
* 84'32552

NASA Contractor Report 174761

Carbon-13 and Proton Nuclear Magnetic Resonance
Analysis of Shale-derived Refinery Products and Jet Fuels
and of Experimental Referee Broadened-spedf 1cat1on Jet Fuels

Don K. Calling, Brent K. Bailey, and Ronald J. Pugmlre

University of Utah Research Institute
Salt Lake City. Utah

September 1984

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Contract NAG 3-27

https://ntrs.nasa.gov/search.jsp?R=19840024481 2020-03-20T21:04:04+00:00Z



TABLE OF CONTENTS

Page

SUMMARY 1

I. INTRODUCTION 3

A. Background 3
B. Objectives and Approaches 3

II. MODEL COMPOUND STUDIES 5

A. Introduction 5

B. Experimental 11
C. Results and Discussion 12

III. PREPARATIVE SCALE SUPERCRITICAL FLUID CHROMATOGRAPHY 23

A. Background 23

B. Instrumentation and Procedure 24
C. Discussion . 27

IV. ANALYSIS OF SHALE OIL REFINERY PRODUCTS 33

A. Introduction 33

B. Analysis of the Refinery Products 33
C. Average Parameter Analysis by Use of Proton and Carbon-13 NMR 42
D. Analysis of the SCFC Fractionated Samples .......... 49

V. ANALYSIS OF ERBS FUELS ..... ............ 61

A. Introduction 61

B. Characterization of the Whole Fuels and HPLC Fractions .... 61
C. Analysis of the SCFC Fractionated Samples . . . . . 68

VI. NEW SPECTROSCOPIC TECHNIQUES 77

A. Theoretical Considerations 77
B. New Pulsing Techniques 77

VII. CONCLUDING REMARKS • 93



SUMMARY

Economic conditions in world petroleum markets have created pressures for

refining of jet fuels from alternate sources of hydrocarbons, such as shale,

tar sands, and coal-derived liquids. However, production of aviation kerosenes

from such sources may result in broadening of fuel specifications, both known

and unknown. Nuclear magnetic resonance (NMR) spectroscopy has been recognized

as a powerful tool with which to study the properties of hydrocarbon liquids,

and it has been used here to study refinery products derived from shale oil,

broadened-specification jet fuel, and related model compounds.

The study of saturated, acyclic isoprenoid compounds like those found in

many crude and refined oil products is of interest to several disciplines.

The distribution of stereoisomers in the isoprendids found in naturally

occuring hydrocarbons has been related to maturation and diagenesis. In the

past, elucidation of the diastereomeric distribution was accomplished by means

of chemical cleavage, derivatization, and vapor phase ohromatographic iden-

tification. We have shown that it is possible to detect the diastereomers in

fame sane, pristane, phytane, and squalane by use of high field carbon-13 NMR,

including differentiation of natural and synthetic products.

Fractionation of hydrocarbon 'mixtures at 100 milligram levels for purposes

of producing samples for use in NMR analysis has been of high interest for

some time. Use of open column or high performance liquid chromatography (HPLC)

does not provide adequate results because of the difficulties encountered in

liberating the fractions from the elution solvent. Application of super-

critical fluid chromatography (SOFC) using carbon dioxide resolves many of the

difficulties associated with 9ther techniques. Modifications to an existing

HPLC apparatus and other procedures necessary to achieve preparative scale,

quantitative SCFC have been developed and are presented.

Twenty-four samples have been extracted from the refinery stream in the

process of producing three military grades of jet fuel from raw shale oil by

Ashland Petroleum Co. The samples were examined by use of proton and carbon-13

NMR. Thirteen of the lighter samples were separated into saturates and

aromatics fractions by means of SCFC. Virtually all of the straight chain

material was detected in the saturates fractions. The fractions were analyzed

for carbon and hydrogen and were subjected to simulated distillation for the

purpose of determining their average molecular weights. An average parameter

analysis scheme utilizing a minimum number of assumptions and some novel

corrections was developed for the aromatic components. NMR spectra were

acquired for all of the fractionated samples, and the average parameter

analysis was applied. Formulation of model mixtures representing the mixtures



was demonstrated. The variation of quantity of aromatic material in the

refinery products may be a more significant parameter than the intrinsic

nature of the aromatic species present. Although product parameters varied in

the manner to be expected as a result of specific refinery processes, they did

not vary greatly in their inherent characteristics.

Three experimental referee broadened-specification (ERBS) fuels and a

blending stock were studied initially by use of HPLC. The aromatic material

was separated into one-, two*-, and three-ring components. The two- and

three-ring fractions were observed to contain very little saturated carbon

other than methyl and ethyl groups. In the two-ring sample resonance lines

attributable to all of the possible dimethylnaphthalenes were detected. The

samples were fractionated using SCFC and examined by NMR spectroscopy.

Average parameter analysis was again performed and model mixtures were

developed. The ERBS products were found to resemble more the shale products

before aromatic saturation, rather than the finished fuels.

Some theoretical considerations relative to the necessity of making an

aromatics-saturates separation before performing average parameter analysis

are presented. Some novel pulsing schemes, INEPT and DEPT, are explored

relative to their application to complex hydrocarbon mixures. The specialized

multiplicity and component information derivable from such data was discussed

with examples from the shale oil products.



I. INTRODUCTION

A. Background

Events of the past few years indicate that the era of plentiful supplies of

cheap petroleum for the production of aviation kerosene may have come to ah
1 2end. ' Projected real shortages, market manipulation and competition for

mid-distillate cuts have created pressure to utilize wider fraction cuts and

lower quality crudes for the production of jet fuel. A recent study of the

Department of Energy Fuels Data Bank revealed that jet fuels are already
a

showing an increased aromatic content as a result of these pressures. Present

conditions in the. petroleum market also make the production of jet fuels from

alternative sources not only possible but perhaps attractive. The refining of

alternative hydrocarbon sources, such as shale, tar sands, and coal derived

liquids, may produce not only an increase in aromaticity, but may also affect

other significant properties, such as heteroatom content. However, relaxation

of property specifications has both supply and economic benefits. Those

parameters which may be changed include the allowance of more aromaticity,

higher "freezing points, lower volatility, increased viscosity, and decreased

thermal stability. '

B. Objectives and Approaches

Nuclear magnetic resonance has long been recognized as a powerful tool for

the elucidation of the components and properties of complex hydrocarbon

mixtures. The principal objectives of this work were to use proton and

carbon-13 NMR to characterize the hydrocarbon products produced by refining of

shale oil, as well as some experimental referee broadened-specification (ERBS)

turbine fuels. Another objective was the investigation of fuel-related model

compounds. An additional objective was the exploration of some of the more

modern procedures which have been developed in NMR technology as to their

applicability to complex hydrocarbon products.

The model compound portion of this study focused on some simple isoprenoids

having from 15 to 30 carbons, which are similar to those found in many types

of geologically derived hydrocarbons. The relative distribution of

stereoisomers in such molecules has been related to the maturation of

hydrocarbon deposits, so such data is of great interest to petroleum engineers

and geochemists. It was found that it is possible to distinguish the

diastereomeric populations in these compounds by use of high field NMR. Long

range conformational chemical shift effects resulting from steric centers up

to seven bonds distant have been documented.



Twenty-four samples were recovered from various steps in the refining of

shale oil by Ashland Petroleum Co. NMR analysis was undertaken. In the process

of analysis of the whole samples, it was determined that it was essential to

make a separation of the saturate and aromatic fractions if meaningful average

parameters were to be obtained. That separation, however, proved to be

nontrivial, as traditional, existing open column and high performance liquid

chromatographic (HPLC) separations were found to be inadequate for production

of samples for NMR analysis due to problems in isolating the separated

fractions. To resolve the difficulty, we turned to a relatively new technique,

supercritical fluid chromatography (SCFC) using carbon dioxide as the eluent

on a modified HPLC. Preparative scale separation and recovery required

development of some new technology, which is described. Thirteen of the

lighter samples were separated by use of SCFC. Elemental analysis, molecular

weight and NMR data were acquired for saturates and aromatic fractions. Most

of the long aliphatic chains were found to reside in the saturates portion.

Parameteric analysis was accomplished for the aromatic fraction, and model

mixtures were formulated.

Three ERBS aviation turbine fuels with hydrogen contents of 12.8%, 12.3%,

and 11.8% and a blending stock were fractionated using HPLC. The aromatic

portions were further separated into one-, two-, and three-ring fractions. In

the heavier fractions most of the aliphatic carbon was present as methyl and

ethyl groups. SCFC separation and analysis were carried out on the fuel and

blending stock in the same manner as for the shale samples.

The NMR techniques INEPT and DEPT were applied to some of the samples of

this study and to some model compounds. The information which can be gleaned

from such experiments was investigated.



II. MODEL COMPOUND STUDIES

A. Introduction

Carbon-13 nuclear magnetic resonance (NMR) has been used to characterize

the aromaticity and average properties of naturally occnring hydrocarbons,

including petroleum, shale oil, coal derived liquids, and tar sand
7 5 8 9

bitumens. With few exceptions, ' ' these studies have not focused on the

determination of the actual constituency of the samples. •

The origin and and diagenesis of natural hydrocarbon deposits has been of

interest to organic chemists, biochemists and geochemists. Acyclic alkanes

of 20 and more carbons are found in a wide variety of organic sediments and
5 8 9petroleum. ' ' The stereochemistry of these molecules is of significance,

because it provides information about the source and chemical history of the

compounds. For example, loss of stereospeoificity in petroleum derived
11 12acyclic alkanes has been correlated with geological maturation. ' However,

the identification of stereoisomers in geosamples has been limited to a few

cases, utilizing vapor phase chromatography coupled with synthetic degradation
11 12procedures. '

Stereoisomers are found in hydrocarbon deposits because they are derived

from naturally occnring biochemicals which contain chiral centers, .i..e.

tetrahedral carbons substituted by four different groups. Such centers are

designated R or S according to the relative configuration of their sub-

stituents by use of standard sequencing rules. Molecular stereoisomers

having n chiral centers can exist in 2n forms. Enantiomers are nonsuper-

imposable mirror image isomers which have identical NMR spectra, as well as

all other physical properties except for the direction in which they rotate

the plane of polarized light. They also have identical chemical properties,

except when interacting with reagents which are also chiral.

Diastereomers result from molecules which contain more than one chiral

center. In meso compounds the stereoisomers are superimposable mirror images

of one another and are not resolvable into enantiomers. However, diastereomers

may exist in forms which are not superimposable nor interconvertible, neither

are they enantiomers. The isomers in these cases generally have very similar

chemical properties, but their physical properties may differ markedly. In

particular, the NMR spectra of diastereomers will differ from one another

(barring accidental degeneracy) whenever nuclei at corresponding positions of

the isomers are close to two or more chiral centers and thus experience

different environments. These effects are not averaged even when rotation

about the various bonds is unrestricted in both kinetic and thermodynamic



1 A. 1 ̂
senses. For C NMR spectra, our experience has indicated that in open chain

compounds otherwise equivalent carbons up to seven bonds distant from a chiral

center may have distinguishable chemical shifts. Carbons influenced by two

chiral centers may produce two resonance lines, while those close to three

chiral carbons may produce as many as four lines. The intensity of the

individual resonances in a related set will depend on the relative abundance

of the various diastereomers in the mixture.

Out study of the composition of geologically derived hydrocarbon mixtures

has indicated * that, beyond simple straight chain alkanes, a significant

portion of the saturated fraction in such samples appears to originate with

saturated oligomers derived from isoprene (2-methyl-l,3-butadiene) and from

lightly branched alkanes which could easily be viewed as fragments arising

from partially demethylated or chain scissioned isoprenoids. For example,

consider the C spectrum of the saturates found in a Colorado shale oil shown

in Figure II-l. The most easily recognized feature is, of course, the presence

of long, straight-chain alkyls. By using previously published chemical shift

substituent parameters, ' ' ' we have been able to identify readily the

second most intense set of resonances. They are attributable to isoprenoid
18fragments, which are known constituents. In Figure II-2 the saturates

portion of the C spectrum of an aviation kerosene derived from a Mexican

Isthmus light crude is displayed. The vertical scale has been increased so

that the smaller lines are easily distinguishable, although this results in

clipping of the straight-chain alkyl resonances. Use of the previously cited

parameters again enables us to identify isoprenoid-like structures in the

mixture, as well as isopropyl-terminated straight chains. In Figure II-3 the

same spectrum is presented again but with the remaining second level

resonances having been assigned. It is noteworthy that most of the prominant

resonances have been assigned at this point, and that they are associable with

lightly methylated chains.

These results stimulated us to study pure isoprenoid compounds like those

found in naturally occuring hydrocarbons. The molecules of interest are

2,6,10-trimethyldodecane, 2,6,10,14-tetramethylpentadecane, 2,6,10,14-tetra-

methylhexadecane, and 2,6,10,15,19,23-hexamethyltetracosane. Hereafter they

will be designated by their trivial names, farnesane, pristane, phytane, and

squalane, respectively. The structures of these molecules are given in Figure

II-4. The possible stereoisomers are given in Table II-*1. Our studies have

revealed that it is possible to distinguish diastereomeric populations in
13isoprenoid stereomixtures by use of C NMR.
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Figure II-l: The 3C NMR spectrum of a Colorado oil shale. Resonance lines

attributable to molecular fragments like pristane are readily identifiable.
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13,Figure II-2: The aliphatic portion of the C NMR spectrum of an aviation

kerosene derived from a Mexican Isthmus light crude oil. The vertical scale

has been increased in order to display the less intense resonances. The

spectral lines identified with straight chain, isopropyl terminated and

pristane-like fragments are indicated.
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Figure II-3: Tlie same spec tram as in Figure II-2, ezcept that resonances

which result from lightly methylated chains are indicated.
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Figure II-4: The molecular structure of farnesane, pristane, phytane,

and squalane.
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Table II-l: Stereoisomers Which'May Exist in the Isoprenoid Compounds of

Figure II-4.

