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ABSTRACT

This dissertation presents a static analysis of the problem of an
elastic layer perfectly.bonded, except for a frictionless interface
crack, to a dissimilar elastic half-plane. The free surface of the
layer is loaded by a finite pressure distribution directly over the
crack. The problem is formulated using the two dimensional linear
elasticity equations. Using Fourier transforms, the governing equations
are converted to a pair of coupled singular 1ntegfa1 equations. The
integral equations are reduced to a set of simultaneous algebraic
equations by expanding the unknown functions in a series of Jacobi
polynomials and then evaluating the singular Cauchy-type integrals.
The resuiting equations are found to be ill-conditioned and,
consequently, are solved in the least-squares sense.

Results from the analysis show that, under a normal pressure
distribution on the free surface of the layer and depending on the
combination of geometric and material parameters, the ends of the
crack can open. The resulting stresses at the crack-tips are singular,
implying that crack growth is possible. The extent of the opening and
the crack—-tip stress intensity factors depend on the width of the
pressure distribution zone, the layer thickness, and the relative

material properties of the layer and half-plane.






CHAPTER I

INTRODUCTION

Because of their high specific modulus and strength, advanced
composite material systems have the potential to reduce the weight of
aircraft structures. However, as with any new material system, the
mechanical behavior of the'material must be understood before it can be
used extensively in structures. Understanding the mechanical behavior
of composite materials is very challenging because of the complexity of
the interactions between fiber and matrix, and between individual plies
in a multilayered configuration. With composites have come not oniy the
opportunity for the designer to "tailor” the material to optimize the
structure, but also the challenge of a set of potential problems which
were largely unknown in metal structures. For example, most of the
- composite systems are brittle, have low failing strains compared with
metals, are susceptible to foreign object impact damage, and can develop
delaminations (separation between plies).

Some aspects of the delamination problem are addressed in the pres—
ent work. Delaminations can be caused by manufacturing deficiencies,
standard service loads, or extrinsic loads such as foreign object
impacts. The damage which develops from impacts is a complex network of
cracked plies, delamination between plies, and broken fibers; and it is
very difficult to detect even with ultrasonic or radiographic techniques.
A'thorough understanding of impact damage is essential, as even small
amounts of damage can substantially reduce both the tensile and compres—

sive strength of a composite structure (see, for example, Rhodes [11).



Considering the delamination problem from the viewpoint of struc-
tural life, it must be determined whether the delaminations are likely
to grow under subsequent loading and may therefore place limits on
either the loads or the life. The problem to be analyzed herein is
chosen because it represents a basic mode of fa;lure and should provide
an indication of whether a delamination in layered composite materials
might grow under the influence of purely compressive loading normal to
the delamination. It is Eelg that a complete solution to the problem
using the two-dimensional linear elasticity equations can contribute to
a fundamental understanding of the mechanics of delaminations in layered
media. Of course, seeking a complete solution necessitates restrictions
on the complexity of the geometry and the constitutive equations. 1In
contrast, more complex geometries and loadings can be analyzed using
approximate methods such as finite element analysis. 'However, the power
of the stress singularity at the ends of the delamination, a ‘quantity
critical to the application of elastic fracture mechanics methods, and
other fundamental information on the behévior of the structure would be
difficult or impossible to extract from a finite element analysis. The
complete solution gives the form of the stress singularity directly from
the governing equations. The present solution involves both the con-
cepts of elastic contact problems and the analysis techniques assoclated
with the singular stresses at the ends of the delamination (the delami-
nation is modeled as a crack).

Elasticity solutions of many contact problems and fracture problems
involving flaws or cracks have been reported in the literature. For a
comprehensive review of contact problems, the reader is referred to

Gladwell's recent book [2]. Of particular importance to the present



iﬁvestigation are papers by Erdogan and his colleagues [3,4,5,6] and
Keer et al. [7], in which the frictionless contact between elastic
layers and elastic or rigid foundations is studied. All of the above
solutions are for either two-dimensional or three-dimensional axisym-
metric problems. The layer is of finite thickness and the elastic
foundation is either a half-plane or a half-space. The layer is taken
to be weightless in all of these studies except in [4] and [5]. The
layer rests on the foundation and load is applied to the free surface of
the layer either as a compressive normal distributed load or through a
stamp. 1In all of these problems, near the loaded region there is con-
tact between the layer and the foundation. At some distance from the
loadéd region (on the order of the width of the load or stamp) the layer
separates from the foundation and comes back into contact with the
foundation only when the weight of the layer is taken into account [5].
The contact stress is typically found to reach a maximum near the center
of the loading and to vanish at the ends of the contact zone. The peak
contact stress, the width of the contact zone, and the contact stress
disﬁribution depend on the layer thickness and the material properties
of the layer and foundation. A somewhat different contact problem is
solved by Keer and Chantaramungkorn [8]. 1In tﬁis problem, an elastic
layer resting on an elastic half-space is loaded by a uniform normal
compressive stress over the entire length of the layer except for a
finite strip. The important conclusion of the study is that the layer
separates from the half-space under the unloaded part of the layer.

In all of these problems there is no bond between the layer and
foundation. Thus, the question arises, "How will bonding or partial

bonding change the stresses on the interface?” As a prelude to the



present study, the axisymmetric problem solved by Keer et al. [7] was
re-examined, using a solution technique similar to that used in [6], to
investigate the effect of a modified boundary condition. The physically
artificial boundary condition of no separation over a specified radius
with zero shear stress was imposed. The three-dimensional axisymmetric
solution was then found for a normally loaded elastic layer in contact
over a circular region of prescribed radius with an elastic hélf—space.
The results, which are consistent with those in [7], showed thét‘for an
arbitrary radius the contact stress was, in general, singular at the
edge of the contact zone. However, for certain values of the contact
radius the stress was zero at the edge of the contact zone. For éontact
radii which were about equal to the pressure distribution radiué, the
contact stresses were compressive, and for greater contact radii, the
contact stresses near the end of the contact zone were tensile.

The presence of these regions of tensile stress in the modified
problem of [7] and of separation zones [8] under compressive loads
suggest that if a layer were subjected to a compressive normal load
directly over an interface delamination between the layer and fodnda—
tion, then the layer could separate from the foundation near the ends of
the delamination. Of course, crack opening might be expected only for
certain combinations of layer thickness, delamination length, load
distribution width, and material properties. It is known that for an
opened crack, the crack-tip stresses are tensile and singular and hence
the possibility of crack growth, leading to further weakening of the
structure, exists. Typically, the magnitude of the stress intensity

factors is related to the likelihood of crack growth.



In [9] and [10], the behavior of layered elastic media with flaws,
which are idealized as cracks, is studied. A uniform normal compressive
stress 1is applied to both faces of the crack so that the crack is always
open. Erdogan [10] finds the well known results that when the maﬁerials
in the layers are identical the stresses exhibit a square-root singu-
larity, and when the materials are different the stresses exhibit an
oscillating square-root singularity. Stress intensity factors are found
to depend on layer thickness and material property ratios. One should
note that the oscillafing singularity, which chénges sign an infinite
number of times within a small neighborhood of the ends of the crack, 1is
physically unrealisﬁic; yet it is the singularity dictated by the mathe—~
matics. The oscillating part of the singularity can be eliminated byv
modifying the boundary conditions near the ends of the crack [11]. The
present problem, however, is formulated with the oscillating singu-
larity, as this does not strongly influence the results away from the
crack-tips. The feature of primary interest in the present contact
problem is the separation point. Typically, the separation polnt is

.outsfde the region influenced by the oscillatory behavior.

