribution, denoted by p*, to give a first 
approximation to the velocity fields, u*, v* and w* (the starred-velocity 
fields). These velocities are approximate because they do not in general 
satisfy the continuity equation. Corrections to the pressure and velocity 
fields are then obtained from the solution of pressure-correction equations 
which are derived from the continuHy equations (see Section 4.3.5 below). 
These corrections are such that the resulting velocities reduce continuity 
errors. The iterative is continued until convergence. 

4.3.5 The C.gntinuity Equation: Pressure-Correction Equation 

It has been mehtioned above that the velocities obtained from the momentum 
equa t'ions do not sa ti sfy the conti nuity equation, and therefore requ ire 
correction. The correction of velocities and pressure is discussed in this 
section. 

The continuity equation is: 

(1 1 (1 1 (1 ax (pu) + r~ir (pvr) + rae (pw) ::: 0 (4.3 -33) 
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It can be written in the finite difference form as: 

PEVOl P °VOlo 
+ eX - eX + eY - eY + eZ Z _L..._ - el = O. (4.3-34) 

M 1\t e w n s h 

where (to remind) eX = (puA}e' ... (4 0 3-35 ) e 

Again, to start with, a one-dimensional problem is considered. From the 
momentum equations, the following relationships are obtained: 

and 

(4.3-37)* 

Here p' is the pressure-correction, and DU's are the pressure-difference 

coefficients which were calculated from equation (403-30) during the solution 
of the momentum equations. 

For compressible flows additional density correction is performed. The 
correction practice employed is based on the pressure density relation: 

'k (Clp) p=p + _ .. 
Clp • p' 

h (ClP). ,- 1 d were ap 1,) calcu ate from equation of state. 

(4.3-38) 

Substitution of p (4.3-38) and u (4.3-36 and 37) into the mass conserv~tion 

equation (4.3-34) results in: 

VOL ( * + ~ P') _ PE 
0 

VOL 
0 

Cl p 
1\t P Clp P M + (u e* + DUe (PE-. - PP»)(Pe + ap p~) Ae + 

(4.3-39) 

** Equations-rf.3-36) and (4.3-37) are approximate forms of the momentum equations. 
The exact form would be: 

ue = ue* + DUe (pp - PE) + ~ ai (u i - ui*) 
1 

where i indicates summation over the neighboring nodes; and ai are the 
finite-difference link coefficients from equation (4.3-29). 
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If an upwind differencing practice is used for cell-face density calculations 
and ignoring terms of order pl2, the pressure correction equation can be written 

as fo 11 ows: 

where ap = ~~h . ~ + aW + aE + aN + as + aH + aL 

aW = Pw Aw DUw + nO., uwHAw • (C3p/dp) w 

(4.3-40) 

(4.3-41) 

The source term SU represents net mass flux imbalance of the u*, v*, w*-velocity 

fie 1 d • Th us: 
z* 

C, (4.3-42) 

The purpose of the pressure-correction equation is to reduce this mass source 
to zero. When these sources are everywhere zero, the solution is just pI = O. 

After solving equation (4.3-40) the corrected velocities are obtained from 

equations (4.3-36) and (4.3-37). (Similarequati-ons hold for the v-and w­

velocities.) Density is corrected via equation (4.3-30), and pressure, from: 

p = p* + pi (4.3-43) 
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In the derivation of equation (4.3-40), the approximate form of the momentum 

equati on has been used. However, no error is thereby introduced. In a 
converged solution for a steady-state problem, the mass-sources and the pressure 
corrections will have become zero (in reality, a relatively small number) in 

the final iteration so that the solution is independent of what actually went 

into the derivation of the pressure-correction equation. 

Note that after solving pi, correcting velocities and calculating new, 
continuity obeying, convective fluxes the remaining equations.k, E, ~ ••• , etc. 

can be solved in a fully conservative formulation. 

4.4 The Radiation-Flux Equations 

The differential equations for thE~ three composite radiation fluxes Rx' Ry 
and Rz ' equation, (3.6-4) is much simpler than the general equation (3.8-1). 
The equation for the x-direction flux Rx can be written as: 

dR 
~ (r _x) + S = 0 
dx dx (404-1) 

where r = I/{a+s) (4.4-2) 

(4.4-3) 

The finite difference form of thtis equation ;s obtained by integration over 

the x-direction length of the control volume. The integral of the source 
term S is expressed as (SU + SP • Rxp) as before, 'and the complete finite­
difference equation can be written as: 

ap Rxp = aW Rx + aH Rx + SU 
e w 

(4.4-4) 

where ap :: aW + aE - SP 

aw - r elaxe (4.4-5) 

aW - r lax w w 

The distances ox e and aXe are def'j ned in Figure 4.9. 