Diastereomers/Enant iomers Environments6 Compound

R

RR

RS

SS

SR farnesane

RRR

RRS

RSR

SRR

RRRR

SSS

SSR

SRS

RSS

SSSS

phytane

RRRS SSSR RSSS SRRR

RRSR SSRS RSRR SRSS

RRSS

RSSR

RSRS

SSRR

SRRS

SRSR squalane

a. The number of chiral centers in the molecule.

b. Enantiomers are given across the rows, diastereomers down the columns.

c. The number of possible resonance environments.

d. Pristane would also have this number of environments because of its

center of symmetry..

e. The number of environments is reduced because of the center of symmetry

in the molecule, which produces some meso isomers.

B. Experimental

The isoprenoid compounds studied here were obtained from standard commer-

cial sources. They were used without further purification.

NMR spectra were obtained either at 75.5 MHz on the Varian SC-300

spectrometer in our laboratory or at 125 MHz on a B raker WH-500 instrument at

Karlsruhe, West Germany. Approximately 30% CDClj was added to the samples as a

lock and tuning solvent, together with a small amount of tetramethylsilane

(TMS) used as an internal chemical shift reference. The instruments were

operated in the pulsed, Fourier transform mode with broadband proton decou-

pling.

11



C. Results and Discussion

Carbon-13 NMR data for the four compounds of interest is presented in Table

11-2. The chemical shifts for two of the molecules have been adjusted by a

small amount in an effort to minimize concentration effects and to get all of

the data on a common scale. Careful evaluation of Table II-2 reveals that the

chemical shift environments of the carbons in these molecules may be

segregated for general assignment purposes solely on the basis of the number

of carbons which are located one bond (alpha), two bonds (beta), and three

bonds (gamma) from the position of interest, _i..e. the primary identifications

may be make solely by counting the near neighbors of a given carbon. For

example, a terminal methyl, having one alpha, two beta, and one gamma

neighbors, will produce a resonance line near 25.0 ppm. These observations are

summarized in Table II-3. Although there is some spread in the chemical shifts

of the various environments due to the stereochemical effects, no overlap is

found among the ranges, so that general assignments for related compounds can

made without ambiguity by comparing chemical shifts with those given in Table

II-3. Further identification of the individual resonances occuring within the

ranges is also possible, as described below.

The C spectrum of fame sane is given in Figure II-5. Inspection of that

data reveals that most of the carbons beyond C-5 are represented by doublets

of equal intensity. That result is indicative that our sample is the

6(R,S),10(R,S) compound, having uniform distribution of the possible

stereoisomers. This spectrum is consistent with that expected for a synthetic

substance, probably prepared by stereorandom hydrogenation of the relevant

olefin.

The spectrum of pristane is presented in Figure II-6. In this case it is

evident that each carbon position has produced only a single resonance line,

leading to the conclusion that the spectrum was indeed produced by a pure

diastereomer. Pristane from biological sources is normally the 6(R),10(S)

compound, and thus our sample is probably a natural product of that

stereochemistry.

Phytane produced initially unexpected results. There are three chiral

centers in that molecule, so that it is possible to have a mixture of four

diastereomers, each consisting of an enantiomeric pair. However, as inspection

of Figure II-7 reveals, none of the carbon positions produced the four

resonance lines that would be expected for a mixture of random chirality. In

fact, positions C-5, C-6, and C-6a produced only singlets rather than. the

doublets which would be expected from a compound with 6(R,S),10(R,S)

chirality. Doublets are observed for C-? and C-9 through C-16. These findings

indicate that our phytane sample exhibits mixed stereochemistry, having only

12



Table II-2: 13C Chemical Shifts of Selected, Saturated Acyclic Isoprenoids

Position Fame sanea.b Pristane Phytane* Squalane

1.1'
2
3
4

5

6 ,

6a

7

8
9

10

lOa

11

-
12

13

14

14a

15

16

22.67
22.76
28.12
39.62
25.02

37.55
37.64
32.97
32.99
19.71
19.77
37.66
37.71
24.70
37.20
37.25

34.62

19.22
19.28

29.65
29.75

11.38
11.40

a. All chemical shifts are in
b. In an effort to minimize

22.69 22.69
22.78 22.78
28.08 28.09
39.51 39.53
24.92 24.94

37.43 37.44

32.92 32.92

19.81 19.82
V

37.60 37.56
37.61

24.59 24.63
37.51
37.56

32.91
32.94

19.80
19.86

37.61
37.65

24.60
24.61

37.10
37.15
34.55
34.56
19.26
19.32
29.59
29.69
11.45
11.47

ppm from TMS.
concentration and/or solvent

22.72
22.82
28.05
39.53
24.94
24.95
37.46
37.55
32.86
32.89
19.77
19.83
37.57
37.62
24.61
37.55
37.57
37.59
37.62
32.86
32.88
32.89
32.91
19.78
19.80
19.85
19.86
37.27
37.28
37.37
37.38
27.58
27.60
27.60
27.61

effects, 0.1 ppm
was subtracted from measured values.

c. Carbons 7, 9, and
interchanged.

d. Same as b, except

11 are not assigned incontrovertibly

the data was shifted by 0.3 ppm.

and may be

13
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Table II-3: The Carbon-13 Chemical Shift Ranges Encountered for Various

Environments in Selected, Saturated Acyclic Isoprenoids

Environment a

Farnesane Pristane Phytane Squalane A6

231

232

321

322

221

311

223

224

121

122

112

39.7

37.3-37.8

34.7

33.1

29.8

28.2

24.8-25.1

22.8

19.3-19.9

11.5

39.5

37.4-37.6

32.9

28.1

24.6-24.9

22.7-22.8

1S>.8

39.5

37.1-37.6

34.6

32.9

29.6

28.1

24.6-24.9

22.7-22.8

19.3-19.8

11.5

39.8

37.6-37.9

33.2

28.4

27.9

24.9-25.2

23.0-23.1

20.1-20.2

0.3

0.8

0.1

0,.3

0.2

0.3

0.0

0.6

0.4

0.9

0.0

a. The numbers of carbons located one, two, and three bonds, respectively,

from the carbon of interest.

b. All chemical shifts measured from TMS without correction for concentration

effects.

one configuration present at C-6 and C-10, but both R and S geometries at

C-14. Naturally occurring phytol is a 7(R),11(S) compound with a double bond

at C-2 and an OH function at C-l. Random saturation of the double bond and
•

removal of the OH would result in a mixture with a 6(R) ,10(S) ,14(R,S)

stereochemistry, in agreement with the observed results. Thus we conclude

that this sample of phytane was produced from the natural product. Note that

C-7 appears as a doublet, although it is seven bonds distant from the nearest

carbon positon of random chirality at C-14. In the past it has not been

possible to identify conforroational effects originating at such remote

positions, because the small chemical shifts involved are normally impossible

to distinguish from solvent, concentration, etc. effects of similar magnitude.

The presence of internal fiducial marks, !.£. resonances of corresponding

carbons in other isomers, allows the long-range effects to be certified.

Squalane is not known to occur in nature, but the corresponding unsaturated

compound, squalene, ±.e. the 2,6.10,14,18,22-hexaolefin. is a natural product.

Thus it is probable that commercial s qua lane is derived from squalene by

saturation of the double.bonds. .Non-selective hydrogenation would produce a

mixture of random (R,S) configuration. The spectrum of squalane is, in fact.

14
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the most complex of the compounds studied here, since the environment of some

of the carbons is influenced by three of the six (R,S) chiral centers,

resulting in four resonance lines for those positions. The detailed spectrum

has been resolution enhanced and plotted on an expanded scale in Figure II-8.

Assignments of the closely spaced lines to specific carbon positions is

facilitated by the quartet structure observed for one of each of the pairs

6,10 and 6a,10a. For the four carbons appearing near 37.6 ppm the same

criterion may be used to segregate C-5, C-7 from C-9, C-ll. Furtheir

assignments within closely spaced groups of peaks may be made here by

observing the regularity of the chemical shift differences which occur for

carbons in similar environments. For example, methylenes adjacent to a chiral

carbon, but not between chiral centers (£.£. C-15 of phytane), exhibit a

diastereomeric shift difference of 0.09-0.10 ppm, while alpha methylenes

between chiral centers, such as C-7 of squalane, are separated only by

0.04-0.OS ppm. Similar generalizations may be made for other environments in

the molecules. Since these splitting patterns are common to all three of the

compounds which exhibit stereoisomerism, a self-consistent set of assignments

can be generated. These results are summarized in Table II-4.

It would be desirable to assign the resonances of Table II-2 to specific

diastereomeric configurations, but this is extremely difficult to do reliably

because of the small chemical shift differences involved. The most certain

method would be to obtain pure diastereomers of known stereochemistry, mix

them in proportions other than 1:1, and obtain the NMR spectra. Unfortunately,

such isomers of known, pure stereochemistry are not readily available. A
1 0calculational method has been implemented by Beierbeck and Saunders for

determination of chemical shifts as a weighted average of possible rotamers.

In principle, this method could be used to distinguish diastereomers,

providing that the calculation can be extended from its present three bonds to

six or seven bonds. This approach has not been tried by us because of the

enormous complexity of the extended analysis and the very small chemical shift

separations involved.

The work of Elgert and Ritter2 on an analogous polymer molecule,

poly[l-methyltetramethylene], may be used to make tentative assignments for

some of the isomeric shifts of Table II-2. Working at 22.6 MHz, they observed

fine structure in the 13C spectrum of the polymer for only the alpha methylene

and methyl resonances, corresponding for example, to C-9 and C-lOa of phytane.

The above polylmer resonances were found to be sensitive to triad structure,

which produces four chemical shift environments as a result of proximity to

three chiral centers. For the alpha methylene, the syndiotactic configuration

(racemic, racemic, or rr) , generated the most downfield resonance, while the

isotactic configuration (meso, meso or mm), produced the most upfield line.

18
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Figure II-8: The 125 MHz C spectrum of squalane, resolution enhanced and

plotted on an expanded scale (.02 ppm/" division). Four lines are observed

for carbons which are influenced by three chiral centers.
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Table II-4: Carbon-13 Chemical Shift Ranges Produced by Diastereomeric

Effects in Selected, Saturated Acyclic Isoprenoids

Representative
Environment8 Observed A6 Examples6

CH

CH

CH

CH

CH

a

3

2

a.

a.

a

at

» P

Long

to

to

to

CC

to

CC,

CC

CC,

two

not between four-bond CC's

between four-bond CC's

CC'sd

range, due to third CC

Terminal gem methyls*

0

0

0

0

0

0

0

.09-0.

.06-0.

.04-0.

.00-0.

.00-0.

.00-0.

.09-0.

10

07

05

03

01

03

10

F-5,

F-6a

F-7,

F-10

F-8.

S-8,

F-l,

P-15, S-5

, P-l4a, S-lOa

P-ll,

, P-10

P-12,

S-9.

P-l,

S-9

, S-10

S-8

S-10

S-l

a. CC = chiral center, a = one bond removed, f} = two bonds removed.

b. In parts per million.

c. F = farnesane, P = phytane, S = squalane.

d. Also p to one CC and one prochiral center; examples: F-4, P-4, S-4.

e. Shift difference results from presence of only one CC, which makes terminal

methyls diastereotopic.

The resulting order, low to highfield, for the resonances was rr, rjn, mr, mm,

the primary position of the carbon of interest being indicated for the

heterotactic sites. If the acyclic isoprenoids of this study are assumed to be

analogous, then the downfield resonances of pairs belonging to C-7 and C-9 of

farnesane (37.71 and 37.25 ppm, respectively) can be assigned to the

6(R),10(R) and 6(S),10(S) enantiomeric pair, while the upfield lines (37.66

and 37.20 ppm, respectively) would then be attributed to the RS isomers, and

similarly for relevant positons in the other molecules. In the case of the

methyls, the ordering is opposite, as the isotactic methyls produce the

farthest downfield resonance, and the syndiotactic isomers generate the most

upfield line of the set. The corresponding assignment for C-lOa of phytane

would be 19.86 ppm to the 6(R) ,10(S) ,14(S) compound and 19.80 ppm to the

6(R),10(S),14(R) isomer. Again, similar tentative assignments may be made in

the other molecules having methyls in analogous environments.

The above results demonstrate that high field *^C NMR can be of great

utility in the study of diastereomeric compounds. We have been able to

segregate natural products from synthetic ones in a rather simple manner. It

has also been shown that it is possible to distinguish the relative

populations of diastereomers in a mixture of unknown proportions. Ready

access to such information may provide geochemists with a powerful new tool

which may be used to characterize the diagenesis and maturation of geoderived
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hydrocarbons. Other branches of chemistry involved in the synthesis of

sterespecific molecules may also be able to utilize the above described

techniques. Biocomponnds of unknown stereochemistry may be amenable to

characterizaton by this type of analysis as well. We envision that there will

be increasing usage of high-field C NME analysis in many areas of chemistry

involving diastereomeric compounds.
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III. PREPARATIVE SCALE SUPERCRITICAL FLDID CHROMATOGRAPHY

A. Background

The accurate determination of the average parameters of fuels by use of NMR

requires that the fuels be separated into saturates and aromatics fractions.

In the past this separation has been effected by use of gas chromatography,

high performance liquid chromatography, and various types of open column

liquid chromatography. Each of these techniques suffers from some

deficiencies as far as NMR spectroscopists are concerned. In gas chromatog-

raphy it is often difficult and tedious to acquire sufficient fraction size

and to separate mixtures containing high molecular weight components. In

liquid chromatography it is necessary that the fuel fractions be recovered

intact froa any solvent which has been used in the separation process. This

often proves to be quite difficult to do and, especially if low molecular

weight compounds are present, likely results in partial sample loss or

residual solvent contamination. The solution to the above problems may be

application of a novel technique termed supercritical fluid chromatography or

SCFC.

