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~.o INTRODUCTION 

This report presents the final results of contract number 

NAS 9-16281 of the NASA Johnson Space Center. The main goal 

of this research contract was the development of 

mathematical models capable of simulating the transient, 

steady state, and faulted performance characteristics of 

various brushless dc machine-PSA (power switching assembly) 

configurations. 

future use as 

actuators) for 

These systems are intended for possible 

primemovers in EMAs (electromechanical 

flight control applications. These 

machine-PSA configurations include wye, delta, and 

open-del ta connected systems, see Fi gures (1. 0-1), ( 1. 0-2 ), 

and (1. 0-3) , respectively. The research performed under 

this contract was initially broken dowh into the following 

six tasks: 

1. Development of mathematical models for various 

machine-PSA configurations, 

2. Experimental validation of the mathematical model, 

3. Shorted turn model for failure modes, 

4. Experimental validation of the mathematical model for 

shorted turn-failure modes, 

5. Tradeoff study, and 

6. Documentation of results and methodology. 
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The fourth task was ultimately eliminated due to problems 

in procuring the required equipment. 

The developed actuator model is very general and can 

handle a large variety of machine-PSA configurations. The 

model includes mutual coupling between the armature phase' 

windings as well as the ability to handle nonlinearities in 

both the inductances and capacitances of the system. This 

program automatically generates the state model from the 

network topology without any ted~ous hand derivations. This 

model has the capability of handling PSAs with or without 

separate choppers. Furthermore the chopping can be either 

hysteresis or PWM controlled as desired. 

This program has already been applied successfully to 

wye, delta, and open delta connected machines as well as 

machines with shorted turns in the armature windings. 

The model was verified against test data obtained from a 

15 HP samarium cobalt permanent magnet brushless dc machine 

system designed and built for use in electric vehicles. The 

correlation between measured and simulated data was 

excellent in all cases; thereby satisfying the second task 

listed above. 

The third task is concerned with the development and 

verification of a shorted turn model. The shorted ·turn 

model was successfully implemented and applied to the wye 

connected machine mentioned earlier. Due to the problems in 

securing the required test equipment, the parameters in this 

case were assumed to be linear. 
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Because of the. lack of adequate test facilities, the 

fourth task was cancelled. 

The tradeoff study was not completed because of the l.arqe 

computer resource outlays required for the finite element 

field analysis and associated calculations. The derivation 

of this model and results obtained are given in the 

followinq chapters. 
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2.0 THE ACTUATOR MODEL 

A generalized hybrid matrix modeling approach, sui table 

for the simulation of electromechanical- systems consisting 

of solid state switching devices, capacitors (linear or 

nonlinear), inductors (linear or nonlinear) as well as 

rotating machines with mutual coupling between all of the 

machine windings, is presented in this chapter. This 

approach was chosen because it facilitates the automatic 

generation of the system state model directly from the 

network topology. 

The systems that were analyzed using this modeling 

approach were divided into two subsystems: the power 

electronics and the rotating machine. A brief description 

of these two subsystems, as well as their impact on the 

overall modeling approach, is given below: 

1. The power electronics was the first subsystem considered 

here. The state-of-the-art functions of power 

electronics subsystems are to control and process the 

flow of power from the dc source to the machine and vice 

versa. The power diodes and transistors are assumed to 

be the basi c swi tching components of the power 

electronics. These diodes and/or transistors take on 

either very small or very large equivalent resistances 

depending upon their "on"/"off" status. This 
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nonlinearity requires that the state equations be 

updated whenever a diode or transistor changes state 

(status). The large spread of these resistance val~es 

causes a correspondingly large spread in the time 

constants of the overall system. Therefore, for thi s 

class of systems, the governing state equations are very 

stiff. 

2. The second subsystem, which requires special attention, 

is the machine. In general, both the machine winding 

inductances and induced emfs are functions of the 

winding currents (state variables) and rotor angle. The 

nonlinearities associated with these parameters are 

typically much less severe than those produced by the 

switching action of the power diodes within the 

rectifier bridge. 

Both of these subsystems are susceptible to failures or 

faults. Therefore additional consideration was given to the 

allowed possibility of faults in the various components, 

such as the diodes, transistors, fuses,and capacitors of the 

power electronics as well as faults wi thin the machine 

itself. Some of these faults may lead to further 'stiffness 

of the system state equations. 

The intrinsic characteristics of such electromechanical 

systems, during both normal and faulted operation, requires 

- 5 -



that the modeling approach be designed to handle very stiff, 

nonlinear differential equations. Hence, the" " modeling 

approach presented in this report utilizes a commercially 

available implicit integration routine designed specifically 

for stiff differential equations. This is "necessary in 

order to accurately simulate the dynamics of the system with 

a minimum expenditure of computer resources. Also the wide 

variety of topologies encountered in these type of machine 

systems, together with the large number of capacitances and 

inductances associated with these systems, makes it 

mandatory that the state model be generated automatically 

from the system topology and component parameters. 

Therefore the modeling approach, presented in this report 

has the following features: 

1. The model is generated automatically from the system 

topology and component parameters; 

2. the model is capable of handling nonlinear component 

parameters; and 

3. the solution routines can handle extremely stiff (ill-

conditioned) differential equations. 

The theoretical background of a modeling approach with 

these three attributes is the subject of this chapter. The 

- 6 -
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modeling approach makes heavy use of network graph theory 

[l,2L and is based upon a hybrid matrix formulation, [2]. 

This approach is presented in the seven sections of this 

chapter. A brief description of each section follows. 

In the first section, the nonlinear components typically 

found in such electromechanical systems are identified and 

described. A sui table network model for each of these 

components is presented. 

In the second section, the basic concepts of network 

graph theory relevant to the chosen modeling approach are 

discussed. The use of network graph theory allows for 

compact notation and facilitates the actual implementation 

of the model on the digital computer. 

In the third section, the hybrid matrix approach for 

automatically generating the state equations is discussed in 

detail. . This approach was chosen since it easily handles 

the various nonlinear components as well as mutual coupling 

present in these types of systems. 

- 7 -



In the fourth section, the output equations (branch 

voltages and currents) are obtained in terms of the hybrid 

matrix representation used to obtain the state model. The 

output equations express all of the branch voltages and 

currents in terms of the state variables and forcing 

functions. 

The fifth section outlines the procedure used to 

determine the operating point "on"/"off" of the diodes at 

e~ch point in time. The accuracy of the overall solution is 

closely related to the degree of stiffness and the accuracy 

in determining the precise switching points of these diodes. 

The procedure for integrating the state variables forward 

in time is. given in the sixth section. The effects of 

stiffness on the solution accuracy and model performance are 

discussed. 

In the last section, the modeling approach is verified by 

comparison of simulated results with test data obtained from 

a· 15 hp samarium cobalt based brushless dc machine designed 

and built for vehicle propulsion. 
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2.1 Models for the Nonlinear Components 

Typical EMA systems contain a number of nonlineari ties 

which must be dealt with separately. The nonlinearities of 

greatest concern can be catagorized into four groups: 

1. The first group of nonlinearities is associated with the 

switching action of the power diodes, see Figure" 

(2.1-1). This switching action causes extreme changes 

in the electrical time constants of the system. This is 

due to the extremely large change in the conduction 

properties of the diodes between their "on" and "off" 

states. The slope of the switch I-V characteristic, 

shown in Figure (2.1-1), is equal to the reciprocal of 

the equivalent diode resistance at a given operating 

point. The" "on" state of the diode is represented by 

the first quadrant in Figure (2.1-1), where the slope is 

large (low equivalent diode resistance). Conversely, 

the "off" state is represented by the third quadrant of 

this figure. The slope of the diode characteristic, in 

this quadrant, is very small and hence can be 

represented by a very large equivalent resistance. 

2. The second group of nonlineari ties is associated with 

the swi tchi~g action of the power transistors. This 

switching action also causes extreme changes in the time 

- 9 -
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Fig. (2.1-1) Piecewise Linear Diode Model 
Approximating the I-V Characteristics 
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constants of the electromechanical system. Like the 

diodes, this is due to the extremely large change in the 

conduction properties of ' the transistors between their 

"on" and "off" states. The "on" state of the transistor 

is represented by a low equivalent resistance. 

Conversely, the "off" state is represented by a very 

large equivalent resistance. The only difference 

between the diode and transistor models is the way in 

which the equivalent resistance value is determined 

throughout a given simulation run. 

3. The machine parameters (inductances and emfs) of the ac' 

machine form the second group of nonlineari ties wi thin 

the system. These nonlinearities are due to saturation 

effects wi thin the iron portions of the machine. The 

winding inductances and emfs are influenced also by the 

angular displacement between the rotor and stator. 

Details on the numerical calculation of these parameters 

are given in reference [3, 4, 51 

4. The last group of nonlinearities considered here is due 

to failures which may occur in the various components of 

the system. The faults or failures considered in this 

work consist of the following: 

a) Open fuses due to electrical or mechanical 
reasons; 

b) open capacitors due to mechanical reasons; 

- 11 -



c) shorted capacitors due to dielectric breakdown; 

d) open circuited diodes due to electrical or 
mechanical reasonSi and 

e) short circuited diodes due to electrical or 
mechanical reasons. 

Nonlinear Network Model of the Diodes and Transistors ---

The nonlinearity due to the switching action of a diode 

is modeled by a piecewise-linear representation of the 

specific diode's I-V characteristic, as shown in Figure 

(2.1-1). In terms'of an equivalent network component model, 

the diode is modeled as a nonlinear or bi-valued resistance, 

see reference [6, 7]. The "on" (or first quadrant) value of 

this resistance is defined as the forward voltage drop of 

the actual diode divided by the forward diode current at 

rated conditions for the given system under study. This 

data is obtained from the actual manufacturer's data sheets 

of the power diodes. A similar model is used for the 

transistor; however, the resistance value (between collector 

and emitter) is assumed not to be polarity sensitive. 

These simplified switch models were chosen becau~e it was 

found from past experience that the excessive computation 

required to include the dynamics during the actual switching 

-12 -
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process would add little in the way of improved accuracy in 

the predicted system response. This is primarily due to to 

the fact that the percent of the total simulation duration 

which these switchinq devices spend within the hiqhly 

nonlinear region of their IV-characteristics is small. This 

is true for these types of machine systems primarily because 

of their relatively low frequency application. The modelinq 

approach presented in this report can incorporate equivalent 

network models for these switching devices if additional 

accuracy is required. 

The alqorithm used to switch from one diode state to the 

other is described in detail in Section 2.5. On the 

otherhand, the control loqic used for determininq the 

"on"/"off~' state of each transistor is a function of the 

state variables, forcinq 

machine speed, the mode 

machine torque. 

functions, the rotor anqle, the 

of operation, and ,the commanded 

Machine Model Includinq Shorted Turns 

The second nonlinear system component modeled was the 

multiwindinq machine. The electromaqnetic interactions 

- 13 -



between the various windings was modeled by means of n-

coupled coils, one for each of the n windings. The model of 

each winding consists of three series connected components; 

the coil resistance, the incremental self and mutual 

inductances, and the open circuit back emf. The inductances 

and emf's are functions of the level of saturation and hence 

this model is nonlinear. Also, these parameters are 

functions of the rotor angle, hence the model is time 

dependent as well. This machine model is general enough to 

be applied to machines similar to the permanent-magnet dc-

machine systems described in Chapter l. For simplicity, 

the multiple armature machine will be treated as having two 

separate armatures. One of these armatures is assumed to be 

normal or healthy (h) while the other is faulted or 

defective (d). The n-coupl~coil approach is quite general 

and can easily be extended to any number of armatures and 

fault configurations. 

The spatial relationships among the axes of the seven 

windings of this machine is displayed in ~igure. (2.1-2). 

Notice that there are two windings for each of three phases 

(a,b,c) as well as a seperate field winding (f). The coil 

axis or positive MMF direction of each coil is indicated by 

the arrows labeled (a,b,c,f). The angle between the 

- 14 -
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positive MMF of phase A and positive field MMF is denoted by 

an angle theta. The behavior of the field winding is 

assumed to be controlled by the value of the field current, 

which is treated as an external known forcing function "and 

hence not a state variable. In the case of a permanent 

magnet machine, this field current would be held constant. 

Based upon these assumptions, the voltage equations for the 

seven winding machine model can be expressed in matrix form 

as follows: 

-----------------------
v 1 R1 0 0 0 0 0 i1 ).1 

v2 0 R2 0 0 0 0 i2 ).2 

v3 0 0 R3 0 0 0 i3 ).3 (2.l-l) 

= ----------- ----------- * +d/dt 

v 4 0 0 0 R4 0 0 i4 ).4 

Vs 0 0 0 0 RS 0 is ).5 

v6 0 0 0 0 0 R6 i6 ).6 

-----------------------

Notice that the effect of the field winding was incorporated 

into the vector of winding flux linkages since the field 

current was assumed to be a known function of time because 

of the permanent magnets. Equation (2.1-l) can be expressed 

in shorthand matrix notation, specifically advantageous for 

partial fault analysis, as follows: 

- 16 -
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(2.1-2) 

where, Yh and Yd represent the voltage vectors of the 

healthy (h) and faulted· or defective (d) armature 

phase windings (terminal voltages), respectively; 

~ and ~d represent the resistance matrices of the 

healthy and faulted phase windings, respectively; 

i h and id represent the 9urrent vectors of the 

healthy (h) and faulted (d) phase windings, 

respectively; and, 

!h and !d represent the flux linkage vectors of the 

healthy and faulted phase windings, respectively. 

The flux linkage ·vectors, !h and !d' are functions of the 

six armature currents, {i l , ... , i 6 }, the field current, if' 

and the rotor position, e. Hence, by the chain rule: 

[dlh/dtl = [alh/aill*[dil/dtl + ••• + [alh/ai 6 ]*[di6/dt] 

+ [a1h/aifl*[dif/dtl + [alh/a01*[d0/dt] (2.1-3) 

[d1d/dt] = [ald/aill*[dil/dt] + ••• + [ald/ai 6 ]*[di6/dt] 

+ [ald/aifJ*[dif/dtJ + [ald/a0]*[d0/dt] (2.1-4) 

- 17 -



The first derivative of the rotor angle, e, with respect 

to time, t, is defined as the radian velocity, III, of the 

machine as follows: 

III = de/dt (2.1-5) 

The "induced armature emf" can be obtained from equations 

(2.1-3) and (2.1-4) as follows: 

1 ~hl 
I 1 
1---1 
1 1 
1 ~dl 
1 1 

1 [alh / ae ] 1 
1 1 
--------1*111 

1 
1 [ alci/ae ] 1 
1 1 

(2.1-6) 

The partials of !h and !d with respect to the currents are, 

by definition, the machine incremental inductances. These 

inductances are given in matrix form as: bhh , bhd , bhf , 

bdh , bdd , and bdf , and are defined as follows: 

(2.1-7) 

(2.1-8) 

(2.1-9) 

- 18 -



--------------------------
~dh = I a~d/ai1 I ald/ ai2 I alf / ai3 1 

I I I I 
-------------------------- (2.1-10) 

--------------------------
~d = I a~d/ai4 I ald / aiS I ald/ ai 6 1 

I· I I I 
-------------------------- (2.1-11) ..... 

: I 
i --------

~f = I a!o./ai f I 
! I I 

-------- (2.1-12 ) 

U,sing equations (2.1-3) through (2.1-12) one can rewrite the 

armature terminal voltage vector, equation (2.1-2), as 

follows: 

- 19 -



I ~ I ~d I lihl 
I I I I I 
I-----I-----I*d/dtl--I (2.1-13) 
I bdh I bdd I lid I 
I I I I I 

In expanded form, the terminal . voltages of the armature can 

now be written as follows: 
~ 

-----------------------
vI Rl 0 0 0 0 0 i 1 e 1 

~ 

v 2 0 R2 0 0 0 0 i2 e2 

v3 0 0 R3 0 0 0 i3 e 3 

= ----------- ----------- * + --
v 4 0 0 0 R4 0 0 i4 e 4 

Vs 0 0 0 0 RS 0 is e S 

v6 0 0 0 0 0 R6 i6 e 6 

-----------------------
------------------------
Lll L12 L13 L14 LIS L16 il 

L21 L22 C 23 L24 L2S L26 i2 

L31 L32 L33 L34 L3S L36 i3 

+ ----------- ------------ *d/dt (2.1-14) 
L41 L42 L43 L44 L4S L46 i4 

LSI LS2 LS3 LS4 LSS LS6 is 

L61 L62 L63 L64 L6S L66 i6 

------------------------

- 20 -
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Equation (2.1-14) is the governing matrix equation of the 

seven winding machine. This equation correspond~ to the 

lumped parameter network model shown in Figure (2.1-2). 

The vectors and matricies employed in Figure (2.1~2) are 

. i 
related to this discusion by the following identities: 

--------- t 
i = 1 i h 1 id 1 

1 1 1 
--------- (2.1-lS) 

-- °Jb1 1 
I· 1 
1--1 -----------
Ib2 1 = 1 ~ 1 ~d 1 
1 1 1 1 1 
1--1 ----------- (2.1-16) 
1!:!3 1 
1 1 

and ,... 

1 !:!41 
1 1 
1--1 -----------
Ibsl = 1 bhd 1 bdd 1 
1 1 1 I 1 
1--1 ----------- (2.1-17) 
Ib6 1 
I I 

- 21·-



A procedure used to obtain these emf and inductance 

parameters using the finite element method is described in 

detail in references [8, 9, 10]. 

Nonlinear Network Models of the Faulted Components 

One important application of the simulation model 

presented in this work is to analyze the effects of 

component faults in the PSA. These faults may occur in the 

fuses, the snubber capacitors, and in the diode and 

transistor switches. The failures or faults wi thin these 

components may be due to both electrical and/or mechanical 

reasons. 

Nonlinear Component Model of the Fuses 

The nonlinearity of the fuse model results from the 

incorporation of its failure modes mentioned previously. 

The first fuse failure mode considered here results from the 
2 

fuse thermal rating (i T) being exceeded. This is due to 

sustained excessive fuse current. Once a fuse opens and 

clears, the open fuse is modeled as a very large resistance. 