Similar equations can be obtained for the y-direction and z-direction fluxes 

Ry and Rz , resp~ctively. 
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4.5 Solution Method of the Com.E.:lete Equation Set 
r:v 

For the NX, NY, NZ grid and NVAR dependent variables (u, v, w, p, k, E, ~ ••• ) 

to be solved for,the finite difference equation set can be written in the 

matrix form as: 

As = B (4.5-1 ) 

where s is the solution vector containing all the unknown velocities, pressures, 
enthalpies, concentrations, ·etc., B is the "source" vector and A is the 

coefficient matrix of the form: 

G 
~] 

o 

[~ 
o EJ 

S , 

Figure 4.8. Matrix Arrangement 
for the Complete 
Equation Set 

where the form of D , D , ••• submatrices is as that on Figure 4.8. u v 

It is seen that the matrix A has a large and extremely sparse structure. For 
a typical 3-dimensional problem with 20 x 20 x 20 grid and 10 dependent 

variables (80 000 algebraic equations) matrix A has 64 million elements. Of 

these, less than 48,000 are non-zero. 

Utilization of any direct solvers, such as Gaussian elimination (Reference 40) 
or band solvers (Reference 41), even for much smaller systems is inpractical 
for the following reasons: 

a) prohibitive storage; 

b) such a solver would have to employ partial pivoting because of 
zeros along the diagonal; 

c) solution time of direct solvers is proportional to the number 
of unknowns to the power 2 to 3; and 

d) the equation system is nonlinear so that several matrix inversions 
would be required. 
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The only alternative solution algorithm is to solve the (4.3-3) equations 

separately for each dependent variable. Even in this case, solution of 
equation (4 0 3-3) for three-dimensional flows is a formidable task. 

It has been mentioned before that the momentum equations are solved by the 
Jacobi, point-by-point al gorithm (References 40, 42) 0 The remaining equations 
including pi-equation, are solved simultaneously by the so-called "Whole Field" 
solution process at all control cells within the calculation domain. 

The simultaneous solution practice employed in the REFLAN3D code is described 
in the following sectiono 

4.5.1 The Whole Field Solution Practice 

In last five years, the commonly used "Alternating Direction Implicit", ADI, 
method (References 38, 24) for the solution of a system of algebraic equations 
has been replaced by Whole Field Solvers (WFS). 

Spald'ing and his coworkers (Reference 60, 61) have devised and used a WFS 
which is similar to Stone's Strongly Implicit Procedure, SIP, (Reference 44) 
but compl etely free from any adjustabl e (convergence-promotor) parameter called 
a-parameter. Subsequently Gosman and others (Reference 45 to 48) have 
investigated effectiveness of the WFS. All of these solvers are itenative 

field traverse methods involving a forward march for assembling the solver 
coefficients and backward march for back substitution. However due to the 
inconvenience of indexing practices, the marching directions are not 
reversed or ollternated, as a result these solvers are not symmetric. 

A new fully symmetric solver which is totally independent of the a-parameter 
has been recently developed at CHAM by Przekwas (Reference 49) and employed 
in the REFLAN3D code. 
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Figure 4.13 illustrates the grid node arrangement and the nomenclature for 

the WfS discussion. 

N 

j + 1 

k + 1 

i-1 i + 1 

w ----'---~1f--,----... E 

L 

k -1 

j-1 
S 

Figure 4.13. Grid Node Nomenclature for the WFS Discussion 

With the i ~ j, k indices omitted the FD equation::tan be expressed as: 

(4.5-2) 

The solution algorithm of the z-symmetric 3-D WF solver for the system of the 

FD equations (4.5-2) can be summarized as follows. 

Forway'd March: i) calculate ep independent modified coefficients (in increasing 

i, j, k order) 

E :: aE/D 

N :: a~lD 

H :: aH/D 

L - aL/D 

D - ap - aW Ei _1 - as Nj _1 

ii) calculate the modified right-hand-side (in the order as above). 

B B = {SU + a W { N. 1 ep. 1 . +1 + H. 1 (p. 1 k 1 + L. 1 cP· 1 k 1 + B B. 1) + 1- 1- ,J 1- 1-, + 1- 1-, - 1-

+ as {E. lep'+1 . 1 + H. lep· 1 k+l + L. lep· 1 k 1 + BB. 1))/D J- 1 ,J- J- J- , J- J- , - J-
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Backs.ubstitution: iii) solve::tt:ri'diagonal equations (in decreasing i j order). 

using TDMA or CTDMA (see next section) along each k-line. 

iv) return to ii until number of sweeps or convergence criteria has been reached. 

This method has an additional advantage of implic'it treatment of the periodic 

boundary conditions in the z-direction. It is also generally faster than any 
of the earl ier mentioned practices. 

In the following section a TDMA (Tri-Diagonal Matrix Algorithm) and CTDMA 
(CycJic-TDMA) are discussed. The algebraic equation (4.5-5) along any zpline 
(k=l '0' NZ) can be expressed in general form as: 

where Ak = Lk 

Bk = 1 
(40!i-7 ) 

Ck = Hk 

Ok = BBk + Ek¢i+l + Nk¢j+l 

and can be used as a basis for the following discussion. 