When a substance is heated above its critical temperature, it can no longer

be induced to make a phase transition from gas to liquid by an arbitrary

increase in pressure. However, densities can be achieved which are similar or

even greater than those found in the liquid state. Gaseous substances of high

density above their critical temperature are called supercritical fluids. They

have viscosities comparable to those of normal gases, which is approximately

two orders of magnitude less than the corresponding liquids. Their dif-

fusivity, however, usually falls midway between that of a normal gas and

liquid. The solubilizing power of supercritical fluids is similar to that of

normal liquids. A successful application of the SCFC technique was first

demonstrated in 1961.21 SCFC has attracted the recent attention of analytical

chemists, because of the possibility of using it in separation procedures

involving high molecular weight compounds, extended molecular weight ranges,

and thermally labile compounds. Recent articles have detailed the current
f)fy oo VA

practice of the technique as it is currently being developed. ' '

Although quite a number of compounds have been employed as solvents in

SCFC, perhaps the ideal effluent for most NMR applicatons is carbon dioxide.

It is nontoxic and nonflammable. Its critical temperature (31.3 °C) is near

normal laboratory temperatures, and it is readily purchasable as a liquid in

standard siphon steel cylinders. CO^ has no protons to interfere in *H NMR,

and its single carbon resonance is in the carboxyl area of the C spectrum,

which will not normally create interference in fuels samples. In fact, our
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experience has indicated that CC^ is sufficiently insoluble in liquid

hydrocarbons at ambient temperatures and pressures that we have never detected

a residual solvent peak in our fractionated samples.

B. Instrumentation and Procedure

SCFC separations were performed on a modified Perkin-Elmer Series 3B Liquid

Chromatograph. The instrument has dual reciprocating piston pumps, each with

two heads, and a pumping capacity of 30 ml/min. Detection is accomplished

with a Perkin-Elmer LC75 Spectrophotometric Detector connected to a Tracer

stripchart recorder.

The Magnum 20 columns utilized were purchased from Whatman Inc. They are 50

cm in length with a 22 mm ID and contain 10 micron silica gel particles. The

active phases were either cyano-amino (Partisil-10 PAC) or octadecylsilane

(Partisil-10 ODS). The separation column was mounted vertically in a plexiglas

bath in which water was circulated from a reservoir, regulated by a Haake D-l

temperature controller. Outlet pressure to the UV detector was controlled by a

Tescorn Corp. regulator.

Waste and sample routing was accomplished by use of an eight position valve

supplied by Valco Instruments Co., Inc. Waste was collected in a standard CO,

pressure cylinder, while sample flow was directed into high pressure (1800

psi) collectors. The collection vessels consisted of a 500 ml upper chamber

and a 70 ml lower chamber. The two vessels were connected to each other and to

the switching valve with high pressure Whitey valves.

In order to function adequately for supercritical operation, several

modifications were made to the chromatograph. Liquid CO, was fed directly to

the pump from a siphon tank without regulation. However the liquid was cooled

enroute to the pump by passing through a loop immersed in an ice water bath in

order to prevent premature vaporization. Because of the large amount of heat

generated by the high compression ratio piston pumps, dry ice heat exchangers

were . mounted on the outside of the pump heads, and these were kept filled

during operation. :•

COj was pumped as a liquid to a desired pressure, as indicated by the

transducer readout on the instrument itself and by an. exterior manual pressure

gauge teed at the pump outlet (or equivalently, at the column inlet). A graph

of column inlet pressure versus pump speed is presented in Figure III-l. The

instrument has been fitted with a backflush valve which allows flow in either

direction across the column. A high pressure loop injector system has also

been added, which has an injection capacity of 2 ml. Before reaching the
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column, the effluent passes through a coil which is immersed in the

temperature reservoir. This heating brings the CO- to supercritical con-

ditions.

A second mechanical pressure gauge has been added to the outlet of the UV

detector, tapped into the system by way of a three-way on/off valve, so that

it may be isolated during actual separations. This guage has been added tb

the system to protect the seals of the UV cell, which can only withstand a

pressure of 2000 psi. For extended operation a maximum outlet pressure of 1200

psi is recommended.

The elntion of a complete sample through the column requires quite a long

time, usually 45 minutes to one and one-half hours. In order to make the

separation of saturates and aromatics more efficient, the following mode of

operation was adopted: After injection, the effluent was dumped into the waste

receptacle until collection of the saturates fraction was begun. The saturates

fraction was collected until the recorder deflection indicated that the first

aromatic peak was coming through. At that point the flow was reversed, taking

the aromatics back onto the column. Collection was then continued for a few

more minutes to assure that all of the saturates fraction had cleared the

backpressure valve, which has a significant holdup. The effluent was then

directed into the waste collector again, until the aromatios again began to

come off the column, at which time they were gathered in a second collection

apparatus. Since the column has been reversed, all of the aromatics come off

the column in a single peak. This not only significantly shortens the time

required to perform the separation, but also obviates the necessity of using

more than one collector for the aromatics fraction, which otherwise would be

of a volume too great to be held in a single collector.

Quantitative fraction collection is accomplished in the following manner:

The product collection vessels are cleaned and oven dried previous to use. The

70 ml bottle must be tared with an internal C(>2 atmosphere if accurate

fraction weights are to be determined. This is accomplished by introducing CO*

from the siphon tank via a drain hose connected to the chromatograph pumping

system. Exposing the liquid to the atmosphere produces a mixture of gas and

COj snow, which is injected into the small cylinder for about 15 sec. A high

pressure valve is then screwed into place, and the vessel is allowed to come

to ambient pressure and temperature before weighing. The small bottle is then

connected to the bottom of the 500 ml vessel, which also has a high pressure

valve attached at the top. After the relevant fraction has been collected,

the bottles are removed from the chromatograph with the topmost valve closed,

and they are immersed in a dewar of liquid nitrogen until completely frozen or

until only a very slight positive pressure is detected when the top valve is

cracked. The cylinders are then positioned vertically in a thawing rack and
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Figure III-l: The variation of column inlet pressure with pump speed when

pumping liquid COj in SCFC.
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the CO, is allowed to sublime away. This usually requires about three hours;

progress may be monitored by noting the thawing of ice which accumulates on

the outside of the vessels. Completion of the process may be ascertained by

closing the top valve for a few minutes and then reopening it to see if any

pressure has accumulated. After all of the C02 has dissipated, the valve

between the cylinders is closed, and the top vessel is removed. The 70 ml

bottle may then be wiped clean and reweighed to determine the weight of

fraction collected. At that point the sample may be transfered to a more

customary storage container by means of a disposable pipette or other suitable

transfer device.

C. Discussion

The use of SCFC on complex fuel samples provides a similar separation to

that obtainable with HPLC. This is illustrated by comparison of Figures

III-2 and III-3. The latter were acquired on microliter injections as full

prep scale injection normally produces off-scale peaks. Of course, there is

no way to detect the saturates fraction in SCFC, but the general separation by

number of aromatic rings appears to be .very similar for the two cases.

Since it is not possible to detect the saturates in normal operation, and

the saturates and single-ring aromatics peaks appear to elute in very close

proximity, it is necessary to perform some very careful calibrations before

attempting a saturates-aromatics separation. We performed the calibration

using dodecane and toluene. Three quantities must be determined: The length

of time which an unretained solute requires to pass through the column to the

detector, the time between the saturates and the first aromatic material (as

measured at the baseline), and the variation of peak width under various

conditions. The length of time required for 1 ml of dodecane to pass through

our system is illustrated in Figure III-4. The period between the dodecane

and toluene peaks varies on our apparatus with pump speed as shown in Figure

III-5. The peak width as a function of both pump speed and injection volume

is illustrated in Figure III-4J It is necessary to choose a pump speed and

injection volume such that the width of the saturates peak is less than the

separation between it and the one-ring aromatics.

The success of the separation is attested by the results shown in Table

V-2 of Chapter V. The hydrogen content given for the ERBS samples there was

calculated from the fractions, and is seen to agree with the values determined

by a very accurate proton NMR method to within one percent.
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Figure III-2: The HPLC separation of one of the ERBS samples discussed in

Chapter V. I, saturates; II, one-ring aromatics; III, two-ring aromatics;

IV, three- and four-ring aromatics.
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Figure III-3: The SCFC separation of the ERBS-3S sample discussed in Chapter
V. Although saturates cannot be detected, the separation of the ring

compounds is very similar to that noted for HPLC in Figure III-2.
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IV. ANALYSIS OF SHALE OIL REFINERY PRODUCTS

A. Introduction

As a result of uncertainties in crude petroleum source and supply which

developed in the 1970's, the National Aeronautics and Space Administration

(NASA) and the United States Air Force (USAF) undertook the evaluation of

alternate, nontraditional crude feedstocks as sources for the refining of

aviation kerosene. Oil bearing shale is considered to be one of the prime

candidates as an alternative source of fuel hydocarbons, and both
ty C t\ £ *\m 2Q 29

internal ' and contract * ' research programs were developed to

determine the feasibility of using shale derived crude oil as a source for

military jet fuels.

Although refining of jet fuels from shale may not result in changes in the

traditional macrospecifications, such as freeze point, viscosity, etc. which

are applied to them, there may be significant changes in properties which are

not normally monitored, but which may be important to proper operating

characteristics. For this reason it was decided to examine shale oil refinery

products by use of NMR. The samples chosen for study were generated by* the

Extractacracking Process developed by Ashland.Petroleum Co. under contract to

the USAF.29

B. Analysis of the Refinery Products

Twenty-four samples were extracted from the refinery stream for purposes of

this study. They are listed in Table IV-1; the location of these samples in

the refining scheme is given in Figure IV-1, insofar as we were able to

decipher the proprietary process with the information supplied. Apparently,

some of the finished fuel was derived from processing of distillation overhead

which was not subjected to fluid catalytic cracking, while other fuel was

produced from a blend of 65% hydrotreatment distillation (600- °F) overhead,

35% fluid catalytic cracked overhead. It was not always abundantly clear from

which of these sources later samples were derived, or whether the two streams

were recombined at some point.

Proton and carbon-13 NMR spectra have been acquired for all of the samples.

In order to obtain quantitative estimates of the various kinds of carbon in

the products, it is necessary to obtain C spectra for which the nuclear

Overhauser enhancement (NOE) is suppressed by gated decoupling techniques. A

relatively long acquisition cycle time must also be used to minimize

saturation effects in the unprotonated carbons, which occur principally in the

aromatic spectral region at the substituted and bridgehead positions. Cycling
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Table IV-1: Samples Obtained from the Ashland Extractacracking Process

A. Occidental crude shale oil

B. Hydrotreated shale oil. 0.5 LHSV, 3000 SCFH H2

C. Hydrotreated shale oil, distilled overhead, 600- °F

D. Hydrotreated shale oil, distilled bottoms. 600+ °F

E. Liquid product from fluid, catalytic cracker (100% fresh feed)

Fj. FCC hydrotreated cycle oil (one pass, 100% recycled)

1*2' FCC distillation overhead 600- °F cut (no recycle hydrotreatment)

G. Charge to acid extractor

H. Raffinate from acid extractor. 600- °F (no recycle hydrotreatment)

I. Nitrogen compounds (acids removed: 65% overhead from distillation,

35% from FCC)

J. Guardcase hydrotreated full range product, 700 °F (65%, 35% feed)

K. FCC bottoms residual fuel (recycled through FCC but not through

hydrotreater)

L. Effluent from reformer, JP-8 pool

M. Input to reformer, JP-4 pool

N. Output from reformer, JP-4 pool

0. JP-8, saturation product

P. JP-8, broadrange, saturation product

Q. JP-4, saturation product

R. JP-8, final product

S. JP-8, broadrange, final product

T. JP-4, final product

D. Diesel fuel, final product
\

V. Burner fuel, final product

W. Gasoline component, final product
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at the optimal rate necessitates excessively long data acquisition periods, so

a compromise must be made. We have found that a pulse angle of 45° and a pulse

delay of ten seconds appears to provide adequately quantitative data for an

overnight (12 to 15 hours) spectrometer run.

1 3 1Aromatic ities, f0, of the various samples, as determined by C and H NMR,
O

are given in Table IV-2. Reference to Figure IV-1 clarifies some of the trends

indicated by the data of Table IV-2. Some of the more salient points are

discussed here:

(i)The carbon spectrum of the Occidental whole crude shale (sample A),

presented in Figure II-l of Chapter II, reveals that it contains some terminal

olefins, as indicated by the sharp isolated resonance lines at the extremes of

the aromatic spectral region. Our understanding is that these olefins do not

occur in the native shale but are generated by the retorting process. The

straight chain and isoprenoid-like fragments noted in this spectrum have

already been discussed (Chapter II).

Tl {"*
(2)Initial hydrotreatment does not greatly affect f" but decreases £„ by

a ft

one-third and apparently reduces the olefins (sample B). The alkyl region of

the carbon spectrum shows very little change.

(3)The 600- °F overhead from the hydrotreatment, sample C, produces a C

spectrum which indicates that the average alkyl chain length present is

considerably shortened over that of Sample B and more pristane-like material

is in evidence (cf. Figure IV-2). The aromatic spectral region has more

structure, indicating the presence of some prominent species. The distillation

bottoms fraction (sample D, shown in Figure IV-3), on the other hand, reveals

the presence of little aromatic fine structure and markedly longer alkyl

chains.

(4)TTnfortunately, no sample seems to have been taken after the second

hydrotreatment. Passage of sample D through the hydrotreater and fluid

catalytic cracker produces a material, sample E, which has a higher

aromaticity than the original shale oil, and judging from the proton spectrum,

contains some olefins.

(5)There is some ambiguity in the flow chart at this point, as there have

been four different sources for the samples which have been input to the fluid

catalytic cracker. The sample which appears most to be a product derived from

sample E is sample F., labelled "FCC hydrotreated cycle oil," but it contains

no olefins. Sample F2 is labelled "FCC distillation overhead," but it is more

aromatic than sample E and contains more olefinic material, making it appear

to have been recycled through the FCC several times. The f̂ 's of the olefin
&
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Table IV-2: Aromaticities (ffl) of Petroleum Fractions Derived

from Shale Oil as Determined by NMR Measurements

Sample8 f£ fj*

Ab

B

C

D

Eb

Ft

F2
b

Gb

Hb

1°

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

0.28

0.19

0.21

0.23

0.31

0.24

0.41

0.26

0.26

0.44

0.20

0.48

0.33

0.22

0.37

0.08

0.19

0.06

0.12

0.17

0.11

0.11

0.52

0.38

0.05

0.04

0.07

0.03

0.08

0.05

0.11

0.12

0.11

0.06

0.05

0.17

0.09

0.05

0.11

0.02

0.05

0.02

0.02

0.05

0.04

0.03

0.16

0.14

(0.05)

(0.07)

(0.09)

(0.08)

a. Aromaticities are integral of aromatic portion/total integral,

Estimated precision: +0.03 for 13C, +0.01 for 1H.