Thus, the fuse model is somewhat similar to the diode model 

in that it also is modeled as a nonlinear resistor. 

The second failure mode, considered here, results from 

mechanical fatigue. It is assumed that this type of failure 

- 22 -
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mode results in an open (large resistance). The only 

difference in these two failure modes is in their 

initiations. The first failure mode is initiated when the 
2 

accumulated energy exceeds the i T rating of the fuse. The 

second type of failure mode· is initiated by the USER at a 

specified time within a given simulation run. 

The use of the low or high values of resistance to 

simulate the state of each fuse makes it possible to use 

j~st one network topology during both the faulted and 

unfaulted modes of operation. This greatly simplifies the 

analysis. 

The unfaulted state of the fuse is modeled as a very low 
2 

res"istance. This resistance value as well as the i T rating 

are obtained directly from the fuse data sheets supplied by 

the manufacturer. An example, [10], of such a data sheet, 

in graphical form, can be seen in Figure (2.1-3) . 

The data, given in this figure, which is pertinent to the 

fuse model is summarized below: 

1. THE RATED CURRENT (IRATED ) specifies the rated current 

that can pass through the fuse indefinitely without 

causing the fuse to open and clear. 

- 23 -
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2 
2. The I T rating of the fuse can be obtained from this 

figure by squaring the RMS value of any current, 12 , 
2 

wi thin the specified "section for calculating I Til as 

shown in Figure (2.1-3) and multiplying this result by 

its corresponding time, T2 , as follows: 

(2.1-18) 

3. The Total Simulation Duration (TSD ) is USER specified 

and is defined as the total duration of the computer 

simUlation run. The intersection of TSD with the 

boundary between safe and open operation regions gives 

the value of the threshold current I THS . This current 

represents the minimum value of the fuse current for 

which the fuse energy is accumulated. If this 
2 

accumulated energy exceeds the i T rating then the fuse 

is opened and cleared. Notice for the specified time 

period, TSD ' any value of sustained fuse current below 

I THS will not result in a fuse open. 

These parameters are incorporated in the fuse network 

component model for a given simulation. The schematic and 

corresponding network component symbols of thi s model are 

given in Figure (2.1-4). 
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The latching-hysterisis behavior of the fuse model is 

shown also within this figure. The fuse is modeled as a 

piecewise (latching) linear resistor which can take on two 

distinct and very widely spread values. The nominal 

(unfaul ted) value of the fuse resistance (~OM) can be 

obtained from the manufacturer's data sheet. The fuse will 

always have this low resistance value if the energy 
2 

di ssipated wi thin the fuse never exceeds its I T rating. 

This safe region of operation is shown in Figure (2.1-4) and 

co~responds to the region bounded by the shaded (FUSE OPEN 

AND CLEARED) region and the two axes (time versus current) 

as illustrated in Figure (2.1-3). Once the fuse exceeds its 
2 

I T rating, the resistance value of its corresponding 

network component model (RFUSE ) is made very high (ROPEN ), 

to simulate the open circuit condition. 

The second fuse failure mode, that is the mechanical 

opening of a fuse, is USER initiated. This is accomplished 

by setting the fuse resistance, RFUSE ' to be equal to ROPEN 

at some predetermined time during the computer simulation 

run. These two modes for initiating a fuse failure can be 
2 

considered as natural (I T) and forced (mechanical). The 

latching behavior of the fuse model, as shown in Figure 

(2.1-4), is necessary since once the fuse is opened, it will 

remain open for the remainder of the simulation. 
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Nonlinear Component Model of Faulted Capacitors 

The nonlinearity of the capacitor model is strictly due 

to the incorporation of its failure modes. 

These failure modes are: 

1. An open circuit due to mechanical fatiguej and 

2. a short circuit due to dielectric failure. 

The equivalent network model of the fault capacitor 

during the normal, open, and shorted modes of operation, is 

illustrated in Figure (2.1-5). The two resistors (Res and 

Rco> wi thin this equivalent component model are bi-valued 

piecewise linear resistors. The very large (open) value and 

the very small (shorted) value of these resistances are 

determined by the specific capacitor mode of operation. 

These three modes of operation of the fault capacitors 

(normal, open, or shorted) can be implemented by the various 

combinations of the resistance values for Rco and Rcs as 

illustrated in Figure (2.1-5). 

The failure modes of the fault capacitor are initiated in 

the following manner: 

1. A shorted capacitor (Roc and Rse are set to small 

values) is initiated if the fault capacitor's voltage 

(which is typically a state variable) exceeds its 

breakdown value. This breakdown voltage value, called 
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VCBD ' is obtainable from the manufacturer's data sheet. 

Even though a breakdown can occur for different voltages 

(ac or dc), it is the responsibility of the engineer 

when incorporating these voltages to use his/her 

judgement in determining a suitable peak breakdown 

voltage, VCBD ' to be used in a given simulation. Once 

the breakdown (shorted fault) has occurred, the values 

of Roc and Rsc ' in Figure (2.1-5) are latched at very 

small resistive values. 

2. The open capacitor (ROC and RsC are set to very large 

values) is assumed to occur due to mechanical fatigue. 

This type of fault is initiated by the USER at a 

specified time during the simulation run. Once the open 

failure mode has occurred, the values of ROC and RSC are 

latched at very large values of resistance for the 

remaining duration of the simUlation. 

The initiation of these two failure modes of the 

capacitors can be considered as 1) natural, in the case of 

the short, and 2) forced, in the case of the open. The 

latching behavior of this model is necessary since it is 

assumed that these failures (faults) are permanent·. during a 

particular simulation run. 
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a) Unfaulted Capacitor 

b) Shorted Capacitor 

c) Open Capacitor 

c 

c 

c 

RON'· Very small resis~ance. 

ROFF - Very large resista.nce 

Figure (2.1-5) Faulted Capacitor Equivalent Network Model 
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2.2 Network Graph Theory Concepts 

The computer-aided analysis of relatively complex 

systems, such as the EMA systems. introduced in Chapter 1, 

requires a systematic procedure for formulating the 

governing state equations on the digital computer. This can 

be accomplish~d by applying generalized graph theory 

concepts, [1,2], and matrix algebra to the lumped-parameter 

network model of the . system under. study. The economical 

advantage of thi s approach becomes apparent when it is 
. 

required to model a number of different topologies (or 

systems) using the same simulation program, as is the case 

here with the various types of power conditioners and 

brushless dc-machine systems considered in this report. 

In this section, a brief background on the fundamental 

concepts and definitions of network graph theory are 

presented. For further detail, see references [1,2]. 

A lumped-parameter network model of a system can be 

represented by means of a directed graph. A directed graph 

consists of a set of branches which are interconnected at 

nodes. A branch is a one-port representation of a network 

component. The relationship between the branch voltage and 

branch current is defined by the component model. Typical 

components encountered in EMA systems include resistors, 

capacitors, inductors, diodes, sources, rotating machines, 
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etc. Models of multi-port components are represented by a 

set of branches (one-ports). 

In this work, the positive direction of the current 

through a branch and the positive direction of the voltage 

rise across a branch are defined using the consumer 

notation, as shown in Figure (2.2-1). In the consumer 

notation, positive branch power is defined as power consumed 

within the branch, thus the branch is said to be acting as a 

sink. On the other hand, negative branch power is defined as 

power generated from within the branch, thus the branch is 

said to be acting as a source. 

Branch power is defined as the product of the branch 

vol tage and the branch current. For the k-th branch, as 

shown in Figure (2.2-1), the branch power is defined as: 

The branch voltage, vb' is defined as the difference 
k 

between the node voltages vN and vN ' taking the assumed 
n m 

positive direction (from node m to node n in this case) of 

the current, ib ' as follows: 
k 

vb = vN -. vN k m n 
(2.2-2) 

The node voltages vN and vN are defined in terms of a 
m n 

reference (ground) node voltage, v ref . 
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m BRANCH K t----.. n 

Figure(2.2-1) Branch Voltage and Current References 

- 33 -



Consider for example, an arbitrary network with a total 

of NB branches and NN nodes. In this network, it is assumed 

that at least two branches are connected to each node. At 

this point, it would be advantageous to define some of the 

basic network graph terms used thoughout the remainder of 

this report. 

A loop is a set of two or more branches which form a 

closed path 

A tree is a subgraph of a network graph which must 

satisfy three conditions. 

1. All NN nodes must be contained in the tree. 

2. All NN nodes must be connected by branches. These 

branches are called twigs. 

3. The twigs may not form any loops 

Cotree The cotree consists of all branches of the original 

network not contained within the chosen tree. The 

cotree branches are called links. The insertion of 

any link into -the tree results in a closed loop. 

Cut-Set A cut-set is a "set" of branches which when "cut" 

away from the original network graph will totally 

isolate it into two separate subgraphs. 
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It must be noted that for any network graph there exists 

more than one choice for a tree and its corresponding 

cotree. The particular type of tree which is employed here 

is called a "normal-tree". A normal-tree is defined as a 

tree whose branches are selected in a specified sequence 

according to their component types. 

In particular, the selection of a normal tree requires 

that all the independent voltage sources, E, and capacitors, 

C,. wi thin the original network model be chosen with the 

highest priority as twigs. All voltage sources are selected 

first. It is assumed that there are no all voltage source 

loops. Next, all of the capacitors, except for those 

belonging to a C-E loop, are selected as twigs. A C-E loop 

is defined as a loop consisting entirely of capacitors 

and/or independent voltage sources. Only one of the 

capacitors within every C-E loop must be chosen as a link 

(branch of the cotree) and the remaining C-E loop branches 

are chosen as -tWigs (branches of the normal tree). It 

should be noted that only the normal tree capacitor voltages 

are members of the set state variables. A dual situation 

for determining which inductor currents are chosen as state 

variables, is discussed next. 
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The selection of a normal tree requires that no 

independent current sources, J, and as few as· possible 

inductors, L, be chosen as twigs. This is to say, the 

selection of the cotree requires that all the independent 

current sources and inductors within the original network be 

chosen with the highest priority as links. All current 

sources are chosen first. It is assumed that there are no 

all-current-source cutsets. Next, all of the inductors, 

except for those belonging to a L-J cutset, are selected as 

links. A L-J cutset is defined as a cutset consisting 

entirely of inductors and/or independent current sources. 

Only one of the inductors within every L-J cutset must be 

chosen as a twig (branch of the normal tree) and the 

remaining L-J cutset branches are chosen as links (branches 

of the cotree). It should be noted that only the cotree 

inductor currents are members of the set of state variables. 

2.3 Hybrid-Matrix Approach for Automatic Generation 

of the State Model ---

Conventional modeling methods based upon frequency-domain 

techniques, when applied to the analysis of electronically 

commutated dc machine systems, often leave much to be 

desired. This is because of the nonlinear components 

associated within these systems, such as the rectifier 
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diodes and the magnetic core of the machine. The 

incorporation of such components into an overall system 

model requires a nonlinear time-domain approach that can 

easily accommodate these component nonlinearities. Also, in 

order to use the many available integration routines, the 

governing differential equations of the actuator network 

model must be explicitly obtained as the normal form state 

equations, [2], as follows: 

p( ~ ) = !( ~,t ) (2~3-l) 

where ~ is the state vector of the system and! explicitly 

defines the relationship between the first derivative of the 

state vector with respect to time, p( x ), in terms of the 

state vector and the independent variable time, t. It is 

assumed that all the forcin~ functions are known functions 

of time and/or the state variables, and therefore, are 

incorporated in f of equation (2.3-1). 

In this section, an algorithm which is used to 

automatically generate the normal form state equations from 

the network graph of the system under study, is presented. 

This algorithm is based upon a hybrid matrix approach, 

[2,5], which is well suited for the analysis of nonlinear 

electrical networks. There are basically six steps involved 
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in the formulation of the normal form state model. These 

are: 

Step 1 Translate the electromechanical system into a 

lumped-parameter network model using the component 

models given in Section 2.1. 

Step 2 Choose a "normal tree" for this lumped-parameter 

network model. 

S~ep 3 From the chosen tree and cotree, obtain a linear 

resistive n-port of this network. Express the 

behavior of this n-port using a hybrid matrix 

formulation. 

Step 4 Determine the operating point of the nonlinear 

resistors. 

Step 5 Solve for the currents of the cotree capacitors and 

the voltages of the tree inductors. 

Step 6 Obtain the normal-form state equations using the 

results of steps three/four, and five. 

These six steps will now be discussed in detail. 

Translate System into Lumped Parameter Network (Step ~) 

The first step in the derivation of the normal form state 

equations for a system is to choose a sui table lumped 
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parameter network model. In the case of the brushless 

exciter, described in Section 1.2, this consists of: 

1. Replacing the permanent magnet machine with a machine 

model, similar to one given in Figure (2.1-2); 

2. Replacing the components of the power conditioner by 

the components models described in Section (2.1). 

Choose ~ Normal Tree (Step ~) 

Once a lumped-parameter network model of the system has 

been obtained, the choice of a normal tree must then be 

considered. A normal tree is a member of a subset of the set 

of all possible trees. The normal tree is chosen using a 

component selection hierarchy. The order or selection 

hierarchy for the twig and link branches must conform to the 

order given in Table (2.3-1). Furthermore, the numbering of 

the branches (twigs and links) must also follow this 

hierarcy. It is extremely important that this hierarchy 

procedure be followed; otherwise, the matrix partitioning 

employed later in this section would be meaningless. 

If the network topology does not change then the branch 

hierarchy and normal tree selection needs to be implemented 

only once per simUlation. However, the remaining steps 

relating to component value changes must be implemented each 
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time any change occurs. 

Notice, the branch hierarchy (allowable branch types) 

given in Table (2.3-1) does not include dependent sources. 

·In this report, mutual inductances and capacitances are 

included within the formulation of the state equations. By 

eliminating the dependent sources as allowable components 

within Table (2.3-1), there are no topological restrictions 

placed upon the these mutuals. This is ~ost desirable for 

the types of power-conditioner fed machine systems 

considered in this research. 
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Table (2.3-1) Tree and Cotree Branch Numbering 

ORDER BRANCH TYPE VARIABLE 

SUBSCRIPT 

----------- ( Tree Branches ) ----------------- (t) ------

l-st· 

2-nd 

3-rd 

4-th 

5-th 

Independent Voltage Sources 

Capacitors ( linear or nonlinear) 

Resistors (nonlinear) 

1 Inductor ( linear or nonlinear ) 
per ( L-J ) Cutset 

Resistors (linear) 

---------- ( Cotree Branches ) --------------- (c) -------

6-th 

7-th 

8-th 

9-th 

lO-th 

Resistors (linear) 

Independent Current Sources 

Inductors (linear or nonlinear ) 

Resistors (nonlinear) 

1 Capacitor ( linear or nonlinear) 
per ( C-E ) Loop . 
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Obtain a Linear Resistive n-port from the Chosen Normal 

Tree and Represent the n-port using Hybrid Matrix 

Formulation (Step ~) 

Once a normal tree has been chosen, the next step is to 

segregate all the linear resistors from the other components 

of the overall network and place them into an n-port sub-

network ·as shown in Figure (2.3-1)~ The motivation for 

forming this n-port is to isolate the linear, time-invariant 

components of the network and incorporate their influence 

upon the other components by using hybrid parameters. Using 

this approach, the states of the nonlinear components become 

boundary conditions for the n-port. Furthermore, the 

relationship between the port voltages and currents are 

defined by means of a linear time invariant hybrid matrix, 

H. This relationship is given by the following matrix 

equation: 

1 it 1 1 Yt 1 
1 1 1 1 
1----1 = H 1----1 (2.3-2) 
1 Yc 1 1 !c 1 
1 1 1 1 

where ~ is defined in terms of the linear resistors of 

the n-port and is partitioned as follows: 

1 ~tt ~tc 1 
1 1 1 

H = 1-------------------1 (2.3-3) 
1 ~ct 1 gcc 1 
1 1 1 
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TREE BRANCHES COTREE BRANCHES 

1E 
t !J c 

+ + 
LINEAR 

~ .YE YJ 
J 

RESISTIVE -c 
t c 

n-PORT 
.!c !L t c 

+ + 

f t Yc YL L 
t -t: 

C 

~ 
i .~ t v c -t 

= H -t 

+ v i + -t: -t: 

~ YR t Y<; 
c 

c: 
-C 

~t ic c 

+ + 

1t: Yt. ~ C 
t c -C 

Figure(2.3-1) Isolation of the Linear Resistors into the 
Resistive n-Port Network 
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The tree, t, and cotree, c, port voltage and current 

vectors of equation (2.3-2) are defined in terms of-the port 

vectors shown in Figure (2.3-1) as follows: 

1 YE 
1 t 
1 Yc 1 
1 t 1 

Yt = 1---------1 (2.3-4) 
1 1 
1 YR 1 
1 t 1 
1 YL 1 
1 t 1 
---------

---------
1 YJ 
1 c 
1 YL 1 
1 c 1 

Yc = 1---------1 (2.3-5) 
1 1 
1 YG 1 
1 c 1 
1 Yc 1 
1 c 1 
---------

---------
!E 1 

t 1 
1 !c 1 
1 t 1 

!t = 1---------1 (2.3-6) 
1 1 
1 !R 1 
1 t 1 
1 !L 1 
1 t 1 
---------
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---------
1 iJ 
1 c 
1 iL ·1 
1 c 1 

i = 1---------1 (2.3-7) -c 
1 1 

·1 !c; 1 
1 c 1 
1 ic 1 
1 c 1 ---------

The H matrix is obtained by applying KCL to the entire 

network in such a way that each twig current is written as a 

linear combination of the link currents as follows: 

D i = 

1 
1 

<--twigs-->1 <--links--> 

1 Itt QtR 1 ~tG ~tc 1 
1 1 1 
1------------1------------1 
1 QRt IRR 1 ~RG ~Rc 1 
1 1 1 
1 1 1 
1 1 1 

1 it 1 
1 1 
1 iR 1 
1 1 
1----1 
1 iG 1 
1 1 
1 ic 1 
1 1 

= o 

(2.3-8) 

Notice that the current vectors iR and iG are internal to 

the linear resistive n-port and belong to the tree and 

cotree, respectively. Equation (2.3-8) can be written in a 

more compact form as follows: 

<--twigs--> 1 <--links--> 

1 '!tree 1 
I 1 

D i = ~cotree 1---------1 = 0 
1 1 
1 icotree 1 
1 1 

(2.3-9) 
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Similarly using KVL, one can write the fundamerital loop 

equations as follows: 

<--twigs--> 1 <--links--> 

1 1 Yt 1 
1 1 1 

1 ~Gt ~GR 11m; .QGc 1 1 YR 1 
1 1 1 1 1 

B v = 1-----------1------------1 1----1 = 0 
1 ~ct ~cR 1 .QcG Icc 1 1 Yc; 1 
1 1 1 1 1 
1 1 1 1 Yc 1 
1 1 1 1 1 

(2.3-10) 

or in compact form as: 

<--twigs--> 1 <--links--> 

I Ytree I 
1 1 

B v = ~tree lcotree I-~-------I = 0 
1 I 
I Ycotree I 
I I 

(2.3-11) 

From network graph theory, [3], one can relate D 't and -co ree 

Bt as follows: - ree 

B _D t 
-tree = - cotree (2.3-12) 
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Substituting equation (2.3-12) into equation (2.3-10) 

yields: 

1 
1 

<--twigs--> <--links--> 

1 t t 
1 -~tG -~RG 1 !GG QGc 1 
1 1 1 

B v = 1--------------1-------------1 
1 _Dt _Dt 1 1 
1 -tc -Rc 1 QcG !cc 1 
1 1 1 
1 1 1 
1 1 1 

v -c 

= 0 

(2.3-13) 

The relationship between the voltage and current vectors 

of the resistors in the linear resistive n-port network are 

related by Ohms law as follows: 

YR = ~R !R (2.3-14) 

for the linear tree resistors and 

~=~G!G (2.3-15) 

for the linear cotree resistors. 