4.5.2 The TIJMA Algorithm 

The solution algorithm consists of two steps: 

a) forward march: where the TOMA coefficients are calculated as follows: 

= 
pC

k cx k Bk + Akcxk_1 
k = 1, 2, ! •• NZ (4 0 5-8) 

~\ = 
Ok - AkSk_1 
Bk + Akcxk_1 
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b) back-substitution: where. values are calculated as follows: 

k = NZ-I, NZ-2" ••• , 2, 1 

4.5.3 The CTDMA Algorithm 

The Cyclic-TOMA algorithm is used to solve the system of equations with 

periodic (cyclic) boundary conditionso Figure 4014 presents a grid arrangE~ment 

with cyclic boundary conditions. 

N-1 N 2 3 k-1 k k+1 N-1 N 2 ---,--r-- --1---' 
I • I • • • • • • • • • • I • I 

_--' ___ L __ . I 
__..J ___ .J 

Figure 4.14. Grid Arrangement and Equation Forms for Cyclic Boundary Cond'itions 

Note that the (k-1) neighbor of CP1 is CPNZ. Detaned description of cyclic 
boundary conditions is discussed in chapter 5. Here only the solution algorithm 
is outlined. Similarly as for TDMA the solution algorithm consists of two steps: 

a) forward march - where the CTDMA coefficients are calculated as 

fo 11 ows: 
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foY' k = 1 

0,1 = °11B1 F = 0NZ 

81 = C1/B1 and G = CNZ (4.5-10) 

°1 = AliBI H = BNZ 

for k = 2, ••• , NZ-1 

and 

where (4.5-12) 

b} back-substitution - where ¢ values are calculated: 

(4.5-13) 

and 

k = NZ-1, NZ-2, ••• ,2,1 (4.5-14) 

4.5.4 Under-Relaxation 

The calculation procedure described above involves the solution of nonlinear 

differential equations expressed in the form of the linearized finite-difference 
equations. Therefore, an iterative procedure has to be applied to continuously 

update the coefficients until a converged solution is obtained. If the changes 

in the values of the variables from one iteration to the next are large, there 
is a possibility that convergence may not be achieved at allo To keep these 
changes sufficiently small, the dependent variables are suitably under-relaxed. 
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There are two under-relaxation practices employed: 

1. inertial under-relaxation of dependent variables (u, v, k, E ••• ); 

and 

2. direct under-relaxation for secondary variables (~, Pl. 

Inertial undc:!r-relaxation of the dependent variables is achieved by adding 

an inertial term viz: Icp(CP - CP*) to the finite equation in the following 
manner: 

where suffix n denotes all cell neighbors, and supscript * denotes previous 

iteration va'lue of cp. The "inedia term" I is calculated as: 

I 
_ p VOL 
- .. 6t

Fcp 
(4.5-16) 

where p is the fluid density, VOL is the grid cell volume and 6t
FCP 

is the 

"falsc~" time step specified for each dependent vaY'iable cp. The main features 

of equation (4.5-15) can be summarized as: 

1. In a converged solution cP = cp*, and therefore the final solution of 
thE! finite difference equation is not affected by the magnitude of 1. 

2. ~tVOL has the dimension of flow rate. 
U FCP 

3. ThE! smaller the value of 6t FCP ' the heavier is the under-relaxation. 

4. J¢* and I are included in SU and SP components of the source term 

so that the general form of the equation remains as Equation 4.5-2. 

The d'irect under-rel axa tion practi ce is implemented by cal cul at ing the under­

relaxE!d cpU-value as a weighted average of just-calculated ¢-value and previous 
iteration ¢*-value in the form: 

(4.5-17) 

where acp is the under-relaxation factor for ¢ variable and has the value 

betweE!n zero and one (a = 1 impl ies no under-relaxation). 
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4.5.5 Calc~lation of Residual Err'ors and Convergence Criteria 

The residual errors are calculated for the equations of all dependent variables 

at each control cell, in the following manner: 

where s~P stands for the residual error in the equation of variable cp at point 
P, and summation is taken over all link coefficients: N, E, W, S, H, ••• 
The above eqlAation is obtained from equation 4.5-16 by transferring all terms 
to the right-hand-side and equating them to the residual error. Three major 

quantities can provide the information on the convergence of the solution 
obtained and can be printed by the REFLAN3D code at any iteration. These are: 

10 Maximum residual error 

RESMAX = max (s~ ) 
ijk 'J'ijk 

20 Global residual error 

RESSUM = E S 
ijk CPijk 

3. Global absolute residual error 

RESSUMABS = E ,scp, 'k' 
i j k 1 J 

Addit'ionally an absolute difference between two consecutive iteration 
cp-values is calculated as: 

DIFMAX = max (CP, 'k - cP, 'k*) 
, 'k lJ lJ lJ 

which is searched for over the entire calculation domain. 

