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1.0 INTRODUCTION

This report presents the final results of contract number
NAS 9-16281 of the NASA Johnson Space Center. The main goal
of this research contract was . the development of
mathematical models capable of simulating the transient,
steady state; and faulted performance characteristics of
various brushless dc machine-PSA (power switching assembly)
configﬁ;ations. These systems are intended for possible
future use as primemovers in EMAs (electromechanical
actuators) for flight control applications. These
machine-PSA configurations include wye, delta, and
open-delta connected systems, see Figures (1.0-1), (1.0-2),
and (1.0-3), respectively. The research performed under
this contract was initially broken down into the following
six tasks:

1. Development of -mathematical models for <various

machine-PSA configurations,‘

2. Experimental validation of the mathematical model,

3. Shorted turn model for failure modes,

4. Experimental validation of the mathematical model for

shorted turn-failure modes,

5. Tradeoff study, and

6. Documentation of results and methodology.



The fourth task was ultimately eliminated due to problems
in procuring the required equipment.

The developed actuator model is very 'general and can
handle a large variety of machine-PSA configurations. The
model iﬂcludes mutual coupling between the armature phase
windings as well as the ability to handle nonlihearities in
both the inductances and capacitances of the system. This
program automatically generates the state model from the
network topology without any tedious hand derivations. This
model has the capability of handling PSAs with or without
separate choppers. Furthermore the chopping can be either
hystere;is or PWM cdntrolled as desired.

This program hasbalready been applied successfully to
wye, delta, and open delta connected machines as well as
machines with shorted turns in the armature windings.

The model was verified against test data obtained from a
15 HP samarium cobalt permanent magnet brushless dc machine
system designed and built for use in electric vehicles. The
correlation between measured and simulated data was
excellent in all cases; thereby satisfying the second task
listed above.

The third task is concerned with the development and
verification of a shorted turn model. The shorted turn
model was successfully implemented and applied to thelwye
connected machine mentioned earlier. Due to the problems in
securing the required test equipment, the parameters in this

case were assumed to be linear.
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Because of the lack of adeqguate test facilities, the
fourth task was cancelled.

The tradeoff study was not completed because of the large
computer resource outlays required for the finite element
field analysis and associated calculations. The derivation
of this model and results obtained are given in the

following chapters.
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2.0 THE ACTUATOR MODEL

A géneralized hybrid matrix modeling approach, suitable
for the simulation of electromechanical systems copsisting
of solid state switching devices, capacitors (linear or
nonlinear), inductors (linear or nonliﬁear) as well as
rotating machines with mutual coupling between all of the
machine windings, 1is presented in this chapter. This
approach was chosen because it facilitates the automatic
ggneration of the system state model directly from the

network topology.

The systems <that were analyzed using this modeling
approach were divided into two subsystems: the power
electronics and the rotating machine. A brief description
of these two subsystems, as well as their impact on the
overall modeling approach, is given below:

1. The power electronics was the first subsystem considered
here. The state-of-the-art functions of power
electronics subsystems are to cbntrol and process the
flow of power from the dc source to the machine and vice
versa. The power diodes and transistors are assumed to
be the basic switching components of the power
electronics. These diodes and/or transistors‘take on
either very small or very large equivalent resistances

depending upon their "on"/"of£" status. This



nonlinearity requires that the state equations be
updated whenever a diode or transistor changes state
(status). The large spread of these resistance values
causes a correspondingly 1large spread in the time
constants of the overall system. Therefore, for this

class of systems, the governing state equations are very

stiff.

2. The second subsystem, which requires special attention,
is the machiﬂe. In general, both the machine winding
inductances and induced emfs are functions of the
winding currents (state variables) and rotor angle. The
nonlinearities associated with these parameters are
typically much less severe than those produced by the

switching action o¢f the power diodes within the

rectifier bridge.

Both of these subsystems are susceptible to failures or
faults. Therefore additional consideration was given to the
allowed possibility of faults in the wvarious components,
such as the diodes, transistors, fuses,and capacitors of the
power electronics as well as faults within the machine
‘itself. Some of these faults may lead to further'gtiffness

of the system state equations.

The intrinsic characteristics of such electromechanical

systems, during both normal and faulted operation, requires



that the modeling approach be designed to handle very stiff,
nonlinear differential equations. Hence, the . modeling
approach presenfed in this report utilizes a commercially
available implicit integration routine designed specifically
for stiff differential equations. This is 'necessary in
order to accurately simulate the.dynamics of the system with
a minimum expenditure of computer resources. Also the wide
variety éf’topologies encountered in these type of machine
systems, together with the large number of capacitances and
inductances associated with these systems, makes it
mandatory that the state model be generated automatically
from the system topology and component parameters.

Therefore the modeling approach, presented in this report

has the following features:

l. The model is generated automatically from the system

topology and component parameters;

2. the model is capable of handling nonlinear component

parameters; and

3. the solution routines can handle extremely stiff (ill-

conditioned) differential equations.

The theoretical background of a modeling approach with

these three attributes is the subject of this chapter. The



modeling approach makes heavy use of network graph theory
[1,2], and is based upon a hybrid matrix formulation, [2].
This approach is presented in the seven sections of this

chapter. A brief description of each section follows.

In the first section, the nonlinear components typically

found in such electromechanical systems are identified and

described. A suitable network model for each of these

components is presented.

:‘In the second section, the basic concepts of network
graph theory relevant to the chosen modeling approach are
discussed. The use of network graph theory allows for
compact notation and facilitates the actual implementation

of the model on the digital computer.

In the third section, the hybrid matrix approach for
automatically generating the étate equations is discussed in
detail. . This approach was chosen since it easily handles
the wvarious nonlinear components as well as mutual coupling

present in these types of systems.



In the fourth section, the output 'equations (branch
voltages and currents) are obtained in terms of the hybrid
matrix representation used to obtain the state model. The
output equations express all of the branch voltages and
currents in terms of the state variables and forcing

functions.

The fifth section outlines the procedure used to
determine the operating point "on"/"off" of the diodes at
each point in time. The accuracy of the overall solution is
ciosely related to the degree of stiffness and the accuracy

in determining the precise switching points of these diodes.

The procedure for integrating the state variables forward
in time is. given in the sixth section. The effects of
stiffness on the solution accuracy and model performance are

discussed.

In the last section, the modeling approach is verified by
comparison of simulated results with test data obtained from
a- 15 hp samarium cobalt based brushless dc machine designed

and built for vehicle propulsion.



2.1 Models for the Nonlinear Components

Typical EMA systems contain a number of nonlinearities

which must be dealt with separately. The nonlinearities of

greatest concern can be catagorized into four groups:

1.

The first group of nonlinearities is éssociated with the
switching action of the power diodes, see Figure’
(2.1-1). This switching action causes extreme changes
in the electrical time constants of the system. This is
due to the extremely large change in the conduction
properties of the diodes between their "on" and "off"
states. The slope of the switch 1I-V characteristic,
shown in Figure (2.1-1), is equal to the reciprocal of
the equivalent diode resistance at a given operating
point. The "on" state of the diode is represented by
the first quadrant in Figure (2.1-1), where the slope is
large (low equivalent diode resistance). Conversely,
the "off" state is represented by the third quadrant of
this figure. The slope of the diode characteristic, in
this quadrant, is very small and hence can be

represented by a very large equivalent resistance.

The second group of nonlinearities is 'associated with
the switching action of the power transistors. This

switching action also causes extreme changes in the time
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Fig. (2.1-1) Piecewise Linear Diode Model
Approximating the I-V Characteristics
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constants of the electromechanical sysﬁem. Like the
diodes, this is due to the extremely large chaﬁge in the
conduction properties of the transistors between their
"on" and "off" states. The "on" state of the transistor
is represented by a low equivalent resistance.
Conversely, the "off" state is represented by a very
large equivalent resistance. The only difference
between the diode and transistor models is the way in
which the equivalent resistance value is determined

throughout a given simulation run.

The machine parameters (inductances and emfs) of the ac"
machine form the second group of nonlinearities within
the system. These nonlinearities are due to saturation
effects within the iron portions of the machine. The
winding inductances and emfs are influenced also by the
angular displacement between the rotor and stator.
Details on the numerical calculation of these parameters

are given in reference [3, 4, 5]

The last group of nonlinearities considered here is due
to failures which may occur in the various components of
the system. The faults or failures considered in this
work consist of the following: |

a) Open fuses due to electrical or mechanical
reasons;

b) open capacitors due to mechanical reasons;

- 11 -



c) shorted capacitors due to dielectric breakdown;

d) open circuited diodes due to electrical or
mechanical reasons; and

e) short <circuited diodes due to electrical or
mechanical reasons.

Nonlinear Network Model of the Diodes and Transistors

The nonlinearity due to the switching action of a diode
is modeled by a piecewise-linear representation of the
spécific diode's 1I-V characteristic, as shown in Figure
(2.1-1). In terms-of an egquivalent network component hbdel,
the diode is modeled as a nonlinear or bi-valued resistance,
see reference [6, 7). The "on" (or first quadrant) value of
this resistance is défined as the forward voltage drop of
the actual diode divided by the forward diode curreﬁt at
rated conditions for the given system under study. This
data is obtained from the actual manufacturer's data sheets
of the power diodes. A similar model is used for the
transistor; however, the resistance value (between collector
and emitter) is assumed not to be polarity sensitive.
These simplified switch models were chosen because it was
found from past experience thatvthe excessive coﬁpgtation

required to include the dynamics during the actual switching

-12 -



process would add little in the way of improved accuracy in
the predicted system response. This is primarily aue to to
the fact that the percent of the total simulation duration
which these switching devices spend within the highly
nonlinear region of their IV-characteristics is small. This
is true for these types of machine systems primarily because
of their relatively low frequency application. The modeling
approach presented in this report can incorporate equivalent

network models for these switching devices if additional

accuracy is required.

The algorithm used to switch from one diode state to the
other is described in detail in Section 2.5. On the
otherhand, the control 1logic used for determining the
"on"/"off“ state of each transistor is a function of the
state variables, forcing functions, the rotor angle, the

machine speed, the mode of operation, and the commanded

machine torque.

Machine Model Including Shorted Turns

The second nonlinear system component modeled was the

multiwinding machine. The-electromagnetic interactions

- 13 -



between the wvarious windings was modeled by means of n-~
coupled coils, one for each of the n windings. The model of
each winding consiéts of three series connected components;
the coil resistance, the incremental self and mutual
inductances, and the open circuit back emf. The inductances
and emf's are functions of the level of saturation and hence
this model is nonlinear. Also, these parameters are
fﬁnctions of the rotor angle, hence the model is time
dependent as well. This machine model is general enough to
be applied to machines similar to the permanent-magnet dc-
machine systems described in Chapter 1. For simplicity,
the multiple armature machine will be treated as having two
separate armatures. One of these armatures is assumed to be
normal or healthy (h) while the other is faulted or
defective (d). The n-coupled coil approach is quite general
and can easily be extended to any number of armatures and

fault configurations.

The spatial relationships among the axes of the seven
windings of this machine is displayed in Figure (2.1-2).
Notice that there are two windings for each of thrée phases
(a,b,c) as well as a seperate field winding (f). The coil
axis or positive MMF direction of each coil is indicated by

the arrows labeled (a,b,c,f). The angle between the

- 14 -
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positive MMF of phase A and positive field MMF is denoted by
an angle theta. The behavior of the field winding is
assumed to be controlled by the value of the field current,
which is treated as an external known forcing function and
hence not a state variable. In the case of a permanent
magnét machine, +this field'cur%ent would be held constant.
Based upon these assumptions, the voltage equations for the
seven winding machine model can be expressed in matrix form

as follows:

I B N I

|v2{ {o R, © : o o o } {12: ;‘2}

|V3| |0 0o R3 | © 0 0| |13| |k3| (2.1-1)
|- ]=]-=mmmme e [-==m-mme- |*]-- | +d/dt |-

| 11 ! | 1| ||

I B B

v 1

6 6 6 6

I | |1 | °

Notice that the effect of the field winding was incorporated
into the vector of winding flux linkages since the field
current was assumed to be a known function of time because
of the permanent magnets. Equation (2.1-1) can be éxpressed
in shorthand matrix notation, specifically advantageous for

partial fault analysis, as follows:
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Bio |

m-==|=m==]*[-=]+d/dt|--] (2.1-2)

o lnlld D

LA I

Y and V4 Trepresent the voltage vectors of the
healthy' (h) and faulted’ or defective (d) armature
phase windings (terminal voltages), respectively;

Ry and Ry represent the resistance matrices of the

healthy and faulted phase windings, respectively;
ih and id represent the current vectors of the
healthy (h) and faulted (d) phase windings,

respectively; and,

lh and 1, represent the flux linkage vectors of the

healthy and faulted phase windings, respectively.

The flux linkage -vectors, ;h and Ad' are functions of the
six armature currents, {il,..., iel, the field current, if,
and the rotor position, 6. Hence, by the chain rule:

_ . . c YR A34
[dlh/dt] = [agh/all]*[dll/dt] + ...+ [agh/alsl [dls/dt]

+ [agh/aif]*[dif/dt] + [aAh/aO]*[dO/dt] (2.1-3)
[dld/dt] = [ald/aill*[dil/dt] + ... 0+ [aid/aisl*[dis/dt]

+

[a) /01 J*[di /dt]

+

[agd/ae]*[de/dt] (2.1-4)
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The first derivative of the rotor angle, 9, with respect
to time, t, is defined as the radian velocity, w, of the

machine as follows:

w = doydt ' (2.1-5)

The "induced armature emf" can be obtained from equations

(2.1-3) and (2.1-4) as follows:

| Tay/0i 1) | Taky /501

l
| 132g/24¢] | | 12247201

(2.1-6)
The partials of lh and ld with respect to the currents are,
by definition, the machine incremental inductances. These
inductances are given in matrix form as: L., Logr Lper

L and L and are defined as follows:

ah’ Zag: df’

Ly

--------------------------- (2.1-7)
Lpa = :agh/ai‘} | 3 /35 | alh/aisi

-------------------------- (2.1-8)
Lpe = }a-h/aif{

------- (2.1-9)
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Raa = |

/3, } JWWATH I ald/aisf

 (2.1-10)

(2.1-11)

(2.1-12)

Using equations (2.1-3) through (2.1-12) one can rewrite the

armature

terminal voltage vector,

follows:

vl | By | O | iyl leyl

P71 | A I I
[-=|=]====]-===*[==]+]--] +

vl 1o 1 mg ! gl leg

v i e

-d = =d =d =d

A | N T I
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(2.1-2), as



(2.1-13)

In expanded form,

the terminal voltages of the armature can

now be written as follows

o N ™M™ 0 W
o o Q 1 Q9 v v
+
s N Mmoot 0 W
T D T I B T
*

! 0
O O o “0 o m
]
! 1
o O O “0 M O
[
(I o
O O O "R O O
{
[
O O m “0 o O
N “
O ™M O "0 o O
]
~ !
M O O 10 O O
.
AN MmO

<

—

'

-

~

A
BN
A e A b A

P

K¢,

N

el

-
W VW VYW YW W
o N m @ & w0
[ S S “ a0 Aa
T T Y I Y BT )
A N Mm@ W
S = B " H a A
¥ @ P P P
w N m 1 W
o I RS | " (S S =
m Mm@ @ o
w N Mm@ 1w
1 A J “ = S A
N N N 1N N o
H N MmN W
a1 4 A “ a4
e T T T T T B
- N ™M | W
(S S B [ BS: B |

- 20 -



Equation (2.1-14) is the governing matrix equation of the
seven winding machine. This equation corresponds to the

lumped parameter network model shown in Figure (2.1-2).