Inspection of the hybrid matrix equation of the n-port, 

equation (2.3-2), reveals that the internal variables 

{YG'!G'YR'!R} have been eliminated by incorporating their 

influence, on the port variables, in~. This is accomplished 

by using equations (2.3-8) and (2.3-l3) to relate the port 

variables Yt and !c as shown in equation (2.3-2). 
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Using the lower partition of equation (2.3-8) - and the 

component equations given in equations (2.3-14) and 

(2.3-15), one can write the following: 

Z-1 + D Z-1 + Di =0 
-R YR -RG -G YO -Rc-c 

(2.3-16) 

Solving for YO using the upper partition of equation 

(2.3-13) yields: 

YG 
_ t 
- ~tG Yt 

t 
+ ~RG YR 

(2.3-17) 

Substituting this equation into (2.3-16) gives: 

Z-1 + D Z-1 [Dt + Dt ] + D l." 0 
-R YR -RG - G -tG Yt -RG YR -Rc -c = 

(2.3-18) 

Solving for YR in terms of the port variables yields: 

-1 -1 t -1 -1 t 
= [~R + !2RG ~G !2RG] [-!2RG ~G !2tG Yt - !2Rc !c] 

(2.3-19) 

Now define a matrix Y as follows: 

(2.3-20) 

- 48 -

...., 
! 

--. 
I 



'l 
I 

..... 
! 

Using this definition of !, equation (2.3-19)" can be 

simplified to the expression: 

(2.3-21) 

A similar procedure will now be followed to obtain iG in 

terms of the port variables. Using the upper partition of 

equation (2.3-13) and the component equations given in 

equations (2.3-14) and (2.3-15), one can write the 

following: 

(2.3-22) 

Solving for iR using the lower partition of equation (2.3-8) 

yields: 

iR = -~RG ~ - ~Rc ic 

(2.3-23) 

Substituting this equation into (2.3-22) gives: 

t t 
-~tG Yt + ~RG ~R [~RG ~ + QRc ic 1 + ~G ~ = 0 

(2.3-24) 

Solving for iG in terms of the port variables yields: 

. [Z Dt Z D ]-1 [Dt Dt Z D i 1 ~G = -G + -RG -R -RG -tG Yt - -RG -R -Rc -c 

(2.3-25) 
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Now define a matrix Z as follows: 

t 
Z = [~ + ~RG ~R ~RG] 

(2.3-26) 

Therefore, equation (2.3-25) can be simplified to 

Dt Z D . ] 
-RG -R -Rc .!C 

(2.3-27) 

The final step in obtaining ~ is accomplished by solving 

it and Yc in terms of Yt and !c· To obtain !t in this form, 

substitute equation (2.3-27) into the top partition of 

equation (2.3-8). This yields the following matrix 

relationship: 

i -c 

.(2.3-28) 

Similarly, to obtain Yc' substitute equation (2.3-25) into 

the bottom partition of equation (2.3-13). This yields the 

following matrix relationship: 
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(2.3-29) 

Combininq equations (2.3-28) and (2.3-29) into one matrix 

equation qives the followinq relationship: 

!t I 
I I 
I ---- I = 
I Yc I 
I I 

tree response port vector 

= 
cotree response port vector 

[ 0 Z-1 ot ] II [0 Z-1 ot zoo ] 
- -tG - -tG I -tG - -RG -R -Rc - -tc 

----------------------------1--------------------------
t t -1 -1 tit -1 

[~tc- ~Rc! [-~RG ~G ~tG]] I [-~RC! ~Rc] 
I 

------
Yt I <---- tree stimulus port vector 

I I 
* I ---- I 

I i I <---- cotree stimulus port vector 
I -c I 

(2.3-30) 
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Comparison of this equation with (2.3-2) and (2.3-3) reveals 

that this is the desired hybrid matrix equation originally 

defined in compact form in equation (2.3-2). It is now 

obvious that the influences of the internal linear n-port 

resistors manifest themselves as entries within the hybrid 

matrix, g. The entries of the matrix, g , are functions of 

the network topology and linear resistors only. Therefore, 

for a fixed topology, the matrix, g , needs to be calculated 

only once per simulation run. 

At this point, it is necessary to expand the g matrix, 

defined in equation (2.3-30), into a partitioned form which 

relates all of the voltage and current port vectors of the 

linear resistive n-port,as shown in Figure (2.3-1). This is 

given on the next page as equation (2.3-31). 

A number of the sub-matricies of g given in equation 

(2.3-31) are null. Substitution of these null submatricies 

into equation (2.3-31), on the next page, yields equation 

(2.3-32). 
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1 it 1 
1 1 
�----� 
1 Yc 1 
1 1 

1 Yt 1 
1 1 

= H 1----1 
1 ic 1 
1 1 

which expands to 

I~ I~ I~ I~ I~ 1% I~ I~ 1 t I· tit 1 tic 1 c 1 c 1 c 

I!!E E I!!E C I!!E R I!!E L I!!E J I!!E L I!!E G I!!- C 1 
I" " t t ttl ttl ttl t cit cit c I~~t c 1 

1------ ------1------1------1------1------1------1------1 
IH H IH IH IH IH IH IH 1 
-CtEt -CtCt I-CtRt I-CtLt I-CtJc I-CtLc -CtGc I-CtCc 1 

------ ------1------1------1------1------ ------1------1 
!!- E !!- C I!!R R I!!R L I!!R J I!!R L !!R G I!!- C 1 ~lRt t ~lRt tit tit tit c t c t c l~lRt c 1 

------ ------1------1------1------ ------ ------1------1 
H H IH IH IH H H IH 1 
-LtEt -LtCt I-LtRt -LtLt I-LtJc -LtLc -LtGc -LtCc 1 

------ ------1------ ------1------ ------ ------ ------1 
!!J E !!J C 1 ~J R !!J L I!!J J !!J L !!J G !!J C 1 

c t c tic t c tic c c c c c c c 1 

------ ------1------ ------1------ ------ ------ ------1 
!!L E !!L C I!!L R !!L L I!!L J !!L L !!L G !!L C 1 

c tic tic t c tic c c c 1 c c c cl 
------1------1------ ------1------ ------1------ ----:-1 
!!G E I~ C I!!G R !!G L I!!G J !!G L I!!G G !!G C 1 

1 c tic tic t c tic c c c 1 c c c c 1 

1------1------1------ ~-----I------ ------1------ ------1 
I!!c E I!!C C I!!C R !!c L I!!C J !!C L I!!C G !!C C 1 
1 c tic tic t c tic c c c 1 c c c c 1 

I~ I~ I~ I~ I~ I~ I~ I~ 
I tit 1 tit I c I c lei c 

t 

= 

t 

(2.3-31) 
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1 !t 1 
1 1 
1----1 
1 Yc 1 
1 1 

1 Yt 1 
1 1 

= B 1----1 which expands to 
1 !c 1 
1 1 

I~ I~ I~ I~ I~ 1% I~ I~ 
1 tit 1 tit 1 c 1 c 1 c 1 c 

BJ E ~J C ~J R ~JCLt ~JCJC ~J L ~J G QJ C c t c t c t c c c c c c 

------ ------ ------ ------ ------ ------ ------ ------
~G E ~G C ~G R QG L ~G J ~G L ~G G QG C 

c t c t c t c t c c c c c c c c 
------ ------ ------ ------ ------ ------ ------ ------1 
~C E ~C C QC R QC L QC J QC L QC G QC C 1 

c t c t c t c t c c c c c c c c 1 

I~ I~ I~ 1% I~ I~ I~ I.~ 
1 tit 1 tit 1 c 1 c 1 c 1 • c 

t 

= 

* 

t 

(2.3-32) 
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Additional properties of the H matrix are given below: 

!!tt = t 
!!tt (2.3-33) 

H -cc = t 
!!cc (2.3-34) 

H -tc = _Ht 
-ct (2.3-35) 

Determine Operating Point of Nonlinear Resistors (Step 4) 

The hybrid matrix equation (2.3-31) relates the 

constraints on the port voltages (Yc,Yt ) and currents 

(ic,it ) imposed by the linear resistive portion of the 
-

overall network, as illustrated in Figure (2.3-1). The 

topological constraints imposed by choosing a normal tree, 

as defined in section 2.2, gives the hybrid matrix as 

parti tioned in equation (2.3-32). This equation does not 

include the effects of the nonlinear components, or of the 

energy storage elements and independent sources. The effect 

of these variables is included by imposing the I-V 

characteristics (constraints) of these elements as boundary 

conditions to the n (two terminal) ports of the linear time-

invariant resistive n-port sub-network. 
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At any given instant of time, it is assumed that the 

state of the network is fixed; that is, the stored energy of 

each energy storage element remains constant. In this work, 

the state varables are the tree capacitor voltages, Yc ' 
t 

and the cotree inductor currents, !c . The state 
c 

(energy) of the network is fixed at any given instant of 

time by holding these state variables constant (along with 

the independent sources). In the case of the nonlinear. 

capaci tors and inductors, it is assumed that their 

incremental component values are functions of the state 

variables. The derivatives of the state variables as well 

as branch variables of the nonlinear resistors are not 

considered "frozen" for any given instant of time, in the --

sense that these variables must be determined i terati vely 

for that instant. The term "frozen" is used to represent 

variables that are "known" for a given instant of time. 

Specifically, "frozen" variables are the voltages and/or 

currents which: 

1. are simply a known function of time (forcing functions 

or independent sources), 

2. are known as a result of integration (state 

variables), or 
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3. are linear combinations of the state variables and 

forcing functions. 

I The I-V characteristics of the nonlinear resistors are 

assumed to be independent of the state variables and forcing 

functions. Thus, the values or operating points of these 

nonlinear resistors must simultaneously satisfy their own 

I-V characteristics as well as the constraints imposed by 

the rest of the network. The procedure for obtaining the 

operating points of the nonlinear resistors will now be 

described. 

As previously mentioned, the nonlinear components as well 

as the independent sources are all connected externally to 

the n (two terminal) ports of the linear resistive n-port, 

as shown in Figure (2.3-1). The influence of the rest of the 

network upon the port varables'!R and YG of the 
t c 

nonlinear resistors can be isolated out of equation (2.3-32) 

as follows: 
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I!R 1 
1 t 1 
1------1 = 
1 Yc; 1 
1 c 1 

I!!R E I!!R C I!!R R· IQR L I!!- J I!!- L I!!- G IQR C I 1 ttl ttl ttl t t I~Rt c I~~t c I~Rt cit c 1 
1------1------1------1------1------1------1------1------I * 
I!!G E I!!G C I!!G R IQG L I!!G J I!!G L I!!G G IQG C 1 1 c tic tic tic tic c 1 c c 1 c c 1 c c 1 

I~ I~ I~ I~ I~ I~ I~ I~ 
1 tit 1 tit 1 c 1 c 1 c 1 c 
-.-----------------------------------------------------

t 

(2.3-36) 

The presence of the four null submatricies wi thin this 

equation indicates that!R and YG are independent of YL 
t c t 

and ~ . Therefore, equation (2.3-26) can be reduced as 
c 

follows: 

I.!R 1 
1 t 1 
1------1 = 
1 YG 1 
1 c 1 

IH IH IH IH IH IH I-RtEt I~RtCt I-RtRt I-RtJc I-RtLc I-RtGc I 
I------I--~---I------I------I------I------I * 
I!!G E I!!G C I!!G R I!!G J I!!G L I!!G G 1 1 c tic tic tic c 1 c c 1 c c I 

I~ I~ I~ I~ I~ I~ I tit I tic I c I c 
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At any given instant of time, the state variables, Yc 
. t 

and iL 
c 

, as well as the 

!J ' are fixed (frozen). 
c 

forcing functions, vE . and 
t 

Hence, the operating points of 

the nonlinear resistive port variables can be determine~ by 

means of an iterative procedure such that both the I-V 

characteri stics of these resi stors and equation (2.3-37) 

are satisfied. 

The state variables and forcing functions can be 

considered as fixed boundary conditions to the linear 

resistive n-port. This is accomplished by representing 

these frozen variables as independent sources for that fixed 

instant of time. Therefore, the behavior of the network 

shown in Figure (2.3-1), can be represented for that instant 

of time, as shown in Figure (2.3-2). In this figure, the 

frozen independent port variables are contained within the 

outer box while those which can vary are placed outside. 

The independent port variables, YL and!c outside 
t c 

this box are free to vary. The nonlinear resistors are also 

placed outside this box since their values must be 

determined iteratively, for that given instant in time. 

The operating points of the nonlinear resistors are 

independent of YL 
t 

and .!L 
c 

as can be seen in equations 

( 2 . 3 - 3 6 ) and ( 2 . 3 - 3 7 ) . This is due to the fact that the 

state (stored energy) of the tree inductors and the cotree 
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capacitors are linear functions of the fixed (frozen) state 

variables and independent sources, as given by rows four and 

eight of the matrix equation (2.3-32), respectively. These 

equations in reduced form are: 

Yc 
c 

=!!"'E v ~ -E c t t 

+ 

+ !!c c Yc 
c t t 

(2.3-38) 

(2.3-39) 

Therefore, the response of the tree inductors and cotree 

capacitors is known and fixed for the instant in time under 

consideration as depicted in Figure (2.3-3) 

Based upon this discussion, equation (2.3-37) can be 

conceptualized as the sum of a constant source vector, due· 

to the fixed state variables and forcing functions 

(represented as "frozen" inputs in Figure (2.3-3», and a 

vector which is a nonlinear function representing the I-V 

characteristics of the nonlinear resistors. This can be 

represented in matrix form as follows: 

------ ------ ------
1 1 1 

1 .!R 1 1 iR 1 1 ~R 1 
1 t 1 1 t 1 1 t 1 
1------1 = 1------1 + 1------1 (2.3-40) 
1 1 1 1 1 1 
1 Yc; 1 I ~ I I % I 
1 c 1 1 c 1 1 c 1 ------ ------ ------
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where the source vector is defined as 

I!!- c I!!- L I!!R E I!!-,J 1 I~~t t I~~t cit t I=Rt c 1 
I.!!R 1 
1 t 1 
�------� 
I.!G 1 
1 c 1 

= I------I------I-~----I------I * 
I!!G c I!!G L I!!G E I!!G,J 1 
1 c tic c I c tic c 1 

1 Yc I!L I YE I!,J 
1 tic 1 tic 

t 

(2.3-41) 

and the vector representinq the nonlinear behavior of these 

resistors, obtained from equation (2.3-31) and their . 
nonlinear I-V characteristics, is defined as follows: 

------ --------------- ------
1 !:R 1 I ~tRt 1 !!R G I I YR 1 
1 t 1 1 I t c 1 1 t I 
1------1 = 1-------1-------1 * 1------1 (2.3-42) 
I ~ 1 1 !!G R 1 !!G G 1 I !G 1 
1 c 1 I c t 1 c c 1 1 c 1 
------ --------------- ------

In this work, it is assumed that the I-V characteristics of 

the nonlinear resistors can be explicitly written as 

follows: 

1 YR 1 
1 t I 

= 1 r 1 ( i Rt (1» 1 
1 1 
1--------------------1 
I r 2 ( i Rt (2» 1 
I 1 
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1 t 1 
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1 ~ 1 
1 c .1 

= 1 gl( v Gc (1» 1 
1 1 
1--------------------1 
1 9 2 ( v Gc (2» 1 
1 1 

= 1 ~(Yc; ) 1 
1 c 1 

(2.3-44) 

where iRt(k) is current through the kth nonlinear resistor 

with a corresponding branch voltage of vRt(k). 

Therefore, in more compact form, the nonlinear equations 

employed in the i terati ve process to obtain the operating 

points of the nonlinear resistors, (YR '!R ) and 
t t 

(YG ,~ ), is given as follows: 
c c 

----- --------------- ---------
1 !R 1 1 H 1 ~R G 1 1 !:(!R ) 
1 t 1 1 -RtRt 1 t c 1 1 t 

1 
1 

1-----1 - 1-------1-------1 * 1---------1 
1 YG 1 1 ~G R 1 ~G G 1 1 ~(YG ) 1 
1 c 1 1 c t 1 c c 1 1 c 1 ----- --------------- ---------

-----
1 ~R 1 
1 t 1 - 1-----1 = 0 
1 ~G 1 
1 c 1 -----

(2.3-45) 

Note that equations (2.3-43) and (2.3-44) represent 

-... 
, 

ei ther the voltage or current of each nonlinear resistor -; 

explici tly in terms of the other variable. In order to 

obtain a matrix equation, similar to (2.3-45) strictly in 
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! 

terms of one variable (i or v) for each nonlinear resistor, 

all of the nonlinear resistors must have I-V characteristics 

that are single valued. The incorporation of diodes within 

the overall system model does not present any problem since 

their I-V characteristics are monotonic and therefore 

possess an inverse. In other words, either variable (i or 

v) can be written explicitly in terms of the other for the 

diode model presented in this work. 