See Table IV-1 for sample identification.

b. Includes olefin content; parenthetical number, when present,

discounts olefin contribution.

c. Contains NH signals.
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HYDROTREATED COLORADO OIL SHALE
(600" °F CUT)

TMS
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Figure IV-2: The 13C NMR spectrum of overhead from the distillation of

hydrotreated shale oil (sample C). ,•
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HYDROTREATED COLORADO OIL SHALE
(600* °F CUT)

JuJL
TMS

LJ.
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Figure IV-3: The C NMR spectrum of distillation bottoms from the hydro-

treatment of shale oil. In comparison to the overhead, the alkyl chains

are much longer, and the aromatic spectral region is more complex.
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containing samples are, of course, too high, because it is not possible, in

general, to distinguish olefinic carbons from aromatic ones, except for those

molecules having terminal double bonds.

(6)Sample K is the recycle bottoms fraction from one of multiple recycle

passes to the FCC. It is highly aromatic and the alkyl chains present are

rather long. There seem to be no olefins present in K.

(7)The most highly aromatic sample is V, the residual burner fuel product.

The aromatic spectral region of this sample is banded, indicating great

complexity. The average length of the residual alkyl chains is, however, not

too great.

(8)Sample G, labelled ."charge to acid extractor," is a mixture of 65% of

sample C and 35% of a distillation overhead from a sample which has passed

through the FCC but not the second hydrotreatment. Olefins are very evident in

this sample and naphthenic content is fairly high.

(9)The raffinate from the acid extraction, sample H, produces spectra which

are very similar to those of G. All of the olefins appear to have remained in

this fraction.

(10)The spectra of sample J, the extracted nitrogen compounds, are very

unusual, like those of no other sample in this set. The carbon spectrum of

this sample is presented in Figure IV-4, upon which are indicated some of the

possible types of compounds whose presence may be inferred from the resonance

lines observed. Interestingly, there seems to be no observable concentration

of side chains of greater than two or three carbons present in the mixture,

nor are there many carbons which could be attributed to aliphatic amines.

(ll)Three products were sampled from effluent of the guardcase hydrotreater

unit; full range product for the 65%, 35% feed (sample J), input to the

reformer for the JP-4 pool (sample M), and the final diesel fuel product

(sample U). This treatment reduces the aromaticity and eliminates the olefins.

For these three samples, the longest alkyl chains are found in sample D and

the shortest in sample M, which average very short indeed.

(12)Passage through the reformer produces samples L, N, and W. Sample W,

the final gasoline component, is quite highly aromatic, mostly from single-

ring species; alkyl chains are again very short, and naphthenicity is high.

The spectra of samples L (JP-8 pool) and N (JP-4 pool) are rather similar and

have ff/s similar to that of sample W. The variation in the f?'s of these
tt a

three samples appears significant and may be reflective of the differences in

the three products.
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(13)Aromatic saturation results in samples 0, P, and Q.Arpmaticities have,

as expected, dropped dramatically at this step, although less so in the

broad-range JP-8 product. The spectra of the final products, R, S, and T, do

not differ markedly from those of their predecessors, although it does appear

that a relatively simple aromatic compound has been added to sample T,

probably to bring its properties in> line with specifications. As an example,

the proton and carbon-13 spectra of the broad-range JP-8 final fuel product

are given in Figure IV-5.

C. Average Parameter Analysis by Use of Protoa and Carbon-13 NHR

The amount of structural information which is derivable from proton and

carbon NMR data of complex hydrocarbon mixtures is dependent on the extent to

which resonance signals deriving from different molecular fragment types may

be quantitatively distinguished. Various divisions of the carbon and proton

chemical shift ranges have been suggested,4' 30' 31» 32» 33' 34some of which
30 32 33are rather complex. ' ' Although some of the more detailed partitions of

the chemical shifts are useful for qualitative purposes, we have found that

the overlap between some of the proposed characteristic regions is rather

severe for quantitative determinations. The partition of the various chemical

shift regions which we have chosen to utilize is summarized in Table IV-3. In

the carbon spectra we have chosen to use only the general aromatic and

aliphatic integrals. In the proton spectra, integrals are determined for five

regions. The aromatic region is taken from 6.0-9.0 ppm, although for

qualitative analysis this region may be subdivided into one-, two- and

three-ring portions (c...f. Table IV-3). Protons other than methyl on carbons

adjacent (alpha) to aromatic rings were measured in the range from 2.3-4.0

ppm, while alpha methyl protons were determined from 1.9-2.3 ppm. Methylenes

and methynes further removed than two bonds from aromatic centers are

generally found from 1.0 to 1.9 ppm. Methyl protons more than two carbons

distant from an aromatic center are assumed to resonate from 0.5-1.0 ppm. We

have generally chosen to ignore the CH, of ethylaromatics, which resonates

near 1.2 ppm. However, if large amounts of ethylaromatic are known or

suspected to occur in a sample, appropriate compensation should be made in the

integral distribution. Although some overlap may occur for these aliphatic

regions, we have found that at 300 MHz the resulting errors are minimal.

By combining the proton and carbon NMR results with those derived from

elemental analysis and determination of average molecular weight, the yield of

parametric information may be maximized. The determinable structural

parameters may be divided into two classes: 1) those which depend only on the

quality of the raw data for their accuracy, and 2) those which are dependant

upon the accuracy of previously, determined parameters or upon assumptions
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BROAD SPEC JP-8 FUEL
FROM COLORADO SHALE OIL

'H

8

13

6
i
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ppm (IMS)

T
0150 100 ppm (IMS) . 50

Figure IV-5: The 13C and *H NMR spectra of one of the finished fuels

derived from shale oil , broad-range JP-8.
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Table IV-3: Chemical .Shift. Regions Assigned to

Chemical Shift Region*

HYDROGEN

aliphatic

alpha

CH2

CH3

beta and gamma

CH2 (and beta CHj)

CHa

0.5-4.0

1.9-4.0

2.3-4.0

1.9-2.3

0.5-1.9

1.0-1.9

0.5-1.0

olefinic 4.0-6.0

aromatic

1-ring

2-ring

3-ring

6.0-9.0

6.0-7.3

7.3-7.8

7.8-9.0

CARBON

aliphatic

straight chain?

branched and other

5.0-50.0

aromatic 100.0-150.0

a. In ppm from TMS. This scheme follows basically that proposed by Netzel

and Hunter.35
! •• '

b. This entry specifies the region which determines fraction of aromatic
•a

hydrogen, f£.

c. The carbons associated with straight chains resonate at or very near

14.0. 23.0. 32.0, 29.0. and 29.5 ppm.

d. This entry specifies the region which determines fraction of aromatic
P

carbon, f.
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about the nature of the sample. The parameters of the first type are

relatively self explanatory; they are presented in a general form in Table

IV-4.

The parameters which depend on factors other than the quality, of the

experimental data are given in Table IV-5. An attempt has been made to exclude

from that set any parameters which depend on more than one assumption. Th£

reliability of the majority of these factors hinges, in fact, upon the correct

determination of a single number, which is the average length of alkyl side

chains attached to aromatic moieties. The latter parameter may be calculated

by more than one method. A calculation for that number which is similar to the

approach used in many of the treatments found in the literature is the first

one given in Table IV-5. It is based on the presumption that the

carbon/hydrogen distribution at the alpha position of alkyl snbstituents is

identical to that of the remainder of the alkyl chains. However, our

experience indicates that there are many cases for which that assumption does

not appear to be valid. In fact, our examination of a variety of samples has

indicated that the C/H ratio at the alpha position often differs from that

found in the total alkyl fractions. One ^mmediate consequence of that

circumstance is that the estimate of the average length of alkyls is then in

error, which also decreases the validity of all other calculations which

depend upon its value, which includes all of the other parameters given in

Table IV-5.

In assessing the possibility of improving the determination of the average

length of alkyls, we have observed that when alkyl chain length in model

compounds is overestimated that the calculated number of aromatic rings

possible for a given number of aromatic carbons is then also overestimated. By
0

determining the maximum number of aromatic rings possible for a given number

of aromatic carbons, we can establish an alternative method for estimating of

the average length of alkyls. That equation is also given in Table IV-5. The

number of rings possible in a compound is a strict function of the number of

aromatic carbons present, depending only the distribution of cata and peri

condensation, as depicted in Figure IV-6. The number of aromatic rings which

may result from a given number of aromatic carbons is given in Table IV-6. (We

have considered only benzenoid ring systems, as they are normally

predominant.) When the number of aromatic rings calculated by use of the

value obtained from the traditional equation for the average length of alkyls

exceeds the values given in Table IV-6, then the average alkyl length

parameter may be recalculated using the alternative equation. All other

factors depending on that value are also redetermined.

The equations of Tables IV-4 and IV-5 have been programmed in FOBTRAN. The

efficacy of the analysis has been tested on several model compounds. The

45



Table IV-4: A Group of Average Structure Parameters Derivable from NMR,

Elemental Analysis and Average Molecular Weight Data Which Depend

Only on the Quality of the Experimental Data for their Accuracy

fraction* (type of) carbon = (type of} carbon integral/total carbon integral

fraction (type of)c hydrogen = (type of) hydrogen integral/ total hydrogen

integral

percent (type of) carbon = percent carbon X fraction (type of) carbon

percent (type of)c hydrogen = percent hydrogen X fraction (type of) hydrogen

C/E weight ratio of ally! groups = percent aliphatic carbon/percent aliphatic

hydrogen

H/C atomic ratio of alkyl groups = atomic wt. C/(C/H wt. ratio X atomic

wt. H)

number of (type)" carbons = average molecular wt. X percent (type of) carbon/

(100 X atomic wt. C)

number of (type)0 hydrogens= average molecular wt. X percent (type of)

hydrogen/(100 X atomic wt. H)

equivalent percent of carbon occupied by heteroatoms - sum (percent

heteroatom X atomic vt. C/ atomic wt. heteroatom)

percent unsubstituted aroratic carbou c percent aromatic hydrogen X atomic

wt. C/ atomic wt. H

total rings* = total carbons X (1-fraction aromatic carbon/2) - total

hydrogens/2 + 1

number of methyl carbons - number of methyl hydrogens/3

a. The equations are given here in a generalized form.

b. Where type (of) = aromatic or aliphatic.

c. Where type (of) = aromatic,-or alpha, or beta and gamma, or gamma methyl.

d. The sum is over whichever heteroatoms are present (e_.£.. N, 0, S) .

e. This equation becomes less rigorous when significant amounts of aliphatic

nitrogen are present in 'the sample.
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Table IV-5: A Group of Average Structure Parameters Derivable from NMR,

Elemental Analysis and Average Molecular Weight Data Which

Depend on Correct Determination of Other Parameters

average8 length of alkyls(l) = (fraction nonmethyl alpha hydrogen + fraction

beta and gamma hydrogen + (fraction alpha methyl + fraction gamma methyl) X

2/3 + ring correctionc)/(fraction nonmethyl alpha hydrogen + fraction alpha

methyl X 2/3)

average length of alkyls(2) = number of aliphatic carbons/(number of aromatic

carbons - number of aromatic hydrogens - 2 X (maximum aromatic rings-1))

percent substituted aromatic carbon = percent aliphatic carbon/average length

of alkyls

percent nonbridge aromatic carbon = percent substituted aromatic carbon +

percent unsubstituted aromatic carbon

number of nonbridge aromatic carbons = average molecular wt. X percent

nonbridge aromatic carbon/100 X atomic wt. C
\

percent substitution of aromatic rings = 100 X percent substituted aromatic
carbon/percent nonbridge aromatic carbon

number of alkyl snbstituents = number of nonbridge aromatic carbons - number

of aromatic hydrogens

number of aromatic rings = 1/2(number of aromatic carbons - number of aromatic

hydrogens - number of alkyl snbstituents) + 1

number of naphthenic rings = total rings - number of aromatic rings

a. The equations which depend solely on accurate experimental data are given

in Table IV-4. The equations given here are in a generalized form.

b. The first equation for average length of alkyls is used only if it does

not produce a value of number of aromatic rings in excess of maximum

aromatic rings. See Table IV-6 and text for discussion of the latter

parameter.

c. The ring correction amounts to one hydrogen for each napthenic ring and is

calculated iteratively.
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Table IV-6: Ranges for Determining the Maximum Number of Aromatic Rings

Possible, Given the Number of Aromatic Carbons Present

Number of Aromatic Carbons

> 0,

> 6,

>10.

>14,

>10,

2.22,

>26,

>30,

i 6

110

114

118

<22

126

130

134

Maximum Number of Aromatic Rings

1

2

3

4

5

7

9

10

a. If heteroatoms occupy a significant fraction of aromatic sites, it may be

necessary to include them here.

compounds and the results are given in Table IV-7. Although the model

substances vary from a simple substituted benzene to a relatively complex
tetrahydroanthracene, the program is able to calculate accurately all of the
various factors.

Additionly, the computer analysis has been tested by purposefully intro-
ducing some reasonable errors into the data, as shown in Table IV-8. A 10%
error in the determination of the molecular weight is seen to produce a
similar error in the calculations of the numbers of the several types of
carbons and hydrogens but does not affect other parameters. A low value for

the integral of the aromatic region of the carbon spectrum might result from

an experimental recycle time which was too short. Such an error causes

inaccurate values to be calculated for the average length of aIkyIs and the

number of aromatic carbons per molecule, as well as the other parameters which
depend upon those numbers. An error in the determination of the aromatic

proton integral produces again a nonphysical situation in the ratio of total
aromatic carbon to nonbridge aromatic carbon and distorts the determination of

the ring parameters. The final error situation involved addition of a 10%

hexane impurity into the sample. A proportional discrepancy then occurs in the

average chain length, and many other parameter values are also distorted.