The problem analyzed herein is basically the same problem as that
studied in [10] except for the external loadiné. The geometry is shown
in Figure (la). However, changing the loading complicates the solution
considerably. The pfoblem is that of an elastic layer perfectly bonded,
except for a crack on the interface, to a dissimilar elastic half-
plane. Directly over the crack, uniform normal éressure is applied to
the free surface of the layer. The problem is formulated as a two-
dimensional elasticity problem; the solution is obtained using the

singular integral equation techniques of Erdogan [12]. The integral
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Figure 1. Geometry of the contact problems.



equations derived herein are of the same fundamental form as those in
[10]; the difficulty caused by changing the loading shows up in the more
complicated boundary conditions in the contact region and in the fact
that the extent of the contact region is unknown. The effects of these
additional complications on obtaining a solution are discussed later.
The solution gives contact stresses and displacements on the crack
faces as well as crack-tip stress intensity factors. The results are
presented as functions of material property ratios, the ratio of layer

thickness to crack length, and the ratio of pressure distribution width

to crack length.



CHAPTER II

FORMULATION

The problem described in the Introduction is formulated using the
two~dimensional linear elasticity equations. The solution is obtained
by the use of Fourier transforms and singular integral equation tech-
niques as described in [12]. The geometry of the problem is shown in
Figure (la). The layer of thickness h and the half-plane, both isotro-
pic, are assumed to be perfectly bonded along the interface except for a
crack of length 2a. The contact between the crack faces is assumed to
be frictionless. The load applied to the free surface of the layer is a
uniform normal compressive stress, P,, of width 2c located symmetrically
with respect to the crack., The region of primary interest in this
problem is the interface. The solution gives stresses and displacements
on the interface as well as crack-tip stress intensity factors.

The governing equilibrium equations for the layer (i=1) and the

half plane (i=2) are

aoxx aoxy
1 i_
9% + 3y =0 > and (1)
30 90
Xy yyy
ax t y 0 @)
where Gxxi and oyyi are the normal stresses in the x and y directions,

respectively, and nyi is the shear stress. Using the plane strain

stress—displacement relations
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the equilibrium equations become
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where A; and p; are the Lame constants. Multiplying Equation (6) by
/é/n sin(ax) and Equation (7) by ¥2/7m cos(ox) and integrating both from

zero to infinity yields the transformed équilibrium equations

2~ -
2 d uy dvi

-()\i + Zui)a u; + P (Xi +'ui)a -a—y— =0, and (8)
&3, . du,

(A + 2uy) P AL + Oy + ndag==0 9

where Gi and ;i are the Fourier transforms of u; and v; defined by
- 2 1°
us(a,y) = [= u, (x,y) sin ax dx , and (10)
i ™ Jo i

2
T

vi(a,y) = _/(; v, (x,y) cos ox dx . ' (11)



Simultaneous solution of Equations (8) and (9) yields

= = -ay oy ay ay
uy Aie + Biye + Cie + Diye , and (12)
= = -y 1 -ay _ ay ay 1
vy Aie + Bi(Ki u+ y)e Cie + Die Eci 3 ] (13)
A, + 3p 5x, + 6y
h =L 1eorp trai =t L for p1
where «; X, ry ™ or plane strain or xj 3*1 n Zui or plane

stress. The eight arbitrary constants (A;, By, C4, and Dy) are obtained

from the boundary conditions which for the present problem are:

axyl(x,h) =0, (14)
P, [x] <¢e
o, (x,h) =P (x) = > (15)
R PR -
nyl(xgo) = nyz(xﬁo) ’ (16)
nyl(X,o) = OYYZ(X’O) [y (17)
up (%,0) = uy(x,0), [x] > a
: (18)
oxyl(x,O) =0, |[x|]<a
v)(x,0) = vp(x,0), |[x|] <b and |x| >a
’ (19)
cyyl(x,O) =0, b< [x|] <a
uy(x,==) = 0 , and _ (20)
vo(x,~=) = 0 . ' (21)
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The contact distance b in Equation (19) is not known a priori but is
found as part of the solution to the integral equations. The mixed
bggpdary conditions, Equations (18) and (19), are difficult to utilize
diréccly in developing a set of simultaneous equations for the eight

arbitrary constants. Instead, it is convenient to define two unknown

functions
£ =2 0"y - u,(x,0” d 22
1(0) = = [y, (x, u,(x,0 )], an (22)
£2(0) = 2= [v) (x,07) = v,(x,07)] (23)

where the + and - superscripts refer to the limiting values of the dis-
‘placements as y approaches zero from + and - sides, respectively. Using
these two definitions in place of the mixed conditions, along with the
remaining boundary conditions, Equations (14), (15), (16), (17), (20),

and (21), the eight constants in the solutions for u;

i and v; are

obtained. First, from Equations (20) and (21), which require that the

displacements vanish for y + -,

A2=B2=0.

The remaining six constants are obtained from the following six

equations written in matrix form:

[ -a - a 3! -a Ky 7 (A . EZ I
a 0 a 0 -a 0 Bl ?1
v a ;— |_|l(n<l + 1) ua -7 ul(-tl + 1) e uz(xé + 1) Cl 0
1 1 _ _ > = > (24)
Ty @ Tzl D me 7ulq - D we 3l =11} D 0
- 1 -h ¢h 1 h 0
~-qe ha —[ha t3 (xl + l)]e ¢ e [-hu +3 (|<1 + 1)]e ° 0 0 c, Z_UT
~ha 1 ha ha _1 - ha
--ue -(hu + 7 (xl - l)]e ae [hu 3 (KI 1)]e ] (4] | \.DZJ L 0 J
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where
El(a) =\/%fo £,(x) cos(ax)dx , (25)
fz(a) =j%j(; fz(x) sin(ax)dx , and (26)
P () =j%f Py(x) cos(ax)dx . (27)
0

The solution to the six‘equations was obtained in closed form using
MACSYMA, an algebraic manipulative computer code [13]. One should note
that the mixed boundary conditions were not satisfied in obtaining the
arbitrary constants. Instead, the constants are functions of El and ?2,
~and the mixed boundary conditions are satisfied in formulating the
governing integral equations.