It is assumed that at each fixed instant of time or 

( equivalently for frozen port sources as shown in Figure 

(2.3-3», that a unique operating point for all of the 

nonlinear resistors can be determined, [2, 11]. Such a 

unique operating point, the solution to equation. (2.3-45) , 

is symbolized as follows: 

1 
1 v' 1 
1 - Rt 1 
1------1 
1 1 
1 i' 1 
1 - Gc 1 

= 

1 
1 !: (!' R ) 1 
1 t 1 
1-----------1 = h'RG 
1 1 
1 .9: (y'R ) 1 
1 t 1 

(2.3-47) 

The primes above these variables indicate that they are the 

unique solution of the nonlinear equation (2.3-45). Notice 

that this solution is uniquely determined by the state 

variables and forcing functions at each instant of time. 
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Solve for the Currents of the Cotree Capacitors and the 
, 

Voltaqes, of the Tree Inductors (Step ~) 

Once the operating points of the nonlinear resistors, 

(!R ' YR ) and (!G ' ~ ) , wi thin the original 
t t c c 

network have been determined as h' RG i the unknown tree 

inductor voltages, YL ' and the unknown cotree capacitor 
t 

currents,. !c ' can be determined, independent of the 
c 

no.nlinear resistors, for the given instant in time as 

illustrated in Figure (2.3-2). 

It is assumed, in this work, that component equations 
I 

for all inductors and capacitors (including mutuals) can be ~ 

expressed (on an instant by instant basis) in matrix form 

as follows: 

----- ----------- -----
1 YL 1 1 ~tt 1 L 1 1 !L 1 
1 t 1 1 1 

-tc 1 1 t 1 
1-----1 = 1-----1-----1 * d/dtl-----I (2.3-48) 
1 YL 1 1 L 1 L 1 1 !L 1 
1 1 1 

-ct 1 -cc 1 1 1 c c 
----- ----------- -----

----- ----------- ------
1 !C 1 1 £tt 1 C 1 1 YC 
1 t 1 1 1 

-tc 
1 1 t 1 

1-----1 = 1-----1-----1 * d/dtl------I (2.3-49) 
1 !C 1 1 C 1 C 1 1 YC 1 
1 1 1 

-ct 
1 

-cc 
1 1 1 c c 

----- ----------- ------ ..... 
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The entries of these coefficients matrices contain 

incremental values of inductances and capacitances, 

respectively. The arbitrary (m, n) entries for these two 

coefficient matrices are defined as follows: 

a( ). (iL ,iL ) 
m t c 

) a( ). (iL » 
m c 

L = = (2.3-50) mn 
a( in ) a( in ) 

a( ~(ve ,ve ) ) a( ~(ve» 
t c t 

emn = = (2.3-51) . 

where ).m( iL ' iL ) is the total flux linkage of the 
t c 

m-th inductor and ~(Ye 'Ye ) is the total charge of 
t c 

the m-th capacitor. The current, in' represents the n-th 

current wi thin the set of currents ,{iL '.!L 1 • 
t c 

Similarly the voltage vn represents the n-th voltage within 

the set of capacitor voltages ,{Ye 'Ye 1 • Finally, 
t c 

the partial derivative, a( ).m )/a( in ), in equation 

(2.3-50), represents the instantaneous change of the total 

flux linkage, ).m' with respect to that n-th winding current, 

Similarily, the partial derivative in equation 

(2.3-51) represents the instantaneous rate of change of the 

charge on the m-th capacitor with respect to the voltage 

across the n-th capacitor. 

In the types of electromechanical systems considered 

here, it was assumed that mutual capacitances could be 
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neglected. In that case, the capacitance matrix, in 

equation (2.3-49), is diagonal. 

Using these component equations and the contraints 

imposed on them by the linear resistive n port; ,the unknown 

link capacitor currents and twig inductor voltages can now 

be determined. The constraints on these port variables are 

obtained from the fourth and eighth rows of equation 

(2.3-32) as follows: 

I YC I 
I c I 
1------1 = 
I!L I 
I t.1 

IEc c U2c L IEc E IQc J I 
I c tic c I c tic c I 
1------1------1------1------1 
10 IH 10 IH I 
I-LtCt I-LtLc I-LtEt I-LtJc I 

I YC 
I t 

I !J 
I c 

t 

(2.3-52) 

Differentiating both sides of this equation yields the 

following: 

I Yc I 
I c I 

d/dt 1------1 = 
I!L I 
I t I 

IEc c IQc L IEc E IQc J I 
I c tic c I c tic c I 
I------I------I~-----I------I 
10 IH 10 IH I 
I-LtCt I-LtLc I-LtEt I-LtJc I 

d/dt I YC 
I t 
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r-

i 
I 

Using equations (2.3-48) and (2.3-49) one can write 

l!c 1 
1 e 1 
�------� = 
1 YL 1 
1 t 1 

1 Ye I 
I t I 

1 ~ee I Qet I 
I I I 

1 ~et 1 Qee 1 
1 1 1 
I-----I-~---I * d/dtl-----I + 1-----1-----1 

I Ye I 
I e I 

* d/dtl-----I 
1 Qtt 1 ±!te 1 
1 1 1 

I iL I 
I e I 

I Qte I ±!tt 1 
I I I 

1 iL 1 
I t I 

(2.3-54) 

Substitution of equation (2.3-53) into equation (2.3-54) 

yields: 

l!c 1 
lei 
1------1 = 
I YL I 
I t 1 

I~et IQee I 
I I I 
1----1----1 
IQtt I±!te I 
I I 1 

lYe I 
I t I 

* d/dt 1----1 
liL I 
I e I 

I~ee IQet I 
I I I 

+ 1----1----1 * 
IQte I±!tt I 
I I I 

I ------------- ------------- I 
I I!!e e I ~ L I I Yc I I!!e E I Qe J I YE I 
II etl eel I til etl eel I til 
I I------I------I*d/dtl----I+I------I------I*d/dtl----I I 
I IQL C IgL L I liL I IQL E I!!L J I liJ I I 
II ttl tel I ell ttl tel I ell 
I ------------ ------------- I 
1- _I 

(2.3-55) 
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Collecting terms yields: 

I !C. I 
I c I 
1------1 = 
I YL I 
I t I 

1---------- --------- --------------1 ------
II£ct l.Qcc I I£cc l.Qct I I!!C C I~ L II I YC 
II I. I I I I I c tic c II I t I 
I 1----1----1+1----1----1*1------1------1 I*d/dtl------I 
II.Qtt I±!tc I l.Qtc I±!tt I I.QL C I!!L L II I.!L I 
II I I I I I Itt I t c II I c I 
I --------- --------- ------------- I ------
I~· _I 

+ 

I!!c E l!!c J I 
I c tic c I 
1------1------1 
IH IH I 
I-LtEt I-LtJc I 

I YE I 
I t I 

* d/dtl------I 
I'!J I 
I c I 

(2.3-56) 

Thus we have expressed .!C 
c 

deri vati ves of both the 

and YL in terms of the 
t 

state variables and forcing 

functions. This completes step 5. 

Derivation of the Normal Form State Equations (Step §) 

The final step in obtaining the normal form state 

equations uses the results from steps three, four, and five. 

The response port variables,.!c and YL ' of the state 
t c 

variables YC and.!L respecti vely are defined by 
t c 

rows two and six of equation (2.3-32). 
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These two equations can be expressed as follows: 

------
l!c 1 
1 t 1 
1------1 = 
1 YL 1 
1 c 1 

(2.3-57) 

The primes above the nonlinear resistor port variables, 

, d· , v an.! G - Rt c 
indicate the that these satisfy 

equation (2.3-45). 

Next, the substitution of equation (2.3-56) into (2.3-57) 

yields the matrix equation on the next page. 
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I~ I 
I t I 
1------1 = 
I YL I 
I e I 

I 
I 
I 
I 
I 
I 
I 
1-

1---------- --------- --------------1 ------
II~et Igee I I~ee Iget I l!!c c Igc L II I Yc 
II I I I I I let Icc II I t I 
I 1----1----1+1----1----1*1------1------1 I*d/dtl------I 
Ilgtt I!!te I Igte I!!tt I IgL c I!!L L II I!L I 
II I I I I I Itt I tell I e I 
I --------- --------- ------------- I ------
1- _I 

+ 

I~ee Iget I 
I I I 
1----1----1 * 
Igte I!!te I 
I I I 

I!!c E Igc J I 
let Icc I 
1------1------1 
10 IH I 
I-LtEt I-LtJc I 

------ I 
I YE I I 
I t I I 

* d/dt 1------1 I 
I!J I I 
I c I I 
------ I 

_I 

. (2.3-58) 

Furthermore, using equation (2.3-56) one can express the 

veetors!c and YL as follows: 
t e 
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l!c 1 
1 t 1 
1------1 = 
1 YL 1 
1 c 1 

1 YC 1 
1 t 1 

1 £tt 1 Qtc 1 
1 1 1 
1-----1-----1 * d/dtl-----I + 
1 Qct 1 !!cc 1 
I 1 1 

I!L I 
1 c 1 

1 £tc 1 Qtt 1 
1 1 I 
1-----1-----1 
1 Qcc I !!ct 1 
I 1 I 

1 YC 1 
I c I 

* d/dtl-----I 
I!L 1 
1 t I 

(2.3-59) 

Substituting for the derivatives of YC and!L from 
c t 

equation (2.3-53) yields: 

l!c I 
1 t 1 
1------1 = 
1 YL 1 
1 c 1 

1 £tt I Qtc 1 
1 I 1 
1-----1-----1 
I Qct I !!cc I 
I I I 

I Yc I 
I t I 

* d/9t l-----1 
I!L I 
I c I 

+ 

I £tc I Qtt I 
1 1 1 
1-----1-----1 * 
I Qcc I !!ct I 
I I I 

1 ------------- ------------- I I IH 10 Iv IH 10 I Iv I 
1 I-CcCt I-CcLc I I-Ct I I-CcEt I-CcJc I I-Et I I 
1 I------I------I*d/dtl----I+I------I------I*d/dtl-~--I I 
I 10 IH I I i I 10 IH I I i I I 
1 I-LtCt I-LtLc 1 I-Lc 'I I-LtEt I-LtJc 1 I-Jc 1 1 
I ------------- ------------- I 
1- _I 

(2.3-60) 
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Regrouping equation (2.3-60) and substituting the result for 

the left side of equation (2.3-58) yields: 

1----------
II£tt IQtc I 
II I I 
11----1----1 
IIQct I!!cc I 
II I I 
I ---------
1-

I£tc IQtt I 
I I I 

+ 1----1----1 
IQcc I!!ct I 
I I I 

------------- I 
IH 10 II I v 
I-CcCt I-CcLc II I-Ct I 

* 1------I------II*d/dtl------1 
IQL C I!!L L II I!L I 
I ttl tcll I c I 
------------- I ------

_I 

I£tc IQtt I 
I I I 
1----1----1 * 

I!!C E IQc ,] I 
I c tic c I 

I YE I 
I t I 

* d/dtl------I + 
IQcc I!!ct I 
I I I 

1------1------1 
10 IH I 
I-LtEt I-Lt,]c I 

I!,] I 
I c I 

= (Right- side of equation (2.3-58) 

(2.3-61) 

Finally, by performing the necessary matrix algebra on 

equation (2.3-61), the derivative of the state variables can 

be explicitly expressed in terms of the state variables, the 

forcing functions and their derivatives, as well as the 

(iterated upon) nonlinear resistor port variables as shown 

in equation (2.3-62). 

Thus the general form for equation (2.3-62), where ~ is 

the state variable vector, ~, is the forcing function 

vector, and h'RG is the previously solved for nonlinear 
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.. I 

..... 
I 

,...... 

,...... 

I 
------ I --------- --------- -------------

I v I 
I -Ct I I 

d/dtl------I=I 
I.!L I I 
I e I I 

I£tt IQte I I£te IQtt I I!!c c IQc L I 
I I I I I I I et I tel 
1----1----1+1----1----1*1------1------1 -
IQet I~ee IIQee I~et I IQL C I!!L L I 
I I I I I I Itt I tel 

------ I --------- --------- -------------
I 
1__ __-1 

- _I 
------------- I --------- --------- ------------- I I 

I!!C C IQc L I II£et IQee I I£ee IQet I I!!c c IQc L III 
I tel ttlll I II I II etl celli 
1------1------1*1 1----1----1+1----1----1*1------1------1 I I 
IQL C I!!L L I IIQtt I~te I IQte I~tt I IQL L I!!L L III 
I eel etlll I II I II ttl telll 
------------- I --------- --------- ------------- I I 

1- _II 
I 
I ------------- ------
I IH IH I I v 
I I-CtCt I-CtLe I I ~t I 

*1 1------1------1*1------1 
I I!!L C I!!L L I I.!L I 
II etl cell e I 
I ------------- ------
1--

1-------------- --------- -------------
II!!c c IQc L I I£ee IQet I I!!c E IQc J 
II tel ttll I II etl eel 
11------1------1*1----1----1*1------1------1 -
IIQL c I!!L L I IQte I~tt I IQL E I!!L J I 
II eel etll I II ttl tel 
I ------------- --------- -------------
1-

--I 

I£te I Qtt I 
I I I 
1----1-----1 
IQee I ~et I 
I I I 

I 
--------------1 ------------- ----- I 

I!!c E IQc J II lYE I!!c R I!!c G I ly'R I I 
I etl cell I til ttl tel I til 

*I~-----I------I I*d/dtl----I+I------I------I*d/dtl-----I I 
I QL E I!!L J I I I'!J I I!!L R I!!L G I I.! ' G I I 
I ttl tell I ell etl eel I ell 
------------- I ------------- ----- I _I __ I 

(2.3-62) 
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resistors' port vector as given in equation (2.3-47),' can be 

expressed as follows: 

d( x )/dt = A x + B u + C d( u )/dt + ~ h'RG 
(2.3-63) 

Details on how equation (2.3-62) is numerically 

integrated are discussed in Section 2.5. 

Inspection of the expanded form of the state model, 

equation (2.3-62), reveals that the inverse of the matrix, 

MCL is required. In order to numerically evaluate the above 

matricies (~,~,£, and,D} given in equation (2.3-63), the 

...., 
I 

matrix MeL must be inverted only once for networks not ...... 

containing any nonlinear capacitances and/or inductances. 

Fortunately, this matrix has some properties that simplify 

the numerical calculations for its inverse for networks 

containing nonlinear inductors and/or capacitors. These 

properties are discussed next. 
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~CL can be obtained from equation (2.3-62) as follows: 

!1CL = 
I I 

I £tt I .Qtc I 
I· I I 

IH CHI 0 I 
I-CtCc -cc -CcCt I -CtLc I 

1------1------1 -
I I I 
I .Qct I !!cc I 
I I I 

1----------------1----------------1 
I I I 
I .QL C IgL L !!tt gL L I 
Icc let tel 

1---------------------- --------------------- I 
I I £tc gc C I .QC L I I gc C £ct I .QC L I 
II ctl tc II tc I tc II 

+ 11----------1----------1+1----------1----------1 I 
I I .QL C I !!ct gL L I I .QL C I gL L !!tt I I 
II ct I tcll ct I ct II 
I --------------------- --------------------- I 
1- _I 

(2.3-64) 

All of the hybrid sub-matrices within !1CL are skew symmetric 

and hence one can use thi s information to reduce computer 

memory requirements. Incorporating this fact, !1CL can be 

expressed as follows: 
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!1cL = 

+ 

I 
1 !1c 1 0 I 
1 I I 
1------1------1 
I I I 
1 0 I!1L 1 
1 1 1 

I 
I 
1 
1 
1 
I 

. .1 + Ht C H 
I -c C -cc -c c 1 c t c t 

= 1---------------------------
I 
I 
1 
1 
I 
1 
I 
1 

o -ct + 

+ 

o -tc 

~cc + ~ct gL L 
t c 

(Lt H )t 
-tc -LtLc 

t 
gL L ~tt gL L 

t c t c 

(2.3-65) 

From matrix algebra, the inverse of !1CL should be 

calculated by taking the inverse of ~c and !1L individually 

as follows: 

-1 
!1CL = 

-1 1 1 
1 ~c 1 0 1 
1 1 1 
1------1------1 
I. 1 -1 1 
1 0 I!1L 1 
1 1 1 
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This approach greatly reduces both computer memory and 

computation time to form the required inverse of ~L. 

Further simplifications of ~CL are possible if the 

capacitors and inductors are bilateral, or 

C Ct 
£tt 

t C Ct = , = £tt , = -tc -ct -cc -cc 

L t 
±!tt 

t L Lt = ±!ct , = !!tt , = -tc -cc -cc 

(2.3-67) 

Substitution of these identities into equation' (2.3-65) 

yields the following: . 

1 1 
1 £TT+£TC+£CC 1 0 
1 1 1 

~CL = 1-------------1-------------1 
1 1 I 
1 I I 
1 0 1 ±!TT+!!TC+!!CC 1 
1 1 1 

where 

£TT = £tt 

£TC = C H + (£tc H )t 
-tc -C C -C C· c t c t 

£CC = !!C C C t 
!!C C 

t c -cc t c 
and 

!!CC = L -cc 

!!CT = L H + (L H )t 
-ct -LtLc -ct -L L t c 

!!TT 
t 

!!tt !!L L = !!L L 
t c t c 

(2.3-68) 
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2.4 Automatic Generation of the Output Equations 

At any given instant in time, the values of all branch 

voltages and currents are completely determined by the state 

variables and forcing functions of the system. In matrix 

form, this statement can be expressed as follows: 

:i. =Ex + Fx + p u + 2 u 

(2.4-1) 

where :i. is the (output) vector of all the branch voltages 

and currents within the overall network. The vectors, ~, u, 

and h'RG ' were previously defined in equation (2.3-63). 