D. Analysis of the SCFC Fractionated Samples

A supercritical fluid chromatographic separation was performed on 13

selected samples of those listed in Table IV-1. Those samples are listed in
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Table IV-7: Comparison of Theoretical and Calculated Average Structure
Parameters for Some Model Compounds

s amp 1 e

parameter

fraction of aromatic carbon
fraction of aliphatic carbon

fraction of aromatic hydrogen

fraction of aliphatic hydrogen

fraction a to aromatic rings

fraction a methyl

fraction P and Y

fraction Y methyl

\ .

carbons per alkyl side chain

C/H weight ratio of alkyl groups

H/C atomic ratio of alkyl groups

percent aromatic carbon

% nonbridge aromatic carbon

% substituted aromatic carbon

% unsubstituted aromatic carbon

% alkyl subs, of aromatic carbons

aromatic carbons pamc

aromatic nonbridge carbons pam

aromatic hydrogens pam

total rings pam

aromatic rings pam

naphthenic rings pam

alkyl substituents pam

aliphatic carbons pam

aliphatic hydrogens pam

a hydrogens pam

a methyls pam

Y methyls pam

i

theor

0.6

0.4

0.3

0.7
0.4
0.2

0.1
0.2

2.0

4.8

2.5

53.7

53.7

17.9

35.8

33.3

6.0
6.0

4.0

1.0

1.0

0.0

2.0
4.0

10.0

5.0

1.0

1.0

1

calc

0.6
0.4

0.3
0.7
0.4
0.2
0.1
0.2

2.0

4.8

2.5

53.7

53.7

17.9

35.8

33.3

6.0

6.0

4.0

1.0

1.0

0.0

2.0
4.0

10.0

5.0

1.0

1.0

theor

0.4

0.6

0.2

0.8

0.3
0.2

0.3
0.3

2.7
5.6
2.1

38.3

38.3

19.1

19.1

50.0

6.0

6.0

3,0

2.0

1.0
1.0

3.0
8.0

17.0

6.0

1.0
2.0

2

calc

0.4
0.6

0.2

0.8

0.3
0.2

0.3

0.3

2.7
5.6

2.1

38.3

38.3

19.1

19.1

50.0

6.0

6.0

3.0

2.0

1.0

1.0

3.0

8.0

17.0

6.0
1.0
2.0

theor

0.6

0.4

0.3

0.7
0.4
0.2
0.2

0.2

2.0

5.5
2.2

57.1

45.7

17.1

28.6

37.5

10.0

8.0

5.0

3.0

2.0
1.0

3.0

6.0

13.0

7.0
1.0

1.0

3

calc

0.6

0.4

0.3

0.7

0.4
0.2
0;2

0.2

2.0

5.5
2.2

57.1

45.7

17.1

28.6

37.5

10.0

8.0

5.0

3.0

2.0

1.0

3.0

6.0

13.0

7.0

1.0

1.0

a. The compounds are 1: methylpropylbenzene, 2: 3-ethyl-l,6-dimethyltetralin,

and 3: 2,6-dimethyl-l,2,3,4-tetrahydroanthracene.

b. The parameters are defined in Tables IV-4 and IV-5.
c. Pam = per average molecule.
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Table IV-8: The Effect Produced by Various Simulated Data Errors on the

Calculated Average Structure Parameters for Methylpropylbenzene

, bparameter

fraction of aromatic carbon

fraction -of aliphatic carbon

fraction of aromatic hydrogen

fraction of aliphatic hydrogen

fraction o to aromatic rings

fraction a methyl

fraction B and f

fraction y methyl

carbons per alkyl side chain

C/H weight ratio of alkyl groups

H/C atomic ratio of alkyl groups

percent aromatic carbon

% nonbridge aromatic carbon

% substituted aromatic carbon

% unsubstituted aromatic carbon

% alkyl subs, of aromatic carbons

aromatic carbons pamc

aromatic nonbridge carbons pam

aromatic hydrogens pam

total rings pam

aromatic rings pam

naphtheric rings pas

alkyl scbsti tvents pan

aliphatic carbons pam

aliphatic hydrogens pam

a hydrogens pam

a methyls pam

Y methyls pam

theor

0.6
0.4

0.3

0.7
0.4
0.2
0.1

0.2

2.0
4.8

2.5

53.7

53.7

17.9

35.8

33.3

6.0
6.0

4.0

1.0

1.0

0.0

2.0
4.0

10.0

5.0

1.0

1.0

1

0.6

0.4

0.3

0.7
0.4

0.2
0.1
0.2

2.0

4.8
2.5

53.7

53.7

17.9

35.8

33.3

5.4
5.4

3.6

1.0

1.0

0.0

1.8

3.6
9.0
4.5

0.9

0.9

e:

2

0.6
0.4

0.3
0.7
0.4
0.2

0.1
0.2

2.1

5.1
2.4

51.4

54.1

18.3

35.8

33.8

5.7
6.0

4.0

1.1
0.8
0.3

2.1
4.3
10.0

5.0

1.0
1.0

rror
3

0,6
0.4

0.3

0.7
0.4
0.2
0.1

0.2

2.0

4.9

2.4

53.7
55.9

17.6

38.3

31.5

6.0
6.2
4.3

1.0
0.9
0.1

2.0
4.0

9.7
4.9
1.0
1.0

4

0.6
0.4

0.3

0.7
0.3
0.2
0.2

0.2

2.3
4.8

2.5

50.1

50.1

16.7

33.4

33.3

5.4

5.4
3.6

0.9
1.0

0.0

1.8

4.2
10.4

4.5

0.9

1.1

a. The errors are 1: 10% low molecular wt., 2: 10% low aromatic carbon
integral, 3: 10% low aromatic proton integral, and 4: 10% hezane impurity.

b. The parameters are defined in Tables IV-4 and IV-5.
c. Pam = per average molecule.
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Table IV-9. With a few exceptions, lighter materials were chosen for

separation. Attempts to fractionate some of the heavier mixtures were

frustrated by low recoveries, the missing portions remaining on the column.

Since cleaning and restoring of 'the column is a lengthy and tedious process

involving dismantling of the supercritical setup and flushing with a series of

HPLC solvents, only the unretained samples were analyzed. This difficulty

could undoubtedly be overcome by use of an appropriate column packing

material.

The percentage of material in aromatic fractions of the product refinery

streams is portrayed graphically in Figure IV-7. It was not always clear from

sample labeling as to the actual sequence of products, so less certain

relationships have been indicated by use of dashed lines. There is a

significant increase in aromaticity during the reforming process (cf. Table

IV-2), and two-ring aromatics are detected which were not present in samples M

or T. However, the weight % of the aromatic fraction has decreased sig-

nificantly in samples L and N. These results are consistent with the formation

of two-ring aromatics, accompanied by dealkylation reactions. The average

molecular weights of these samples in Table IV-9 also support that conclusion.

Hence, both reforming and aromatic saturation have produced a significant

reduction in aromatic content for all three product streams, JP-4, JP-8, and

TP-8 broad range fuels. However, final treatment has resulted in an increase

in aromatic fraction for JP-8 BR, a decrease for JP-8, and almost no change

for JP-4. As expected, diesel fuel has a low aromatic component and gasoline a

rather high one. The properties of the fuels may, in fact, be influenced more

by the relative amounts of contained aromatic material, as shown in Figure

IV-7, than by the absolute nature of the aromatic species present, at least

insofar as all products are derived from the same source, so that the nature

of the aromatic component does not vary widely. The relative invariance of

the aromatic structural types in the later stages of refining is evident from

the NMR spectra and from the average parameter analysis.

The saturate and aromatic fractions, as well as some of the unfractionated

samples, were subjected to elemental analysis and to simulated distillation by

vapor phase chromatography. The elemental analysis was reported to four

figures, but the second figure beyond the decimal is probably not significant.

Universal Oil Products Method 375-59 was used to calculate molecular weights

for the mixtures. The results are contained in Table IV-9. The unfractionated

samples were not submitted for analysis in all cases, because it was found

that the carbon/hydogen and molecular weight values for them could be obtained

from the results for the fractions to within one percent.

Carbon-13 and proton NMR spectra were acquired for all of the fractions

listed in Table IV-9. Analysis of the saturate fractions produced the results
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Table IV-9: Analytical Data for Selected, Shale-derived Refinery Products

Sample8 Wt. %b %CC %HC Ave. Molecular Wt.d

Ce 85.9
sat 48.9
aro 51.1

Je 100.3
sat 32.7
aro 67.3

Le 89.6
sat 53.1
aro 46.9

Me 100.0
sat 30.4
aro 69.6

Ne 95.5
sat 62.6
aro 37.4

0 100.0
sat 72.2
aro 27.8

P 98.1
sat 59.2
aro 40.8

Q 98.7
sat 78.9
aro 21.1

R 99.6
sat 75.3
aro 24.7

S 97.5
sat 55.3
aro 44.7

T 94.1
sat 80.1
aro 19.9

Ue 88.8
sat 68.8
aro 31.2

W 95.6
sat 37.7
aro 62.3

a. The samples are identified
b. As determined by SCFC. The
c. C/H analyses performed by

86.03
85.48
86.56
87.27
85.41
88.17
87.35
84.86
90.16
88.07
85.36
89.25
86.89
85.06
89.94
86.11
85.41
88.85
86.74
85.27
89.40
86.14
85.39
88.64
86.26
85.47
88.95
86.82
85.25
89.20
86.29
85,09
88.78
86.45
85.41
88.73
88.07
84.76
90.14

in Table IV-1.
number given for

12.69
14.67
10 .'79
12.67
14.69
11.69
12.55
15.03
9.75
11.71
14.77
10.38
13 . 15
15.15
9.79
13.74
14.62
11.08
13.25 '
14.77
10.79
13.92
14.50
11.26
13.72
14.51
10.96
13.19
14.85
10.94
13.99
14 .88
11.22
13.58
14.70
11.11
12.06
15.44
9.86

the whole sample
Huffman Laboratories, Inc. except

d. Determined from API gravity and average B.P. (from simulated

175
151
198
190
170
199
163
150
178
158
140
166
147
140
160
153
150
174
157
153
172
145
141
164
160
159
174
160
155
173
136
131
160
195
193
201
141
132
141

is recovery.
as indicated.
distillation)

by use of UOP Method 375-59, except as indicated.
e. The nnfractionated sample

of the data obtained from
was not analyzed>
the fractions.

values are calculated by use
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Figure IV-7: The weight % of the aromatic fraction for the samples of

Table IV-1 which were separated by use of SCFC. These.values include

both saturated and aromatic carbon and hydrogen which are contained in

the aromatic fraction. Less well defined relationships are indicated by

dashed lines.
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given in Table IV-10 for branchiness index, percent naphthenic carbon,
fraction straight chain carbon, and average length of chains. The branchiness

3 7index is defined in the literature as the ratio of the methyl hydrogen
integral to the acyclic methylene integral. We have used it as the ratio of
the methyl integral to all other hydrogen, since it is somewhat difficult to
separate acyclic methylene from acyclic methyne and from cyclic methylene and
methyne. The latter three types are generally not prominent. The branchiness
index has been related to several other properties, such as viscosity and

37percent naphthenic carbon. We have used the equation of Williams (given in
Table IV-10) to calculate the percent of carbon in naphthenic environments. It
is felt that the absolute value of the numbers should be regarded with some
caution, since the calculation has never been tested rigorously under our
spectrometer and sample conditions. However, the relative value of the
naphthenicity is probably accurate and of some utility. The concentration of
normal chains is seen to decrease during early refining steps, for example
sample 6 to sample L, although sample M seems anomalously low. Straight chain
concentration varies slowly in later samples. The average length of normal
chains also decreases from initial values, but tends to change slowly toward
the end of the refining process.'The broad range JP-8 seems to have had some
long chain material added to it in the finishing step, whereas the nanA of the

ft TV

JP-4 has decreased considerably, and that of JP-8 changed very little.

In examining the proton spectra of the aromatic fractions, we find that
very few of them exhibit detectable concentrations of two ring aromatics. The
samples which do are C, L, and N, with traces in U and W. Since samples H and
J do not indicate the presence of naphthalenes, it is likely that the
reforming procedure is dehydrogenating some tetralins or otherwise generating
two-ring aromatics. The aromatic saturation, however, seems to be very

successful in reducing such compounds, as they do not appear in samples P, 0,
or Q.

The aromatic fractions were subjected to average structure parameter
analysis as described in the previous section. Tables IV-11 and IV-12 contain
the results of that analysis. Examination of the tables reveals that there is
not a wide variation in most properties among the various fractions. This may
again be indicative, as stated above, that fuel properties are determined more
by the relative amount of aromatic material present, rather than the.changing
properties of the aromatic contribution. Inspection of the numbers indicates
that the aromatic carbon number is less than six on some occasions, which
would seem to represent a nonphysical situation for any fraction not

containing pure saturates. However, as demonstrated in Table IV-8, relatively
minor errors in the raw data tend to result in numbers such as those found in

Tables IV-11 and IV-12. Unfortunately, the errors of around 10% in NMR
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Table IV-1Q: Branchiness Index, Percent Naphthenic Carbon, Fraction Normal

Chains, and Average Chain Length of SCFC Saturates Fractions of

Selected Shale Refinery Products

Samplea HBIb

C 0.57

J 0.56

L 0.67

M 0.80

N 0.72

0 0.59

P 0.59

Q 0.74

R 0.69

S 0.63

T 0.76

U 0.58

W 0.92

. %CN

36.4

35.8

41.8

48.9

44.5

37.5

37.5

45.6

42.9

39.6

46.7

36.9

55.4

«!
0.36

0.33

0.28

0.21

0.34

0.20

0.25

0.19

0.19

0.25

0.19

0.33

0.30

nave

13.1

11.5

10.0

8.4

9.5

9.6

9.7

9.3

9.7

10.0

8.5

12.2

8.8

a. The samples are identified in Table IV-1.

b. Hydrogen branchiness index = methyl H integral/ other H integral.

c. Percent naphthenic carbon as calculated by the equation of Williams,

which is *>CN = 54.3(HBI + 0.10).

d. Fraction normal chains = carbon straight chain integral/ total C integral.

e. Average length of straight chains.

integrals or molecular weights represent the probable precision of the

determinations involved. It is anticipated that the relative changes beyond

experimental error will be valuable as a means of estimating the changing

properties of the products from the refinery stream. For example, note how few

changes are observed in going from the products of aromatic saturation to the

finished fuels, _i.£. from samples P, 0, Q to samples S, R, T in Table IV-1.