The sblﬁtion to the problem is obtained by developing expressions
for the stresses on the interface and then enforcing the mixed boundary
conditions on those expressions. This yields two integral equations
valid over (-a,a), with unknowns f;, f,, the contact stress (oyy(x,O),

|x] < b), and b. To obtain the integral equations for the interface

stresses, only the solutions for C, and D, are required. They take

the form
_ 1 -2ha -4hays ha
C, = ) {[(cllha + c12)e + (c13ha + cla)e ]Poe

2

+ ey, + (czzhza + cpaha + ¢y, Je 2 4 czse“*h“]fz
22 -2h ~4hay=
+ [c31 + (c32h o + c33ha + c34)e ¢ 4 cy5e a]fl}’ and (28)
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Dy = Dl(a) ([(dyha + dp,)e M+ (d)sha+ 4 e OB "

+ [dyy + (76" + dygha + 4y, ) 2+ 0, T,

+ [dq, + (d32h2a2 + dgqha + dg, ) 2ho 4 d35e"4h°‘1?1} | (29)
where

D(o) = ajy + (apph°a” + ‘aiah“ +agy)e M+ aygeihe (30)

and the cij's, dij's, and aij's are defined in Appendix A. 1In terms

of Gi and Vi the transformed stresses are

© dv :
- 2 _ i -
o = —j(; oyyi cos(ax)d?( = ()\i + ?.ui) T + )\iaui . (31)

) \/; w du,  _
nyi == A oxy1 sin(ax)dx My I av, . ’ (32)

To obtain the expressions for the stresses on the interface, first

evaluate oyy2 and cxy2

Equations (12) and (13) into Equations (31) and (32), using Equa-

as y +0 . Then, substituting u, and v, from

tions (28) and (29), and inverting oyyz, oxy2, Po, fl, and f2 gives

o
Yol yeo™ * ®
_42l__y_*_0_= [[ P (t) f ku(y,a) ey % cos(ax)cos(at) da dt
) o ° 0 '

+ £,(t) kyo(y,a) 7 cos(ax)sin(at) da dt
_ 2 0 12

0 (33)

+f fl(t)f k13(y,a) eY® cos(ax)cos(at) da dt:J o
0 0 - y=0



and

na

2 y=0~
4112

where

kl]_(y’a) =

klz(y’a)_ =

kp3(y, o) =

kp1 (v,

14

= [f f (y,a) e’® sin(ax)cos(at) da dt

fz(t)-/(; k2 (y,a) e7e sin(ax)sin(at) da dt

+
=

-+

fl(t)f ky5(y,0) e’ sin(ax)cos(at) da d% _ (39
0 o 237

y=0

-2ha -4hqo
Deoy 1(Byphe + Bjp)e 1%+ (B sha + By, )e

- y[d,,qe 2ha (d13ha2'+ dlAa)e-4ha]} , . (35)
D%a) (81 * [Byph®a” + Bygha + 8y, Je720% + Bpse
- yldg e+ (4" + dyghd® + dyya)e 20O + g, e 40O}
. (36)
B%ET (B3y + (B3gh"a" + Bygha + gy, )e ™20 Byse
- yldgya + (dg,h%a + dygha + dyyade N4 o ae7HRE)
(37)
- ;::) {(B, ha + aaz)e"Zh“ + (B,4ha + 344)e"4ha
+ y[dizae"Zha + (d13ha2 + dlAa)e_Aha]} , (38)
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kaa(rs0) = gy 185y *+ (Bspn’e” + 353““ + o5 ) pgge 39
+ y[d21a + (dzzhzag + d23£a2 + azaa)e—Zha + dzsae-aha]} ,
and
k3(y,0) = gy 1By + (Bgpha” + Bggha + fgy )™ " 4 goe™ M
+ y[dy 0 + (dg,h 23 + d33ha? + daaa)e—Zhu + d35ae‘4h“]} .
(40)

The Bij's, which are functions of material properties only, are defined

in Appendix A.

The fundamental form of

the integral equations, Equations (33) and

(34), depends on the nature of the integrands of the integrals with

respect to a.
uniformly convergent for y =

the integrands are separated

B
21 21
kig(y,0) = ==~ - ——ya
11 11
B d
31 31
ky3(y,a) = — - — ya
13%Y
’ 31 11
8 d
51 21
kyoly,a) = =—+ —ya
11 11
B d
61 31
kog(y,a) = —+ —— ya
2355 311 2

Recognizing that some of the infinite integrals are not

0, the non-uniformly convergent parts of

from the convergent parts by writing

- K ,0,0) 1)
- K,(y,0) (42)
- Ky, (y,a) , and (43)
- Kja(y,0) (44)
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where the non-uniformly convergent parts are the constant and linear

terms in a and the uniformly convergent parts are the primed functions

given by

kiz(y’a) =

kis(y,a) =

1 -2ha
D() <e [(821 a, By
a
14 _ -4ha
+ (321 a, 324)] te <521
-2 a
+ ya {e ha [(dzz -, —

a
14 -bha
* <d24 = da1 a_)] te ézs " dy

11

1 -2ha
IO) <e [(331 a ~ Byppfha +
14 -4ha
+ (331 g, 334)] te B31
-2ha
+ ya{} [(%2 -

2 h a +

(dza = dy

, (45)

DI
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\ 1 -2ha %12 _ 22 d13_
k32 (¥:2) = 575 (e [(851 i, B52)h o + (351 a,  Dsyhe

a a
14 _ -4ha 15 _
+ (351 a, Bsa)] te <351 a, B55)

~2ha 312 _ 22 13 _
,+ ya {e l:(d?_l _311 d22>h a + <d21 _311 d23) ha

- a ‘ a
14 _ ~4ha 15 _
+ (d21 -5;; dza):l + e (le'—au d25>}> , and 7))

, _ 1 [ -2na %12 _ 22 13
ky3(v>0) = 575y <e [(861 a, Bsz)“ a + (861 i, Bg3) ho

o a, ; a
14 _ ~4ha 15 _
+ -<‘361 a, 364)] + e <B61 a, 865)

~2ha 312 2 2 213
+ ya {e » [<d31 3_11- d32)h a + <d31 a—l—l- i d33> ha

a a
14 ~4ha 15 _

The kernels ky; and ky; do not contain terms which are comnstant or lin-
ear in a. The non-uniformly convergent parts of the integrand, which
can be evaluated in closed form, will provide the basis for determining
the fundamental form of f; and fy. Reference [14] evaluates infinite
integrals such as those in Equations (33)_and (34) with terms which are
constant or linear in a. The results are reproduced in Appendix B.
Using those results and Equations (41); (42), (43), and (44), the inte-

gral equations, Equations (33) and (34), become
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o
. Yy =0 f o -
_%Y__Q__ (f P (t)j ku(y,a) 4 cos(ax)cos(at) da dt
2
X+ t X - t
f £ (t){ [ -~ ZJ
11}’+(X+t) yo+ (x = t)
4y 2l x+e ) X -t
RS I | P A S Ll R NI 2
é' 1 ya
"/ klz(y,a) e’ cos(ax)sin(at) da}dt
0 : _
. B
31 y y
+¢/~ £.(e) < - +
o 1 {: Za [;2 - s x)%]
. :31 ; y: - (t - x): . yi - (£ + x)z i
11 [y + (t - x)7] [y +(t+x)]

—./0‘ k.b(y,a) A cos(ax)cos(at) da dt} dt)

» (49)

y=0"

and

o -
RS @ ®
— 2 y0 =<f Po(t)f Ky, (7,0) o7 sin(ax)cos(at) da dt
0 0
. 6 . -
51 1 1
+./ﬁ £ (t){;- y -
o ? 2a), [;2 + (-2 P+ 4+ x)%J
_ & y y> = (¢ - x)? N R %
28y, [y2 + (t - x)2 ]2 [y2 + (t + x)z]2

‘f kz'z(y,u) e’ sin(ox)sin(at) da} dt)
0
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® Bo1 t+x - t - x
+f £,(t) -
o ! {:2311 [yz +(t+ >y (- x)2]
+ d31 y2 t + x _ t - x .
%11 [y2 + (t + x)2]2 [y2 + (t - 'x)z]?‘

_L k2'3(y,a) PR A sin( ax)cos( at)da} dt)

e (50)
y=0 .

