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ABSTRACT

An approximation involving cubic spline functions for

parameter estimation problems in the Euler-Bernoulli-beam

equation (phrased as an optimization problem with respect to the

parameters) is described and convergence is proved. The

resulting algorithm was implemented and several of the test

examples are documented. It is observed that the use of penalty

terms in the cost functional can improve the rate of convergence.
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I. introduction: Statement of the Problem and Notation.

In this investigation we are concerned with the parameter

dependent equation

(1.1) Ytt = - D2(ql D2y) - D2(q2D2yt) - q3Yt + q4y ,

(1.2) y(O,.) = Yo' Yt (0'') = Yl '

(1.5) boundary condition ,

where y = y(t,x), 0 • x • 1 and where D Stands for

differentiation with respect to x. Together with appropriate

boundary conditions, equations (i.i) - (1.2) arise in modelling

the tranverse vibrations of a thin and elastic beam, where struc-

tural (q2 # 0) or viscous (q3 # 0) dampling may be present [6,

Chapter 17]. In an effort to provide a mathematical description

of the motion of large flexible systems, continuum models of the

type (i.i) - (1.3) are receiving anew much attention in the

present literature [2, 3,"7, i0, }8].

Different boundary conditions generally require a somewhat

different analysis and we therefore restrict ourselves to the

following boundary conditions of type k, k=l or 2 or 5:

(k=l): y(t,O) = Yxx(t,O) = y(t,1) = Yxx(t,1) = O

(simply supported beam),

(k=2): y(t,O) = Yx(t,O) = y(t,1) = Yx(t,l) = 0

(beam clamped at both ends),



(k:3): y(t,O) : Yx(t,O) : Yxx(t,O) : Yxxx(t,1) : 0

(cantilevered beam),

for t > 0 .

Let us assume that (1.1), (1.2) together with boundary conditions

of type k are the mathematical model of a physical system, for

which observations _(ti,x j) , i=1,...,i and j=l,...,m ,

are available and which are expected to correspond to the

solution y(ti,xj;q) of (1.1) - (1.3) evaluated at (ti,xj) ,
with the parameter

q : (ql,q2,q3,q4,Yo,y 1)

chosen "correctly". Since it is mathematically untractable and

practicably not feasable to require _(ti,x j) = Y(ti,xj;q) for

i=1,...,i and j=l,:..,m we formulate the following optimization

problem

(P) minimize [ 19(ti,xj) - y(ti,x j;q) 12 overi,j

q E Q subject to y satisfying (I.I) - (I.3) ,

and refer to (P) as parameter estimation problem. Here y(-,.;q)

denotes the solution of (1.1) - (1.3) in a sense that will be

specified below and Q, the set of admissable parameters is

given by

_ _k)Q C QI x Q2 x L x L x H x HO ,

where Q1 = (ql _ H2 : ql (x) _ a }, with a > 0 ,



Q2 : {q2 e H2 : q2(x) _ O)

and H_l)(q I) : {v e H2 : v(O) : v(1) : O} ,

H_e)(q I) = {v e H 2 : v(O) = v(1) = v'(O) = v'(1) = O} ,

H_3)(q 1) = {v e H 2 : v(O) = v'(O) = O}

The set Q is given a topology by taking

Q c Q : H 2 H 2 H2 H°weak x weak x L_ x L_ x x

Here H 2weak denotes the space H2 endowed with the weak topology.

The parameter estimation problem (P) is an infinite dimensional

problem, and its approximation by a sequence of finite dimensional

problems that are numerically implementable is the focus of this

paper. Here we study approximation of (P) by projection on finite

dimensional subspaces_ By factoring the operators D2(ql D2) and

D2(q2 D2) into second order operators, the smoothness requirement

on the functions in the subspaces will be that of H2-regularity.

In this respect our treatment differs from earlier work (see

[2,3,7]), where it is assumed that the functions in the subspaces

are sufficiently smooth, so that they lie in the domain of the

generator of the semigroup associated with (1.1) - (1.3), in

particular that they are H4-functions. In special cases this

requirement can be circumvented in [2,3,7] by transforming the

equation into a higher dimensional system of equations. The present

approach has the advantage that we can give a complete convergence



theory for the approximation of (P), which includes, for example,

cubic spline approximations.

