General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
(NASA-CR-173924) THECHETICAL RESEARCH N84-32502
phOGBAM TO PAEDICT THE PEOEEHTLES OR molecules and clustees coniaining transimion
Theoretical Research Program to Predict theProperties of Molecules and Clusters containing
Transition Metal Atoms
Final Report Covering Period July 1981. - July 1984
Supported under NASA Cooperative Agreement NCC2-148
NASA Technical Officer: Dr. David CooperNASA Ames Research CenterSTC 230-3Moffett Field, CA 94035
Principal Investigator: Dr. Stephen WalchPolyatomics Research Institute1101 San Antonio Road, Suite 420Mountain View, CA 94043

The enclosed document is the final technical report on work performed under NASA Cooperative Agreement NCC2-148. This report covers the work of Dr . Stephen Walch who acted as principal investigator. The information contained herein is complete and was submitted in July, iy84.

TABLE OF CONTENTS
INTRODUCTION 1
TRANSITION METAL HYDRIDES 2
TRANSITION METAL DIMERS 6
$\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ CLUSTER CALCULATIONS 15
LIST OF PUBLICATIONS. 16
APPENDIX A 19
APPENDIX B - Reprints of papers describing calculationsfor Transition Metal Hydrides and Dimers.

I. INTRODUCTION

The primary focus of this research has been the theoretical study of transition metal (TM) chemistry, A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method employed in the iron hydrogen studies is the ciluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results. Therefore it is not possible to include all of the valence electrons on each iron atom. In the present calculations only the 4 s electron of each iron atom was included directly in the calculation while the Ar core and 3d electrons are incorporated into the effective core potential (ECP) based on the $4 s^{1} 3 d^{7}$ state of the Fe atom. In order to understand the effects of removing the 3d electrons from the valence space, it is necessary to have detailed information about the nature of TM-TM and TM-H bonding. For these reasons we have carried out in parallel two levels of calculation: i) highly accurate studies of TM dimers and hydrides. (These studies are carried out with large basis sets and include extensive electron correlation). 1i) studies of large clusters of Fe atoms with and without H adatoms. [These studies are carried out at the SCF level and make the approximation of incorporating the TM core and 3d electrons into the core (ECP approximation).] The studies of diatomic species provide benchmark calculations which are used to test the approximations in the cluster studies, while the cluster studies on $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ are designed to provide potential function input for studies of hydrogen embrittlement.

Since much of the work to be discussed here has been described in manuscripts, relevant manuscripts have been included in the appendices and the reader is referred to these papers and to the publications list for further details. This report concentrates on the TM hydrides, TM
dimers, and $\mathrm{Fe}_{\mathrm{n}}{ }^{H}$ cluster results. The $\mathrm{Fe}_{\mathrm{n}}{ }^{\mathrm{H}}$ cluster results are described in detail in a manuscript included as Appendix A. The results for the TM hydrides and dimers are summarized in Sections II and III, respectively; while, Appendix B contains copies of publications on these topics. During the course of this work several other projects were undertaken. These include all-electron calculations on the CsH and Cs_{2} molecules, calculations on the alkali dimers, an ab-initio study of corevalence correlation, and studies of atomic correlation and basis sets. References to this work are given in the publications list.

II. TRANSITION METAL HYDRIDES

Fig. 1 shows the relative ordering of the $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n+1}$ states of the TM atoms. The important features of Fig. 1 are: 1) a monatonic decrease in excitation energy from Sc to $C r$ with $4 s^{1} 3 d^{n+1}$ an excitated state for $S c$ through V but the ground state for $C r$. ii) a sharp reversal in the ordering of the states for Mn with $4 s^{2} 3 d^{n}$ again lower, and iii) a monatonic decsease in excitation energy from Mn to Cu with $4 \mathrm{~s}^{1} \mathrm{~d}^{10}$ the ground state of Cu . The character of the ground states of the TM hydrides is strongly correlated with the ordering of atomic states. For example, for CrH the ground state is ${ }^{6} \mathrm{C}^{+}$arising from $4 s^{1} 3 d^{5}$ while for MnH the ground state is ${ }^{7} \Sigma^{+}$arising from $4 s^{2} 3 d^{5}$. For elements where the $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n+1}$ states are closer in energy a strong admixture of states occurs, e.g. for VH the ground state is ${ }^{5} \Delta$ arising from a mixture of $4 \mathrm{~s}^{2} 3 \mathrm{~d} \pi^{2} 3 \mathrm{~d} \delta^{1}$ and $4 \mathrm{~s}^{1} 3 \mathrm{~d} \sigma^{1} 3 \mathrm{~d} \pi^{2} 3 \mathrm{~d} \delta^{1}$ atomic character with a 3d population of ~ 3.4.

The ratio of sizes of 4 s and 3 d orbitals increases monatonically from 2.364 to 3.239 going from Sc to Cu . Because the 4 s orbital is so much larger than the 3d orbital we find the bonding in the TM hydrides involves primarily the 4 s electrons (with some admixture of 4 p character) while the 3d electrons remain essentially atomic like. The one exception is ScH which shows a $\mathrm{Sc}(3 \mathrm{~d})-\mathrm{H}(1 \mathrm{~s})$ bond in the lowest ${ }^{1}{ }_{\Sigma}{ }^{+}$state. Note that Sc is most likely to show 3d bonding since the 4 s and 3 d orbital sizes are more nearly comparable.

CASSCF/CI studies have been carried out for TIH, VH, $\mathrm{CrH}, \mathrm{MnH}$, FeH, and NiH. These calculations show good agreement with experiment for the R_{e}, ω_{e}, and D_{e}; thus confirming the theoretical model.

Studies have also been carried out for the ${ }^{5} \Delta$ state of FeH^{-}. These calculations show that photodetachment from FeH^{-}leads to a large change in R_{e} for the ${ }^{4} \Delta$ state but little change in R_{e} for the ${ }^{6} \Delta$ state. These results confirm the assignment of Stevens, Fiegerle, and Lineberger (SFL) of the vertical photodetachment transition with a long vibrational progression to ${ }^{4} \Delta$, and hence that the ground state of FeH is ${ }^{4} \Delta$. However the calculations show that the simple theoretical model used by SFL to assign the above transitions is not correct in that the ${ }^{4} \Delta$ state of FeH
and the ${ }^{5} \Delta$ state of FeH^{-}have 3d populations of 6.26 and 6.50 respectively, whereas SFL assumed 7.0 for both of these states. Thus the theoretical calculations in conjunction with the experiment by SFL establish that the ground state of FeH is ${ }^{4} \Delta$.

ORIGINAL PAGE IS

 OF POOR QUALTTY

FIC. 1. $4 s^{1} 3 d^{n+1}-4 s^{2} 3 d^{n}$ excitation energies of scandium to copper $\left[\mathrm{E}\left(\mathrm{sd}^{\mathrm{n}+1}\right)-\mathrm{E}\left(\mathrm{s}^{2} \mathrm{~d}^{\mathrm{n}}\right)\right.$]. All units are in $e V$.
III. TRANSITION METAL DIMERS.

For the TM dimers molecular states may arise from three different atomic asymptotes: $4 s^{2} 3 d^{n}+4 s^{2} 3 d^{n}, 4 s^{2} 3 d^{n}+4 s^{1} 3 d^{n+1}$, and $4 s^{1} 3 d^{n+1}+$ $4 s^{1} 3 d^{n+1}$. The accessibility of these asymptotes of course depends on the $4 s^{1} 3 d^{n+1}-4 s^{2} 3 d^{n}$ excitation energies (see Fig.1). Thus for Sc_{2} we find that the low-lying states arise from the first two asymptotes with $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{\mathrm{n}+1}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{\mathrm{n}+1}$ too high in energy to lead to the ground state while for Ti_{2}, V_{2}, and Cr_{2} the ground states arise from the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{\mathrm{n}+1}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{\mathrm{n}+1}$ atomic asymptote.

Because the 4 s orbital is significantly larger than the 3d orbital the predominant interaction in the TM dimers at large internuclear distance (R) is between the 4 s electrons with very 1ittle 3 d interaction. For states arising from the $4 s^{2} 3 d^{n}+4 s^{2} 3 d^{n}$ atomic asymptote this interaction is basically repulsive and only a shallow well at large R_{e} ($\sim 8.0 \mathrm{a}_{0}$) arising from the $4 \mathrm{~s} \rightarrow 4 \mathrm{p}$ near degeneracy effect is observed. For states arising from the $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{\mathrm{n}}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{\mathrm{n}+1}$ atomic asymptote the 4 s interaction is weakly bonding at intermediate R but is repulsive at small R leading to intermediate R_{e} values ($\sim 5.0 a_{o}$). At these R_{e} values the 3d-3d overlaps (S) are small which favors one-electron 3d bonds whose bonding terms vary with distance like S over two-electron 3d bonds whose bonding terms vary with distance like s^{2}. Finally for states arising from the $4 s^{1} 3 d^{n+1}+4 s^{1} 3 d^{n+1}$ atomic asymptote the $4 s-4 s$ interaction is attractive and also appears to be relatively flat well inside the optional $4 s-4 s$ bonding radius. Thus, states arising from this atomic asymptote are able to move into short R_{e} regions where the 3d-3d overlaps are large enough to favor two-electron 3d bonding.

For the TM elements with more than half filled 3d shells, the formation of 3d bonds becomes much less favorable for two reasons. First the $4 s$ to 3 d orbital sizes are larger for the right half of the first transition row. Secondly the presence of doubly occupled 3d orbitals leads to repulsive interactions which effectively cancel any bonding interactions from the 3d shell. Thus the bonding here is dominated by the 4 s electrons. An example is Cu_{2} where the Cu atom has a $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$
ground state and the bonding is predominantly a $4 s-4 s$ bond with the 3d electrons remaining acomic like.

The dominant configurations for important states of those TM
dimers which have been studied are:

$$
\begin{aligned}
& \mathrm{Sc}_{2} \quad{ }^{3} \Sigma_{\mathrm{g}}^{-} 4 \mathrm{~s} \sigma_{\mathrm{g}}^{2} 4 \mathrm{~s} \sigma_{\mathrm{u}}^{2} 3 \mathrm{~d} \pi_{\mathrm{xu}}^{1} 3 \mathrm{~d} \pi_{\mathrm{yu}}^{1} \\
& { }^{5} \Sigma_{u}^{-} 4 s \sigma_{g}^{2} 3 d \sigma_{g}^{1} 4 s \sigma_{u}^{1} 3 d \pi_{x u}^{1} 3 d \pi_{y u}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& 1_{\Sigma_{g}}^{+} 4 \mathrm{~s} \sigma_{\mathrm{g}}^{2} 3 \mathrm{~d} \sigma_{\mathrm{g}}^{2} 3 \mathrm{~d} \pi_{\mathrm{xu}}^{2} 3 \mathrm{~d} \pi{ }_{\mathrm{yu}}^{2} \\
& \mathrm{v}_{2} \quad{ }^{3} \Sigma_{g}^{-} 4 \mathrm{~s} \sigma_{g}^{2} 3 \mathrm{~d} \sigma_{g}^{2} 3 \mathrm{~d} \pi_{\mathrm{xu}}^{2} 3 \mathrm{~d} \pi_{y u}^{2} 3 \mathrm{~d} \delta_{\mathrm{xyg}}^{1} 3 \mathrm{~d} \delta_{x^{2}-y_{g}^{2}}^{2} \\
& \mathrm{Cr}_{2} \quad 1_{\Sigma_{g}^{+}} 4 \mathrm{~s} \sigma_{\mathrm{g}}^{2} 3 \mathrm{~d} \sigma_{\mathrm{g}}^{2} 3 \mathrm{~d} \pi_{\mathrm{xu}}^{2} 3 \mathrm{~d} \pi_{\mathrm{yu}}^{2} 3 \mathrm{~d} \delta_{\mathrm{xyg}}^{2} 3 \mathrm{~d} \delta_{\mathrm{x}}^{2}-y_{\mathrm{g}}^{2} \\
& \mathrm{Cu}_{2} \quad 1_{\Sigma_{g}^{+}} 4 \mathrm{~s} \sigma_{\mathrm{g}}^{2} 3 \mathrm{~d} \sigma_{\mathrm{g}}^{2} 3 \mathrm{~d} \pi_{\mathrm{xu}}^{2} 3 \mathrm{~d} \pi_{\mathrm{yu}}^{2} 3 \mathrm{~d} \delta_{\mathrm{xyg}}^{2} 3 \mathrm{~d} \delta_{\mathrm{x}}^{2}-\mathrm{y}_{\mathrm{g}}^{2} \\
& 3 \mathrm{~d} \sigma_{u}^{2} 3 \mathrm{~d} \pi_{x g}^{2} 3 \mathrm{~d} \pi_{y g}^{2} 3 \mathrm{~d} \delta_{x y u}^{2} 3 \mathrm{~d} \delta_{x}^{2}{ }_{x}-y_{u}^{2}
\end{aligned}
$$

Fig. 2 shows calculated potential curves for low-lying states of Sc_{2}. The initial study of Sc_{2} by Walch and Bauschlicher found only weakly bound states arising out of the ${ }^{2} D+{ }^{2} D$ asymptote in contrast to mass spectrometric experiments which indicated strong bonding ($D_{e}=26 \pm 5 \mathrm{kcal} / \mathrm{mole}$). A ${ }^{5} \Sigma_{u}$ state was found which was bound by $\sim 0.8 \mathrm{eV}$ with respect to ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ atomic limit, but unbound with respect to ${ }^{2} D+{ }^{2} D$. However at about the same time that this work was published, matrix isolation studies by Knight, VanZee and Weltner indicated a bound $\frac{5}{2}$ state of Sc_{2}. From the ESR studies it appeared that this state arose from the ${ }^{2} D+{ }^{4} F\left(4 s^{1} 3 d^{2}\right)$ atomic asymptote which had not been studied in detail in the previous theoretical studies. A re-examination of this system revealed a new ${ }^{5} \Sigma_{u}^{-}$state which had been missed

1ri the previous study because its $R_{e}\left(\sim 5.0 a_{0}\right)$ is much shorter than the R_{e} values for the states studied previously ($\sim 7.0 a_{o}$). The ${ }^{5} \Sigma_{u}^{-}$state turned out to be of considerabie theoretical interent because it exhibited multiple 3 d bonding (three one-electron bonds) and constituted the first theoretical evidence of multiple 3d bonding in a first row transition metal dimer.

The studies on Sc_{2} were extended to $\mathrm{Ti}_{2}, \mathrm{~V}_{2}$ and Cr_{2}. Indtially the high spin ${ }^{7} \Sigma_{u}^{+}$state of TI_{2} was studied. The $\mathrm{Sc}_{2}{ }^{5} \Sigma_{u}^{-}$and $\mathrm{TI}_{2}{ }^{7} \Sigma_{u}^{+}$ states come from the mixed ($4 \mathrm{~s}^{2} 3 \mathrm{~d}^{n}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{\mathrm{n}+1}$) asymptote and exhibit muitiple one-electron 3d bonding. These states have long bond lengths ($R_{e} \lambda^{5.0 a_{o}}$) and small vibrational frequencies ($\omega_{e^{\sim 2}} 200 \mathrm{~cm}^{-1}$). The ${ }^{5} \Sigma_{u}^{-}$ state of Sc_{2} is consistent with the ${ }^{5} \Sigma$ state which has been observed in matrix studies by Knight, Van Zee, and Weltner. The bond length here is not known but the calculated vibrational frequency of $184 \mathrm{~cm}^{-1}$ is reasonably close to the experimental value of $238.9 \mathrm{cn}^{-1}$.

For Ti_{2} from reference to Fig 1 one sees that the excitation energy to the $4 s^{1} 3 d^{n+1}+4 s^{1} 3 d^{n+1}$ atomic asymptote is about half as large as for $S c_{2}$. Thus the ${ }^{1} \Sigma_{g}^{+}$state which arises from the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{3}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{3}$ atomic asymptote becomes a competitor for the gound state of $T I_{2}$. The bonding here is a triple two-electron 3 d bond ($3 \mathrm{~d} \sigma, 3 \mathrm{~d}_{\mathrm{x}}, 3 \mathrm{~d} \pi_{y}$). This leads to a short R state, $R_{e}=3.73 a_{o}$ and $\omega_{e}=438 \mathrm{~cm}^{-1}$. The bond length is not known experimentally but the experimental vibrational frequency is $407.9 \mathrm{~cm}^{-1}$ which is consistent with the ${ }^{1} \Sigma_{\mathrm{g}}^{+}$state of TI_{2}, but inconsistent with the $7_{\Sigma_{u_{1}}}^{+}$state. Based on this we tentatively assign the ground state of TI_{2} ${ }_{\text {as }}{ }^{u_{\Sigma}}{ }_{g}{ }^{+}$

Fig. 3 shows calculated potential curves for the ${ }^{3} \Sigma_{g}^{-}$state of V_{2}. The ${ }^{3} \Sigma_{\mathrm{g}}^{-}$state of V_{2} has the same triple two-electron 3d bond as in TI_{2} with the remaining two electrons in the 3ds orbitals. Because the 3d δ orbitals still have small overlaps in the region near $R_{e}\left(\sim 3,5 a_{o}\right)$, the lowest state is a triplet state arising by forming two one-electron 3d δ bonds. The R_{e} and ω_{e} values obtained from the CASSCF curves are in good agreement with the recent results of Langridge-Smith, Morse, Hansen, Smalley and Merer for the ${ }^{3} \Sigma$ ground state of V_{2}. An important feature of Fig. 3 is the large effect of 4 f functions, an effect which is also evident in the Cr_{2} curves

FIS. 2. Potential energy curves for the low-lying states of Sc_{2} from CASSCF $\mathrm{CI}(\mathrm{SN}$) calculations. The locations of the $2 \mathrm{D}+\mathrm{P}^{2} \mathrm{D}, 2 \mathrm{D}+4 \mathrm{~F}\left(4 \mathrm{~s}^{1} 4 \mathrm{P}^{1} 3 \mathrm{~d}^{1}\right)$, and ${ }^{2} \mathrm{D}+4 \mathrm{~F}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)$ asymptotes are indicated.

In Fig. 4. Since these states exhibit strong id bonding, the large effect ($\sim l .0 \mathrm{ev}$) for 4 f as a polarization function is not surprising. This large effect is not observed for the one-slectron 3 d bonds in the $\mathrm{Sc}_{2}{ }^{5} \Sigma^{5}{ }^{-}$ or $\mathrm{TI}_{2}{ }^{7} \Sigma_{u}^{+}$states. However, this is expected given the strong R dependence of this effect. For example from Fig. 4 one sees that for Cr_{2} near R_{e} the effect of 4 f is large but is near zero by $3,75 \mathrm{a}_{0}$. Fig. 4 shows the calculated potential curves for Cr_{2}. Here the 3do orbitals are doubly occupied which is expected to be unfavorable based on the V_{2} result that the $3 \mathrm{~d} \delta$ orbitals were preferentially singly occupied. This is consistent with the weaker bonding in $\mathrm{Cr}_{2}, \mathrm{D}_{\mathrm{e}} \sim 1.0 \mathrm{eV}$ as compared to $V_{2}, D_{e} \sim 2.5 \mathrm{eV}$. Because of the weaker bonding in Cr_{2} the CASSGF potential curve is not bound. However the potential curve does exhibit a shoulder near the experimental R_{e} which is suggestive of an Inner well.

A major problem with the CASSCF studies for V_{2} and Cr_{2} is that only a small percentage of the binding energy is obtained for V_{2} and no well is obtained for Cr_{2}. This result is not unexpected for CASSCF. No ($C I$). However, the $C I$ expansions required for V_{2} and Cr_{2} exceed current computational capabilities. Several different attempts have been made to include the missing correlation In other ways. One approach due to Goodgame and Goddard assumes that the missing correlation serves mainly to correct the location of the ionic atomic asymptotes. These authors attempt to include these effects by empirical modification of the integrals to correct the atomic ionization potentials and electron affinities to agree with experiment. This method does lead to a reasonable potential curve for Cr_{2} although the bond length is somewhat too short which suggests that this method over corrects. Another approach by Walch attempts to Include extra correlation effects by expanding the valence space in the CASSCF calculation. Here atomic 4 p and $3 \mathrm{~d}^{\prime}$ terms are added (where $3 \mathrm{~d}^{\prime}$ is a tight diffuse correlating orbital for the 3d). This approach should include the principle correlation effects needed to describe charge transfer within the 4 s and 3 d shell. Unfortunately, it is not possible to add all these extra valence orbitals at

FIG. 3. Calculated CAS SCE potential curves for the $3 \Sigma_{g}^{-}$state of V_{2}. Basis I is the [8s6p4d] basis while basis II 1s the [8s6p4d2f] basis.

Fin. 4. Calculated CAS SCF potential curves for the ${ }^{1} \sum_{g}^{+}$state of Cr_{2}. Basis I and Basis II are the same size as in fig. 1.
once (due to computational limitations) and the extra orbitals are added separately by symmetry blocks. From checks on H_{2} it appears that there is no real problem with additivity due to this approach, However, checks on N_{2} and Ti_{2} indicate that because the method dissociates to SCF atoms certain atomic correlation terms are not included and these terms are more important in the large R region than they are near R_{e}. Thus, the method does overestimate the binding energy that would be obtained in a more complete MCSCF calculation. In spite of these difficulties the method does nearly reproduce the CI potential curves for $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and TI_{2} and therefore we reproduce the estimated potential curve for Cr_{2} in Fig . 5 . Analysis of this potential curve gives (experimental values in parenthesis) $R_{e}=1.78 \mathrm{~A}^{\circ}\left(1.68 \mathrm{~A}^{\circ}\right)$, $\omega_{e}=383 \mathrm{~cm}^{-1}\left(480 \mathrm{~cm}^{-1}\right)$ and $\left.D_{e}=0.71 \mathrm{eV}\right)$. Note that the long bond length and small ω_{e} are consistent with underestimating the binding energy.

A significant feature of the studies of the TM dimers is the presence of outer wells associated with $4 \mathrm{~s}-4 \mathrm{~s}$ bonding and one-electron 3d bonding in some cases (e.g. the ${ }^{7} \Sigma_{u}^{+}$state of Ti_{2} and analogous states in V_{2}), and inner wells associated with two-electron 3 d bonding (e.g. the ${ }^{1}{ }_{\Sigma}{ }^{+}$state of TI_{2} and the ${ }^{3} \Sigma_{\mathrm{g}}^{-}$state of V_{2}). These types of effects have been observed experimentally for small Fe clusters where the dimer exhibits a bond length of $23.8 a_{o}$ which presumably involves some 3 d bonding but larger clusters exhibit longer bond lengths approaching the nearest neighbor distance in $\mathrm{BCCF} \mathrm{Fe}\left(\sim 4.7 \mathrm{a}_{\mathrm{o}}\right)$.

IIN. 5. Estimated potential curves for Cr_{2} based on extended valence space CASSCE calculations. The effect of. 4 p is estimated based on calculations on TI_{2}.

IV. $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ CLUSTER CALCULATIONS

The $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ cluster calculations are described in detail in a manuscript contained in Appendix A. For a summary of the main results, the reader is referred to the introduction of the above paper.

v. PUBLICATIONS

A. Transition Metal Hydrides

1. On the d-Bond in ScH
C.W. Bauschlicher, Jr. and S.P. Walch J. Chem. Phys., 26,4560 (1982)
2. CASSCF/CI Calculations for First Row Transition Metal Hydrides: The $\operatorname{TiH}(4 \Phi), \operatorname{VH}\left({ }^{5} \Delta\right), \operatorname{CrH}\left(\Sigma^{+}\right), \operatorname{MnH}\left(\Sigma^{7}\right), \operatorname{FeH}(4,6 \Delta)$ and $\operatorname{NiH}\left({ }^{2} \Delta\right)$ States
S.P. Walch and C.W. Bauschlicher, Jr. J. Chem. Phys., 78, 4597 (1983)
3. On Incorporation of Atomic Correlation in Transition Metal Molecular Calculations: NiH
S.P. Walch and C.W. Bausch1icher, Jr. Chem. Phys. Lett., 86, 66 (1982)
4. Theoretical Evidence Supporting the ${ }^{4} \Delta$ Ground State Assignment for FeH
S.P. Walch, Chem. Phys. Lett., 1.05, 54 (1984)
B. Transition Metal Dimers
5. CASSCF/CI Calculations for the ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Sigma_{g}^{+},{ }^{3} \Sigma_{u}^{+}$and ${ }^{5} \Delta_{u}$ states of Sc_{2}
S.P. Walch and C.W. Bausch1icher, Jr. Chem. Phys. Lett., 24, 290 (1983)
6. Theoretical Evidence for Multip1e One-Electron 3d Bonding in a First Row Transition Metal Dimer: The ${ }^{5}{ }_{\mathrm{L}}^{-}$State of Sc_{2}
S.P. Walch and C.W. Bausch1icher, Jr.
J. Chem. Phys., 79, 3590 (1983).
7. Theoretical Evidence for Multiple 3d Bonding in the V_{2} and Cr_{2} Molecules
S.P. Walch, C.W. Bauschlicher, Jr., B.O. Roos, and C.J. Nelin Chem. Phys. Lett., 103, 175 (1984)
8. Extended CAŞSCF Calculatfons for Transition Metal Dimers: the $\mathrm{Ti}_{2} \mathrm{I}_{\Sigma_{\mathrm{g}}{ }^{+} \mathrm{V}_{2}}{ }_{\Sigma}$, and $\mathrm{Cr}_{2} \mathrm{I}_{\Sigma^{+}}^{+}$states
s. ${ }^{p}$. ${ }^{2}$ Wal ${ }^{\text {Rh }}$, Chem. ${ }^{2}$ Phyg. Lett., submitted
9. On the Nature of the Bonding in Cu_{2}
C.W. Bauschlicher, Jr., S.P. Walch, and P.E.M. Siegbahn J. Chem. Phys., 76, 6015 (1982)
10. On the Nature of Bonding in Cu_{2} - An Ab Initio Viewpoint C.W. Bauschlicher, Jr., S.P. Walch and P.E.M. Siegbahn J. Chem. Phys., 78, 3347 (1983)
C. Iron Clusters
11. Model Studies of the Interaction of H Atoms with BCC Iron S.P. Walch Surface Science, in press
D. Alkali Metals and Core-Valence Correlation
12. Ab Initio Calculation of the $X^{l_{\Sigma}}{ }^{+}$State of CsH B.C. Laskowski, S.P. Walch, and P.A. Christianson J. Chem. Phys., 78, 6824 (1983)
13. All Electron GVB/CI Potential Curves for the $X^{1} \Sigma^{+}$State of Cs_{2} S.P. Waich, C.W. Bauschlicher, Jr., P.E.M. S虽egbahn, and H. Partridge Chem. Phys. Lett., 92, 54 (1982)
14. Electron Affinities of the Alkali Dimers: $\mathrm{Na}_{2}, \mathrm{~K}_{2}$ and Rb_{2} H. Partridge, D.A. Dixon, S.P. Walch, C.W. Bauschlicher, Jr., and J.L. Gole J. Chem. Phys., 79, 1859 (1983)
15. An Ab Initio Study of Core Valence Correlation H. Partridge, C.W. Bauschlicher, Jr., S.P. Walch, and Bowen Liu J. Chem. Phys., 79, 1866 (1983)
E. Atomic Calculations and Basis Sets
16. On Correlation in the First Row Transition Metal Atoms C.W. Bauschlicher, Jr., S.P. Walch, and H. Partridge J. Chem. Phys., 76, 1033 (1982)
17. On the Electron Affinity of Cu Atom
C.W. Bauschlicher, Jr., S.P. Walch and H. Partridge Chem. Phys. Lett., 103, 291 (1984)
18. On the Choice of Gaussian 4 f Functions for Use in Calculations on Transition Metal Atoms S.P. Walch and C.W. Bauschlicher, Jr. Chem. Phys. Lett., $105 \sim \sim 171$ (1984)
19. Supplemental Basis Functions for the Second Transition Row Elements
S.P. Walch, C.W. Bauschlicher, Jr. and C.J. Nelin J. Chem. Phys., 79, 3600 (1983)
F. Oxygen on Nickel
20. Comment on "Evidence for Two States of Chemisorbed 0 on Ni (100)" C.W. Bauschlicher, Jr., S.P. Walch, P.S. Bagus, and C.R. Brundle Phys. Rev. Lett., 50, 864 (1983)

APPENDIX A

The following paper discusses the $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}^{\text {cluster }}$ calculations.

Model Studies of the Interaction of H Atoms with BCC Iron

Stephen P. Walch*
Polyatomics Research Institute ${ }^{\dagger}$ Mountain View, CA 94043

Abstract

Ab Initio/Effective Core Potential cluster studies are reported for the Interaction of H atoms with BCC iron. The calculations use a one-electron ECP based on the $4 s^{1} 3 d^{7}$ state of the Fe atom. Two-fold and four-fold sites on the (100) surface as well as octahedral, tetrahedral, and trigonal interior sites were studied. Four-fold surface sites are found to be bound by $\sim 1.5 \mathrm{eV}$ with the H atom $2.5 a_{0}$ above the surface. Penetration of the surface at a four-fold site involves movement toward a second layer atom and is expected to be unfavorable. Two-fold surface sites have small binding energies 20.25 eV . Penetration of the surface at this site involves movement toward a tetrahedral interior site and is downill in energy. Tetrahedral interior sites are found to be bound by $\sim 1.3 \mathrm{eV}$ and are a minimum on the potential energy surface, Octahedral sites are a maximum on the potential energy surface and are estimated to be 20.2 eV higher (including lattice relaxation effects). Trigonal sites are found to be a saddle point connecting adjacent tetrahedral sites and this pathway leads to an estimated barrier to diffusion of $\sim 0.1 \mathrm{eV}$ (including lattice relaxation effects). The volume expansion for a H atom in a tetrahedral site is calculated to be 21%.

[^0]dimers, and $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ cluster rebults. The $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ cluster results are described in detail in a manuscript included as Appendix A. The results for the TM hydrides and dimers are summarized in Sections II and III, respectively; while, Appendix B contains copies of publications on these topics. During the course of this work several other projects were undertaken. These include all-electron calculations on the CsH and Cr_{2} molecules, calculations on the alkali dimers, an ab-initio study of corevalence correlation, and studies of atomic correlation and basis sets. References to this work are given in the publications list.

I. Introduction

Hydrogen embrittlement of metals is an important technological problem [1]. As part of a program to understand the effect of H atoms on crack propagation in iron we have undertaken a theoretical study of the interaction of H atoms with clusters of iron atoms in the BCC structure (α-Iron). In the studies reported here we first fixed the Fe atoms at the lattice positions of the perfect crystal and studied the interaction with a H aton at two-fold and four-fold sites on the (001) surface and at a series of octahedral, tetrahedrai, and trigonal sites interior to the solid. These studies determine the geometry and binding energy at surface chemisorption sites and provide information on the barriers to diffusion within the metal and to penetration of the surface at two-fold and four-fold sites. We then relaxed the geometry of the nearest neighbor Fe atoms for the octahedral, tetrahedral and trigonal interior sites. These studies are important because they further refine the energetics for the diffusion process and because significant expansion of the lattice is found for tetrahedral sites. This expansion could induce stress in the metal leading to fracture.