One approach is to develop model compounds from the derived parameters,

following the changes which must be made in the models in order to follow the

refinery process. We have illustrated this procedure in Table IV-13 for

samples L and P. It turns out to be rather difficult to simulate the

parametric analysis data using only a single compound, so we have chosen to

utilize a simple model mixture. Of course dozens, or perhaps hundreds, of

appropriate molecules might be used in the- formulation. As may be noted in
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Table IV-11: Average Structure Parameters for the Aromatic Fractions of
Selected Shale-derived Refinery Products

parameter sample M N

fraction of aromatic carbon

fraction of aliphatic carbon

fraction of aromatic hydrogen

fraction of aliphatic hydrogen
fraction a to aromatic rings

fraction a methyl 0.2
fraction B and y 0.4
fraction y methyl 0.2

carbons per alkyl side chain
C/H weight ratio of alkyl groups
H/C atonic ratio "of alkyl groups

percent aromatic carbon 36.7
% nonbridge aromatic carbon
% substituted aromatic carbon
% unsnbstituted aromatic carbon

% alkyl subs, of aromatic carbons
equivalent % C occupied by hetero

aromatic carbons pam 6.1

aromatic nonbridge carbons pam

aromatic hydrogens pam 2.3

total rings pam 1.9 -
aromatic rings pam 1.3
naphthenic rings pam 0.6

alkyl substituents pam 3.1
aliphatic carbons pam 8.2
aliphatic hydrogens. 'pam 18.3
a hydrogens pam 7.2
a methyls pam 1.2
f methyls pam 0.6

0.
0.

0.
-0.
0.
0.
0.
0.

2.
5.
2.

30.

32.

18.
14.

57.
2.

5.
5.
2.

1.

1.
0.

2.

9.

20.

6.

1.

1.

4C

6

1

9

4

2

4
2

7
4

2

0

8
8
0
3
5

0
4
1

6
0
6

8
6
9
1

4
8

0.3

0.7

0.1
0.9
0.3
0.2
0.2
0.1

3.4
5.5
2.2

58.1
30.0
17.0
12.9
56.8
0.0

8.6
5.0

4.0

1.5
1.9
0.0

2.8
4.8
13.2
8.1
1.3

0.5

0.6

0.4

0.2
0.8

0.5

0.3

0.2

0.1

1.7
4.3

2.8

51.5
45.8
19.0
26.8
41.5
0.0

7.1
6.8

3.4

1.2

1.4
0.0

2.9
5.2

13.7
8.2
1.9
0.5

0.
0.

0.
0.
0.
0.

0.

0.

1.

4.
2.

54.

45.

21.

24.

46.
0.

7.
6.

4.

1.
1.
0.

2.
4.

11.
7.

1.
0.

6

4

2

8

5

3
2

1

8

5

6

8
4
1
3
5

0

3
3
1

6
2

4

9
7
5
5

7
4

0
0

0
0
0
0

0
0

1
4
2

38
52
21
30

41
0

5

6
2

1
1
0

3
7
17
7
1

1

.6-

.4

.3

.7

.5

.3

.4

.2

.6

.9

.5

.0

.1

.6

.5

.5

.0

.5

.9

.1

.6

.0

.6

.4

.4

.1

.0

.8

.1

0

0

0

0

0

0

0

0

2

5
2

44
38

23

14
62
0

6
5
2

1
1

0

2

6
16
s7
1

0

.4

.6

.1

.9

.4

.3

.3

.1

.1

.2

.3

.3

.0

.7

.3

.5

.0

.3

.5

.4

.4

.5

.0

.9

.5

.0

.9

.8

.8

0.5

0.5

0.1

0.9

0.4

2.2

4.8

2.5

37.6

20.6

17.0

54.7

0.0

5.4

a. The parameters are defined in Tables IV-4 and IV-5.
b. The samples are identified in Table IV-1.
c. Olefin content is included in the aromatic fractions.
d. Pam = per average molecule.
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Table IV-12: Average Structure Parameters for the Aromatic Fractions of

Selected Shale-derived Re .finery ̂Prodjw_t8, Continued

parameter sample R

fraction of aromatic carbon

fraction of aliphatic carbon

fraction of aromatic hydrogen

fraction of aliphatic hydrogen

fraction a to aromatic rings

fraction a methyl 0.3

fraction 0 and y 0.4

fraction y methyl 0.2

carbons per alkyl side chain

C/H weight ratio of alkyl groups

H/C atomic ratio of alkyl groups

percent aromatic carbon 38.7

% nonbridge aromatic carbon

% substituted aromatic carbon

% unsubstituted aromatic carbon

% alkyl subs, of aromatic carbons

aromatic carbons pam° 5.3 ••

aromatic nonbridge carbons pam

aromatic hydrogens pam 2.1

total rings pam 1.3

aromatic rings pam 1.0

naphthenic rings pam 0.3

alkyl substituents pam 3.2

aliphatic carbons pam 6.8

aliphatic hydrogens pam 16.2

a hydrogens pam 6.5

a methyls pam 1.9

y methyls pam 1.1

0
0

0

-0
0
0

0
0

2

5
2

38

38

23
15

60

5
5
2

1

1

0

3
7
16

7
1

0

.4

.6

.1

.9

.4

.3

.4

.1

.1

.0

.4

.5

.7

.4

.3

.6

.6

.3

.2

.6

.0

.6

.4

.3

.7

.6

.7

.8

0
0

0
0
0
0
0
0

2

5
2

42
38
23
15
60

6
5
2

1
1

0

3
6
16
7
1
0

.4

.6

.1

.9

.4

.2

.3

.1

.2

.2

.3

.5

.5

.2

.3

.2

.1

.6

.4

.4

.4

.0

.0

.7

.4

.9

.5

.8

0
0

0
0
0
0
0

0

2

4
2

42

37
21
16
55

5
5
2

1

1

0

3
6
15
6
1

1

.5

.5

.1

.9

.4

.3

.4

.2

.2

.9

.4

.3

.6

.0

.6

.9

.6

.4

.6

.1

.0

.1

.0

.2

.2

.0

.7

.0

0

0

0

0

0

0

0

0

2

4

.5

.5

.1

.9

.3

.2

.4

.2

.0

.9
2*r5

41
42
22

19

53

7
5

2

1

2

0

2

7
20

7
1

1

.5

.3

.8

.5

.9

.0

.6

.1

.3

.0

.0

.9

.9

.1

.0

.3

.5

0
0

0
0
0
0
0
0

2

4
2

60
29

17
12
58

7
5
3

1
1

0

2

3
10

7
1
0

.5

.5

.1

.9

.3

.4

.2

.1

.8

.7

.5

.7

.6

.2

.4

.1

.1

.0

.7

.1

.6

.0

.3

.5

.1

.2

.9

.3

0.7
0.3

0.3
0.7

0.5

1.5

4.1
2.9

50.9

19.6

31.3

38.4

6.0

a. The parameters are defined in Tables IV-4 and IV-5.

b. The samples are identified in Table IV-1.

c. Pam - per average molecule.
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Table IV-13, sample L was found to be adequately represented by a 1:1 mixture

of 6-methyltetralin and 2-ethyl-6-raethyl-3-propylnaphthalene. In order to

simulate sample P with similar compounds, it was necessary to saturate one

ring, remove one carbon, and move a carbon from a gamma to an alpha position

in the second component. The resulting mixture was of 6-methyltetralin as

before, plus an equal molar amount of 3-ethyl-l,6,7-trimethyltetralin. The

results are seen to be consistent with refinery process occuring at this step

in the process.

As another example of the utility of the parametric analysis, examination

of the carbon' spectra of the aromatic fractions reveals that the resonance

lines attributable to straight chain alkyl fragments appear prominently only

in samples C and J, with an easily detectable amount in sample D. In all of

the other aromatic fractions methyl and ethyl are the only prominent saturate

substituents detected. That observation is consistent with the parametric

analysis results discussed above in that only samples C, J, and U exhibit an

average alkyl chain length which approaches three carbons. On the other hand,

the samples with the shortest average chain length were L, N, and W, which are

the samples for which the presence of two-ring aromatic? was noted, again

leading one to the conclusion that the two-ring aromatic materials are being

produced by the cyclization and dehydrogenation of substituted benzenes.

The fact that unbranched hydrocarbons of any length are not usually

detectable in the aromatic fractions is initially somewhat surprising. This

may be a result, at least in part, of the fact that aromatic centers

substituted by long chains have boiling points above those which have been

used for the distillation cuts in the mixtures being studied here.
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V. ANALYSIS OF EBBS FUELS

A. Introduction

On the basis of the situation now existing in world petroleum markets and

the need for alternative sources of aviation kerosenes, as discussed in the

introductory chapter, the formulation of an experimental fuel having less

restricted properties was proposed at a workshop held in Cleveland at NASA

Lewis in 1977. This was called an experimental referee broadened-specification

(ERBS) aviation turbine fuel.38 In 1979 a panel instituted by the Coordinating

Research Council recommended some modifications in the original property
on

requirements.

After investigation of a number of possible sources, it was found that a

mixture of 65% traditional kerosene with 35% hydrotreated catalytic gas oil

(HCGO) was able to meet the majority of the specifications.40 This initial

fuel contained 12.8% hydrogen and was call ERBS 3B-12.8. Later, fuels of

lower hydrogen content (12.3% and 11.8%) were created by blending of the

3B-12.8 fuel with a mixture of HCGO and xylene bottoms. The blending stock

was called ERBS 3S.

The above fuels have been characterized by traditional analytical methods.

However, because of the possibility that some of the characteristics of the

alternate fuels will be determined by properties not currently tested, it was

decided to analyze these fuels also by use of NMR, which can give additional

insight into the actual molenlar content in order to complement traditional

analytical methods currently in use.

B. Characterization of the Whole Fuels and HPLC Fractions

The proton NMR spectra of the three ERBS fuels and the blending stock are

given in Figure V-l. Each spectrum has been divided into general regions

according to the scheme given in Chapter IV. The distribution of integrated

intensity is given in Table V-l. In the spectrum for the 12.8% fuel, one may

note that although 5% of the hydrogen comes from aromatic sites, there are no

easily discernible, well resolved resonances in the region from 6.6-8.3 ppm,

indicating that there are no prominent single species. On the other hand the

spectrum of the blending stock, which1 is,as mentioned above, a mixture of

xylene bottoms and HCGO, exhibits many individual lines, representative of a

relatively small number of compounds in high concentration. The proton spectra

of the 12.3% and 11.8% hydrogen ERBS fuels in Figure V-l reveal essentially

the same pattern in the aromatic region as that of the blending stock. The

spectral region from 1.9 to 4.0 ppm of those samples is also dominated by
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signals resulting from addition of the 3S stock. The. triplet near 1.2 ppm of

sample 3S undoubtedly results from the CH, of an ethyl group attached to an

aromatic ring.

The carbon-13 NMR spectra of the three fuels and the blending stock are

given in Figure V-2. The 100.0-150.0 ppm aromatic carbon region of the 3B-12.8

sample contains considerably more detail than is found in the corresponding

proton spectrum. In the aliphatic region straight chain hydrocarbons are quite

prominent, representing almost half of all saturated carbon. It is also

possible to detect isoprenoid-like compounds in the spectra (cf. Chapter II).

In the 3S sample characteristic lines are observed for xylenes and ethyl-

benzene, which are the most prominent species, although trimethylated benzenes

are in evidence. Ethyl benzene is identifiable in the spectrum due to the

presence of resonances at 15.7, 28.9, and 144.3 ppm. Ortho-xylene is

distinguishable by the occurence of lines at 19.5 and 136.2 ppm. Heta-zylene

and/or mesitylene (1,3,5-trimethylbenzene) are represented by the lines at

21.1 and 137.5 ppm, while para-xylene may be identified through lines at 20.8

and 134.4 ppm. The remaining prominent lines, which are at 20.8, 136.0, 134.4,

and 133.2 ppm, indicate the presence of pseudocumene (1,2,4-trimethylbenzene)

in the sample. Results from the HPLC studies, described below, indicate that

the straight chain hydrocarbon resonance lines observed in the spectrum are

derived almost entirely from the HCGO component.

The ERBS fuels and blending stock were separated into five fractions by use

of HPLC, as illustrated previously in Figure III-2. Fraction I represents the

saturates component, fraction II single-ring aromatics, fraction III two-ring

aromatics, and fraction IV principally ' three- and four-ring aromatics.

Fraction V. obtained by backflushing the column, contained polar compounds.

The areas under the curve of the UV detector are not quantitative, as there is

actually a rather small amount of material in fractions III-V. Although the

trace shown is for an analytical column, similar resolution was attainable on

the Magnum 20 column previously described with up to 1.5 grams sample loading.

Although the HPLC separation were very effective, difficulties were encoun-

tered in isolating the fractions from the HPLC solvents, which were iso-octane

and n-hezane. Because recovery problems prevented isolation of quantitative

HPLC fractions, the following discussion will be limited to a qualitative

basis only.