The vectors and matricies employed in Figure (2.1-2) are

related to this discusion by the following identities:

......... (2.1-15)

- e o
[

........... | (2.1-16)

et

w

e
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rio
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a

It
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A procedure used to obtain these emf and inductance
parameters using the finite element method is described in

detail in references [8, 9, 10].

Nonlinear Network Models of the Faulted Components

One dimportant application of the simulation model
presentea in this work is to analyze the effects of
component faults in the PSA. These faults may occur in the
fh§es, the snubber capacitors, and in the diode and
transistor switches. The failures or faults within these
components may be due to both electrical and/or mechanical

reasons.

Nonlinear Component Model of the Fuses

The nonlinearity of the fuse model results from the
incorporation of its failure modes mentioned previously.
The first fuse failure mode considered here results from the
fuse thermal rating (izT) being exceeded. This is due to
sustainéd excessive fuse current. Once a fuse opens and
clears, the open fuse is modeled as a very large resistance.
Thus, the fuse model is somewhat similar to the diode model

in that it also is modeled as a nonlinear resistor.

The second failure mode, considered here, results from

mechanical fatigue. It is assumed that this type of failure

- 22 -



mode results in an open (large resistance). The only
difference in these two failure modes is " in their
initiations. The first failure mode is initiated when the
accumulated energy exceeds the izT rating of the fuse. The
second type of failure mode is initiated by the USER at a

specified time within a given simulation run.

The use of the low or high values of resistance to
simulate the state of each fuse makes it possible to use
just one network topology during both the faulted and

unfaulted modes of operation. This greatly simplifies the

analysis.

The unfaulted state of the fuse is modeled as a very low
resistance. This resistance value as well as the izT rating
are obtained directly from the fuse data sheets supplied.by
the manufacturer. An example, [10], of suchla data sheet,

in graphical form, can be seen in Figqure (2.1-3).

The data, given in this figure, which is pertinent to the
fuse model is summarized below:
l. THE RATED CURRENT (IRATED) specifies the rated current
that can pass through the fuse indefinitely without

causing the fuse to open and clear.

- 23 -
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Figure (2.1-3)

Example Fuse Characteristic
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2. The IZT rating of the fuse can be obtained from this

figure by squaring the RMS \;’alue of any cufrent, Iz,
within the specified "section for calculating IZT" as
shown in Figure (2.1-3) and multiplying this result by

its corresponding time, Tz, as follows:

5 - (2.1-18)

3. The Total Simulation Duration (TSD) is USER specified
and is defined as the total duration of the computer
", Simulation run. The intersection of TSD with the
boundary between safe and open operation regions gives
the value of the threshold current I'I‘HS‘ This current
represents the minimum value of the fuse current for
which the fuse energy is accumulated. If this
accumulated energy exceeds the izT rating then the fuse
is opened and cleared. Notice for the specified time
period, TSD’ any value of sustained fuse current below

ITHS will not result in a fuse open.

These parameters are incorporated in the fuse network
component model for a given simulation. The schematic and
corresponding network component symbols of this model are

given in Figure (2.1-4).
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The latching-hysterisis behavior of the fuse model is
shown also within this figure. The fuse is modeled as a
piecewise (latching) linear resistor which can take on two
distinct and very widely spread values. The nominal
(unfaulted) value of the fuse resistance (RNOM) can be
obtained from the manufacturer'g data sheet. The fuse will
always have this 1low resistance value if the energy
dissipatéd within the fuse never exceeds its IZT rating.
This safe région of operation is shown in Figure (2.1-4) and
corresponds to the region bounded by the shaded (FUSE OPEN
AND CLEARED) region and the two axes (time versus current)
as illustrated in Figure (2.1-3). Once the fuse exceeds its
IzT rating, the resistance value of its corresponding
network component model (RFUSE) is made very high (R

OPEN
to simulate the open circuit condition.

The second fuse failure mode, that is the mechanical
opening of a fuse, is USER initiated. This is accomplished
by setting the fuse resistance, RFUSE' to be equal to ROPEN
at some predetermined time during the computer simulation
run. These two modes for initiating a fuse failure can be
considered as natural (IZT) and forced (mechanical). The
latching behavior of the fuse model, as shown 1n Figure

(2.1-4), is necessary since once the fuse is opened, it will

remain open for the remainder of the simulation.
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Nonlinear Component Model of Faulted Capacitors

The nonlinearity of the capacitor model is strictly due
to the incorporation of its failure modes.
These failure modes are:

l. An open circuit due to mechanical fatigue; and
2. a short circuit due to dielectric failure.

The equivalent network model of the fault capacitor
during the normal, open, and shorted modes of operation, is
iliustrated in Figure (2.1-5). The two resistors (Rcs and
RCO) within this equivalent component model are bi-valued
piecewise linear resistors. The very large (open) value and
the very small (shorted) value of these resistances are

determined by the specific capacitor mode of operation.

These three modes of operation of the fault capacitors
(normal, open, or shorted) can be implemented by the various
combinations of the resistance values for RCO and Rcs as

illustrated in Figure (2.1-5).

The failure modes of the fault capacitor are initiated in
the following manner: }
1. A shorted capacitor (Roc and RSC are set fo small
values) is initiated if the fault capacitor's voltage
(which 1is typically a state variable) exceeds its

breakdown value. This breakdown voltage wvalue, called

- 28 -



VCBD' is obtainable from the manufacturer's data sheet.

Even though a breakdown can occur for differeﬂt voltages
(ac or dc), it is the responsibility of the engineer
when incorporating these <voltages to use his/her
judgement in determining a suitable peak breakdown
voltage, VCBD’ to be used ;n a given simulation. Once
the breakdown (shorted fault) has occurred, the values

of ROC and RSC’ in Figure (2.1-5) are latched at very

small resistive values.

2. The open capacitor (Roc and RSC are set to very large
" values) is assumed to occur due to mechanical fatigue.
This type of fault is initiated by the USER at a
specified time during the simulation run. Once the open
failure méde has occurred, the values of Roc and RSC are
latched at very large values of resistance for the

remaining duration of the simulation.

The initiation of  these two failure modes of the
capacitors can be considered as 1) natural, in the case of
the short, and 2) forced, in the case of the open. The
latching behavior of this model is necessary since it is
assumed that these failures (faults) are permanent during a

particular simulation run.
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a) Unfaulted Capacitor

(K

Reo = Rox
Ros = Rorr .
b) Shorted Capacitor
c
Reo = Roy

¢) Open Capacitor

C
——
H |
Reo = Rorr
E I RON‘- Very small resistance,

R = Very large resistance

Figure (2.1-5) Faulted Capacitor Equivalent Network Model



2.2 Network Graph Theory Concepts

The computer-aided analysis of relatively qomplex
systems, such as the EMA systems introduced in Chapter 1,
requires a systematic procedure for formulating the
governing state equations on the digital computer. This can
be accomplished by applying generalized graph theory
concepts, [1,2], and matrix algebra to the lumped-parameter
network model of the system under study. The economical
advantage of this approach 'becomes apparent when it is
re&uired to model a number of different topologies (or
systems) using the same simulation program, as is the case
here with the wvarious typeé of power conditioners and-

brushless dc-machine systems considered in this report.

In this section, a brief background on the fundamental
concepts and definitions of network graph - theory are

presented. For further detail, see references [1,2].

A lumped-parameter network model of a system can be
represented by means of a directed graph. A directed graph
consists of a set of branches which are interconnected at
nodes. A branch is a one-port representation of a network
component. The relationship between the ‘branch vol.i:age and
branch current is defined by the component model. Typical
components encountered in EMA systems include resistors,

capacitors, inductors, diodes, sources, rotating machines,

- 31 -



etc. Models of multi-port components are represented by a

set of branches (one-ports).

In this work, the positive direction of the current
through a branch and the positive direction of the voltage
rise across a branch are defined using the consumer
notation, as shown in Figure (2.2-1). In the consumer
notation, positive branch power is defined as power consumed
within the branch, thus the branch is said to be acting as a
sink. On the other hand, negative branch power is defined as

power generated from within the branch, thus the branch is

said to be acting as a source.

Branch power is defined as the product of the branch
voltage and the branch current. For the k-th branch, as

shown in Figure (2.2-1), the branch power is defined as:

P = v * i (2.2-1)
b P TPy
The branch voltage, Vi, s is defined as the difference
k _
between the node voltages VN and VN ¢ taking the assumed
m n

positive direction (from node m to node n in this case) of

the current, ib , as follows:
k

v = v -V (2.2-2)
bk Nm ' Nn

The node voltages VN and vy are defined in terms of a

m n

reference (ground) node voltage, Veef:
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By
v, v,
Nm Nn
Reference

=

Figure(2.2-1) Branch Voltage and Current References

- 33 -



Consider for example, an arbitrary network with a total

of NB branches and NN nodes. In this network, it is assumed

that at least two branches are connected to each node. At

this point, it would be advantageous to define some of the

basic network graph terms used thoughout the remainder of

this report. .

Loop

- Tree

Cotree

Cut-Set

A loop is a set of two or more branches which form a

closed path

A tree is a subgraph of a network graph which must
satisfy three conditions.

l. All NN nodes must be contained in the tree.

2. All NN nodes must be connected by branches. These

branches are called twigs.
3. The twigs may not form any loops

The cotree consists of all branches of the original
network not contained within the chosen tree. The
cotree branches are called links. The insertion of

any link into the tree results in a closed loop.

A cut-set is a "set" of branches which when "cut"

away from the original network graph will totally

. isolate it into two separate subgraphs.
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It must be noted that for any network graph there exists
more than one choice for a tree and its corfesponding
cotree. The particular type of tree which is employed here
is called a "normal-tree". A normal-tree is defined as a
tree whose branches are selected in a specified sequence

according to their component types.

In particular, the selection of a normal tree requires
that all the independent voltage sources, E, and capacitors,
C, within t.he original network model be chosen with the
hiéhest priority as twigs. All voltage sources are selected
first. It is assumed that there are no all voltage soufce
loops. Next, all of the capacitors, except for those
belonging to a C-E loop, are selected as twigs. A C-E loop
is defined as a 1loop consisting entirely of capacitors
and/or independent voltage sodrces. Only one of the
capacitors within every C-E loop must be chosen as a link
(branch of the cotree) and the remaining C-E lodp branches
are chosen as twigs (branches of the normal tree). It
should be noted that only the normal tree capacitor voltages
are members of the set state variables. A dual situation
for determining which inductor currents are chosen.as state

variables, is discussed next.
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The selection of a normal tree regquires that no
independent current sources, J, and as few as"possible
inductors, L, be chosen as twigs. This is to say, the
selection of the cotree requires that'all the independent
current sources and inductors within the original network be
chosen with the highest priority as links. All current
sources are chosen first. It is assumed that there are no
all-current-source cutsets. Next, all of the inductors,
except for those belonging to a L-J cutset, are selected as
links. A L-J cutset is defined as a cutset consisting
entirely of inductors and/or independent current sources.
Only one of the inductors within every L-J cutset must be
chosen as a twig (branch of the normal tree) and the
remaining L-J cutset branches are chosen as links (branches
of the cotree). It should be noted that only the cotree

inductor currents are members of the set of state variables.

2.3 Hybrid-Matrix Approach for Automatic Generation

of the State Model

Conventional modeling methods based upon fregquency-domain
techniques, when applied to the analysis of electronically
commutated dc machine systems, often leave mgch to be
desired. This is because of the honlinear components

associated within these systems, such as the rectifier
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diodes and the magnetic core of the machine. The
incorporation of such components into an overail system
model requires a nonlinear time-domain approach that can
easily accommodate these component nonlinearities. Also, in
order to use the many available integration routines, the
governing differential equations of the actuator network
model must be explicitly obtained as the normal form state
equations, [2], as follows:

p(x) =£(x,t) (2.3-1)

where x is the state vector of the system and f explicitly
defines the relationship between the first derivative of the
state vector with respect to time, p( x ), in terms of the
state vector and the independent variable time, t. It is
assumed that all the forcing functions are known functions
of time and/or the state vafiables, and therefore, are

incorporated in £ of equation (2.3-1).

In this section, an algorithm which is used to
automatically generate the normal form state equations from
the network graph of the system under study, is presented.
This algorithm is based upon a hybrid matrix ;pproach,
[2,5], which is well suited for the analysis of nonlinear

electrical networks. There are basically six steps involved
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in the formulation of the normal form state model. These

are:

Step 1 Translate the electromechanical system into a
lumped-parameter network model using the component

models given in Section 2.1.

Step 2 Choose a "normal tree" for this lumped-parameter

network model.

Step 3 From the chosen tree and cotree, obtain a linear
resistive n-port of this network. Express the
behavior of this n-port using a hybrid matrix

formulation.

Step 4 Determine the operating point of the nonlinear

resistors.

Step 5 Solve for the currents of the cotree capacitors and

the voltagés of the tree inductors.

Step 6 Obtain the normal-form state equations using the

results of steps three,four, and five.

These six steps will now be discussed in detail.

Translate System into Lumped Parameter Network (Step 1)

The first step in the derivation of the normal form state

equations for a system is to choose a suitable lumped
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parameter network model. In the case of the brushless
exciter, described in Section 1.2, this consists of:
1. Replacing the permanent magnet machine with a machine

model, similar to one given in Figure (2.1-2);

2. Replacing the components of the power conditioner by

the components models described in Section (2.1).

Choose a Normal Tree (Step 2)

‘Once a lumped-parameter network model of the system has
been obtained, the choice of a normal tree must then be
considered. A normal tree is a member of a subset of the set
of all possible trees. The normal tree is chosen using a
component selection hierarchy. The order or selection
hierarchy for the twig and link branches must conform to the
order given in Table (2.3-1). Furthermore, the numbering of
the branches (twigs and 1links) must also £follow this
hierarcy. It is extremely important that this hierarchy
procedure be followed; otherwise, the matrix partitioning

employed later in this section would be meaningless.

If the network topology does not change then the branch

hierarchy and normal tree selection needs to be implemented

only once per simulation. However, the remaining steps

relating to component value changes must be implemented each
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time any change occurs.

Notice, the branch hierarchjr (allowable branci'x types)
given in Table (2.3-1) does not include dependent sources.
-In this report, mutual inductances and capacitances are
included within the formulation of the state equations. By
eliminating the depehdent sources as allowable components
within Table (2.3-1), there_are no topological restrictions
placed upon the these mutuals. This is most desirable for
the types of power-conditioner fed machine systems

considered in this research.
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Table (2.3-1) Tree and Cotree Branch Numbering

. . G— — — — — — S — — — — D ST S S G S— " G — — S— — —— — —— —
.