The integrands of the infinite integrals with respect to « are of nega—

tive exponential order for y < 0 and the limits exist. The limits of

the remaining terms in Equations (49) and (50) are obtained from results

in [14] (see Appendix B). Thus, the integral equations become

o 4
Y2 y=0" _[* ”
_—’GEL- =j(; Po(t)~/0‘ Kll(a) cos(ax)cos(at) da dt

B8 f“
21 1 1
+ 5 f,(t) - — dt
Za11 0 2 x+ t X -t
- £, (t) K, (a) cos(ax)sin(at)da dt
Jo 2 0 12

B @ @
+ x 31 £ (x) - £.(t) Ky, (a) cos(ax)cos(at)da dt ,
2a, 1 o ! o 13

(51)
and
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o— foo /m ’
- ‘P (t) (a). sin(ax)cos(at)da dt
4u2 0 o 0 1

B » o0 0
+ zla—f—i'wfz(x) -L f2(t)'/(; Kzz(a) sin(ax)sin(at)da dt

8 fw :
61 1 1
+ f (t)[ - — ]dt
.2a11> 0 1, t+x t-x

-’/(; fl(t) '/0‘°° |<23(a) sin(ax)cos(at)da dt (52)

where

11 =5 | e Byphat B),) + e Bigha+ 8,01,

| .1 [ -2ha 1y 2 2 33 _ ~
%12¢® = 575y {e [(’321 a Bzz)h ot (321 A, B23) ha

11
* <321 %_’ Bzz.):, + e (321 1‘5 } 325)} ' (54)
+ <s31 :—Iii_- 834):, ;te"‘h" (831 :%f - 335)} , | (55)
o 2ha -4ha

k210 = Sray [ (Byyha + ) + ¢ " %(p,aha + 5,,)] , (56)
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Z2ha 312 22 313 )
Kan(a) = By —— = Benlh"a” + [B.y, —— = Bca| ha
22 D( ){ I:( 51 3, 52) (51 a, 53
a ag
14 o4ha ‘15 :
+ <351 3, 354):' <351 3 Bss)} ’ 7)
~2ha 82 2 2 13 _
K23(G) D( ) { [:(661 ;1—1' 862>h a + (861 a B63> ha

a4 -4hq 215
+ (361 2, = Byl t e Bala—n‘ Bes| [ * (58)

Notipg from the boundary conditions that fl(x) and fz(x) are zero for
x> a, that P (x) is zero for x > ¢ and that fl(x) = fl(—x),
fz(x) = —fz(—x), and Po(x) = Po(-x), the Integral equations can be

written as

v a f,(t)
_____.___zil y=0 f P (t)f k17 (@) cos(oax)cos(at)da dt + Bﬁf t2- X dF

11

(-]

o .
l(t)[; 12(cz) cos(ax)sin(at)da dt + 7 ;3—1— f.(x)
(t)

2 |<'13(a) cos(ax)cos(at)da dt, and (59).

a
_ff
-a
a
S
=a

o

2u2-

ki .
vy _ ) a f.(t)
_3'_3’1(’_=f P (t)f k1 (@) sin(ax)cos(at)da dt - 61[ tl- % 9t
-c a1

a ® Bsy
- j;a fz(t)L K23(a) sin(ax)cos(at)do dt + 7 -é—l—l f (x)

a oo
_j;a fl(t)j; K‘zz(a) sin(ax)sin(at)da dt . (60)
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The equations for o - are valid for any x on y=0 and

- and ¢
YY2|y=o xy2|y=o
the solution for f;(x) and f2(x) 1is obtained by restricting x to the
interval (-a,a), i.e., the unbonded portion of the interface.

In addition to the singular integral equations, the continuity

conditions
uy (%,0) = uy(x,0), |x] >a, and _ (61)

v (x,0) = vp(x,0), |x] > a (62)

from the mixed.boundary conditions, Equations (18) and (19), require

that, in addition to f1(x) = fz(x) = 0 for Ix] > a,

"
o

a
f fl(x) dx , and A . (63)

(64)

! >
S T
: Hn
Y
~
M
o
o
~
n
o

to prevent a rigid body displacement between the layer and the half-
plane. Similarly, to prevent a relative rigid body displacement between

the contact reglon |x| < b and the bonded region Ix] > a,

a

j fz(x) dx = 0. ‘ (65)

Finally, the paft of the mixed boundary condition, Equation (19),

which requires continuity of normal displacement over the interior

contact region, i.e.,

v1(x,0) = v,(x,0), |x] < b, (66)
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was not satisfied in formulating the integral equations and must be
satisfied as an additional constraint on the sqlution to the integral
equations. |

Equations (59) and (60), taken over (-a,a), and Equations (63),
(64), (65), and (66) provide a‘completé set of equations to solve for
the unknowns f,(x), fz(x), and ¢

yy2!y=0
obtained by an iterative process which is based on the requirement that

. The remaining unknown, b, is

the contact stress °yy2 0 vanish at x = +b. The iterative process is
y=
described in Chapter III.
Several fundamentally different problems can be solved using this

set of equations. Two of these problems are described below.

Full Contact in the Region (-a,a):

For this problem, fo = 0 for all x and b = a, which places no
restrictions on the sign of the contact stress. ' The integral equations
reduce to a singular integral equation for f; and a simple equation for
oyyz y=0. Equations (64) and (65) become trivial. The resulting equa-

tions and the solution are presented in Appendix C.

No Contact in the Region (-a,a):

Two examples which involve no contact in the region (-a,a) arise
(1) when the loading P (x) is prescribed as tensile, and (2) when the
only prescribed loading is normal pressure on the crack faces, i.e.,

is negative and Oy

Yo is zero. For these problems the

o]
Y¥o y=0 y=0

fundamental form of the integral equations does not change, but
Equations (65) and (66) are no longer valid boundary conditions. The
second problem (P (x) =0, o ' .=
P ° ) y=0
has been solved by Erdogan and Gupta [10].

0, and oyyz §=0 is compressive)



CHAPTER III

SOLUTION OF THE GOVERNING EQUATIONS

Mixed boundary value problems such as the present one can usually be
| reduced to a system of singular integral equations with Cauchy-type
kernels (such as Equations (59) and (60)). Erdogan et al. [12] give a

- detailed discussion of techniques for solving equations with

Cauchy-type kernels. The present problem is solved using these
techniques.

Equations (59) and (60) are singular integral equations of the
second kind as.deftned in [12]. By combining the equations into one
complex integral equation, the singular behavior of f, and fo can be
determined from the dominant part of the integral equation. Then,
expanding £, and fo in a series of complex orthogonal polynomials, the
- singular terms in the integral equation can be removed and the integral
equation can be reduced to a system of linear algeﬁraic eqqationsQ The
present problem has not only the unkﬁowns f; and f,, which appear in the
singular integrals, but also cyy =0 and b. Further, the condition on‘
normal displacement in the contact region, Equation (66), adds an addi-
tional constraint on £y and f,. The additional unknowns and the con-
straint equation add considerable complexity to the solution of the
problem. The details are discussed as the solution to the problem is
developed. |

t X
Defining r=o 8 = 7> and

g1(s) = -f1(as) = -£f1(x) , 82(s) = f9(as) = f,5(x)
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and requiring |x| < a, the integral equations become

a; c o ' 1 1 g9 (1)
- 3 Po(t) 0 Kll(a) cos(asa)cos(ta)da dt == L T dr

B 1 ©
31 a 211
- = g.(s) - f g (r)[ K, o (a) cos(asa)cos(ara)da dr
Byy L ™8y Jog t o 13