As a typical example of the proton results, spectra of the first three

fractions of. the 11.8% sample are given in Figure V-3. One may note that the

purification of the saturates fraction is quite good, and there is no

detectable integral for any aromatic hydrogen in the spectrum. The bulk of

the resonance signals here is attributable to methyls and methylenes. The

one-ring aromatic fraction is, as expected, dominated by presence of methy-
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Table V-l: Normalized Distribution of Integrated Intensity in the Proton and

Carbon-13 NMR Spectra of ERBS Turbine Fuels and Blending Stock

Chemical Shift Region11 3B-12.8 3B-12.3 3B-11.8 3S

HYDROGEN

aliphatic

alpha

CHj

CH3
beta and gamma ,

CH2 (and beta CH^)

CH,

0.95

0.09

0.05

0.04

0.86

0.55

0.31

0.92

0.14

0.06

0.08

0.78

0.50

0.28

0.90

0.20

0.07

0.13

0.70

0.46

0.24

0.78

0.35

0.10

0.25

0.43

0.31

0.14

olefinic 0.00 0.00 0.00 0.00

aromatic

1-ring

2-ring

3-ring

CARBON

aliphatic

straight chain

branched and other

aromatic

0.05

0.04

0.01

0.00

0.70

0.30

0.40

0.30

0.08

0.06

0.03

0.00

0.67

0.19

0.48

0.33

0.10

0.09

0.02

0.00

0.61

0.18

0.43

0.39

0.22

0.18

0.03

trace

0.42

0.09

0.33

0.58

a. As specified in Table IV-3.

b. This entry specifies the fraction of aromatic hydrogen, f?.
r

c. This entry specifies the fraction of aromatic carbon, rr.
ft

lated benzenes, although there is a small amount of aliphatic straight chain

alkyl substitution evident. In the two-ring fraction there is almost no

straight chain aliphatic material, and most of the aliphatic component derives

from methyl, or a small amount of ethyl, substituents. Of course this is a

minor portion of the original sample, barely observable in the spectrum of the

whole fuel.

The proton spectrum of the polar compounds, obtained by backflushing the

column after separation of the blending stock, is given in Figure V-4. This

fraction is very small, and great difficulty was encountered in accumulating a

sufficient quantity for analysis. The majority of compounds present appear to

be aliphatic ethers. No carbon spectrum was acquired for this fraction.

The highly aromatic nature (f£ is 0.68) of the two-ring fractions is
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ERBS FUEL
3B-H.8X H
Proton NMR
Saturate* Fraction

B«nz*n«« Fraction

Naphthal«n«« Fraction

8.0 6 .0 4 . 0 . 2 .0 0 .0 PPM

Figure V-3: Proton NMR spectra for three of the HPLC fractions of ERBS sample
3B-11.8. The saturates cut contains no evidence of any aromatic material. The
aliphatic resonances in the two-ring fraction result predominantly from
methyls attached to aromatic rings.



ERBS BLENDING STOCK
Proton NMR
Polar Compounds

TMS

8.0 6.0 4.0 2.0 0.0 PPM

Figure V-4: A proton NMR spectrum of the polar compounds obtained from sample

3S by backflushing the HPLC column.
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further demonstrated by the carbon spectrum presented in Figure V-5, where it
can be seen that very little aliphatic carbon is present outside of methyl and
ethyl groups. It is possible to identify readily the following compounds as
being present:* • 1-methyl- and l,x-dimethylnaphthalenes, chemical shifts
near 19.2 ppm, where x = 3 to 7; 2-methyl- and 2,y~dimethylnaphthalenes, where
y = 4 to 8, chemical shifts near 21.6 ppm; 1,2-dimethylnaphthalene, 14.4 and
20.6 ppm; 2,3-dimethylnaphthalene, 21.6 ppm; and 2-ethylnaphthalene 15.6, and
29.1 ppm. There is also a resonance (25.9 ppm) corresponding to the methyl of
1,8-dimethylnaphthalene, although the presence of that compound is somewhat
surprising, since it is a higher energy isomer often considered to be absent
from such mixtures.

Fraction IV was most abundant in the blending stock, although it is not
observed at the detection level displayed in the proton spectra given in
Figure V-l. In the 13C spectrum shown in Figure V-6, it will be noted that

cthis fraction consists primarily of aromatic carbon (f^ =• 0.88), and that
there is almost no aliphatic carbon other than methyl groups present in the
sample. The chemical shifts noted are characteristic of substituted
anthracenes and phenanthrenes, ^' but very little * C NMR data has been
published on polyaromatic compounds and thus a more detailed analysis is not
possible at this time.

The fact that only the saturates and one-ring aromatics fractions of these
materials contained substantial amounts of straight chain hydrocarbon frag-
ments was somewhat unexpected. However,.since addition of long substituents to
the larger aromatic compounds would increase their molecular weights sig-
nificantly, it is perhaps not surprising that they are not found in samples of
modest boiling point.

C. Analysis of the SCFC Fractionated Samples

The three ERBS fuels and the blending stock were separated by use of SCFC.
Later NMR work revealed that the separation of the last two samples, the
3B-12.3 and 3S mixtures, was not as clean as achieved previously, as aromatic
protons could be detected in the proton spectra of the saturates fractions,
which condition was not observed for any previous case. Upon repeating these
separations, we found the results to be even worse, apparently due to
degradation of quality of the column packing. The approach of the end of the
contract period and prior commitment of the chromatograph to other tasks
prevented achievement of a totally clean separation for those two samples.
However, the resulting errors are apparently not too serious, as the values
obtained in the various analyses do not reveal gross inconsistencies.
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ERBS BLENDING STOCK
Corbon-13 NMR
Three- and Four-ring Aromatics

JL
CDC I TMS

50 125 100 75 50 25 0 PPM

Figure V-6: A carbon-13 spectrum of the three- and four-ring aromatic
compounds separated from the 3S blending stock by HPLC. The majority of
the aliphatic carbon appears as methyl.
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The ERBS fractions were subjected to carbon/hydrogen analysis and simulated

distillation. Average molecular weights were calculated by means of Universal

Oil Products nethod 375-59.36 Those results, together with the SCFC yields and

fraction distributions, are contained in Table V-2. Inspection of that table

indicates again that the proportion of the fnel mixture which is contained in

the aromatic fractions is an important parameter, as it ranges from 37 to (1%

over the samples. Some confidence may be gained in the separation technique by

noting the hydrogen content of the whole fuels, which wore not subjected to

direct eleaental analysis. Rather, the C/B content for them has been

calculated from the values obtained from the fractions. Note that they are

within one percent of the values .obtained by use of a very accurate NMR method

in the original analysis performed upon them. The molecular weights of the

ERBS fuels are higher and the. hydrogen contents lower than those of the

finished fuels from the shale processing (cf. -samples R, S, and T of Table

IV-9).

Table V-2: Analytical Data for ERBS Fuels

Sample*

3B-12.8

sat
arb

3B-12.3

sat
aro

3B-11.8
sat
aro

3S
sat
aro

ft. %b

97.6
63.0
37.0

96.0
52.0
48.0

98 .4
39.3

60.7

84.0*
26.4
73.6

%CC

86.96
85.28

89.82

87.72

85.66

89.95

88.29

85.44
90.14

88.99
86.06
90.16

%BC

12.81
14.70

9.59

12.33

14.55
9.93

11.71
14.68
9.78

10.72
14.07
9.53

Ave. Molecular ft.

181
172
196

179
169
190

167
172
164

160

151
163

a. The unfractionated samples were not analyzed) values are calculated by use

of the data obtained from the fractions.

b. As determined by SCFC. The number given for the whole sample is recovery.

c. C/H analyses performed by Huffman Laboratories, Inc. except as indicated.

The second figure beyond the decimal is undoubtedly not significant.

d. Determined from API gravity and average B.P. (from simulated distillation)

by use of UOP Method 375-59, except as indicated.

e. This low recovery was due to column failure, and it was impractical to

repeat the experiment. .
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Carbon-13 and proton NMR spectra vere acquired for all of the fractions
listed in: Table V-2. The saturates fractions of the ERBS samples were
analyzed for branchiness, percent naphthenic carbon, fraction straight chains,

and average chain length according the procedures given in Chapter IV. The

results are presented in Table V-3. The branchiness is seen to be greater and

naphthenic content proportionately higher than those of sample S, the broad
range JP-8 fuel evaluated on page 56 of Chapter IV. Straight chains
constitute a much larger fraction of the saturate Material in the ERBS, and

the average chain length is also notably greater.

Table V-3: Branchiness Index, Percent Naphthenic Carbon, Fraction Normal

Chains, and Average Chain Length of ERBS Saturates Fractions

Sample

3B-12 . 8

3B-12.3

3B-11.8

3S

HBIa

0.53

0.58

0.60

0.29

%cj

34.2

36.9

38.0

21.2

«:
0.40

0.40

0.42

0.47

Q

fi

11.1

11.1

11.2

11.8

a. Hydrogen branchiness index = methyl H integral/ other H integral.

b. Percent naphthenic carbon as calculated by the equation of Williams,

which is %CN - 54.3(HBI * 0.10).

c. Fraction normal chains = carbon straight chain integral/ total C integral.

d. Average length of straight chains. .

Inspection of the proton spectra of the aromatic fractions of the ERBS
fuels indicates the presence of substantial amounts of two-ring aromatics, the

presence of which was noted in the discussion of the whole samples.
Naphthalenes are present in the HCGO which was used to produce both the ERBS

3B-12.8 fnel and was also added to xylene bottoms to produce the 3S blending
stock. Since there is considerably more single ring material in the 3S sample,

it is expected that the aromatic rings per average molecule would be less in
this sample, as is found. No naphthalene was detectable in the' aromatic

fractions of the finished fuels studied in the previous chapter. Naphthalenes
are undesirable constituents in finished fuels, as they have been postulated

as nucleation compounds for smoke formation. Protons substituted on alpha
carbons are very prominent in the spectra.

The aromatic fractions of the ERBS have somewhat higher average molecular
weights than those of the shale products, indicating that they also have
higher boiling points. Whereas normal alkyls were hardly detectable in the

shale derived fuels, they are readily observed in the carbon spectra of the
ERBS. Methyl and ethyl substituents are, however, more prominent.
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Average parameter analysis was performed on the aromatic fractions as

described in the previous chapter. Table V-4 contains the results. As expected
the properties of the various samples do not vary widely. They have a higher

proportion of aromatic carbon and .fewer snbstitnents than do the R, S, and T

fuels. In fact, a comparison of the numbers indicates that the ERBS samples
are much more like samples M, L, and N than the finished fuels. If broad
specification fuels are found to perform adequately, they could perhaps be

produced more effectively by traditional refinery methods carried through
reforming, rather than blending of finished fuels.

The parameters of Table V-4 were used to formulate some model compounds

corresponding to samples 3B-12.8 and 3S. It is often difficult to mimic a
complex mixture by a single molecule, which was true-for the 3B-12.8 fuel. As

mentioned previously, dozens of substances could be imagined which could
succeed in modeling a given sample, although they would all have to have many

common features. In this case, a 1:1 mixture of 2-methyl-3-propyltetralin and
6,7-dimethyl-l,2,3,4-tetrahydroanthracene were found to represent the fuel in
an adequate fashion, as illustrated in Table V-5. For the 3S sample a single

compound, 6-methyltetralin, was found to provide an adequate representation,
although the model may be improved somewhat by the addition of 20% dimethyl-
naphthalene, which is consistent with the known composition. Although these
molecules may not actually occur in the mixtures of interest, they are seen to

be generally representative of them.
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Table V-4: Average Structure Parameters for the Aromatic Fractions of the
EBBS Fuels and Blending Stock

parameter8 ERBS 3B-12.8 3B-12.3 3B-11.8 3S

fraction of aromatic carbon •

fraction of aliphatic carbon

fraction of aromatic hydrogen

fraction of aliphatic hydrogen
fraction a to aromatic rings
fraction a methyl

fraction 0 and f

fraction y methyl

carbons per alkyl side chain

C/H weight ratio of alkyl groups

H/C atomic ratio of alkyl groups

percent aromatic carbon
% nonbridge aromatic carbon
% substituted aromatic carbon
% unsnbstituted aromatic carbon

% alkyl subs, of aromatic carbons

aromatic carbons pam"

aromatic nonbridge carbons pam
aromatic hydrogens pam

total rings pam

aromatic rings pam
naphthenic rings pam

alkyl substituents pam

aliphatic carbons pam

aliphatic hydrogens pam
a hydrogens pam
a methyls pam
y methyls pam

0.6
0.4

0.2

0.8

0.4
0.2

0.3

0.1

2.0

5.2

2.3

50.4
43.9
19.3
24.6
44.0

8.2
7.2
4.0

2.2

1.5

0.7

3.2

6.4
14.6
7.4
1.0
0.7

0.6
0.4

0.2
0.8
0.4
0.2
0.3
0.1

2.2
4.6
2.6

54.6
43.1
16.5
26.6
38.2

8.6
6.8
4.2

1.6
1.9
0.0

! 2.6
5.6
14 .5
7.1
1.2

0.7

0.6

0.4

0.2
0.8

0.4
0.2

0.3
0.1

2.0

4.9

2.4

53.4

45.5

18.2

27.4

39.9

7.3
6.2

3.7

1.7
1.5
0.2

2.5
5.0

12.2

6.4
1.3
0.5

0.6
0.4

0.3
0.7
0.5
0.3
0.2

0,1

1.6
5.2

2.3

54.6

54.8

22.9

31.9

41.8

7;4

7.4
4.3

1.8
1.0

0.8

3.1
4.8

11.1

7.6

1.4
0.2

a. The parameters are defined in Tables IV-4 and IV-5.
b. Pam = per average molecule.
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Table V-5: A Comparison of Sample and Model Average Structure Parameters
for the Aromatic Fractions of the ERBS 3B-12.8 and 3S Samples

parameter*
3B-12.8 3S

sample model sample model 1 model 2

fraction of aromatic carbon
fraction of aliphatic carbon

fraction of aromatic hydrogen
fraction of aliphatic hydrogen
fraction a to aromatic rings
fraction a methyl

fraction B and y
fraction y methyl

carbons per alkyl side chain
C/H weight ratio of alkyl groups
H/C atomic ratio of alkyl groups

percent aromatic carbon
% nonbridge aromatic carbon
% substituted aromatic carbon
% unsubstituted aromatic carbon

% alkyl subs, of aromatic carbons

aromatic carbons pamc

aromatic nonbridge carbons pam
aromatic hydrogens pam

total rings pam
aromatic rings pam
aaphthenic rings paa

alkyl substituents pam '
aliphatic carbons pam
aliphatic hydrogens pam
a hydrogens pam
a methyls pam
y methyls pam

0.6
0.4

0.2
0.8
0.4
0.2
0.3
0.1

2.0
5.2
2.3

50.4
43.9
19.3
24.6
44.0

8.2
7.2
4.0

2.2
1.5
0.7

3.2
6.4
14.6
7.4
1.0
0.7

0.5
0.5

0.2
0.8
0.4
0.2
0.3
0.2

2.3
5.6
2.1

48.2
42.8
18.7
24.1
43.7

8.0

7.1
4.0

2.5
1.5
1.0

3.1
7.0
15.0
7.0
1.0
1.0

0.6
0.4

0.3
0.7
0.5
0.3
0.2
0.1

1.6
5.2
2.3

54.6
54.8
22.9
31.9
41.8

7.4
7.4
4.3

1.8
1.0
0.8

3.1
4.8
11.1
7.6
1.4
0.2

0.5
0.5

0.2
0.8
0.5
0.2"
0.3
0.0

1.7
5.4
2.2

49.3
49.3
24.6
24.6
50.0

6.0
6.0
3.0

2.0
1.0
1.0

3.0
5.0
11.0
7.0
1.0
0.0

0.6
0.4

0.3

0.7
0.5
0.3
0.2
0.0

1.7
5.2
2.3

55.1
50.3
21.0
29.2
41.9

6.8
6.2
3.6

2.0
1.3

0.7

2.6
4.4
10.0
6.8
1.2
0.0

a. The parameters are defined in Tables IV-4 and IV-5.
b. The model compounds are for 3B-12.8: a 1:1 mixture of 2-methyl-3-propyl-

tetralin and 6,7-dimethyl-l,2,3,4-tetrahydroanthracene; for 3S: model 1
is 6-methyl-tetralini model 2 is the same plus 20% dimethylnaphthalene.

c. Pam - per average molecule.
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VI. NEW SPECTROSCOPIC TECHNIQUES

A. Theoretical Considerations

It has been proposed by some workers that C NMR data on whole fuels could

be used for average parameter analysis. We demonstrate here why that

assumption produces significant errors in all calculations involving average

lengths of substituted chains.