The dot notation represents the first derivative with 

respect to time (i.e. d(~)/dt = x). The output vector, 

:i., can be expanded in terms of the previously defined branch 

variables, equations (2.3-4) through (2.3-7), as shown in 

Table (2.4-1). 

The tree port voltages, Yt , are defined in equation 

(2.3-4). The first two vectors of Yt are the independent 

voltage sources, YE , and the twig capacitor voltages, 
t 

Yc Remember Yc is one of two components of the 
t t 

state vector, ~, and YE is one of two components-of the 
t 

forcing fUnction vector~. The other two components of u 

and x are the first two elements of 1c ' equation (2.3-7), 

respectively. 

YE ' and 1,] 
t c 

Again, these four components, Yc ' 1L 
t c 

, are known for any instant in time. 
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Table (2.4-1) Partitioning of Network Branch Variables 

Tree Port 

Variables 

YR Tree Non-port I 
I 

!R Variables I 
I --------- ------------------1 
I 

Yc; Co tree Non-port I 
I 

!G Variables 1 
1 

Yc Cotree Port 

!c Variables 

(stimulus) 

(response) 

Internal 

to the 

Linear 

Resistive 

n-port 

(response) 

(stimulus) 

-------------------------------------------
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The next two components of the output equations are 

~R and ~ , which occur as the third entries of Yt 
t c 

and .!C ' see equations (2.3-4) and (2.3-7), respectively. 

These two vectors can be obtained by using equations 

(2.3-43) through (2.3-45). Since the nonlinear resistors 

are modeled by piecewise linear, continuous, passive and 

strictly monotonically increasing I-V characteristics, the 

inverse of their component equations exist. Therefore 

~R and ~ can be written as follows: 
t c 

Vi -1 (i l

R ) (2.4-2) = r -R t t 
• I -1 (Vi ) (2.4-3) .! G = g 

- G c c 

Since the operating points of the nonlinear resistors are 

fixed at any given instant in time, the nonlinear operators 

r -1 and g -1 can - be replaced by the constant coefficient 

matrices R- 1 
- RtRt 

-1 and Q G G ' respectively, for that 
c c 

instant in time. Thus for that instant, equations (2.4-2 ) 

-, 
I 

-
-.. 

-
--. 

and (2.4-3) can be combined into one matrix equation which -

define these nonlinear resistors by the linear relationship 

given in the matrix equation (2.4-4) on the next page. 
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,...... 
; 

.--

----- ----------------- -----
1 1 -1 1 1 

1 !R 1 1 R 
RtRt 

1 0 1 YR 1 - -RtGc 1 t 1 I 1 I 1 t 1 
1-';'---1 = I--------I-------~I * 1-----1 (2.4-4) 
1 1 1 I -1 I 1 1 
1 ~ I 1 .QG R 1 Q GG I 1 !G 1 
1 c 1 1 c t 1 c c I 1 c I 
----- ----------------- -----

Within this matrix equation, g-i R and Q-~ G are 
t t c c 

both, in general, constant diagonal matrices only for that 

instant in time. 

Substituting equation (2.4-4) into equation (2.3-45) and 

regrouping, one can write the output equations for YR 
t 

and!G as shown in equation (2.4-5). The corresponding 
c 

output equations for the variables'!R and YG ' are 
t c 

obtained by direct sUbstitution of equation (2.4-5) in 

equation (2.4-4). 

The last components of the port stimulus vectors, Yt 

and i , are the twig inductor voltages, YL ' and the 
-c t 

link capacitor currents,!c These variables are defined 
c 

in equation (2.3-56) in terms of the time derivatives of the 

state variables and the forcing functions. 

Since all of the port stimulus variables, Yt and 

i are known, the remaining· response port variables, -c 
can be obtained directly from equation 

(2.3-32). 
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I YR I 
I t I 
1------1 = 
I ic; I 
I c I 

1----------------II _ I I 
IIR 1 10 I 
11- RtRt I-RtGc . I 

11-------1-------1 -
II I -1 I 

.IIQG R IQ G G I 
I I c tic c I 

I ---------------
1-

--------------1 
I I II 
I~C C IQC L II 
I c tic c II 
1------1------1 I 
I I II 
10 IH II 
I-LtCt I-LtLc II 

------------- I 
_I 

-1 

* 

I ------------- ------ ------------- ------ I 
I I~R C Ig- L I I Yr. Ig- E I~R J I I YE 1 
I Itt I ~~t c 1 I ~t I I ~~t tit c I I t I I 
I 1------1------1*1------1+1------1------1*1------1 I 
I I ~G E I ~GL I I!L I I ~G E I ~G J I I!J I I 
II ctl ccll c II ctl ccll c II 
1- ------------- ------ ------------- ------ I 

(2.4-5) 

The only remaining components of ~ which still need to be 

defined are the branch voltages and currents, YR ' YG ' 

.!.R' and ic;, of the linear resistive n-port. These 

branches are all resistive and internal to the n-port 

subnetwork. 
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The vectors YR and .!G can be obtained directly in 

terms of the stimulus port vectors, Yt and .!c' ·~sinq 

equations (2.3-21) and (2.3-25), respectively. 

associated current and voltaqe vectors, .!R and~, are 

defined in terms of YR and .!G by the component equations 

The 

(2.3-14) and (2.3-15), respectively. The component 

coefficient matrices of these linear resistors are diaqonal 

and hence their inverses are trivial. This completes the 

process for obtaininq the output equations of all the branch 

voltaqes and currents, )l, as defined in equations (2.4-1) 

and ( 2 . 4-2 ) . 

2.5 Determination of Network Operating Point 

The state model for many electromechanical systems 

derived in Section (2.3) is nonlinear due to the presence of 

the nonlinear machine parameters (inductances) and solid 

state switchinq devices (represented by nonlinear 

resistances). This model also has the capability of 

handlinq nonlinear capacitors; however, this nonlinearity is 

often neqlected in the • simulation of typical 

electromechanical machine systems. 

The nonlinear inductances are assumed to be functions of 

the state variables, iL ' as defined in equation (2.3-50). 
c 

Since the state variables are fixed or frozen at any instant 

of time, the inductances, therefore, are known and fixed at 

- 85 -



that particular instant of time. The same holds true for 

the nonlinear capacitances. 

The nonlinear resi stances, however, must be determined 

iteratively, at each given point in time such that both the 

network constraints and the I-V characteristics of these 

resistors are simultaneously satisfied. 

The nonlinear resistances considered in this work are 

piecewise linear as described earlier in Section (2.1). In 

order to realistically model the switching action of the 

solid state components, a large variation in the slope of 

the I-V characteristics between the "on" and "off" states of 

these switches is required.. This slope ratio is of the 

order of six or more magnitudes. Consequently, the 

associated system time constants of the natural response 

also· vary by approximately the same orders of magnitude. 

This results in a state model in which the eigenvalues of 

the matrix, ~, equation (2.3-63), are very widely separated. 

Such systems are inherently very difficult to solve 

numerically on the digital computer. This problem is 

referred to as the "time constant or stiffness" problem. 

The larger the "off" to "on" ratio of the resistance 

values, the stiffer the governing set of differential 

equations (state model) becomes. Therefore, it is very 

important that the chosen integration routine be able to 

handle this class of differential equations. 
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Furthermore, it will be shown that stiffness affects not 

only the integration process but also the calculation of the 

diode operating points. This is due to the fact that errors 

in the calculation of the diode switching times results in 

entremely large voltage and current transients due to the 

inductive and capacitive nature of the systems under study. 

It will be shown that the "stiffer" the system, the larger 

the magnitude of these fictitious transients. 

An algorithm for determining the operating points of 

these nonlinear resistances will now be discussed. The 

effects of stiffness on the performance of the algorithm 

will also be examined. This algorithm can be broken down 

into the following steps: 

Step 1 Given an updated set of state variables and forcing 

functions at time, t=Tl, determine the present 

values of the nonlinear inductances and 

capacitances. 

Step 2 Sol ve for the operating points of the nonlinear 

resistances, at t=Tl, by iterating upon equation 

(2.3-45) . 

Step 3 Update the matrices given in equation (2.3-62) and 

proceed to integrate the updated state model forward 

in time to t=T2, using an appropriate integration 

routine. 

- 87 -



Since the solid state switching devices are modeled as 

piecewise linear resistances, Step 2 requires" special 

attention at the zero crossing point of the I-V 

characteristic, as illustrated in Figure (2.1-1). 

The most critical step in this algorithm involves the 

precise determination of the all diode switching points 

(times). In previous work, [12-14], these switching points 

were not precisely determined but were merely constrained to 

occur at the chosen solution points. This earlier approach 

was adequate at the time because of the relatively small 

integ"ration steps sizes (5 ps) and because of the relatively 

mild degree of stiffness (ROFF/RON > 10000) used by these 

investigators. It was found here, however, that this 

approach for changing the diode states presents serious 

problems for increasing values of "off" resistance and 

increasing integration step sizes. Also, it was found that 

the previous approach, [6-8] , required excessive computer 

execution time due to the constraint of smaller integration 

step sizes, required by the explicit integration routine 

employed, for increasing degrees of stiffness. In fact, 

ratios of ROFF/RON greater than 10000 resulted in numerical 

problems when using this previous approach. 
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The impact of constraining 'the switching times of the 

diodes to occur precisely at the preceeding integration 

point, which may be different than the true switching times, 

results in the appearance of very large voltage transients 

or spikes within the given numerical simulation run. This 

phenomena can best be understood by examination of the 

example given in Figure (2.5-1). The example consists of a 

series connected voltage source, diode, and inductor in 

which the diode is undergoing a change in state from "on" to 

"off". It is assumed that this change in state occurs 
. 

between the integration points tk and t k +l at a time t=ts ' 

Assuming an initial inductor current of 1 ampere at t=tk and 

a sinusoidal source voltage, va' the diode current is 

assumed to reach a value of -1 ampere at t=tk +1 . If the 

diode is constrained to switch at t=tk +1 rather than at the 

correct time, t=ts ' then a false voltage transient of almost 

10KV is generated across the inductor assuming that v s is 

negligible in comparison. In fact, inspection of the 

equation for the inductor voltage, 

v L = L(di/dt) = Vs - iRz> (2.5-1) 

reveals that the maqni tude of this voltage transient is 

approximately a linear function of the "off" resi stance. 

Since the maqni tude of the series inductor's current is 

constant at any given instant, the change of the equivalent 
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diode resistance at time t=tk+1 results in a large increase 

of the diode voltage. This large voltage reflects the 

drastic drop in inductor current as illustrated in Figure 

(2.5-1). The relationship of the integration time step, 

t k+1-tk, to the voltage spike is not as defined at the "off" 

resistance value of the diode. But , the larger the time 

step, the more negative the inductive current can become , in 

this example I befor the switch in status occurs. This 

larger (more· nega ti ve ) inductor current is directly 

proportional to the voltage spike , as given in equation 

(2.5-1). A dual argument can be made for currents spikes if 

capacitors are present in the system, particlarity if they 

are in parallel with the diode. 

To eliminate these artificial voltage and current 

transients I an improved diode switching algorithm was 

developed. This routine determines all of the diode 

switching times to within a USER specified tolerance. The 

diode status "on"/"off" is only changed at these points in 

time , thereby eliminating the artifical voltage and current 

transients which would have occured using the previous 

approaches. Details of this diode switching algorithm will 

be discussed next. 
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vD > 0 
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-vS + 0. 01 
.: Vs 

fort-tK+1 

Figure (2.5-1) Voltage Transient Due to Time Error in Diode 
Switching 
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Diode Switching Algorithm 

The diode switching algorithm was designed to calculate 

the zero crossing time for each diode. In general these 

swi tching times may occur in between the discrete 

integration points. Furthermore, this algorithm also 

updates the state model every time such a change in status is 

detected. The model updating is only done at the calculated 

time of the zero crossing. The basic assumptions upon which 

this algorithm is based are listed below: 

1. The diode components are modeled as piecewise linear 

resistors; 

2. the time interval, 6t, between integration points is 

small enough so that fast transients are not 

overstepped; 

3. the change of status occurs only at the zero crossings 

of the diodes (within a user specified tolerance); and 

4. a given diode will remain in the "on" state as long as 

its branch voltage is positive and will remain in the 

"off" state as long as its branch voltage is negative. 
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The second assumption is stated to make the reader aware 

of the possibility that ·this algorithm could miss. a rapid 

change of sign within a diode's voltage or current since a 

polari ty comparison is done only at the beginning of the 

time interval, flt, and at the end; 

respectively. This blindness is illustrated in Figure 

(2.5-2). Note the polarity check shows that the product of 

the diode current values, at times tk and t k +1 , is positive, 

thus falsely indicating there was no zero crossing. Since a 

ch~nge in polarity would indicate a zero crossing for the 

diode, this particular example illustrates the possibility 

of not detecting such a zero crossing if flt is too large. 

Thus, assumption 2 reveals the need to reduce the time 

interval, flt, if one desires to track rapid switching 

transients accurately. 

This type of algorithm can be extended to other switching 

devices, such as a silicon controlled rectifiers (SCRs) and 

triacs (back to back SCRs) with some minor modifications. 

These two devices also require the accurate determination of 

their zero crossing times in the sarne manner as the 

conventional diode, in order to prevent erroneous voltage 

spikes. Details of the necessary logic required for 

modeling such devices will not be discussed here. Also, 
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Figure (2.5-2) Blindness of the Switching Algorithm 

- 94 -

...., 
, 

...., 

..., 

--. 

-, 
I , 

..., 



this algorithm is not limited to one switch point simply at 

the origin. 

The essential features of this algorithm will now be 

discussed. If a change in diode current polarity is 

detected between times tk and t k+1 , for any diode, then 

there exists at least one diode zero crossing wi thin l1t. 

Once this zero crossing has been detected, the zero crossing 

algorithm (diode switching algorithm) is called. This 

routine is not exited until all of the diodes which cross 

zero within this time interval are identified and dealt with 

properly. This routine entails the following: 

1. Estimate each detected diode zero crossing time. 

2. Rank each crossing time from first to last. 

3. Integrate forward in time, using the unswitched 

(previous) diode status at time t k , to the first 

estimated crossing time, ts. 
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4. Check the accuracy of the estimated zero crossing time 

by using the calculated diode currents to "qetermine 

the diode voltage at that point in time. 

5. Change status of the diodes experiencing the zero 

crossing at this time,ts ' if the diode voltage (and 

current) spikes are within a USER specified tolerance, 

then update the state model. 

6. If ts occurs prior to the actual zero crossing time 

consider this estimate to be t k , Figure (2.5-2), and 

go to 1. 

7. In general, either integrate forward or move backward 

in order to determine a more accurate crossing time, 

if needed. 

8. Continue this process until the entire integration 

interval, llt, is covered. This . could entail 

subdividing llt into a number of subintervals to obtain 

all of the zero crossings. 

Notice that the implementation of item 5 requires updating 

the overall state model due to any change in the diode 

resistances associated with any change in diode status. 

The algorithm employed to model the switching action of 

all the diodes is nested inside the main integration loop of 

the overall simulation program. This algorithm continually 
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checks for any change in polarity between successive diode 

voltage or current values. The major integrat~on loop 

supplies all the branch voltages and currents at every ~t 

time increment througout the entire simulation duration. 

This algorithm does not interrupt the calculation and 

storage of the solution points at their fixed time interval, 

~t. 

Using this improved diode switching algorithm, in 

conjunction with an appropriate implicit integration 

routine, it was possible to more accurately solve stiff 

systems where the ratio between the "off" and "on" values of 

the diode resistance ranged between 105 and 108 . In 

addi tion, there were savings in computer execution time 

since the implicit routine allows much larger time steps. 

Both of these improvements are discussed in the next 

section. 

2.6 Integration and Stiffness Considerations 

The network operating point and the branch voltages and 

currents, for any given instant in time, are dependent only 

upon the state of the energy storage elements and forcing 

functions (yC ,iL 'YE ' and i J )· Hence in order to obtain 
t c t c 

a time solution for all of the branch variables, the state 

equations, given in equation (2.3-62), need to be integrated 

forward in time from one instant to the next using an 
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appropriate integration routine. The selection of an 

appropriate integration routine is based upon' solution 

accuracy and the correspondi~g computational costs for 

extremely stiff systems. 

State equations, associated with power switching type 

networks, are extremely stiff as was mentioned earlier. The 

integration of such stiff differential equations poses a 

number of numerical problems. For example, it is well known 

that the general class of explicit integration routines does 

not compare favorably in terms of accuracy and cost, to the 

implicit predictor-corrector routines when applied to these 

types of systems [5,26]. This and other points will be 

illustrated in the first part of this section by means of a ~ 

numerical example. 

The chosen numerical example is the simple stiff network 

presented in Figure (2.6-1). The numerical solutions from 

these routines are compared with the exact (analytical) 

solution of this network. This comparison is conducted for 

various degrees of stiffness in order to determine which 

type of integration routine is appropriate. 

First, the' concept of stiffness will be examined in 

detai 1 using the simple network example. Next, the exact 

solution of this network will be compared with those 

obtained from two commercially available integration 

routines. These two routines are available from the 
..... 

! 
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Figure (2.6-1) Example Network Illustrating Stiffness 
of State Equations 
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International Mathematical and' Statistical Library, IMSL, 

[15] . The chosen explicit routine is a fifth and sixth 

order Runge-Kutta-Verner integration algorithm named DVERK, 

[15, 16]. The chosen implicit routine is a variable order 

Adams predictor-corrector method (or Gears Method) named 

DGEAR, [15,16]. 

The algorithms employed by these two routines are given 

in Table (2.6-1). These algorithms were obtained from 

reference [17]. DVERK is an explicit routine, by 

defini tion, since the proj ected state vector for the next 

time instant, y(tk +1 ), is solely determined by information 

calculated from past hi story. Considering explicit 

integration algorithms as recursive difference equations 

reveals the relationship between the (maximum allowable) 

step size, h=At, and the algorithm's numerical stability [3, 

5, 20]. DGEAR, on the other hand, is not restricted to 

small integration time steps because of its implicit nature. 