The computational method employed here is the ab initio SCF method using a one-electron (4s valence) iron effective core potential (ECP) [2] based on the $4 s^{1} 3 d^{7}$ state of the Fe atom. Here the Ar core and the $3 \mathrm{~d}^{7}$ configuration are incorporated into the ECP leaving only a single 4 s valence electron. The justification for including only the $4 s$ electrons in the valence space comes from all-electron studies of diatomic molecules involving transition metal (TM) atoms. Here is is found that for elements on the right hand side of the first transition row, the bonding in the hydrides [3] and dimers at the nearest neighbor distances in the metal [4-6] involves the $4 \mathrm{~s}, 4 \mathrm{p}$ electrons with the 3d electrons remaining essentially atomic like. The selection of the $4 s^{1} 3 d^{7}$ atomic configuration of the Fe atom is based on experimental bulk magnetic information [7] and on calculations [8] which show that although the $4 s^{2} 3 d^{6}$ state is the ground state of the free Fe atom with the $4 s^{1} 3 d^{7}$ state 0.88 eV higher, in an environment appropriate to Fe metal the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ state becomes the lowest state.

The present calculations involve Fe clusters of up to 66 Fe atoms and show slow convergence with respect to cluster size; cluster edge effects still introduce significant uncertainties even for the largest clusters studied. Important qualitative features of the $\mathrm{H}-\mathrm{Fe}_{\mathrm{n}}$ interaction include: i) H atoms are most stable at surface four-fold sites (binding energy NI.5eV) with a barrier to movement into the bulk (toward an Fe atom in the second layer). 1i) Two-fold sites are only weakly bound but it is downill from this location to move into the bulk (toward an interior tetrahedral site). iii) Interior octahedral and tetrahedral sites are less stable than four-fold surface sites (binding energy $\sim 1.3 \mathrm{eV}$) with tetrahedral sites lower in energy (0.23 eV separation for the unrelaxed lattice and 20.18 eV separation for the relaxed lattice based on $\left.\mathrm{Fe}_{66}{ }^{\mathrm{H}}\right)$. The tetrahedral site is a minimum on the potential energy surface while the octahedral site is a maximum. iv) Tetrahedral interiur sites show a large volume expansion $\sim 21 \%$. v) The lowest pathway for $T \rightarrow T$ diffusion involves a trigonal site which is a saddle point on the potential energy surface (Calculated barrier 20.17 eV for the unrelaxed lattice and 00.10 eV for the relaxed lattice based on $\mathrm{Fe}_{66}{ }^{\mathrm{H}}$).

Section II discusses some features of the electronic structure of Fe clusters. Section III discusses the cluster calculations. Section IV discusses the features of the calculated potential, while Section V compares the computed energetics to experiment.

II. Electronic Structure of the Fe Clusters

For the $T M$ atoms of the first transition row the $4 s$ orbital is significantly larger than the 3 d orbatal. As one moves from left to right in the first transition row the ratio $\left\langle r_{4 s}\right\rangle /\left\langle r_{3 d}\right\rangle$ increases monatonically from 2.36 to 3.24 with a value of 2.95 for $\mathrm{Fe}[9]$. Thus, for large bond distances one expects bonding to the 4 s orbital to be more favorable than bonding to the 3d orbital wath the $4 s$ becoming increasingly favorable on the right side of the row.

For the $T M$ hydrides onily $\mathrm{ScH}[10]$ shows a short R state involving 3d bonding; whereas the other hydrides including FeH show predominately 4 s bonding character with the 3d orbitals remaining quite atomic like [3]. The situation for the dimers is similar with the possiblity for elements on the left half of the row of $4 \mathrm{~s}-4 \mathrm{~s}$ bonding at large R and $3 \mathrm{~d}-3 \mathrm{~d}$ bonding at small R . Examples of the latter are $V_{2}[11]$ and $\mathrm{Cr}_{2}[11,12]$. With more than half filled 3d shells the favorability of 3d bonding decreases since the repulaion between doubly occupied 3d orbitals cancels 3d bonding interactions arising out of the singly occupled 3d orbitals. For Cu_{2} [4] with a closed 3d shell (for the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$ state) the bonding is described as predominately $4 \mathrm{~s}-4 \mathrm{~s}$ bonding with the 3d orbitals essentially atomic like. Given this, one expects the dominant bonding interactions for $\mathrm{Fe}-\mathrm{Fe}$ and $\mathrm{Fe}-\mathrm{H}$ bonds to involve the $4 \mathrm{~s}, 4 \mathrm{p}$ electrons of the Fe atom with the Fe 3 d electrons remaining essentially atomic like.

Fig. 1 shows the results of all-electron calculations for the Fe_{2} molecule. The electronic state considered here arises from the $4 s^{2} 3 d^{6}+4 s^{1} 3 d^{7}$ atomic limit. The significant feature of Fig, 1 is that there is weak 3d bonding in the small R region as evidenced by the low-spin state (maximum 3d bonding) being lower, but in the large R region the high spin state (no 3d bonding) is lower thus indicating negligible 3d bonding. Similar conclusions have been reached by Shim and Gingerich [6] for fisates derived from the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}+$ $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ atomic limit. Thus we conclude that at the $\mathrm{Fe}-\mathrm{Fe}$ distances involved in BCC Fe metal-metal 3d bonding is of negligible importance. (The nearest neighbor distance is $4.68 a_{0}$ in BCC Fe [13]). For these reasons we believe it is a reasonable though extreme approximation ts include only 4 s elecirons in the valence shell with the 3d electrons incorporated into the ECP.

The ECP is based on the $4 s^{1} 3 d^{7} \mathrm{Fe}$ atomic configuration. The choice of this configuration is supported by experimental magnetic date [7] which show 2.22 effective Bohr magnetons per Fe atom. Assuming that this magnetic moment arises only from the 3d electrons and that the 3d electrons are completely high spin coupled, this magnetic data is co sistent with a mixture of $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ and $3 \mathrm{~d}^{8}$. However this data could also be consistent with $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ and some low-spin coupling. The choice of $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ is also supported by calculations in which one fe atom is placed in the center of a cublc arrangement of eight one-electron $4 s^{1} 3 d^{7}$ 1ike Fe atoms (BCC unit cell). The result is that the $4 s^{1} 3 d^{7}$ configuration is 0.25 eV below the $4 s^{2} 3 d^{6}$ configuration in this environment, although for the free atom $4 s^{1} 3 d^{7}$ is 0.88 eV above $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$. Given this choice of atomic configuration with the 3d electrons incorporated into the ECP leaves only one valence electron per iron atom. This approach is very similar to the one-electron $N 1$ cluster studies based on the $4 s^{1} 3 d^{9} N 1$ atomic configuration [14].

Comparison between ECP and all-electron results can be made for FeH. Here the ECP calculation leads to $R_{e}=2.96 a_{o}$ and $D_{e}=1.85 e V$ whereas the all-electron calculation leads to $R_{e}=3.02 a_{0}$ and $D_{e}=3.20 e V$ for the ${ }^{4} \Delta$ state of FeH [5]. However, a direct comparison here is not appropriate since the ECP calculation corresponds to pure $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ atomic character whereas the FeH molecule in the ${ }^{4} \Delta$ state is a strong mixture of $4 s^{1} 3 d^{7}$ and $4 s^{2} 3 d^{6}$. The latter configuration mixing, which occurs in the all-electron calculations, is expected to lengthen R_{e} (due to more $4 \mathrm{~s}^{2} 3 d^{6}$ character) and increase D_{e} as compared to the ECP calculation; these expectations are borne out by the results quoted above. Based on these results, to the extent that mixing of $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ and $4 s^{2} 3 d^{6}$ is important for the cluster, we expect the calculations with the ECP to slightly underestimate FeH bond lengths and to significantly underestimate H atom binding energies. Relative energetics for a given cluster would still be expected to be accurate and the emphasis here is therefore on comparisons of relative energies for different H atom locations within a given cluster.
III. The Cluster Calculations

The basis set for Fe is a (4 s 3 p)/[2slp] basis. The 4 s functions are a (31) contraction of the outer four Nachters' $4 s$ functions [15]. The contraction here is based on an atomic SCF calculation for the ${ }^{2} S$ state arising from the $4 \mathrm{~s}^{1}$ configuration. Note that this contraction is different from the all electron contraction because the ECP 4 s orbital does not have a nodal structure. The 4 p function was obtained by optimization of a 3 term GTO fit to a $2 p$ STO [16] for the ${ }^{2} p$ atomic state arising out of the $4 s^{l}$ configuration. The resulting exponents were multiplied by 1.5 to make them more sultable for dem scribing $4 s \rightarrow 4$ p correlation [17]. The H basis set is a (5slp)/[3slp] basis. The s basis is a (311) contraction of Huzinaga's 5 s set [18], while the $2 p$ functions are a single set of gaussian primitives with exponent 1.0. The oneelectron ECP is given in Table I.

As has been well documented [19] 4p functions are very important for describing the bonding in Ni clusters and these effects are also found to be important for Fe clusters. Omission of the 4 p functions leads to a loss of most of the metal metal bonding energy and leads to overestimation of metal -H binding energies due to 1) poor description of the metal metal bonds and 1i) basis set superposition effects (i.e. the H basis functions mimic the effect of the missing $4 p$ functions and thus lower the cluster energy even without the H atom electron and associated nuclear charge). Thus, unlike Upton and Goddard [14] who omitted the important 4 p functions, we have included the 4p functions for those Fe atoms which are within bonding distance of the H atom in any site considered in the cluster. These Fe atoms are denoted as primary (P). To reduce edge effects we have also added the nearest neighbors of the prinary atoms. These we denote as secondary (S) atoms. Because these atoms are more distant from the H adatom, the omission of the 4 p functions is less serious and we chose to include only the 4 s functions on these atoms In order to keep the calculations of more reasonable size. For example, the Fe_{66} cluster involves 330 basis functions with 4 p functions on all centers, but only 198 functions if 22 atoms are primary and the remainder are secondary.

Fig. 2 shows the Fe_{36} cluster which is a representative cluster for interior sites. The primary atoms here consist of eight atoms in an arrangement consisting of two fused tetrahedra. Each primary atow has the full complement of eight nearest neighbors which are included at the secondary level. The locations of the H atoms are also indicated in Fig. 2. The Fe_{36} cluster contains i) octahedral sites which have six nearest neighbor Fe atoms and ii) tetrahedral sites which have four nearest neighbors. (Note that these are not regular octahedra or tetrahedra since they are compressed in one direction.) Moving from left to right along the 'H atom positions" indicated by. open circles one passes alternately through octahedral and tetrahedral sites at separations of d/4 where d is the lattice constant. Thus the potential should exhibit a periodicity in the direction indicated with $\lambda=d / 2$, i.e. all octaheäral sites should be equivalent and all tetrahedral sites should be equivalent. This periodicity is not necessarily present in the clusters due to cluster edge effects and we have used periodicity as a criterion for judging the size of cluster edge effects. Two other clusters were studied which are related to the Fe_{36} cluster. These were the smaller Fe_{30} cluster which is related to the Fe_{36} cluster by deleting two primary atoms and associated secondary atoms from one end of the cluster and a larger Fe_{48} cluster which extends the Fe_{36} cluster by addition of an additional tetrahedron of primary atoms and associated secondary atoms at one end.

The BCC metal also exhibits periodicity in a direction perpendicular to the path discussed above for the Fe_{36} cluster. This path is indicated by the solid circles in Fig. 2. Also illustrated in Fig. 2, by the triangle, is a trigonal site which is found to be a saddle point connecting the two adjacent tetrahedral sites. In order to study the $T \leftrightarrow T$ diffusion via the trigonal site we considered additional clusters which are equivalent in the two periodicity directions. The primary cluster here is a 22 atom cluster consisting of four fused BCC unit cells centered about the intersection of the two paths given above. Here we considered an Fe_{22} cluster with all atoms primary and an Fe_{66} cluster which includes in addition the nearest neighbors as secondary atoms.

Fig. 3 shows the Fe_{30} cluster for the surface sites. Here we are considering two-fold and four-fold sites. The Fe_{30} cluster has six surface and two second layer primary atoms. The secondary atoms consist of ten in the first layer, six in the second layer, and six in the third layer. Note that some of these are at second nearest nefghbor distances. The Fe 39 cluster adds to the Fe_{30} cluster three additional primary atoms (two in the first layer and one in che second layer) and associated secondary atoms leading to an additional four-fold surface site. For each of these clusters the 11 atom was moved perpendicular to the surface for the two-fold and four-fold sites.

The ground states of the clusters were obtained by an Auf Bau method. The symmetry used in the calculations is $C_{2 v}$ for the interior site clusters and C_{s} for the surface site clusters. The orbitals are filled using the Auf Bau principle until the full complement of electrons is present. The cluster configurations for the interior site clusters are as follows: Fe_{30} has six a_{1}, three b_{2}, three b_{1}, and two a_{2} orbitals doubly occupied and one a_{1} and one b_{2} orbitals singly occupied which leads to a ${ }_{3} B_{2}$ state. The triplet state arises here because the singly occupied orbitals belong to an E representation in the full cluster symetry which is higher than $C_{2 v}$. Fe_{36} has eight a_{1}, four b_{2}, four b_{1}, and two a_{2} orbitals doubly occupied. Fe ${ }_{48}$ has eleven a_{1}, five b_{2}, five b_{1}, and three a_{2} orbitals doubly occupied. Fe_{66} has twelve a_{1}, nine b_{2}, seven b_{1}, and five a_{2} doubly occupied. The cluster configurations for the surface site clusters are as follows: $F e_{30}$ has nine a^{\prime} and six $a^{\prime \prime}$ orbitals doubly occupied. Fe_{39} has twelve a^{\prime} and seven $a^{\prime \prime}$ orbitals doubly occupled and one $a^{" \prime}$ orbital singly occupied. The $\mathrm{Fe}_{\mathrm{n}} \mathrm{H}$ clusters are all doublet states with the exception of the $\mathrm{Fe}_{30} \mathrm{H}$ interior sites cluster which is a quartet state and Fe_{39} which is a singlet state.

IV. Discussion

Fig. 4 shows the binding energies for the $\mathrm{Fe}_{30} \mathrm{H}, \mathrm{Fe}_{36} \mathrm{H}$, and $\mathrm{Fe}_{48} \mathrm{H}$ clusters. As discussed in Section III, for the solid all tetrahedral sites are equivalent and all octahedral sites are equivalent. This behavior is most closely approx1mated by the $\mathrm{Fe}_{36}{ }^{\mathrm{H}}$ cluster, where we see pseudo periodic behavior with the tetrahedral sites slightly lower in energy than the octahedral sites. Note that these calculations do not include enough points to demonstrate the shape of the potential (i.e. one would expect an approximately sinusoidal variation between the calculated points). The other clusters, on the other hand, at first appear to exhibit rather different potentials with the $\mathrm{Fe}_{30}{ }^{\mathrm{H}}$ cluster showing a decrease in energy in moving from the center to the edge of the cluster while the $\mathrm{Fe}_{48}{ }^{\mathrm{H}}$ cluster shows an increase in energy for motion along the same path. However, the potentials can be made to look very similar for the three clusters by including a correction term (for edge effects) which is linear with distance. Selecting such a correction term to make the two octahedral sites degenerate leads to the corrected curves in Fig. 4b which show a remarkable similarity to each other. From Fig 3b one sees that in all cases the tetrahedral sites are below the octahedral sites. The calculated separations are 0.2 leV for $\mathrm{Fe}_{30^{\mathrm{H}},} 0.30$ and 0.10 eV for $\mathrm{Fe}_{36} \mathrm{H}$, and 0.28 and 0.11 eV for $\mathrm{Fe}_{48} \mathrm{~B}$. Thus, the calculations can be interpreted to indicate a tetrahedral to octahedral separation of $0.10-0.30 \mathrm{eV}$.

Fig. 5a shows two cuts through the potential surface for the $\mathrm{Fe}_{66}{ }^{\mathrm{H}}$ cluster. One path follows one of the periodicity directions in Fig. 1, while the other path is from the central octahedral site toward the trigonal site. Fig. 5b differs from Fig. 5a in that a linear correction has been added to make the potential flat from the center of the cluster to the edge (as was done for Fig. 4). These two cuts through the surface show that the octahedral site is a maximum on the potential energy surface and are consistent with the tetrahedral site being a minimum on the surface with the trigonal site being a saddle point connecting two adjacent tetrahedral sites. A remarkable feature of Fig. 4 is the clearly sinusuidal variation of the energy along the periodicity direction. This result suggests that the $\mathrm{Fe}_{66}{ }^{\mathrm{H}}$ cluster is exhibiting true periodicity although from comparison of Fig. 4a and Fig. 4b there still appears to be a significant edge effect.

From Fig. 5b the tetrahedral to octahedral separation is 0.23 eV and the tetrahedral to trigonal separation is 0.17 eV (based on the central octahedral site and the adjacent tetrahedral site). These orderings may be understood based on the following simple geometric argument. The octahedral site does not correspond to a regular octahedron but has two shorter FeH distances ($2.703 a_{0}$) and four longer FeH distances ($3.823 a_{0}$). The tetrahedral site has all FeH distances the same ($3.022 \mathrm{a}_{0}$) and the trigonal. site has two short FeH distances ($2.819 \mathrm{a}_{0}$) and one longer FeH distance (3.023a ${ }_{0}$). With the one-electron ECP and the same basis set used in the calculations diatomic FeH has a bond length of $2.96 a_{0}$. Clearly one expects an H atom in the solid to prefer an FeH distance Zonger than for the diatomic molecule. Thus, it should be downill for the octahedral site with two short bonds to distort toward the tetrahedral or trigonal sites. The tetrahedral site is favored over the trigonal site since it has four reasonable FeH bond lengths while the trigonal site still has one compressed bond distance.

For the octahedral, tetrahedral and trigonal sites some relaxation of the lattice was allowed both with and without the H atom present. The clusters here consisted of six, four, and three primary atoms plus the nearest neighbors as secondary atoms. The resulting cluster sizes are $\mathrm{Fe}_{30}, \mathrm{Fe}_{24}$, and Fe_{20}, respectively. Fig. 6 shows the distances which were varied in the geometry optimization. Here only the locations of the primary atoms were varied while the secondary atom locations were fixed. For the bare clusters the Fe_{30} and $\mathrm{Fe}_{2.4}$ cluster geometries were optimized with the constraint that r_{1} and r_{2} were varied simultaneously; this lead to geometric expansions compared to the BCC geometry of 3.4% and 3.9% for octahedral and tetrahedral, respectively. For the trigonal cluster r_{1} and r_{2} were varied separately glving a 2.4% increase in r_{2} and a 6.5% increase in r_{1}. For the clusters with the H adatom the increases compared to the bare clusters were: $r_{1}=+10.2 \%$ and $r_{2}=-4.8 \%$ for octahedral, $r_{1}=+3.8 \%$ and $r_{2}=+12.2 \%$ for tetrahedral and $r_{1}=+9.7 \%$ and $r_{2}=+1.2 \%$ for trigonal. The corresponding increases in binding energy are $0.27 \mathrm{eV}, 0.22 \mathrm{eV}$ and 0.29 eV for octahedral, tetrahedral, and trigonal. Applying these corrections to the energies from Fig. 5b leads to an estimated tetrahedral to octahedral separation of 0.18 eV and an estimated tetrahedral to trigonal separation of 0.10 eV . The volume expansion for the tetrahedral site, which is the only site wiich represents a minimum on the surface, is $+21 \%$.

Fig. 1 shows the potential for moving a H atom perpendicular to the (100) surface for two-fold and four-fold sites of the $\mathrm{Fe}_{30} \mathrm{H}$ surface cluster. Here we see that surface atoms are much more stable ($\sim 1.3 \mathrm{eV}$ at the four-fold site) and have a minimum at $20.5 a_{0}$ above the surface, We expect a barrier for pushing the H atom beneath the surface for a four-fold site because it would be moving in the direction of a second layer Fe atom. For the two-fold sites, on the other hand, a location in the surface is basically an octahedral location and from the studies of interior sites we expect it to be downill to move to the adjacent tetrahedral site. Indeed it is found tinat the H atom will move from this location to the interior. Fig. 5 shows similar calculations for the $\mathrm{Fe}_{39} \mathrm{H}$ surface cluster. Here we see that the $\mathrm{Fe}_{39} \mathrm{H}$ cluster shows results which are consistent with the $\mathrm{Fe}_{30} \mathrm{H}$ cluster. The binding energies here are $\sim 1.7 \mathrm{eV}$ for site A and $\sim 1.3 e V$ for site B. This difference between the two four-fold sites is another manifestation of cluster edge effects.

As discussed above we expect a large barrier to moving an atom from a four-fold site directly toward a second layer atom. Moving from a four-fold to a two-fold site is uphill by $\sim 1.25 \mathrm{eV}$ but it is downhill from here to an Interior site; this 1 mplies a barrier of 20.25 eV in addition to the endothermicity of $\sim 1.0 \mathrm{eV}$ to the process of moving a H atom from a four-fold surface site to an interior site via a two-fold site. However, there may be alternative pathways such as penetrating the surface at a four-fold site followed by sideways movement toward an adjacent tetrahedral site which involves little or no barrier.

From examination of Figs. 5, 7, and 8 we see that the most stable site is the four-fold surface site with an estimated binding energy of $1.3-1.7 \mathrm{eV}$ while the two-fold surface site shows essentially zero binding energy (based on the $\mathrm{Fe}_{39} \mathrm{H}$ cluster). Interior sites are less stable than surface sites being bound by about 1.3 eV (based on $\mathrm{Fe}_{66}{ }^{\mathrm{H}}$). This result is consistent with the experimental observation that H atoms are more stable at the surface with only a small fraction of the H atoms moving inside the solid (see section V); however, it is not clear that the binding energies are well enough converged with respect to cluster size to strongly support this conclusion.

V. Comparison to Experiment

The current picture of H_{2} chemisorption on an iron surface is that the H_{2} molecule first bonds in a weakly bound state which subsequently dissociates leading to two H atoms chemisorbed on the surface[21]. The detailed energetics for H atoms interior to the bulk are not known but overall the interior sites are belfeved to be less stable than the surface sites [22]. H atoms are known to be quite mobile inside the bulk [20]. The solubility and diffusivity of hydrogen in iron has been reviewed by Kiuchi and McLellan [24]. The quantities which are experimentally accesible (experimental value in parenthesis) are i) the heat adsorption (0.9 eV) [22] which is the energy for chemisorption of H_{2} on an fron surface (normally as film). Since H_{2} is known to dissociate on the surface this quantity is twice the binding energy of an H atom minus the D_{e} of H_{2}. 11) the heat of solution (0.3 eV) [23] which is as in (ii) except that the two B atoms are in the bulk. Based on an analysis of non-Arrhenius behavior of the solubility it has been inferred that tetrahedral sites are about 0.23 eV more stable than octahedral sites, ili) the activation energy for diffusion in the bulk iron lattice ($0.1 \in \mathrm{~V}$) [20], and iv) the volume expansion for a hydrogen atom in the perfect lattice which is $\lesssim 0.17$ atomic volumes for BCC iron [25].

Using the experimental D_{e} of H_{2} in conjunction with the heat of adsorption and the heat of solution leads to binding energies of 2.8 eV for one H atom at the surface and 2.5 eV for one H atom in the bulk. The best calculated values are less that this being $1.3-1.7 \mathrm{eV}$ (four-fold surface site) and 1.3 eV (interior tetrahedral site), respectively. This is not an unexpected result given the SCF model which typically underestimates binding energies and considering that the same ECP and basis set underestimates the diatomic FeH binding energy by 1.4 eV .

The activation energy for diffusion is estimated to be 0.10 eV based on the $\mathrm{Fe}_{66}{ }^{\mathrm{B}}$ cluster. One expects that the effective barrier should be lower than this, since tunneling is known to be important for hydrogen [26]. Thus, it appears that the calculations underestimate this barrier since the experimental barrier is thought to be 0.1 eV . Finally, the calculated volume expansion is 21% in reasonable agreement with the experimental estimate of 17%.

These encouraging results indicate that the SCF cluster model in conjunction with the one-electron ECP and basis set used here provides physically reasonable results and can b/a reiled upon to provide useful information in situations which are experimentally inaccesible, e.g. the interaction of H atoms with defects in the solid.

Acknowledgements

Figures 2 and 3 were prepared at the I.B.M. San Jose Research Laboratory using the I.B.M. Implementation of the PLUTO program written by S. Motherwell, J.L. Sussman, Z. Shakked, D. Barnett, and N.H.F. Beebe. The author is indebted to Prof. Klaus Hermann and Dr. Paul S. Bagus for helpful discussions and their kind assistance in the use of Pluto.

The author would also like to acknowledge helpful conversations with Dr . Charles Bauschlicher, Jr., Dr. Richard Jaffe, Dr. Mayes Mullins, and Dr. M.R. Shanabarger.

The author would like to thank Dr. Luis Kahn for making the one-electron Fe ECP available for this work prior to publication.

References

1. M.S. Daw and M.I. Baskes, Phys. Rev, Lett., 50 (1983) 1285 and references quoted therein.
2. L.R. Kahn, unpublished work.
3. S.P. Walch and C.W. Bauschlicher, Jr., J. Chem. Phys., 78 (1983) 4597.
4. C.W. Bauschlicher, Jr., S.P. Walch, and P.E.M. Siegbahn, J, Chem, Phys. 78 (1983) 3347.
5. S.P. Walch and C.W. Bauschlicher, Jx,, Chem. Phys. Lett., 94 (1983) 290.
6. I. Shim and K.A. Gingerich, J. Chem. Phys., 77 (1982) 2490.
7. C. Kittle, Introduction to Solid State Physics, Wiley and Sons, New York, p. 407.
8. S.P. Walch, unpublished work.
9. C.W. Bauschlicher, Jr., S.P. Walch, and H. Partridge, J. Chem. Phys., 76 (1982) 1033.
10. C.W. Bauschlicher, Jr., and S.P. Walch, J. Chem. Phys. 76 (1982) 4560.
11. S.P. Walch, C.W. Bauschlicher, Jr., B.O. Roos, and C.J. Nelin, Chem. Phys. Lett., 103 (1983) 175.
12. R.L. Michalopoulos, M.E. Geusic, S.G. Hansen, D.E. Powers, and R.E. Smalley, J. Phys. Chem., 86 (1982) 3914 and references therein.
13. J. Donohue, The Structure of the Elements, Wiley and Sons, New York.
14. T.H. Upton and W.A. Goddard, III, CRC Critical Rev. Solid State Materials Sci., 10 (1981) 261.
15. A.J.H. Wachters, J. Chem. Phys., 66 (1977) 4377.
16. R.F. Stewart, J. Chem. Phys., 66 (1977) 4377.
17. The 4p function is given by: $\alpha_{1}=0.28016,0.07190,0.02442$ and $C_{i}=$ $0.16239,0.56617,0.42231$.
18. S. Huzinaga, J. Chem. Phys., 42 (1965) 1293.
19. C.W. Bauschlicher, Jr., S.P. Walch, P.S. Bagus, and C.R. Brundle, Phys. Rev. Lett., 50 (1983) 864.
20. A.G. Alefeld and J. Volkl, Eds. Hydrogen in Metals. 1, Basic Properties. Toples in Applied Physics., 28 (Springer, Berlin. 1978).
B.G. Alefeld and J. Volkl, Eds. Hydrogen in Metals. II. Application Oriented Properties, Topics in Applied Physics, 29 (Springer, Berlin. 1978).
21. M.R. Shanabarger in "Advanced Techniques for Characterizing Hydrogen in Metals", N.F. Fiore and B.J. Berkowitz, eds.; The Metalurgical Society of AIME, Warrendale, Pennsylvania, 1982, p. 155.
22. M. Lagos, Surface Science, 122 (1982) L601-L607.
23. O.D. Gonzalez, Trans. TMS-AIME, 245 (1969), 607.
24. K. Kluchi and R.R. Mclellan, Acta Metall. 31 (1983), 961.
25. J.P. Hirth, Met. Trans., 11A (1980), 861.
26. G.C. Schatz and S.P. Walch, J. Chem. Phys. 72 (1980), 776.

Table I Parameters of the GTO Fit of the One-Electron

Fe Effective Core Potential ${ }^{a}$

N 2ETA COEFFICIENTS

F Potential

2	0.47390366	-1.26119200
2	1.58405370	-9.53136520
2	4.95107780	-25.40468800
2	19.31682400	-64.39665200
2	86.61302200	-190.95396000
2	594.26962000	-733.44870000
1	32.93220700	-1.00000000

S-F Potential

2	0.77791885	4.11278120
2	2.35091970	20.80044300
2	7.40039490	50.55318300
2	27.76902900	126.11910000
2	175.84886000	515.48734000
0	488.84440000	3.00000000

P-F Potential

2	0.62727306	2.35615760
2	1.86402300	13.98017900
2	5.77181370	50.95290200
2	18.09789100	144.04543000
2	66.97594900	376.36175000
0	143.17037000	5.00000000

D-F Potential

2	0.43787116	1.73163370
2	1.90303490	11.35304600
2	7.19745380	45.18231400
2	24.49263100	172.21949000
2	81.70534400	582.84560000
0	152.31608000	7.00000000

${ }^{\text {a }}$ The Fe one-electron ECP was developed by Dr. Louis Kahn [2].

Figure Captions

Fig. 1 Calculated potential curves for Fe_{2} states arising from the $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}+$ $4 s^{1} 3 d^{7}$ atomic $11 m i t$. Curve A is for the high spin state which has no 3d bonding, while curve B is for the low spin state which could have maximal 3d bonding.
F1g. 2 The Fe_{36} cluster for interior sites in BCC Iron. The locations of the primary atoms are indicated by the large circles; the locations of the secondary atoms are indicated by the intermediate size circles. The H atom locations for one periodicity direction are indicated by the small open circles; the H atom locations for the other periodicity direction are indicated by the small solid circles, while a trigonal site is indicated by a triangle.
Fig. 3 The Fe_{30} cluster for surface sites. The conventions are as for $\mathrm{Fig}, 1$.
Fig. 4 Calculated binding energies for octahedral (0) and tetrahedral (T) sites in BCC Iron. Fig. 4 a shows the calculated points while Fig. 4b shows the effect of adding a correction term (see text) to compensate for cluster edge effects.
Fig. 5 Calculated binding energies for two cuts through the potential energy surface for H in the Fe_{66} cluster, Curve A is for motion along one of the periodicity directions while curve B is for motion in the direction of a trigonal site. Fig. 5b differs from Fig. 5a in that a correction term has been added to compensate for cluster edge effects (see text).
Fig. 6 The geometric parameters which were varied in studying lattice relaxation for H in octahedral, tetrahedral, and trigonal sites.
Fig. 7 Calculated binding energies for two-fold and four-fold sites on the (100) surface of BCC Iron from the $\mathrm{Fe}_{30}{ }^{\mathrm{H}}$ cluster.

Fig. 8 Calculated binding energies for two-fold and four-fold sites on the (100) surface of BCC Iron from the $\mathrm{Fe}_{39}{ }^{\mathrm{H}}$ cluster.

43^{3}

en rever

Qulching Pata is OF POOR QUALTH

Fig 5b

ORGRAT: OF POMR Whinw

(C) FOUR-FOLD SITE

APPENDIX B

The following papers describe the calculations for the TM hydrides and dimers.