(4.5-20) 

(4.5 -21 ) 

(4.5-22 ) 

The solution is regarded as converged when all above quantities take values 
below their prescribed limits. Usually it requires reduction of two, three 
and sometimes four orders of magnitude of the residual before this occurs. 
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4.6 Integration of the Lagrangean Equations 

4.6.1 Integration Practice 

The Lagrangean equations for the droplet motion, heat and mass transfer (see 

Chaptl?r 3.9) can be expressed in a general form of Q.rdinary ~ifferential 

~quat'ion (ODE) as: 

d <p. 
_d ::: .:I:.. (<p - <Pd) + F dt E g (4.6-1 ) 

where <p and <Pd represent gas-phase and droplet property, respectively. 
9 

The E and F coefficients in general Lagrangean equation (4.6-1) can be 

obtained from equations governing droplet momentum (3.9-3), energy (3.9-8) 

and mass (3.9-11) conservation. The solution practice for the Lagrangean 
and Eulerian ones is totally different. The POE's of the Eulerian part 
are solved as a boundary value problem while the ODE's of the Lagrangean 

part represent an initial value problem. 

Several techniques for solving a system of coupled ODEls of the droplet behavior 

have been used, including integration formulae (Reference 50), second order 
pred ietor-corrector schemes (References 51, 52), and fourth order Runge-Kutta (R-K) 

schemE~ (Refer'ence 53,54) and analitical integration techniques (Reference 20,21,22). 

In th-is study equations (405-1) are ;solved analytically. This technique offers 

considerable economy in computing time in comparison with the iterative fourth 
order R-K scheme (Reference 53), 

Integration of equation (4.6-1), assuming the gas property <Pg is constant over 
the time of integration, yields: 

<P = <P~l - (<Pg - <Pd) exp (- ~t ) + E F (1 - exp (- f!':..) (4.6-2) 

where 6t is the time interval. It is worthy to note that the E factor represents 

a characteristic time scale (or relaxation time) for the process. If, during 

the integration process, the time scale ratio 6t/E is larger than say 20, the 
exp (-6t/E) is smaller than 2.10-9 and the integration effort of equation 
(4.6-2) is greatly simplified. 
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4.6.2 Droplet Trajectory 

After determining droplet velocity at time t + M, the droplet position at 

time t + ~t is determined from: 

~here x
d
o is the droplet position at the beginning of the time increment and 

Ud
o is its initial velocity (at idol. 

Figure 4.6-1 depicts consecutive droplet positions along its trajectory crossing 

the orthogonal Eulerian grid cells. The integration process starts at the cell 

surface (position xl in Figure 4.6-1) where cell droplet inlet properties 

Ud ,Vd 'Wd ,Td ,Dd ,are solved. 
IN IN IN IN IN 

YMI\J ___ , ___ -+-_____ +-_ 

w. 

-
YMp -- ,--_-+ ____ --..:~..:.. 

Figure 4.6-1. Droplet Trajectory Passing the Computational Cell 

Next the estimate for the time interval for the integration process is 

ca 1 cu·1 a ted as: 
(V p + VN)/2 Ud Vd 

~y , f'1x ' t:.-y) 

where a INT < 1 is the parameter approximately specifying the number of 

integration interval before the droplet reaches the exit position at the grid 

4-29 



cell face. As an example, in uniform gas and droplet velocity field, a INT = 1/5 

would imply five time steps within the grid cell. 

Then the new droplet velocities, tE~mperature and d"iameter are calculated from 

equation 4.6-1 and new droplet position is established from equation 4.6-3, 
(point 2 in Figure 4 0 6-11). Next, integration time interval 6t is calculated 

again and the integration process is repeated until droplet crosses the cell 

face (point 4 in Figure 4.6-1). 

At this stage linear interpolation is employed between points 3 and 4 to find 

droplet properties (ud ' vd ' wd ' Td, Dd) at the cel"! face (point 4 in Figure 
4.6-1). A droplet exit point "Ex" has been found and the integration procedure 

is completed by calculating interphase sources between the liquid and gas phase. 

The mass transfer, for example, is calculated as: 

(4.6,·5 ) 

where ~d is the number of droplets traversing the grid cell in unit time. 

Detailed discussion of the interphase source calculation is discussed in the 
following section. 

The exit droplet position in the P grid cell (point 4 in Figure 4.6-1) is 

considered as an entry point for E··grid cell and the integration process 

starts again. The droplet trajectory is traced until the first of the following 
conditions is met. 

a) droplet diameter diminishes to zero; 

b) droplet leaves through the exit of the calculation domain; or 

c) droplet hits the chamber wall where it evaporates. 

A special treatment is required for tracking the droplet on a nonorthogonal 
grid. Figure 4.6-2 depicts a typical droplet trajectory and its inlet (IN) 

and exit (EX) cell boundary intersection locations. 
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w. 

------~--~~~-+~----YM 1 YM2 

XMp 

FigurE~ 4.6-2. Droplet Tracking on Nonorthogonal Grid 

In the case of orthogonal coordi nates the cell boundaries XM E, XM p' YM N, YMp 

(Figure 406-:n were constant within the grid cell and independent on the 
droplet locationo For nonorthogonal coordinates, however, at every integration 

step a continuous update of YMp and YM N as a function of Xz - droplet location 
is required. 