%821f gz(r)f Klz(a) cos(asa)sin(ara)da dr

| 3119,y (as)l 3
2 y=0

- 5 Is|] <1, and (67)
My 81 '

211 ¢ i 1 [ 8 (D)
P _(t) K,,(a) sin(asa)cos(ta)da dt = = —— dr
™e1 J-c © 0 21 n) , T-s

Bs1 ad11 (1 ®
+ a 82( s) +2 861 gl(r) . K23(a) sin(asa)cos(ara)da dr

a 1 ) . |
- %%f-l gz(r)v/(; K22(a) sin(asa)sin(ara)da dr, |s| < 1 . (68)

With the definition
$(s) = go(s) + 1 g;(s) _ (69)

the integral equations combine to give

r - s

a Cc
- —%r-l- L(t,8)P () dt =%J: $(x)dr 8, 4(s)

=C

1
2 AL [ 0000 + Ky(e,0) T ] dr
-1

m

+ 1 620(s)| , [s] <1 (70)
: y=0
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" - where

L(t,s) -"f (a) sin(asa)covs(.t':a') =1 k. (a) cos(asa)cos(ta)] da ,
0 (%1 11 ] .

© (a) ' K. (G)
[ \}(%2 sin(asa)sin(ara) + ]"33 cos(asa)COS(arG))
0 61 L 21

]
N =

Kl(t,s).

kg (@) - K23
+ 1 cos(asa)sin(ara) - sin(asa)cos(ara)| | da, (72).
-\ By Bo1

1 13 (@) Kyo (@)
Ko(r,s) = = cos(asa)cos(ara) - sin(asa)sin(ara)
2Jo B21 A B61

<12(°‘) Ky3(a) : )]
+ i cos(asa)sin(ara) + sin(asa)cos(ara)l| da ,

821 : B61 (73)
B a .
R | . . E b
21 61 H2F21

‘(as)] . (75)

a(8) = ¢ (as) = g
N y=0

¥,

y=0

Using Equation (69) the continuity Equations (63), (64), and (65),

become
1 '
d[. ¢(r) dr = 0 , and - (76)
-1 . -
-b/a '
Re(¢(r)) dr = 0 ,. (77)
..1 .

and the constraint equation, Equation (66), becomes
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& o
oo

8 o
0/. Re(¢(r)) dr = 0, Co- <s < . (78)
-b/a
Because K{, Ky, and L are sums of bounded functions, they are
bounded as well. So, the singular behavior of ¢ is determined from the
dominant part of the integral equation, i.e., the first two terms on the

right-hand side of Equation (70). From [12], this singular behavior has

the form

wis) = (1 - 8)% + )¢ ,(w*(s) = (1 - g8) %1 + s)—a) (79)
where

1 -4
__1_ - 1 _1 1

a = f iw, a= 3 + iu), and o = 2 n I——_'_—Gl- . (80)
Noting that w(s) is the weight of the Jacobi polynomials [12], it is
natural to express the solution of the integral equation as

8(s) = w(s) i c_ P . (81)

Y n n
From the continuity condition, Equation (76), and the orthogonality
relations [15]

f
0, n#nm
2a+a+1
‘ 2n + a+ o+ 1
Loy p(a® gy plon® J |
w(t) Pn *(e) Pm »P(t) dx = (82)

-1 yIn+at+ 1) T(n+3a+ 1)

' n! T(n + a+a+ 1) ’

L n=m,

it is found that Co = 0.
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Substituting Equation. (81) into Equation (70) and using the

relation

| , 2
1 1 -4 -
f w(r) P(a a)( ) st 6 w(s) P(a,a)(s) = _—1P('a,-a)(s)

1
i 1 21 n-1
, (83)
from [12], the integral equation reduces to
a J
- L(ts)P(t) dt=2{ p( %7 (g)
T Jee n=1
+ ! [K ( (,3)
—_ r s)C w(r) P, (r)
+ Ky(r,s) T W(r) Pn(“"")(r)] dr}
+ 1 62 a(s), |s| <1 (84)

where the singularity of the integral equation has been removed.
Recognizing that for partial contact the normal stress on the crack
must vanish at the ends of the contact region (s = *b/a) the stress is

represented as

0, |s] > 2
a
o(s) = L _ (85).
A +ZAzcos[—g%§-(2£-l)], [s] <=
=1

and the proper value of b/a is obtained by requiring that A, = 0.
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The unknown C_ 's, Az's, and b can be obtained numerically by
reducing Equations (84), (77), and (78) to a set of linear algebraic
equations. (The square set of equations generated initially from the
governing equations was found to be ill-conditioned. Hence, to obtain a
stable set of equations, the constraint equatidn was overspecified and
the equations were solved in the least-squares sense.)

The integral equation, Equation (84), can be reduced to a set of
linear equations by expanding both sides of the equation as a series of
Jacobi polynomials and then solving for the constant coefficients using
the orthogonality relations, Equation (82). The resulting set of

equations is

2

L= 8 (—ag) M - L
21 em Cm+1 + Z [Bnm cn M Dnm Cn] ti Z S,Qm Rm ’
n=1 2=0
m=0,1,2,3,...,M .  (86)
where
e(-a,-'&) - ikl Mm - a+ 1) M(m - @+ 1) (87)
m 2m - g - + 1 m! Tf(m — a~-a+ 1) ’
aa 1 -
- 11 * (-a,-7)
B - .l:l w*(s) P (s)

1 -
x,/:.1 w(r) pﬁ“’“)(r) K, (r,s) dr ds , : (88)
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aa

1 —
Dop = ——t jl w(s) 27T ()

1 S
xj:1 w(r) pt(l“’“)(r) K,(r,s) dr ds , (89)
f b/a (-a,-3)
A, wh(s) P2 B %(s) ds, =0
-b/a n
Sgm = 02 < (90)
A fb/a w(s) BT (g cos[ﬂf‘-s- (24 - 1ﬂ ds
L _.’b/a m 2b ’
~ 2=1,2,...,L, and
aq 1 (-a,-a) ¢
Ry = - - . wk(s) Pm ’ (s) Po(t) L(t,s) dt ds . 91)
/- -c

The continuity equation, Equation (77) after substitution of
Equation (81), can be integrated in closed form using the definition

of the Jacobi polynomials [15]. The result is

0 = Re i c (-2-r1‘)“ (1 - 2)?:4-1 (1 + %)Od‘l PS‘II’“"D(%) . (92)
n=1
The constraint equation, Equation (78), also can be integrated in
closed form and then bbth sideé of the resulting equétion can be
expanded as series of Chebyshev polynomials [15] with constant coef-
ficients. The coefficients are evaluated using the orthogonality
relations for Chebyshev polynomials [15]. The resulting set of

equations is

b/a

M 2
0 = Re Z cnf I ()1 - (%r-) Uq(% r) dr, q.= 0,1,2,...,Q
n=1 ~b/a (93)
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where

a n-1 a

1o = & [enm (1= 2 (1 8) pEn e e)

-a - g+ ot pﬁf{l’&m(r)] (94)

and;Uq(%-r> is the Chebyshev polynomial of the second kind.