CASSCF/CI calculations for first row transition metal hydrides: The TiH ($\left.{ }^{4} \Phi\right)$, VH (${ }^{5} \Delta$), $\mathrm{CrH}\left({ }^{6} \Sigma^{+}\right), \mathrm{MnH}\left({ }^{7} \Sigma^{+}\right)$, FeH (${ }^{4,6} \Delta$), and $\operatorname{NiH}\left({ }^{2} \Delta\right)$ states

\author{
Stephen P. Walch ${ }^{\text {el }}$ and Charles W. Bauschlicher, Jr. ${ }^{\text {b) }}$
 Polyatomics Reseanch Insturic.' Mountsin Vieu; Colifornia 94043
 - \quad Received $\mathbf{2 5}$ Ocioter 1982: accepied 28 December 19821
 \author{
ORIGINAL PACE IS OF POOR QUALITY

Abstract

By consideration of atomic coupling arguments and interaction of $4 s^{3} 3 d^{\prime \prime}$ and $4 s^{\prime} 3 d^{* *}$ derived terms, the FeH (${ }^{\Delta} \Delta$), CoH ('\$l, and $\mathrm{NiH} l^{*} \Delta$). All of these systems have been studied by a CASSCF/CI $\mathrm{CD} /$ procedure with the exception of CoH . The calculated parameters derived from the CASSCF/Cl/SDI potential curves are in good agreement with the experimental values where known (no information exists for TiH and VH), Inclusion of atomic correlation leads to significantly better agreement with experiment particularly for $R_{\text {e }}$. These improvements are related to a more balanced description of the atomic states in the correlated wave functions.

}

I. INTRODUCTION

The chemistry of the transition metals (TM) is especially diverse because of the presence of several low-lying atomic states which may be utillzed in bonding. For the first transition row the lowest atomic states are derlved from the $4 s^{2} 3 d^{n}, 4 s^{1} 3 d^{21}$, and $4 s^{1} 4 p^{1} 3 d^{n}$ configurations. As we will see the bonding in TM involves a complex interaction among terms arising out of the various atomic levels. A number of studies ${ }^{1-5}$ have shown that the separations of the TM atomic states are not well described at the Hartree-Fock (HF) level; however, inclusion of electron correlation does significantly improve the description of the atomic states. Thus, electron correlation has to be included in the molecular calculations.

There have been a number of prevlous theoretical studies of the TM hydrides. Earlier all-electron studies by Scott and Richards ${ }^{\boldsymbol{- 8}}$ and Bagus and Schaefer ${ }^{0}$ used HF wave functions a nich completely neglect electron correlation. More recently Henderson, Das, and Wahl (HDW) ${ }^{10}$ and Das ${ }^{11}$ have carried out limited MCSCF studies of the TM hydrides. In these studies atomic correlation was largely neglected. This was justified in the work of Das ${ }^{12}$ by the observation that for VH the calculated properties of several states were similar in the GVB/POL-CI calculations of Walch ${ }^{i 2}$ which included limited correlation ($4 s^{2}-4 p^{2}$), and in the calculations of HDW which neglected these correlation terms. However, Bauschlicher and Walch ${ }^{13}$ pointed out that for ScH neglect of $4 s^{2}-4 p^{2}$ near degeneracy terms leads to an incorrect ordering of the ${ }^{1} \Sigma$ ' and ${ }^{3} \Delta$ states. Similarly for NiH Walch and Bauschlicher ${ }^{14}$ found that a correct description of the $X^{2} \Delta$ state of NiH required a balanced description of the $4 s^{2} 3 d^{6}$ and $4 s^{1} 3 d^{\circ}$ states of N , and consequently an accurate description of electron correlation was necessary. This conclusion is also substantlated for NiH by the CASSCF/CI calculations of Blomberg et al. ${ }^{15}$ and had been suggested by the earlier

[^1]studies of Bagus and Bjorkman ${ }^{16}$ and R. Martin ${ }^{17}$ In which limited $3 d$ shell correlation had been included.

For completeness we also mention the work of Goddard et al. ${ }^{16}$ on NiH in which electron correlation effects for the Ni atom were included in a semiempirical way using a modified effective core potential. This approach led to properties for NIH In good agreement with experiment at the two configuration MCSCF (GVB) level.

In the present study calculations were carried out for the predicted ground states of $\operatorname{TiH}\left({ }^{4} \Phi\right), \mathrm{VH}\left({ }^{6} \Delta\right), \mathrm{CrH}\left({ }^{6} \Sigma^{*}\right)$, $\mathrm{MnH}\left({ }^{7} \Sigma^{+}\right)$, and $\mathrm{NiH}\left({ }^{2} \Delta\right)$. For FeH both the ${ }^{8} \Delta$ and ${ }^{4} \Delta$ states were studied, since both are likely candiaates for the ground state. As discussed in Sec. II, the ground state symmetries are predicted based on a combination of atomic coupling arguments and coupling of $4 s^{2} 3 d^{n}$ amd $4 s^{1} 3 d^{n+1}$ terms in the molecular system. Electron correlation is included by a CASSCF/CI(SD) treatment. The CASSCF includes near-degeneracy effects $\left(4 s^{2}-4 t^{2}\right)$ while correlation of the $3 d$ electrons is included at the CI level.

II. QUALITATIVE FEATURES OF THE BONDING IN TM HYDRIDES

Figure 1 shows the relative ordering of the $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n+1}$ states for the first transition row. ${ }^{10}$ The treads in Fig. 1 may be understood in terms of two

FIG. 1. $4 s^{1} 3 x^{n+1}-4 s^{2} 3 d^{m}$ excitation energies of scandium to copper $\left[E\left(s d^{+1}\right)-E\left(s^{2} d^{n}\right)\right]$. All unlte are in eV .

TABLE I. Calculated parameters for the TM bydrides.

State		R_{e} (A $^{\prime}$	$\omega_{6}\left(\mathrm{~cm}^{-1}\right)$	De (eV)	$3 d$ population
TiH ${ }^{4}$	PW ${ }^{\text {a }}$	1.83	1407	2.12	2.26
	SR ${ }^{\text {b }}$	1,86	1410		
	$\mathrm{D}^{\text {c }}$	1,91	1331	1.7	
VH ${ }^{\text {b }}$	PW	1. 74	1590	2.30	3.42
	D	1.74	1609	1.77	
$\mathrm{CrH}^{6} \Sigma^{\prime}$	PW	1.70	1465	2.10	4. 86
	D	1.71	1570	2.0	
	Expt. ${ }^{\text {d }}$	1.66	1581		
$\mathrm{MnH}{ }^{\dagger} \Sigma^{\prime}$	PW	1.77	1639	1.71	5. 06
	D	$1,84$	1432	1.9	
	Expt, ${ }^{\text {d }}$	1.73	1548		
$\mathrm{FeH}^{6} \Delta$	PW	1. 72	1560	1.95	6.08
	J*	1.62	1560	1.7	
	D	1.77	1380	1.43	
	SR	1.73	1650		
	Expt. ${ }^{\text {f }}$	$1.77=0.05$			
$F \mathrm{FH}{ }^{4} \Delta$	PW	1. 60	1710	(3. 20)	6.26
	\mathbf{j}	1.50	1730	$(2,6)$	
	Expt, ${ }^{\text {a }}$	1.63	1680		
$\mathrm{NiH}{ }^{2} \Delta$		1.47	1982	$2,79$	8.66
	$\text { BSR }^{b}$	1.47	1911	2.76	
	BB^{1}	1.49			
	M^{\prime}	1. 50	1990	2.34	
	D	1.55	1917	2.5	
	GWRU*	1. 45	1911	$2,76$,
	Expt, ${ }^{\text {d }}$	1.48	1926.6	$\leq 3.16^{1}$	

ORIGINAL PAGE IS
OF POOR QUALITY
${ }^{4}$ Present work (PW).
Scott and Richards (SR) Refs. 6-8,
${ }^{6}$ Das (D) Ref. 11.
${ }^{6}$ Reference 28 ,
${ }^{\bullet}$ Jaffe (J) Ref, 32.
'Stevens, Liaberger, and Feigerle Ref. 30.
${ }^{\text {E Davis Ref. }} 31$.
Blomberg, Siegbahn, and Roos (BSR) Ref. 15 CI results. De referenced to $4 s^{1} 3 d^{*}$.
'Bagus and Bjorkman (BB) Ref, 16, The R_{e}, value is from CI calculations.
${ }^{\prime}$ Martin (M) Ref. 17 Cl values.
${ }^{3}$ Goddard, Walch, Rappe, and Upton (GWRU) Ref. 18.
${ }^{1}$ The calculated D_{e} values are with respect to $4 s^{1} 3 d$ while the experimental D_{e}, is referenced to $4 s^{2} 3 d^{2}$. The experimental separation is 0.03 eV with $4 s^{2} 3 d^{5}$. Thus, the appropriate D_{e} value for comparison to the calculation is $3.16 \mathrm{eV}\left(3.19 \mathrm{eV}\right.$ with respect to $\left.4 s^{2} 3 \mathrm{~d}^{t}\right)$.
competing effects (i) a general stabilization of $3 d$ with respect to $4 s$ with increasing Z, and (ii) a preference for a maximum number of high spin coupled $3 d$ orbitals. For less than half-filled shells both effects tend to stabilize $4 s^{1} 3 d^{n+1}$ with respect to $4 s^{2} 3 d^{n}$ for increasing Z, thus the $4 s^{1} 3 d^{n+1}-4 s^{2} 3 d^{n}$ separation decreases monotonically from $\mathrm{Sc}-\mathrm{Cr}$. For $\mathrm{Mn} 4 s^{2} 3 d^{5}$ is favored over $4 s^{1} 3 d^{4}$ because of the extra high spin coupled $3 d$ orbital. Thus, at Mn there is a discontinuity with $4 s^{2} 3 d^{n}$ again becoming lower. For $\mathrm{Mn}-\mathrm{Cu}$ the $4 s^{1} 3 d^{n+1}-4 s^{2} 3 d^{n}$ separation once again decreases monotonically due to stabilization of $3 d$ with respect to $4 s$ for increasing Z.

In addition to the $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{m 1}$ atomic configu rations the $4 s^{1} 4 p^{1} 3 d^{n}$ configuration is also important. The excitation energy $4 s^{2} 3 d^{n}-4 s^{1} 4 p^{1} 3 d^{n}$ increases monotonically with increasing 4 from $-16000 \mathrm{~cm}^{-1}$ for Sc to $-28000 \mathrm{~cm}^{-1}$ for $\mathrm{Cu}{ }^{10}$

The bonding of a H atom to a transition metal atom may involve either the $4 s^{2} 3 d^{*}$ or $4 s^{1} 3 d^{m+1}$ state. For the $4 s^{2} 3 d^{n}$ state the bonding involves formation of $s y$ hybrids arising from interaction of the $4 s^{2} 3 d$ and $4 s^{1} 4 p^{1} 3 d^{n}$ atomic configurations. This leads to two orbitals $s z$ and $s \bar{z}$ which have the qualitative character $4 s+4 p \sigma$ and $4 s-4 p \sigma$, respectively. The bonding orbital (two electrons) has the character of a sigma bond between Sc ($s z$) and $\mathrm{H}(1 s)$ while the $s \bar{z}$ orbital which is singly occupied is hybridized away from the bond pair. For the $4 s^{1} 3 d^{n+1}$ state the bonding involves formation of a simple $\mathrm{Sc}(4 s)-\mathrm{H}(1 s)$ bond. We expect the bonding here to be stronger than for the $4 s^{2} 3 d^{n}$ state since no promotion energy is involved. This picture is supported by the population analysis (CASSCF/CISD wave functions) which shows that MnH which is predominately $4 s^{2} 3 d^{5}$ like has valence s and p populations of 1.04 and 0.68 indicating a strong admixture of $4 s^{1} 4 p^{1} 3 d^{5}$ character while CrH which is dominated by $4 s^{1} 3 d^{5}$ has
valence s and p populations of 0.77 and 0.11, i.e., very little admixture of $4 p$ character.

Considering these two bonding mechanisms in conjunction with the variation in the $4 s^{5} 3 d^{*}-4 s^{1} 3 d^{* * 1}$ separation (Fig. 1) one expects predominately $4 s^{2} 3 d^{\text {" }}$ like character for elements where $4 s^{2} 3 d^{*}$ is well below $4 s^{1} 3 d^{n+1}(e . \mathrm{g} ., \mathrm{Sc}$ and Mn$)$, predominately $4 s^{1} 3 d^{n+1}$ character for elements where $4 s^{1} 3 d^{w-1}$ is well below $4 s^{2} 3 d^{n}$ (e.g., Cr and Cu), and mixed character for the other elements with especially strong mixing for elements where $4 s^{1} 3 d^{n+1}$ is slightly above $4 s^{2} 3 d^{n}$ (e.g., \mathbf{V} and Co). These expectations are borne out by the $3 d$ populations in Table I where we see TiH is predominately $4 s^{2} 3 d^{2}$, VH is a mixture of $4 s^{2} 3 d^{3}$ and $4 s^{1} 3 d^{4}, \mathrm{CrH}$ is predominately $4 s^{1} 3 d^{5}, \mathrm{MnH}$ is predominately $4 s^{2} 3 d^{4}$, FeH ${ }^{6} \Delta$ is predominately $4 s^{2} 3 d^{6}$, and NiH is a mixture of $4 s^{2} 3 d^{6}$ and $4 s^{1} 3 d^{4}$.

As pointed out elsewhere, ${ }^{13}$ there is an additional complication for ScH where there is a competition between bonding to $s \bar{z}$ and $3 d \sigma$ for the $4 s^{2} 3 d^{1}$ configuration. However, we suspect that a " d-bonded" ground state is peculiar to ScH for the following reasons: (i) As one moves from the left to right side of the first transition row both the $3 d$ and $4 s$ orbitals contract, but the ratio of $\left\langle\boldsymbol{r}_{\mathbf{4}}\right\rangle /\left\langle\boldsymbol{r}_{\mathbf{w}}\right\rangle$ increases monotonically from 2.3643.239. ${ }^{5}$ Thus bonding to the $4 \mathrm{~s}^{2}$ pair is favored increasingly as one moves from Sc to elements on the right side of the row. (ii) Formation of the " d-bond" results in loss of exchange energy as the number of $3 d$ electrons increases. This effect shoald be most significant in the center of the row where the maximum number of high spin coupled electrons occurs.

In the previous discussion we considered the interaction between $\mathrm{H}(1 s)$ and the $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n-1}$ atomic configurations. We now consider how to select the lowest $3 d$ orbital occupancies. As discussed in some detail elsewhere, ${ }^{20}$ just as one may write a given atomic state as a mixture of determinants it is possible to express a given determinant as a mixture of atomic states. For example, for the Ti atom in the $4 s^{2} 3 d^{2}$ state the configuration $4 s^{2} 3 d \sigma^{1} 3 d \delta^{1}$ is pure ${ }^{3} \mathrm{~F}$, but the configuration $4 s^{2} 3 d \sigma^{1} 3 d \pi^{1}$ is a mixture of $40 \xi^{3} F$ and 60% ${ }^{3} P$. These relationships have been worked out for the $3 d^{1}, 3 d^{2}, 3 d^{3}, 3 d^{4}$, and $3 d^{5}$ configurations and are given in Table II. Given this information one then expects for Ti that the $4 s^{2} 3 d \sigma^{1} 3 d \pi^{1}$ configuration is 0.62 eV above $4 s^{2} 3 d \delta^{1} 3 d \delta^{1}$ (i.e., 0.6×1.03 where 1.03 is the excitation energy ${ }^{3} F-{ }^{3} P$). Thus in the absence of other effects one expects it to be more favorable to have the configuration $3 d \sigma^{1} 3 d \delta^{1}$ than $3 d \sigma^{1} 3 d \pi^{1}$ and similarly for the other TM hydrides one may pick likely candidates for the ground states from Table 1. Note that here we are making use only of atomic information.

Now consider forming a TM hydride. As a first case consider the state of ScH arising out of $4 s^{2} 3 d^{1}$. The SCF configuration here is

$$
\begin{equation*}
b^{2} s z^{-1} 3 d^{1} \alpha \beta \alpha \alpha \tag{1}
\end{equation*}
$$

where b is the bond orbital $[s z+H(1 s) l i k e$) and $s \bar{z}$ is an oroital of $4 s-4 z$ character. Looking at Table II we see that the three components of ${ }^{2} D$ are degenerate and no direct information as to the favorability of $3 d \sigma, 3 d \pi$,

TABLE II. Composition of determinants in terms of pure atomic states.

or $3 d \delta$ is obtained from purely atomic information. However in the molecular symmetry $3 d \sigma$ and $4 s \mathrm{mix}$ and in Eq. (1) allowing $s \bar{z}$ to mix in $3 d \sigma$ character leads to mixing in a plece of $4 s^{1} 3 d^{2}$ like character:
oparticle $b^{2} s \bar{z}^{-1} 3 d \delta^{1} \alpha \beta \alpha a+\lambda b^{2} 3 d \sigma^{1} 3 d \delta^{1} \alpha \beta \alpha \alpha 100{ }^{\circ}{ }^{3} F$;
π particle $b^{2} s \bar{z}^{-1} 3 d \pi^{1} \alpha \beta \alpha \alpha+\lambda b^{2} 3 d \sigma^{1} 3 d \pi^{1} \alpha \beta \alpha \alpha 40 q^{3} F$;
σ particle $b^{2} s z^{-1} 3 d \sigma^{1} \alpha \beta \alpha \alpha$.
Note here that the $3 d \delta$ particle leads to $4 s^{2} 3 d \sigma^{1} 3 d \delta^{1}$ which is pure ${ }^{3} F$, the $3 d \pi$ particle leads to $4 s^{2} 3 d \sigma^{1} 3 d \pi^{1}$ which is $40 \%^{3} F$ and $60 \%^{3} P$, while the $3 d \sigma$ particle leads to no $4 s^{1} 3 d^{2}$ term due to the Pauli principle. Thus hybridizing $4 s$ and $3 d o$ is equivalent to mixing $4 s^{2} 3 d^{1}$ and $4 s^{1} 3 d^{2}$ character and one expects this process to be more favorable for a $3 d \delta$ particle than for a $3 d \pi$ particle which is in turn more favorable than for a $3 d \sigma$ particle. On this basis one predicts the molecular ordering ${ }^{3} \Delta<^{3} \Pi<{ }^{3} \Sigma$ ' which is in fact the calculated ordering. ${ }^{13}$

Considering now TiH, from Table II the lowest atomic configurations are

$$
\begin{equation*}
b^{2} s z^{-1} 3 d \pi^{1} 3 d \delta^{1} \backsim \beta \alpha \alpha \alpha \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{2} s \bar{z}^{-1} 3 d \sigma^{1} 3 d \delta^{1} \alpha \beta \alpha \alpha \alpha \tag{4}
\end{equation*}
$$

which are pure ${ }^{3} F$ for the atomic case. However, Eq. (3) mixes with $b^{2} 3 d \sigma^{1} 3 d \pi^{1} 3 d \delta^{1}$ which is pure ${ }^{4} F$, while no such mixing is allowed for Eq. (4) Thus one prediets the ground state of TiH is ${ }^{\prime} \Phi$ arising from Eq. (3).

FIG. 2, Origin of VH valence states. The first column shows the ordering of the $4 s^{2} 3 d^{3}$ derived terms and the last column shows the ordering of the $4 s^{1} 3 d^{4}$ derived terms while the center column shows the calculated ordering of molecular states.

Similarly for VH the most favorable choice is

$$
\begin{equation*}
b^{2} s z^{1} 3 d s^{1} 3 d \pi_{s}^{1} 3 d \pi_{y}^{1} \tag{5}
\end{equation*}
$$

which mixes with

$$
\begin{equation*}
b^{2} 3 d \sigma^{1} 3 d \delta^{1} 3 d r_{1}^{1} 3 d \pi_{v}^{1} \alpha \beta \alpha \alpha \alpha \tag{6}
\end{equation*}
$$

leading to a ${ }^{s} \Delta$ ground state.
For CrH mixing of $4 s$ and $3 d o$ couples

$$
b^{2} s z^{1} 3 d \delta_{\pi y}^{1} 3 d \delta_{x^{2}-y^{2}}^{1} 3 d \pi_{x}^{1} 3 d \pi_{y}^{1} \alpha \beta \alpha \alpha \alpha \alpha \alpha
$$ and

$$
b^{2} 3 d \sigma^{1} 3 d \delta_{n y}^{1} 3 d \delta_{v^{2}, y^{2}}^{1} 3 d \pi_{s}^{1} 3 d \pi_{,}^{1} \alpha \beta \alpha \alpha \alpha \alpha \alpha
$$

leading to a ${ }^{6} \Sigma{ }^{6}$ ground state.
For a less than half-filled $3 d$ shell the above analysis predicts the ground state spin and spatial symmetry independent of whether the molecular state is predominately $4 s^{2} 3 d^{n}$ or $4 s^{1} 3 d^{n+1}$. On the other hand, for a more than half-filled $3 d$ shell the spin multiplicity depends on whether the atomic character is $4 s^{2} 3 d^{n}$ or $4 s^{1} 3 d^{n+1}$ like. Here the low spin states are expected to involve strong coupling of $4 s^{1} 3 d^{n+1}$ and $4 s^{2} 3 d^{n}$ derived terms as for the elements with less than half-filled $3 d$ shells, but the high spin states should involve less coupling of $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n+1}$ because the high spin coupling arising from $4 s^{1} 3 d^{n+1}$ is expected to be repulsive. By an argument analogous to the above (substituting holes for particles) one predicts that the ground states of the remaining hydrides are $\mathrm{MnH}\left(\mathrm{H}^{\circ} \mathrm{F}^{\circ}\right)$, $\left.\left.F e^{(4.6} \Delta\right), \mathrm{C} \cap \mathrm{H}^{3.5} \Phi\right)$, and $\left.\mathrm{NiH}{ }^{2 \cdot 4} \Delta\right)$ where the higher spin multiplicity corresponds to $4 s^{2} 3 d^{n}$ and the lower multiplicity corresponds to $4 s^{1} 3 d^{n+1}$.

To further confirm the qualitative arguments made above we also compare the predicted ordering of the low-lying states to the calculated POL-CI ordering ${ }^{12}$
for VH. Figure 2 shows the molecuar terms arising out of the $\mathrm{V} 4 s^{2} 3 d^{3}$ and $4 s^{1} 3 d^{4}$ atomis states (based on Table II and the experimental atomic separations. ${ }^{19}$) The left-and right-hand columns o! Fig. 2 show the atomic $4 s^{2} 3 d^{3}$ and $4 s^{1} 3 d^{4}$ states while the center column (labeled "mixed") shows the calculated molecular ordering. Here the ' Φ mixed energy is fixed at the energy of the $4 s^{2} 3 d^{3}(4)$ term since no mixing of atomic states is expected for ${ }^{6} \Phi$ (because only one ' $\$$ term arises).

The most poticeable feature of Fig. 2 is a large stabilization of the " Δ and ${ }^{5} \Pi$ states as compared to the atomic $4 s^{2} 3 d^{3}$ separation. For the ${ }^{5} \Delta$ state this eff.ct is due to admixture of ${ }^{1} \Delta(21 \mathrm{I})$ terms as above. (Note that we use an abbreviated notation for the 3d orbital occupancy here and in Fig. 2, e.g., ' $\Delta(21 I)$ is equiva lent to Eq. (5) and ${ }^{5} \Delta(2101)$ is equivalent to Eq. (6).] This admixture of $4 s^{2} 3 d^{3}$ and $4 s^{1} 3 d^{4}$ character is associated with a decrease of $0.15 a_{c}$ in R_{c}, as compared to ${ }^{5} \Phi$, and is also consistent with the CASSCF/C1 population of $3.423 d$ electrons (Table 1), For ${ }^{5} 11$ the situation is more complex in that there are two major configurational mixing effects. The dominant configuration here is ${ }^{5} \mathrm{n}(20 \mathrm{I})$; however, there is significant admixture of ${ }^{5} \Pi(212)$ and ${ }^{5} \Pi(2102)$. The latter configari tion coupling mixes $4 s^{2} 3 d^{3}$ and $4 s^{1} 3 d^{4}$ character and is probably responsible for the decrease in R_{e} by $0.09 a_{0}$ as compared to ${ }^{6} \Phi$. Finally, the ${ }^{5}-{ }^{-}$siate shows significant couping of ${ }^{5} \Sigma^{*}(10 \mathrm{I})$ and ${ }^{*}{ }^{*}(205)$ leading to stabilization with respect to ${ }^{5} \Phi$ but no admixture of $4 s^{2} 3 d^{3}$ and $4 s^{1} 3 d^{4}$ character which is consistent with ${ }^{5} \Phi$ and ${ }^{5} \Sigma^{*}$ having nearly identical R_{e}, values.

III. CALCULATIONAL DETAILS

The TM basis sets start with Wachters (14s $9 p 5 d)$ primitive set ${ }^{21}$ augmented with Wachters two $4 p$ functions, the diffuse d function of Hay, ${ }^{22}$ and a set of f polarization functions. The f exponents used were Ti (1.2), $\mathrm{V}(1,4), \mathrm{Cr}(1.6), \mathrm{Mn}(1.8), \mathrm{Fe}(2.0), \mathrm{Co}(2.2)$, and $\mathrm{Ni}(2,4)$. These exponents were selected by linear extrapolation of the optimum $\mathrm{Cl}(\mathrm{SD})$ values for Fe and $\mathrm{Ni} .{ }^{1,6,5}$ These values are near the optimum values for a single and double CI when the 3 s and 3 p are correlated. ${ }^{5}$ Since we did not correlate the transition metal $3 s$ and $3 p$ electrons a better choice of exponents may have been those optimized for only $3 d$ and 4 s cor relation. ${ }^{3}$ However, the 4 functions are found to be unimportant for the TM hydrides ${ }^{13}$ and the $3 d$ correlation energy and atomic splitting are somewhat insensitive to the choice of f exponent. Thus, this defect in the f basis is of no serious consequence. This basis set was contracted to [$5 s 4 p 3 d 1 /$] using the general contraction feature of BIGCMOLI, ${ }^{23}$

The H basis set starts with the (6s) primitive set of van Duijneveldt ${ }^{24}$ with two additional diffuse s functions added in an even tempered manner, while the p functions were selected as a (211) contraction of a four term GTO fit^{25} to an STO $2 p$ with an exponent of 1.0 , ($8 s 4 p$)/[5s 3p]. The innermost contracted p function is similar in spatial extent to the usual single p function, while the outer two p functions are diffuse furctions

TABLL ill. CAEsC' wave function for MnH.

Configuration										
s,	0	*	90	12	16_{3}	37.	47	$3{ }^{37}$	$4{ }^{*}$	Coefficient
2	1	0	1	1	1	1	0	1	0	0, 968
0	1	2	1	1	1	1	0	1	0	0,092
6	1	0	1	1	1	1	2	1	0	0,065
0	1	${ }^{\text {t }}$	1	1	1	1	0	1	2	0,065

ORIIMLAL PREE IS OF POOR QUALITY

appropriate to \mathbf{H}^{*}. This hasis set obtains all but ~ 0.02 eV of the electron affinity (E, A.) of H^{*}.

In the CASSCF calculations the Ar cores of the TM atoms are kept doubly occupied in all configurations; the active space consists of the orbitals derived from the transition metal $4 s, 4 p$, and $3 d$ orbitals and the $\mathrm{H}(1 \mathrm{~s})$ orbital, i.e., $6 c-9 c, 3-48$, and 18 . In the above the $9 \mathrm{o}, 3 \mathrm{~s}$, and 18 orbitals are transition metal 3 d like, 6 c is the bond pair, $7 c$ is the $s \bar{z}$ orbital, and $8 c$ introduces left-right correlation of the bond pair, while 4 - introduces angular correlation of the bond pair. Note that at $R=\propto 6 \mathrm{c}$ is a transition metal 4 s orbital, 70 is the $\mathrm{H}(1 \mathrm{~s})$ orbital, and 8 c and 4 - are transition metal $4 p$ orbitals (near degeneracy effect), while as R decreases the orbitals evolve much as in a $2-1$ chemical reaction. ${ }^{26}$ Note also that for cases where the $3 d o$ orbital is not occupied (T / H and VH) the 90 orbital is mostly $\mathrm{H}(2 p q)$ like and there is no occupied $3 d \sigma$ like orbital. The 4 rorbital is mostly $\mathrm{H}(2 p=)$ like, a result which is consistent with the natare of the 9σ orbital for TiH and VH. Note that the TM hydrides contain a significant component of TM H ${ }^{\text {character (H population } 0.22 \text { for }}$ MnH CASSCF CISD wave function).

Because the CASSCF procedure introduces some ambiguities into the calculations (e.g., the 9σ orbita! is hydrogen like for TiH but is transition metal $3 d \sigma$ like for CrH), it is difficult to obtain a consistent description of the bonding in the TM hydrides at the CASSCF level. Therefore, the CASSCF calculations were followed by CIISD calculations. The starting set of reference configurations for these calculations were the GVB configurations:

$$
\begin{align*}
& \left(\begin{array}{c}
6 \sigma^{2} 7 \sigma^{1} \\
6 \sigma^{1} 8 \sigma^{1} 7 \sigma^{1} \\
8 \sigma^{2} 7 \sigma^{1}
\end{array}\right) 3 d^{n} \quad \mathrm{TM}\left(4 s^{2} 3 d^{n}\right)+\mathrm{H}, \tag{8a}\\
& \left(\begin{array}{c}
6 \sigma^{2} \\
6 \sigma^{1} 8 \sigma^{1} \\
8 \sigma^{2}
\end{array}\right) 3 d^{n-1} \quad \mathrm{TM}\left(4 s^{1} 3 d^{n+1}\right)+\mathrm{H} \tag{8b}
\end{align*}
$$

Table III shows the configurations in the CASSCF for the state of MnH , a case which is predominately $4 s^{2} 3 d^{n}$ like. Here one sees that the dominant correlation terms are the GVB configurations (8a), For the ${ }^{\circ}$. state of CrH which is derived from $4 s^{1} 3 d^{5}$ the dominant terms in the CASSCF are the GVB configura tions (8b). For this reason configurations (8a) were used as reference corf.gurations for Tin' and MnH
which are predominately $4 s^{2} 3 d^{n}$ like and configurations (8b) were used as reference configurations for CrH which is predominately $4 s^{1} 3 d^{m 1}$ like. However, for VH and NiH and for the ${ }^{4} \Delta$ state of FeH there is a strong admixture of $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n+1}$ character, and more extensive reference lists were used as indicated in Sec. IV.

The CASSCF/CI calculations were carried out with BIGGMOLI ${ }^{23}$-SWEDE ${ }^{27}$ using the NASA Ames CRAY is. The calculated R_{e}, D_{e}, and \approx, values were obtained via a Dunham analysis of the points near R_{e}. In those fits in general only three terms are used. Based on a comparison of three and four term fits for NiH we estimate that use of this small number of computed points leads to errors of $\left\langle 0.01 a_{0}\right.$ for $R_{e},\left(50 \mathrm{~cm}^{-1}\right.$ for ω_{e}, and $\left\langle 0.01 \mathrm{eV}\right.$ for D_{e}.

IV. DISCUSSION

A. TiH

Table IV presents ith CASSCF and CI energies for the ${ }^{4} \Phi$ state of TiH, winle Table 1 gives the derived potential curve parameters. The reference configarations for the CI are configurations (8a). Note from Table I that the $3 d$ population is 2.26 which is consistent with using a $4 s^{2} 3 d^{2}$ reference. No experimental information exists for TiH, however the calculated results are compared to the calculated results of Das (D) ${ }^{11}$ and Scott and Richards (SR). ${ }^{6-8}$ Here one sees that the present results show a shorter bond length and larger binding energy-a result consistent with the higher level of electron correlation included in the present calculation.