Also the intE~rpolation process of the Exit droplet position (point 4 in 
Figure 4.6-2) requires the solution of two algebraic equations viz: 

- droplet trajectory equation; and 

- grid cell face plane equation. 

4.7 Interphase Transfer Source Terms 

In the philosophy of the Eulerian··Lagrangean approach, the droplets are regarded 
as source of mass, momentum and energy to the conveying gaseous phase. The source 
terms are incorporated into the gas flow equations, providing the influence of 
the droplet spray on the gas velocity and temperature fields. 

In each grid cell crossed by the droplet trajectory,appropriate interphase 

sources are calculated based on the droplet mass, momentum and energy 
difference between the inlet and the outlet from the cell. 
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The number of particles per unit time, which enter at port and have an 

initial mass M~j is given by: 

where md is the total droplet mass inflow rate, X. is the fraction of droplet 
. J 
mass which enters at port j, and Y. is the fraction of droplet mass with 

1 

initial diameter Di • The number flow rate of spherical droplets with initial 
diameter Dis along a given trajectory is calculated as: 

~y = ~ rfId Xj ;i (4
0
6-8) 

7f Pd D~i 

where Pd is the droplet den s ity 0 

This value is constant along a droplet trajectory, provided no droplet coalescence 

or shattering takes place. 

Assuming the droplets are spherical:. the continuity source term, ~d' representing 
the net efflux rate of droplet mass to the gas phase, is given by: 

(4.6-9) 

where the summations are performed over all trajectories crossing the grid cell. 
The "EX" and "INL" subscripts refer to the droplet exit from and inlet into the 
control volume {Figure 4.6-2}. The source terms for the remaining dependent 

0J variables ~ (u, v, w, k, E, n, m .••• ) are calculated from the following 
J 

expression: 

where ~d and ~ represent average ~-property of the liquid and gas phase in the 

control volume, respectively. Note that the above formula can be conveniently 
linearized as: 

(4.6-11 ) 
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With the assumption that the mass is transferred from liquid to the gaseous 

phase ( md > a). A simple way to calculate droplet average property ~ is to 

take an.average from the inlet ¢d,INL and exit ¢d,EX to the control vo~ume and 
then welghted on all droplet sizes. Some of the droplet properties remain 

constant during the integration period and average $d can be specified directly. 
These include: 

$d = 1 for f and mfu 
$d = CPd • T sat + HFU for h 

$d = a for k, E and mCa 

where CPd and HFU are droplet specific heat, and droplet mass heat of 
combu st i on. 

4.7.1 Interphase Momentum Transfer 

There are two mechani sms of the momentum transfer between the 1 i qu id and vapor 0 

1) momentum transfer with the associated mass: 

L\rfl (ud - u) 

2) frictional momentum transfer: 
f (u 2 _ u- 2 ) 
D d 

(4.6··12) 

(4.6 .. 13) 

The second mechanism has not been incorporated in the present version of the 
code and is planned to be included in the future calculations. Nonlinear 
characters of the friction terms requires special linearization practice for the 

momentum equation source terms. The linearization practice for these terms 
should be implemented in the following manner: 

a) the source term can be expressed as: 

* * + aSu I u-J() = Su = Su (u -au 

fD (U/ 
? 

-*~) - u - 2 fD lu*/ (u - u*) 

b) appropriate source terms for the u-momentum equation should 
be added as follows: 
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5. BOUNDARY CONDITIONS AND THEIR TREATMENT 

5.1 Introduction 

In ordf~r to completely specify the mathematical problem it is necessary to 

supply the conditions at the boundaries of the solution domain for all the 
dependent variables. These conditions are usually either specification of 

the value of the dependent variable at the boundary, or the value of the 

associated nux or a relation between the two. 

Figure 5.1 presents an example of the computational domain and appropriate 

boundary conditions which may in general include: 

RP1 

LOX 

RP1 

Inlets 

1. inlet of gaseous or liquid species (fuel, air, steam, etc.); 

2. ex'its plane; 
3. center-lines and/or symmetry planes; 

4. periodic boundary conditions; and 

5. so"l'i d wa 11 s • 

A-A 

Wall 

- ._1...... - -rL)( 
LA 

Figure 5.1. Computational Domain and Boundary Condition Specification 
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For each dependent variable,at all boundaries,appropriate modifications of the 
finitH difference equation at the linear boundary" nodes is required. For most 

of the dependent variables the boundary conditions are implemented by modifying 

the source terms SU</> and SP</> of the finite difference equation: 
E 
d ad </>d + SU</> 

</> =.. (5 0 1-1 ) P E ad ... SP 
d </> 

These modification practices are discussed in the following sections o 

5.2 Inlet With Specified Flow Rate 

At the inlet the amount of incoming mass flow rate ~IN through the boundary 
cell face and the incoming </>B property should be specified. In this case 
the finite-difference coefficient connecting the boundary node to its 

neighboring internal node is set to zero and then the su</> and SP</> source terms 
are modified as: 

SU</> = SU</> + ~IN </>B 

SP</> = sp</> - ~IN 

(5.2-1 ) 

(5.2-2) 

The pressure correction equation is not modified in this manner. A link 

coefficient with the boundary node is set to zero for p'-equationso 

5.3 Symme~ry Plane or Axis 

At symmetry plane a zero mass flux rflIN = 0 is assumed. The modification is 
implemented by setting the appropriate coefficient to zero (Figure 5.2) and 
no modification is required to the source terms. 