The Equations (86), (92), and (93) yield M + Q + 1 linear algebraic
equations for determination of M Cn's, and L + 1 Az's. The Cn's and
Al's are sufficient to determine the stresses and displacements along
the entire intérface, y'= 0. Recognizing that the stresses on the
interface are singular at s = %1, the complex stress intensity factor

is defined to be {10]

ki + 1 ky = 1im (x - 1)7¢ (x+1)‘5(o l +1ig I ) (95)
1 2
x»17 Y¥o y=0 Y2 y=0

Following [10], the stress intensity factors are computed from

[y @) o+ )] 2 & (a,3)
ky +1ky = Gy i) iy F ) N1 81 Z C, By ().

n=1

(96)
The set of simultaneous Equations (86), (92), and (93) must be
solved numerically to obtain the C.'s and A,'s. As mentioned previ-
ously, these equations were found to be ill-conditioned when L = Q [16].
Thus, a solution was sought by making Q > L and satisfying the equations
in a least-squares sense [l6]. Reasonable answers were then obtained.
The condition of the set of equations was found to be further improved
by setting M >> L. Thi§ is consistent with the nature of the boundary

conditions on the crack surface. The series on gy has M terms to
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represent both the zero displacement difference in the region (-b/a,b/a)
and the non-zero displacement difference in the regions (-1,-b/a) and
(b/a,1); however, the stress, o(s) which has L terms, can be represented
. by only a few terms because it is smooth and symmetric.

To obtain a valid solution to the problem, the value of b was
incremented until'IAo] < € where a satisfactory value of ¢ depended on
h. The solution was assumed to have converged when solutions with
" different values for M and L gave b's which differed by less than
. one percent.

The integrals in Equations (88), (89), (90), (91), and (93) were
_evaluated using quadrature formulas. Integrals with (1 - xz)*l/2
behavior near the end points were integrated using the Gauss-Chebyshev
integration formulas [17]. The infinite integrals (K;(r,s) and Kz(r,s))

were integrated using the Gauss-Legendre integration formula [17].



CHAPTER 1V
RESULTS AND DISCUSSION

No Contact in the Region (-a,a)

In this problem a crack of length 2a on the interface between the
layer and the half-plane is opened by a unit normal pressure applied to
both faces. The governing integral equations are given by Equa-
tions (59) and (60) with P_(x) = O and iy |y = e THES problem,
~ which was first solved in [10], was re-solved herein to check the
formulation and programming of the partial—éontact problem.

In [10] stress intensity factors (for various values of h/2a) are
presented for an epoxy layer and an aluminum half-plane (see Figure (6)
in [10]). Corresponding results from the present formulation were found
to be in excellent agreement with those results.

A second check can be obtained by specifying identical elastic
properties for the layer and the half-plane. For this problem the
infinite integrals in Equations (59) and (60) can be evaluated in closed
form. The resulting expressions are identical to those given by
Equation (7.93) of [12], except for the sign of kop(x,t). It was
verified in correspondence with Professor Erdogan that the minus sign
had been omitted in {12].

The solutions of these two problems provide a check on the entire
formulation of the partial-contact pfoblem except for the terus
involving P, (x). They also validate the reduction of the integral
equations to simultaneous algebraic equations as well as the programming

of the solution.
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Full Contact in the Region (-a,a)

This problem contains the physically unrealistic boundary condition
of frictionless adherence of the layer and the half-plane (see
Figure (1b)). The resulting integral equations are considerably
simplified, and they are readily solved numerically. Details of the
formulation and solution of this problem are in Appendix C. This
auxiliary problem was solved to obtain an initial estimate of the separ-
ation point in the partial-contact problem. 1In fact, in all cases the
point where the contact stress changed sign in the full-contact problem
was an upper bound for the separation point in the partial-contact
problem. |

Interestingly, the integral equations for the two problems differ
considerably. The full-contact problem is governed by a single integral
equation of the first kind, while the partial-contact problem is
governed by a pair of integral equations of the second kind. 1In the
full-contact problem, the stresses are singular at the crack-tip. The

normal stress, o, is singular as the crack—tip is approached from

yly=0’
within the crack and non-singular as the crack-tip is approached from

the bonded side. On the other hand, the shear stress, which

Ixy |y=0°
is of course zero along the crack, is singular as the crack—-tip is
approached from the bonded side. This behavior of the stresses near a
closed crack—~tip has been discussed by Comninou [11}. 1In the partial-
contact problem, the stresses have an oscillating square root singu-
larity at the crack-tip. Both oyy(x,o)'and cxy(x,o) are singular as the

crack~tip is approached from the bonded side and, as the boundary

conditions require, they are zero on the crack faces near the crack-tip.
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The contact stresses on the crack are shown in Figure (2) for the
case of a steel layer and an aluminum half-plane and in Figure (3) for
the case of an aluminum layer and a steel'half—plane. Both figures show
pormalized contact stresses versus position on the crack for several
values of Eu As is typical for contact between layers, the magnitude of
the stress is largest for thin layers and it is concentrated under the
applied pressure. For thicker layers the stress is distributed over a
larger area. For the case of a steel layer and an aluminum half-plane
(Figure (2)), the contact stress for the given geometries is compressive
over the entire crack and at the crack-tip the stress is singular in
compression. This behavior is typical for éases where E; > E, and

§-> 0.3. When-% and-% are small the stress disFribution can have a
region of tensile stress near the ends of the crack. However, the
singular contact stress at the crack-tips is always compfessive. For
the case of an aluminum layer and a steel half-plane (Figure (3)), the
contact stress is compressive over most of the crack and tensile near
the crack-tip; the stress at the crack-tip is singular in tension.

The point where the contact stress changes sign moves toward the crack-
tip as the layer thickness increases.

Figures (2) and (3) show that, if the modulus of the layer is
greater than that of the half-plane, the singular stress is compressive,
but that if this relationship is reveysed, the singular stress is
tensile. If the material properties are identical, the contact stress
at the crack—tip is non-singular. This can be seen by examining the
free term in Equation (C.1), which determines the contact—-stress

singularity. The material property coefficient, B31» of the free term

is zero when the material properties are identical.



Figure 2.

Contact stress distribution for full contact between a

" steel layer and aluminum half-plane.

9¢



Figure 3.

Contact stress distribution for full contact between
an aluminum layer and steel half-plane.

LE
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Figure (4) shows the effect of the width c of the loaded region
(relative to the crack length) on the contact stress; the contact stress
is plotted versus position on the crack for several values of gu All
the results are for an aluminum layer and a steel half-plane. The
magnitude of the contact stress increases as the width of the loaded
region increases, but the singular stress remains tensile, even for a
g-value greater than one.

.. Figures (2), (3), and (4).establish several important trends in the
béhavior of the full-contact problem which can be carried forward to the
discussion of the singular stresses at the crack~tips and later to the
partial-contact problem: (1) the sign of the singular stress at the
crack—tip depends on the relative stiffness of the layer and the half-
plane; (2) changing the layer thickness to crack length ratio changes
the contact stress distribution but not the sign of the singularity; and
(3) changing the load width to crack length ratio changes the contact
stress distribution but not the sign of the singularity.

Using Equation (95), stress intensity factors for the material
combinations of Figures (2) and (3) are plotted in Figures (5) and (6)
as a function of dimensionless load width. One should note that k, is
not the classical mode I stress intensity factor but 1is the coefficient
of the singular component of the contact stress on the unbonded side
rather than the stress on the bonded side. The figure shows that for
both material combinations and various values of 23 the stress 1lntensity
factors increase to a maximum near-% = 1.0 and then decay asymptotically
to zero. Further, for both material combinations ko is much greater in

magnitude than k,.
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Figure 4.