We also study, theoretically and numerically, the effect of

adding a penalty term to the quadratic fit-to-data criterion

involved in defining (P). The use of such a penalty term seems

to be justified for practical problems and proved to be numerically

useful, since it provides some robustness in the search for a

minimum of (P). In some examples the computing time was reduced

and in others less care was required to tune the parameters in

the minimization routine when a penalty term was added. This will

be illustrated with an example at the end of the paper.

The "observations" for our test problems were obtained by a

generalized Crank-Nicolson-scheme, exept in very special cases,

when the solution could be calculated analytically. Since numerical

approximations for the trajectory of (1.1) - (1.5) do not seem

to be readily available in the literature, we also compared the

Crank-Nicolson-scheme and a cubic spline-projection algorithm

for approximation of the trajectory with an example where the

analytical solution is available. It turns out that the projection

algorithm is superior to the Crank-Nicolson-scheme, both with

respect to time and accuracy.

In our model equation we have not included a forcing function

f(t,x). The results of this paper can easily be extended to in-

clude such a term, with techniques that are fairly routine and

are discussed in detai! in [5] for second order equations.



In section 2 we formulate (1.1) - (1.5) as an abstract differential

equation in a Hilbert space and prove a general convergence

result for projection schemes that is uniform in the parameters.

This parameter dependent state convergence result is used in

section 3 to study approximation of (P). Section 4 is devoted

to a short discussion of the use of penalization techniques

that proved to be numerically very useful for the present problem.

We have carried out extensive tests for a cubic spline scheme

and an example is discussed in section 5. A detailed description

of the scheme and of the phenomena that were observed will appear

elsewhere.

The notation that we employ is rather standard and we only make

a few comments. By I'l and (.,-) we denbte the usual norm and

inner product in L2. Other norms are denoted by a subscript and

II-!lX is used to specify the operator norm in the space X.

We will not distinguish between column and row vectors. As usual,

g(A) and p(A) stand for spectrum and resolvent set of a

closed operator A and AID denotes the restriction of A to the

set D.
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2. Abstract Formulation and Parameter Dependent State Conversence.

In the first part of this section we restrict our attention to

the equation

: - D2 D2(2.1) Ytt (qlD2y) - (qeD2yt) '

y(O,-) : Yo' Yt (0'') : Yi '

boundary conditions of type k ,

where 0 _ x _ I, t _ O, Yo E H_k) Yl E H° and k=l or 2 or 3.

The general case given in (1.1) - (1.3) will follow from the

results concerning (2.1) by adding a suitably defined bounded

perturbation. At first we also assume Yo and Yl to

be fixed. We reformulate (2.1) in a function space setting and

give the convergence result that is the essential tool for the

approximation of the parameter estimation problem (P). Several

preliminaries are required. For ql e Q1 the spaces H_k)(ql)

that were introduced in the previous section are endowed with the

inner product

<v,_C>ql = (qlD2V D2w)

In this way H_k)(ql)_ become Hilbert spaces and the norm ,v,_l_ :

<v,V>ql is equivalent to the usual H2-norm on H 2(k) ;

moreover this equivalence is uniform as ql varies in bounded

subsets of Q_ for details see [ 7 , Theorem 1.8], for example.
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Further we introduce the sets

H_I ) : {v e H4 : V(O) : v"(O) : v(1) : V"(1) : O} ,

H_2 ) : {v e H4 : v(O) : v'(O) : v(1) : v'(1) : O) ,

H 4 v'"(
H(3 ) : {v e : v(O) : v'(O) : v"(1) : I) : O)

Let Y be the space H° endowed with the weighted inner product

-1
(v,W)y : (ql v,w) ,

with ql E QI and define closed linear operators C(ql) from

H° to Y by

dom C(ql) = H 2(k) '

C(ql)v = qlD2V

Note that <v,W>ql (C(ql)v , C(ql)w) Y for v,w E H k) and that

(2.2) IC(ql)vl Y a k min ql(x)Iv,
x£[O,l] H2 '

for all v E H_k ) and a constant k independent of ql and v.