N 

w Up --- p 

----
s 

FigurE~ 5.2. as = 0 at the Symmetry Plane 
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Gas phase injectors, or liquid spray injections with instantaneous evaporation 

assumption, are treated in a similar way. The liquid spray injection for 
which the La9rangean droplet tracking is employed do not require specification 

boundary conditions in Eulerian meaning. Instead an appropriate initial droplet 
condition should be specified. 

5.4 Exit Boundary 

Where the fluid flows out of the calculation domain, information about most of the 

dependent variables is often not available. However, since it is the process 

occurring in the calculation domain that decide the values of the variables 
which the outgoing fluid will carry, information is not strictly required at 

such boundaries. To treat these boundaries, the boundary coefficients are 
simply set to zero. 

If a fixed exit pressure boundary condition is specified, the velocity normal to 

the exit plane is solved for at the exit boundary and the pressure correction 
pi _ link coefficient with the exit boundary is calculated. A specified 

pressure correction pi E= 0 at the exit boundary is employed o 

5.5 Perio~lic Boundary Conditions 

The periodic (cyclic) boundary conditions appear in the circumferential 

direction if the two ends of the calculation domain in the z-direction join 

up with one anothero This can occur in a polar-coordinate direction in which 

the whole angular extent from 0 to 3600 is to be considered (Figure 5.3a), or 
when "repetition" is present in the flow pattern in the angular coordinate 
direction (Figure 5.3b)o 

The general rule is that whenever identical conditions are to be expected at 
z = 0 and z = last z, and finite flow is to be expected at that surface, then 
the boundaries are cyclic. 

In this circumstance, the boundary conditions can be specified as follows: 

CPLB = CPN CPHB = CP1 and cf = C~B (5.5-1) 

where indices HB and LB denote High Boundary (k = N) and Low Boundary (k == 1), 
CZ is the convective flux in the z-direction. 
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CYCLIC CONDITIONS FOR 8 = 1200 SECTOR 

FigurE~ 5.3. Grid Notation for Periodic Boundary Conditions in Z-Direction 

5.6 Wall JBoundaries 

At the solid walls, the velocity normal to the wall and appropriate convective and 

diffusive fluxes are set to zero. The boundary conditions which can be easily 

specified at the solid walls (Figure 5.4) include: 

~ /= 0 'dy B 

// ///"-C 

[
/////////////// :/// / 

t:-.y 
w up P uE -f-- __ -===f=-___ E 

------I-~,:...p ----' 

S 

Figure 5.4. Grid Cell Adjacent to the Solid Wall 

5-4 

{5.6-1} 

{5.6-2} 



The boundary conditions for velocity components parallel to the wall; for k~ 

E: and ~ require special linear wall lU treatment. 

There are two important features that distinguish near-wall regions from other 

parts of the flow field. Firstly, there are steep gradients of most of the 

flow properties, and secondly, the turbulent Reynolds number is low so that 
the effects of molecular viscosity can influence the shear stresses, 
production dissipation and transport of turbulence energy. 

The vigorous incorporation of these effects requires a prohibitively fine 

finite-difference grid in the vicinity of the wall. 

An alternative approach, however, is available which bridges the near wall 
region and the outer edge of the v'iscous sublayer by using the "wall functions". 
These are described below. 

5.6.1 Wall Functions 

The wall functions described by Patankar and Spalding (Reference 55), Launder 

and Spalding (References 1, 56) and more recently by Launder (Reference 57) 
are derived from experimental and analytical knowledge of tDe one-dimensional 

Couette flow which exists near the wall. A semi-empirical universal function 
of nondimensional distance normal to the wall y+, is: 

+ y -
p oy. U 

]1 

T (5.6,·3) 

In -t:he above definition oy is the distance normal to the wall (Figure 5.4 ) 

and u
T 

is the "friction velocity" given by: 

T 1/2 
u

T 
= (p w) (5.6-·4) 

+ In the! internal sublayer (y > 11.63) the velocity variation may be described 
by a logarthmic relationship (see Schlichting (Reference 58)) i.e.: 
_ uT + 
U = _ .. ~n (Ey ) (5.6-5 ) 

K 

where E = 9.793 and K = 0.4187 are experimentally determined constants. 
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In both the viscous (y+ .::,.11.63) and internal (y+ > 11.63) sublayers, the 

shear stress is calculated from the product of effective viscosity Ueff and 
normal velocity gradient dU/dY, ioe.: 

dU 
LW = Ueff dy 

+ U for y .::,.11.63 
where Ueff =: + 

Uturb for y > 11.63 

(5.6-6) 