B. $\mathbf{V H}$

Table V gives the CASSCF and CI energies for the ${ }^{5} \Delta$ state of VH obtained using Eq. (8a) as reference configurations. Because of the large amount of $4 s^{1} 3 d^{4}$ character in the CI wave function (see Table I and VI A) more extensive CI calculations were carried out

TABLE NV, Calculated energies for the ${ }^{4} \$$ state of TiH.

R, a_{6}	CASSCF	$C!$
20.0	-646.92621	-546.93596
4.00	$-846,98319$	
3.75	-646.99264	-849.01369
3.50	-646.99365	-849.61676
3.25	$-846,99061$	-849.61521

TABLE V, Calculated energies for the ' Δ state of VH.

$R_{,} a_{0}$	CASSCF	Cl
20,0	-943.40439	-943.42986
3.50	-943.46991	-943.51013
3.25	-943.46972	-943.51216
3.00	-943.46313	-943.50635

TABIE VIA. VH extended CI results.

Case	Energy	3d population	r reference
$\mathbf{4 A} \sigma$, 3 reference	-943.51216	3.36	92
$\mathbf{4 A} \sigma$, 5 reference	-943.51301	3.37	92
$5 A \sigma, 5$ reference	-943.51353	3.39	93
$5 A \sigma, 8$ reference	-943.51434	3.42	94

TABLE VIB, VH 5Ag, 8 reference
CI energies.

\boldsymbol{R}, a_{0}	E
3.50	-943.51215
3.25	-943.51434
3.00	-943.51062

(Table VI). In Table V1 the designation $4 A \sigma$ denotes that there are four active sigma orbitals $6 \sigma-9 \sigma$. The $5 A \sigma$ designation denotes a more extensive MCSCF in which a 10σ orbital was added to the active space. The 10σ orbital is mostly $3 d \sigma$ like and is important for describing orbital readjustment effects concomitant with the mixing of Eqs. (5) anc. (6) in the CI. The reference configurations for the extended CI calculations are given in Table VII. The 3 reference list consists of configurations (8a) while the 5 and 8 reference lists incl'de the remaining configurations in Table VII. The 5 and 8 reference lists were selected based on CI calculations using the 3 reference list with the $4 A \sigma$ and $5 A \sigma$ CASSCF orbitals, respectively. Note that the 5 reference list includes additional correlation of the bond pair, mainly angular correlation involving $\mathrm{H}(2 p)$, which is no: included in the 3 roference list. The 8 reference list differs from the 5 reference list in that single excitations from 7σ into the remaining sigma active orbitals are included.

TABLE VII. Calculated energies for the ' 2 ' state of CrH .

\boldsymbol{R}, a_{0}	GVB	CI
20.0	$-1043,83314$	$-1043,90602$
3.50	$-1043,88395$	-1043.97968
3.25	-1043.88434	-1043.96320
3.00	-1045.87999	-1043.98150

From Table V1A we see that the extended CI calculations lead to results rather similar to the calculations using only Eq. (8a) as a reference set. Calculations using a larger V basis set ($14 s 11 p 6 d 2 f$)/ [$8 s 7 p 4 d 2 f$] show a very similar population and this population is only slightly changed by natural orbital iterations. From this we conciude that the strong mixing of d^{3} and d^{4} observed it the current CASSCF/CI (SD) calculations is converged with respect to basis set and level oi correlation.

Finally, Tabl: VIB gives energies obtained at the $5 A \sigma, B$ reference $C l$ level. The potential curve parameter fiven is the tare derived from these energies. We ncte from salle I that the potential curve parameters obtained here are in good agrechaent with the calculations of Das ${ }^{11}$ and the eari:or resulits of W'ai, h, ${ }^{12}$

C. CrH

For-Grat the ground en: state os predominstely $4 s^{2} 3 d^{*}$ like ivo we CaSSCF was tased on Eq. (8b) ($3 C 1 \pi 16$ active space). The CASSC was followed by a SDCI using Eq. (8b) as reterences. Note that the CASSCF in this case has a smaller active space than for the other cases. The smaller active space here omits angula. correlation effects; however, wese effects are included at the C1/SD) level and these calculations are consistent with those for the other hydrides.] The calculated R_{e} and ω_{e} are in reasonable agreement with experiment ${ }^{26}$; the bond length is too long by $\sim 0.04 \AA$ and ω_{e} is too small by $100 \mathrm{~cm}^{-1}$. The results of the present calculations (Table 1 and Table VIII) are in good agreement with the results of Das ${ }^{14}$ a not unexpected result given that the MCSCF model used by Das is the same as ou: for this particular system, and one expects very little mixing of $4 s^{2} 3 d^{4}$.

D. MnH

Table DX gives the calculated CASSCF and CI energies for MnH . The reference configurations for the Cl

TABLE VII. Reference configurations for VH extended CI calculations.

Reference	60	70	80	90	100	$10^{2}{ }^{2} y^{2}$	$16^{\text {y }}$	$3 \pi_{x}$	$4 r_{x}$	$3{ }^{3}$	47
$\left.\int_{5}\right\}^{3}$	12	1	0	0	0	0	1	1	0	1	0
	0	1	2	0	0	0	1	1	0	1	0
	10	1	0	2	0	0	1	1	0	1	0
	0	1	0	0	0	0	1	1	2	1	0
	0	1	0	0	0	0	1	1	0	1	2
	2	0	1	0	0	0	1	1	0	1	0
	2	0	0	1	0	0	1	1	6	1	0
	2	0	0	0	1	0	1	,	2	1	0

TABLE DX . Calculated energies for the ' Σ ' state of MnH .

\boldsymbol{R}, a_{0}	CASSC F	CI
20,0	$-1150,37385$	$-1150,43999$
3.50	$-1150,42384$	$-1150,50163$
3.25	$-1150,4234^{\circ}$	$-1150,50247$
3.00	$-1150,41650$	$-1150,49702$

TABLE X. Calculated energies for the ' Δ state of FeH.

\boldsymbol{R}, a_{0}	CASSCF	Cl
20.0	-1262.95101	-1263.05217
3.30	-1262.99975	-1263.11420
3.25	-1263.00136	-1263.11716
3.00	-1262.9968	-1263.11436

are Eq. (8a) which is consistent with the $3 d$ population of 5.06 . From Table 1 one sees that the calculated R_{e} is $-0.04 \AA$ longer than experiment while the calculated ω_{e} is $90 \mathrm{~cm}^{-1}$ larger than experiment. ${ }^{28}$ Comparing our results to Das', ${ }^{11}$ we see that his R_{*} is larger than ours by $-0.07 \AA$ (and in poorer agreement with experiment), xnd his ω_{e} is smaller than experiment by $-110 \mathrm{~cm}^{-1}$. Given the longer R_{e}, and smaller ω_{e} in the calculations of Lias it is puzzling to note that his D_{e} is larger than ours. Note that in a.l other cases Das' binding energies are smaller. We saspect that overestimation of D_{e} in this case is due to neglect of $4 s^{2}-4 p^{2}$ near degeneracy which is more important for the $4 s^{2} 3 d^{5}$ atomic asymp tote than for the molecular region. Another puzzling Woul hery is Das' comment that the HF configuration is not dominant for $\mathbf{M n H}$, since we find that in the CASSCF the HF configuration is dominant for all R. (See Table III.)

E. FeH

Table X gives the calculated CASSCF and CI energies for the ${ }^{6} \Delta$ state of FeH . These calculations were carried out in the same way as the MnH calculations. For FeH more extented calculations were also carried out to examine the question of the separation of the ${ }^{6} \Delta$ and ${ }^{4} \Delta$ states of FeH . The ${ }^{6} \Delta$ state of FeH is dominated by

$$
\begin{equation*}
6 \sigma^{2} 7 \sigma^{1} 9 \sigma^{1} 1 \delta^{1} v^{2},^{2} 10 v^{2} 3 \tau s^{1} 3 \pi,^{1}, \tag{9}
\end{equation*}
$$

while we find the ${ }^{4} \Delta$ state is a strong mixture of the quartet coupling of Eq. (9) and

$$
\begin{equation*}
6 \sigma^{2} 9 \sigma^{2} 1 \delta_{r^{1}, r^{2}} 1 \delta_{n}^{2} 3 r_{1}^{1} 3 r_{v}^{1}, \tag{10}
\end{equation*}
$$

which is best viewed as the " Δ configuration arising from $4 s^{1} 3 d^{7}$. In the CASSCF calculations the ${ }^{4} \Delta$ state has the 7σ and 9σ orbitals mixed, i.e., 7σ き $s \bar{z}+3 d \sigma$ and 9 c a $s \bar{z}-3 d o$. With these orbitals the ' Δ state has five dominant configurations which are the reference configurations given in Table XI. The dominant configu rations for the ${ }^{6} \Delta$ state on the other hand, also given in Table XI are more clearly defined consisting of Eq. (9) plus left-right and angular correlation of the bond pair.

Table XII gives the calculated energies for the ${ }^{6} \Delta$ and ${ }^{4} \Delta$ states of FeH using the reference configurations given in Table XI. Here we find the ${ }^{6} \Delta$ state is 0.08 eV below ' Δ at the $\mathrm{Cl}(\mathrm{SD})$ plus Davidson's correction level of calculation, while the best experimental estimate ${ }^{29}$ places ${ }^{6} \Delta \sim 0.25 \mathrm{eV}$ above ${ }^{4} \Delta$.

GVB $+1+2$ calculations with the present basis set for Eqs. (9) and (10) at $R=20,0 a_{0}$ give a separation of 1.34 eV as compare 1 to the e:perimental ${ }^{5} F-{ }^{5} D$ atomic separation of 0.88 eV . Since the ' Δ state is a strong mixture of $4 s^{2} 3 t^{6}$ and $4 s^{1} 3 d^{7}$ derived terms, one might expect that further improvement in the ${ }^{5} F-{ }^{5} D$ separation would depress ${ }^{4} \Delta$ with respect to ${ }^{6} \Delta$. However, the same CASSCF C: (SD) calculation with a larger [$6 \mathrm{~s} 5 p 411 f$] basis set. ${ }^{29}$ which gives a ${ }^{5} F-{ }^{5} D$ atomic separation of $2,21 \mathrm{eV}$, leads to the same separation of $0.08 \mathrm{eV}^{\text {with }}{ }^{6} د$ Delow ' ${ }^{4}$, and the $3 d$ population remains the same as with the smaller basis set. This esult is consistent with oar stadies ${ }^{14}$ of NiH , where we found a correct mixing of $4 \mathrm{~s}^{2} 3 t^{4}$ and $4 s^{1} 3 d^{9}$ (as reflected in the bond shortening) at a level of calculation where the separation was stil! in error by $\sim 0.5 \mathrm{eV}$.

From Table XIl one sees that there is a differential Davidson's correction for the ${ }^{4} \Delta-{ }^{6} \Delta$ separation of FeH of 0.19 eV (based on ${ }^{6} \Delta$ at $3.25 a_{0}$ and ${ }^{4} \Delta$ at $3.00 a_{0}$). Th.s large differential Davidson's correction is consistent with the differential percentage reference in the CI (SD) wave functions (92% for ${ }^{4} \Delta$ and 95% for ${ }^{6} \Delta$).
Because of the size of the differential Davidson's correction we suspect that the ground state of FeH is " Δ (in agreement with experiment) and that the remaining error in our calculated separation is due to a need for

TABLE XI. Referenct configurations for FeH extended CI calculations.

	60	70	9	90	$10^{2} 2-y^{2}$	$1 \delta_{\text {ry }}$	$3 r_{3}$	4.	$3{ }^{3}$	${ }^{4}$
'د	2	1	¢	1	1	2	1	0	1	6
	0	1	2	1	1	2	1	0	1	0
	0	1	0	1	1	2	1	2	1	0
	0	1	0	1	1	2	1	0	1	2
3	2	2	0	0	1	2	1	0	1	0
	2	0	0	2	1	2	1	0	1	0
	2	1	0	1	1	2	1	0	1	0
	0	2	2	0	1	2	1	0	1	0
	1	1	1	1	1	2	1	0	1	0

TABLE XII. Calculated energies for the ' Δ and ' Δ states of FeH,

R, a_{i}	${ }^{1}$		${ }^{4}$	
	CASSCF	Cl	CASSC F	CI
20.0	-126\%.95101	-1263.052 1^{-4}		$-1263.00302^{\text {c }}$
3.50	-1262.99978	$\begin{gathered} -1263.11483 \\ (-1263.12069)^{6} \end{gathered}$		
3.25	-1263.0013°	$\begin{aligned} & -1263.11787 \\ & (-1253.12374) \end{aligned}$	-1262.980 74	$\begin{gathered} -1203.10550 \\ (-1263.11771) \end{gathered}$
3.00	-1262.99684	$\begin{gathered} -1263.11505 \\ (-1263.12109) \end{gathered}$	-1262.97661	$\begin{gathered} -1263.10789 \\ (-1263.12038) \end{gathered}$
2.75			-1262.968 50	$\begin{gathered} -1263.10264 \\ (-1263.11620) \end{gathered}$

ORIGINAL PAGE IS' OF POOR QUALITY

${ }^{4}$ From Table X usirig the GIB reference configurations [Eq. (8a)).
'Values in parenthesis include Davidson's correction.
${ }^{6}$ From a GVB $+1+2$ calculation for the ${ }^{6} د$ state of FeH.

higher excitations in our CI wave function.

From Table I we see that the calculated R_{e}, and $\omega_{\text {e }}$ for the ${ }^{4} \Delta$ state and the calculated R_{e} for the ${ }^{6} \Delta$ state are in good agreement with experiment. ${ }^{30,31}$ Comparing to other calculated results. Das ${ }^{11}$ studied only the ${ }^{6} \Delta$ state and finds a longer R_{e}. smalier s_{e}, and smaller D_{e} than in the present calculations. Jaffe ${ }^{32}$ carried out an ECP Cl study of the ${ }^{6} د$ and ${ }^{4} د$ states of FeH. His results show shorter bond lengths for both states (a result which is believed to be due to defects in the ECP); however the other calculated parameters are in reasonable agreement with the present results.

F. NiH

For NiH the CASSCF calculations converged to a solution somewhat simular to the ${ }^{4} د F \in H$ calculations. The $3 d$ population here is -8.2 for $R=2.75 a_{0}$. Altempts to obtain a solution which was dominated by $4 s^{i} 3 d^{\dagger}$ converged to the same resul: even when started from $4 s^{1} 3 d^{8}$ like GVB vectors. It was found that correlating the $3 d 0$ orbital which stablizes $4 s^{1} 3 d^{4}$ with respect to $4 s^{2} 3 d^{8}$ lead to stabilization of the $4 s^{1} 3 d^{4}$ like solution. How ever, for consistency, calculations were carried out using the $4 s^{2} 3 d^{8}$ like orbitals. The GVB-CI calcula-

TABLE XIII. Reference configurations for NiHCl calculations.

6σ	7σ	8σ	9σ	$1 \delta_{x} 2-y^{2}$	$1 \delta_{x y}$	$3 \tau_{x}$	$3 \tau_{y}$
2	0	0	2	2	1	2	2
1	0	1	2	2	1	2	2
0	0	2	2	2	1	2	2
2	0	2	0	2	1	2	2

TABLE XIV. Calculated energies for the ${ }^{2} \Delta$ state of NiH.

R, a_{6}	CASSC F	CAS Cl ${ }^{2}$	$\mathrm{NO} \mathrm{Cl}^{2}$
3.25	-1507.37639	-150\%.60035	-1507.60847
3. 00	-1507.377.9	-150\%.61021	-150\%.61735
2. 75	-1507.373 35	- 1507.61440	-1507.62065
2. 50	-1507.35932	-1507.61009	- 1507.61440

${ }^{2}$ The asymptotic energ: $1 \mathrm{~s}-1507.51799$ from a GIB $+1+2$ calculation based on a $4 s^{\prime} 3 d^{\prime}+\mathrm{H}(1 \mathrm{~s})$ like CVB solution.
tions were carried out and the nataral orbitals were used in a Cl using the reference configarations in Table XIII. This calculation leads to a $3:$ population of $\mathbf{- 8 . 7}$ indicating strong mixing between $4 s^{1} 3 d^{4}$ and $4 s^{2} 3 d^{4}$ at the CI level. Note that the resuits here confirm the conclusion reached in the earlier MCSCF POL-CI studies ${ }^{14}$ of NiH that MCSCF leads to ineorrect mixing of $4 s^{2} 3 d^{6}$ and $4 s^{1} 3 d^{4}$, and that this defect is corrected at the CI level. Correlating the $3 t$ orbitals deads to a $4 s^{1} 3 d^{0}$ like solution as is the case for HF wave functions, while the present CASSCF calctiations tend to bias the calculation toward $4 s^{2} 3 d^{4}$.

From Table I we see that the calculated parameters for NiH (derived from the energies giver in Table XIV) are in good agreement with experiment. ${ }^{2 f}$ Note that the D_{e} value is obtained by comparison to a GVB $+1+2$ calculation for NiH at large $R\left(4 s^{\prime} 3 d^{t}\right.$ like solution). This is the most appropriate state to compare it to since the NiH wave function near R_{e} is mostly $4 s^{\frac{1}{3}} 3 d^{9}$ like. Note also that the calculated R_{q} is slightly smaller than experiment, a result that reflects a bias in the present calculations toward $4 s^{2} 3 d^{*}$ like orbitals. By contrast the MCSCF POL-CI calculations ${ }^{14}$ which converged to $4 s^{1} 3 d^{9}$ like orbitals lead to an R_{4} somewhat longer than experiment, a result which reflects a corresponding bias toward $4 s^{1} 3 d^{9}$ like orbitals

The present calculations are in good agreement with the CASSCF/Cl calculations of Blomberg et al.,${ }^{15}$ in spite of the omission of $4 f$ functions in the calculations of Ref. 15. This result is consistent with the small importance of $\mathbf{4}$ functions in $\mathrm{ScH} .{ }^{13}$ By comparison the calculations of Das ${ }^{11}$ show an R_{e} significantly larger than experiment, which we view as indicative of the need for additional atomic correlation. Interestingly the calculations of GWRU ${ }^{18}$ which are only two configuration MCSCF but incorporate atomic correlation in a semiempirical way are in good agreement with the present calzulations.

V. CONCLUSIONS

The bondirg in the TM hydrides is found to involve strong admixture of terms from the $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n-1}$ states of the TM atoms. The bonding in the $4 \mathrm{~s}^{2} 3 d$ state is found to arise by formation of $s p$ hybrids $s z$
and $s ?$ where $s:$ is $4,-4 z$ like and $s ?$ is $4 s-4 z$ like. The bond pair involves sinclet pairing the $s z$ and $\mathrm{H}(1 \mathrm{~s})$ or bitals while the s orvita. is simgly wecapres and hybridized away from: the bond pair. The bonding in the $4 \mathrm{~s}^{1} 3 f^{-1}$ state involve, formation of a $4 \mathrm{~s}-\mathrm{H}(1 \mathrm{~s})$ bond pair.

By consideration of atomic coupling argaments and interaction of $4 s^{2} 3 /$ and $4 s^{1} 3 i^{*+1}$ derived terms, the ground states of the TM hydrides are predicted to be
 $\mathrm{CoH}\left({ }^{(} \Phi\right)$, and $\mathrm{NiH}{ }^{2} د$). All of these systems have been studied by a CASSCF CI (SD) procedure with the exception of CoH . In addition studies have been carried out for the ${ }^{6} \Delta$ state of FeH .

We find strong mixing of $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n+1}$ for VH and NiH where the $4 s^{2} 3 d^{\circ}$ and $4 s^{1} 3 d^{n+1}$ states are close in energy. TiH. MnH, and FeH (Δ) are found to be predominately $4 s^{2} 3 d^{\circ}$ like, while CrH is found to be predominately $4 s^{1} 3 t^{*-1}$ like. These trends are consistent with the ordering of the atomic states.

The calculated R_{e}, and D_{e} values derived from the CASSCF/CI (SD) potential curves are in good agreement with the available experimental information (no information exists for $\mathrm{T}: \mathrm{H}$ and VH). Inclusion of atomic correlation leads to significantly better agreement with experiment particalarly for R_{e}. These improvements are related to a more balanced description of the atomic states in the correlated wave functions.

ACKNO'NLEDGMENTS

We thank Bjorn Roos and Per Siegbahn for use of their programs. We thank Rich Jaffe for helpful discussions on FeH.
${ }^{1}$ R. L. Martin, Chem, Peys. Lett. 75, 290 (196().
${ }^{2}$ T. H. Dunning, Jr, , E.F. Botch, and J. F. Harrison, J. Chem. Phys. 72, 3419 (i960).
${ }^{3}$ B. H. Botch, T, H. Durisig, Jr., and J. F. Harrison, J. Chem. Phys. 75, $3466 \cdot 19 \mathbf{N}_{1}$).
${ }^{4}$ C. W, Bauschlicher, Jr. . and S. P. Walch, J, Chem. Phys. 74, 5922 (1981).
${ }^{5}$ C. W. Bauschlicber, J., , S. P. Walch, and H. Partridge, J. Chem. Phys. 76, 1033 (1992).
${ }^{6}$ P. R. Scott and W. G. Richards, J. Phys. B 7, 500 (1974); 7, 347 (1974).
${ }^{1}$ P. R, Scott and W, G, Richards, J, Phs s, B i, 1. 79 (15:4). ${ }^{\text {B P P. R, Scott and W, G, Richards, J, Chem, Phy s, 63, } 1690}$ (1975).
${ }^{\text {}}$ P. S, Bagus and H, F, Schaefer ILI, J, Chem. Phy's. 56, 1844 (1973).
${ }^{16}$ G. A. Henderson, G. Das, and A. C. Wasi, J. Chem. Pnys. 63, 2605 (1980).
${ }^{11} \mathrm{G}$. Das, J. Chem, Phys, 74, 5766 (1961),
${ }^{12}$ S. P. Walch, unpublished results quoked b; C; Das ir. Ref. 11.
${ }^{13}$ C, W, Bauschlicher, Jr, and S. P. Walch. J. Chem. Phys. 76, 4560 (1982),
${ }^{14} \mathrm{~S}$, ?. Walch and C. W. Bauschlicher, Jr., Chem. Phys, Lett, 86, 66 (1982).
${ }^{15}$ M. R. A. Blomberg, P. E. M. Siegbahn, and B. J. Roos, Mol. Phys. (in press).
${ }^{16}$ P. S. Bagus and C. Bjorkman, Phys. Rev. A 23, 461 (1981).
${ }^{17}$ R. Martin (unpublished results).
${ }^{18}$ W. A, Goddard III, S. P. Walch, A, K, Rappe, and T. H. Upton, J, Vac, Sci. Technol, 14, 416 (19\%\%).
${ }^{15}$ Average of M;'s from C. E. Moore, Atomic Energy Levels, Nat1, Bur, Stand. (U, S.) Circ. 467 (1949).
${ }^{20} \mathrm{~S}$, P. Walch, Ph, D. thesis, California Institute of Technology, 1977.
${ }^{21}$ A. J. H. Wachters, J. Chem. Phys. 66, 4377 (1977).
${ }^{22}$ P. J. Hay, J. Chem. Phys. 66, 4377 (1977).
${ }^{23}$ R. C. Raffenetti, BiGGMoli: Program No, 32^{6}, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1977).
${ }^{24}$ F. B, van Duijneveldt, "Gaussian Basis sets : r the Atoms H-Ne for Use in Molecular Calculations, Rercarch Report RJ 945, IBM, San Jose, California, (1 December, 19:1).
${ }^{25}$ R. F. Stewart, J, Chem. Phys. 52, 431 1:47.1.
${ }^{26}$ S, P, Walch, T, H. Dunning, Jr., R, C. Rafienetti, and F. W. Bobrowicz, J. Chem. Ptys. 72, 4. (1980).
${ }^{27}$ SwEDEN is a vectorized SCF-MCSCF-Direct-CI w ritter by P. E. M. Sigbahn, B. Roos, and C. W. Bauschlicher, Jr.
${ }^{28}$ H. P. Huber and G. Herzberg. Molicitar Spectra and Molecular Structure. IV. Corstants of Diciomic Molecuies (Van Nostrand Reinhold, New York, 1979).
${ }^{29}$ This basis is a ($15 s 12 p$ vid $3 n$ ($6 s 5 p 4 d 1^{\prime}$ basis set. The primitive s and p basis sets differ from Wachters' in tha: the $4 s$ and $4 p$ functions are triple zeta whereas Wachters' basis is double zeta. The $4 s$ functions were optimized for $D\left(s^{2} d^{d}\right)$, while the $4 p$ functions were optimized for ${ }^{\prime} F^{\prime} 4 s^{\prime} 4 ;^{\prime} 3 d$) and the resulting $4 p$ functions were mutliplied by 1.5 tc make them more suitable for describing $4 s^{i} \rightarrow 4 p^{*}$ ecrrelation. (The final exponents are $a_{\mathbf{4}}=0.1294,0.08287,6.037 .89$ and $a_{s}=0.2454$, $0.1249,0.05307$.$) The 3 d$ basis was contracted ic four functions. The 4 function is a 3 term GTO fit to an STO with exponent 3. 75.
${ }^{30}$ A. E. Stevens, W. C. Lienberger, and C. S. Feigerle (unpublished results).
${ }^{31} \mathrm{~S}$. Davis (private communication).
${ }^{32}$ R. Jaffe (unpublished results).

THEORETICAL EVIDENCE SUPPORTING THE ${ }^{\mathbf{4}} \mathbf{A}$ GROUND-STATE ASSIGNMENT FOR FeH

Stephen P. WALCH *
Polvatomics Research Institute. 1101 San Antonio Road. Suite 420, Mountain I'iew. California 94043, l'SA

Received 9 November 1983 ; in final form 19 December 1983

Abstract

The results of GVB/MRSD CI calculations for the ${ }^{5} \Delta$ state of FeH^{-}are combined with the results of previous CAS SCF/ MRSD Cl calculations for the ${ }^{4} \Delta$ and ${ }^{6} \Delta$ states of FeH to provide theoretical confirmation of the qualitative arguments used by Stevens. Fiegerle, and Lineberger to assign the lowest state of FeH as ${ }^{4}$. . The calculated electron affinity of FeH and the calculated R_{e} and ω_{e} for the " Δ state of FeH^{-}are in good agreement with expetimental estimates.

Recently Stevens, Feigerle and Lineberger [1] (SFL) have reported photodetachment experiments for FeH^{-}and MnH^{-}. For FeH^{-}the lowest photodetachment transition exhibits a vibrational progres. sion while a second transition which is 0.24 eV higher exhibits no vibrational progression. SFL interpret these experiments using a theoretical model in which FeH^{-}has the configuration
$\mathrm{b}^{2} \mathrm{~s} \mathrm{z}^{1} 3 \mathrm{~d} o^{2} 3 \mathrm{~d} \delta^{3} 3 \mathrm{~d} \pi^{2} \quad{ }^{5} \Delta$,
where b is a bond pair orbital and s_{z} is an $s p$ hybrid directed away from the bond pair [2]. Removing an electron from the above configuration leads to two low-lying FeH neutral states: (i) ionization of the s^{z} electron leads to a ${ }^{4} \Delta$ state with the configuration
$\mathrm{b}^{2} 3 \mathrm{~d} \sigma^{2} 3 \mathrm{~d} \delta^{3} 3 \mathrm{~d} \pi^{2} \quad{ }^{4} \Delta$
and (ii) ionization of a $3 \mathrm{~d} \sigma$ electron leads to a ${ }^{6} \Delta$ state with the configuration
$\mathrm{b}^{2} \boldsymbol{s} \boldsymbol{z}^{1} 3 \mathrm{~d} o^{1} 3 \mathrm{~d} \delta^{3} 3 \mathrm{~d} \pi^{2} \quad{ }^{6} \Delta$.
SFL argue that (i) involves ionizing an antibonding orbital ($\bar{\Sigma}$) and this involves a significant reduction in equilibrium bond length (R_{e}) while (ii) involves ionizing a non-bonding orbital (3d σ) and should involve little change in R_{e}. Thus SFL assign the lower transition with a long vibrational progression to ${ }^{4} \Delta$ and the upper vertical transition to ${ }^{6} \mathrm{~J}$.

[^2]The bond length and vibrational frequency (ω_{e}) for the ${ }^{4} \Delta$ state are known directly from experiment [3]. SFL were able to estimate R_{e} and ω_{e} for the ${ }^{6} \mathrm{~J}$ state of FeH and the ${ }^{5} \Delta$ state of FeH^{-}by comparing computed and experimental spectra.

Previously Walch and Bauschlicher (W'B) [2] carried out CAS SCF/CI SD calculations for the $\left.{ }^{6}\right\rfloor$ and ${ }^{4} \Delta$ states of FeH . In the present paper GVB CI SD calculations are reported for the ${ }^{5} \Delta$ state of FeH^{-}. The calculated spectroscopic parameters are compared to experiment in table 1. Here one sees that photodetachment to the ${ }^{6} \Delta$ state of FeH involves little change in $R_{\mathrm{e}}(<0.01 \AA)$ while photodetachment to the ${ }^{4} \Delta$ state involves a large decrease in R_{e} $(0.12 \AA)$. The calculated R_{e} and ω_{e} for the ${ }^{6} \Delta$ state of the neutral and for the ${ }^{5} \Delta$ state of FeH^{-}are in reasonable agreement with the values obtained by SFL. Also the calculated electron affinity (EA) is in good agreement with the value measured by SFL. Thus the present calculations in conjunction with the previous calculations by WB substantiate the assignments of SFL. However the qualitative features of the wavefunctions are different from the simple picture above in that the ${ }^{4} \Delta$ state of FeH and the ${ }^{5} \Delta$ state of FeH^{-}show strong mixing of $3 \mathrm{~d}^{6}$ and $3 \mathrm{~d}^{7}$ (see table 1), whereas the analysis of SFL is based on pure $3 \mathrm{~d}^{7}$ character for these states.

The basis set used for FeH^{-}is Wachters' (14s9p5d) set [4] augmented with: (i) two diffuse 4s functions selected in an even-tempered fashion, (ii) Wachters'

0009 -2614/84'§03.00@Elsevier Science Publishers B. V (North-Holland Physics Publishing Division)

Table 1
Calculated CAS SCI/Cl results for FeH

State		$\boldsymbol{R}_{\mathrm{e}}(\mathrm{A})$	$\omega_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$	$T_{e}(\mathrm{eV})$	3d population
$1 \mathrm{eH}^{6}$ د	$\begin{aligned} & \text { calc. \|2] } \\ & \text { exp. [1] } \end{aligned}$	$\begin{aligned} & 1.72 \\ & 1.77=0.05 \end{aligned}$	$\begin{aligned} & 1560 \\ & 1550 \end{aligned}$	$\begin{array}{r} -0.08 \\ 0.25 \end{array}$	6.08
$\mathrm{FeH}^{4} 4$	$\begin{aligned} & \text { calc. [2] } \\ & \text { exp. [3] } \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.63 \end{aligned}$	$\begin{aligned} & 1710 \\ & 1680 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	6.26
$\mathrm{FeH}^{-5} \Delta$	$\begin{aligned} & \text { calc. a) } \\ & \text { exp. (1) } \end{aligned}$	$\begin{aligned} & 1.72 \\ & 1.79=0.03 \end{aligned}$	$\begin{aligned} & 1282 \\ & 1300=140 \end{aligned}$	$\begin{aligned} & -0.78 \\ & -0.93 \end{aligned}$	6.50

a) Present work. The calculated spectroscopic constants are obtained via a Dunham analysis of the CI plus Davidson's correction energies at $3.00,3.25$, and $3.50 a_{0}$. The Cl energies at $3.25 a_{0}$ are $-1263.12366(-1263.14914)$ where the value in parentheses includes Davidson's correction
two 4 p functions and one even-tempered 4 p diffuse function, (iii) the diffuse 3 d function of Hay [5] , and (iv) a single set of 4 f functions ($\alpha_{4 \mathrm{f}}=2.0$). The resulting basis was contracted using the general contraction feature of BIGGMOLI [6] : (16s12p6d1f) [7 s 5 p 3 d 1 f$]$. The H basis set was the (8 s 4 p)/[5s 3 p] basis used in ref. [2]. The calculations were carried out using BIGGMOLI-SWEDEN ${ }^{*}$.