Lemma 2.1 The adjoint C*• (k)(ql) of C(q I) mapping from Y to

H° is given by



dom C(1)(ql) : {v E H2 : v(O) : v(1): O} ,

dom C_2)(ql) : H2 ,

dom C_3)(ql ) = {v'E H2 : v(1) = v'(1) = O} ,

and

C*
(k)(ql)v = m2v

Proof. This technical result follows, with minor modifications

due to the weighted H°-norm of Y, from the calculations in [11,

pg. 169-171].

Lemma 2 2 Let A(k)(ql) : C*• • (k)(ql)C(ql) Then A(k)(ql) is

selfadjoint and strictly positive in H° and dom A(k)(ql) = H_k )

is a core for C(ql )

Proof. By von Neumann's theorem [II, pg. 275], A(k)(ql) is

selfadjoint and dom A(k)(ql) is a core for C(ql) The

remaining assertions can easily be checked.

Corollary 2.1. The inclusions of H_k) in H_k ) (in the H_k)-norm)

and of H_k) in H° are dense.

Proof. Recall that by the definition of a core, the set

{(v,C(ql)v) : v E H_k )} is dense in the graph of C(q I) For

each (v,C(ql)v) with v E H_k ) there exists a sequence

vn E H_k ) with vn - v and C(ql)v n - C(ql)v in H°. Since

the H_k)-norm and the graph norm of C(q_) are equivalent, H_k )



is dense in H2(k) Finally, H k) is clearly dense in H° and

the claim follows.

Next we define for q2 E Q2 a family of operators A(q 2) by

dom A(q 2) = H_k ) and

A(k)(q2)v = D2(q2D2v)

To write (2.1) as a system of first order equations, we introduce

the Hilbert spaces

HO: H k)(ql) ×

with the inner product denoted by (-,-)_ In the notation of M

as well as with other symbols We now adapt the convention that

contents permitting the indices k and q maybedropped. For q E Q

let 4_(k)(q) be given by dom _(k)(q) : H_k)x H_k ) and define

( 0 I 1%(k)(q) : _A(k)(ql ) -A(k)(q 2)

We shall need the fol-lowing technical lemma.

Lemma 2.3. For each ql E QI there exists a constant K such

that

IA(ql)l a KIVlH4 ,

for all v E H 4
(k) If, moreover, ql varies in a bounded (with



i0

respect to the H2-norm) subset of Q1 then K is independent of ql"

Remark 2.1. In this lemma the requirement ql E H2 is needed

in an essential way.

Proof of Lemma 2.3. The proof of such an inequality is fairly

standard and we shall therefore only sketch it. Since

IA(ql)v! _ Kllvl for some constant KI depending only on lqllC

it suffices to show that IA(ql)Vl a K21D4vl where K2 satisfies

the specified properties. We have

21D4v 2 qlD4Vl2 - ID2qlD2V + 2DqlDS_a I _ I = IA(ql)Vl 2 12

I

2 I (qlD4V)(D2qlD2V + 2DqlD3V)dx
o

For any E > 0 we find

I

I : 2 I lqlD4vlID2qlD2v+ 2DqlD3Vldx
o

I I

21qI,HI( I ,D4vl ID2qlD2V,dx + 2 I ,Dql, ID3v,dx)

o 2 o 12
lql HilqllH2 2 2

21qllHl(2cID4vl2 + iD2vl + iD3vl )4E L_ 2E

Using a basic estimate [ 17, pg.18] we have for any O < _I < 1

and an appropriately defined constant _ independend of ql:

[2cID4vl2 + klqI E-l(s_21vl2 + EIlD4vI2)]I S 21qllHl IH2



In a similar way we find that

II = ID2qlD2V+ 2DqlDSVl2 _ lq112_(E121vl+ EIlD4vl)H2

with _ independent of q1" Those two estimates are used in (2.5)

and for appropriately chosen constants E and El we conclude

that IA(ql)vl Z K21D4vl This ends the proof.

Proposition 2.1. For q E Q the operator _(k)(q) is densely

defined and dissipative. Its closure _-k(q) is maximal dissipative

and generates a Co-contraction semigroup T(t;q) on X.

Proof. By Corollary 2.1 _(k)(q) is densely defined.