Variation of the contact stress distribution with < for full contact
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for full contact of a steel layer and aluminum half-plane®
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The sign of k; reflects the sign of the singular stress at the
crack-tips. For the aluminum layer and steel half-plane the singular
stress is tgnsile and k; is positive; for the steel layer and aluminum
half-plane the stress is compressive and ky is negative. This indicates
that for a relatively "soft"” (aluminum) layer the no-separation con-
straint actually does prevent the layer from separating from the half-
plane. For a relatively stiff layer the stresses at the crack-tips are
compressive, but for small g-and g-there can be a region of tensile
stress, which suggests the possibility of crack opening in the partial-
contact problem. Interestingly, k, is negative for both material
combinations, which indicates that the shear stress along the bond line
constrains the layer from moving away from the origin relative to the
half-plane, no matter which material is stiffer.

With kTaX and kgax defined as the maximum k; and ky for a given-g

(note that k?ax and kgax are functions of-%), Figure (7) shows kTax
and k;ax plotted versus-g for both material combinations. The peak

= 0.4 for the steel layer, aluminum half-plane

e

values occur at’

combination and at %-5 0.7 for the aluminum layer, steel half-plane

h max d kma

combination. For large o k1 and k, ¥ become very small because of

load diffusion effects.

* and k;ax plotted against the stiffness ratio,
EI/EZ for several values of %u For E;/Ey > 1, kTax is negative, and

Figure (8) shows kTa

for EI/EZ <1, k?ax is positive (Figure (8a)). This indicates that at

the crack-tip the layer is attempting to pull away from the half-plane

only when E1/E2 < 1. The magnitude of kTax is largest when the stiff-

nesses are different, i.e., E;/E; =7 or E;/E; =0.1. The mode II

stress intensity factor, k?ax’ is negative for all values of E1/E2.
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‘ Figure 7. Variation of the maximﬁm coefficients of the singular stress

with layer thickness, > for the full-contact problem.
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For E1/E2 + 0, k;ax appears to approach a single value for all values of

23 but that has not been established here. For El/EZ + o, kgax tends
toward zero because the layer is rigid relative to the half-space. For
an ideally rigid layer kTax andvk‘;ax are zero because a finite load on

an infinite rigid layer will produce zero displacement at the interface.

Partial Contact in the Region (-a,a)

In this problem the layer is allowed to separate from the half-
plane at the ends of the crack (see Figure (la)); the formulétion and
solution are in Chapters II and III. As discussed in Chapter II, the
governing simultaneous equations are ill-conditioned and, consequently,
solutions are obtained. by satisfying the equations in the least-squares
sense. The condition of the system of equations is found to depend on
the comBination of geometric parameters as well as the material
properties of the layer and half-plane. As a result, satisfactory
solutions are obtained for a relatively limited range of parameters,
compared with the full-contact problem. To obtain solutions for a wider
range of parameters would require more terms in the series expansion for
¢ (Edﬁation (81)). However, the number of terms used to obtain the
results presented Herein required the maximum amount 6f storage
available on the computer employed.

Figure (9) shows the contact stress and normal displacement
difference distributions for an aluminum layer and steel half-plane.

The contact stress vanishes at about §-= 0.61. The normal displacement
difference is essentlally zero in the contact region, as required and
the layer separates from the half-plane in the reglon of zero contact
stress. The contact stress distribution is very similar to the

compressive part of the distribution for the full-contact problem
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(see Figure (3)). In the full-contact problem, the stress changes sign
at about x'= 0.79, which is beyond the end of the contact zone in the
partial-contact problem. The contact zone in the partial-contact
problem should be smaller than ;he zone of compressive stress in the
full—cbﬁtact problem because, without the restraint imposed by the
tensile stress of the full-contact problem, the crack will tend to open
over an even greater area. Similar results were found for other
combinations of geometric and material parameters.

The dimensionless half-width of the contact zone, %3 as well as the
magni;ude of the conta;t stress and the crack opening, depend on the
material and geometric parameters. Figure (10) shows the effect on-g of
pressure distribution width, layer thickness, and material stiffness
ratios. The size of the contact region increases with both layer
thickness and pressure distribution widfh, but is insensitive to
relative material stiffness for EI/EZ < 1. As the ends of the contact
zone near the crack-tips, substantial error develops in the displacement
differences on the interface. For example, a negative normal displace-
ment difference is predicted at the ends of the contact zone for an
almost closed crack. Because the crack faces cannot overlap, this is
physically impossible. The error develops for large contact regions
because the large region of zero displacement difference prevents the
series expansion for ¢ from accurately modeling the small region of
crack opening. For this reason, results are presented for relatively
small -g and %’

The most important conclusion from the resul;s for the partial-
contact problem is that there is indeed crack opening near the ends of

the crack under purely compressive external loading normal to the crack.
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With crack opening comes the possibility of crack growth, and the
likelihood of crack growth increases with the magnitude of the stress

intensity factors. Figure (11) gives k, as a function of h for several

e e e me B - S

values of é} and as a function of El/E2' Figure (1la) shows that k, in-
a

creases with both layer thickness and the width of the region of applied

2

pressure. These results are consistent with those of the full-contact

problem over the same range of parameters. Figure (1lb) shows that k,

increases with the material stiffness ratio El/Ez' Again, these re-
sults are consistent with results from the full-contact problem. Results
for kl' are not presented because they appear to be of questionable

accuracy. Computed values of k., are typically an order of magnitude

1

smaller than the values of k2, and thus are very sensitive to small
errors in the series expansion of the displacement differences (which

are used to compute k and k2). The apparent inaccuracy in k., does not

1 1

change the important result that the crack does open which is consistent

with a positive k Because the normal displacement difference is

1

closely related to k and it is constrained in the contact zone, k

1 1

should be much smaller in magnitude than k2. This is in fact the case,

although the values of k. are suspect for the reasons mentioned above.

1
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CHAPTER V

CONCLUSIONS

The problem of an elastic iayer bonded, except for a frictionless
crack, to a dissimilar elastic half-plane is considered in this study to
investigate the behavior of the disbond under compressive loading.

Using Fourier transforms, the two-dimensional elasticity equations are
converted to a pair of coupled singular integral equations with Cauchy-
type kernels. The equations are reduced to a set of simultaneous
algebraic equationsAwhich are ill-conditioned; as a result, the equa-
tions are solved in the least-squares sense. From the analysis, the
following general conclusions about interface cracks in layered media
are reached.

1. Under a normal pressure distribution on the free surface of the
layer the tips of the crack can open. The resulting stresses
at the crack-tips are singular, implying that crack growth is
possible even under compressive loading.

2. The width of the crack-face contact zone depends on the layer
thickness, the pressure distribution width, and the relative

material properties of the layer and half-plane.

3. Crack-tip stress intensity factors depend on the geometric
and material parameters.

4. Because the final set of simultaneous algebraic equations is
ill-conditioned, accurate answers cannot be obtained for some
values of the geometric and material parameters. To obtain
accurate answers for a wider range of parameters, the program
would have to be modified to allow for even more terms in the
series expansion of the displacement-difference function.