Before considering FeH^{-}, we first consider the calculated EA for the Fe atom as a function of basis set and level of electron correlation (table 2). Two different types of Cl calculations were carried out. The MRSD CI has as reference configurations the SCF configutation for the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ state of Fe and the SCF plus three components of the $4 \mathrm{~s}^{2} \rightarrow 4 \mathrm{p}^{2}$ near degeneracy for the $4 s^{2} 3 \mathrm{~d}^{7}$ configuration of Fe^{-}. All single and double excitations from the above configurations are included in the CI . The core-valence $\mathbf{C l}$ (CV CI) [7] has the same set of reference configurations but allows only a single electron outside the $3 \mathrm{~d}^{7}$ configuration. The qualitative idea is that the major differential correlation between the $4 s^{2} 3 d^{7}$ and $4 s^{1} 3 \mathrm{~d}^{7}$ states includes the valence correlation effects due to the 4 s electrons and the core-valence correlation effects between the 4 s and 3 d electrons. The intrapair 3d correlation, on the other hand, remains relatively constant between the two states since they have the same number of 3 d electrons. This expectation is substantiated by the results in table 2 where one sees that the CV CI result is in reasonable
${ }^{*}$ SWEDEN is a vectorized SCF MC SCI direct CI written by P.E.M. Siegbahn, B. Roos and C.W. Bauschlucher Jr.

Table 2
Calculation of electron affinity for Fe

Basis set	Method	Electron affinity a)
[755p3d1f]	CV Ci	0.72
	MRSD	$0.65(0.78)$ b)
[7s5p4d2f]	CV Cl	0.76
	exp. 6$)$	1.00

a) $4 s^{2} 3 d^{7} / 4 s^{1} 3 d^{7}$.
b) Value in parentheses includes Davidson's correction
c) Extrapolated based on the error for CV Cl for Cu and Ni .
agreement with the MRSD + Davidson's correction [8] result. The [7s5p3d1f] basis set is the same basis set used for FeH^{-}, while the [7 s 5 p 4 d 2 f] basis uses a more flexible [4d] contraction and replaces the single set of 4 f functions by a (3)/[2] 4 f basis based on a three-term fit [9] to a Slater 4 f with exponent 2.25. This exponent was optimized for the $4 s^{1} 3 \mathrm{~d}^{7}$ state of the Fe atom at the CV Cl level. From table 2 one sees that at the CV CI level the smaller basis set is within 0.04 eV of the larger basis set result for the EA.

No experimental value exists for the EA of Fe atom. The EA reported by Hotop and Lineberger [10], 0.25 eV , is based on SCF calculations plus an estimate of correlation effects. A more reliable estimate may be obtained by noting that CV CI with large basis sets (equivalent to the larger basis set used here) underestimates the EA of $\mathrm{Cu}[11]$ and Ni [12] by 0.23 and 0.24 eV , respectively. Assuming the same error for the EA of Fe leads to 1.00 eV with respect

Table 3
Reference confiqurations for FeH Cl calculations

	60	70	80	90	$16^{2}{ }^{2} y^{2}$	${ }^{16} x y$	${ }^{3} n_{x}$	$4 \pi_{x}$	$3 \pi y$	$4 \pi y$
$\mathrm{FeH}^{6} \Delta$	2	1	0	1	1	2	1	0	1	0
	0	1	2	1	1	2	1	0	1	0
	0	1	0	1	1	2	1	2	1	0
	0	1	0	1	1	2	1	0	1	2
$\mathrm{FeH}^{4} \Delta$	2	2	0	0	1	2	1	0	1	0
	2	0	0	2	1	2	1	0	1	0
	2	1	0	1	1	2	1	0	1	0
	0	2	2	0	1	2	1	0	1	0
	1	1	1	1	1	2	1	0	1	0
$\mathrm{FeH}^{-5} \Delta$	2	1	0	2	2	1	1	0	1	0
	0	1	2	2	2	1	1	0	1	0
	2	1	1	1	2	1	1	0	1	0
	2	2	0	1	2	1	1	0	1	0

to $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$ or $0.12 \mathrm{eV}^{\mathrm{eV}}$ with respect to $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$. For the H atom the basis set used here leads to an error of $\approx 0.02 \mathrm{eV}$ in the EA.

The calculations for FeH^{-}used a GVB wavefunc. tion to define the orbitals this calculation was followed by multire ference singles and doubles Cl (MRSD CI). Given the size of the Cl calculations the use of GVB orbitals for FeH^{-}as compared to CAS SCF orbitals for FeH [2] is expected to be of little importance. In the GVB MRSD CI calculations the Ar cores of the transition metal atoms are kept doubly occupied in all configurations: the active space consists of the orbitals derived from the transition metal $4 \mathrm{~s}, 4 \mathrm{po}$, and 3 d orbitals and the $\mathrm{H}(1 \mathrm{~s})$ orbital, i.e. $60-9 a, 3 \pi$, and 18 . In the above the $9 o, 3 \pi$, and 18 orbitals are transition metal 3 d like, 60 is the bond pair, 7σ is the $s \bar{z}$ orbital. and 8σ introduces left-right correlation of the bond pair. Table 3 gives the reference configurations which were used in the MRSD Cl for the ${ }^{5} \Delta$ state of FeH^{-}. The GVB wavefunction [13] includes the first two configurations in table 3. The first configuration for FeH^{-}is the SCF configuration which corresponds to eq. (1), while the second configuration introduces left-right correlation of the bond pair. The remaining two configurations correspond to $3 \mathrm{~d}^{6}$ components of the wavefunction which are found to be sufficiently important that they are included as reference configurations in the MRSD CI.

The molecular constants given in table 1 were obtained via a Dunham analysis of the CI SD plus David.
son's correction energies. As noted in ref. [2] since only three computed points are used in the Dunham analysis, there may be small uncertainties introduced in the derived spectroscopic parameters. These errors are estimated to be $<0.01 \mathrm{~A}$ for R_{e} and $50 \mathrm{~cm}^{-1}$ for ω_{e}.

The computed FeH EA is 0.43 eV . These systems have large Davidson's corrections: $0.69,0.35$, and $0.16 \mathrm{eV}^{2}$ for $\mathrm{FeH}^{-5} \Delta$. $\mathrm{FeH}^{4} د$, and $\mathrm{FeH}^{6} \Delta$, respec. tively. These large Davidson's corrections correlate with the $\%$ reference in the Cl wavefunctions: 88,92 , and 95% for ${ }^{5} \Delta,{ }^{4} \Delta$. and ${ }^{6} \Delta$. respectively. Including the differential Davidson's correction leads to 0.78 eV as our best estimate of the EA of FeH . This value is 0.15 eV smaller than experiment. This result is some. what better than might be expected based on the calculated Fe atom EA, but is consistent with the population analysis which indicates a large amount of H^{-} character. Thus the error in the FeH EA may be intermediate between the errors for the EAs of the Fe and H atoms.

We conclude that the present calculations in conjunction with the previous results of WB substantiate SFL's assignment of ${ }^{4} \Delta$ as the lowest state of FeH with ${ }^{6} \Delta 0.25 \mathrm{eV}$ higher. (Calculations [2] still show the ${ }^{6} \Delta$ state $0.08 \mathrm{eV}^{2}$ below ${ }^{4} \Delta$. i.e. an error of 0.33 eV in the ${ }^{4} \Delta-6 \Delta$ separation.) The key feature here is that photodetachment from the ${ }^{5} \Delta$ state of FeH^{-} to give the ${ }^{6} \Delta$ state of FeH is calculated to lead to little change in $R_{\mathrm{e}}(<0.01 \mathrm{~A})$ while photodetachment
to the ${ }^{4} \Delta$ state of FeH leads to a large decrease in R_{e} (0.12 A). Thus the calculations are in agreement with observation of a vibrational progression for photodetachment to ${ }^{4} \Delta$ but no vibrational progression for photodetachment to ${ }^{6} \mathrm{~J}$ as predicted by SFL based on a simple theoretical model. However the qualitative description of the system is more complex than the simple model adopted by SFL in that the ${ }^{4} \Delta$ state of FeH and the ${ }^{5} \Delta$ state of FeH^{-}show strong mixing of $3 \mathrm{~d}^{6}$ and $3 \mathrm{~d}^{7}$ character whereas the analysis of SFL is based on pure $3 \mathrm{~d}^{7}$ character for these states.

The calculated R_{e} and ω_{e} values for the ${ }^{4} \Delta$ state of FeH are in good agreement with the values measured by Davis [3] while the calculated R_{e} and ω_{e} values for the ${ }^{6} \Delta$ state of FeH and the ${ }^{5} \Delta$ state of FeH^{-}are in reasonable agreement with the values obtained by SFL from comparison of calculated and experimental spectra. Finally the calculated EA of FeH^{-}is in reasonable agreement with the value reported by SFL.

References

(1) A.E. Stevens, C.S. Feigerle and W.C. Lineberger, J. Chem. Phys. 78 (1983) $\$ 420$.
(2) S.P. Walch and C.W. Bauschliche: Jt., J. Chem. Phys. 78 (1983) 4597.
[3] S. Davis, unpublished results quoted in ref. (1)
[4] A.J.H. Wachters, J. Chem. Phys. 66 (1977) 4377.
[5] P.J. Hay, J. Chem. Phys. 66 (1997) 4377.
16) R.C. Raffenetti, BIGGMOLI. Program No. 328. Quantum Chemistry Program Exchange. Indiana U'niversity, Bloomington, Indiana (1977).
[7] H. Partridge, C.W. Bauschlicher Jr., S.P. Walch and B. Liu, J. Chem. Phys. 79 (1983) 1866.
[8] S.R. Langhoff and E.R. Davidson. Intern. J. Quantum Chem. 8 (1974) 61.
(9) R.F. Stewart, J. Chem. Phys. $52(1970) 431$.
[10] H. Hotop and W.C. Lineberger, J. Phys. Chem. Ref. Data 4 (1975) 539.
[11] C.W. Bauschlicher Jr., S.P. Walch and H. Partridge, Chem. Phys. Letters 103 (1983) 291
(12) S.P. Walch, unpublished.
[13] W.A. Goddard III, T.H. Dunning Jt.. W.J. Hunt and P.J. Hay, Accounts Chem. Res. 6 (19-3) 368

CAS SCF CI CALCULATIONS FOR THE ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Sigma_{g}^{+},{ }^{3} \Sigma_{u}^{+}$, AND ${ }^{5} \Delta_{u}$ STATES OF S c_{2}

Stephen P. WALCH and Charles W. BAUSCHLICHER Jr.
Polyatomics Research Insritute, 1101 San Antonio Road, Suite 420, Mountain View, Californie 94043, USA

Received 14 July 1982: in final form 19 October 1982

CAS SCF CI(SD) calculations have been carried out for the ${ }^{3} \Sigma_{q}^{-},{ }^{1} \Sigma_{q}^{*},{ }^{3} \Sigma_{\mu}^{*}$, and ${ }^{5} \Delta_{u}$ states of $\mathrm{S} c_{2}$ using large gaussian basis sets. The ${ }^{3} \Sigma_{g}^{-} \cdot{ }^{1} \Sigma_{g}^{*}$, and ${ }^{3} \Sigma_{i}^{*}$ states arise from the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{\dagger}\right)+{ }^{7} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ limit of Sc_{2} and are found to be only weakly bound ($D_{e}=0.06 \mathrm{eV}$ and $R_{e} * 8.0 e_{0}$). The ${ }^{5} \Delta_{u}$ state arises from the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+{ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1} 4 \mathrm{p}^{1}\right)$ atomic limit. This state is found to be strongly bound relative to its limits ($D_{e} \approx 0.8 \mathrm{eV}$ and $R_{e}=7.0 a_{0}$).

1. Introduction

Recently the Sc_{2} molecule has been the subject of considerable theoretical study [1,2]. The interest in this system arises because of the relevance of metal metal bonds to problems in materials science and because theoretical studies find only weakly bound states (at least out of the lowest ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+$ ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ atomic limit) for $\mathbf{S} c_{2}$ in contrast to mass spectrometric experiments [3] which had been interpreted to indicate strong bonding.

Das [1] has carried out an MC SCF study of the singlet and triplet states arising out of the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ $+{ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ and the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+{ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)$ asymptotes of Sc_{2} using a Slater basis set in conjunction with a pseudopotential. For the ${ }^{1} \Sigma_{g}^{+}$state of Sc_{2} Das finds a D_{e} of $\approx 4 \mathrm{kcal}$ mole and an R_{e} of $\approx 9.5 a_{0}$ which he attributes to van der Waals terms arising primarily out of the $4 s^{2} \rightarrow 4 p^{2}$ near-degeneracy effect for the ${ }^{2} D\left(4 s^{2} 3 d^{1}\right)$ state of Sc . However, as Das points out, by making choices for R_{e} and the degeneracy factors consistent with the calculations, the mass spectrometric experiments are consistent with a binding energy in the range of $3-5 \mathrm{kcal} /$ mole. Das also considered the possibility of bound states arising from the ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}$ limit but found no significant binding at least for singlet and triplet states (quintet states also arise from this limit but were not considered).

Wood, Doran, Hillier and Guest (WDHG) [2] also carried out MC SCF CI calculations using a small
gaussian basis set. They concluded that the lowest state was ${ }^{5} \Sigma_{u}^{-}$arising from the ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}$ asymptote. Their calculations showed a binding energy of 1.12 eV with respect to ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}$ and 0.55 eV with respect $2^{2} \mathrm{D}+{ }^{2} \mathrm{D}$. However, due to basis set deficiencies they find a ${ }^{4} \mathrm{~F}-{ }^{2} \mathrm{D}$ atomic separation of $0.5^{7} \mathrm{eV}$ compared to an experimental separation of 1.43 eV . Correcting for the error in the asymptotic separation the ${ }^{5} \Sigma_{u}^{-}$state is unbound by 0.31 eV with respect to ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$ and it does not appear that ${ }^{5} \Sigma_{u}^{-}$is the ground state of Sc_{2} as suggested by WDHG

The present calculations were undertaken to determine (i) the nature of the bonding and the magnitude of the binding energy for states arising out of the ${ }^{2} D\left(4 s^{2} 3 d^{1}\right)+{ }^{2} D\left(4 s^{2} 3 d^{1}\right)$ asymptote and (ii) the nature of the bonding arising out of the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ $+{ }^{4} F\left(4 s^{1} 3 d^{2}\right.$ or $\left.4 s^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ atomic limit. The calculations reported here are more extensive than those of Das or WDHG and involve extensive MC SCF or CAS SCF followed by $\mathrm{CI}(\mathrm{SD})$ using large gaussian basis sets. In agreement with Das we find that the states arising out of the ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$ limit are weakly bound, however we use the interacting correlated fragments (ICF) method [4] to more accurately determine the binding energy. We have also investigated ${ }_{a}^{5} \Delta_{u}$ state arising out of the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+$ ${ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{1}\right)$ atomic limit. Here we find a binding energy relative to the limits above of $\approx 0.8 \mathrm{eV}$ at an $\boldsymbol{R}_{\mathrm{e}}$ of $\approx 7.0 a_{0}$. We also estimate a binding energy relative to the corresponding limit of $\geqslant 0.5 \mathrm{eV}$ for
the state arising from ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)$. For $\mathrm{S} \mathrm{c}_{2}$ this latter limit is 1.43 eV above ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$ and this state do:s not cross the states arising out of ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$. How. ever, we find similar states for V_{2} and it appears that in the case of V_{2} the lowest bond state is of this character [5] and thus this state of Sc_{2} is relevant to bonding in the lowest states of other transition metal dimers.

2. Calculational details

The Sc basis set starts with the Wachters (14s9p5d) primitive set [6] augmented with Wachters' two additional 4 p functions, the diffuse d function of Hay [7], and a set of f polarization functions $(\alpha=1,4)$. Two different contracted basis sets were constructed from this primitive set. Basis set I was contracted in a seg. mented fashion for use with MOLECULE [8]. The contraction scheme used here was contraction 3 of table VI of ref. [6]. This contraction was used for the s and p functjons, while the d functions were contracted (3111). In this basis set the f functions were omitted and the 4 p functions were scaled by $(1.5)^{1 / 2}$. Basis set I was used for the CAS SCF calculations.

The final basis is (14 s 11 p 6 d) [8 s 6 p 4 d]. Basis set II was generally contracted for use with BIGGMOLI [9] resulting in a (14s11p6d1f)/[6s6p3d1f] contracted set. Here the 4 p functions were left unscaled. This larger basis set was used in the ICF calculations.

The CAS SCF CI calculations were carried out with MOLECULE [8]-SWEDEN [10] using the NASA Ames CRAY 1S. The ICF calculations were carried out with BIGGMOL1 [9]-noname [11] using the NASA Ames CDC 7600.

In the calculations the 18 -electron Ar cores were kept doubly occupied in all configurations. In the CAS SCF calculations these orbitals were optimized at the CAS SCF level, while in the calculations using noname the core orbitals were obtained from a HF calculation on the ${ }^{3} \Sigma_{u}^{+}$state of Sc_{2}.

3. Discussion

The low-lying states of the Sc atom are the ${ }^{2} D\left(4 s^{2} 3 d^{1}\right)$ state which is the ground state, the ${ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)$ state which is at 1.43 eV , and the ${ }^{4} \mathrm{~F}\left(4 s^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ state which is at 1.96 eV [12] (the

Table 1
Reference configurations for the $\mathrm{Cl}(\mathrm{SD})$ calculation

State	Configuration													
	g			u			$3 \mathrm{~d} \pi_{x}$		$3 \mathrm{~d} \pi_{y}$		$3 \mathrm{~d} \delta^{2} y$		$3 \mathrm{~d} \delta^{2}{ }^{2}-y^{2}$	
	4s	3do	4po	4s	3do	4po	g	u	g	u	\boldsymbol{g}	u	g	0
${ }^{5} \Delta_{u}$	2	1	1				0	0	0	0	1		0	
	1	0	1	2	1	0	0	0	0	0	1	0	0	0
	1	1	0	2	0	1	0	0	0	0	1	0	0	0
	2	0	0	1	1	1	0	0	0	0	1	0	0	0
	1	1	1	2	0	0	0	0	0	0	0	1	0	0
	2	0	1	1	1	0	0	0	0	0	0	1	0	0
	2	1	0	1	0	1	0	0	0	0	0	1	0	0
	1	0	0	2	1	1	0	0	0	0	0	1	0	0
	2	1	0	1	1	0	0	0	0	0	0	1	0	0
	1	1	0	2	1	0	0	0	0	0	1	0	0	0
${ }^{3} \Sigma_{u}^{*}$	2	1	0	2	1	0	0	0	0	0	0	0	0	0
${ }^{1} \Sigma_{\boldsymbol{g}}^{*}$	2	2		2			0	0	0		0	0	0	0
		0	0	2	2	0	0		0		0	0	0	0
${ }^{3} \Sigma_{g}^{-}$	2	0	0	2	0	0	1	0	1	0	0	0	0	0
	2	0	0	2	0	0							0	

energy levels are averaged over the m_{j} values). As indicated earlier the present calculations concentrate on states arising out of the ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$ and ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}$ limits. In these calculations we include the $4 \mathrm{~s}, 4 \mathrm{p}$, and 3 d electrons in the valence space, thus the $4 \mathrm{~s}^{2} \rightarrow 4 \mathrm{p}^{2}$ near degeneracy [13] which is important for the ${ }^{2} \mathrm{D}$ state is included at the MC SCF level. Correlation of the 3 d orbitals on the other hand is treated at the CI level.

Table 1 shows the dominant configurations for the ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Sigma_{g}^{+},{ }^{3} \Sigma_{u}^{+}$, and ${ }^{5} د_{u}$ states which were considered here. The reference configurations in table 1 are the dominant configurations at all R as derived from small CI calculations. These configurations may also be understood by considering the degeneracies which occur at large R (due to the degeneracy of the corresponding g and u orbitals at large R. The ${ }^{3} \Sigma_{\mathrm{u}}^{+}$state requires only one reference configuration, the ${ }^{1} \Sigma_{g}^{+}$and ${ }^{3} \Sigma_{g}^{-}$states require two reference configurations. and the ${ }^{5} \Delta_{u}$ state requires eight configurations to dissociate to ${ }^{2} \mathrm{D}\left(4 s^{2} 3 \mathrm{~d}^{1}\right)+$ ${ }^{4} F\left(4 s^{2} 3 d^{1} 4 p^{1}\right)$. The remaining two ${ }^{5} \Delta_{u}$ configurations describe the ${ }^{5} \Delta_{u}$ state arising from ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ $+{ }^{4} F\left(4 s^{1} 3 d^{2}\right)$.

In order to keep the CAS SCF calculations of reasonable size, restrictions were placed on the orbital occupancies as indicated in table 2. These restrictions arise by noting the number of sigma electrons associated with each state and allowing up to double excitations from the sigma block to the pi block. These excitations correspond to $4 \mathrm{~s}^{2} \rightarrow 4 \mathrm{p} \pi^{2}$ atomic excitations. Note that fc: the ${ }^{5} \Delta_{u}$ state an additional restriction that the sigma plus pi blocks contain five electrons could have been imposed. The CAS SCF calculations in each case were followed by $\mathrm{Cl}(\mathrm{SD})$ calcu-

Table 2
Constraints on orbital occupancies for the CAS SCF calculations

State	Constraint	Number of configurations
${ }^{5} \Delta_{U}$	sigma block $3-5$ electrons	5430
${ }^{3} \Sigma_{U}^{*}$	siqma block $4-6$ electrons siqma + pi block 6 electrons	651
${ }^{3} \Sigma_{g}^{-}$	sqma block $2-4$ electrons siqma + pi block 6 electrons	2520

lations from the reference configurations in table 1.
The calculated energies for the CAS SCF CI(SD) calculations are given in table 3, while fig. 1 shows the calculated potential curves [CAS SCF CI (SD) calculations) for the ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Sigma_{f}^{+},{ }^{3} \Sigma_{u}^{+}$, and ${ }^{5} \nu_{u}$ state. Qualitatively the ${ }^{1} \Sigma_{g}^{*}$ and ${ }^{{ }^{5} \Sigma_{u}^{+} \text {states arise from }}$ ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d} \sigma^{1}\right)+{ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d} \sigma^{1}\right)$ with singlet and triplet pairing of the $3 \mathrm{~d} \sigma$ orbitals, while the ${ }^{3} \Sigma_{g}^{-}$state arises from ${ }^{2} \mathrm{D}\left(4 s^{2} 3 \mathrm{~d} \pi^{1}\right)+{ }^{2} \mathrm{D}\left(4 s^{2} 3 \mathrm{~d} \pi^{1}\right)$ and the ${ }^{5} \Delta_{u}$ state arises out of the ${ }^{2} \mathrm{D}\left(4 s^{2} 3 \mathrm{~d} \sigma^{1}\right)+{ }^{4} \mathrm{~F}\left(4 s^{1} 4 \mathrm{po}{ }^{1} 3 \mathrm{~d} \delta \delta^{1}\right)$ limit.

Concentrating first on the states which arise out of the ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$ limit, the basic feature of the calculated curves is very weak binding at large $R\left(\approx 8.0 a_{0}\right)$ and repulsive behavior at smaller R. The weak binding at large R appears to arise from the $4 \mathrm{~s}^{2} \rightarrow 4 \mathrm{p}^{2}$ near degeneracy, i.e. $4 \mathrm{~s}_{\mathrm{g}} \rightarrow 4 \mathrm{p}_{6} \times 4 \mathrm{~s}_{\mathrm{t}} \rightarrow 4 \mathrm{p}_{t}$. The binding energy at the Cl level for $R=8.0 a_{0}$ is $\approx 0.045 \mathrm{eV}$ for the ${ }^{1} \Sigma_{g}^{+}$ state, $\approx 0.045 \mathrm{eV}$ for the ${ }^{3} \Sigma_{g}^{-}$state, and $\approx 0.029 \mathrm{eV}$ for the ${ }^{3} \Sigma_{u}^{+}$state. Note that the CAS SCF curves are repulsive at all R. Note also that in the van der Waals region (i.e. $\geqslant 8.0 a_{0}$) the states arising from the various occupancies of the 3d electrons are very close in energy. However, at small R the 3d orbital occupancies do split the curves significantly. At small R one sees that ${ }^{1} \Sigma_{g}^{+}$is significantly below ${ }^{3} \Sigma_{u}^{+}$indicating some $3 \mathrm{~d} \sigma-3 \mathrm{~d} o$ bonding character. However it appears that the repulsion between the $4 s^{2}$ pairs becomes large before sufficient $3 \mathrm{do}-3 \mathrm{~d} \sigma$ overlap is obtained to stabilize this state. Given that we are in the small overlap region it appeared likely that a one-electron bond which varies with distance like S would be more favorable than a two electron bond which varies with distance like S^{2}. The ${ }^{3} \Sigma_{g}^{-}$state may be thought of as having two one electron π bonds and indeed at ${ }^{3}$ small R this state drops below ${ }^{1} \Sigma_{g}^{+}$although ${ }^{1} \Sigma_{g}^{+}$and ${ }^{3} \Sigma_{\mathbf{g}}^{-}$are nearly degenerate at R values near the van der Waals minimum.

Looking now at the ${ }^{5} \Delta_{u}$ state, the bonding here arises basically out of the $4 \varepsilon^{2}+4 s^{1}$ interaction. Based on our studies of the transition metal hydrides [14] we expect this to be an attractive interaction. The reason for this attractive interaction is the presence of the low-lying $4 s^{1} 4 p^{1} 3 \mathrm{~d}^{n}$ states of the transition metal atom ($e \mathrm{f}$. in $\mathrm{Sc} 4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}$ is at 1.96 eV). Interaction of $4 s^{2} 3 d^{n}$ and $4 s^{1} 3 d^{n} 4 p^{1}$ leads to the formation of sp hybrids one of which has the character $s+z$ denoted by sz and the other of which has the character $s-2$

Table 3
Calculated CAS CI (SD) energies for various states of $\mathrm{S}_{c_{2}}{ }^{\text {a }}$)

State		$R=6.0$	$R=6.5$	$\boldsymbol{R}=7.0$	$R=7.5$	$R=8.0$	$R=100.0$
${ }^{25} \Delta_{u}$		-0.36792	-0.37342	-0.37616	-0.36977	-0.36927	-0.36125
${ }^{5} \Delta_{u}$	$\begin{aligned} & \text { CAS } \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & -0.43128 \\ & -0.44667 \end{aligned}$	$\begin{aligned} & -0.43829 \\ & -0.45304 \end{aligned}$	$\begin{aligned} & -0.43943 \\ & -0.45344 \end{aligned}$	$\begin{aligned} & -0.43727 \\ & -0.45071 \end{aligned}$	$\begin{aligned} & -0.43346 \\ & -0.44652 \end{aligned}$	$\begin{aligned} & -.-1337 \\ & -0.42288 \end{aligned}$
${ }^{3} \Sigma_{u}^{*}$	$\begin{aligned} & \text { CAS } \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & -0.44923 \\ & -0.46754 \end{aligned}$		$\begin{aligned} & -0.46732 \\ & -0.48270 \end{aligned}$		$\begin{aligned} & -0.47295 \\ & -0.48575 \end{aligned}$	$\begin{aligned} & -0.47595 \\ & -0.48466 \end{aligned}$
${ }^{1} \Sigma_{g}^{*}$	$\begin{aligned} & \text { CAS }{ }^{\text {c }} \\ & \mathrm{Cl} \end{aligned}$	-0.47578		-0.48488		-0.48632	-0.48463
${ }^{3} \Sigma_{g}^{*}$	$\begin{aligned} & \text { CAS } \\ & \mathrm{CI} \end{aligned}$	$\begin{aligned} & -0.46023 \\ & -0.47934 \end{aligned}$		$\begin{aligned} & -0.47010 \\ & -0.48514 \end{aligned}$		$\begin{aligned} & -0.47346 \\ & -0.48594 \end{aligned}$	

a) In hartree relative to $\mathbf{- 1 5 1 9 . 0}$.
b) Higher root from the ${ }^{5} \Delta_{u}$ CAS calculation.
c) ${ }^{3} \Sigma_{u}^{+}$vectors were used for the Cl .

Fig. 1. Potential energy curves for the low lying states of Sc_{2} from CAS SCF Cl (SD) calculations. The locations of the ${ }^{2} \mathrm{D}+{ }^{2} \mathrm{D}$ and ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}\left(4 s^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ asymptotes are indicated.
denoted by $\bar{s} \bar{z}$. This leads in the case of the transition metal hydride to an $s z-\mathrm{H}(1 \mathrm{~s})$ bond and a singly occupied $\overline{\mathbf{s}}$ orbital, and in the case of the transition metal dimers to states which may be represented by the following structures:

In the case of the ${ }^{5} \Delta_{u}$ state the remaining electrons are in $3 \mathrm{~d} o, 4 \mathrm{po}, 3 \mathrm{~d} \delta_{x y}$ orbitals which are orthogonal to the bond orbitals and thetefore the high spin (i.e. quintet state) is favored.

From fig. 1 one sees that the ${ }^{5} \Delta_{4}$ state is bound by $\approx 0.8 \mathrm{eV}^{8}$ with respect to ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+$ ${ }^{4} F\left(4 s^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$. The atomic asymptote here is calculated to be at 1.68 eV (1.96 eV experimental). Note that experimentally the ${ }^{4} F\left(4 s^{1} 3 \mathrm{~d}^{2}\right)$ state is below the ${ }^{4} F\left(4 s^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ state, while in the calculations the ${ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{1}\right)$ state is lower at both the CAS SCF and CI levels. This results from the larger 3 d correlation [15] in the ${ }^{4} F\left(4 s^{1} 3 d^{2}\right)$ state. Since 3 d correlation is not included in the CAS SCF calculations the ${ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{1}\right)$ state is lower at the CAS SCF level and the resulting orbital bias makes this state also at the Cl level. This problem makes it difficult to study the corresponding $4 s^{1} 3 \mathrm{~d}^{2}$ derived state. However, this state is observed as a higher root in the CAS SCF ($2^{5} \Delta_{\mathrm{g}}$ state in table 3) and using these Cl energies the binding energy is predicted to be $\leqslant 0.3$ eV smaller for the ${ }^{5} \Delta_{\mathrm{g}}$ state derived from ${ }^{2} \mathrm{D}+$ ${ }^{4} F\left(4 s^{1} 3 d^{2}\right)$ than for the ${ }^{5} \Delta_{g}$ state derived from ${ }^{2} D$ $+{ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{1}\right)$. Thus we predict a D_{e} of $\geqslant 0.5 \mathrm{eV}$ for the ${ }^{5} \Delta$ state derived from ${ }^{2} D+{ }^{4} F\left(4 s^{1} 3 d^{2}\right)$. Assuming this and noting that the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{n+1}-4 \mathrm{~s}^{2} 3 \mathrm{~d}^{n}$ separations for Ti and V are 0.81 and 0.25 eV , res-
pectively [12]. we predict that the mixed state will be unb und by $<0.3 \mathrm{eV}$ with respect to the $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{n}$ $+4 \mathrm{~s}^{-} 3 \mathrm{~d}^{n}$ limit for Ti_{2} and bound by $\geqslant 0.25 \mathrm{eV}$ for the same limit in \mathbf{V}_{2}. Indeed the lowest state in V_{2} is found to arise from this atomic limit [5]. At the other end of the row the mixed states are expected to be important for Fe_{2} and Co_{2}.