Dissipativity of $,(k)(q) is easily verified. We note that

for real k > 0 and k sufficiently small, (k-_-(k)(q_(H_k)X H_k ))

is dense in H_k)× H_k). In fact, for all (a,b) E H H_k ) we

u a) is equivalent to v = ku-a andfind that (k-A'(k)(q)) (v) : (b

(2.4) (k2+A(ql))u : -kA(q2)u + f ,

with f = ka + A(q2)a + b e H° . Let (k2+A(ql))u = w Then (2.4)

becomes

(2.5) w = -kA(qR)(k2+A(ql))-lw + f ,

or w = -kA(q2)A(ql)-IA(ql)(k2+A(ql))-lw + f . We solve for w E HO

in-(2.5). Note the A(ql)(k2+A(qh))-I is a bounded operator in H°

uniformly in k > O, and by Lemma _.5 A(q2)A(ql)-I is a bounded

operator as well. Consequently a fixed point argument guarantees
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the existence of a solution w E H° of (2.5) for some k°

sufficiently small. We put u = (k_+A(ql))-lw E H_k ) and the

required density of the range of (ko-_-(k)(q)) is shown.

Now the dissipative operator _(k)(q) admits a closure _(k)(q)

[12, pg. 86]. Moreover the range of (ko-_(k)(q)) is necessarily

closed in X [12, pg. 86]; but it is also dense and so it coincides

with X. This implies that the closure _(k)(q) of _-(k)(q) is

a maximal dissipative operator and that it generates the semi-

group T(t;q) on _.

Remark 2.2. If q2 : 0 , then dom _(k)(q) : H_k ) x H#k) and

the action of _-(k)(q) coincides with that of A-k(q) Moreover

_(k)(q) is skew adjoint in this case, as can be seen by employing

yon Neumann's theorem [II], for example. - For arbitrary q E Q

it is simple to verify that dom _(k)(q)_ H_k ) × H_k ) and that

U a

<_(k)(q)(v),(b)> K = <v,a>ql (qlD2u,D2b) - (q2D2v,D2b)

every (a,b) E H2k)_ x H2k)
holds for

Recall that for z e dom _(k) we have

d T(t;q)z : _( (q)T(t;q)z , for t > 0(2.6) d--t k)

This equation is formally equivalent to (2.1) with T(t;q)(yo,Yl) =

(Y,Yt) •
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We proceed to describe an operator theoretic form of a Galerkin

approximation to (2.1). Let XN be a sequence of finite

dimensional subspaces of H_k ) and denote by XN ( No X1 ) the

space XN endowed with the H°-(H_k)(ql)@ topology. Note that XN

depends on k as well. Further we introduce the orthogonal

projections pN H° - XN and N _ No : o PI : H k)(ql) - X1 We put

xN N XN KN= X 1 x and define _N : K - byo

O' pN
o

N and _NWhenever the dependence of P1 on q is relevant we
N

write Pl(ql ) and @N(q)

For ql E Q1 let

cN(ql ) : C(ql)iXN

Clearly cN(q I) E _(X_,Y) and the adjoint cN(q I_ satisfies

(cN(ql)u,v)Y = (u,cN(ql)*v)Ho for all u E XN• o ' v EY

We next define

AN(ql) : £N(ql)*cN(ql)

and note that AN(q I) E L(X N) and

(2.7) (AN(ql)u,v) : (cN(ql)u,cN(ql)V)y : (C(ql)U,C(ql)V)y ,

for all u,v E XN Here we defined the approximatin5 operators

AN(q I) on XN only, but there is an obvious extension to all
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of H° given by ANext(ql ) = (C(ql)pN)*o-C(ql)P_ For q2 E Q2

define operators AN(q 2) : xN.x N by

(AN(q2)u,v) : (q2D2u,D2v) for all u,v e XN

Finally we introduce the operator _k)(q) e Z(X N) approximating

_(k)(q) :

( 0 )_k)(q) : _ANk)(ql ) -A_k)(q 2) "

The Galerkin approximation to (2.1) can now be introduced as

_t zN(t;q) = J_[k) (q)zN(t;q) ,

(2.8)

zN(o;q) = _N(yo,Yl)

Note that (2.8) is an equation in the finite dimensional space XN.