Pure normal alkanes of length greater than eight carbons produce a five

line carbon spectrum (cf . Figure II-2 of Chapter II), which we designate

Cj.Cj.Cg.C* and CQ, corresponding to a,P,y,6 and e. Now the ratio, R, of the

integral of line C to that of any of the other four lines for a hydrocarbon

of length n carbons will be R=(n-8)/2. If we wish to determine the average

chain length in a mixture of hydrocarabons, it is necessary to measure R

experimentally and calculate n. The result is then n=2R+8. Now a normal alkyl

chain of length m, greater than eight carbons, with a substituent at one end

will generally produce a nine line spectrum: Cj.Cj.Ca.C* and C being the same

as above, plus C »C <,C »• an^ m̂-3 a* t^ie oth-er»8U^stituted end of the

chain, which will not be readily identifiable in a complex mixture, as they

will vary by snbstituent. For a normal alkyl fragment the ratio, R', of the

integral of CQ to that of one of Cj.Cj.Cj or C4 (C^ may be best, as C3 and C4
do not always shift, and the intensity of C« is often coincident with methyls

attached to aromatic rings), is now R'=n-8. If we again measure R' and

calculate n, the result will be n=R'+8, which is obviously not in agreement

with the result obtained above for unsubstituted alkanes. Thus it is not

possible to calculate an accurate value of average chain length, or any

parameter which depends on it, from carbon integrals obtained from a sample

containing a mixture of simple and substituted normal alkanes.

B. New Pulsing Techniques

Some new pulsing techniques have been developed which may have broad
1 ̂implications for the interpretation of complex C spectra in the near future.

These techniques include J-resolved 2D spectroscopy,44' ̂  INEPT, 4<* and

DEPT.47 The latter two will be illustrated briefly here.

The INEPT pulse sequence is given in Figure VT-1. It involves phased

pulsing of the proton channel coherently with the carbon channel, and pulse

delays based on the value of the C-H spin-spin (J) coupling. By properly

varying A of Figure VI-1, the various multiplicities (CHj, CH2, or CH) present

in a spectrum may be differentiated. This is illustrated for the aliphatic

portion of the fairly simple spectrum of the oil shale of Figure II-l in
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Figures VI-2 and VI-3. In Figure VI-2 signals resulting from methyl and
methyne carbons are positive, while those due to methylone carbons are
inverted. In Figure VI-3, using a different delay, only signals from CH
carbons, normally obscured, are retained, while those due to carbons with two
or three attached hydrogens are (almost) nulled.

The next four figures demonstrate application of the technique to a much
more complicated spectrum, that of the nitrogen compounds, sample I of Table
IV-1. In Figure VI-4 the aromatic region of the spectrum is illustrated. The
unprotonated carbons are very clearly identified, providing a great deal of
potential information about the species which may be present. For example, the
occurence of protonated carbons near 149 ppm indicates the presence of
pyridine derivatives, as there are very few protonated carbons which may be
found at that field. Figure VI-5 shows the aliphatic portion of the same
spectrum, and in Figure VI-6 INEPT is applied so that essentially only CH
carbon lines are positive. In Figure VI-7 a different combination is applied,
illustrating more the methyl groups. This experiment will obviously be of
great utility in analyzing complex spectra, where it is normally impossible to
achieve useful multiplet resolution in a traditional coupled spectrum.*

DEPT (distortionless enhancement by polarization transfer) also relies on
coherent pulsing of proton and carbon spectrometer channels, but multiplet
selectivity is achieved by varying a proton pulse width (theta) rather than
only delays. This results in spectra with much less phase distortion and
apparently improved relative intensities. The relevant pulse sequence is given
in Figure VI-8.

The use of DEPT is illustrated on a model compound in Figures VI-9 and
VI-10. The values of theta and the spectra which result are shown in Figure
VI-9. These are added and subtracted according to the equations given in
Figure VI-10, resulting in spectra containing only lines of a single
multiplicity.

Although some residuals may result in the edited spectra as a result of
imperfections in the spectrometer hardware, the spectra of single multiplicity
may be used to obtain quantitative integrals for the various species in the
sample. This is best done by subtraction of the latter spectra from the normal
spectrum. An example of the spectra needed is shown in Figure VI-11. The top
trace is acquired under spectrometer conditions which will guarantee that all

•We are indebted to the Bruker company and W.E. Hull for acquiring the INEPT
spectra at 125 MHz.
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coupled spectrum.
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NITROGEN COMPOUNDS FROM COLORADO SHALE OIL

AROMATIC PORTION

INEPT PULSE SEQUENCE

170- 160 150 140 130 120 110 100 PPM

Figure VI-4: Upper trace: the aromatic region of the 13C NWR spectrum of the

nitrogen compounds extracted from shale oil (sample I). Lower trace: the

nnprptonated carbons have been nulled by use of an INEPT pulse sequence.
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lines have correct relative intensities. The bottom spectrum has been produced

by the DEPT procedure. The normal spectrum should be carefully integrated.

Then, the bottom spectrum should be subtracted from the top one and and the

result integrated. The difference in the integrals will indicate the amount of

methylone carbon present 'as a fraction of the total. Similar calculations may

be done for methyl and methyne, and by difference for unprotonated carbon.

One of the motivations for obtaining quantitative integrals from DEPT or

INEPT spectra is the possible use of the data in more sophisticated analyses

of hydrocarbon mixtures. We demonstrate here, for example, that it is possible

to calculate the carbon/hydrogen (C/H) weight ratio or the fraction of carbon

or hydrogen in a fuel mixture by use of NMR integrals derived from DEPT

spectra.
1

The weight of carbon, CM, of a particular multiplicity (CH3, CH2, CH or C)

in a given sample is proportional to the NMR integral for that species. The

weight of hydrogen in the sample may be delineated similarly. Hence we have

r TC H TH
M M • M M

C TC *• n -rH »
J.f|t It . Xrr*

where I stands for integral and T for total. Now the weight ratio of carbon to

hydrogen obtained by combining these equations is

\* v«f KTJ **•!! v«f KITn • n __ it « y\

Kft ^U (* M Aft

The ratio M = Cjj/Hj( is just the weight ratio of carbon to hydrogen in a given

type of group, i.e_.

for methyl M = 3.972
for methylene M = 5.958
for methyne M = 11.912

Thus it is possible to calculate the C/H ratio of a sample by knowing only the

NMR integral ratios for a given type of carbon.

If aromatic CH integrals are used for the standard, RH becomes f^, hydrogen

aromaticity. It is also now possible to calculate the fraction carbon, Fc, or

fraction hydrogen, FH, in the sample:

Fc = C/(C+H) and Ffl = H/(C+H)

Since these relationships may be expressed in terms of C/H above, we readily

obtain Fg and Fg in terms of the integral ratios:
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DEPT PULSE SEQUENCE
FOR

ERBS-3B

CH,CH2,CH3i

CH,CH3 NULL

Figure VI-11: Top trace: the normal 13C spectrum for ERBS 3B-12.8. Bottom
trace: the CHj only DEPT spectrum for the same molecule. The two spectra
may be subtracted to determine the amount of methylene carbon in the sample.
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and Fg

Of course, the latter calculation will not be correct if the sample contains

elements other than C and H, and the method is /no more accurate than the

integrals used to calculate the values, but it does have the definite

advantage that it is not necessary to compare or calibrate to an external

standard.

In order to check the method, DEPT integral values were acquired for the

model compound ethylbenzene, and the H/C ratio was calculated by use of the

above method. The results were within 1% of the theoretical values. Although

this is somewhat less accurate than traditional elemental analysis, it is

sufficiently accurate to be of great utility and suggests that the DEPT

technique has the potential for generating very precise data. Unfortunately a

modern spectrometer capable of doing the DEPT experiment was not routinely

available during the course of this study) hence only a simple example of the

power of the technique is presented.

Refinement and utilization of techniques like DEPT to determine accurately

the distribution of carbon in species of the various multiplicities would

allow some significant additional refinements of average parameter treatments.

These developments are on the immediate horizon, and they will enable us to

gain a clearer and more accurate insight into the actual composition of

complex hydrocarbon mixtures.
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VII. CONCLUDING REMARKS

The principle objectives of this study centered on the investigation of the

following subjects: . •

1. model compounds related to fuels

2. products resulting from the refining of shale oil

3. properties of broadened-specification fuels

4. new spectroscopic techniques applicable to complex mixtures

These objectives have been met, and the major conclusions and scientific

findings are summarized below.

The model compound studies were concentrated on four saturated, acyclic

isoprenoids, farnesane, pristane, phytane, and sqnalane. which are similar to

those found in many geochemical deposits. Such compounds are of interest,

because the distribution of stereoisomers in them has been related to

maturation of the deposit. Previous characterization of the diastereomers

required extensive use of chemical derivatization techniques. This study has

demonstrated that it is possible to detect the distribution of diastereomers

in such mixtures by use of high field carbon-13 NMR. Farnesane was found to be

a 1:1 mixture of isomers, probably produced by hydrogenation, while our

pristane sample contained, only a single isomer and is undoubtedly a natural

product. Phytane was observed to exhibit mixed stereochemistry, having only

one conformation represented at two chiral centers, but random stereocon-

formation at the third. It was likely produced by reduction and hydrogenation

of naturally occuring phytol. Sqnalane was found to have random stereo-

chemistry, probably resulting again from hydrogenation. Some of the carbons

in that molecule were influenced by three chiral centers, poducing four

resonance environments. Long range steric chemical shifts were noted for

carbons as remote as seven bonds from a chiral center, and chemical shift

regularities were noted. •

In attempting to prepare 100 milligram quantities of fuel fractions by use

of HPLC, we found that great difficulty was encountered in liberating the

fractions from the eluent. This led us to utilize supercritical fluid

chromatography on a modified HPLC instrument, with carbon dioxide as the

carrier fluid. Successful separation of fuel samples on a preparative scale

required the careful determination of needed chromatograph conditions and the

development of some new techniques for sample collection.

The shale oil samples were analyzed by .use of NMR. Suitable samples were
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fractionated by use of SCFC chroma tography. One of the most interesting

conclusions of this work is that perhaps the quantity of aromatic material
present in a fuel sample is more critical in determining .its properties than

the absolute nature of the aromatic species present, at least insofar as the

samples being compared are derived from the sane feedstock. A second point of

interest is that the long, straight chain aliphatics were observed almost
exclusively in the saturates fractions.

Average parameter analysis was refined by grouping the parameters into two

groups: 1) those depending only on the quality of the raw data for their
accuracy, and 2) those depending upon the prior determination of other

parameters. Perhaps the most critical parameter was found to be average length
of alkyls, as many other values depended on its determination. The assumptions

often utilized in connection with the calculation of average chain length were

examined and thought to be inadequate in many cases. A second method for
determining that number was developed when criteria relative to the possible

number of aromatic rings were violated. The average parameters were utilized
to demonstrate the formulation of model mixtures approximating the fractions

in order to illustrate graphically the progress of the refining.

The ERBS samples were fractionated by use of HPLC into saturates, one-ring,
two-ring, three-ring and polar fractions. The two-ring fraction consisted

mostly of mono- and dimethylnaphthalenes with some ethyl substitution, but
little other saturated carbon. It was not possible to identify specific
compounds in the three-ring fraction, but again the saturated carbon was
limited almost exclusively to methyl groups. ! v .

The ERBS samples were subjected to SCFC separation and average parameter

analysis as above. The analysis revealed that the aromatic fuel fractions

resembled more the shale products before final aromatic saturation rather than

the finished fuels. Example model mixtures were again developed.

Theoretical considerations were developed to demonstrate the necessity of

an aromatic-saturates separation in order that an average parameter analysis

produce accurate results. INEPT spectra of some of the shale samples were
evaluated relative to the information on multiplicity and composition which

they provided. It was also demonstrated that DEPT spectra might be used to

extract some quantitative information not available from standard NHR spectra.

Suggestions for future work might include application of the separation and

analysis techniques developed in this study to refinery products of tradi-

tional crudes, in order to compare the results. Obviously, we have been able

only to scratch the surface of the possible applications of SCFC to fuels

analysis. Also, the utilization of DEPT for direct determination of the
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amounts of carbon of various multiplicities suggests the refinement of average

parameter analysis far beyond what is now available.
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