ORDER BRANCH TYPE VARIABLE
SUBSCRIPT
----------- ( Tree Branches ) mmemmmsnncccccmea (t) mmm---
l-st - Independent Voltage Sources Et
2-nd Capacitors ( linear or nonlihear ) ct
3-rd Resistors ( nonlinear ) Rt
4-th 1 Inductor ( linear or nonlinear )
per ( L-J ) Cutset . Lt
5-th Resistors ( linear ) R
---------- ( Cotree Branches ) ====wececccccace=- (g) =======
6-th Resistors ( linear ) | G
7-th Independent Current Sources Jc
8-th Inductors ( liﬁear or nonlinear ) Lc
S-th Resistors ( nonlinear ) Gc
10-th 1l Capacitor ( linear or nonlinear )
per ( C-E ) Loop . cc
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Obtain a Linear Resistive n-port from the Chosen Normal

Tree and Represent the n-port using Hybrid Mafrix

Formulation (Step 3)

Once a normal tree has been chosen, the next step is to
segregate all the linear resistors from the other components
-0f the overall network and place them into'an n-port sub-
network as shown in Figure (2.3-1). The motivation for
forming this n-port is to isolate the linear, time-invariant
cogponents of the network and incorporate their influence
upon the other components by using hybrid parameters. Using
this approach, the states of the nonlinear components become
boundary conditions for the n-port. Furthermore, the
relationship between the port voltages and currents are
defined by means of a linear tihe invariant hybrid matrix,
H. This relationship is given by the following matrix

equation:

| i, | | v, |

=t -t

| | | | |

=----I = H l-._.--= (2.3-2)
v 1

I 7| | 7€ |

where H is defined in terms of the linear resistors of

the n-port and is partitioned as follows:

I
I

R e : (2.3-3)
| _
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TREE BRANCHES

COTREE BRANCHES

LINEAR
E
-t RESISTIVE
n=-PORT
£,
2 - W Y.
— =
R xR
t
- t
+
v,
L %,

Figure(2.3-1) Isolation of the Linear Resistors into the
Resistive n-Port Network



The tree, t, and cotree, c, port voltage and current
vectors of equation (2.3-2) are defined in terms of the port

vectors shown in Figure (2.3-1) as follows:

(2.3-4)

|
ot

(2.3-5)

(2.3-6)
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(2.3-7)

The H matrix is obtained by applying KCL to the entire
network in such a way that each twig current is written as a
linear combination of the link currents as follows:

<--twigs-->|<--links-->

| | P oig |
iy
| | |1t
} Itv 9% } Dig D¢c : : ip {
9_1-: ' ------------ I ------------ ' l----l - g
} %t I | Zre Bre | | ic |
| | | | i, |
—C
| | | | |
......................... _——— (2.3-8)

Notice that the current vectors iR and iG are internal to
the 1linear resistive n-port and belong to the tree and
cotree, respectively. Equation (2.3-8) can be written in a
more compact form as follows:

<=--twigs-->|<=--links-->

o
[
i

I
I
ltree { Qcotree
I
l
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Similarly usirig KVL, one can write the fundamental loop

equations as follows:

<--twigs-->|<-=-links-->

| I | | v |
-t
I | ‘ Il I
’ Bot EBgr { Isc Qe { } YR }
Bys= |[------cmae- e | |====] = 0
} §ct §cR { 9cG =cc : l ¥s }
I | [ '
-c
I I I |
(2.3-10)
or in compact form as:
<--twigs-->|<--links-=->
| | | | |
—tree
I | I | I
By= ! Biree = Icotree { {_ -------- I = 0
| I [ 1 |
—cotree
I I 1 I
(2.3-11)
From network graph theory, [3], one can relate D__,. .. and
gtree as follows:
B = -pt (2.3-12)
. —tree = cotree :
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Substituting equation (2.3-12) into equation (2.3-10)

yields:
<=--twigs--> <--links-->
| | S
} Des Do } Isc S { : YR :
By = |------memmeee- ettty b | === = 0
I | b |
: -th -ch } O%c Zce { : s :
| =]

(2.3-13)

The relationship between the voltage and current vectors
of the resistors in the linear resistive n-port network are
related by Ohms law as follows:

Vg = gR i (2.3-14)
for the linear tree resistors and
- Ys = %5

for the linear cotree resistors.

ig (2.3-15)

Inspection of the hybrid matrix equation of the n-port,
eéuation (2.3-2), reveals that the internal variables
{XC’iG‘XR'iR} have been eliminated by incorporating their
influence, on the port variables, in H. This is accomplished
by using equations (2.3-8) and (2.3-13) to relate the port

variables Ve and ic as shown in equation (2.3-2).
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Using the lower partition of equation (2.3-8) and the
component equations given in equations (2.3-14) and

'(2.3-15), one can write the following:

1y +p_.2tv.+D

Zp" ¥p * Dpg %57 Yg i, =0

=Rc =c
(2.3-16)

Solving for Ys using the upper partition of equation

(2.3-13) yields:

K .t t
Y6 = Dig ¥t * Dpg ¥
(2.3-17)
Substituting this equation into (2.3-16) gives:
-1 -1 .t t : .
Zp" Vg * Dpg 2 g [Dyg ¥y * Dpg ¥l + D i, = 0O
(2.3-18)

Solving for Ygr in terms of the port variables yields:

| -1t -1 -1t ) .
Ygp = [2g" * Dpg Zg" Dpg! ° [Dpg Zg" Dy ¥p - Dpe ic!
(2.3-19)
Now define a matrix Y as follows:
_ -1 -1 .t
¥ = [2g" *+ Dpg 25 Dgg!
(2.3-20)
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Using this definition of Y, equation (2.3-19) can be

simplified to the expression:

"Lt zlpt v, -D i

Vg = X 2re ¢ 2tc ¥t ~ ERrc 3¢

YR
(2.3-21)

A similar procedure will now be followed to obtain i, in

G
terms of the port variables. Using the upper partition of
equation (2.3-13) and the component equations given in

equations (2.3-14) and (2.3-15), one <can write the

following:
t t : o
Deg ¥e " Bpg Zpdr * Zg i =8

(2.3-22)

Solving for iR using the lower partition of equation (2.3-8)

yields:
ip = “Dpg ig = Dpc ic
(2.3-23)
Substituting this equation into (2.3-22) gives:
t t . X .
“Dig ¥y * Dpg Zg [Bpg ig * Dpe il * 254 = 2
(2.3-24)

Solving for iG in terms of the port variables yieldé:

o t -1t ot .
iz = (25 * Dpg Zg Dpgl © [Byg ¥y - Drg Zg Dpc il

(2.3-25)
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Now define a matrix 2 as follows:

— t
2 = 125 * Dpg 2R Dyg!
(2.3-26)
Therefore, equation (2.3-25) can be simplified to
S . - _ nt .
iz = 2 "[-Dyg ¥¢ - Dpg Zg Dpc ic |
(2.3-27)

The final step in obtaining H is accomplished by solving

i

substitute equation (2.3-27) into the top partition of

and Y. in terms of Y, and ic. To obtain it in this form,

equation (2.3-8). This yields the following matrix

relationship:
Lo -1 .t ot ' . .
i, = -Dyg 2 7 [Byg ¥y - Dpg Zp Bpo 1.1 - By i
. ) -1 .t
¢ [-Dyg 2 © Digl ¥
-1 _t .
*+ [Beg 2 7 Dpg Zp Dpo - Byl i

(2.3-28)

Similarly, to obtain v substitute equation (2.3-25) into

cl
the bottom partition of equation (2.3-13). This yields the

following matrix relationship:
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-1 .t .
[-Dgrg 25 ~ Dig ¥ Dpe il

_ £ t -1 -1 .t
Yo = [Dge = Dge ¥ © Dpg 257 Digl vy
t -1 |
* [-Dpe ¥ " Dyl i,

(2.3-29)

Combining equations (2.3-28) and (2.3-29) into one matrix

equation gives the following relationship:

: it : : tree response port vector }
[ ==== | = | =em=mmcem——cemeeeecceoooeee- | =
| Y. | | cotree response port vector |
I I | |
I [-D, . 2~1 pt ] } D,. 2 tDpt. 2z p. -D, ] I
| =tG = =tG I =tG — —RG =R =Rc =tc |
| ===mmmmmmmmmmmee oo R |
{ ipt - bt ¥y li-p_. z>1pt ] } (-pf_ v lop_ ] {
| =tc =Rc = RG =G =tG I =Rc = Rc |
I Ve | <===- tree stimulus port vector
| I
* | emee |
] ic | <=--- cotree stimulus port vector
| I
(2.3-30)
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Comparison of this equation with (2.3-2) and (2.3-5) reveals
that this is the desired hybrid matrix equation originally
defined in compact form in equation (2.3-2). It is now
obvious that the influences of the internal linear n-port
resistors manifest themselves as entries within the hybrid
matrix, H. The entries of the matrix, H , are functions of
the netwdrk topology and linear resistors only. Therefore,
for a fixed topology, the matrix, E , needs to be calculated

orily once per simulation run.

At this point, it is necessary to expand the H matrix,
defined in equation (2.3-30), into a partitioned form which
;elates all of the voltage and current port vectors of the
linear resistive n-port,as shown in Figure (2.3-1). This is

given on the next page as equation (2.3-31).

A number of the sub-matricies of H given in equation
(2.3-31) are null. Substitution of these null submatricies
into equation (2.3-31), on the next page, vyvields equation

(2.3-32).
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1

Additional properties of the H matrix are given below:

_ ot A
H, = Hg, (2.3-33)

-t )
H, = H. (2.3-34)
H, = -H., (2.3-35)

Determine Operating Point of Nonlinear Resistors (Step 4)

The Thybrid matrix equatioh (2.3-31) relates the
constraints on the pért voltages (zc,_t) and currents
(;;,it) imposed by the 1linear resistive portion of the
overall network, as illustrated in 'Figure (2.3-1). The
topological constraints imposed by choosing a normal tree,
as defined in section 2.2, gives the hybrid matrix as
partitioned ih equation (2.3-32). This equation does not
include the effects of the nonlinear components, or of the
energy storage elements and independent sources. The effect
of these variables is iﬁcluded by imposing the 1I-V
characteristics (constraints) of these elements as boundary
conditions to the n (two terminal) ports of the linear time-

invariant resistive n-port sub-network.
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At any given instant of time, it is assumed that the
state of the network is fixed; that is, the stored. energy of
each energy storage element remains constant. In this work,
the state varables are the tree capacitor voltages, !ct '
and the cotree inductor currents, _:Lcc . The state

(energy) of the network is fixed at any given instant of

time by holding these state wvariables constant (along with

the indéperident sources). In the case of the nonlinear.

capacitors and inductors, it is assumed that their
incremental component values are functions of the state
variables. The derivatives of the state variables as well
as branch variables of the nonlinear resistors are not
considered "frozen" for any given instant of time, in the
sense that these variables must be determined iteratively
for that instant. The term "frozen" is used to represent
variables that are "known" for a given instant of time.
Specifically, "frozen" variables are the voltages and/or

currents which: -

1. are simply a known function of time (forcing functions

or independent sources),

2. are known as a result of integration (state

variables), or
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3. are linear combinations of the state wvariables and

forcing functions.

The I-V characteristics of the nonlinear resistors are
assumed to be independent of the state variables and forcing
functions. Thus, the values or operating points of these
nqnlinear resistors must simultaneously satisfy their own

I:V characteristics as well as the constraints imposed by
the rest of the network. The procedure for obtaining the

~operating points of the nonlinear resistors will now be

described.

As previously mentioned, the nonlinear components as well
as the independent sources are all connected externally to
the n (two terminal) ports of the linear resistive n-port,
as shown in Figure (2.3-1). The influence of the rest of the

network upon the port varables, i and XG , of the

R
t c
nonlinear resistors can be isolated out of equation (2.3-32)

as follows:
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(2.3-36)

The presence of the four null submatricies within this

t

can be reduced as

are independent of vr

S¢

equation (2.3-26)

and v

equation indicates that iR
t

Cc

and is - Therefore,
follows:

_ [
*®
————
D1 O
O 1V
o’ 1 o
m_ el
]
01 U
[ R RS |
P
o m
[}
1 0
L TR
o’ 1 o
W
]
L1 P
~ 1o,
o 1 o’
il
]
L B~
SR &)
P10
[+ A &
N 1
)
L1 P
16 [ T ¢ ]
Rt“GC
oo o

(2.3-37)
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1

At any given instant of time, the state variables, Yo

and iL . as well as the forcing functions, Vg and
c t
iJ , are fixed (frozen). Hence, the operating points of
c

the nonlinear resistive port variables can be determined by

t

means of an iterative procedure such that both the I-V
characteristics of these resistors and equation (2.3-37)

are satisfied.

The state variables and forcing functions c¢an be
considered as fixed boundary conditions to the 1linear
resistive n-port. This is accomplished by representing
these frozen variables as independent sources for that fixed
instant of time. Therefore, the behavior of the network
shown in Figure (2.3-1), can be represented for that instant
of time, as shown in Figure (2.3-2). In this figure, the
frozen independent port variables are contained within the
outer box while those which can vary are placed outside.
The independent port variables, th and icc , outside
this box are free to vary. The nonlinear resistors are also

placed outside this box since their values must be

determined iteratively, for that given instant in time.

The operating points of the nonlinear resistors are
independent of v and iL as can be seen in equations
t c
(2.3-36) and (2.3-37). This is due to the fact that the

state (stored energy) of the tree inductors and the cotree
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Figure(2.3-2) Port Variables held Constant (Frozen)
while Determining the Operating Points of
the Nonlinear Resistors,gt and S
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capacitors are linear functions of the fixed (frozen) state
variables and independent sources, as given by. rowé "four and
eight of the matrix equation (2.3-32), respectively. These
equations in reduced form 4are:

i, =H i; o+ H . i
Lt Lth Jc Lth L

(2.3-38)

v H V.
Ce  “CcBy "By <t Ci

(2.3-39)
Therefore, the response of the tree inductors and cotree
capacitors is known and fixed for the instant in time under
consideration as depicted in Figure (2.3-3)

Based upon this discussion, equation (2.3-37) can be
conceptualized as the sum of a constant source vector, due.
to the fixed state variables and forcing functions
(represented as "frozen" inputs in Figure (2.3-3)), and a
vector which is a nonlinear function representing the I-V
characteristics of the nonlinear resistors. This can be

represented in matrix form as follows:

| | |
| | |
| | |
------ | = femeeeme] o+ [mmmmee] (2.3-40)
| | |
| | |
| | |
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Figure (2.3-3) Frozen or Fixed Port Variables
While Determining the Operating Points
of the Nonlinear Resistors, Rt and Gc.
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where the source vector is defined as

| 8 | |H |H |H |H |
| Re | | ReCe |HRth | ReEy |HRth |
P T i =l st b
S
l Gc' | | Gcct | Gch | GcEt | Gch |
___________________________ t
| voo | 4 | v | 4 |
Yo L Vg i3
| t | c | t | c |

--------------------------- (2.3-41)
and the vector representing the nonlinear behavior of these
resistors, obtained from equation (2.3-31) and ‘their

noﬂlinear I-V characteristics, is defined as follows:

------ | (2.3-42)

'
1
I
'
i
'
I
'
'
!
1
1
1
!
'
'
|
!
t
I
[
*

In this work, it is assumed that the I-V characteristics of

the nonlinear resistors can be explicitly written as

follows:

(2.3-43)
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; (2.3-44)

where iRt(k) is current through the kth nonlinear resistor

with a corresponding branch voltage of vRt(k).

Therefore, in more compact form, the nonlinear equations

employed in the iterative process to obtain the operating

points of the nonlinear resistors, (gR ,;R ) and
t t
(yG 'iG ), is given as follows:
c c
| ip | | B g | Egg | | 2(ig )| | s |
| t | | Tt | t e | I t | | t |
oo s T e 0 e 8
v g(v S
-G =G_R =G G -G =G
I e | | et | cc | | c | I “e |
(2.3-45)

Note that equations (2.3-43) and (2.3-44) iepresent
either the voltage or current of each nonlinear resistor
explicitly in terms of the other variable. In order to

obtain a matrix equation, similar to (2.3-45) strictly in

- 64 -



terms of one variable (i or v) for each nonlinear resistor,
all of the nonlinear resistors must have I-V charaoteristics
that are single wvalued. The incorporation of diodes within
the overall system model does not present any problem since
their 1I-V characteristics are monotonic and therefore
possess an inverse. In other words, either variable (i or
v) can be written explicitly in terms of the other for the

diode model presented in this work.