Lemma 2.4. The operators _k)(q) , q E Q , generate contraction

semigroups TN(t;q) on _N for each N. We have TN(t;q)pN(yo,Yl) =

zN(t;q)

Proof. From the construction of _k)(q) it follows that

(_k)(q)z,z) K _ 0 for al! z E _N . This and the finite dimen-

sionality of KN imply the result, see [12, pg. 90].
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Theorem 2.1. Let qN and qO E Q , N:I,2..., and assume that

N oPNo " I strongly in H° and Pl(ql ) - I strongly in H k)(q_)

ooIf moreover (q ,q ) - (ql,q2) weakly in H2 × , then

TN(t;qN)_N(qN)z _ T(t;q°)z in X ,

uniformly in t as t varies in bounded subsets of [0,-) and for

every z E

The approximation of the general equation (I.I) - (1.3) will

follow trivially from this theorem, see Corollary 2.1 below.

Before we give the proof of Theorem 2.1 we establish some

technical lemmas.

Remark 2.3. Strictly speaking the above convergence result is

not stated precisely, since the spaces in which the operators are

defined vary topologically. A more precise statement would be

given by

ITN(t;qN)_N(qN)_Nz - _NT(t;q°)zl _ 0 as N -
• R(qN)

unifonmly in t in bounded intervals of [0,_). Here gN : x(qO) . x(qN)

is the canonical isomorphism. Since the set {Iq_lC_ N:1,2,...}

is bounded, the spaces X(q N) are topologically equivalent

and no confusion should arise by the abbreviated statement of

the theorem.

Lemma 2.5. For q E Q , the resolvent set of _(k)(q) as well as

that of _k)(q) contains O.
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Proof. Let (u,v) E XN such that _N(q)(u,v) = (0,0) Then

x

<_N(q)(Uv),(y)> _ : 0 for all (x,y) e KN

This is equivalent to <v,X>ql - <u,y>ql (AN(q2)v,y) : 0 First
let y = 0 , and conclude that v = 0 Next putting x = 0 with y

arbitrary implies u = 0 and in particular 0 e p(AN(q)) .

Similarily, since 0 E p(A(ql)) it is simple to show that 0 is not

an eigenvalue of @e(q) and that the range of A_q) includes

H_k ) × H_k ) and is therefore dense in K. We will show that

_(q)-I i H_k ) x H_k ) is continuous (in X). Let (x,y) E

H k) x H k) Then (v) : _-l(q)( ) is equivalent to

(2.9) v : x and u = -A(ql)-l(y+A(q2)x)

We have

2 : (C(ql)A(ql)-ly,C(ql)A(ql)-ly)y: (A(ql)-ly,y)
(2.1o) IA(q. lql

const(ql)lyl2

Using [11, pg. 169] we find in a similar manner

(2.11) IA(ql)-lA(q2)xlql: IC(ql)A(ql)-lA(q2)xly= IC(ql)C(ql)-l(c*(ql))-lA(q2)xly

11__
: I(C*(ql))-ID2(q2D2X)Iy:q_l q2D2xl _ const (q)Ixlql
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The estimates (2.10), (2.11) together with (2.9) imply

l(U,V)l x _ KI(x,y)IM , for an appropriately defined constant

depending on q and indepent of (x,y) and the claim is verified.

Lemma 2.6. For q E Q and z E XN we have J_k)(q)-Iz :

PN_(k)(q)-Iz

luProof. Let z = (x,y) and define vN = _N(q)-Iz and

(vu) = _(q)-Iz We need to show that

(2.12) uN : pNu and vN =PoNv

For every N we have

( ()
and in particular vN = x . Next we use Remark 2.2 and find that

for every (a,b) E H_k) × H_k)

(2.13) _(q)(U),(_)> : <v,a>qI (qlD2u,D2b)- (q2D2v,D2b)= <x,a>ql + (y,b)

This implies v : x , so that the second equality in (2.12) is

satisfied. Since .0 e p(_(q)) the first equality in (2.12) will

verified, once we show that P_u is the (unique) solution of
be

AN(ql)uN = -AN(q2)x - y in XN In the following calculation

we use (2.13) with a = 0 and b e xN:
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- AN<q1) u,b) = .= = -<u,b>ql (y,b) (q2D2x,D2b)= (y,b) + (AN(q2)x,b).