APPENDICES

52



Appendix A

Material Property Terms
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The expressions for the material property terms in Equations (28),

(29), and (30) are

amn

a12

a3

14

415

c11

€12

c13

€14

€21

€22

(o +ouy))lyy + VLR

Al + )y - W),

205y + wpuy(ky = 1)(ky = 1) = W (& + 1),
(g - u o)y =),
%‘(ulrz + Uz)(Kl + 1) ’

7wt g - D),

7 Gy = udk (e + 1),

ICR ORI

'% il - 1),

—zull-lz(Kz + 1) ’



023 = ulllz(Kl + 1)(K2 - 1) ’

n]

€4 = 5 mplk = 1)('<2 +1),

1 1 -—
25 =7 MKy =Kk,
' d [

2 1 b
C31 = ul.cz + u1u2 [KIKZ + E (1 - KIKZ)] ’
Cqn = 4 [L (k, = 1) -
327 Y7 Wi o] I
c33 =y (kg + 1)(x, +1) ,

2 1
°34 T T2 T iy T DG - D,

2 1
€35 = UK T3 yniy +5),

Q127 =7 Gy + )iy + 1),
dy3 = Gy = wdley + 1),

dp =5 Gy - wle + 1),
d1 —m QG + k)

dag = 4uyQuy — uy)

d23 = 2111;12(!(1 +1) ,



d3g =

The definitions of the

equations are

B11

21‘1[”1 +3 uy (e = 1)] ’

111(1-12 - lJl) »
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material property terms in the integral
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Appendix B

Relevant Integral and Limit Evaluations

The following integral formulas, all for y < 0, are taken from [14]:

(-]
f 7% sin(xz)sin(tz)dz
0

sin(xg)sin(tr)de

> sin(xzg)cos(ty)der

sin(xg)cos(tr)dz

cos(xr)cos(tr)de

cos(xg)cos(ty)de

1 -y - -y ,
2l -0 P4+ n?
-y Yz"(t—x)z _J?‘--(::+x)2
2 P+ e - 02 P+ (e + 0P )
1 F t +x _ t - x
2_y2+(t+X)2 v+ (e - 02|’
y2_ t + x _ t - x
_(y2 i+ P+ - 0
1l y + y and
12+ e - w2 y2+(t+x)2]’
-X Jz'(t"x)2 +y2-(t+X)2 .
2 _(yz + (t - x)z)2 (y2 + (t + x)z)2

‘The following evaluations of limits of certain integrals are taken

from [14]:

y

lim_
x40

fo w(t)[ 5 :

y +(t-X)2

L dt = -mp(y) ,
ve + (¢ + x)z:'



p—

-

[2+(t_x)z]2

p-

yz(t + x)

3 2
-yt - %) ¥ -yt + x)?

[y* + (t + 02 ]

—

Yz(t = X)

_[yz + (t + x):Z ]2

[yz ¥t - 0 ]2;

dt = 0 ,

dt =0 .

and
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Appendix C

Sblution of the Full Contact Problem

For the full contact problem described in Chapter II, Equa-

tions (59) and (60) reduce to

o ‘ :
yy2 0~ c b
_Z_J)-.L = £¢ P_(t) _/; k1 (@) cos(at)cos(ax)da dt

B a 0 .
+ x 511— £, (%) -f fl(t)f ncla(a) cos(at)cas(ox)da dt ,
11 -a ‘ 0
(c.l)
and
| B a f,(t)
-———ELJEﬂl- P (t) (a) cos(at)sin(ax)da dt - 61 1 dt
K21 a t-x
0] 11 J-a
a [
- fl(t) K23(a) cos(at)sin(ax)da dt . (c.2)
-a 0
The only continuity condition is Equation (63),
a
fl(x) dx =0 . (C.3)
The only independent unknown in the problem is £13 yy I is now

a function of f;. Thus, the solution for £, is obtained from Equa-
tions (C.2) and (C.3).

Restricting x to the interval (-a,a) and defining

and

"
u
® et
-

@
]
DX
-




61
g1(8) = -f1(as) = ~f;(x) ,

Equations (C.2) and (C.3) become

a e ® 1 g, (r)
- L_l_]:.'[c Po(t)j(; K21(a) cos(at)sin(asa)da dt = l"»[-l rl_ 3 dr

™ Be1

a 1 o
+ %E:—}.[-l 81(1')'/(; K3(0) cos(ara)sin(asa)da dr , |s| <1,

(c.4)
and

1
f gl(s) ds =0 . (C.5)
—1 :

Equation (C.4) is a singular integral equation of the first kind

(as defined in [12]), and the dominant part,

8 1 g,(r)
—él- L dr

811 _11'-8

determines the fundamental functional form of 81 which is

G,(s)
31(8) = (C.6)

1 - s2

where G; is a bounded continuous function.
The numerical technique developed in [18] is used to solve Equa-

tions (C.4) and (C.5). Following [18] the bounded function Gy is

approximated as

K
Gy (s) = 3" € T (s) (C.7)
k=0 :
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where Ty 1s the Chebyshev polynomial of the first kind. Then substi-
tuting Equation (C.6) into Equation (C.4) with use being made of

Equation (C.5), the integral equation reduces to the set of simultaneous

equations,

lNc(r)——l——+k(sr)=R()m=1 N -1 (c.8)

N :E: 17n% fr = s m’ n *n’? >ttt '
n=1

where use has been made of the appropriate relations from [18] and where

a )
k(rm,sn) = g -E-l—]-'-f |<23(a) cos(arna) sin(asma) da , (c.9)
61+~0
R(sp) = - }-il—l-fc P (t) f‘- K21(a) cos(at)sin(asma)da dt ,
T BgyJe © 0 |
o (c.10)
r, = cos gﬁ-(Zn -1), and (c.11)
8Sn = cos %E-. (c.12)

Equation (C.8) gives N — 1 equations for N unknowns; using the Gauss-
Chebyshev integration formula [17], Equation (C.3) gives the nth

equation as

2=

N
Z G (r ) =0 . (c.13)
n=l

After determining Gy(r,) by solving Equation (C.8) and C.13), the
stresses on the entire interface are computed using Equations (C.l) and
(C.2). The stress intensity factors are computed from Equation (95)

with a = =1/2.
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LIST OF SYMBOLS

half crack length

aij’cij’dij functions of material properties as defined in Appendix A

b

c
El’EZ

f1:52

8187 -

half width of the contact zone

half width of the applied pressure region

Young's moduli of layer and half-plane, respectively
displacement-difference functions on u and v, respectively

dimensionless displacement-difference functions for f1 and f,,
respectively

bounded continuous function defined in Equation (C.6)

layer thickness

A

coefficients of the singular stresses

pressure distribution on the free surface of the layer
magnitude of the uniform applied pressure

nth order Jacobi polynomial

kth Chebyshev polynomial of the first and second kind,
respectively

displacements in the ith material in the y and x directionms,
respectively

weight function of the Jacobi polynomials
superscripts in the Jacobi polynomials
material property terms defined in Appendix A
gamma function

material property coefficients as defined by Equations (74)
and (75)

material property constant for the ith material



Ai,ui: Lame constants for the ith material
o(s) normal stress in the contact region
o s O »O stresses in the ith material
e SR AL TS ]
g - normal stress in the y-direction in the half-plane at y=0
Y2 |y=0
o] .  shear stress in the half-plane at y = 0
xy2|y=0
é complex function of g, and g, defined by Equation (69)
w material property term defined by Equation (80)
Vz Laplace differential operator
Subscripts
X,y Cartesian coordinates

1,2 - layer and half-plane, respectively
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