It is assumed that at each fixed instant of time or
(eéuivalently for frozen port sources as shown in Figure
(2.3-3)), that a unique operating point for all of the
nonlinear resistors can be determined, [2, 11]. Such a

unique operating point, the solution to equation (2.3-43),

is symbolized as follows:

———————

i
(
]
1
1
i

x

Q

I
|
........... | =n' (2.3-47)
I
I
I

The primes above these variables indicate that they are the
unique solution of the nonlinear egquation (2.3-45); Notice
that this solution is uniquely determined by the state

variables and forcing functions at each instant of time.
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Solve for the Currents of the Cotree Capacitors and the

1

Voltages. of the Tree Inductors (Step 5)

Once the operating points of the nonlinear resistors,

(iRt :th) and (i; .v; ), within the original
c C

network have been determined as 1_1'RG ; the unknown tree
inductor voltages, th , and the unknown cotree capacii:or
currents,. icc , Can be determined, independent of the
nonlinear resistors, for the given instant in time as
illustrated in Figure (2.3-2).

‘ It is assumed, in this work, that component equations
for all inductors and capacitors (including mutuals) can be
expressed (on an instant by instant basis) in matrix form

as follows:

| v | | L o | I | i |

-L =ttt ~tc =L

| t | I | | | t |

: _____ = = ,-L___} ..... : * d/dt}-T-'-: (2.3-48)
v i
=L =ct =cc =L

| c | | I | | c |

| i | | C | C | | v |
=C -ttt =tc —C

| t | | | | t |

ol s v B P
i v
=C =ct —Ccc -C

| c | | | | I c |
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The entries of these coefficients matrices contain
incremental values of inductances and capacitances,
respectively. The arbitrary (m,n) entries for these two

coefficient matrices are defined as follows:

Wiy vip ) ) (ig ))
c c

L= = (2.3-50)

a( i_ ) a( i

n n )

3 qm(vct,vcc) ) 3 qm(vct))

Cp = = (2.3-51)
3( v, ) W vy )

where )\ ( i, , i, ) is the total flux linkage of the
m Lt Lc _

m-th inductor and qm(gc Yo ) is the total charge of
t c

the m-th capacitor. The current, in’ represents the n-th

current within the set of currents ’{iL A 1.
c

Similarly the voltage Vi represents the n-th vgltage within
the set of capacitor voltages ,{yct ’ gcc } . Finally,

the partial derivative, 3( Xm )/3( in ), in equation
(2.3-50), represents the instantaneous change of the total
flux linkage, Xm’ with respect to that n-th winding current,
in' Similarily, the partial derivative in equation
(2.3-51) represents the instantaneous rate of change of the
charge on the m-th capacitor with respect to the voltage

across the n-th capacitor.

In the types of electromechanical systems considered

here, it was assumed that mutual capacitances could be
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neglected. In that case, the capacitance matrix, in

equation (2.3-49), is diagonal.

Using these component equations and the contraints
imposed on them by the linear resistive n port; the unknown
link capacitor currents and twig inductor voltages can now
be determined. The constraints on these port variables are
obtained from the fourth and eighth rows of equation

(2.3-32) as follows:

| ¥ | |H [0 |H |0 |
| Yo | 8 c, 1%, |Fe E, 1% . |
e Tl e P e I
| Ty TEeCe | 7Bele |TheBe TheIde |
___________________________ t
| ¥o | i | v | i |
i, Ye iz
| t | c | t | c |

(2.3-52)

Differentiating both sides of this equation yields the

following:
| ¥ | |, 10 |H 10 l
—cc | ccct | chc | ccEt | chc ]
ntl i Bl oy Mg P Mg B
l — — — —
| Lt | | Ltct | Lth | LtEt ' Lth |
___________________________ t
d/dt | vo | i, lvg | iy |
Ce | T | By | T

(2.3-53)
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Using equations (2.3-48) and (2.3-49) one can write

(2.3-54)

into equation (2.3-54)

(2.3-53)

Substitution of equation

yields

] ' '
| + 1 I
[ <3 I I T
= I I | B

P

o

N

T

L 3
' | '
' (S0 (S 3]
[ I Ly TR
O
10/ o
| ————— 1
! ' )
[} $ 1 Fo AN |
T < IO T £ [ |
! [ ] P
1 0O 1 a
1o 1ol

+
| | '
B
.Vn_v_i__

P

M

o

*
' |
' 0 (I
a3 1 A
1 [ ] 1
I ™ N1
“n% 1o "
! t 1
' 1 $ 1
1 D 1D
I (S I FEIN]
I & I ™ I
[+ T IR I & | D

(2.3-55)
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Collecting terms yields:

| i~ |
=C
|=emie |
| ¥ [
=L
| t |
e o e e E e e e |
Zct 1Zcc Zcc 'Zct L e, ZcL Ye
[l 7% 1 | | | | et | “e'e || t |
1 P N T T S P R W
i
-ttt ;—tc =tc ,-tt =L.C =L _L =L
{l [ [ | IlttltCI} I Te |
f_. |
IC |0 I | |H | | v |
=cc ,—ct =C _E = J -E
| | | | et | Tcc | t |
B P P TR P i et R
i
~tc ,=tt =L.E =L.J =J
-t "1 | 7tt | Tthe | I "¢ |
(2.3-56)
Thus we have expressed ;c and v, in terms of the
c t '

derivatives of both the state variables and forcing

functions. This completes step 5.

Derivation of the Normal Form State Equations (Step 6)

The final step in obtaining the normal form state
equations uses the results from steps three, four, énd five.

The response port variables, ic and v, of the state
t c
variables Yo and iL , respectively are defined by
t c
rows two and six of equation (2.3-32).
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These two equations can be expressed as follows:

'
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(2.3-57)

above the nonlinear resistor port wvariables,

The primes

that these satisfy

the

indicate

’

Cc

il
equation (2.3-45).

and

v

Next, the substitution of equation (2.3-56) into (2.3-57)

yvields the matrix equation on the next page.
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one can express the

using equation (2.3-56)

Furthermore,

vectors i and v as follows:
=C¢ L
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from

and i

(=

Substituting for the derivatives of Yo

equation (2.3-53) yields:
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Regrouping equation (2.3-60) and substituting the result for

the left side of equation (2.3-58) yields:

{IC 10 | IC 0., | | |0 [ | ¥ |
-ttt ;—tc =tc =ttt =C C —C_L s
I | | ! | | | et | TeTe || | "t |
TS0 o R P o T PR PR | Rt I
f_ |
. IC. 10, | |H 19 | | ¥ |
| tc | tt | | ccEt | Cch Et |
S vea vl o e e
i
- =ct =L_E =L.,J =J
17°C | | 177t |t | | Ve |
= (Right side of equation (2.3-58)
(2.3-61)

Finally, by performing the necessary matrix algebra on
equation (2.3-61), the derivative of the state variables can
be explicitly expressed in terms of the state variables, the
forcing functions and their defivatives, as well as the
(iterated upon) nonlinear resistor port variables as shown

in equation (2.3-62).

Thus the general form for equation (2.3-62), where x is
the state variable vector, u, is the forcing function

vector, and Q'RG is the previously solved for nonlinear
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resistors' port vector as given in equation (2.3-47), can be

expressed as follows:

d( x )/dt =

>
1%
+
1w
e
+
Q
A
e
S
o)
ct
+
o
i
)
Q

(2.3-63)

. .Details on how equation (2.3-62) is numerically

integrated are discussed in Section 2.5.

Inspection of the expanded form of the state model,

equation (2.3-62), reveals that the invérse of the matrix,

Mor

matricies {A,B,C, and,D} given in equation (2.3-63), the

is required. 1In order to numerically evaluate the above

matrix MCL must be inverted only once for networks not
containing any nonlinear capacitances and/or inductances.
Fortunately, this matrix has some properties that simplify
the numerical calculations for its inverse for networks
containing nonlinear inductors and/or capacitors. These

properties are discussed next.



1

MCL can be obtained from equation (2.3-62) as follows:

I | I | |
M | Oy, | |H C.. B | [ |
CL tt | tc ' | thc cc CCCt ' Cth |
|---=-- |------ I | === mmmmmmeean |
| oe it | | o B L Lo H g |
| —ct | =cc | ' —LCCc I—Lth =ttt —Lth |
e | IHe o Cp | Onp ¥
S P N R M
[ —LCCt I—Ct —Lth L] —LCCt I—Lth =ttt L]
| = e |
I_ |
(2.3-64)

All of the hybrid sub-matrices within MCL are skew symmetric
and hence one can use this information to reduce computer
memory requirements. Incorporating this fact, MCL can be
expressed as follows:
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My, = | Mo | O |
| | |
|--=-- |------ |
e e |

= =L
| | |

} tt te ccct } {

| . . | I

|+ (CoeBHog ) | O¢c |

| ct | |

4 HS o C.. He o | |
| c't t | |

B T L+ L. H . |

+
{ } cc =ct —Lth I
t t

I [o] | + (L _H ) |

| ct | tc Lth |

| . Hf Ly H |

| | tc t e |

(2.3-65)

From matrix algebra, the inverse of MCL should be
calculated by taking the inverse of M, and M individually

as follows:

I I
I I
...... | === (2.3-66)
| |
| |
| |
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1

gtc

Ltc

This approach greatly reduces both computer mémory and

computation time to form the required inverse of HCL'
Further simplifications of MCL are possible if the
capacitors and inductors are bilateral, or
t - t - t
Cct ¢ Cee T G ’ e = Ecc
t - t - t
Sct ¢ LDee = Ly ‘ Lee = Lee
(2.3-67)

=CL

where

and

| | |
’ Err*Crc*Cec { 9 I
|-=mmmmmmmmmee |=mamemmmnmnne |
| | |
| | N
} 9 } Lpptlrctlec }
Cpp = it
Chn =C. . H + (C,.. H
¢ = Ste Hc c, te ¥ c
Cece = Bo e Cee gg c
t ¢ t7c
Lee = Lee
Lem =L H + (L., H
cr = Zet Hnn_ et B L
L...=H° . L., H
Lrr = B on, Bee B p

yields the following: .
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2.4 Automatic Generation of the Output Equations

At any given instant in time, the values of all branch
voltages and currents are completely determined by the state
variables and forcing functions of the system. In matrix

form, this statement can be expressed as follows:

- . t
X"EE*'E& +EE +QB +K‘}-1RG

(2.4-1)

where y is the (output) vector of all the branch voltages
and currents within the overall network. The vectors, x, u,

and E'RG . were previously defined in equation (2.3-63).

The dot notation represents the first derivative with
respect to time (i.e. d(x)/dt = x ). The output vector,

Y, can be expanded in terms of the previously defined branch
variables, equations (2.3-4) through (2.3-7), as shown in

Table (2.4-1).

The tree port voltages, Xt’ are defined in equation
(2.3-4). The first two vectors of v, are the independent

voltage sources, Vg . and the twig capacitor wvoltages,
t
v Remember v is one of two components of the
¢ ¢
state vector, X, and Vg is one of two components:of the
t
forcing function vector u. The other two components of u

and x are the first two elements of ic , equation (2.3-7),

respectively. Again, these four components, Vo iL ’
t c

, and iJ , are known for any instant in time.

V.
Et c
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Table (2.4-1) Partitioning of Network Branch Variables

| | |
| v, | Tree Port (stimulus) |
| I |
| it | Variables (response) |
I | I
I | I
I | |
| Yr | Tree Non-port | Internal |
| I | |
| iR | Variables | to the |
[ I I I
| == |=————mmreeec—rce—- | Linear |
I | | ' [
| Ys | Cotree Non-port | Resistive |
I I | I
] iG | Variables | n-port |
| I | |
| I |
| | |
| Ve | Cotree Port (response) |
I | [
| i, ] Variables (stimulus) |
| [ ' I
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The next two components of the output equations are

v and i
Rt —Gc

and ic . see equations (2.3-4) and (2.3-7), respectively.

, which occur as the third entries of V.

These two vectors can be obtained by using equations
(2.3-43) through (2.3-45). Since the nonlinear resistors
are modeled by piecewise linear, continuous, passive and

strictly monotonically increasing I-V characteristics, the

inverse of their component equations exist. Therefore
\_rRt and ch can be written as follows:
-1 =t
v' = rTo(i'p ) (2.4-2)
Ry Re
-1 '
i = g (¥'e ) (2.4-3)
Gc Gc

Since the operating points of the nonlinear resistors are
fixed at any given instant in time, the nonlinear operators
r"} and ¢"! can~be replaced by the constant coefficient

matrices R = and G~ 1 , respectively, for that
= ReRy ~ GG

instant in time. Thus for that instant, equations (2.4-2)
and (2.4-3) can be combined into one matrix equation which
define these nonlinear resistors by the linear relétionship

given in the matrix equation (2.4-4) on the next page.
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11 1 18l o v |
i v
=R = R_R -R,G =R
- tt ] Tte | I Tt
P | = |=====--n P — | % |==-—- | (2.4-4)
v | 1% 1€3g 1 I |
v i
=G -G R -GG =G
| e | | et | ccl|l | Tel
Within this matrix equation, B-I]?: g and g'é c are
tt ‘c ¢

both, in general, constant diagonal matrices only for that

instant in time.

Substituting equation (2.4-4) into equation (2.3-~45) and

regrouping, one can write the output equations for Yr
t

and iG as shown in equation (2.4-5). The corresponding
c

output equations for the variables, iR and Vg . are

t c

obtained by direct substitution of equation (2.4-5) in

equation (2.4-4).

The last components of the port stimulus vectors, Ve
and ic , are the twig inductor voltages, _\_rLt , and the
link capacitor currents, ic These variables are defined
in equation (2.3-56) in terrct:ls of the time derivatives of the

state variables and the forcing functions.

Since all of the port stimulus wvariables, Ve

ic , are Kknown, the remaining  response port variables, -

and

it and v. . can be obtained directly £from equation

(2.3-32).
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(2.4-5)

The only remaining components of y which still need to be

defined are the branch voltages and currents, Ve ¢ Yo o

of the linear resistive n-port.

and iG p

14

R
branches

i

These
thé n-port

internal to

resistive and

are all

subnetwork.
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The vectors ¥R and iG can be obtained directly in
terms of the stimulus port vectors, Ve and ;c,-qsing
equations (2.3-21) and (2.3#25), respectively. The
associated current and voltage vectors, iR and Vg, are
defined in terms of YR and iG by the component equations
(2.3-14) and (2.3-15), respectively. The component
coefficient matrices 6f these linear resistors are diagonal
and hence their inverses are trivial. This comp;etes the

process for obtaining the output equations of all the branch

vqltages and currents, y, as defined in equations (2.4-1)

and (2.4-2).

2.5 Determination of Network Operating Point

The state model for many electromechanical systems
derived in Section (2.3) is nonlinear due to the presence of
the nonlinear machine parameters (inductances) and solid
state switching devices (represented 'by nonlinear
resistances). This model also has the capability of
handling nonlinear capacitors; however, this nonlinearity is
often neglected in the 'simulation of typical

electromechanical machine systems.

The nonlinear inductances are assumed to be functions of

the state variables, iL , as defined in equation (2.3-50).
c

Since the state variables are fixed or frozen at any instant

of time, the inductances, therefore, are known and fixed at

- 85 -



that particular instant of time. The same holds true for

the nonlinear capacitances.