_ Specifically, the homogeneous solution to the difference 

equation for an implicit routine (algorithm) is bounded for 

all positive h. Details of these types of routines can be 

obtained in references [2, 17, 18, 19]. The application and 

blackbox performance of the two integration routines under 

study, for the class of initial valued differential 

equations which are considered stiff, is the concern of this 

section. The concept of stiffness and its probable 

manifestation within a network shall be discussed next. 
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Table (2.6-1) Typical Integration Algorithms 

let, dy/dx = f(x,y) normal-form first-order 
differential equations 

and, fi = f(xi'Yi) = f(xi,y(xi » 

xi = xi - 1 + h 

Runge-Kutta algorithms have the form: Yi+1 = Yi + h 0 
(similar to DVERK) 

where, for "a fourth order algorithm; 

o = 1/6[k1 + 2(1-.707)k2 +2(1+.707)k3 + k4 ] 

and; 

k1 = fi' 
k2 = f(x i +h/2 , Yi+hk1/2 ), 
k3 = f[x i +·707h , Yi+(-1/2+.707)hk1+(1-.707)hk2 ] 

k4 = f[xi+h , Yi-·707hk2+(1+.707)hk3] 

Predictor-Corrector algorithm; (similar to DGEAR) 

Predictor: 

Y·+1 = y. +h/24(SSf.-S9f. 1+37f . 2-9f . 3) 
~ ~ ~ ~- ~- ~-

Corrector: 

Y·+1 = y. +h/24(9f·+1-19f.-Sf. 1+f . 2) 
~ ~ ~ ~ ~- ~-
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The example network, along with its defining state 

. equations, is shown in Figure (2.6-1). This p~rticu1ar 

example was chosen because it illustrates how the natural 

response of a network can possess two extremely spread time 

constants. The numerical difficulties encountered with the 

integration of such systems is referred to as the "time 

constant" problem. By increasing the resistance value R2 , 

which is in series with the inductor, L2 , the step response 

of the example network becomes more and more difficult to 

calculate accurately using numerical integration routines. 

This is due to the fact that the magnitude of the resistance 

value for R2 is equal to the stiffness value, 0 of the 

network under study. 

The stiffness value, 0, is defined here as the ratio of 

the two resistor values, 0=R2IR1. Thus, by increasing only 

one of these resistance values, R2 for example, while 

holding the other constant (R1=1 ohm), one can directly vary 

the degree of stiffness of the network example under study. 

The exact relationship between the stiffness value, 0, 

defined here, and the ratio of the actual time constants of 

the network's natural response shall be discussed next. 

The analytical unit step response for the two loop 

currents, i 1 (t) and i 2 (t), shown in Figure (2.6-1) is given 

below: 

(2.6-2) 
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i 2 (t) = C e Slt + 3 
C S2·t 

4e 

where 

C1 = (2s 1 + 0 + 1)/(Sl-S2) 

C2 = (2s 1 + 0 + 1)/(Sl-S2) 

C3 = (Sl + 1)/sd s l- S2) 

C4 = ( S2 + 1)/S2(Sl-S2) 

Sl,S2 = -(0+3)/2 ± .5[02 - 20 + 51 

+ 1/S 1 S2 

.5 

(2.6-3) 

(2.6-4) 

(2.6-5) 

(2.6-6) 

(2.6-7) 

(2.6-8) 

Furthermore, the steady state response due to the unit 

step input is 

i1(~) = (0+1)/Sl S2 

i 2 (-) = (1)/Sl S2 

(2.6-9) 

(2.6-10) 

Examination of equation (2.6-8) reveals that for an 

increasing stiffness value, 0, the poles or time constants, 

which are symbolized as Sl and S2, approach -0 and -3/2, 

respectively. Also, the root loci for these two poles 

always remain on the negative real axis of the s-plane 

(Laplace transformation). Notice also that these two poles 

spread apart (system becomes stiffer), as shown in Figure 

(2.6-2), when 0 is increased from zero to infinity. 

To characterize the concept of stiffness further; one can 

express the stiffness of the network's state equation in 

terms of the maximum ratio of its "time constants" (or 

eigenvalues of the matrix ~ in Figure (2.6-1». 
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Figure (2.6-2) Root locus of Sl and S2 
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The "stiffness" of a set of first order differential 

equations can also be associated with the degree of ill-

condi tioning of the A matrix. More precisely, ill-

conditioning of a matrix is defined in terms of the ratio of 

its largest to smallest eigenvalue magnitudes. The larger 

this ratio, the more ill-conditioned the ~ matrix. There is 

a condition number which can be assigned to any matrix in 

terms of .its largest and smallest eigenvalues that indicates 

the degree of ill-conditioning of the matrix, [7] . This 

number is sometimes defined as follows: 

/ / )'large / / 
CN = (2.6-11) 

~ I I ).smalll I 

where 

and 

/ /)'large/ / is the modulus of the largest eigenvalue 
of the A matrix 

/ /).smal1/ / is the modulus of the smallest eigenvalue 
of the A matrix 

In the network example presented in this section, there 

are only two eigenvalues and they are real negative numbers. 

Hence, the condition number, as defined in equation 

(2.6-11), for the ~ matrix given in Figure (2.6-1) can be 

written as follows: 

CN = [Sl/S2] = [(0+3)+(0 2 -20 + 5).5/«0+3)-(02 -20 +5)·5) 

(2.6-12) 
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Notice that as a is increased, the condition number, CN, 

of the A matrix also increases. A larqe condition number 

indicates difficulties in numerical calculations associated 

the ~ matrix, such as its inverse for example. A qood 

estimate for the number of siqnificant diqi t"s of accuracy 

when numerically calculatinq the inverse of the ~ matrix can 

be related to the condition number approximately, [17], as 

follows: 

NSD = WLENGTH - [ INT(LOG10 (CN» + 1 ] 

where: 

NSD = number of siqnificant diqits 

WLENGTH = number of digits (decimal places) stored in a computer 

word used in computation. 

a) Sinqle Precision = 7 diqits 

b) Double Precision = 14 diqits 

INT (*) = Truncates the fractional part of the real number, 

hence makinq it an inteqer. 

CN = the condition number of the matrix, A. 

For example, if the stiffness value, a, is set equal to 

1000, then the CN is equal to 500.75 and the number of 

diqits of round-off that can be expected is 3. On the other 

hand, if a is set equal to 106 then CN is equal to 

0.50000075 x 106 and the number of diqits of round-off that 

can be expected when takinq the inverse of the A matrix is 

6. These two computations illustrate the direct siqnificance 

of the stiffness value, a, with the round-off error expected 
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using the digital computer. Further, in this particular 

example network, INT(loglOCN) + 1 represents the '~umber of 

digits round-off to be expected when taking the inverse of 

the A matrix. 

Similarly, the ill conditioning of some matrix M can also 

have pronounced effects when operating numerically on 

systems of the form M ~=~i where ~ is the vector of known 

forcing functions or measured data and x is the response of 

the system (characterized by M) to the data b. These 

pronounced effects, manifested as large changes in the 

response ~ due to very small variations or errors in the 

data ~, may be caused by numerical round-off of the measured 

data for example. This sensitivity to the data is a direct 

result of the wide spread in the magnitudes of the 

eigenvalues of the matrix M. If a perturbation, ~~,of the 

observed data, ~, is strictly in the direction of the 

largest eigenvectors of the matrix M, the resulting solution 

vector x + ~x will not change drastically as compared to 

the case if the same perturbation magnitude occurs in the 

components of b that are in the same direction as the 

smallest eigenvectors of M. For the latter case, the 

resulting change of the solution vector, ~, would be 

drastically increased, with respect to the first case, by 

approximately the condition number of the M matrix times the 

perturbation of the data, ~b. 
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The condition number, CN, and the stiffness factor, 0, 

are closely related. The context in which they are used is 

their only difference. In particular, the condition number 

of the !1 matrix, CN, reveals valuable information about 

expected round-off when taking the inverse of!1. Similarily 

the stiffness factor, 0, gives a measure of how an extreme 

'spread in the component values affecting the eigenvalues of 

A can effect the numerical integration of the state 

equations (time constant problem) . 

. • Thus, special attention must be given to the specific 

integration routine employed when the ~ matrix wi thin the 

governing state equation becomes ill-conditioned (a large 

ratio of its largest to smallest eigenvalue magnitudes). 

The larger this ratio, the more ill-conditioned the A 

matrix, and consequently the stiffer the governing state 

equations which contain ~ become. 

The degree of system stiffness has a great impact on the 

efficiency (computer costs per solution) and the accuracy of 

the numerical integration routines. This is because, in 

order to track the fastest time constant in a stable and/or 

accurate sense, small time steps are required throughout the 

entire simulation period. This is the case even though the 

fastest transient may have died out and consequently no 

longer contributes significantly to the system's long term 

response associated with the slower time constants. More 
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precisely, the maximum allowable integration step size is 

determined by the smallest time constant (or eigenvalue of 

A), while the total number of integration steps required to 

reach steady state is strictly determined by the largest 

time constant (or eigenvalue of A). Hence, whenever the 

time constants (eigenvalues of the ~ matrix) differ by many 

orders of magnitude, many integration routines (specifically 

explicit. ones) suffer from the requirement of excess 

computer time in order to obtain a desired amount of 

simulation time. 

In order to illustrate the effects of stiffness, two 

commercially available IMSL routines were used to obtain 

numerical solutions for the example network of Figure 

(2.6-1) . The defining system of first order differential 

equations, for this network, can be set to any desired 

degree of stiffness by varying the value of o. The two IMSL 

routines used in this example are DVERK and DGEAR. DVERK is 

an explicit initial-value differential equation solver which 

employs a 5th and 6th order Runge-Kutta variable step 

method. DGEAR, on the other hand, is an implicit initial 

value differential equation solver using a Predictor

Corrector method with variable step size capability. 

DGEAR's integration step size does not have to be limited to 

guarantee numerical stability. DVERK, on the other hand, is 

limited to a maximum step size in order to guarantee 

numerical stability. This restriction is inherent in all 
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explicit integration routines. Even though DVERK has the 

internal capability to automatically maximize i ts ·~tep size 

throughout a given simulation run , it will not exceed an 

internally generated upper limit in order to guarantee 

numerical stability and/or satisfy the programmer's 

specified maximum local error estimate , TOL. Hence , 

internal to DVERK is an error estimator which limits the 

maximum step size in order to .satisfy a specified degree of 

accuracy. DGEAR, on the other hand , can exceed DVERK' s 

maximum step size and still satisfy the same accuracy 

requirements. Details of the numerical analysis of both 

methods can be obtained in references [3 , 5, 20]. 

The exact solution to the example network is given in 

equations (2.6-2) and (2.6-3). The corresponding numerical 

solutions from DVERK and DGEAR for 0=106 , and TOL=10-7 , are 

presented in Figures (2.6-3) through (2.6-6). The exact 

solution , in each of these cases , is plotted with the 

corresponding numerical solution for comparison. The global 

relative error , which is defined as the accumulated local 

relati ve error I is presented wi thin these figures as the 

smaller graph. The global relative error for each of the 

figures is defined as follows: 

Relative Error (2.6-13) 
Exact i 1 (t) 
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(Exact i 2 (t) - DGEAR's i2 (tT» 

Relative Error - (2.6-14) 
Exact i 2 (t) 

(Exact i1(t) - DVERK's i 1 (T) ) 

Relative Error - (2.6-15) 
Exact i1(t) 

(Exact i 2 (t) - DVERK's i 2 (T» 

Relative Error (2.6-16) 
Exact i1(t) 

. A comparison of the computation times, memory 

requirements, and solution accuracies of the two IMSL 

routines is presented in Table (2.6-2) for three different 

degrees of stiffness. Based upon these results, it can be 

seen that DGEAR, which is designed specifically for stiff 

systems, out performed DVERK in all of the above catagories. 

Specifically, for a stiffness, 0=106 , and a specified 

local relative-error tolerance, TOL=10-7, it can be seen 

from this table that DVERK could not keep its maximum global 

relative error (MGRE) within this specified tolerance. 

DGEAR, on the other hand, did a much better job of tracking 

the exact solution. In fact, with this value of stiffness, 

the MGRE of DVERK is nearly one thousand times·· that of 

DGEAR. 
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Table (2.6-2) Comparison Table for DVERK and DGEAR 

DVERK DGEAR 

Verner-Runge-Kutta 
5th, 6th order Method 

Adam's Predictor-Corrector 
Variable order (GEAR's) Method 

a = l.0 E + 4 

00.00.30 seconds (CPU) I 
6.83 E - 6 MGRE * I 
449 KBS ** I __________________________ 1 ______________________________ _ 

a = l.0 E + 6 

00.03.26 seconds (CPU) I 00.00.05 seconds (CPU) 
-1.0 E - 2 MGRE * I -1.1 E - 5 MGRE * 
231468 KBS ** 1 7492 KBS ** 

----------------------_1----------------------------
a = 1.0 E + 14 

00.00.06 seconds (CPU) 
2.0 E - 2 MGRE * 
1346 KBS ** 

* MGRE is defined, using equations (2.6-3) through 
(2.6-6), as the maximum relative error for either i 1 (t) or 

i 2 (t). 

**KBS is defined as kilobyte-sec which is equal to 
storage (in kilobytes) times CPU time (in seconds). 
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The true cost of each routine is directly proportional to 

its use of both memory and execution time. The cost is a 

function of the product of storage used and CPU time. This 

cost can be expressed in terms of kilobyte-seconds (KBS) 

utilized by each routine to obtain its numerical 

approximation of the exact solution. For example I DVERK 

required approximately thirty times the KBS used by DGEAR to 

obtain the numerical solution for the case mentioned above. 

Even though DGEAR used about twice as much storage as DVERK , 

in this case , DVERK required about sixty-five times longer 

than DGEAR to execute because of its time step restriction 

mentioned earlier. Consequently I for this case , DGEAR was 

approximately thirty times less expensive and had a MGRE 

three orders of magnitude smaller than DVERK. 

Finally, a case illustrating extreme stiffness , where a = 
14 -3 1.0 E and TOL = 1.0 E I was examined. The results for 

this case are given in the last row· of Table (2.6-1). 

Notice that DVERK was not able to track the exact solution 

for this large stiffness. This case illustrates that DGEAR 

can handle much stiffer systems . that DVERK. Thus I even 

though the order of stiffness was increased by a factor of 

eight to a = 1.0 E14, DGEAR still tracked the exact solution 

as well as DVERK did for the less stiff case when 

a = 1.0 E6. Furthermore for this case , DGEAR also excelled 

in the other two categories (of CPU seconds of execution 

time and KBS) even when the stiffness was increased by eight 

- 117 -



orders of magnitude, as shown in Table (2.6-2). 

The comparison of the two IMSL routines, DVERK and DGEAR, 

yields the conclusion that DGEAR is far superior to DVERK 

when solving stiff systems of differential equations. Even 

though DGEAR uses more memory than DVERK, DVERK's excessive 

CPU time requirements far outweigh this memory advantage. 

Further, DVERK is not only more expensive but is less 

accurate (as summarized in Table (2.6-2» to use than DGEAR, 

when integrating stiff systems of differential equations. 

Thus, DGEAR was chosen over DVERK as an appropriate 

integration routine .for solving the differential equations 

associated with electromechanical systems employing solid 

state switching devices. 

DGEAR was used for integrating the state equations for 

all the simulation runs presented later in this 

dissertation. These runs were made economically feasible 

because of the employment of DGEAR as well as the diode 

routine discussed previously within Section 2.1. 

Specifically, the diode algorithm does not interrupt DGEAR's 

control of the variable integration step size except for 

diode zero crossings. Hence, it allows DGEAR to integrate 

as economically as it can (maximizing its step size) for the 

majori ty of the simulation duration. This combination is 

most suitable for the types of machine systems considered in 

this report. 
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2.7 Verification of Modeling Approach 

This section deals with the verification of the modeling 

approach presented in previous sections of this chapter. 

The system chosen for this purpose was an advanced 

electronically-commutated brushless dc motor designed for 

electric~vehicle propulsion, [20, 21, 22]. The performance 

and operating voltage and current waveforms of this system 

ar~ well documented in these references. A bloCk 

diagram of the propulsion system is presented in Figure 

(2.7-1). 

The verification of the modeling approach presented in 

this section is based upon the favorable comparison of 

actual system measurements and simulated results. This 

section presents verification of the modeling approach's 

ability to simulate systems containing transistor and diode 

switching devices as well as mutual inductances. 

A detailed schematic of the electric vehicle propulsion 

unit is given in Figure (2.7-2). The corresponding lumped 

parameter network model is given in Figure (2.7-3). 
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Figure (2.7-1) Block Diagram of the Electric Vehicle Propulsion Unit 
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The chosen test runs correspond to the ra~ed 15 hp 

operation of this system and additional simulation data are 

presented in Table (2.7-1). The diodes and transistors of 

Figure {2.7-2} were all modeled as seperate (nonlinear) 

piece-wise linear resistors as shown in Figure (2.7-3). The 

oscillograms and other test data presented in this section 

were obtained with the brushless dc machine coupled to a 

dynamometer. 

The parameters of the electric-vehicle propulsion unit as 

well as the control signals for all the transistors were 

obtained from reference [21]. The emf voltage waveforms 

were obtained from a field analysis [38] while the 

inductance values (self and mutuals) were obtained from the 

motor. The machine-inductance values (self and mutuals) 

were obtained from test measurements made on the actual 

machine modeled. 