Comparing to WDHG, their calculations show a deeper well and shorter R_{e} for the ${ }^{5} \Sigma_{\mathrm{u}}^{-}$state ($R_{\mathrm{e}}=$ $4.86 a_{0}$ and $D_{\mathrm{e}}=1.12 \mathrm{eV}$) than do our calculations for the ${ }^{5} \Delta_{\mathrm{u}}$ state ($R_{\mathrm{e}} \approx 7.0 a_{0}$ and $D_{\mathrm{e}} \approx 0.8 \mathrm{eV}$). We have also studied s:ates of ${ }^{5} \Sigma_{\bar{u}}^{-}$symmetry at the MC SCF POL CI level [16] and find two states, one of which is derived from ${ }^{2} D\left(4 s^{2} 3 \mathrm{~d} \pi^{1}\right)+$
${ }^{4} F\left(4 s^{1} 4 \mathrm{po}{ }^{1} 3 \mathrm{~d} \pi^{1}\right)$, and the other of which is derived from ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d} \delta^{1}\right)+{ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 4 \mathrm{pa}^{1} 3 \mathrm{~d} \delta^{1}\right)$. Both states are bound by $\approx 0.8 \mathrm{eV}$ with the first state having an R_{e} of $\approx 6.5 a_{0}$ and the second state having an R_{e} of $\approx 7.0 a_{0}$. It is not clear why the results of WDHG are so different from ours. We do note however that their total energies for Sc_{2} are more than 3.0 hartree more positive than ours, and suspect that some of the difference may arise from basis set deficiencies in the calculations of WDHG (e.g. basis set superposition error).

Now we consider the calculation of the binding energy of the states arising out of the ${ }^{2} D\left(4 s^{2} 3 \mathrm{~d}^{1}\right)+$ ${ }^{2} D\left(4 s^{2} 3 \mathrm{~d}^{1}\right)$ limit. In these calculations we used basis set II. The calisulations consisted of MC SCF followed by POLCI [1-] and ICF [4] calculations. The ICF method has been shown to lead to reliable binding energies for weakly bound systems, e.g. Be_{2} [4]. Since the minimum in the van der Waals binding curve for Sc 2 occurs at $R>8.0 a_{0}$ and the 3 d interactions are small at this distance, we arbitrarily studied the ${ }^{3} \Sigma_{4}^{+}$and ${ }^{1} \Sigma_{g}^{+}$states which arise from $4 s^{2} 3 \mathrm{~d} o^{1}+$ $4 s^{2} 3 \mathrm{~d} \sigma^{1}$ (see table 4).

In these calculations the orbitals were obtained from MC SCF calculations with the $4 \mathrm{~s}, 4 \mathrm{p}$ and 3 do in the valence space. The MC SCF configurations consisted of all single and double excitations within the valence space from the reference configurations in table 1 (one for ${ }^{3} \Sigma_{u}^{+}$and two for ${ }^{1} \Sigma_{g}^{+}$). These MC SCF calculations were then followed by CI . The POLCI calculations include single and double excitations from the reference configurations but with no more than one electron outside the valence space. To approximate the ICF method the orbitals were localized using the transformation

Table 4
Calculated MC SCF POL CI energies for the ${ }^{3} \Sigma_{i}^{*}$ and ${ }^{1} \Sigma_{i}^{*}$ states of $\mathrm{S}_{2}{ }^{\text {a }}$)

\boldsymbol{R}	MC SCF		POLCl	
	${ }^{3} \Sigma_{u}^{*}$	${ }^{1} 5$	${ }^{3} \Sigma_{i}^{*}$	${ }^{1} \Sigma_{g}^{*}$
20.0	-0.50699	-0.50699	-0.50833	-0.50830
10.0		-0.50679		-0.50935
9.0		-0.50614		-0.50974
8.0	-0.50390	-0.50443	-0.50934	-0.50983
7.5		-0.50287		-0.50954
7.0	-0.49815	-0.50027		-0.50839
6.0		-0.48773		-0.49896

a) In hartuee relative to -1519.0 .

$$
\phi_{\mathrm{g}}=2^{-1 / 2} \phi_{\mathrm{g}}+2^{-1 / 2} \phi_{\mathrm{u}}, \quad \phi_{\mathrm{t}}=2^{-1 / 2} \phi_{\mathrm{g}}-2^{-1 / 2} \phi_{\mathrm{u}}
$$

and in addition to the POL C1 list configurations of the form

$$
\phi_{\mathrm{I}} \rightarrow \mathrm{v} \times \phi_{\mathrm{f}} \rightarrow \mathrm{v},
$$

which allows two electrons into the virtuals were also included. (Note that this calculation was carried out for the ${ }^{3} \Sigma_{u}^{+}$state since for this state the energy is in. variant to the transformation given above.) Fiom table 5 we see that the ICF method gives a binding energy of $0.046 \mathrm{eV}(1.1 \mathrm{kcal} / \mathrm{mole})$ while the POLCl method leads to 0.041 eV (for the [6 s 6 p 3 d 1 f] basis set). Combining this result with the POLCl estimate of the separation between ${ }^{3} \Sigma_{u}^{+}$and ${ }^{1} \Sigma_{g}^{+}$leads to an estimated binding energy of $0.061 \mathrm{eV}(1.4 \mathrm{kca} /$ /mole) for the ${ }^{3} \Sigma_{g}^{-}$or ${ }^{1} \Sigma_{g}^{+}$state of $S c_{2}$.

Das using an MC SCF model obtains a D_{e} of ≈ 4 $\mathrm{kcal} /$ mole, whereas we obtain no binding at the

Table 5
Calculated MC SCF CI energies for the ${ }^{3} \Sigma_{\mathrm{u}}^{+}$state of Sc_{2}

\boldsymbol{R}	MC SCF POL CI		MC SCF ICF	
	[6s6p3d)	[6s6p3d1f]	[6s6p3d]	[6s6p3d1f]
20.0	$\begin{gathered} -0.50833 \mathrm{~h} \\ 0.000 \mathrm{eV} \end{gathered}$	$\begin{gathered} -0.50947 \\ 0.000 \end{gathered}$	$\begin{gathered} -0.50835 \\ 0.000 \end{gathered}$	$\begin{gathered} -0.50952 \\ 0.000 \end{gathered}$
8.0	$\begin{aligned} & -0.50934 \\ & -0.027 \end{aligned}$	$\begin{aligned} & -0.51099 \\ & -0.041 \end{aligned}$	$\begin{aligned} & -0.51000 \\ & -0.045 \end{aligned}$	$\begin{aligned} & -0.51120 \\ & -0.046 \end{aligned}$

[^3]CAS SCF level. Das' MC SCF differs from ours in that he includes only the dispersion terms $4 \mathrm{~s}_{\mathrm{s}} \rightarrow 4 \mathrm{p}_{6} \times 4 \mathrm{~s}_{\text {, }}$ $\rightarrow 4 p_{\text {t }}$ while we ticl de all valence configurations among the 4 s .4 p , and 3 d orbitals. Including these additional terms tends to decrease the importance of the dispersion terms and we see a repulsive curve at the CAS SCF level but obtain a D_{e} of $1.4 \mathrm{kcal} /$ mole at the ICF level. We suspect that Das' MC SCF potential curve is too attractive, although his conclusion that the experimental results may be reinterpreted in terms of a weak bonding model remains valid.

4. Conclusions

We have studied the ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Sigma_{q}^{+},{ }^{3} \Sigma_{u}^{*}$, and ${ }^{5} \Delta_{u}$ states of S_{2} using CAS SCF Cl (SD) wavefunctions in a large gaussian basis set. We find that the states arising out of the ${ }^{2} \mathrm{D}\left(4 s^{2} 3 \mathrm{~d}^{1}\right)+{ }^{2} \mathrm{D}\left(4 s^{2} 3 \mathrm{~d}^{1}\right.$, limit show only weak bonding $\left(\approx 0.06 \mathrm{eV}\right.$ at $\left.R \approx 8.0 a_{0}\right)$. At this distance 3 d eiestrons are only weakly coupled and the bonding appears to be largely of the van der Waals type ansing out of the $4 s^{2} \rightarrow 4 p^{2}$ near degeneracy.

The ${ }^{5} د_{4}$ state which arises out of the ${ }^{2} D\left(4 s^{2} 3 \mathrm{~d}^{1}\right)$ $+{ }^{4} \mathrm{~F}\left(4 s^{!}+\mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ limit is found to be strongly bound with respect to ${ }^{2} \mathrm{D}+{ }^{4} \mathrm{~F}\left(4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)(\approx 0.8 \mathrm{eV}$ at R $\approx 7.0 a_{0}$). The bonding in this state is a result of interaction between the $4 s$ orbital of the $4 s^{1} 3 d^{1} 4 \mathrm{p}^{1}$ zonfiguration and sp hybrids arising out of the $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$ and $4 s^{1} 3 \mathrm{~d}^{1} 4 \mathrm{p}^{1}$ states. States arising out of ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ $+{ }^{4} \mathrm{~F}\left(4 s^{1} 3 \mathrm{~d}^{2}\right)$ are predicted to be bound by $\leqslant 0.3 \mathrm{eV}$ less with respect to ${ }^{2} D+{ }^{4} F\left(4 s^{1} 3 d^{2}\right)$. While this atomic asymptote is too high (1.43 eV) in Sc_{2} for this state to drop below the ${ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+{ }^{2} \mathrm{D}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ asymptote. for V_{2} the corresponding asymptote is at 0.25 eV leading to states from this mixed asymptote being the lowest state. WDHG report a significantly shorte: $R_{e}\left(4.86 a_{0}\right)$ and somewhat deeper $D_{e}(1.12$ $\mathbf{e V}$) for a ${ }^{\{ } \Sigma_{u}^{-}$state. However, our calculations indicate similar results for ${ }^{5} \Sigma_{u}^{-}$and ${ }^{5} \Delta_{u}$. We suspect that the differences between our results and those of WDHG are at least partly due to basis set deficiencies in the calcula. tions of WDHG.

We have also studied the binding energy of the ${ }^{3} \Sigma_{u}^{+}$ state using the ICF method. This leads to the estimate
of $D_{e}=0.046 \mathrm{eV}$ for ${ }^{3} \Sigma_{u}^{*}$ and 0.061 eV for ${ }^{1} \Sigma_{j}^{+}$or ${ }^{3} \Sigma_{g}^{-}$. This result is in agreement with the weak binding model proposed by Das.

Acknowiedgement

We thank Bjorn Roos for helpful discussions and thank Bjom Roos and Per Siegbahn for use of their programs.

References

[1] G. Das, Chem. Phys. Letters 86 (1982) 482.
(2) C. Wood, M. Moran, I.H. Hillier and M.F. Guest, Faraday Symp. 14 (1980) 159.
[3] J. Drouart and R.E. Honig, J. Phys Chem. 61 (1957) 6801.
[4) B. Liu and A.D. McLean, J. Chem. Phys. 72 (1980) 3418.
[5] B. Roos and C.W. Bauschlicher J_{f}., unpublished results.
(6) A.J.H. Wachters. J. Chem. Phys. 58 (1973) 4452.
(7) P.J. Hay , J. Chem. Phys. 66 (1977) 4377.
[8] J. Almlof, MOLECULE, a gaussian integrals program.
19] R.C. Raffenetti, BIGGMOLI, Program No. 328, Quantum Chemistry Program Exchange, Indiana U'niversity, Bloomington (1977).
[10] P.E.M. Siegbahn, B. Roos and C.W. Bauschlicher Jt., SWEDEN, a vectorized SCF MC SCF direct Cl.
[11] C.W. Bauschlicher Jt. and B.H. Lengsfield III, Noname, a general SCF MC SCF open ended CI program.
[12] C.E. Moore. Atomic Energy Levels, Circular 467 (National Bureau of Standards, Washington, 1949).
[13] C.W. Bauschlicher Jt., S.P. W alch and H. Partridge, J. Chem. Phys. 76 (1982) 1003.
[14] S.P. Walch and C.W. Bauschlichet Jt., Chem. Phys. Letters 86 (1982) 66;
C.W. Bauschlicher I_{r}. and S.P. Walch, J. Chem. Phys. 76 (1982) 4560.
[15] B.H. Botch, T.H. Dunning it and J.F. Harrison, J. Chem. Phys. 75 (1981) 3466.
[16] S.P. Walch. unpublished results.
[17] P.J. Hay and T.H. Dunning Jr., J. Chem. Phys. 64 (1976) 5077,
T.H. Dunning J., S.P. Walch and A.F. Wagner, Theoretical Studies of Selected Reactions in the Hydrogen Oxygen System, in: Potential energy surfaces and dynamics calculations, ed D. . Truhlar (Plenum Press, New York, 1981), and references therein.

Theoretical evidence for multiple onzevlectron $3 d$ bonding in a first row transition metal dimer: The Σ_{j} state of $\mathbf{S c}_{\mathbf{2}}$

Stephen P. Walch ${ }^{\text {T }}$
Polyatomics Research Institute, ${ }^{*}$ Mountain View, California 94043
Charles W. Bauschlicher, Jr.
NASA Ames Research Center, Moffett Field, California 94035
(Received 3 Jane 1983; accepted 26 July 1983)

Recently, the Sc_{2} molecule has been the subject of considerable theoretical study. ${ }^{1=8}$ The interest in this system arises because previous theoretical studies have found only weakly bound states for Sc_{2} in contrast to mass spectrometric experiments which had been interpreted to indicate strong bonding ($D_{\mathbf{e}}=26 \pm 5 \mathrm{kcal} / \mathrm{mol}$). ${ }^{4}$ Previous studies of Sc_{2} by Das ${ }^{2}$ and by Walch and Bauschlicher ${ }^{3}$ indicated that states arising from the ${ }^{2} D+{ }^{2} D$ atomic limit were closely spaced and only weakly bound with large R_{q}, values ($-8,0 a_{0}$). Reinterpreting the mass spectrometric experiments u iag a larger molecular degeneracy and larger R_{e} (the original analysiz used $R_{\bullet}=5.14 a_{0}, \omega_{s}=230 \mathrm{~cm}^{-1}$, and $g=5$), Das concluded that the mass spectrometric results were consistent with weak binding. However, more recently matrix isolatior studies have indicated a bound ${ }^{5}$: state of Sc_{2}. ${ }^{5}$ This state appears to be bound with ressect to the ${ }^{2} D+{ }^{2} D$ atomic limit, but clearly cannot arise from this asymptote. Walch and Bauschlicher ${ }^{3}$ found a ${ }^{5} \Delta_{4}$ state which was bound by $\sim 0.8 \mathrm{eV}$ with respect to the ${ }^{2} D$ $+{ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{1}\right)$ atomic limit, but unbound with respect to ${ }^{2} D+{ }^{2} D$. States arising out of the ${ }^{2} D+{ }^{4} F\left(4 s^{1} 3 d^{2}\right)$ atomic limit were not studied in detail; however, given the experimental evidence for a bound ${ }^{5} \Sigma$ state of Sc_{2} with a 3d population of ~ 3.0, together with a known computational bias toward the ${ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{1}\right)$ state rela tive to the ${ }^{4} F\left(4 s^{1} 3 d^{2}\right)$ state, ${ }^{6}$ a reinvestigation of the ${ }^{5}$: state arising from ${ }^{2} D+{ }^{4} F\left(4 s^{1} 3 d^{2}\right)$ was carried out.

In this communication we report extensive CASSCF/ CI(SD) calculations which show that this ${ }^{5}$; scate is bound with respect to the ${ }^{2} D+{ }^{2} D$ atomic limit. We find that the bonding in this state involves three one-electron $3 d$ bonds and believe this to be sirong theoretical evidence of multiple $3 d$ bonding in a first row transition metal cimer.

The ${ }^{2}$: state had previously been suggested as the ground state of Sc_{2} by Wood, Moran, Hillier, and Guest 'however this assignment was not convincing because correcting ior their asymptotic error the ${ }^{\Sigma}$; state was not bound with respect to the lowest limit.

The basis set was the ($14 s 11 p 6 d$) $/[8 s 6 p 4 d]$ basis set described in Ref. 3. An extended basis ($14 s 12 p 6 d 3 f$)/ $[8 s 7 p 4 d 2 f]$ was also used. This basis has three $4 p$ functions ${ }^{\top}$ optimized for the ${ }^{6} F\left(4 s^{1} 4 p^{1} 3 d^{i}\right)$ state of Sc and two $4 f$ functions obtained as a (21) contraction of a three term GTO fit to a Slater $4 f$ with exponent 1.6. The extended basis gave an energy improvement of $0.00339 h$ $=0.092 \mathrm{eV}$ for the CASSCF of the ${ }^{2} \Sigma_{\text {; }}$ state at $R=5.0 a_{0}$.
As in the previous calculations, ${ }^{3}$ the CASSCF space consisted of the orbitals derived from the atomic 4 s , $4 p$, and $3 d$ orbitals. The dominant configuration (c_{1} $=0.85$ for CASSCF at $R=5.0 a_{0}$) f.c. the ${ }^{5} \Sigma_{u}^{*}$ state is

$$
\begin{equation*}
\mathbf{4} s \sigma_{s}^{2} 3 d \sigma_{s}^{1} 4 s \sigma_{u}^{1} 3 d r_{x u}^{1} 3 d \pi_{y w}^{1} \tag{1}
\end{equation*}
$$

Constraints were placed on the orbital occupancies; here the σ block had four electrons, the π block had two electrons, and the δ block had zero electrons in all configurations. The reference configurations for the $\mathrm{CI}(\mathrm{SD})$ were selected as those configurations (ten) with CI coefficients >0.05 in the CASSCF wave function near R_{c}. This leads to 87% reference in the $\mathrm{CI}(\mathrm{SD})$ wave iunction for the Σ°; state at $R=5.0 a_{0}$ as compared to 80% reference for the large R asymptote, the ${ }^{3} \Sigma ;$ state at R $=50.0 a_{0}$. The valence populations derived from the CASSCF/CI(SD) calculation are $4 s=2.60,4 p=0.83$, and $3 d=2.57$.

Figure 1 shows the calculated CASSCF/CI(SD) potential curve for the ${ }^{5} \Sigma_{\%}^{*}$ state together with the states which were previously computed. ${ }^{3}$ The ${ }^{2} \Sigma$; state is most closely related to the ${ }^{3} \Sigma_{;}^{*}$, state which has the configuration

$$
\begin{equation*}
4 s \sigma_{s}^{2} 4 s \sigma_{\Delta}^{2} 3 d \pi_{x v}^{1} 3 d \pi_{y_{v}}^{1} \tag{2}
\end{equation*}
$$

As discussed elsewhere, ${ }^{3}$ for the states derived from the ${ }^{2} D+{ }^{2} D$ asymptote, the $3 d$ overlap is small and in the snall S regionone expects one-electron bonds which vary with distance like S to be nore favorable than twoelectron bonds which vary with distance like S^{2}. Thus the ${ }^{3} \Sigma$; state which involves two one-electron π bonds is more favorable than the ${ }^{1} \Sigma$; state which has a single

FIG. 1. Potential energy curves for the low-lying states of Sc_{1} from CASSCF CI(SD) calculations. The locations of the ${ }^{2} D+^{2} D,^{2} D+{ }^{4} F\left(4 s^{1} 4 p^{1} 3 d^{\prime}\right)$, and ${ }^{2} D+^{4} F\left(4 s^{1} 3 d^{2}\right)$ asymptotes are indicated.
two-electron σ bond. Promoting an electron of the ${ }^{3} \Sigma$; state from thee $4 s \sigma_{*}$ antibonding orbital to the $3 d \sigma_{\text {e }}$ orbital leads to the ${ }^{5} \Sigma$; state which has an addition al one-electron $3 d \sigma$ bond and reduced 4 s repulsion due to removal of an electron from the $4 s \sigma_{4}$ orbital. Given these factors, it is not surprisi ${ }^{4}$? that the ${ }^{5} \Sigma$: state has a smaller
R_{e} and is more stable than the ${ }^{3} \Sigma$; state.
A Dunham analysis of a parabolic fit to the ${ }^{s} \Sigma_{*}$ p potential leads to $R_{e}=5.27 a_{0}$ and $\tau_{e}=184 \mathrm{~cm}^{\circ}$. The binding energy is estimated to be $0.44 \mathrm{eV}(10.1 \mathrm{kcal} / \mathrm{mol}) \mathrm{in}$ cluding (i) a small differential Davidson's correction (-0.03 eV). (ii) a correction for the error in the asymptotic separation (+0.26 eV), and (iii) a enrrection for the energy improvement with the extended basis $(+0.09$ $\mathbf{e V}$). The calculated R_{e}, and \lrcorner_{e}, values are very close to the assumed values. In the limit of no $3 d$ interactions ${ }^{4} F+{ }^{2} D$ leads to a molecular degeneracy of 280 which would lead to an $-16 \mathrm{kcal} / \mathrm{mol}$ decrease ${ }^{2}$ in the experimental estimate of D_{f} and excellent agreement with experiment. However, the actual degeneracy will be much lower than this, possibly approaching 5 , and thus the calculated D_{e} is smaller than current experimental estimates by at least $10 \mathrm{kcal} / \mathrm{mol}$. The calculated ω_{e} is slightly smaller than the current estimate ${ }^{9}$ of 238.9 cm^{-1} which is consistent with the underestimation of D_{e}.
${ }^{2}$ Supported by NASA grant * NCC 2-148.
${ }^{\bullet}$ Mailing address: 1101 San Antonio Road, Suite 420.
${ }^{1}$ G. Wood, M. Moran, I. H. Hillier, and M. F. Guest, Faraday Symp. 14, 159 (1980).
${ }^{2} \mathrm{G}$. Das, Chem. Phys. Lett. 66, 482 (1982).
${ }^{3}$ S. P. Walch and C. W. Bauschlicher, Jr., Chem. Phys. Lett, 24, 290 (1983).
${ }^{4}$ G. Verhaegen, S. Smoes; and J. Drowart, J. Chem. Phys. 40, 239 (1964).
${ }^{\text {SH. B. Knight, Jr., R. J. Van Zee, and W. Weltner, Jr., }}$ Chem. Pbys. Lett. 94, 296 (1983).
${ }^{6}$ For example, valence CI calculations with the molecular basis set lead to ${ }^{4} \boldsymbol{F}\left(4 s^{1} 4 p^{1} 3 d^{1}\right) 0,50 \mathrm{eV}$ too low with respect to ${ }^{4} F\left(4 s^{1} 3 d^{2}\right)$.
${ }^{\prime}$ The 4 functions are $0.13616,0.059357,0.025136$.
${ }^{8}$ R. F. Stewart, J. Chem. Phys. 82, 431 (1970).
${ }^{9}$ D. P. Dilella, W. Limm, R. H. Lipson, M. Moskovitts, and K. V. Taylor, J. Chem, Phys. 77، 5263 (1982).

duat

OF PO4

Extended CASSCF Calculations for Transition Hén Dimers:

$$
\text { the } \mathrm{Ti}_{2}{ }^{1} \Sigma_{g}^{+}, \nabla_{2}^{3} \Sigma_{g}^{-} \text {and } \mathrm{Cr}_{2}{ }^{1} \Sigma_{g}^{+} \text {States }
$$

Stephen P. Walch*
Polyatomics Research Institute ${ }^{+}$
Mountain View, Calif. 94043

The results of extended active space CASSCF calculations are reported for $\mathrm{Ti}_{2}, \nabla_{2}$, and Cr_{2}. Molecular orbitals derived fromatomic 4p and $3 \mathrm{~d}^{\prime}$ are found to be very important leading to improved binding energies for Ti_{2} and ∇_{2} and to a bound curve for Cr_{2}. The Cr_{2} calculated spectroscopic parameters are (experimental values in parenthesis) $\mathbf{R}_{\mathbf{e}}=1.78 \mathrm{~A}(1.68 \mathrm{~A})$, ${ }_{4} \mathrm{e}=383 \mathrm{~cm}^{-1}\left(480 \mathrm{~cm}^{-1}\right)$ and $\mathrm{D}_{\mathrm{e}}=0.71 \mathrm{eV}(1.56 \mathrm{eV})$.
*S.P. Walch was supported by NASA grant NCC2-148
+Mailing Address: 1101 San Antonio Rd., Suite 420
Mountain View, Calif. 94043

Recently the transition metal dimers have been of considerable experimental [1-5] and theuretical [6-10] interest both because of the diverse nature of the bonding in the transition metal dimers and because of the difficulty in calculating accurate potential curves for those dimers which exhibit multipletwo-electron 3d bonding (especially Cr_{2}). To date the most extensive study of V_{2} and Cr_{2} has been carried out by Walch et al. [6]. These calculations were CASSCF calculations with the 4 s and 3 d transition metal orbitals in the active space. This choice of the active space is appropriate for the states considered, $V_{2}{ }^{3} \Sigma_{g}^{-}$and $C_{2}{ }^{1} \Sigma_{g}^{+}$, since they arise from the $4 s^{1} 3 d^{n}+4 s^{1} 3 d^{n}$ atomic asymptotes. The calculated CASSCF curve for ∇_{2} gave good R_{e} and $\omega_{e} v a l u e s$ and also these authors correctly predicted the ground state of V_{2} to be ${ }^{3} \Sigma_{g}^{-}$prior to experimental determination [4]. However, the calculated binding energy for ∇_{2} was only $0.33 \mathrm{e} \nabla$ (relative to $4 s^{2} 3 d^{4}+4 s^{2} 3 d^{4}$) compared to the current experimental value of 1.8 eV [4] and Cr_{2} did not give a bound curve although a shoulder was observed near the region of the experimental R_{e}.

The usual approach to correcting those defects is the use of configuration interaction (CI). However, the brute force application of CI techniques to ∇_{2} and Cr_{2} is not practical due to the large size of the CI expansions encountered. For example, Walch et al. [6] estimate ~ 57 million configurations are needed to describe the potential curve for the Cr_{2} molecule, vhereas the current computational capability is only about one million configurations. - Walch et al. were able to carry out a CI calculation for the ${ }^{1} \Sigma^{+}$state of Ti_{2} which exhibits a triple two-electron 3d bond $\left(\sigma, \pi_{x}, \pi_{y}\right)^{g}$ and used this result to estimate the binding energies of V_{2} and Cr_{2} assuming a triple bonded picture for V_{2}, i.e., that the 3d? orbitals are nonbonding. The preliminary estimate [6] was an increase in binding energy of $\sim 2.0 \mathrm{eV}$ which has now been refined to 1.57 eV leading to predicted D_{e} 's of ~ 1.7 e ∇ for ∇_{2} (relative to $4 s^{2} 3 d^{3}+4 s^{2} 3 d^{3}$) and $0.2 e V$ for Cr_{2} (relative to $4 \mathrm{~s}^{1} \mathrm{~d}^{5}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$). This model is probablyrealistic for ∇_{2} vere the $3 d \delta$ orbitals are singly occupied leading to only weak one-electron bonds but we now believe it is not reasonable for Cr_{2} where the $3 \mathrm{~d} \delta$ orbitals are double occupied (vide infra).

In order to get around these difficulties we have used a CASSCF approach to estimate the dominant correlation effects missing in the CASSCF calculations with only 48 and 3 d in the active space. For the transition metal ators we find that the most important additional terms are derived from 3d' and 4 p and these are also found to be the most important additional molecular correlation terms. Here $3 d^{\prime}$ is a tight diffuse correlating orbital for the 3d. Table 1 shows the efrect of including these
additional correlation terms for the Ti atom. Concentrating on the description of the $4 s^{2} 3 d^{2}-4 s^{1} 3 d^{3}$ excitation energy we see that SCF underestimates the excitation energy. Including the 4 p orbital lowers $4 s^{2}$ relative to to $4{ }^{1}$ and leads to an overestimation of the excitation energy, while inclusion of $3 \mathrm{~d}^{\prime}$ lowers $3 \mathrm{~d}^{3}$ relative to $3 \mathrm{~d}^{2}$ leading to a calculated separation that is close to the CI value when both 4 p and 3 d ' are included. The remaining $0.2 e V$ discrepancy with experiment is due to core-valence correlation involving the $3 p$ shell [11]. Thus inclusion of 4 p and 3 d ' enables an accurate description of the relative energies of atomic states involving different numbers of 4 s and 3 d electrons. This improved atomic description has been shown to be important for describing molecular potential curves [1z]. An analagous argument for the importance of 3d' has been made by Dunning, Botch, and Aarrison [13].

To the extent that charge transfer terms are important for the transition metal dimers, we also expect 4 p and $3 \mathrm{~d}^{\prime}$ to be important since 4 p improves the description of terms arising from

$$
\begin{equation*}
3 d^{n}+4 s^{2} 3 d^{n} \tag{1}
\end{equation*}
$$

while 3d' improves the description of terms arising from

$$
\begin{equation*}
4 s^{1} 3 d^{n-1}+4 s^{1} 3 d^{n+1} \tag{2}
\end{equation*}
$$

Indeed, Goodgame and Goddard [14] have suggested that the difficulty in describing the transition metal dimers arises from difficulties in describing the ionic terms [especially (2)]. If this explanation is correct our calculations include directly the correlation corrections which they include by empirical modification of the integrals.

The dominant configurations [6] for the molecules considered here are:

$$
\begin{align*}
& \mathrm{Ti}_{2}{ }^{1} \Sigma_{g}^{+} 4 \sigma \sigma_{g}^{2} 3 d \sigma_{g}^{2} 3 \mathrm{~d} \pi_{\mathrm{xu}}^{2} 3 \mathrm{~d} \pi_{y u}^{2} \tag{3}\\
& \nabla_{2}{ }^{1} \Sigma_{g}^{+} 4 \delta \sigma_{g}^{2} 3 d \sigma_{g}^{2} 3 \mathrm{~d} \pi_{x u}^{2} 3 \mathrm{~d} \pi_{y u}^{2} 3 d \delta_{x y g}^{1} 3 d \delta_{x^{2}-y_{g}^{2}}^{1}(4) \tag{4}\\
& \mathrm{Cr}_{2}{ }^{1} \Sigma_{g}^{+}{ }_{48} \sigma_{y}^{2} 3 d \sigma_{g}^{2} 3 d \pi_{x u}^{2} 3 \mathrm{~d} \pi_{y u}^{2} 3 d \delta_{x y g}^{2} 3 d \delta_{x^{2}-y_{g}^{2}}^{2} \tag{5}
\end{align*}
$$

The calculations use the [8s6p4d2f] basis set described previously [6] and the MOLECULE-SWEDEN programs [15]. As in the previous calculations the occupations are constrained by symmetry. For example for Ti_{2} the dominant configuration has four electrons in sigma, two in π_{x}, and two in π_{y}.