Since b e XN is arbitrary this equality implies the result.

The convergence statement in the following lemma has to be inter-

preted in the sense explained in Remark 2.3.

Lemma 2.7. Let qN, qO • Q with qN . qO weakly in _. Then

_(k)(qN)-i qO)-i-@,(k)( strongly in K .

Proof. Let (x,y) • H_k )× H_k ) and define

uN -I x)u -I x) and vN = _(qN) (y(v) : #_(q) (y

Then v = vN : x , uN : -A(q_)-i(A(q_)x+y) and u : -A(q_)(A(q_)x+y).

From Lemma 2 3 we conclude that {IUNIH4 : N:I,2,...} is bounded.

Therefore there exists a subsequence of uN again denoted by uN ,

converging weakly in H 4 and strongly in H2 to an element z • H_k )

We have for every w • H2(k)

-(qND2uN,D2w) - (q2ND2x,D2w) = (y,w)

Taking the limit in this last inequality we get

-(q_D2z,D2w) - (q2D2x,D2w) = (y,w)

This implies z : u . The usual subsequence argument can be used

to show that the original sequence uN - u in H_k)(q1_.
Since
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(ll_-l(qN)ll---- : N:I,2,...) is uniformly bounded in N the
X(qN)

density of H_k ) x H_k ) in X.

L

result follows from

For the ease of the reader we state a version of the Trotter-Kato

approximation theorem that is readily applicable fo_ the proof

of Theorem 2.1.

Lemma 2.8. [19] Let qN E Q , qO E Q and assume that

l_N(qN)zl - Izl for every z E X . Then
X(q N) X(q ° )

(2.14) l_N(qN)T(t;q°)z - TN(t;qN)pN(qN)zl - 0
M(qN)

for every z e X if and only if there exists a k E n p(_k)(qN)) N

p(_(k)(q°)) such that

(2.15) l(k-_k)(qN))-l@N(qN)z - TN(qN)(k-_(k)(q°))-Izl - 0
X(qN)

for every z E X and

(2.16) IITN(t;qN)II _ Meet
X(qN)

for positive constants M and e independent of N.

Again, a remark analogous to Remark 2.3 has to be made; (2.14)

for example, should read

l£N(qN)@NT(t;q°)z- TN(t;qN)_N(qN)_Nzl - 0
X(qN)
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N
Proof of Theorem 2.1. First we note that weak convergence of ql

N is bounded in H 2 and therefore the I'Iimplies that ql N-norm
q_

is uniformly in N equivalent to the H2-norm. Since

N N N o N o

IPl(ql)V-Vl N _ IP1(ql)v-vl N _ K31Pl(ql)v-vl o
ql ql ql

"3

for some constant K3 independent of N and v E H_k). , it follows

that
IP_(q_)v-vlN_ _ -0 as N _ _ and

ql

(2.17) IpN(qN)z-zl - 0 as N - -, for every z E
X(q ° )

Moreover, for v e H_k ) we find

o o

N N ql
I,F_I(qN)v, N_ ,v, N! = liP_l(qlN)v, N - ,qlN v, NI < ,Pl(ql)v----_ v, N

ql qo ql ql ql ql ql

and this last term converges to 0 as N _

Therefore l_N(qN)zl - Izl for every z E X . To verify
x(qN) E(qO)

the convergence result we use the estimate

ITN(t;qN)_N(qN)z - T(t;q°)zlM
(2.18)

ITN(t;qN)_N(qN)z - _NT(t;q°)zlM + IFNT(t;q°)z - T(t;q°)zl X

The set {T(t;q °) : t e [O,T]} is compact for every T > 0 and

therefore (2.17) implies that the second term on the right hand
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side of (2.18) converges to zero uniformly in t on bounded

intervals. To show convergence of the first term on the right

hand side of (2.18) we use Lemma 2.8. In view of the previous

calculations it suffices to verify (2.15) with X = 0 . By

Lemma 2.5 and 2.6 we have for z E

I_N(qN)-I_N(qN)z _ _N(qN)_(q°)-Izl
K(q N)

(2.19) IyN(qN)_(qN)-_N(qN)z- TN(qN)_(qN)-Izl +
_(qN)

lpN(qN)_(qN)-Iz_ pN(qN)_,<q°)-Izl
X(qN)

This last term converges to 0 by Lemma 2.7. Since

{II_N(qN)_(qN)-lll : N:1,2,...} is bounded, (2.17) implies conver-

gence to 0 of the first term on the right hand side of (2.19)

and the result is proved.