The nonlinear resistances, however, must be determined
iteratively, at each given point in time such that both the
network constraints and the I-V characteristics of these

resistors are simultaneously satisfied.

The nonlinear resistances considered in this work are
piecewise linear as described earlier in Section (2.1). 1In
order to realistically model the switching action of the
so]:id state components, a large variation in the slope of
the I-V characteristics between the "on" and "off" states of
these switches is required. This slope ratio is of the
order of six or more magnitudes. Consequently, the
associated system time constants of the natural response
also vary by approximately the same orders of magnitude.
This results in a state model in which the eigenvalues of
the matrix, A, equation (2.3-63), are very widely separated.
Such systems are inherently very difficult to solve
numerically on the digital computer. This problem is

referred to as the "time constant or stiffness" problem.

The larger the "off" to "on" ratio of the resistance
values, the stiffer +the governing set of differential
equations (state model) becomes. Therefore, it is very
important that the chosen integration routine be able to

handle this class of differential equations.



1

Furthermore, it will be shown that stiffness affects not
only the integration process but also the calculation of the
diode operating points. This is due to the fact that errors
in the calculation of the diode switching times results in
entremely large voltage and current transients due to the
inductive and capacitive nature of the systems under study.
It will be shown that the "stiffer" the system, the larger

the magnitude of these fictitious transients.

An algorithm for determining the operating points of
these nonlinear resistances will now be discussed. The
effects of stiffness on the performance of the algorithm

will also be examined. This algorithm can be broken down

into the following steps:

Step 1 Given an updated set of state variables and forcing
functions at time, t=Tl1, determine the present
values of the nonlinear inductances and
capacitances.

Step 2 Solve for the operating points of the nonlinear
resistances, at t=T1, by iterating upon equation
(2.3-45).

Step 3 Update the matrices given in equation (2.3-62) and
proceed to integrate the updated state model forward
in time to t=T2, using an appropriate integration

routine.



Since the solid state switching devices are modeled as
piecewise 1linear resistances, Step 2 requires special
attention at the =zero crossing point of the 1I-V

characteristic, as illustrated in Figure (2.1-1).

The most critical step in this algorithm involves the
precise determination of the all diode switching points
(times). In previous work, [12-14], these switching points
were not brecisely determined but were merely constrained to
occur at the chosen solution points. This earlier approach
was adequate at the time because of the relatively small
integration steps sizes (5 us) and because of the relatively
mild degree of stiffness (ROFF/RON > 10000) used by these
investigators. It was found here, however, that this
approach for changing the diode states presents serious
problems for increasing values of "off" resistance and
increasing integration step sizes. Also, it.was found that
the previous approach, [6-8], required excessive cbmputer
execution time due to the constraint of smaller integration
step sizes, required by the explicit integration routine
employed, for increasing degrees of stiffness. In fact,
ratios of ROFE/RON greater than 10000 resulted in numerical

problems when using this previous approach.
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The impact of constraining ‘the switching times of the
diodes to occur precisely at the preceeding integration
point, which may be different than the true switching times,
results in the appearance of very large Qoltage transients
or spikes within the given numerical simulation run. This
phenomena can best be understood by examination of the
example given in Figqure (2.5-1). The example consists of a
series connected voltage source, diode, and inductor in
which the diode is undergoing a change in state from "on" to
"off". It is assumed that this change in state occurs
beiween the integration points tk and tk+1 at a time t=ts.
Assuming an initial inductor current of 1 ampere at t=tk and
a sinusoidal source voltage, Ve the diode current is
assumed to reach a value of -1 ampere at t=tk+1' If the
diode is constrained to switch at t=tk+1 rather than at the
correct time, t=ts, then a false voltage transient of almost
10KV is generated across the inductor assuming that Vg is
negligible in comparison. In fact, inspection of the

equation for the inductor voltage,
Ve, T L(di/dt) = Vg iRD (2.5-1)

reveals that the magnitude of this voltage transient is
approximately a linear function of the "off" resistance.
Since the magnitude of the series inductor's current is

constant at any given instant, the change of the equivalent



diode resistance at time t=tk+‘1 results in a large increase
of the diode voltage. This large voltage reflects the
drastic drop in inductor current as illustrated in Figure
(2.5-1). The relationship of the integration time step,

t t,, to the voltage spike is not as defined at the "of£"

k+1
resistance value of the diode. But, the larger the time
step, theAmore negative the inductive current can become, in
this example, befor the switch in status occurs. This
larger (more negative) inductor current is directly
pgoportional to the wvoltage spike, as given in equation
(2:5-1). A dual argument can be made for currents spikes if

capacitors are present in the system, particlarity if they

are in parallel with the diode.

To eliminate <these artificial voltage ana current
transients, an improved diode switching algorithm was
developed. This routine determihes all bf the diode
switching times to within a USER specified tolerance. The
diode status "on"/"off" is only changed at these points in
time, thereby eliminating the artifical voltage and current
transients which would have occured using the previous
approaches. Details of this diode switching algorithm will

be discussed next.
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Diode Switching Algorithm

The diode switching algorithm was designed to calculate
the zero crossing time for each diode. In general these
switching times may occur in between the discrete
integration points. Furthermore, this algorithm also
updates the state model everytime such a change in status is
detected.. The model updating is only done at the calculated
time of the zero crossing. The basic assumptions upon which

this algorithm is based are listed below:

1. The diode components are modeled as piecewise 1linear

resistors;

2. the time interval, At, between integration points is

small enough so that fast transients are not

overstepped;

3. the change of status occurs only at the zero crossings

of the diodes (within a user specified tolerance); and

4. a given diode will remain in the "on" state as long as
its branch voltage is positive and will remain in the

"off" state as long as its branch voltage is negative.
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The second assumption is stated to make the reader aware
of the possibility that this algorithm could miss. a rapid
change of sign within a diode's voltage or current since a
polarity comparison is done only at the beginning of the
time interval, At, and at the end; tk and tk+1’
respectively. This blindness is illustrated in Figure
(2.5-2). Note the polarity check shows that the product of
the diode current values, at times tk and tk+1’ is positive,
thus falsely indicating there was no zero crossing. Since a
change in polarity would indicate a zero crossing for the
diode, this particular example illustrates the possibility
of not detecting such a zero crossing if At is too large.
Thus, assumption 2 reveals the need to reduce the time
interval, At, if one desires to track rapid switching

transients accurately.

This type of algorithm can be extended to other switching
devices, such as a silicon controlled rectifiers (SCRs) and
triacs (back to back SCRs) with some minor modifications.
These two devices also require the accurate determination of
their zero crossing times in the same manner as the
conventional diode, in order to prevent erroneous voltage
spikes; Details of the necessary logic required for

modeling such devices will not be discussed here. Also,
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this algorithm is not limited t6 one switch point simply at

the origin.

The essential features of this algorithm will now be
discussed. If‘ a change in diode current polarity is
detected between times tk and tk+1’ for any diode, then
there exists at least one diode zero crossing within At.
Once this zero crossing has been detected, the zero crossing
algorithm (diode switching algorithm) is called. This
routine is not exited until all of the diodes which cross

zero within this time interval are identified and dealt with

properly. This routine entails the following:
l. Estimate each detected diode zero crossing time.
2. Rank each crossing time from first to last.

3. Integrate forward in time, using the unswitched
(previous) diode status at time tk’ to the first

estimated crossing time, ts.
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Check the accuracy of the estimated zero crossing time
by using the calculated diode currents to determine

the diode voltage at that point in time.

Change status of the diodes experiencing the zero
crossing at this time,ts, if the diode voltage (and
current) spikes are within a USER specified tolerance,

then update the state model.

If ts occurs prior to the actual zero crossing time
consider this estimate to be tk’ Figure (2.5-2), and

go to 1.

In general, either integrate forward or move backward
in order to determine a more accurate crossing time,

if needed.

Continue this process until the entire integration
interval, At, is covered. This . could entail
subdividing At into a number of subintervals to obtain

all of the zero crossings.

Notice that the implementation of item 5 requires updating
the overall state model due to any change in the diode

resistances associated with any change in diode status.

The algorithm employed to model the switching action of

all the diodes is nested inside the main integration loop of

the overall simulation program. This algorithm continually
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checks for any change in polarity between successive diode
voltage or current values. The major integration loop
supplies all the branch voltages and currents at every At
time increment througout the entire simulation duration.
This algorithm does not interrupt the calculation and

storage of the solution points at their fixed time interval,

At.

Using. this improved diode switching algorithm, in
conjunction with an appropriate implicit integration
routine, it was possible to more accurately solve stiff
systems where the ratio between the "off" and "on" values of
the diode resistance ranged between 105 and 108. In
addition, there were savings in computer execution time

since the implicit routine allows much larger time steps.

Both of these improvements are discussed in the next

section.

2.6 Integration and Stiffness Considerations

The network operating point and the branch voltages and
currents, for any given instant in time, are dependent only
upon the state of the energy storage elements and forcing

functions (XC 'iL Ve , and iJ ). Hence in order to obtain
t c c

t
a time solution for all of the branch variables, the state
equations, given in equation (2.3-62), need to be integrated

forward in time from one instant to the next using an
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appropriate integration routine. The selection of an
appropriate integration routine is based upon' solution
accuracy and the corresponding computational costs for

extremely stiff systems.

State equations, associated with power switching type
networks, are extremely stiff as was mentioned earlier. The
integration of such stiff differential equations poses a
number of numerical problems. For example, it is well known
that the general class of explicit integration routines does
not compare favorably in terms of accuracy and cost, to the
implicit predictor-corrector routines when applied to these
types of systems [5,26]. This and other points will be
illustrated in the first part of this section by means of a

numerical example.

The chosen numerical example is the simple stiffAnetwork
presented in Figure (2.6-1). The numerical solutions from
these routines are compared with the exact (analytical)
solution of this network. This comparison is conducted for
various degrees of stiffness in order to determine which

type of integration routine is appropriate.

First, the concept of stiffness will be examined in
detail using the simple network example. Next, the exact
solution of this network will be compared with those
obtained from two commercially available integration

routines. These two routines are available from the
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International Mathematical and - ' Statistical Library, IMSL,
[15]. The chosen explicit routine is a fifth and sixth
order Runge-Kutta-Verner integration algoritﬁm named DVERK,
[15, 16]. The chosen implicit routine is a variable order
Adams predictor-corrector method (or Gears Method) named

DGEAR, [15, 16].

The algorithms employed by these.two routines are given
in Téblé (2.6-1). These algorithms were obtained from
reference [17]. DVERK is an explicit routine, by
definition, since the projected state vector for the next
time instant, y(tk+1), is solely determined by information
calculated from past  history. Considering explicit
integration algorithms as recursive difference equations
reveals the relationship between the (maximum allowable)
step size, h=At, and the algorithm's numerical stability [3,
5, 20]. DGEAR, on the other hand, is not restricted to
small integration time steps because of its implicit nature.
Specifically, the homogeneous solution to the difference
equation for an implicit routine (algorithm) is bounded for
all positive h. Details of these types of routines can be
obtained in references [2, 17, 18, 19]. The application and
blackbox performance of the two integration routines under
study, for the <class of initial wvalued differential
equations which are considered stiff, is the concern of this
section. The concept of stiffness and its probable

manifestation within a network shall be discussed next.
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Table (2.6-1) Typical Integration Algorithms

let, dy/dx = £(x,y) normal-form first-order
differential equations

)
o]
&
)
|

i~ f(xi'yi) = f(xilY(xi))

i X th

»
1

Runge-Kutta algorithms have the form : Yig1 T ¥y +ho
(similar to DVERK)

where, for a fourth order algorithm;

= 1/6[k1 + 2(1-.707)k2 +2(1+.707)k3 + k4]
and;
k1 = fi,
k2 = f(x +h/2 , Yy +hk /2),
k3 = f[x +.707h , Y +( 1/2+, 707)hk +(1-. 707)hk ]
k4 = f[x +h , Y- 707hk +(1+ 707)hk ]

Predictor-Corrector algorithm; (similar to DGEAR)

Predictor:

Yigp T Yy +h/24(55fi-59fi_1+37fi_2-9fi_3)
Corrector:

Yiep T ¥y th/28(9f; 4 -19£,-58; 4+£; 5)

- 101 -



The example network, along with its defining state

-equations, 1is shown in Figure (2.6-1). This particular

example was chosen because it illustrates how the natural .

response of a network can possess two extremely spread time
constants. The numericﬁl difficulties encountered with the
integration of such systems is referred to as the "time
constant" problem. By increasing the resistance value Ry,
which is in series with the inductor, LZ' the step response
of the example network becomes more and more difficult to
calculate accurately using numerical integration routines.
This is due to the fact that the magnitude of the resistance
value for R2 is equal to the stiffness value, o of the

network under study.

The stiffness value, o, is defined here as the ratio of
the two resistor values,lo=R2/R1. Thus, by increasing only
one of these resistance values,. R2 for example, while
holding the other constant (R1=1 ohm), one can directly vary
the degree of stiffness of the network example under study.
The exact relationship between the stiffness wvalue, o,
defined here, and the ratio of the actual time constants of

the network's natural response shall be discussed next.

The analytical unit step response for the two 1loop
currents, il(t) and iz(t), shown in Figure (2.6-1) is given

below:

i(t) = c,e®i® 4 czeszt ¥ 0 + 1/s5,s, (2.6-2)
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i,(t) = Cge™it 4 cqlesz-t + 1/5,s, (2.6-3)

where
c1 = (2s; + 0 + 1)/(s;-8,) (2.6-4)
C, = (25, + 0 + 1)/(s;-5,) ‘ (2.6-5)
C3 = (s, + 1)/s,(s;~5;3) (2.6-6)
C4 = (s, + 1)/s,(s,~5,) (2.6-7)
S$y,82 = =(0+3)/2 £ .5[02 - 20 + 5] -3 (2.6-8)

Eurthérmore, the steady state response due to the unit

step input is

1)(=) = (0+1)/s15, (2.6-9)

1,(=) = (1)/si5 (2.6-10)

Examination of equation (2.6-8) reveals that for an
increasing stiffness value, o, the poles or time constants,
which are symbolized as s; and s,, approach =-o and -3/2,
respectively. Also, the root 1loci for these two poles
always remain on the negative real axis of the s-plane
(Laplace transformation). Notice also that these two poles
spread apart (system becomes stiffer), as shown in Figure

(2.6~2), when ¢ is increased from zero to infinity.

To characterize the concept of stiffness further; one can
express the stiffness of the network's state equation in
terms of the maximum ratio of its "time constants" (or

eigenvalues of the matrix A in Figure (2.6-1)).
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The "stiffness" of a set of first order differential
equations can also be associated with the degree_of ill-
conditioning of the A matrix. More ©precisely, ill-
conditioning of a matrix is defined in terms of the ratio of
its largest to smallest eigenvalue magnitudes. The larger

this ratio, the more ill-conditioned the A matrix. There is
a condition number which can be assigned to any matrix in
terms of its largest and smallest eigenvalues that indicates
the degree of ill-conditioning of the matrix, [7]. This

number is sometimes defined as follows:

[ IA\large] |
CN = : (2.6-11)
| |Asmall] |
where
||klérge|| is the modulus of the largest eigenvalue
of the A matrix
and

| I1Asmall|| is the modulus of the smallest eigenvalue
of the A matrix

In the network example presented in this section, there
are only two eigenvalues and they are real negative numbers.
Hence, the conditiqn number, as defined in equation
(2.6-11), for the A matrix given in Figure (2.6-1) can be
written as follows: '

CN = [s./s;] = [(0+3)+(02-20 + 5)°°/((0+3)-(02-20 +5)"°)
(2.6-12)
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Notice that as o is increased, the condition number, CN,
of the A matrix also increases. A large condition number
indicates difficulties in numerical calculations associated
the A matrix, such as its inverse for example. A good
estimate for the number of significant digits of accuracy
when numerically calculating the inverse of the A matrix can
be related to the condition number approximately, [17], as
follows: .