Two operating modes were simulated using the modeling 

approach presented in this report. The first mode simulated 

was motoring without chopping. The second-mode was motoring 

with chopping. Details of these two motoring modes can be 

obtained in reference [21]. 
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Lumped Parameter Network Model 
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Table (2.7-1) Simulation Data for Electric Vehicle 
Propulsion Unit (Verification Runs) 

Brushless DC Motor Components: 

field: Samarium Cobalt permanent magnet effects are 
reflected as open circuit emf in armature. 

armature: Three-phase wye-connected with floating neutral 
phase to neutral winding resistance = 6.8 milli-ohms 
phase to neutral winding inductance values: 

self = 47.82 micro-henries 
mutual = 4.18 micro-henries 

phase to neutral winding open circuit emf functional 
representation is a truncated fourier series with 
coefficients for the sine terms (an) and the 

cosine terms (bn ), for the n-th harmonic, given 

below: 

n an/RMVEL bn/RMVEIJ 

1 74.400 3.550 
3 -1.420 -0.221 
5 0.000 0.000 
7 0.553 -0.619 
9 0.664 -0.278 

11 0.373 -0.141 
13 -0.037 -0.014 

where: 

RMVEL = (nRPM/60.0) * 2 * pi * 10-3 

Power Conditioner Components: 

diode: 

transistor: 

choke: 

"on" resistance = 
"off" resistance = 

"on" resistance = 
"off" resistance = 

winding resistance 
self inductance 

6.4 milli-ohms 
20.0 kilo-ohms 

6.4 milli-ohms 
20.0 kilo-ohms 

= 24.0 milli-ohms 
= 1.5 milli-henries 

battery: thevenin equivalent resistance = 5.0 milli-ohms 
thevenin equivalent voltage = 120.0 volts 
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The first motoring mode was simulated at the rated 15 hp 

operating point. For this mode, the chopper transistor Q7 

is latched-on, in the saturation mode, and'Qa is latched in 

its cutoff mode, Figure (2.7-2). This mode results in the 

full battery voltage being applied continuously across the 

inverter/converter bridge. The motoring results from 

periodic application of the battery voltage across the 

machine's terminals (line to line) in a specific' sequence 

that is controlled by transistors Q1 through Q6. The 

oscillogram of the phase current of the electric-vehicle 

motor given in Figure (2.7-4) matches very closely the 

simulated waveform shown in Figure (2.7-5). The model was 

used also to predict the voltages across the transistor and 

diode switches. The oscillogram, Figure (2.7-6), and the 

predicted collector to emitter voltage waveform, Figure 

(2.7-7), of one of the inverter transistors are given for 

comparison. Inspection of these two waveforms reveals very 

close agreement between measured and simulated results for 

this first motoring mode of operation. 

Another motoring mode was simulated and the results .are 

compared with available oscillograms. This mode is called 

chopping. What is meant by chopping is that the conduction 

status of transistors Q7 and Qa are controlled by logic base 

control signals which are determined by monitoring the 

magnitude of the current labeled COO, in Figure (2.7-3). 
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Figure (2.7-4) Oscillogram of the Phase Current 
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Figure (2.7-5) Predicted Waveform of the Phase Current 
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This feedback control is accomplished by external circuitry 

for the actual system and by a logical subroutine within the 

program. Both of the simulated waveforms and their 

corresponding oscillograms presented in Figure (2.7-8) 

through (2.7-11), reveal excellent correlation. Hence, both 

simulated motoring modes (with and without chopping) agree ~ 

excellently with the actual system measurements. 

- Both of these motoring modes (with and without chopping) 

as well as additional verification of a portion of this 

modeling approach was presented earlier in reference [20] 

for the same system and will not be -repeated here. In all 

cases, the agreement between measured and simulated results 

was excellent. What was not shown in reference [20] was the 

added feature to have a capability for handling mutual ~ 

inductive coupling between the tree and cotree of a network. 

Also, the incorporation of an implicit versus an explicit 

integration routine, [19], reveals excellent correlation in 

every branch, with the improvement of less computation time. 

-.. , 

Also, the employment of the diode algorithm presented in -.. 

Section 2.5 along with the implicit routine account for the 

improvement in computational efficiency and accuracy. The 

verification of the capability to handle mutual inductances 

between the tree' and cotree of the overall system model will 

be discussed next. 
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Figure (2.7-8) Oscillogram of the Phase Current 
(Motoring with Chopping Control) 
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Figure (2.7-10) Oscillogram of the Inverter Switch Voltage 
(Motoring with Chopping Control) 
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Figure (2.7-11) Predicted Waveform of the Inverter Switch 
Voltage (Motoring with Chopping Control) 
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Further verification of the proposed modeling approach 

shall address the equality of representing the balanced 

machine's inductances as a lumped diagonal inductive matrix 

versus a full symmetric inductive matrix. Comparison of the 

simulated results obtained by both inductive matrices 

indicates the validity of the proposed matrix algebra. This 

novel approach includes the added feature which can 

automatically account for mutual coupling between the tree 

and cotree of the system network model, for any arbitrary 

windings. Further, the proposed matrix algebra is not 

restricted to balanced machine operation and is therefore 

directly amendable to fault analysis. Figures (2.7-5) and 

(2.7-7) represent the simulated phase current and inverter 

swi tch voltage, respecti vely, when the mutual terms are 

lumped with the self inductances. 

Figures (2.7-12) and (2.7-13) represent the simulated phase 

current and inverter switch voltage, respectively, when the 
.-

I 
inductance matrix is full. A comparison of these waveforms 

reveals excellent correlation between these two sets of 

results. Details of the algebraic manipulations relating to 

this discussion can be seen in equations (2.3-62) and 

(2.3-64). The mutual inductance terms (those between the 

tree and cotree) are coupled via the hybrid matrix pre- and 

postmultiplications as shown in equation (2.3-62). 
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Figure (2.7-12) Predicted Waveforms of the Phase Current 
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Figure (2.7-13) Predicted Waveforms of the Inverter Switch 
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To assess the validity of this verificat~on, the 

influence of the mutuals upon the overall system performance 

was determined by simulating this same system while 

completely eliminating the mutuals from the full inductance 

matrix. The simulated waveforms, given in Figure (2.7-14), 

indicate an approximate 3 percent increase in the magnitude 

of the phase current for the case when the mutual terms were 

removed. The effects of the mutuals are mild, but 

noticeable, in this case and should not in general be 

ignored when simulating such systems considered in this 

report. The physical reason for the relatively weak (3 

percent) effect of the mutuals is due to the relatively 

large effective air gap (which magnetically couples each of 

the stator windings). The effective air gap is larger 

because the permeability of the samarium-cobalt permanent 

magnets, located on the rotor, is very. close to that of air. 

Hence, the mutual coupling between any of the armature 

windings is weak as indicated by these simulated results. 

The next point of interest ·is how much influence the 

"off" resistance values of the diodes have upon the 

simulated waveshapes and magnitudes as well as the effect 

upon power delivered from the battery power source. Three 
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Figure (2.7-14) Predicted Waveforms of the Phase Current 
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cases were run for different "off" resistance values but 

only the two extreme (minimum and maximum) cases are 

displayed. The low value of "off" resistance was set equal 

to 200 ohms and the maximum value was set at 20,000 ohms. 

This hundred fold difference in "off" resistance values 

resul ted in less diode leakage current during the "off" ....... 

state but the waveshapes were effectively unaltered. These 

runs were made by only varying the "off" resistance of the 

diodes not the transistors. 

The two sets of diode waveforms agree closely for these 

two cases, as shown in Figures (2.7-15) through (2.7-18). 

The first set of diodes waveforms are for branch 23, the 

positive-Bus phase-A diode. The second set of voltage and 

current waveforms are for branch 22, the flyback diode. The 

actual location of these two branches in the overall network 

can be seen in Figures (2.7-2) and (2.7-3). Both sets of 

waveforms show little alteration in magnitude and waveshape 

as a result of the two values of Roff ' This is also true 

for the next set of figures to be discussed. The average 

battery current can be obtained from Figures (2.7-19) and 

(2.7-20) for these two values of Roff ' The rippl~ peak to 

peak is unaltered, hence the difference in the YBASE values 

of these Figures is equal to the difference in their average 

currents. 
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Figure (2.7-15) Predicted phase A (+ bus) diode waveforms 
for Roff = 20.0 kilo-ohms 
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Figure (2.7-16) Predicted phase A (+ bus) diode waveforms 
for Roff = 0.2 kilo-ohms 
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Figure (2.7-17) Predicted (flyback) diode waveforms for 
Roff = 20.0 kilo-ohms 
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Figure (2.7-18) Predicted (flyback) diode waveforms for 
Roff = 0.20 kilo-ohms 
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Figure (2.7-19) Predicted battery waveforms for Roff = 20.0 

kilo-ohms 

- 145 -



Y BASE IN VOLTS=120.0000 V 
Y BASE IN AMPS.=1~9.5750 lEy 
~ ________________________________ ~ET 

+1.0 

0.0 ~ ________________________________ ~+1.0 

BRANCH ij. X BASE IN SEC.=O.OlOO 

Figure (2.7-20) Predicted battery waveforms for Roff = 200 

kilo-ohms 
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- In conclusion, the modeling approach presented h~re gives 

excellent results in comparison with test data for the types 

of systems considered in this report. It was shown that the 

vol tage and current waveshapes are not affected noticeably 

by the choice of the "off" resistance, above 200 ohms in 

this case, for the solid state switches. However it was 

demonstrated that the "off" resistance is significant when 

calculating system efficiencies. Therefore, if efficiency 

calculations are not of interest when simulating such 

systems, the value of Roff can be relaxed. This relaxation 

is desirable since the computation cost increases with the 

increase of the value chosen for Roff . Furthermore, the 

ability to include mutual inductances in the machine model 

was demonstrated and verified against test data. 
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3.0 APPLICATION OF THE ACTUATOR MODEL TO 
VARIOUS MACHINE-POWER CONDITIONER CONFIGURATIONS 

The actuator model developed in the previous chapter will 

now be applied to four additional PSA-machine 

configurations. These are a delta, open-delta, a wye and a 

wye with a shorted turn. It is assumed here that each of 

these systems has a separate chopper network. In general, 

however, the transistor switching logic routine can handle a 

number of different system configurations. The various 

options available are listed in Table (3.0-1). These 

options increase the flexibility of this model by allowing a 

large variety of possible configurations with a minimum 

amount of USER supplied input data. 

In order to properly use this model, several conventions 

must be followed, see Figure (3.0-1). First the 

relationship between the phase and line currents for the 

delta type machines must satisfy the following relationship 

with respect to the line currents i 1 ! i 2 , and i3: 

il = ia ic 

i2 = i - ib c 

i3 = ib - i ·a 

(3.0-1) 

(3.0-2) 

(3.0-3) 

these constraints result from KCL taken at the terminals of 

that machine. 
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Table (3.0-1) PSA Options 

Variable 
Value 

1 2 3 
Variable 

Name 

INVTP Wye Delta Open-Delta 

Connected Connected Connected 

Machine Machine Machine 

ICHOP . Separate Chopping 

Chopper Performed -
by Inverter 

ICHOPT Hysteresis PWM -

MODE Motoring Regen Plugging 
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11 

--~>~~.----~----~--~ 

11 1a 

) • > • 
12 1b 

> • > • 
13 1c 
:> • > • 

1a 

WYE 
OONNECTION 

DELTA 
OONNECTION 

OPEN DELTA 
00 NNE CTION 

Fiqure (3.0-1) Assumed Relationships Between Phase and Line 
Currents 
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For the wye connected machine, the phase currents are 

equal to the line currents. This situation is shown in 

Figure (3.0-1). It is also assumed that the fundamental 

components of the forcing functions obey the following phase 

relationships: 

e = E sine ~t + e ) (3.0-4) a m ·x 
eb = E sin(~t + e - 120) (3.0-5) m x 
e = E sin(~t + ex - 240) (3.0-6) c m 

The phase voltages must be of this form otherwise the 

transistor switching signals would be incorrect. 

Another factor which must be taken into account when 

preparing a simulation run is the assignment of labels for 

the power transistors, Q1' Q2, ... ,Q12. This information is 

gi ven in Table (3.6-2). Notice that each of the inverter 

transisto~ is associated with one of the line currents i 1 , 

i 2 , or i 3 . The sign of the line current into the machine, 

(+) or (-), is determined by which of the two transistors, 

attached at each machine terminal, is "on". 

Similarily, the assumed numbering of the chopper transistors is 

given in Table (3.0-3). Transistors Q7 or Q13 are used for motoring 

while Q8 or Q14 are ·used for regeneration. 

The line currents, in all cases, are assumed to be rectangular blocks 

of 120 electrical degrees duration. The line current i1 is initiated :30 

degrees after the emf of phase (A) passes through zero in the positive 

direction. The second and third line currents are ini tia ted in a 

similar f'ashion 120 and 240 degrees later, respectively. 
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TABLE (3.0-2) Inverter Transistor Numbering 

MACHINE/ ACTIVE TRANSIS'IDRS 

INVERTER ------ --------- --------- SIGN OF INJECTED 
TYPE i" i2 i3 LINE CURRENT 1 

Ql Q2 Q3 (+) 
VIE . 

Q4 Q5 Q6 (-) 

DELTA 
Ql Q2 Q3 (+) 

Q4 Q5 Q6 (-) 

Ql Q3 Q5 (+) 
Q2 Q4 Q6 (-) 

OPEN DELTA 
. " Q7 Q9 Qll (-) 

Q8 QIO Q12 (+) 
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TABLE (3.0-3) Chopper Transistor Numbering 

MACHmE/ CHOPPER 'ffiANSIS'IORS 
INVERTER 

TYPE WITH SEPARATE CHOPPER WITHOUT SEPARATE CHOPPER 

WYE Q7.Q8 Qi-Q6 

DELTA Q7.Q8 Qi-Q,6 

OPEN Q13.Qi4 Qi-Q12 
DELTA 
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The parameters used in the four simulations which are presented 

next are based upon the system analyzed in the previous. chapter. 

In the case of the delta connected machin~ the number of tUrns 

per phase is increased by a factor of 43. It was assumed that the 

copper volume remained constant, therefore one can write 

VOlCU = lyAy = lAAA 

Y31y = lA 

(3.0-7) 

(3.0-8) 

where ly' Ay ' t A, AA are the lengths and crossectional areas 

of wye and delta machines, respectively. Using this 

information one can relate the winding resistances of the 

two cases as follows: 

R = 3R 
A Y (3.0-9) 

The inductances also increase by the square of the turns 

ratio, that is 

L = 3L 
A Y 

(3.0-10) 

Once all of the machine parameters were scaled properly, 

these parameters were then substituted into the model and 

the simulated waveforms were obtained. The network graphs 

corresponding to these three cases are given in Figures 

(3.0-2), (3.0-3) and (3.0-4). Representative samples of 

simulated branch voltage and current waveforms are given in 

Sections 3.1 through 3.3 for the network graphs (models) of 

Figures (3.0-2) through (3.0-4), respectively. Saturation 

effects in ~he machine were neglected in all three cases. It was also 

assumed that there were no faults. The machine speed in all three 

cases was 7750 rpm (4 poles). 

The effects of a shorted turn in phase (A) of the wye connected 

machine are given in Section 3.4. 
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3.1 Simulated Waveforms of the WYE Configuration 

The simplified (with chopper) schematic diagr~m of 

Figure (1.0-1) for the WYE configuration, and its 

corresponding complete network graph (including chopper) of 

Figure (3.0-2) should be referred to in reviewing the 

resul ts of simulations presented in this section. These 

simulations represent unfaul ted normal motoring operation. 

The input data used in obtaining these results are given in 

Table (3.1-1). Identification of all the displayed voltage 

and current simulated waveforms is given in Table (3.1-2). 

The CaJ.culated average electromagnetic machine power during the 

last cycle is 12,617 watts. The corresponding copper losses in the 

machine totaled 218.7 watts. 
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TABLE (3.1-1) Input Data for Network- Model of the WYE 

Configuration (Unfaulted) 

Three Phase Balanced Machine Model: 

Branch #12 Phase{A} Winding Resistance=6.8 milli-ohms 
Branch #11 Phase(A} Winding Inductance=52 micro-henries 

Inverter/Converter Bridge ~ Chopper Switching Components: 

Branch #10 (+Bus) Phase(A) Transistor 
Saturation Resistance "on" = 6.4 milli-ohms 
Cutoff Resistance "off" = 2.0 killo-ohms 

Branch #23 (+Bus) Phase(A) Diode 
Forward-Biase Resistance "on" = 6.4 milli-ohms 
Reverse-Biase Resistance "off"= 2.0 killo-ohms 

Chopper Choke: 

Branch #15 Choke Resistance = 24 milli-ohms 
Branch #17 Choke Inductance = 1.5 milli-henries 

DC Power Source: 

Branch #5 Filter Capacitor = 7.8 milli-farrads 
Branch #4 Battery(Internal} Voltage = 120.0 Volts 
Branch #16 Battery(Internal) Resistance = 5 milli-ohms 
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Table (3.1-2) Branch Identification VIE Configuration 
(Unfaulted) 

Figure Branch Branch Identification 
Number Number 

3.1-1 1 Phase A! Back Emf 3.1-2 11 Phase A Winding Inductance 
3.1-3 10 Phase A Transistor (+Bus) 
3.1-4 23 Phase A Diode (+Bus) 
3.1-5 7 Phase I A Transistor (-BUS) 
3.1-6 29 Phase A) Diode (-BUS) 
3.1-7 4 Battery Internal Voltage 
3.1-8 17 Chopper Inductance 
3.1-9 20 Chopper rBUSj Transistor 
3.1-10 21 Chopper +Bus Diode 
3.1-11 6 Chopper -Bus Transistor 
3.1-12 28 Chopper (-Bus Diode 
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Figure (3.1-1) Simulated Current and Voltage Waveforms for 
Branch #1, WYE Configuration (Unfaulted) 
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Figure (3.1-2) Simulated Current and Voltage Wavefors for 
Branch #11, WYE Configuration (Unfaulted) 
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Figure (3.1-3) Simulated Current and Voltage Waveforms for 
Branch #10, WYE Configuration (Unfaulted) 
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Figure (3.1-4) Simulated Current and Voltage Waveforms for 
Branch #23, WYE Configuration (Unfaulted) 
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Figure (3.1-6) Simulated Current and Voltage Waveforms for 
Branch #29, WYE Configuration (Unfaulted) 
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Fiqure (3.1-8) Simulated Current and Voltage Waveforms for 
Branch #17, WYE Confiquration (Unfaulted) 
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Figure (3.1-9) Simulated Current and Voltage Waveforms for 
Branch #20, WYE Configuration (Unfaulted) 
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Figure (3.1-10) Simulated Current and Voltage Waveforms for 
Branch #21, WYE Configuration (Unfaulted) 
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Figure (3.1-11) Simulated Current and Voltage Waveforms for 
Branch #6, WYE Configuration (Unfaulted) 
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Figure (3.1-12) Simulated Current and Voltage Waveforms for 
Branch #28, WYE Configuration (Unfaulted) 
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3.2 Simulated Waveforms of the DELTA Configuration 

,..... The simplified (with chopper) schematic diaqram of 

Figure (1.0-2) for the DELTA configuration, and -its 

correspondinq complete network qraph (includinq chopper) of 

Figure (3.0-3) should be referred to in reviewi~q the 

results of simulations presented in this section. These 

simulations represent unfaul ted normal motorinq operation. 