. Near the wall, the transport equation for the turbulent kinetic energy, k, 
reducE!s to a balance between the local production and dissipation of k 

(References 1, 56) to give: 
•. 2 

U
t 

(dLL) = pE: (5.6-8) dy 

The velocity gradient may be replaced from equation (5.6-6) and the dissipation 

rate from: 

= C p k
2
_ 

Ut lJ E 

to give: 

L - C1/ 2 p k = p u2 
w - 'lJ L 

(5.6-10) 

Hence, it follows from equation (5.6-5) 
C 1/4· k 1/2 -

_ P lJ U 

LW -1 n (E'-+) K- Nn .. y 

50 60 2 Veloclity Boundary Conditions 

Equation (5.6-11) is introduced into the finite-difference equation (5.1-1) 

by setting the value of the link coefficient ad (connecting point p with the 

wall node B) to zero, and adding to SPu the term LW • Awall where Awall is the 
cell wall arE~a over which Lwactso For the velocity normal to the wall the 
same process is applied, but the normal shear stress is set to zero. 

5-6 



5.6.3 Turbul~nce Variables 

Due to the steep velocity gradients near the solid walls the assumption of 'Iinear 

variation of ~ is inaccurate and can cause incorrect evaluation of the turbulence 
generation rate G. To overcome this, the generation term near the wall is written as 

(506--12) 

where TS is evaluated according to equation (5.6-11). This is incorporated 
into the difference equation (5.1-1) by setting the link coefficient ad to 
zero and modifying the source terms as follows: 

SU k = au 
T -W ay (5.6-.13) 

p2 Cok ali SP = ... ---- ay k LW 
(5.6-·14) 

The diffusion of the dissipation rate of turbulence at the wall is a 1 ittle 
difficult to E~xpress. Instead of attempting to calculate rwall for E, use is 

made of the fact that the length scale 1 varies linearly with distance in the 
neighborhood of a walL Thus, the practice is to "fix" the value of E at the 
near-wa n grid point in accordance with: .' 

E = C 3/4 k 3/2 (K8) o (5.6.-15 ) 

The fixing of E (and similarly for other quantities) can be done by the use 
of the follow'ing expressions for'SU and SPc- of the near-wall point: 

, E Co 

= 1010 
E * 

(5.6-16) 

When such large values of SU and SP are present, the actual value of a normal 

rwallis immaterial 0 

10 *Instead of 10 ,any suitable large number may be used, as long as it is 
ensured that the other terms in the finite-difference equation are negligible 
compared to these two terms. 
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5.6.4 Stagnation Enthalpy 

For tw'bulent flow, expressions have been developed, similar in form, to 

equation 5.6-11, in order to evaluate the heat flux qw across the wall boundary 

layer; the one! employed here is due to Jayatillaka (Reference 57} and writes: 

+ -1 dT 
~ = - LL { 1. JIJ1 (EY+) + Ph} _.J!. 
w 0h K dy 

(5.6-17} 

8Tw . h where Ciy 1S the normal temperature gradiento The term, Ph' expresses t e 

contribution of the laminar sublayer to the total resistance and is calculated 

as: 

0~ o~ -1/4 
P = 9 {;;- - l} {-} 

vh °h 
(5.6-18 ) 

where Cfe and on are laminar and turbulent Prandtl numbers, respectively. 

For laminar flow (y+ < 11 0 63) the corresponding expression for the heat flux 

is: 

q = w 
(5.6-19) 

Equation (5 0 1.,1) for h is modified by breaking the link between the near-wall 

nodes and adding to SU h the term qw. Awall ,where Awall is the cell-wall area 

through which qw is transferred. 

507 Boundary Conditions for the Radiation Equations 

A provision of zero gradient of net radiative heat fluxes at the calculation 

domain boundades is provided as the default case. This is achieved by 

making relevant boundary link coefficients to zero. Other boundary specifications 

can be handled by the modifications of the near-boundary source terms. This 

is outlined below. 
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Making the boundary coefficient zero implies that {rdR/dx} for the boundary 
cell surface 'is made zero. This can be seen to be equal to -Q/2 from equation 
3.6-3. 

Thus, the required source-term modification for the cell close to the boundary 

can be stated as the inclusion of ··Qx/2 for the boundary as an additional source 
term. For various particular cases, this will involve the following additional 

contributions to SU and SP. 

Symmetry Pl ane 

At a symmetry plane, Qx is zero by definition. Hence no modification of SU 
and SP is needed. 

Non-Reflecting Boundary 

If the outgoing radiation leaves the calculation domain without reflection 

and if the incoming radiation, equal to, say L, is given, from the definitions 

of Rx and Qx' 

{5.7.-1} 

Thus the additional SU should be L (which is given) and the additional SP 
shoul d be -1. 