NSD = WLENGTH - [ INT(LOG,,(CN)) + 1 ]
where:

NSD = number of significant digits

WLENGTH = number of digits (decimal places) stored in a computer
word used in computation.
a) Single Precision = 7 digits
b) Double Precision = 14 digits

INT (*) = Truncates the fractional part of the real number,

hence making it an integer.

CN = the condition number of the matrix, A.

For example, if the stiffness value, o, is set equal to
1000, then the CN is equal to 500.75 and the number of.
digits of round-off that can be expected is 3. On the other

6

hand, if o is set equal to 10 then CN is eﬁual to

6 and the number of digits of round-off that

0.50000075 x 10
can be expected when taking the inverse of the A matrix is
6. These two computations illustrate the direct significance

of the stiffness value, o, with the round-off error expected
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using the digital computer. Further, in this particular
example network, INT(loglOCN) + 1 represents the number of
digits round-off to be expected when taking the inverse of

the A matrix.

Similarly, the ill conditioning of some matrix M can also
have pronounced effects when operating numerically on
systems of the form M x=b; where b is the vector of known
forcing functions or measured data and x is the response of
the‘ system (characterized by M) to the data b. These
pronounced effects, manifested as large changes in the
response X due to very small variations or errors in the
data b, may be caused by numerical round-off of the measured
data for example. This sensitivity to the data is a direct
result of the wide spread in the magnitudes of the
eigenvalues of the matrix M. If a perturbation, Ab,of the
observed data, b, is strictly in the direction of the
largest eiéenvectors of the matrix M, the resulting solution
vector x + AX will not change drastically as compared to
the case if the same perturbation magnitude occurs in the
components of b that are in the same direction as the
smallest eigenvectors of M. For the latter case, the
resulting change of the solution vector, =x, would be
drastically increased, with respect to the first case, by
approximately the condition number of the M matrix times the

perturbation of the data, Ab.
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The condition number, CN, and the stiffness factor, o,
are closely related. The context in which they are used is
their only difference. 1In partiCular, the condition number
of the M matrix, CN, reveals valuable information. about
expected round-off when taking the inverse of M. Similarily
the stiffness factor, o, gives a measure of how an extreme
‘spread in the component values affecting the eigenvalues of
A can effect the numerical integration of the state

equations (time constant problem).

".Thus, special attention must be given to the specific
integration routine employed when the A matrix within the
governing state equation becomes ill-conditioned (a'large
ratio of its largest to smallest eigenvalue magnitudes).
The larger this ratio, the more ill-conditioned the A
matrix, and consequently the stiffer the governing state

equations which contain A become.

The degree of system stiffness has a great impact on the
efficiency (computer costs per solution) and the accuracy of
the numerical integration routines. This is because, in
order to track the fastest time constant in a stable and/of:
accurate sense, small time steps are required throughout the
entire simulation period. This is the case even tﬁough the
fastest transient may have died out and consequently no
longer contributes significantly to the system's long term

response associated with the slower time constants. More
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precisely, the maximum allowable integration step size is
determined by the smallest time constant (or eigegvalue of
A), while the total number of integration steps reqﬁired to
reach steady state is strictly determined by'the largest
time constant (or eigenvalue of A). Hence, whenever the
time constants (eigenvalues of the A matrix) differ by many
orders of magnitude, many integration routines (specifically
explicit . ones) suffer from the requirement of excess

computer time in order to obtain a desired amount of

simulation time.

In order to illustrate the effects of stiffness, two
commercially available IMSL routines were used to obtain
numerical solutions for the example network of Figure
(2.6-1). The defihing system of first order differential
equations, for this network, can be set to any desired
degree of stiffness by varying the value of o. The two IMSL
routines used in this example are DVERK and DGEAR. DVERK is
an explicit initial-value differential equation solver which
employs a 5th and 6th order Runge-Kutta variable step
method. DGEAR, on the other hand, is an implicit initial
value differential equation solver wusing a Predictor-
Corrector method with variable step size capability.
DGEAR's integration step size does not have to be limited to
guarantee numerical stability. DVERK, on the other hand, is
limited to a maximum step size in order to guarantee

numerical stability. This restriction is inherent in all
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explicit integration routines. Even though DVERK has the
internal capability to automatically maximize its step size
throughout a given simulation run, it will not exceed an
interﬁally generated upper 1limit in order to guarantee
numerical stability and/or satisfy the programmer's
specified maximum 1local error estimate, TOL. Hence,
internal to DVERK is an error estimator which limits the
maximum step size in order to satisfy a specified degree of
accuracy. DGEAR, on the other hand, can exceed -DVERK's
maximum ste§ size and still satisfy the same accuracy

requirements. Details of the numerical analysis of both

methods can be obtained in references [3, 5, 20].

The exact solution to the example network is given in
equations (2.6-2) and (2.6-3). The corresponding numerical
solutions from DVERK and DGEAR for c=106, and TOL=10_7, are
presented in Figqures (2.6-3) through (2.6-6). The exact
solution, in each of these cases, 1is plottedb with the
corresponding numerical solution for comparison. The global
relative error, which is defined as the accumulated local
relative error, is presented within these figures as the

smaller graph. The global relative error for each of the

figures is defined as follows:

(Exact i,(t) - DGEAR's i,(¢))

Relative Error = (2.6-13)
Exact il(t)
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(Exact i,(t) - DGEAR's i,(tT))

Relative Error = - (2.6-14)
Exact iz(t) :

(Exact i(t) - DVERK's i,(T))

Relative Error

(2.6~15)
Exact il(t)

(Exact iz(t) - DVERK's i,(T))

Relative Error

(2.6-16)
Exact il(t)

‘A comparison of the computation times, memory
requirements, and solution accuracies of the two IMSL
routines is presented in Table (2.6-2) for three different
degrees of stiffness. Based upon these results, it can be

seen that DGEAR, which is designed specifically for stiff

systems, out performed DVERK in all of the above catagories.

Specifically, for a stiffness, o=106, and a specified

local relative-error tolerance, 'I‘OL=10'7

., it can be seen
from this table that DVERK could not keep its maximum global
relative error (MGRE) within this specified tolerance.
DGEAR, on the other hand, did a much better job of tracking

the exact solution. In fact, with this value of stiffness,

the MGRE of DVERK is nearly one thousand times that of
DGEAR.
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Table (2.6-2) Comparison Table for DVERK and DGEAR

DVERK DGEAR

Verner-Runge~-Kutta

Adam's Predictor-Corrector
5th, 6th order Method \Y

ariable order (GEAR's) Method

o=1.0E + 4

| 00.00.30 seconds (CPU) | =  ==—ccce=--
| 6.83E-6 MGRE * | = =cmm-eee--
| 449 KBS *#* | = eeeecmaee-
| I

00.03.26 seconds (CPU) | 00.00.05 seconds (CPU)
+=1.0E - 2 MGRE * | -1.1 E -5 MGRE *
231468 KBS ** | 7492 KBS **
I

o=1.0E + 14

|7 emmmmememe- | 00.00.06 seconds (CPU)
T T ——. | 2.0E - 2 MGRE *

| emmmmmmeeeo | 1346 KBS **

| I

* MGRE is defined, using equations (2.6-3) through
(2.6-6), as the maximum relative error for either il(t) or

i (t).

**KBS is defined as kilobyte-sec which is equal to
storage (in kilobytes) times CPU time (in seconds).
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The true cost of each routine is directly proportional to
its use of both memory and execution time. The cost is a
function of the product of storage used and CPU time. This
cost can be expressed in terms of kilobyte-seconds (KBS)
utilized by each routine +to ©obtain its numerical
approximation of the exact solution. For example, DVERK
required approximately thirty times the KBS used by DGEAR to
obtain the numerical solution for the case mentioned above.
Even though DGEAR used about twice as much storage as DVERK,
in this case, DVERK required about sixty-five times 1longer
thén DGEAR to execute because of its time step restriction
mentioned earlier. Consequently, for this case, DGEAR was
approximately thirty times less expensive and had a MGRE

three orders of magnitude smaller than DVERK.

Finally, a case illustrating extreme stiffness, where o =

14 and TOL = 1.0 E-s, was examined. The results for

1.0 E
this case are given in the last row of Table (2.6-1).
Notice that DVERK was not able to track the exact solution
for this large stiffness. This case illustrates that DGEAR
can handle much stiffer systems .that DVERK. Thus, even
though the order of stiffness was increased by a factor of
eight to o = 1.0 E*%, DGEAR still tracked the exact. solution
as well as DVERK did for the 1less stiff case when
o =1.0 Es. Furthermore for this case, DGEAR also excelled
in the other two categories (of CPU seconds of execution

time and KBS) even when the stiffness was increased by eight
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orders of magnitude, as shown in Table (2.6-2).

The comparison of the two IMSL routines, DVERK a;nd DGEAR,
yields the conclusion that DGEAR is far superior to DVERK
when solving stiff systems of differential equations. Even
though DGEAR uses more memory than DVERK, DVERK's excessive
CPU time requirements far outweigh this memory advantage.
Further, DVERK is not only more expensive but is less
accurate .(as summarized in Table (2.6-2)) to use than DGEAR,
when integrating stiff systems of differential equations.
Thus, DGEAR was chosen over DVERK as an appropriate
integration routine for solving the differential equations
associated with electromechanical systems employing solid

state switching devices.

DGEAR was used for integrating the state equations for
all the simulation runs presented later in this
dissertation. These runs were made economically feasible
because of the employment of DGEAR as well as the diode
routine discussed previously within Section 2.1.
Specifically, the diode algorithm does not interrupt DGEAR's
control of the variable integration step size except for
diode zero crossings. Hence, it allows DGEAR to integrate
as economically as it can (maximizing its step sizei for the
majority of the simulation duration. This combination is

most suitable for the types of machine systems considered in

this report.
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2.7 Verification of Modeling Approach .

This section deals with the verification of the modeling
approach presented in previous sections of this chapter.
The system chosen for this purpose was an advanced
electronically-commutated brushless dc motor designed for
electric-vehicle propulsion, [20, 21, 22]. The performance
and operating voltage and current waveforms of this system
are well documented in these feferences. A block

diagram of the propulsion system is presented in Figure

(2.7-1).

The verification of the modeling approach presented in
this section is based upon the favorable comparison of
actual system measurements and simulated results. This
section presents verification of the modeling approach's
ability to simulate systems containing transistor and diode

switching devices as well as mutual inductances.

A detailed schematic of the electric vehicle propulsion
unit is given in Figure (2.7-2). The corresponding lumped

parameter network model is given in Figure (2.7-3).
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Figure (2.7-1) Block Diagram of the Electric Vehicle Propulsion Unit
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The chosen test runs correspond to the rated 15 hp
operation of this system and_additional simulation-data are
presented in Table (2.7-1]). The diodes and transistors of
Figure (2.7-2) were all modeled as seperate (nonlinear)
piece-wise linear resistors as shown in Figure (2.7-3). The
oscillograms and other test data presented in this section

were obtained with the brushless dc machine coupled to a

dynamometer.

_‘The parameters of the electric-vehicle propulsion unit as
well as the control signals for all the transistors were
obtained from reference [21]. The emf voltage waveforms
were obtained from a field analysis [38] while the
inductance values (self and mutuals) were obtained from the
motor. The machine-inductance values (self and mutuals)
were obtained from test measurements made on the actual

machine modeled.

Two operating modes were simulated using the modeling
approach presented in this report. The first mode simulated
was motoring without chopping. The second mode was motoring
with chopping. Details of these two motoring modes can be

obtained in reference [21].
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Table (2.7-1) Simulation Data for Electric Vehicle
Propulsion Unit (Verification Runs)

Brushless DC Motor Components:

field: Samarium Cobalt permanent magnet effects are
reflected as open circuit emf in armature.

armature: Three-phase wye-connected with floating neutral
= 6.8 milli-ohms
- phase to neutral winding inductance values:
self = 47.82 micro-henries
_ mutual = 4.18 micro-henries
- phase to neutral winding open circuit emf functional
representation is a truncated fourier series with
coefficients for the sine terms (an) and the

cosine terms (bn)’ for the n-th harmonic, given

- phase to neutral winding resistance

below:
n an/RMVEL bn/RMVEL
1 74.400 3.550
3 -1.420 -0.221
5 0.000 0.000
7 0.553 -0.619
9 0.664 -0.278
11 0.373 -0.141
13 -0.037 -0.014
where:
3

RMVEL = (ngp.,/60.0) * 2 * pi * 10~

Power Conditioner Components:

diode: "on" resistance
"off" resistance

transistor: "on" resistance
"of f" resistance

choke: winding resistance
self inductance

battery: thevenin equivalent
thevenin equivalent
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The first motoring mode was simulated at the rgted 15 hp
operating point. For this mode, the chopper transistor Q7
is latched-on, in the saturation mode, and'Q8 is latched in
its cutoff mode, Figure (2.7-2). This mode results in the
full battery voltage being applied continuously across the
inverter/converter Dbridge. The motoring results from
periodic application of the battery voltage across the
machine's terminals (line to line) in a specific sequence
that is controlled by transistors Q1 through Qs. The
oscillogram of the phase current of the electric-vehicle
motor given in Figure (2.7-4) mat;hes very closely the
simulated waveform shown in Figure (2.7-5). The model was
used also to predict the voltages across the transistor and
diode switches. The oscillogram, Figure (2.7-6), and the
predicted collector to emitter voltage waveform, Figure
(2.7-7), of one of the inverter transistors are given for
comparison. Inspection of these two waveforms reveals very
close agreement between measured and simulated results for

this first motoring mode of operation.

Another motoring mode was simulated and the results are
compared with available oscillograms. This mode is called
chopping. What is meant by chopping is that the c§nduction
status of transistors Q7 and QB are controlled by logic base
control signals which are determined by monitoring the

magnitude of the current labeled CM, in Figqure (2.7-3).
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Figqure (2.7-4) Oscillogram of the Phase Current
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Y BASE IN AMPS.=146.1802 Igr
+1.0 T

0.0 L ) \‘ \ +1.

-1.0

BRANCH 1. X BASE IN SEC.=0.0100

Figure (2.7-5) Predicted Waveform of the Phase Current
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50.0 volts per division

Figure (2.7-6) Oscillogram of the Inverter Switch Voltage
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Figure (2.7-7) Predicted Waveform of the Inverter Switch
Voltage
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This feedback control is accomplished by external circuitry
for the actual system and by(a logical subroutine within the
program. Both of the simulated waveforms and their
corresponding oscillograms presented in Figure (2.7-8)
through (2.7-11), reveal excellent correlation. Hence, both
simulated motoring modes (with and without chopping) agree

excellently with the actual system measurements.