For the CASSCF within the $4 s$ and 3 d orbitals we impose the constraints that
 trons be distributed among $3 \mathrm{~d} \pi_{x u}$ and $3 d \pi_{x g}$ and two alectrons be distributed among 3d $\pi_{y u}$ and $3 d \pi_{y g}$. This set of constraints leads to a CASSCF which mimics the GVB wavefunction [16]. Here we use GVB in the more general aense of allowing all possible spin couplings of the $4 s$ and 3 d atowic like orbitals with simultaneous orbital optimization. The active space was then augmented by
addition of 3d' and 4p. Here the additional active orbitals were added separately by symmetry blocks. For Tiz 3d ${ }^{\prime}$, 3do' plus 4po, 3d $\pi_{x}^{\prime}, 3 d \pi_{x}^{\prime}$ plus 4pryere added in separate calculations. The same occupation constraints were imposed except that in the calculation with $3 d \pi_{x}^{\prime} p l u s 4 p \pi_{x}$ the sigma block was constrained to two to four electrons and the π_{x} block to two to four electrons thus allowing the $4 \mathrm{~s}^{2}-4 \mathrm{p} \mathrm{r}_{\mathrm{x}}^{2}$ near degeneracy terms. These orbital constraints in addition to keeping the calculations of tractable size also lead to a wavefunction which dissociates to Hartree-Fock atoms (for the $4 s^{1} 3 d^{n}+4 s^{1} 3 d^{n} \quad$ limit considered here). For Cr 2 and ∇_{2} 3dot, 3d T_{x} and $3 d \delta_{x y}^{\prime}$ were added in separate calculations. For the Ti_{2} calculations the $4 \mathrm{p} \sigma$ contribution was obtained as the $3 \mathrm{~d} \mathrm{C}^{\prime} \mathrm{plus} 4 \mathrm{p} \sigma$ contribution minus the $3 \mathrm{~d}^{\prime}$ contribution and similarly for the $4 \mathrm{p} \pi_{\mathrm{x}}$ contribution. The $3 \mathrm{~d} \pi^{\prime}, 4 \mathrm{p} \pi$, and $3 \mathrm{~d} \delta^{\prime}$ contributions were calculated as twice the $3 \mathrm{~d} \pi_{x}^{\prime}$, $4 \mathrm{p} \pi_{\mathrm{x}}$ and $3 \mathrm{~d} \hat{\mathrm{i}} \mathrm{x}$ y contributions, respectively. The CASSCF energies and energy contributions for each of the added active space orbitals are given in Table 2, Table 3, and Table 4 for $\mathrm{Ti}_{2}, \mathrm{~V}_{2}$, and Cr_{2}, respectively.

Figure 1 shows the calculated potential curves for the ${ }^{1} \Sigma_{g}^{+}$state of the Ti 2 molecule. The CI calculation was a multireference singles and doubles CI from nine references leading to $\sim 180,000$ CSFs. For comparison to the CASSCF curyes the CI energies are shifted to make the asymptotic CI energy equal to the asymptotic SCF energy for the $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{3}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{3}$ limit (i.e. we are comparing binding energies). From Fig.lit is clear that both 3 d and 4 p make important contributions to the binding energy with 3d' somewhat more important than 4p. It is also evident from Fig. 1 that the extended CASSCF procedure used here obtains a very large percentage of the extra binding energy obtained in the CI. However, estimating ΔE 3d'bysumming the separately calculated $3 d^{\prime}{ }^{\prime}$ and $3 d^{\prime}$ components as was done here overestimates the effect of 3d' as compared to acalculation in whichall the $3 \mathrm{~d}^{\prime}$ components are included in one calculation. For Ti_{2} including $3 \mathrm{~d} \mathrm{a}^{\prime}$, 3d π_{x}, and $3 \mathrm{~d} \pi_{\mathrm{y}} \mathrm{i}$ in one calculation with occupation constraints ab above increases $4 E 3 d^{\prime}$ by 0.01436 h for the molecule at $R=3.75 \mathrm{a}_{\mathrm{o}}$ and by 0.03852 h for the separated atoms; thus the differential effect of $3 \mathrm{~d}^{\prime}$ is reduced from $\sim 32 \mathrm{mh}$ to ${ }^{2} 8 \mathrm{ab}$. The dominant atomic correlation terms are of the form

$$
\begin{array}{ll}
\text { UR POOR Qusm }
\end{array} \quad 3 d_{i} \rightarrow 3 d_{j} \times 3 d_{j}-3 d_{j}
$$

This result indicates that these terms may not be viewed as "atomic correlation" because they are less important for the molecule than for the atom. On the other hand, the $4 p$ correlation does not contribute for the $4 s^{l} 3^{\prime} n^{n}$ etate of the atom and we do not expect the $4 p$ correlation effect to be significantly reduced by a more extensive MCSCF calculation. Given these results ve mast view as fortuitous the good D_{e} for $T i_{2}$ obtained by including 3d' and $4 p$ correlation estimates based on calculations which dissociate to SCF atoms. However, our intention here is to use this method to extrapolate from the Ti_{2} case where we are able to do an adequate $C I$ treatment to the V_{2} and Cr_{2} cases where the calculations exceed present computational capabilities. We believe that the correlation effects which are included in these calculations will be the most important differential effects between molecules in this series. For simplicity in performing the extrapolation we use the extended CASCF results directly since the D_{e} obtained for Ti_{2} in this way is within 0.08 eV of the CI value.

Table 5 shows the calculated spectroscopic parameters for Ti_{2} (obtained via a Dunham analysis of the points in Table 2). Here we see that the calculated ω_{e} is in good agreement with experiment. The calculated D_{e} is smaller than the mass spectrometrically determined D_{e} but the experimental value may be too large as is the case for V_{2} where a more recent determination via predissociation reduces D_{e} by $\sim 0.7 e V$.

Table 6 shows the calculated spectroscopic constants for V_{2}. Here the effect of 4 p was estimated from the Ti_{2} calculations. This was done by shifting the $\triangle E 4 p$ curves for $T i_{2}$ toward shorter R by $0.36 a 0$ which is twice the difference between $\left\langle r_{4 s^{\prime}}\right\rangle$ for $T i 4 s^{1} 3 d^{3}$ and $\nabla 4 s^{1} 3 d^{4}$ [11]. From Table 6 we see that R_{e}, D_{e}, and ω_{e} are all in good agreement with experiment for ∇_{2}. In particular the calculated D_{e} is in good agreement with the recent experimental value determined from predissociation [4] but is considerably smaller than the mass spectrometric value [17].

Fig. 2 shows calculated potential curves for Cr_{2}. Here as for ∇_{2} the effect of $4 p$ was estimated from the Ti_{2} results but shifted toward shorter Rby $0.64 \mathrm{a}_{\mathrm{o}}$ which is twice the difference between <r $4 \mathrm{~s}^{\text {> }}$ for $\mathrm{Ti} 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{3}$ and $C_{r} 4 s^{1} 3 d^{5}$ [11]. The most significant feature of Fig. 2 is the appearance of a well in the region where a shoulder had been observed in the CASSCF curve [6]. Thus, Cr_{2} exhibits rather different behavior from Ti_{2} or ∇_{2} in that 3d' correlation in Ti_{2} and ∇_{2} deepened the vell but did not significantly change R_{e} or ω_{e}, while for $C r_{2}$ 3d'correlation converts a shoulder on the curve into a well. This behavior implies considerable $\&$ dependence in the 3d correlation as is evident from Fig. 3 where the $3 \mathrm{~d} \sigma$, $3 \mathrm{~d} \pi$, and 3df components of the $3 \mathrm{~d}^{\prime}$ correlation are plotted. The $3 \mathrm{~d} \delta$ component shows an especially strong R dependence and it is this term vich is manly respon-
sible for the difference between Cr_{2} and V_{2} or Ti_{2}. In fact from Table 3 one sees that for ∇_{2} the $\Delta E \quad 3 d \delta$ is small (~ 0.010) and not strongly R dependent. Thus a triple bond model based on Ti_{2}, as used in ref 6 , is an appropriate eero order approximation for V_{2} but not for Cr_{2}.

From Fig, 2 one sees that there is some anharmonicity in the calculated Cr2 curve. However, this anharmonicity decreases as the calculation is improved and neither the CASSCF + $3 \mathrm{~d}^{\prime}$ or the CASSCF + $3 \mathrm{~d}^{\prime}+4 \mathrm{p}$ curves show any resemblance to the very peculiar potential curve obtained in the recent local spin density (LSD) calculations [20]. Also the LSD wavefunction is described as antiferromagnetic even near R_{e} whereas our wavefunction shows this spin coupling at large R but becomes a multiple 3d bond near R_{e}.

Table 7 shows the calculated spectroscopic constraints for Cr_{2}. Here the best calculation has \mathbb{R}_{e} too long by $0.10 \AA$ and ω_{e} too small by $97 \mathrm{cmo}^{-1}$ This result is consistent with underestimating the binding energy. However it seems probable based on what is known about the binding energy of ∇_{2} that Cr_{2} is bound by considerably less than 1.56 eV . The most likely source of error in the Cr_{2} potential curve is the estimation of the $\Delta 4$ p using the Ti_{2} results. Shifting the R_{e} by $0.64 \mathrm{a}_{\mathrm{o}}$ based on the relative 4 s sizes for the T i and $C r a t o m s i s$ a somewhat arbitrary assumption although the potential is not particularly sensitive to the choice of this parameter since very similar spectroscopic parameters are obtained for a shift of 0.50. It is also possiblethat the $\Delta 4$ p is slightly larger for C_{2} than for Ti_{2} due to the smaller 4 s orbital size. However Bagus and Bauschlicher report that $4 \mathrm{~s}^{2} \rightarrow 4 \mathrm{p}^{2}$ is nearly constant for the atoms varying from 0.76 for Sc to 0.85 for Cu [11]. Onfortunately, the calculation of $\triangle 4 \mathrm{p}$ by the technique used for Ti_{2} would involve a very large CASSCF calculation (which we may carry out in the future) since the $\mathbf{C r}_{2}$ CASSCF for $3 \mathrm{~d} \boldsymbol{\sigma}^{\prime}$ involves 220,000 configurations.

One further possible source of error in the Cr_{2} calculation is corevalence correlation [21] involving the $3 p$ shell. This effect vould be more likely to be important for Cr than for V or $T i$ since $\left\langle r_{3 d}\right\rangle /\left\langle r_{3 p}\right\rangle$ is only 1.39 for $C r$ vhile the corresponding ratio is 1.47 for ∇ and 1.56 for $T i$ [11]. Bowever, calculations on the $4 s^{1} 3^{5}{ }^{5}$ state of the $C r$ atom [22] show that singles and doubles CI out of the 4 s and 3 d electrons leads to a slight contraction ($\delta\langle r\rangle=-0.09 a_{0}$) of the 4 s and a s light expansion ($\delta\left\rangle=0.04 a_{0}\right.$) for the 3d, vhile simultaneous inclusion of single excitations out of the 3p has little additional effect. This result makes a significant core-valence effect due to the 3p shell seem unlikely.

We conclude that inclusion of $3 \mathrm{~d}^{\prime}$ and 4 p in the valence space leads to a very significant improvement in the potential curves for $\mathrm{Ti}_{2}, \mathrm{~V}_{2}$, and $\mathbf{C r}_{2}$. The calculated R_{e}, D_{e}, and ω_{e} are in excellent agreement with experiment for V_{2}. For Ti_{2} the calculated ω_{e} is in excellent agreement with experiment but the calculated D_{e} is $20.3 e V$ (withrespect to $4 s^{2} 3 d^{2}+4 s^{2} 3 d^{2}$) which is emaller than the mass spectrometric value of $\sim 1.3 e V$. However, based on previous experience with the mass spectrometric D_{e} for V_{2} which has been shown to be too large by $\geq 0.68 \mathrm{eV}$, ve believe the calculated D_{e} is more reliable. We predict an R_{e} for Ti_{2} of 1.97 . . To date no experimental determination of this quantity exists. For Cr_{2} we report the first variational calculations with proper dissociation which have the inner multiple 3d bonded well. The R_{e} is too long by $\sim 0.10 \AA$ and the lie is too small by $\sim 97 \mathrm{~cm}^{-1}$ but this still represents a significant improvement over previous calculations. The calculated D_{e} is 0.71 eV which is smaller than the mass spectrometric estimate of 1.56 eV . Given the large Re and small we in the Cr_{2} potential curve it is quite likely that the true D_{e} is larger than the calculated D_{e} although we doubt that it is as large as 1.56 eV .

Acknowledgments

I would like to acknowledge very help discussions with Dr. Bowen Liu.
Dr. Charles Bauschlicher, Jr. has made numerous improvements to the CASSCF program which contributed significantly to this work, also Dr. Bauschlicher and Dr. Constance Nelin redimensioned the CASSCF program to permit these calculations.

I would also like to thank Dr. Charles Bauschlicher, Jr., Prof. William A. Goddard III, Dr. Marvin Goodgame, Dr. Stephen Langhoff, and Dr. Constance Nelin for helpful discussions.

References

1. D.L. Michalopoulos, M.E. Geusic, S.G. Gansen, D.E. Povers and R.E. Smalley, J. Phys. Chem. 86 (1982) 3914.
2. D.E. Boudybey and J.月. English, Chem. Phys. Lett. 94 (1983) 443.
3. S.J. Riley, E.R. Parks, L.G. Pobo, and S. Wexler, J. Chem. Phys, 79 (1983) 2577.
4. P.R.R. Langridge-Smith, M.D. Morse, G.P. Hansen, R.E. Smalley and A.J. Merer, J. Chem. Phys. 80 (1984) 593.
5. L.B. Rnight, Jr., R.J. Van Zee, and W. Weltner, Jr., Chem. Phyg. Lett. 94 (1983) 296.
6. S.P. Walch, C.W. Baubchlicher, Jr., B.O. Roos, and C.J. Nelin, Chem. Phys. Lett. 103 (1983) 175.
7. A.D. McLean and B. Liu, Chem. Phys. Lett. 101 (1983) 144.
8. M.M. Goodgame and W,A. Goddard III, Phys. Rev. Letters 48 (1982) 135; J. Phys. Chem. 85 (1981) 215.
9. S.P. Walch and C.W. Bauschlicher, Jr., J. Chem. Phys. 79 (1983) 3590.
10. C.W. Bauschlicher Jr., S.P. Walch and P.E.M. Siegbahn, J. Chem. Phys. 78 (1983) 3347.
11. C.W. Bauschlicher, Jr., S.P. Walch, and H. Partridge, J. Chem. Phys. 76 (1982) 1033.
12. S.P. Walch and C.W. Bauschlicher, Jr., Chem. Phys. Lett. 86 (1982) 66.

13a. T.H. Dunning, Jr., B.H. Botch, and J.F. Harrison, J. Chem. Phys. 72 (1980) 3419.

13b.B.B. Botch, T.H. Dunning, Jr., and J.F. Harrison, J. Chem. Phys. 75 (1981) 3466.
14. M.M. Goodgame and W.A. Goddard III, paper presented at the Sixth West Coast Theory Conference, Los Alamos, New Mexico, April 1984.
15. SWEDEN is a vectorized SCF MCSCF direct CI written by P.E.M. Siegbahn, B.O. Roos, and C.W. Bauschlicher, Jr.
16. W.A. Goddard, III, T.H. Dunning, Jr., W.J. Hunt, and P.J. Hay, Accounts Chem. Res. 6 (1973) 368.
17. A. Rant and S.H. Lin, J. Chem. Phys. 51 (1965) 1644.
18. A. Kant and B. Strauss, J. Chem. Phys. 45 (1966) 3161.
19. D.P. Dilella, W. Limm, R.E. Lipson, M. Moskovits, and K. T. Taylor, J.Chem. Pbys. 77 (1982) 5263.
20. B. Delley, A.J. Freeman, and D.E. Ellis, Phys. Rev. Lett., 50 (1983) 488.
21. H. Partridge, C.W. Bauschlicher, Jr., S.P. Walch, and B. Liu, J. Chem. Phys. 79 (1983) 1866.
22. C.W. פauschlicher, Jr., unpublished results.

Table 1. CASSCF/CI Calculations for the T Atom

	$4 s^{2} 3 d^{2}$ state	$48^{1} \mathrm{~S}^{3}$ state	$\Delta E(e V)$
SCF	-. 37208	-. 35146	0.56
CASSCF $(4 s, 4 p, 3 d)$	-. 40292	-. 35146	1.40
CASSCF $\left(4 \mathrm{~s}, 4 \mathrm{p}, 3 \mathrm{~d}, 3 \mathrm{~d}^{\prime}\right)$	-. 40756	-.37072	1.00
CASSCF $\left(48,4 p, 3 d, 3 d^{\prime}, 4 f\right)$		-. 38366	
CI ${ }^{\text {a }}$	-. 42234 (-.42649)	-. 38981 (-.39093)	. 89 (0.97)
exp			0.81

Table 2. Energy Contributions and CASSCF Energies for Ti ${ }_{2}{ }^{1} \Sigma_{g}^{+}$

	$R=3.50$	3.75	4.00	4.25
CASSCF ${ }^{\text {a }}$	-. 71.240	-. 71684	-. 71051	-. 69821
$\Delta E 3 \mathrm{da}^{\prime}$	0.01323	0.01238	0.01094	0.01105
$\Delta E 4 p \sigma$	0.00749	0.00773	0.00829	0.00810
2x $\Delta E 3 \mathrm{~d} \pi^{\prime} \times$	0.01700	0.01970	0.02364	0.02840
$2 \mathrm{x} \Delta \mathrm{E} 4 \mathrm{p} \pi_{x}$	0.01504	0.01476	0.01320	0.01100

${ }^{a}$ The CASSCF energies are referenced to $\mathbf{- 1 9 6 9 . 0}$ hartree

Table 3. Energy Contributions and CASSCF Energies for $V_{2}{ }^{3} \Sigma_{B}^{-}$

$R=3.15$	3.25	3.50	3.75

CASSCF a	-.69183	-.69666	-.69407	-.68236
$\Delta E 3 \mathrm{~d} \sigma^{\prime}$	0.00987	0.00997	0.00932	0.00769
$2 \times \Delta E 3 d \pi_{X}^{\prime}$	0.01726	0.01854	0.02194	0.02478
$2 \times \triangle E 3 d \delta_{X y}^{\prime}$	0.00870	0.00924	0.01058	$0.0 \% 156$

${ }^{\text {a }}$ The CASSCF energies reported here are alightly lower than the values reported in ref. 6 which suffered from incomplete orbital optimization. The CASSCF energies are referenced to -1885.0 hartree. -2086.0 hartree.

$$
\begin{aligned}
& \text { ine energles reported here are slightly ijwer than the values reported in ref. } 6 \text { which } \\
& \text { suffered from incomplete orbital optimization. The CASSCF energies are referenced to }
\end{aligned}
$$

	CAS	maty 30	CAS $+3 d^{4}+4{ }^{4}$	\%	Exp.
$\mathrm{R}_{\mathrm{e}}, \mathbf{A}$	1.97	2.00	1.99	4.97	------
${ }^{\text {de, eV }}$	0.37	1.25	1.86	4, 9	$2.91{ }^{\text {a }}$
$\omega \mathrm{e}, \mathrm{cm}^{-1}$	436	423	442	438	407.9 b

™ase spectrometric value (ref, 17) energy referenced to $48^{i} \mathrm{i}_{\mathrm{d}}{ }^{3}+48^{1} 3 \mathrm{~d}^{3}$ $\mathrm{b}_{\text {ref. }} 19$

Table 6. Calculated Spectroscopic Constants for ∇_{2}

	CAS	CAS+3d	CAS+3d ${ }^{\prime}+4 \mathrm{p}$ (est.)	Exp.
R_{e}, \AA	1.76	1.79	1.79	1.76^{a}
$\mathrm{D}_{\mathrm{e}}, \mathrm{eV}$	0.60	1.68	2.29	$2.29^{\mathrm{a}}, 2.97^{\mathrm{b}}$
$\omega_{e}, \mathrm{~cm}$	564	533	545	537.5^{C}

areí. *) The b_{e} value is from predissociation
$b_{\text {mass }}$ spectrometric value (ref. 17) referenced to $48^{1} 3 d^{4}+4 s^{1} 3 d^{4}$
cref. 19

Tabie 7. Calculated Spectroscopic Constants for Cr_{2}

	CAS	CAS $+3{ }^{\prime}$	CAS+3d ${ }^{\text {' }} 4 \mathrm{4p}$ (est.)	Exp.
Re, ${ }_{\text {A }}$	---	1.81	1.78	1.68 a
De.ev	-1.4	0.13	0.71	1.56 b
$\omega \mathrm{e}, \mathrm{cm}^{-1}$	-	308	383	480 c
aref. 1-3.				
$\mathrm{t}_{\text {mass spectrometric }}$ value (ref. 18)				
cref. 19				

Figure Captions

Fig. 1. Calculsted potential curves for the ${ }^{1} \Sigma_{g}^{+}$state of Tiz.
Fig. 2. Calculated potential curves for the ${ }^{1_{\Sigma_{g}}^{+}}$state of Cr_{2}.
Fig. 3. Calculated energy contributions for $3 d^{\prime \prime}$ orbitals for $\mathbf{C r}_{2}$.

O20mand
OF POOR Gubxit:

Fig. 2

Fig. 3

ORICNOME OF POON GQw.

THEORETICAL EYIDENCE FOR MULTIPLE 3d BONDING IN THE V_{2} AND Cr_{2} MOLECULES

Stephen P, WALCH ${ }^{\ddagger}$
Polyatomics Rescarch Institutc, 1101 Son Antonio Road, Suite 420, Mountain biew. Californio 94043. LSA
Charles W'. BAUSCHLICHER Jr.
AASA Ames Research Center, Moljet Field, Collformia 94035, USA

Bjorn O. ROOS
Departmem of Theoretical Chemistry; P.O. Box 740, S.22007 Lund, Sweden
and
Constance J. NELIN
Analatom Inc., 253 Humbold, Court, Sunnי习vale, Collfornia 94059, USA

Received 29 September 1983 ; in inal iorm 13 Octobet 1983

Calculated CAS SCF potential curves are reported for the ${ }^{3} \mathrm{E}_{\mathrm{g}}^{-}$state of V_{2} and the ${ }^{1} \mathrm{\Sigma}_{\mathrm{g}}^{+}$state of Cr_{2}. At the CAS SCF level the ${ }^{3} \underline{g}_{\mathrm{g}}^{-}$state of V_{2} is caliulated to be bound ($R_{\mathrm{e}}=1.77 \mathrm{~A}, \omega_{\mathrm{e}}=593.6 \mathrm{~cm}^{-1} . D_{\mathrm{e}}=0.33 \mathrm{eV}$) and to involie a trific id bond; "hile the Cr_{2} potential surve is not bound bul shows a shoulder near the esperimental R_{e} and the waterune:c: show s multiple 3 d wonding in this refion.

It is now clear from experimental work that the Cr_{2} molecule has a very short bond length [1], $1,68 \pm 0,01$ \AA. This short bond has generally been thought to involve a quintuple 3 d bond arising out of the $3 \mathrm{~d} a, 3 \mathrm{~d} \pi$, and $3 \mathrm{~d} \delta$ orbitals of the $\mathrm{Cr}_{2} 4 s^{1} 3 \mathrm{~d}^{5}+4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$ asymptote. Given the $\langle r\rangle$ for the Cr atomic orbitals [2] $\left\langle r_{4 \mathrm{~s}}\right\rangle=$ $1.94 \AA,\left\langle r_{3 \mathrm{~d}}\right\rangle=0.72 \AA$ one sees that at the equilibrium bond distance (R_{e}) of Cr_{2} the 3d orbitals are at a reasonable distance for bonding but that this R value is well inside the optimal bonding radius for the 4 s elec. trons and they are expected to be non-bonding or antibonding.

At lager R values one would expect the spin coupling to change from predominately 3d-3d bonding to $4 \mathrm{~s}-4 \mathrm{~s}$ bonding, since at large R the 4 s orbitals have a much larger overlap than the 3 d orbitals. The situation at large R is expected to be somewhat complex

[^4]because the ground state of the Cr atom is high-spin ${ }^{6} S$ arising out of $4 s^{1} 3 d^{5}$. As pointed our by Goodgame and Goddard [3], forming a $4 s-4 s$ bond with the re. maining electrons high-spin-coupled results in the loss of a large amount of exchange interaction. As a result the lowest molecular state in the large R region is found to be an antiferromagnetic singlet state which couples the two Cr atoms into a singlet but still preserves the maximum number of atomic exchange in teractions.

For Mo_{2} Goodgame and Goddard [3] found an inner and outer well with the inner well corresponding to multiple 3d bonding while the outer well corresponded to the antiferromagnetic coupling. The perplexing problem is why the Goodgame and Goddard Cr_{2} calculation did not show a similar 3 d bonoing solution in the inner region.

In this paper we present complete active space self consistent field (CAS SCF) calculations [4] with large
gaussian basis sets for the ${ }^{3} \Sigma_{z}^{-}$state of V_{2} and the Σ_{ε}^{+}state oi Cr_{2}. These calculations show very elear evidence for a triple 3 d bond in V_{2} : the bonding in. volves ido and $3 \mathrm{~d} \pi$ twoelectron bonds with the remaining the electrons involved $3 \mathrm{~d} \delta$ one electron bonds. The bond length here is $1.77 \AA$ compared to an experimental value [5] of $1.757 \AA$ and the vibra. tional frequency is $593.6 \mathrm{~cm}^{-1}$ compared to an ex. perimental value [6] of $537.5 \mathrm{~cm}^{-1}$. The calculated binding energy at the CAS SCF level is only $0,33 \mathrm{eV}$ compared $\mathbf{v} 2,48 \mathrm{eV}$ for experiment [7]. For Cr_{2}. while the wavefunction shows clear evidence of quintuple id bonding at small $R(<1.85 \AA)$, the calculated potential curve shows only a marked shoulder at $\approx 1.7 \mathrm{~A}$ and is still repulsive by $\approx 1.4 \mathrm{eV}$ compared to current interpretations [8] of the experimental es. timate oi $D_{\mathrm{e}}(1.0 \pm 0.3 \mathrm{eV})$. At the present time it is not compurationally feasible to do configuration interaction Cll calculations for the ${ }^{3} \Sigma_{\varepsilon}^{-}$state of V_{2} or for the ${ }^{1}-{ }_{-}^{-}$state of Cr_{2} at the level of our previous calculatiors on $\mathrm{Se}_{2}(9,10)$. An idea of the size of the Cl for Cr_{2} may be obtained by noting that a multireference singles and doubles Cl (MRSD Cl) for Cr_{2} using the basis set with $4 f$ functions and the 3088 configuraton CAS SCF defined below as reference configurations leads to 57 million configurations in $D_{2 h}$ symr:etry. However, less extensive MRSD CI calculations [11] have been carried out for a ${ }^{1} \Sigma_{\xi}^{+}$state of Ti_{2} whith show's triple 3 d bonding, 3 do and $3 \mathrm{~d} \pi$ as in V_{2} ans Cr_{2}, respectively. Here we find an increase in D_{e} of $\approx 2.0 \mathrm{eV}$ for Cl as compared to CAS SCF. Applying this sorrection to the V_{2} and Cr_{2} CAS SCF results leads to 2.3 and 0.6 eV as our best estimates of the D_{e} of V_{2} and C_{2}, respectively. We believe that these calculations provide the first convincing theoretical evidence for multiple two-electron 3d bonding in a firstrow transition metal dimer. Multiple one-electron 3d bonding had been observed previously for Sc_{2} by Walich anc Bauschlicher [9].

The spd basis sets used here were the (14 s 11 p 6 d)/ [8s6p4d] seemented sets which have been described previous) [10]. These basis sets were augmented with two 4 f functions. The 4 f functions were optimized based on SDCI calculations for the $4 s^{1} 3 d^{4}$ and $4 s^{1} 3 \dot{c}^{5}$ configurations of the V and $\mathrm{Cr}_{\text {r }}$ atoms using a ($1+511 \mathrm{p} 6 \mathrm{~d} 3 \mathrm{f}) /[8 \mathrm{~s} 6 \mathrm{p} 4 \mathrm{~d} 1 \mathrm{f}]$ basis set. The optimum exponents (STO) were 2.7 and 3.2 for V and Cr, respeci:rely. The [2f] contraction is a (21) contraction bseed on Stewart's [12] three term fit of a 176
gaussian f function to a Slater 4 f .
The CAS SCF space for these calculations consisted of the orbitals derived from the atomic $4 s$ and 3d orbitals. Constraints were placed on the orbital occupancies. For $' \mathbf{\prime}$, the a block had four electrons, π_{x} and π_{y}, had iwo èlectrons each, and δ_{x}, and $\delta_{x^{2}-y^{2}}$ had one electron each. For Cr_{2} the $\delta_{x y}$, and $\delta_{x^{2}-y^{2}}$ blocks had two electrons each and the other occupancies were the same as for V_{2}. These constraints basically correspond to a generalized valence bond (13) (GV'B) treatment of these systems. Here we use GVB in the more general sense of allowing all possible spin couplings of the 4 s and 3 d atomic like orbitals with simultaneous orbital optimization. For Cr_{2} these orbital constraints reduce the CAS SCF calculation from 28784 configurations to 3088 configurations in $\mathrm{D}_{2 \mathrm{~h}}$ symmetry, The dominant configurations in the small R region are the SCF configurations:

for V_{2} and
$4 s \sigma_{z}^{2} 3 \mathrm{~d} \sigma_{\xi}^{2} 3 \mathrm{~d} \pi_{x u}^{2} 3 \mathrm{~d} \pi_{y u}^{2} 3 \mathrm{~d} \delta_{x, y}^{2} 36 \omega_{x^{2}}^{2}-y^{2} \mathrm{~g}$
for Cr_{2}. At $R=3.00 a_{0}$ the percent $\operatorname{SCF}\left(C_{0}^{2}\right)$ in the CAS SCF wavefunction is 76% for V_{2} and 56% for Cr_{2}. This clearly indicates the need for an MC SCF treatment of these systems.