The input data used in obtaininq these results are qiven in 

Table (3.2-1). Identification of all the displayed voltaqe 

and current simulated waveforms is qiven in Table (3.1-2). 

The calculated average electromagnetic machine power during. the 

last cycle is 12,594 watts. The corresponding copper losses in the 

machine totaled 217.4 watts. These values are almost identical to the 

ones obtained from the WYE connected machine. This is to be expected 

since the machine parameters were chosen such that their terminal per

£ormances are identical. 
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Table (3.2-1) Input Data for Network Model of the DELTA 

Configuration (Unfaulted) 

Three Phase Balanced Machine Model: 

Branch #11 Phase(A) Winding Resistance=20.4 milli-ohms 
Branch #17 Phase(A) Winding Inductance=156 micro-henries 

Inverter/Converter Bridge ~ Chopper Switching Components: 

Branch #7 (+Bus) Phase(A) Transistor 
Saturation Resistance "on" = 6.4 milli-ohms 
Cutoff Resistance "off" = 2.0 killo-ohms 

Branch #22 (+Bus) Phase(A) Diode 
Forward-Biase Resistance "on"= 6.4 milli':'ohms 
Reverse-Biase Resistance "off"= 2.0 killo-ohms 

Chopper Choke: 

Branch #14 Choke Resistance = 24 milli-ohms 
Branch #16 Choke Inductance = 1.5 milli-henries 

DC Power Source: 

Branch #5 Filter Capacitor = 7.8 milli-farads 
Branch #4 Battery(Internal) Voltage = 120.0 Volts 
Branch #15 Battery(Internal) Resistance = 5 milli-ohms 
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Table (3.2-2) Branch Identification DELTA Configuration 
(Unfaulted) 

,.... 
Figure Branch Branch Identification 
Number Number 

3.2-1 1 Phase A~ Back Emf 
3.2-2 17 Phase A Winding Inductance 
3.2-3 7 Phase 11 Transistor (+.Bus) 
3.2-4 22 Phase A Diode (+Bus) 
3.2-5 8 Phase A Transistor (-Bus) 
3.2-6 28 Phase A Diode (-Bus) 
3.2-7 4 Battery Internal Voltage. 
3.2-8 16 Chopper Inductance 
3.2-9 31 Chopper (+Bus) Transistor 
3.2-10 20 Chopper (+Bus) Diode 
3.2-11 6 Chopper (-Bus) Transistor 
3.2-12 27 Chopper (-Bus) Diode 
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Figure (3.2-1) Simulated Current and Voltage Waveforms for 
Branch #1, DELTA Configuration (Unfaulted) 
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Figure (3.2-2) Simulated Current and Voltage Waveforms for 
Branch #17, DELTA Configuration (Unfaulted) 
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Fiqure (3.2-3) Simulated Current and Voltage Waveforms for 
Branch #7, DELTA Confiquration (Unfaulted) 
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Simulated Current and Voltage Waveforms for 
Branch #22, DELTA Configuration (Unfaulted 
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Figure (3.2-5) Simulated Current and Voltage Waveforms for 
Branch #8, DELTA Configuration (Unfaulted) 
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Figure (3.2-6) Simulated Current and Voltage Waveforms for 
Branch #28, DELTA Configuration (Unfaulted) 
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Figure (3.2-8) Simulated Current and Voltage Waveforms for 
Branch #16, DELTA Configuration (Unfaulted) 
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Figure (3.2-9) Simulated Current and Voltage Waveforms for 
Branch #31, DELTA Configuration (Unfaulted) 
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Figure (3.2-10) Simulated Current and Voltage Waveforms for 
Branch #20, DELTA Configuration (Unfaulted) 
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Figure (3.2-11) Simulated Current and Voltage Waveforms for 
Branch #6, DELTA Configuration (Unfaulted) 
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Figure (3.2-12) Simulated Current and Voltage Waveforms for 
Branch #27, DELTA Configuration (Unfaulted) 
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3.3 Simulated Waveforms of the OPEN-DELTA Configuration 

The simplified (with chopper) schematic diagram of 

Figure (1.0-3) for the DELTA configuration, and "its 

corresponding complete network graph (including chopper) of 

Figure (3.0-4) should be referred to in reviewing the 

results of simulations presented in this section. These 

simulations represent unfaul ted normal motoring operation. 

The input data used in obtaining these results are given in 

Table (3.3-1). Identification of all the displayed voltage 

and current simulated waveforms is given in Table (3.3-2). 

The calculated average electromagnetic machine power during the 

last cycle is 18,407 watts. The corresponding copper losses in the 

machine totaled 515 watts. 
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,.... 

Table (3. 3-1) Input Data for Network Model of the 

OPEN-DELTA Configuration (Unfaulted) 

Three Phase Balanced Machine Model: 

Branch # 15 Phase"{A) Winding Resistance=20. 4 milli-ohms 
Branch #20 Phase(A) Winding Inductance=156 micro-henries 

Inverter/Converter Bridge ~ Chopper Switching Components: 

Forward Motoring Mode: 

Branch #7 (+Bus) Phase(A) Transistor 
Saturation Resistance "on" = 6.4 milli-ohms 
cutoff Resistance "off" = 2.0 killo-ohms 

Branch #26 (+Bus) Phase(A) Diode 
Forward-Biase Resistance "on" = 6.4 milli-ohms 
Reverse-Biase Resistance. "off"= 2.0 killo-ohms 

Chopper Choke: 

Branch #14 Choke Resistance = 24 milli-ohms 
Branch #19 Choke Inductance = 1.5 milli-henries 

DC Power Source: 

Branch #5 Filter Capacitor = 7.8 milli-farads 
Branch #4 Battery(Internal) "Voltage = 120.0 Volts 
Branch #18 Battery(Internal) Resistance = 5 milli-ohms 
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Table (3.3-2) Branch Identification OPEN-DELTA Configura~ion 
(Unfaulted) 

Figure Branch Branch Identification Number Number 

3.3-1 1 Phase (A) Armature EHF and Phase Current 
3.3-2 20 Phase (A) Inductive Voltage and Phase Current 
3.3-3 7 Phase (A) (+ Bus) Transistor 
3.3-4 26 Phase (A) (+ Bus) Diode 
3.3-5 9 Phase (A) (-Bus) Transistor 
3.3-6 39 Phase (A) (-Bus) Diode , 

3.3-7 4 Battery Internal Voltage and Current 
3.3-8 19 Chopper Inductive Voltage and Current 
3.3-9 23 Chopper (+ Bus) Transistor . 
3.3-10 24 Chopper (+ Bus) Diode 
3.3-11 6 Chopper (- Bus) Transistor 
3.3-12 37 Chopper (- Bus) Diode 
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Figure (3.3-1) Simulated Current and Voltage Waveforms for 
Branch #1, OPEN-DELTA Configuration 
(Unfau1ted) 
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Figure (3.3-3) Simulated Current and Vol taqe Waveforms for 
Branch # 1 , OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-4) Simulated Current and Voltage Waveforms for 
Branch #26, OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-5) Simulated Current and Vol taqe Waveforms for 
Branch #9 I OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-6) Simulated Current and Voltage Waveforms for 
Branch #39, OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-7) Simulated Current and Voltage Waveforms for 
Branch #4, OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-8) Simulated Current and Voltage Waveforms for 
Branch #19, OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-9) Simulated Current and Vol taqe Waveforms for 
Branch #23, OPEN-DELTA Configuration 
(Unfaulted) 

- 201 -



....... 

-!I 
1 YBASE- 6.02 MID· 

i 
z -

-1~-------------------------------------------·0 
tltE IN mxHJS 

1 
...... 

...... 

-. 2 
1 lBASE- 1.20MI0 XBASE- 4.00 MI0-!l ...... 

i 
z -
~o~------~------------------~ e 
I 
-l~------------------------------------------~ o 

tltEIN~ 
1 

Figure (3.3-10) Simulated Current and Voltage Waveforms for 
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Figure (3.3-11) Simulated Current and Voltage Waveforms for 
Branch #6, OPEN-DELTA Configuration 
(Unfaulted) 
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Figure (3.3-12) Simulated Current and Voltage Waveforms for 
Branch #37, OPEN-DELTA Configuration 
(Unfaulted) 
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~.~ Simulated Waveforms of the WYE Configuration 
(Containing Shorted Turn) 

A simulation of the effects of a shorted turn in a WYE 

connected machine is presented in this section. This 

simulation is otherwise identical to the case presented in 

Section (3.3-1). The corresponding network graph is given 

in Figure (3.4-1) and should be referred to in reviewing the 

results of simulations presented in this section. The 

inductances used to simulate the effects of the shorted turn 

are given in Table (3.4-3). 

The. input data used in obtaining these results are given .. 
in Table (3.4-1). Identification of all the displayed 

voltage and current simulated waveforms is given in Table 

(3.4-2) . 

The calculated average electromagnetic machine power during the last 

cycle is 12,520 watts. This is only slightly less than that for the un-

faulted case. The corresponding copper losses, however, are much greater 

(597.15 watts). The losses in the shorted turn are 40 times higher 

()66 watts) than the unfaulted losses (9.1 watts). It must be emphasized 

that saturation effects and changes in winding resistance due to increased 

temperatures were neglected in this analysis. These factors should be 

included in any future efforts in this area. 
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Table (3.4-1) Input Data for Network Model of the WYE 

Configuration ( Faulted') 

Three Phase UnBalanced Machine Model: 

Branch #14 Healthy Portion Phase(A) 7 ~s 
Winding Resi stance= 5.95 milli-ohms 

Branch #13 Shorted Portion of Phase(A) 1 TIffiN 
Winding Resistance= 0.85 m1l1i-ohms 

Branch #15 Phase (B) Winding Resi stance= 6.8 milli-ohms 
Branch #16 Phase(C) Winding Resistance= 6.8 mill i-ohms 

See Inductance Matrix (Unbalanced Case) Attached in 
Figure (3.4-2) 

Inverter/Converter Bridge ~ Chopper Switching Components: 

Branch #11 (+Bus) Phase(A) Transistor 
Saturation Resistance "on" = 6.4 milli-ohms 
Cutoff Resistance "off" = 2.0 killo-ohms 

Branch #26 (+Bus) Phase(A) Diode 
Forward-Bias Resistance "on" = 6.4 milli-ohms 
Reverse-Bias Resistance "off"= 2.0 killo-ohms 

Chopper Choke: 

Branch #17 Choke Resistance = 24 milli-ohms 
Branch #19 Choke Inductance = 1.5 milli-henries 

DC Power Source: 

Branch #6 Fi 1 ter Capacitor = 7.8 milli-.farads 
Branch #5 Battery(Internal) Voltage = 120.0 Volts 
Branch #18 Battery(Internal) Resistance = 5 milli-ohms 
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Table (3.4-2) Branch Identification WYE Configuration 
(Containing Short Circuit) 

Figure 
Number 

3.4-2 
3.4-3 
3.4-4 
3.4-5 
3.4-6 
3.4-7 
3.4-8 
3.4-9 
3.4-10 
3.4-11 
3.4-12 
3.4-13 
3.4-14 
3.4-15 
3.4-16 
3.4-17 

Branch 
Number 

2 
21 
27 
28 
9 

33 
5 

19 
23 
24 

7 
31 

1 
12 

4 
20 

Branch Identification 

Phase (B) Armature EMF and Phase Current 
Phase (B) Inductive Voltage and Phase Curre~t 
Phase (B) (+ Bus) Transistor 
Phase (B) (+ Bus) Diode 
Phase (B) (- Bus) Transistor 
Phase (B) (~ Bus) Diode 
Battery Internal Voltage and Current 
Chopper Inductive Voltage and Current 
Chopper (+ Bus) Transistor 
Chopper (+ Bus) Diode 
Chopper (- Bus) Transistor 
Chopper (- Bus) Transistor 
(H) Phase (A)·Armature EMF and Phase Current 
(H) Phase (A) Inductive Voltage and Phase Current 
(S) Phase (A) Armature EMF and Phase Current 
(S) Phase (A) Inductive Voltage and Phase Current 
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A(H) 

CHOKE 

A(S) 

B(H) 

C(H) 

A(H) 

36.6 

o. 

0.747 

-3.66 

-3.66 

CHOKE 
, 

o. 

1500. 

O. 

o. 

o. 

ALL nmUCTANCES IN MICROHENRIE3 

A(S) B(H) . C(H) 

4.97 -3.66 -3.66 

o. O. o. 

4.97 -0.523 -0.523 

-0.523 47.8 -4.18 

-0.523 -4.18 47.8 

Table (3.4-3) Inductance Matrix of Unbalanced (Faulted) Case 
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Figure (3.4-2) Simulated Current and Voltage Waveforms for 
Banch #2, WYE Configuration (faulted) 
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Figure (3.4-3) Simulated Current and Voltage Waveforms for 
Banch #21, WYE Configuration (faulted) 
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Figure (3.4-4) Simulated Current and Voltage Waveforms for 
Branch #27, WYE Configuration (faulted) 
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Figure (3.4-5) Simulated Current and Voltage Waveforms for 
Branch #28, WYE Configuration (faulted) 
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Figure (3.4-6) Simulated Current and Voltage Waveforms for 
Branch #9, WYE Configuration (faulted) 
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, , Figure (3.4-7) Simulated Current and Voltage Waveforms for 
Branch #33, WYE Configuration (faulted) 
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Figure (3.4-8) Simulated Current and Voltage Waveforms for 
Branch #5, WYE Configuration (faulted) 
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Figure (3.4-9) Simulated Current and Voltage Waveforms for 
Branch #19, WYE Configuration (faulted) 
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Figure (3.4-10) Simulated Current and Voltage Waveforms for 
Branch #23, WYE Configuration (faulted) 
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Fiqure (3.4-ll) Simulated Current and Voltage Waveforms for 
Branch #24, WYE Confiquration (faulted) 
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Figure (3.4-12) Simulated Current and Voltage Waveforms for 
Branch #7, WYE Configuration (faulted) 
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Figure (3.4-13) Simulated Current and Voltage Waveforms for 
Branch #31, WYE Configuration (faulted) 
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Figure (3.4-14) Simulated Current and Voltage Waveforms for 
Branch #1, WYE Configuration (faulted) 
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Figure (3.4-15) Simulated Current and Voltage Waveforms for 
Branch #12, WYE Configuration (faulted) 
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Figure (3.4-16) Simulated Current and Voltage Waveforms for 
Branch #4, WYE Configuration (faulted) 
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Figure (3.4-17) Simulated Current and Voltage Waveforms for 
Branch #20, WYE Configuration (faulted) 
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4.0 CONCLUSIONS AND RECOMMENDATIONS 

A network topology based modeling approach designed· for 

the simulation of electromechanical drive and actuator 

systems has been presented and verified against actual test 

measurements. The salient features of this model are: 

1. The state equations are automatically generated from 

the USER specified network topology using standard 

network graph theory concepts. 

2. The type of control unit used to operate the power 

. conditioner can be USER specified from a number of 

preprogrammed controllers. Additional control 

schemes can be implemented, if required, by modifying 

SUBROUTINE QLOGIC. 

3. The program can handle aoF number fault scenarios 

including shorted turns and failures in the power 

electronics. 

4. The program can handle mutual inductances and can be 

adopted _to include nonlinearities in the machine 

parameters. 

5. The integration routine employed by this program is 

the IMSL SUBROUTINE DGEAR which is widely available 

and well suited to solVing the ill conditioned 

systems of differential equations resulting from 

these types of machine systems. 
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The model was shown to be successful in simulating the 

machines with connections such as mE, DELTA, OPEN-DELTA, 

and WYE with SHORTED TURN IN ARMATURE WINDING. The m'odel 

was used successfully in determining currents and voltages 

in and across the various branches, respectively. The 

present computer' algorithm can be easily supplied with a 

post processor (external subroutines) which would calculate 

input power, output power, and losses in the systems studied 

here. However, the present resources did not permit the 

development of this post processor, which must be added in 

future' .research efforts on such machine system simulation 

models. 

There are a number of improvements which would greatly 

expand the capabilities of this model. These include: 

1. A more detailed switch model may be necessary in 

future investigations especially if power conditioner 

efficiencies are of 'great importance. Such 

improvements may include a more accurate 

representation of the static I-V characteristics as 

well as accounting for switching and base drive 

losses. 

2. A model of SCR switches should also be implemented to 

increase the versatility of the model. 

3. The program should be modified to accept dependent 

sources. 

- 227 -



4. This model should be linked to a finite element 

machine model when studying the effects of shorted 

turns. This is necessary due to the heavy saturation 

produced by the fault currents. 

5. The program should be streamlined and upgraded to 

enable the USER to perform simulations with a minimum 

amount of input data. This should include a 

preprocessor to automatically generate a proper 

network graph for the system under study. 

Postprocessors to calculate losses, efficiencies, 

~tc. and well as plotting routines to display the 

results would also be useful. 

The results and experimental verification presented in this 

report demonstrate the usefulness and accuracy of this model 

in predicting both the faulted and unfaulted performance of 

electromechanical actuators. Much work remains to be done 

to link this network model wi tho the finite element based 

machine parameter estimation model required for accurate 

simulation of the shorted turn behavior of such systems. 
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