-Both of these motoring modes (with and without chopping)
as wWell as additional verification of a portion of this
modeling approach was presented earlier in reference [20]
for the same system and will not be repeated here. 1In all
cases, the agreement between measured and simulated results
was excellent. What was not shown in reference [20] was the
added feature to have a capability for handling mutual
inductive coupling between the tree and cotree of a network.
Also, the incorporation of an implicit wversus an explicit
integration routine , [19], reveals excellent correlation in
every branch, with the improvement of less computation time.
Also, the employment of the diode algorithm presented in
Section 2.5 along with the implicit routine account for the
improvement in computational efficiency and accuracy. The
verification of the capability to handle mutual inductances
between the tree and cotree of the overall system model will

be discussed next.

- 130 -



Figure (2.7-8) Oscillogram of the Phase Current
(Motoring with Chopping Control)
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Figure (2.7-9) Predicted Waveform of the Phase Current
(Motoring with Chopping Control)
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Figure (2.7-10) Oscillogram of the Inverter Switch Voltage
(Motoring with Chopping Control)
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Figure (2.7-11) Predicted Waveform of the Inverter Switch
Voltage (Motoring with Chopping Control)
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Further verification of the proposed modeling approach
shall address the equality of representing the balanced
machine's inductances as a lumped diagonal inductive matrix
versus a full symmetric inductive matrix. Comparison of the
simulated results obtained by both inductive matrices
indicétes the validity of the proposed matrix algebra. This
novel approach includes the added feature which can
automatically account for mutual coupling between the tree
and cotree of the system network model, for any arbitrary
wihdings. Further, the proposed matrix algebra is not
restricted to balanced machine operation and is therefore
directly amendable to fault analysis. Figures (2.7-5) and
(2.7-7) represent the simulated phase current and inverter
switch voltage, respectively, when the mutual terms are
lumped with the self inductances,

Figures (2.7-12) and (2.7-13) represent the simulated phase
current and inverter switch voltage, respectively, when the
inductance matrix is full. A comparison of these waveforms
reveals excellent correlation between these two sets of
results. Details of the algebraic manipulations relating to
this discus§ion can be seen in eqﬁations (2.3-62) and
(2.3-64). The mutual inductance terms (those between the
tree and cotree) are coupled via the hybrid matrix pre- and

postmultiplications as shown in equation (2.3-62).
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Figure (2.7-12) Predicted Waveforms of the Phase Current
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Figure (2.7-13) Predicted Waveforms of the Inverter Switch
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To assess the validity of this verification, the
influence of the mutuals upon the overall system performance
was determined by simulating this same system while
completely eliminating the mutuals from the full inductance
matrix. The simulated waveforms, given in Figure (2.7-14),
indicate an approximate 3 percent increase in the magnitude
of the phase current for the case when the mutual terms were
removed. The effects of the mutuals are mild, but
noticeable, in this case and should ﬁot in general be
igéored when simulating such systems considered in this
report. The physical reason for the relatively weak’(3
percent) effect of the mutuals is due to the relatively
large effective air gap (which magnetically couples each of
the stator windings). | The effective air gap is larger
because the perﬁeability of the samarium-cobalt permanent
magnets, located on the rotor, is very close to that of air.
Hence, the mutual coupling betwéen any of the armature

windings is weak as indicated by these simulated results.

The next point of interest 4is how much influence the
"off" resistance values of the diodes have upon the
simulated waveshapes and magnitudes as well as the effect

upon power delivered from the battery power source. Three
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Figure (2.7-14) Predicted Waveforms of the Phase Current
(Mutuals Removed)
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cases were run for different "off" resistance values but
only the two extreme (miqimum and maximum) céses are
displayed. The low value of "off" resistance was set equal
to 200 ohms and the maximum value was setAat 20,000 ohms.
This hundred fold difference in "off" resistance values
resulted in less diode 1leakage current during the "off"
state but the waveshapes were effectively unaltered. These
runs were made by only varying the "off" resistance of the

diodes not the transistors.

The two sets of diode waveforms agree closely for these
two cases, as shown in Figures (2.7-15) through (2.7-18).
The first set of diodes waveforms are for branch 23, the
positive-Bus phase-A diode. The second set of voltage and
current waveforms are for branch 22, the flyback diode. The
actual location of these two branches in the overall network
can be seen in Figures (2.7-2) and (2.7-3). Both sets of
waveforms show little alteration in magnitude and waveshape
as a result of the two wvalues of Roff' This is also true
for the next set of figures to be discussed. The average
_ battery current can be obtained from Figures (2.7-19) and
(2.7-20) for these two values of Roff' The ripple peak to
peak is unaltered, hence the difference in the YBASE values
of these Figures is equal to the difference in their average

currents.
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Figure (2.7-15) Predicted phase A (+ bus) diode waveforms
for Roff = 20.0 kilo-ohms
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Figure (2.7-16) Predicted phase A (+ bus) diode waveforms
for Roff = 0.2 kilo-ohms
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Figure (2.7-17) Predicted (flyback) diode waveforms for
Roff = 20.0 kilo-ohms
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Figure (2.7-18) Predicted (flyback) diode waveforms for
Roff = 0.20 kilo-ohms
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Figure (2.7-19) Predicted battery waveforms for Roff = 20.0

kilo-ohms
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Figure (2.7-20) Predicted battery waveforms for Roff = 200
kilo-ohms '
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In conclusion, the modeling approach presented here gives
excellent results in comparison with test data for fhe types .
of systems considered in this report. It was shown that the
voltage and current waveshapes are not affected noticeably
by the choice of the "off" resistance, above 200 ohms in
this case, for the solid state switches. However it was
demonstrated that the "off" resistance is significant when
calculating system efficiencies. Therefore, if efficiency
calculations are not of interest when simulating such
s&étems, the value of Roff can be relaxed. This relaxation
is desirablevsince the computation cost increases with the
increase of the value chosen for Roff’ Furthermore, the

ability to include mutual inductances in the machine model

was demonstrated and verified against test data.
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3.0 APPLICATION OF THE ACTUATOR MODEL TO
VARIOUS MACHINE-POWER CONDITIONER CONFIGURATIONS

The actuator model developed in the previous chabter will
now be applied to four additional PSA-machine
configurations. These are a delta, open-delta, a wye and a
wye with a shorted turn. It is assumed here that each of
these systems has a separate chopper network. In general,
however, the transistor switching logic routine can handle a
number of different system configurations. The various
options available are listed in Table (3.0-1). These
options increase the flexibility of this model by allowing a
large variety of possible configurations with a minimum
amount of USER supplied input data.

In order to properly use this model, several conventions
must be followed, see Figure (3.0-1). First the
relationship between the phase and line currents for the
delta type machines must satisfy the following relationship

with respect to the line currents ilf i2’ and i3:

i, =4, -1, (3.0-1)
i2 = ic - ib (3.0-2)
i3 = ib - ia (3.0-3)

these constraints result from KCL taken at the terminals of

that machine.
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Table (3.0-1) PSA Options

Variable
Value
1 2 3
Variable
Name .
INVTP Wye Delta Open-Delta
Connected Connected Connected
Machine Machine Machine
ICHOP . Separate Chopping
Chopper Performed -
by Inverter
ICHOPT Hysteresis PWM -
MODE Motoring Regen Plugging
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Figure (3.0-1) Assumed Relationships Between Phase and Line
Currents
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For the wye connected machine, the phase currents are
equal to the line currents. This situation is shown in
Figure (3.0-1). It is also assumed that the fundamental

components of the forcing functions obey the following phase

relationships:

e, = Em sin(6t + Bx) - (3.0-4)
e, = Em sin(6t + 93 - 120) (3.0=5)
e, = Em sin(6t + ex - 240) - {3.0-6)

The phase voltages must be of this form otherwise the
transistor switching signals would be incorrect.

Another factor which must be taken into account when
preparing a simﬁlation run is the assignment of 1labels for
the power transistors, Ql’ QZ""'le‘ This information is
given in Table (3.0-2). Notice that each of the inverter
transistors is associated with one of the line currents i,/
iz, or i3. The sign of the line current into the machine,
(+) or (-), is determined by which of the two transistors,
attached at each machine terminal, is "on".

Similarily, the assumed numbering of the chopper transistors is
given in Table (3.0-3). Transistors Q7 or Qi3 aré used foi motoring
while Q8 or Ql4 are used for regeneration.

The line currents, in all cases, are assumed to be rectangular blocks
of 120 electrical degrees duration. The line current i, is initiated 30
degrees after the emf of phase (A) passes through zero in the positive
direction. The second and third line currents are initiated in a

similar fashion 120 and 240 degrees later, respectively.
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TABLE (3.,0-3) Chopper Transistor Numbering

MACHINE/ CHOPPER TRANSISTORS
INVERTER
TYPE WITH SEPARATE CHOPPER ? WITHOUT SEPARATE CHOPPER
WYE ' Q7,Q8 QL-Q6
DELTA Q7,Q8 Q1-Q6
OPEN Q13,Ql4 Q1-Q12
DELTA
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The parametérs used in the four simulations which are presented
next are based upon the system analyzed in the previous chapter.
In the case éf the delta connected machine, the number of'turns
per phase is increased by a factor of J¥3. It was assumed that the

copper volume remained constant, therefore one can write

VolCU = zyAy = zAAA (3.0-7)
V':?zy =2, , (3.0-8)
where 2y, Ay' ZA’ AA are the lengths and crossectional areas
of wye and delta machines, respectively. Using this

information one can relate the winding resistances of the

two cases as follows:

RA = 3Ry _ | (3.0-9)
The inductances also increase by the sgquare of the turns

ratio, that is
L, = 3Ly (3.0-10)

Once all of the machine parameters were scaled properly,
these parameters were-then.substituted into the model and
the simulated waveforms were obtained. The network graphs
corresponding to these three cases are given in Figures
(3.0-2), (3.0-3) and (3.0-4). Representative samples of
simulated branch voltage and current waveforms are given in
Sections 3.1 through 3.3 for the network graphs (models) of
Figures (3.0-2) through (3.0-4), respectivély. Saturation
effects in the machine were neglected in all three cases. It was also
assumed that there were no faults . The machine speed in all three
cases was 7750 rpm (4 poles).

The effects of a shorted turn in phase (A) of the wye connected

machine are given in Section 3.4,
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3.1 Simulated Waveforms of the WYE Configuration

The simplified (with chopper) schematic diagram of
Figure (1.0-1) for the WYE configuration, and .'its
corresponding complete network graph (including chopper) of
Figure (3.0-2) should be referred to in reviewing the
results of simulations presented in this section. These
simulations represent unfaulted normal motoring operation.
The input data used in obtaining these results are given in
Table (3.1-1). Identification of all the displayed voltage
and current simulated waveforms is given in Table (3.1-2).

The.éalculated average electromagnetic machine power during the
last cycle is 12,617 watts. The corresponding copper losses in the

machine totaled 218.7 watts.
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TABLE (3.1-1) Input Data for Network  Model of the WYE

Configuration (Unfaulted)

Three Phase Balanced Machine Model:

Branch #12 Phase(A) Winding Resistance=6.8 milli-ohms
Branch #11 Phase(A) Winding Inductance=52 micro-henries

Inverter/Converter Bridge & Chopper Switching Components:

Branch #10 (+Bus) Phase(A) Transistor
Saturation Resistance "on" = 6.4 milli-ohms
Cutoff Resistance "off" = 2.0 killo-ohms

Branch #23 (+Bus) Phase(A) Diode
Forward-Biase Resistance "on" = 6.4 milli-ohms
Reverse-Biase Resistance "off"= 2.0 killo-ohms

Chopper Choke:

Branch #15 Choke Resistance

24 milli-ohms
Branch #17 Choke Inductance

1.5 milli-henries

DC Power Source:

Branch #5 Filter Capacitor = 7.8 milli-farrads
Branch #4 Battery(Internal) Voltage = 120.0 Volts
Branch #16 Battery(Internal) Resistance = 5 milli-ohms
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Table (3.1-2) Branch Identification WYE Configuration

(Unfaulted)
Figure Branch Branch Identification
Number Number
3.1-1 1 Phase (A) Back Emf
3.1-2 11 Phase (A) Winding Inductance
3.1-3 10 Phase (A) Transistor (+Bus)
3.1-4 23 Phase (A) Diode (+Bus)
3.1-5 7 Phase (A) Transistor (-Bus)
3.1-6 29 Phase (A) Diode (-Bus)
3.1-7 4 Battery Internal Voltage
3.1-8 17 Chopper Inductance
3.1-9 20 Chopper (+Bus) Transistor
3.1-10 21 Chopper (+Bus) Diode
3.1-11 6 Chopper (-Bus) Transistor
3.1-12 28 Chopper (-Bus) Diode
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Figure (3.1-1) Simulated Current and Voltage Waveforms for
Branch #1, WYE Configuration (Unfaulted)
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Figure (3.1-3) Simulated Current and Voltage Waveforms for
Branch #10, WYE Configuration (Unfaulted)
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Figure (3.1-4) Simulated Current and Voltage Waveforms for
Branch #23, WYE Configuration (Unfaulted)
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Figure (3.1-5) Simulated Current and Voltage Waveforms for
Branch #7, WYE Configuration (Unfaulted)

- 167 -



YBASE= 1.31x10? - XBASE= 4.00%10

0 TIHE IN SECONDS

-2

YBASE~ 1.21x%10° XBASE=- 4.00x10

BRANCH VG.TgIE IN VOLTS

1
-
o
[N

IIME IN SECONDS

Figure (3.1-6) Simulated Current and Voltage Waveforms for
Branch #29, WYE Configuration (Unfaulted)
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Figure (3.1-7) Simulated Current and Voltage Waveforms for
Branch #4, WYE Configuration (Unfaulted)
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Figure (3.1-8) Simulated Current and Voltage Waveforms for
B_ranch #17, WYE Configuration (Unfaulted)
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Figure (3.1-9) Simulated Current and Voltage Waveforms for
Branch #20, WYE Configuration (Unfaulted)
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Figure (3.1-10) Simulated Current and Voltage Waveforms for
Branch #21, WYE Configuration (Unfaulted)
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Figure (3.1-11) Simulated Current and Voltage Waveforms for
Branch #6, WYE Configquration (Unfaulted)
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Figure (3.1-12) Simulated Current and Voltage Waveforms for
Branch #28, WYE Configuration (Unfaulted)
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3.2 Simulated Waveforms of the DELTA Configuration

The simplified (with chopper) schematic diagram of
Figure (1.0-2) for the. DELTA configuration, and.'its
corresponding complete network graph (including chopper) of
Figure (3.0-3) should be referred to in reviewing the
results of simulations presented in this section. These
simulations represent unfaulted normal motoring operation.
The input data used in obtaining these results are given in
Table (3.2-1). Identification of all the displayed voltage
and current simulated waveforms is given.in Table (3.1-2).

The.calculated average electromagnetic machine power during . the
last cycle is 12,594 watts. The corresponding c;pper losses in the
machine totaled 21?.h watts. These values are almost identical tb the
ones obtained from the WYE connected machine. This is to be expected
since the machine parameters were chosen such that thelr terminal per-

formances are identical.

- 175 -



Table (3.2-1) Input Data for Network Model of the DELTA

Configquration (Unfaulted)

Three Phase Balanced Machine Model:

Branch #11 Phase(A) Winding Resistance=20.4 milli-ohms
. Branch #17 Phase(A) Winding Inductance=156 micro-henries

Inverter/Converter Bridge & Chopper Switching Components:

Branch #7 (+Bus) Phase(A) Transistor
Saturation Resistance "on" = 6.4 milli-ohms
Cutoff Resistance "off" = 2.0 killo-ohms

Branch #22 (+Bus) Phase(A) Diode
Forward-Biase Resistance "on" = 6.4 mllll -ohms
Reverse-Biase Resistance "off"= 2.0 killo-ohms

Chopper Choke:

24 milli-ohms
1.5 milli-henries

Branch #14 Choke Resistance
Branch #16 Choke Inductance

DC Power Source:

Branch #5 Filter Capacitor = 7.8 milli- farads
Branch #4 Battery(Internal) Voltage = 120.0 Volts
Branch #15 Battery(Internal) Resistance = 5 milli-ohms

- 176 -



Table (3.