Wall B9undary 

If EW is the emissivity of the wan and EW the black-body emissive power at 
the wall temperature, the flux leaving the wall, say L, is given by: 

L = EWEW + (1 - EW) K 

emitted reflected 

(5.7·-2 ) 

Again, via the definitions of Qx and Rx' the following relation is obtained 
from equation (5.7-2): 

(5.7 .• 3) 
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Thus, {EW EW/(2 - EW)} becomes the additional SU while {-EW/(2 - EW)} is the 
additional SP. 

The y- and z-direction fluxes are treated in a similar manner. It should, 
however, be remarked that for the radial direction the additional source 
term for the :v-direction flux is (-.rQy/2), where r is the radius of the 
boundary surface. 
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6. NOMENCLATURE 

AW,Ap ••. - Area of the grid cell (W-face, E-face 9 ••• ) 

a - Absorption coefficient for radiation 

aE,a W' ••• - Finite difference 1 ink coefficient (E·.east, W-west, N-north, .•• ) 

aox - Oxygen mass fraction in oxidizer 

a j - Polynomian coefficient for cp-calculation 

B - Eddy-Break-Up model constant 

b. - Polynomian coefficient for cp-calculation 
J 

C - Convective fl ux 

C1,C2,C D Turbulence model constants 

Cp - Specific heat of mixture at constant pressure 

c j - Polynomian coefficient for cp-calculation 

o - Droplet diameter 

DU ,DV ,DW - Pressure-difference coefficients 

dj - Polynomian coefficient for cp-calculation 

E - Activation energy in the Arrhenius reaction rate law (Chapter 3.7); or 

I 

J 

K 

Black body emissive power (Chapter 3.6); or 

A constant in the law of the wall (Chapter 5) 

- Mixture fraction 

- Generation rate of turbulence energy 

- Concentration fluctuation 

Heat of combustion foY' j-th species 

- Stagnation enthalpy 

- False inertia term (Chapter 4.5); or 

Radiation flux in the positive x-direction (Chapter 3.6) 

- Radiation flux in the negative x-direction 

- Radiation flux in the positive r-direction 
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k 

L 

M 

M. 
J 

m. 
J 

m 

N 

NS 

n 

P 

- Kinetic energy of turbulence 

_ Radiation flux in the negative r-direction 

.. Mixture molecular weight (Chapter 3.3); or 

Radiation flux in the positive z-direction (Chapter 3.6); or 

Mass of the control volume (Chapter 4.3) 

- Molecular weight of species j 

- Mass fraction of species j 

- Coefficient in hydrocarbon composition (C n Hm) specification 

Radiation flux in the negative z-direction 

Number of speci~s participating in the mixture composition 

- Coefficient in hydrocarbon composition (Cn Hm) specification 

- Resistance of the laminar sublayer (Chapter 5.6); or 

Pre-exponential factor in Arrhenius reaction rate expression 
(Chapter 3.7) 

p - Pressure 

pi _ Pressure correction 

Qx,Qy,Qz - Net radiative heat fluxes inthe x, y and z (or e) directions 

R. - Mass rate of creation of species j by chemical reaction 
J 

R - Universal gas constant 

Rx,Ry,RzComposite radiation fluxes (dependent variables) in the x, y, 
z (or e) directions 

r - [) i stance from ax is of symmetry 

S - Source term 

SU, SP - Parts of linearized source term 

s - Mass ratio of stoichiometric osidant/fuel proportions (Chapter 3.7); or 

- Radiation scattering coefficient (Chapter 3.6) 

T - Absolute temperature 

t - Time 
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u, 

U 

V, '1/ Velocity components in the x, y and z (or e) directions 

- Velocity vector 

W - Angular velocity (W = rw) 

x, y, z - Coordinate distances 

+ y - Dimensionless distanc(~ from the wall 

Greek ,Symbol s. 

a - Relaxation factor 

y = mfu - moxls 

r - Diffusion coefficient 

f:..x,f:..y,f:..z - x-direction, y-direct'ion and e (or z) direction lengths of a 
control volume 

oX,oy,oz - X-, y- and z-directioll distances between the node points 

E - The dissipation rate of turbulence 

EW - Wall emissivity 

e - Coordinate distance 

K - Von Karman constant 

~ - Viscosity 

p - Density 

a - Laminar Prandtl/Schmidt number (Chapter 3.8); or 

Stefan-Bolzman constant (Chapter 3.6) 

- The general dependent variable 

- Spherical angle 

Su bscr.i pts 

A - Air inlet 

d - Droplet 

eff - Effective value 

E - East side (x +) neighbor 

EBU - Eddy-break-up 

fu - Fuel 
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F 

H 

f{ 

int 

j 

k 

L 

1 

t 

N 

ox 

pr 

stoich 

S 

t 

v 

W 

- Fuel inlet 

- High size (z +) neighbor 

- Stagnation enthalpy 

- Interphase value 

- Species j 

- Kinetic energy of turbulence 

- Low size (z-) neighbor 

- liquid 

- Laminar 

- North side (y +) neighbor 

- Oxygen 

- Products 

- Stoichimetric 

- South side (y-) neighbor 

- Turbulent 

- Vapour 

- West side (x-) neighbor 
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