Table 1 gives the natural orbital occupancies of the CAS SCF wavefunctions for V_{2} and Cr_{2} at $R=3.0$ and $3,5 a_{0}$. In discussing the results in table 1 it is use. ful to consider an analogy to the H_{2} molecule. Here including only left -right correlation leads to a two. configuration MS SCF.
$C_{1} 1 s \sigma_{\underline{z}}^{2}+C_{z} 1 s \sigma_{\mathrm{u}}^{2}$.
Near R_{e} the $1 \mathrm{~s} \sigma_{\mathrm{g}}^{2}$ (SCF) configuration dominates but at large $R, C_{1} \approx C_{2}$. As discussed elsewhere, in terms of the generalized valence bond (GVB) wavefunction [13], the relative weights of the two configurations are related to the overlap of the two $\mathrm{H}(1 \mathrm{~s})$ like GVB orbitals $\phi_{\mathcal{q}}$ and ϕ_{I} with C_{1} dominant indicative of a large overlap $\left\langle\phi_{\mathrm{k}} \mid \phi_{\mathrm{r}}\right\rangle$ while $C_{1} \approx C_{2}$ implies a very small cverlap. In interpreting table I we can thus com. pare the overlaps of each pair by comparing the natural orbital occupancies of the bonding and antibonding combinations of each atomic like orbital. Looking first at Cr_{2}. Where each possible 3 d pair is doubly occupied, we see that the above analysis indi. cates the 3 d overlaps are in the order

Table 1
CAS SCI natural orbital occupancies for V_{2} and C_{2} at $R=3.00 a_{0}$ and $3.50 a_{0}$

State	R	Natural orbital occupation ${ }^{\text {a) }}$							
		${ }^{4 \mathrm{sog}}$	${ }^{3 \mathrm{dog}}$	Hso_{u}	$3 \mathrm{do}{ }_{u}$	$3 \mathrm{~d} n_{x u}$	$3 \mathrm{dr} \pi^{6}$	${ }^{3 \mathrm{~d} t}{ }^{x y \mathrm{y}}$	$3^{3 d 8} x y u$
$V_{2}{ }^{3} \Sigma_{g}^{-}$	3.00	1.93	1.83	0.09	0.15	1.90	0.10	0.93	0.0\%
	3.50	1.93	1.81	0.07	0.18	1.85	0.15	0.87	0.13
$\mathrm{Cr}_{2}{ }^{\prime} \mathrm{\Sigma}_{\mathrm{g}}^{*}$	3.00	1.90	1.83	0.11	0.16	1.85	0.15	1.68	0.32
	3.50	1.85	1.60	0.15	0.39	1.66	0.34	1.29	0.71

a) The 4 so and 3 do natural orbitals are a miviture of 4 s and 3 do at $R=3.00 a_{0}$ but shou only slight amoun:, of mived character at $R=3.5 a_{0}$
$(3 \mathrm{~d} \pi \mid 3 \mathrm{~d} \pi) \approx\langle 3 \mathrm{~d} \sigma| 3 \mathrm{~d} \sigma)\rangle(3 \mathrm{~d} \delta \mid 3 \mathrm{~d} \delta)$.
Given this analysis one expects the lowest state in V_{2} to arise by distributing two electrons among the $3 \mathrm{~d} \delta{ }^{2}$ orbitals. since the $3 \mathrm{~d} o$ and $3 \mathrm{~d} \pi$ orbitals are in the large overlap region near R_{e} and the $3 \mathrm{~d} \delta$ orbitals have much smaller overlaps in this region. Thus it is favorable for the $3 \mathrm{~d} o$ and $3 \mathrm{~d} \pi$ electrons to form two-elec. tron bends. Furthermore the small overlap of the 3d δ orbitals makes one-electron bonding more favorable than two-electron bonding [10]. Thus the ${ }^{3} \Sigma_{g}^{-}$ state ansing from $3 \mathrm{~d} \delta_{x y}^{1} 3 \mathrm{~d} \delta_{x^{2}-y^{2}}^{1}$ is expected to be belou the ${ }^{1} \Sigma^{+}$and ${ }^{1} \Gamma$ states arising out of $3 \mathrm{~d} \delta_{x y}^{2}$ and $3 \mathrm{~d} \delta_{x^{2}-y^{2}}^{2}$. These arguments are consistent with the observation of a ${ }^{3} \Sigma$ ground state with a short bond length fo: $\left.\mathrm{V}_{2} 15\right]$ and are also consistent with the much weaker bonding in C_{2} as compared to V_{2} due to the necessity of two electron $3 \mathrm{~d} \delta$ bonding (unfavorable in the small overlap region) in Cr_{2}.

Table 2
V_{2} CAS SCF energies ${ }^{3} \Sigma_{g}^{-}$state

R	CAS SCF energ) ${ }^{\text {a,b })}$	
	$[8 \mathrm{~s} 6 \mathrm{p} 4 \mathrm{~d}]$	$[8 \mathrm{~s} 6 \mathrm{p} 4 \mathrm{~d} 2 \mathrm{f}]$
3.00	-0.64007	$-0.6: 220$
3.15		-0.69119
3.25	-0.67716	-0.69621
3.50	-0.68402	-0.69390
3.75	-0.67798	
4.00	-0.67051	

a) In au relative to -1885.0 .
b) The asy mptotic energies (based on atomi. SCF calculations are $4 s^{2} 3 d^{3}+4 s^{2} 3 d^{3}-1885.68586,4 s^{1} 3 d^{4}+$ $4 s^{2} 3 c^{3}-1885.68076$, and $4 s^{1} 3 d^{4}+4 s^{1} 3 d^{4}-1885.67566$

Tables 2 and 3 give the CAS SCF energies for V_{2} and Cr_{2} while the results are plotted in figs. 1 and 2 . A very striking feature of these calculations is the large effect of $4 f$ functions in the basis set. This ef. fect has also been noted by McLean and Liu [14] for SCF calculations on Cr_{2} using a large Slater basis set. Table 4 shows the change in SCF energy at $R=3.0 a_{0}$ as a function of the completeness of the tif basis set. The contractions shown in table 4 are based on the gaussian fits of Stewart [12] for an STO of 3.2. The largest basis set is the basis set used in the molecular calculations. The total effect of tif functions for this basis is 1.17 eV as compared to $1.11 \mathrm{eV}^{\prime}$ in the calsulations of McLean and Liu. The slightly larger effest of 4 f functions in our calculations probably reflects a slightly poorer spd basis in ou: calculations. A perhaps surprising feature of table 4 is the relatively good results with much less complete 4 f basis sets. In particular a single set of 4 f primitives obtains 1.01 eV of

Table 3
Cr_{2} CAS SCF energies ${ }^{1} \Sigma_{\mathrm{g}}^{*}$ state

R	CASSCF energy $^{\mathrm{a} . \mathrm{b})}$	
	$[856 \mathrm{p} 4 \mathrm{~d} \mid$	$[856 \mathrm{p} 4 \mathrm{~d} 2 f \mid$
3.00	-0.50554	-0.53396
3.25	-0.53004	-0.54482
3.50	-0.54536	-0.55196
3.75	-0.55917	-0.56151
$\mathbf{4 . 0 0}$	-0.57231	

[^5]

Fig. 1. Calculated CAS SCF potential curves for the ${ }^{3} \Sigma_{g}^{-}$ state of J_{2}. Basis I is the $[8 \mathrm{~s} 6 \mathrm{p} 4 \mathrm{~d}]$ basis whie basis II is the [8 s 6 p 4 d 2 f) basis.
the 1.17 eV effect ontained with the best $4 i$ basis set. From table 4 one sees that the effect of $4 i$ functions is slightly smaller at the CAS SCF level than at the SCF level.

Fig. 2 Calculated CAS SCF potential curves for the ${ }^{1} \Sigma_{\underline{g}}^{*}$ state of Cr_{2}. Bass I and basis 11 are the same size as in fif. 1 .

Table 4
Comparison of 4 f basis sets for $\mathrm{Cr}_{2}{ }^{1} \Sigma_{q}^{*}$

4f basis
none
(1) $\|1\|$ -2085.82353 (2) $\|1\|$ -2085.86064 (3) $/\|1\|$ -2085.86190 (3) $\|2\|$ -2085.86250

An interesting feature of fig. 1 is that the effest of 4 f functions is very R dependent and shifts the R_{e} value of V_{2} to smaller R. From fig. 2 one also sees that the addition of 4 f basis functions results in a distinct shoulder on the Cr_{2} potential curve in the region of the experimental R_{e}. While this feature is not ev. dent in the calculation without 4 f functions, the nearly linear behavior from 4.00 to $3.25 a_{0}$ is indicative of some additional bonding interaction occurring ir this region.

Comparing to Goodgame and Goddard we nete that our configuration space contains all the configurations included in the GVB wavefunction. Our basis set is more extensive than that of Goodgame and Goddard which is only double zeta in the 3 d spaie and has no 4 f functions. As pointed out by Mclean and Liu [14] a major weakness in the Goodgame and Goddard calculations is the very limited basis set and this clearly accounts for missing the shoulder on the Cr_{2} curve at small R.

Kok and Hall [15] claim to obtain a correct bond length for Cr_{2} using essentially a perfect pairing GVB wavefunction [13]. However this result is ciearly an artifact of the failure of their wavefunction to dissociate properly.

We conclude that the ground states of both \mathbf{V}_{2} and Cr_{2} are characterized by multiple 3 d bonding. Given this, it is not surprising that 4 f functions are found to be very important in the basis set. This new theoret1cal result demonstrates the diverse nature of transition metal bonding in that $\mathrm{S} c_{2}$ has been shown to have multiple one-electron 3 d bonding [9], V_{2} and Cr_{2} are now shown to have multiple two electron 3 d bonding. and $\mathrm{Cu}_{2}[16]$ has been shown to be predominately $4 \mathrm{~s}-4 \mathrm{~s}$ bonding with the 3 d electrons essentially atomic like.

References

[1) D.L. Michalopoulos, M.E. Geusic. S.G. Hansen. D.E. Pouers and R.E. Smalley.). Phys. Chem. 86 (1982) 3914
Y. M. Efremor, A.N. Samoilova and L.V. Gurvich, Opt. Spectr). 36 (1974) 381:
V.E. Bond) bey and J.H. EngLan, Chem. Phys. Letters 94 (1983) 443.
[2] C.W. Bauschlucher Jr., S.P. Walch and H. Partridge, J. Chem. Phys. ${ }^{76}$ (1982) 1033.
|3| M. M. Goodgame and U.A. Goddard III, Phys. Rev. Lelters 48 (1982) 135 : J. Phys. Chem. 85 (1981) 215
[4] P.E. M. Siegbahn, A Heiberg. B.O. Roos and B. Levy, Physica Scipta 21 (1980) 323.
(5) P.R.R. Langridge-Smith, M.D. Morse. G.P. Hansen, RE. Smalley and A.J. Merer, J. Chem. Phys., to be submitted for publication.
(6) D.P Dilella, W Limm, R.H Lipson, M Moskovits and H.V. Taylor, J. Chem. Phys. 77 (1982) 5263.
[7] A. K ant and S.S. Lin. J. Chem. Phys. 51 (1965) 1644
[8] A. Kant and B. Strauss. J. Chem. Phys. 45 (1966) 3161.
(9) S.P. Walch and C.W. Bauschucher Jt., J. Chem. Phys., to be published.
(10] S.P. Walch and C.W. Bauschlicher Jt., Chem. Phys. Letters 94 (1983) 290.
[11] S.P. Walch, to be published.
(12) R.F. Stewart, J. Chem. Phys. 52 (1970) 431.
[13] W.A. Goddard III. T.H. Dunning Jr., W.J. Hunt and P.J. Hay, A ccounts Chem. Res. 6 (1973) 368
(14) A.D. McLean and B. Liu, Chem. Phys. Letters 101 (1983) 144.
[15] R.A. Kok and M.B. Hall, J. Phys. Chem. 87 (1983) 715.
(16] C.W. Bauschlicher Jr., S.P. Walch and P.E.M. Siegbahn, J. Chem. Phys. 78 (1983) 334 \%

On the nature of the bonding in Cu_{2}

Charles W. Bauschlicher, Jt. and Stephen P. Waich

Polyatomics Research Instirule." Mountain Vieu: Calfornie 94043

Per E. M. Siegbahn
Institute of Theoretical Physac Vanadiswgen 9. S. 11346 Stockholm. Sueden (Received I February 1982, accepted 26 February 1982)

Abstract

The ground state of Cu_{2} is found to arise from the ${ }^{2} S\left(4 s^{\prime} 3 d^{19}\right)+{ }^{2} S\left(4 s^{\prime} 3 d^{10}\right)$ limit and to involve a $4 s-4 s$ sigma bond pair. The dotainant bond pair correlations are left-right and angular, with the former lengthening the bond and the latter contracting the bond, so that at the two-lectron MCSCF level the R, is slightly longer ($0.02 e_{0}$) than at the SCF level Correlation of the $3 d$ electrons shortens the bond by $0.19 a_{g}$, leading to a final bond length of $4.35 a_{0}$ which is 0.150_{0} longer than experiment. This error is of the same magnitude as twice the relativistic contraction of the 4 s orbital of the 'S state of the Cu atom $\left(0.13 a_{0}\right)$ and most of the remsining error in \boldsymbol{R}. is thought to be due to this relativistic contraction.

INTRODUCTION

Since the ground state of the Cu atom is ${ }^{2} \mathrm{~S}\left(4 s^{1} 3 d^{10}\right)$, the bonding in Cu_{2} is expected to involve a $4 s-4 s$ bond, giving rise to a ${ }^{1}{ }^{2}$; ground state with all d orbitals fully occupied. This makes Cu_{2} one of the simplest transition metal dimers. It is also one of the few transition metal dimers for which there is an accurate determina tion of the bond length (4.20 bohr). ${ }^{1}$ For these reasons, Cu_{2} serves as an important benchmark for theoretical calculations on transition metal bonding. There have been several previous calculations on Cu_{2} (see Ref. 2 and references therein) and probably the best is that of Pelissier, ${ }^{2}$ who used effective core potentials (ECP's), a reasonable valence basis, and a nonvariational CI treatment. One interesting feature of this work was the bond shortening at the CI level when the d electrons are correlated. Bagus and Björkman observed this for NiH, ${ }^{3}$ and we have observed it for $\mathrm{NiH}, \mathrm{CoH}$, and $\mathrm{CuH} .^{4}$ This bond shortening and its implications for the nature of the transition metal bond are discussed in this article.

COMPUTATIONAL DETAILS

The basis set is the $14 s 9 p 5 d$ basis of Wachters, ${ }^{5}$ optimized for the ${ }^{2} S$ state, and augmented with the Hay ${ }^{8}$ diffuse d and Wachters's two diffuse $4 p$ functions, optimized for ${ }^{2} P$, scaled by $\sqrt{1.25}$ to make them more suitable for a ground state. This basis is contracted in a segmented manner to $[14 s 11 p 6 d / 8 s 6 p 4 d]$. The $3 s$ combinations of the C 's are excluded. In some of the calculations, an f polarization function is added. This is a 3 GTO fit to an STO with $\zeta=5.0$. The f exponent was chosen by extrapolation of the optimum values for the Fe and Ni atoms. When the f function is used, only seven components are retained.

All calculations were performed with MOLECULE-noname-Siegbahn CI, ' using either the NASA Ames 7600 or CRAY 15 .

Cu ATOM

In these calculations, symmetry and equivalence restricted SCF calculations were performed. These were followed by CI calculations including all single and double

[^6]excitations from all valence configurations with the cor rect symmetry. The $3 d$ and $4 s$ valence orbitals are included in all calculations, while in the more extensive calculations, the $3 s$ and $3 p$ semicore electrons are also included. The calculations in which the $3 s$ and the $3 s$ and $3 p$ are included are denoted as $\mathrm{Cl}(3 p)$ and $\mathrm{Cl}(3 s 3 p)$, respectively. The results of these calculations are summarized in Table 1. CI $+3 f$ denotes that the f functior has been un :ontracted.

From Table I, one sees that the SCF separation differs from tumerical HF (NHF) by 0.07 eV , while at the Cl $(3: 3 p)+f$ level, the agreement with experiment is within 0.01 eV . However, when the f function is uncontracted, $3 d^{10} 4 s^{1}$ is stabilized by -0.1 eV with respect to $3 d^{4} 4 s^{2}$, thus worsening the agreement with experiment. This is consistent with our previous work, ${ }^{8}$ which indicated that the $3 d^{n+1} 4 s^{1}$ states of the transition metal atoms are stabilized relative to the $3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$ states upon uncontracting the f functions. Including relativis tic effects stabilizes $4 s^{2} 3 d^{9}$ by 0.43 eV with respect to $4 s^{1} 3 d^{10} .9$ Thus, it is not surprising that improvement in the calculation leads to $4 s^{2} 3 d^{9}$ too high with respect to $4 s^{1} 3 d^{10}$. However, we note here that the molecular calculations neglect relativistic effects, and a good description of the ${ }^{2} S-^{2} D$ separation is obtained at the CI $(3 s 3 p)+f$ level. Thus, we chose to use this basis set for the molecular calculations.

TABLE 1. Summary of Cu atom calculations. Davidson corrections are enclosed in parenthesis.

Calculation	${ }^{2} S\left(f^{10} 4 s^{1}\right)$	${ }^{2} D\left(d^{4} 4 s^{2}\right)$	Δ
SCF	-1638.813 256	-1638.796967	0.44
C1	-1639.054 659	- 2639.015096	1.35 (1.30)
CI $+f$	-1639.188449	-1639.129 928	1.59 (1.55)
$\mathrm{Cl}(3 \mathrm{p})+\mathrm{f}$	-1639,380 351	- 1639.327964	1.43 (1.41)
$\mathrm{Cl}(3 \mathrm{~s} 3 p)+f$	-1639.436 39 1	-1639.380992	1.51 (1.50)
$\mathrm{CI}+3 \mathrm{H}$	-1639. 217 3 -	-1639.155872	1.67 (1.65)
$\mathrm{CH}(3 p)+3 f$	-1639.430 515	-1639.374116	1.54 (1.53)
$\mathrm{Cl}(3 \mathrm{~s} 3 p)+3 f$	-1639.494822	-1639.435 222	1.62 (1.63)
EXP ${ }^{\text {a }}$			1.49
NHF			0.37

${ }^{*}$ C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (C'S) Circ. 467, (1949).

TABLE II. Summary of bond lengths for Cu_{2} calculations (in bohrs). Davidsoe corrections are enclosed is parenthesis.

Calculation	Without f 's	With f 's
SCF	4.59	4.53
C1 2 electros	4. 62	
2 el MCSCF $\left(\sigma_{0}^{\prime}-\sigma^{2}\right)$	4. 70	
$2 \text { el MCSCF }\left(\sigma_{t}-\sigma_{v}, \sigma_{t}^{2}-r_{2}^{2}\right.$ (d frozen)	4. 61	
(d's relaxed)	4. 61	
6 el FVMCSCF (do, 4s, 4p\%)	4. 61	
$6 \mathrm{el} \mathrm{FVMCSCF}(d o, 4 s 4 p$)	4. 57	
6 c CI (SCF reference)	4. 54 (4.55)	4. 53 (4.54)
$6 \% \mathrm{Cl}$ (MC reference)	4.54	
14 el CI		4. 42 (4.40)
22 el CI	4.42 (4.39)	4. 22. (4.35)
34 el CI		4. 39 (4. 34)
Pelissier ${ }^{2}$ SCF no f 's	4.54	
Nonvariational CI 22 el	4. 25	
Experiment ${ }^{\text {b }}$	4. 20	

${ }^{*}$ Roference 2.
Reference 1 .

Cu_{2} CALCULATIONS

The calculated bond lengths for Cu_{2} are summarized in Table II. The separation between computed points was 0.9 bohr, so the reported R_{e}, values are expected to be within 0.02 bohr of the true minima of the model used.

The firsi calculation is a single configuration SCF $\ldots 6 \sigma_{t}^{2}(3 d) 7 \sigma_{t}^{2}\left(4 S-4 S\right.$ bond) $6 \sigma_{v}^{2}(3 d) 3 \pi_{t}^{4}(3 d) 3 \pi_{*}^{4}(3 d) 1 \delta_{s}^{4}(3 d)$ $\times 188^{4}(3 d)$.

Using these SCF orbitals, a series of CI calculations were carried out including single and double excitations from the SCF configuration with progressively more electrons being correlated. The CI's include a $2 \mathrm{elCl}\left(70_{f}\right)$, a 6 c el CI $\left(60_{\mu}, 70_{f}\right.$, and $\left.6 \sigma_{*}\right)$, a 14 el Cl $\left(60_{c}, 7 \sigma_{e}, 6 \sigma_{v}, 3 \pi_{\boldsymbol{f}}\right.$, and $\left.3 \pi_{v}\right)$, a 22 el CI , which includes all $3 d$ and $4 s$ electrons, and a 34 el Cl which includes the $3 p$ as well as the $3 d$ and $4 s$ electrons. For each point, Davidson's correction ${ }^{10}$ was computed, added to the computed energy, and the minima redetermined. Thwse results are reported in parenthesis in Table II.

In addition to these CI calculations, a series of MCSCF calculations were performed. They included a two-configuration MCSCF, which included only $7 \sigma_{8}^{2}$ $-7 \sigma_{\infty}^{2}$ which allows proper dissociation. A three-configuration MCSCF which, in addition to the $7 \sigma_{s}^{2}-7 \sigma_{*}^{2}$ configuration, includes $7 \sigma_{8}^{2}-4 \pi_{4}^{2}(4 p)$. This MCSCF was performed first with the $1 s, 2 s, 3 s, 2 p, 3 p$, and $3 d$ orbitals frozen at the SCF level, and then with only the core ($1 s, 2 s, 3 s, 2 p$, and $3 p$) frozen, i. e., the $3 d$ was relaxed at the MCSCF level. The $3 d o$ electrons (60 , and $6 \mathrm{c}_{\mathrm{s}}$) were also included with the core frozen at the SCF level. In this calculation, a full valence MCSCF was performed with the 6 o electrons in the $6 \mathrm{o}_{\mu}, 7 \sigma_{f}$, $60_{m} 7 \sigma_{m}$ and 4π orbitals. This is 36 CSF's in $D_{2 n}$. This MCSCF was followed by a 6 el Cl including all single and double excitations from all 36 references. The final FV-MCSCF distributes the 6 o electrons into the $6 c_{c}, 7 c_{c}, 6 \sigma_{\mu}, 7 \sigma_{m}$ and all components of the $4 p^{\prime} s$, i. e., $8 c_{f}, 8 c_{n} 4 \pi_{m}$, and $4 \pi_{r}$

DISCUSSION

At the SCF level, the R_{e} is more than 0.3 bohr ionger than experiment even when f functions are included in the basis. Considering first correlations of the 4 s and ip electrons, inclusion of the 70 . orbital lengthens the bond. This is typical of an MCSCF which includes the bonding and antibonding orbitals. The inclusion of $7 \sigma_{\text {s }}^{2}$ $-4 r^{2}$, shortens the bond into agreement with the 2 el Cl , only slightiy longer than the SCF. The importance of this angular correlation effect is a result of the near degeneracy of the $4 s$ and $4 p$ orbitals. Even though Ca is $3 d^{10} 4 s^{1}$ and near degeneracy is not important for the Cu atom, the simultaneous excitation of $4 s=4 p$ on each atom is important for Cu_{2} with a weight approximately equal to the importance of $7 \sigma_{f}^{2}-7 \sigma_{v}^{2}$. It is interesting to note that this effect was observed for Li_{2} by Jönsson et al., ${ }^{11}$ in Cr_{2} by Goodgame and Goddard, ${ }^{12}$ and in our Lab for Cs_{2}. ${ }^{13}$ Goodgame and Goddard described this as a van der Waals term, and Jönsson et al. as a near degeneracy correlating with the united atom limit. We prefer to view this as a near degeneracy effect, allowing angular correlation of the σ bond. This excitation ($7 \sigma_{\text {s }}^{2}$ $\left.-4 \pi_{v}^{2}\right)$ reduces the importance of $7 \sigma_{t}^{2}-7 \sigma_{w}^{2}$, which is a bond lengthening excitation, and moves a pair of electrons into the 4π, Jonding orbital.

Considering now correlation of the $3 d$ electrons, the inclusion of only the $3 d o$ electrons has only a small ef fect, as is seen by the of el CI. The inclusion of the 3π 's ($3 d$), the 14 el CI, shows a large bond shortening ~ 0.14 bohr, while inclusion of the 18 orbitals (22 el CI) leads to an additional -0.05 bohr shortening, or about $1 / 3$ of the change of going from 6 to $14 \mathrm{el} \mathrm{CI's}$. the $3 p$ electrons are also included (24 el Cl), virtually no additional shortening occurs.

The large bond shortening due to correlation of the 3π electrons is thought to result from three effects:
(i) the correlation resulting from the $4 \pi,-3 \pi$ interaction, due to the importance of the $7 \sigma_{t}^{2}-4 \pi_{y}^{2}$ excitation; (ii) orbltal relaxation effects included in the CI (tide in' $\because a$), and (iLi) reduction of $d-d$ repulsion between the ciuters.

Effects (ii) and (iii) are also present when the 18 or bitals are correlated, while for 3 do correlation only ef fect (ii) is present; thus, the smaller bond contraction due to correlation of these orbitals may be rationalized.

In Cu_{2}, the atoms are $3 d^{10} 4 s^{1}$ like, and evaluating the SCF energy of the $3 d^{\rho} 4 s^{2}$ state using the $3 d^{10} 4 s^{1}$ orbitals leads to an excitation energy of 4. 70 or $\mathbf{- 3 . 2} \mathbf{~ e V}$ larger than experiment, whereas individual SCF calculations yield a separation of $0,37 \mathrm{eV}$. The inclusion of configuration interaction improves the separation through orbital relaxation and correlation, thus lowering the $3 d^{4} 4 s^{2}$ state relative to the $3 d^{10} 4 s^{1}$ state. This is opposite to the effect if separate SCF calculations are car ried out for each state. This reduction of the separation allows an increased $3 d^{4} 4 s^{2}$ interaction or some $d-d$ bonding. We note he e that Pelissier ${ }^{2}$ stated that Cl would not mix in more $3 d^{\phi} 4 s^{2}$ since CI increased the separation. This was based upon separate orbitals for each state and therefore does not apply in Cu_{2}. Similar effects have been observed for NiH . ${ }^{4}$

It is ateresting to note that Pelissier's ${ }^{2}$ nonvaria tion 22 el Cl leads to an $A_{e}, 0.14$ bohr shorter than our result. If the shortening we observe by inciuding f functions at the 22 el Cl level ($-0,04$ bohr) were subtracted from his result, he would be in excellent agreement with experiment. However, in our lab, we have found a useful estimate of the relativistic bond shortening is obtained from the relativistic contraction of the valence orbitals observed by Desclaux. ${ }^{15}$ For Cu , this is 0.064 bohr or an expected bond shortening for Cu_{2} of ~ 0.13 bohr. If this estimat : is used, our 22 el CI with f 's would be corrected from 4.35 to 4.22 bohrs. Considering the approximate nature of this relativistic shortening and the use of Davidson's sorrection to compute the bond length, this must be somewhat fortuitous. However, it does lead us to believe that there are potential problems with the ECP of Pelisisier, which does not include relativistic effects. It is clear that to resolve this problem, 2 ECP's must be developed, one with and the other without relativistic effects included at the same level of treatment, i.e., basis set and correlation. The nonrelativistic ECP shculd be able to reproduce our allelectron result.

A final point is the mecharism by which $3 d^{9} 4 s^{2}$ allows $d-d$ interactions. One might assume that a $4 s^{2}$ atom would form a repulsive state; however, we have shown in SCH^{14} that the $4 s-4 p$ near degeneracy allows a $4 s^{2}$ $-4 p^{2}$ excitation which polarizes the $4 s c$ electrons into the π_{*} orbital, moving them out of the bonding region and allowing an increased $3 d$ interaction.

CONCLUSION

The Cu atoms in Cu_{2} are best described as $3 d^{10} 4 s^{1}$ with : $4 s-4 s$ bond. The important correlation effects for the 4 s electrons are the usual bonding to antibonding excitation and a bonding to 4π ($4 p)$ bonding orbital. We attribute this to the near degeneracy of the $4 s-4 p$ orbitals. This effect has been seen in other systems, such as $\mathrm{Li}_{2}, \mathrm{Cr}_{2}$, and Cs_{2}. We expect this to be a common feature of transition metal-transition metal bonds.

We see a large bond length contraction at the CI level when th: $3 d$ electrons are correlated. We attribute this in part to an improved description of the $3 d^{6} 4 s^{2}-3 d^{10} 4 s^{1}$ separation, as a result of orbital relaxation and cor relation overcoming the strong orbital bias in favor of $3 d^{10} 4 s^{1}$. This allows an increased involvement of $3 d^{9} 4 s^{2}$ and the possibility of $3 d-3 d$ interactions. Our best bondlength is 0.15 bohr longer than experiment and we attribute most of this to relativisitc effects, based upon atomic calculations of Desclaux. This is different from Pelissier's calculations, which appear to show little relativistic effect. The question of relativistic bond shortening is left as an unresolved problem.
${ }^{1} \mathrm{~N}$ Aslund, R, F, Barrow, W, G. Richards, and D. N. Travis, Ark. Fys. 30, 171 (1965).
${ }^{2}$ M. Pelissier, J. Chem. Pbys. 75, 775 (1981).
${ }^{3}$ P. S. Bagus and C. Bjorkman, Phys. Rev, A 23, 462 (1981).
${ }^{4}(a)$ S. P, Walch aid C. W. Bauschlicher, Jr., Chem. Phys. Lett. 86, 66 (1982); (b) C. W. Bauschlicher, Jr. and B. H. Lengsfield (unpublished results).
${ }^{5}$ A. J. H. Wachters, J. Chem. Phys, 66, 4377 (1977).
${ }^{6}$ P. J. Hay, J. Chem. Phys. 66, 4377 (1977).
${ }^{\text {' }}$ Molecule is a Gaussian integral program written by J. Almlof. "Noname" is a general SCF MCSCF open-ended CI program written by C. W. Bauschlicher, Jr. and B. H. Lengsfield III. Siegbahn Cl is the Unitary-Group Cl of Per Siegbahn which was converted to CRAY and CDC by C. W. Bauschlicher.
${ }^{5}$ C. W. Bauschlicher, Jr., S. P. Walch, and H. Partridge, J. Chem. Phys. 76, 1033 (1982).
${ }^{\text {9 R R. L. Martin and P. J. Hay, J. Chem. Phys. 9, }} 4539$ (1981).
${ }^{10}$ S. R. Langhoff and E. R. Davidson, Int. J. Quantim Chem. 8, 61 (1974).
${ }^{11}$ B. Jönsson, B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, J. Chem. Phys. 74, 4566 (1961).
${ }^{12}$ M. R. Goodgame and W. A. Goddard II, J. Phys. Chem. 85, 215 (1981).
${ }^{13}$ S. P. Walch, B Laskowski, C. W. Bauschlicher, Jr., and S. R. Langhoff (unpublished work).
${ }^{14}$ C. W. Bauschlicher, Jr, and S. P. Walch, J. Chem. Phys. 76, 4560 (1982).
${ }^{15}$ J. P. Desclaux, At. Data Nucl. Data Tables 12, 311 (19i3).

[^0]: * Supported by NASA grant \#NCC2-148
 + Mailing address: 1101 San Antonio Road, Suite 420

[^1]: ${ }^{2}$ St pported under NASA grant NCC2-148.
 "presem address; NASA Ames Research Center Moffett Field, Callfornia 94035.
 ${ }^{\text {c }}$ Mailitg address: 1101 San Aatonio Road, Suite 420 Mountaln View, CA 94043.

[^2]: * Supportec by NASA Grant NCC2-148.

[^3]: a) In hartree relative to -1519.0 .

[^4]: * Supported by NiASA grani NCC2-148.

[^5]: ${ }^{\text {a) }}$ In au relative to -2086.0 .
 b) The Cr_{2} asymptotic energ) (based on atomi: SCF caliula thons) is -2086.60456 for $4 s^{1} 3 d^{4}+4 s^{1} 3 d^{5}$

[^6]: ${ }^{\mathbf{a}}$ Mailing address. 1101 San Antonio Rd., Suite 420.