2-2) Branch Identification DELTA

Configurafion

Figure
Number

WWLWLWWWWLWWWLWWW
(NENENENESECENESESESENE )
|
HHERROONOUID WN

I T I I |
[NE ENe)

(Unfaulted)
Branch Branch Identification
Number
1 Phase Ag Back Emf
17 Phase (A) Winding Inductance
7 Phase (A) Transistor (+Bus)
22 Phase (A) Diode (+Bus)
8 Phase (A) Transistor (-Bus)
28 Phase (A) Diode (-Bus)
4 Battery Internal Voltage
© 16 Chopper Inductance
31 Chopper (+Bus) Transistor
20 Chopper (+Bus) Diode
6 Chopper (-Bus) Transistor
27 Chopper (-Bus) Diode
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Figure (3.2-1) Simulated Current and Voltage Waveforms for
Branch #1, DELTA Configuration (Unfaulted)
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Figure (3.2-2) Simulated Current and Voltage Waveforms for
Branch #17, DELTA Configuration (Unfaulted)
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Figure (3.2-5) Simulated Current and Voltage Waveforms for
Branch #8, DELTA Configuration (Unfaulted)
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Figure (3.2-6) Simulated Current and Voltage Waveforms for
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Figure (3.2-~7) Simulated Current and Voltage Waveforms for
Branch #4, DELTA Configuration (Unfaulted)
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Figure (3.2-8) Simulated Current and Voltage Waveforms for
Branch #16, DELTA Configuration (Unfaulted)
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Figure (3.2-9) Simulated Current and Voltage Waveforms for
Branch #31, DELTA Configuration (Unfaulted)
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Figure (3.2-10) Simulated Current and Voltage Waveforms for
Branch #20, DELTA Configuration (Unfaulted)
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Figure (3.2-11) Simulated Current and Voltage Waveforms for
Branch #6, DELTA Configuration (Unfaulted)
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Figure (3.2-12) Simulated Current and Voltage Waveforms for
Branch #27, DELTA Configuration (Unfaulted)
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3.3 Simulated Waveforms of the OPEN-DELTA Configuration

The simplified (with chopper) schematic diagram of
Figure (1.0-3) for the DELTA configuration, and-'its
coiresponding complete network graph (including chopper) of
Figure (3.0-4) should be referred to in reviewing the
results of simulations presented in this section. These
simulations represent unfaulted normal motoring operation.
The input data used in obtaining these results are given in
Table (3.3-1). Identification of all the displayed voltage
and current simulated waveforms is given in Table (3.3-2).

The.calculated average electromagnetic macﬁine power during the
iast cycle is 18,407 watts. The corresponding copper losses in the

machine totaled 515 watts.
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Table (3.3~1]) Input Data for Network Model of the

OPEN-DELTA Configuration (Unfaulted)

Three Phase Balénced Machine Model:

Branch #15 Phase(A) Winding Resistance=20.4 milli-ohms
Branch #20 Phase(A) Winding Inductance=156 micro-henries

Inverter/Converter Bridge & Chopper Switching Components:

Forward Motoring Mode:

Saturation Resistance "on" 6.4 milli-ohms

Branch #7 (+Bus) Phase(A) Transistor
Cutoff Resistance "off" = 2.0 killo-ohms

Branch #26 (+Bus) Phase(A) Diode
Forward-Biase Resistance "on" = 6.4 milli-ohms
Reverse-Biase Resistance "off"= 2.0 killo-ohms

Chopper Choke:

Branch #14 Choke Resistance
Branch #19 Choke Inductance

24 milli-ohms
1.5 milli-henries

DC Power Source:

Branch #5 Filter Capacitor = 7.8 milli-farads
Branch #4 Battery(Internal) Voltage = 120.0 Volts
Branch #18 Battery(Internal) Resistance = 5 milli-ohms

/
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Table (3.3-2) Branch Identification OPEN-DELTA Conflguration

(Unfaulted)
gtgg:i gi;gg? Branch Identification
3.3-1 1 Phase (A) Armature EMF and Phase Current
3.3-2 20 Phase (A) Inductive Voltage and Phase Current
3.3-3 7 Phase (A) (+ Bus) Transistor
3.3-4 26 Phase (A) (+ Bus) Diode
3.3-5 9 Phase (A) (-Bus) Transistor
3.3-6 39 Phase (A) (-Bus) Diode
3.3-7 4 Battery Internal Voltage and Current
3.3-8 19 ~ Chopper Inductive Voltage and Current
3.3-9 23 Chopper (+ Bus) Transistor
3.3-10 24 Chopper (+ Bus) Diode
3.3-11 6 Chopper (- Bus) Transistor
3.3-12 37 Chopper (- Bus) Diode

- 192 -
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Figure (3.3-1) Simulated Current and Voltage Waveforms for

Branch #1, OPEN-DELTA Configuration
(Unfaulted)
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YBASE= 1.68x%10° - XBASE~ 4.00%10~

il

Figure (3.3-2) Simulated Current and Voltage Waveforms for
Branch #20, OPEN-DELTA Configuration

(Unfaulted)
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Figure (3.3-3) Simulated Current and Voltage Waveforms for

Branch 7, OPEN-DELTA Configuration
{Unfaulted)
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Figure (3.3-4) Simulated Current and Voltage Waveforms for
Branch #26, OPEN-DELTA Configuration

(Unfaulted)
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Figqure (3.3-5) Simulated Current and Voltage Waveforms for

Branch #9 , OPEN-DELTA Configuration
(Unfaulted)
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Figure (3.3-6) Simulated Current and Voltage Waveforms for
Branch #39, OPEN-DELTA Configuration
(Unfaulted)
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Figure (3.3-~7) Simulated Current and Voltage Waveforms for

Branch #4, OPEN-DELTA Configuration
(Unfaulted)
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Figure (3.3-8) Simulated Current and Voltage Waveforms for
Branch #19, OPEN-DELTA Configuration
(Unfaulted)
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Figure (3.3-9) Simulated Current and Voltage Waveforms for

Branch #23, OPEN-DELTA Configuration
(Unfaulted)
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YBASE= 6.02x107 -  XBASE= 4.00x%107
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Figure (3.3-10) Simulated Current and Voltage Waveforms for
Branch #24, OPEN-DELTA Configuration
(Unfaulted)
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YBASE= 5.97 %107 XBASE=- 4.00x107
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Figure (3.3-11) Simulated Current and Voltage Waveforms for
Branch #6, OPEN-DELTA Configuration
(Unfaulted)
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Figure (3.3-12) Simulated Current and Voltage Waveforms for
Branch #37, OPEN-DELTA Configuration
(Unfaulted) :
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3.4 Simulated Waveforms of the WYE Configuration
(Containing Shorted Turn)

A simulation of the effects of a shorted turn in a WYE
connected machine is presented in this section. | This
simulation is otherwise identical to the case presented in
Section (3.3-1). The corresponding network graph is given
in Figure (3.4-1) and should be referred to in reviewing the
results of simulations presented in this section. The
inductances used to simulate the effects of the shorted turn
are give;'x in Table (3.4-3).

The input data used in obtaining these results are given
in Tabié (3.4-1). Identification of all the displayed
voltage and current simulated waveforms is given in Table
(3.4-2). |

The calculated average electromagnetic machine power during the last
cycle is 12,520 watts. This is only slightly less than that for the un-
faulted case., The corresponding copper losses, however, are much greater
(597.15 watts). The losses in the shorted turn are 40 times higher
(366 watts) than the unfaulted losses (9.1 watts). It must be emphasized
that saturation effects and changes in winding resistance due to increased
temperatures were neglected in this analysis. These factors should be
included in any future efforts in this area.
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Figure (3.4-1) Network Model of the WYE Configuration
(Containing Shorted Turn)



Table (3.4-1) Input Data for Network Model of the WYE
Configuration ( Faulted )

Three Phase UnBalanced Machine Model:

Branch #14 Healthy Portion Phase(A) 7 TURNS
Winding Resistance= 5,95 milli-ohms

Branch #13 Shorted Portion of Phase(A) 1 TURN
Winding Resistance= 0.85 milli-ohms

Branch #15 Phase(B) Winding Resistance= 6.8 milli-ohnms
Branch #16 Phase(C) Winding Resistance= 6.8 milli-ohms

See Inductance Matrix (Unbalanced Case) Attached in
Figure (3.4-2)

Inverter/Converter Bridge & Chopper Switching Components:

Branch #1l1 (+Bus) Phase(A) Transistor
Saturation Resistance "on" = 6.4 milli-ohms
Cutoff Resistance "off" = 2.0 killo-ohms
Branch #26 (+Bus) Phase(A) Diode

Forward-Bias Resistance "on" = 6.4 milli-ohms
Reverse-Bias Resistance "off"= 2.0 killo-ohms

Chopper Choke:

Branch #17 Choke Resistance
Branch #19 Choke Inductance

24 milli-ohms
1.5 milli-henries

DC Power Source:

Branch #6 Filter Capacitor = 7.8 milli-farads
Branch #5 Battery(Internal) Voltage = 120.0 Volts
Branch #18 Battery(Internal) Resistance = 5 milli-ohms
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Table (3.4-2) Branch Identification WYE Configuration
(Containing Short Circuit)

gtggzg gi;g:? Branch Identification

3.4-2 2 Phase (B) Armature EMF and Phase Current

3.4-3 21 Phase (B) Inductive Voltage and Phase Current
3.4-4 27 Phase (B) (+ Bus) Transistor '
3.4-5 28 Phase (B) (+ Bus) Diode

3.4-6 9 Phase (B) (- Bus) Transistor

3.4-7 33 Phase (B) (- Bus) Diode

3.4-8 5 Battery Internal Voltage and Current

3.4-9 19 Chopper Inductive Voltage and Current

3.4-10 23 Chopper (+ Bus) Transistor

3.4-11 24 Chooper (+ Bus) Diode

3.4-12 7 Chopper (- Bus) Transistor

3.4-13 31 Chopper (- Bus) Transistor

3.4-14 1 (H) Phase (A) Armature EMF and Phase Current
3.4-15 12 (H) Phase (A) Inductive Voltage and Phase Current
3.4-16 4 (S) Phase (A) Armature EMF and Phase Current
3.4-17 20 (S) Phase (A) Inductive Voltage and Phase Current
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A(H) CHOKE A(S) B(H) . ¢c(H)

A(H) %6.6 | o. 4,97 -3.66 | -3.66
CHOKE 0. 1500, 0. 0. 0.
A(s) 0.747 .o. 4,97 -0.523| -0.523
B(H) -3.66 0. -0.523| 47.8 |- -4,18
c(H) -3.66 0. 40.523 -4.18 47.8

ALL INDUCTANCES IN MICROHENRIES

Table (3.4-3) Inductance Matrix of Unbalanced (Faulted) Case
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Figure (3.4-2) Simulated Current and Voltage Waveforms for
Banch #2, WYE Configuration (faulted)
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Figure (3.4-3) Simulated Current and Voltage Waveforms for
Banch #21, WYE Configuration (faulted)
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Figure (3.4-4) Simulated Current and Voltage Waveforms for
Branch #27, WYE Configuration (faulted)
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Figure (3.4-5) Simulated Current and Voltage Waveforms for
Branch #28, WYE Configuration (faulted)
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Figqure (3.4-6) Simulated Current and Voltage Waveforms for
Branch #9, WYE Configuration (faulted)
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Figure (3.4-7) Simulated Current and Voltage Waveforms for
Branch #33, WYE Configuration (faulted)
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Figure (3.4-8) Simulated Current and Voltage Waveforms for
Branch #5, WYE Configuration (faulted)
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Figure (3.4-9) Simulated Current and Voltage Waveforms for
Branch #19, WYE Configuration (faulted)
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Figure (3.4-10) Simulated Current and Voltage Waveforms for
Branch #23, WYE Configuration (faulted)
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Figure (3.4-11) Simulated Current and Voltage Waveforms for
Branch #24, WYE Configuration (faulted)
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Figure (3.4-12) Simulated Current and Voltage Waveforms for
Branch #7, WYE Configuration (faulted)
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Figure (3.4-13) Simulated Current and Voltage Waveforms for
Branch #31, WYE Configuration (faulted)
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Figure (3.4-14) Simulated Current and Voltage Waveforms for
Branch #1, WYE Configuration (faulted)
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Figure (3.4-15) Simulated Current and Voltage Waveforms for
. Branch #12, WYE Configuration (faulted)
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Figure (3.4-16) Simulated Current and Voltage Waveforms for
Branch #4, WYE Configuration (faulted)
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Figure (3.4~17) Simulated Current and Voltage Waveforms for
Branch #20, WYE Configuration (faulted)
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4.0 CONCLUSIONS AND RECOMMENDATIONS

A network topology based modeling approach designed’ for

the

simulation of electromechanical drive and actuator

systems has been presented and verified against actual test

measurements. The salient features of this model are:

1.

The state equations are automatically generated from
the USER specified network topology using standard
network graph theory concepts.

The type of control unit used to operate the power

"conditioner can be USER épecified from a number of

preprogrammed controllers. Additional control
schemes can be implementea, if required, by modifying
SUBROUTINE QLOGIC.

The program can handle aof number fault scenarios
including shorted turns and failures in the power
electronics.

The program can handle mutual inductances and can be
adopted _to include nonlinearities in the machine
parameters.

The integration routine employed by this program is
the IMSL SUBROUTINE DGEAR which is wi|dely available
and well suited to solving the ill conditioned

systems of differential equations resulting from

these types of machine systems.
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The model was shown to be supcessful in simulating the
machines with connections such as WYE, DELTA, OPEN-DELTA,
and WYE with SHORTED TURN IN ARMATURE WINDING. The hbdel
was used successfully in determining currents and voltages
in and across ﬁhe various branches, respectively. The
present computer algorithm can be easily supplied with a
post processor (external subroutines) which would calculate
input power, output power, and losses in the systems studied
here. However, the present resources did not permit the
development of this post processor, which must be added in
future .research éfforts on such machine system simulation
models.

There are a number of improvements which would greatly
expand the capabilities of this model. These include:

1. A more detailed switch model may be necessary in
future investigations especially if power conditioner
efficiencies are of great importance. Such
improvements may include a more accurate
representation of the static I-V characteristics as
well as accounting for switching and base drive
losses.

2. A model of SCR switches should also be implemented to
increase the versatility of the model.

3. The program should be modified to accept dependent

sources.
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4. This model should be 1linked to a finite element
machine model when studying the effects of shorted
turns. This is necessary due to the heavy satufation
produced by the fault currents.

5. The program should be streamlined and upgraded to
enable the USER to perform simulations with a minimum
amount of input data. This should include a
preprocessor to automatically generate a proper
network graph for the system under stﬁdy.
'Postprocessors to calculate losses, efficiencies,

"etc. and ﬁell as plotting routines to display the

results would also be useful.

The results and experimental verification presented in this
report demonstrate the usefulness and accuracy of this model
in predicting both the faulted and unfaulted performance of
electromechanical actuators. Much work reﬁains to be done
to link this network model with the finite element based
machine parameter estimation model required for accurate

simulation of the shorted turn behavior of such systems.
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