We now return to equation (1.1) - (I.3) and define operator an

&_k) (q) by dom _k) (q) = dom _(k) (q) and

k)(q) : _(k)(q) + B(q)

where

B(q) : -q5

Since _k) is a beunded perturbation of _-(k)(q) it generates

a semigroup, denoted by TB(t;q) for every q e Q Further we

•N.B. . _N
define approximating operators ,(k)tq ) on by
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.N,B 4(2.20) _-(k)(q) = k)(q ) + _NB ,

so that the Galerkin approximations to (1.1) - (1.3) become

dzN(t;q) .N,B: _-(k)(q)zN(t;q) ,

(2.21)

zN(o;q) = _N(yo,y I)

The solution to (2.21) is given by the semigroup T_(t;q)
.N,B,

generated by _(k)tq)

Corollary 2.1. Let qN, qO e Q with qN . qO weakly in _,

N o
and assume that PNo " I strongly in H° and Pl(ql_..

I strongly

in H,2k_)(q°±) . Then

N N N N TB o
TB(t;q )_N(qN)(yo,y 1) - (t;q)(yo,Yl) in _ ,

uniformly in t in bounded subsets of [0,_).

Proof. To verify the claim we employ the triangle inequality:

N N N y_) _ TBITB(t;q )pN(qN)(y o, (t;q°)(yo,Yl)l_

N N T_(t +iT_(t;qN)_N(qN)(yo,Yl) - ;qN)_N(qN)(yo,Yl)iN

iT_(t;qN)_N(qN)(yo,Yl) - _B_;q°)(yo,Yl)l K

The operator norms II_N(qN)B(qN)II are uniformly bounded in N.
X(q N)
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Consequently (see e.g. [15, Theorem 5.I.I]) IIT_(t;qN)_N(qN)II_

is bounded uniformly in N and t in bounded intervals of [0,-).

This implies convergence to zero of the first term on the right

hand side of (2.22). As for the second, we note that for z E X

i_N(qN)B(qN)z- BN(q°)_N(qN)zl _ iB(qN)z- B(q°)_N(qN)zl
X(qN) X(qN)

< iB(qN)z- B(q°)zl + tB(q°)z- B(q°)pN(qN)zl l (qN) xcq )

and these two terms converge to zero by assumption. A simple

perturbation result as stated in [19] implies the convergence

of the last term in (2.22) and the corollary is verified.

Remark 2.4. In [_9] the author applies the Trotter-Kato theorem

to demonstrate the convergence of Galerkin and finite element

approximations to second order hyperbolic systems. Our analysis

here is similar, but more complicated due to the parameter

dependence of the operators (and spaces) and the perturbation

D2(q2D2yt) , which is of maximal order. The main step interm

the proof of Theorem 2.1, the convergence of the resolvents, is

reduced to convergence of the projections and the results of

Lemma 2.6 and 2.7

Remark 2.5. Let us briefly compare the convergence result of this

papar to the results of [2,5,7]. The main difference is given by

the fact _hat Banks and Crowley in their work take

the finite dimensional subspaces as subsets of the domain of the
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generator. This generally requires more smoothness of the

elements in the subspace than our approach does and in addition

more boundary conditions have to be met, (compare H_k)_ to H_k)_
).

However the original operator _(k)(q) can be factored so that

this smoothness requirement can be relaxed, see [2,7]. In that

case parameter dependent convergence was only shown for

q2 = q3 = 0 in [7]. Furthermore in their application of the

Trotter-Kato theorem, Banks and Crowley show convergence of the

approximating generators on dense subsets of X, which implies

convergence of the resolvents, whereas we show convergence of

the resolvents directly. This allows for the generality that

ql ' q need only to converge weakly as opposed to strong con-

vergence of q_ , q_ required in [3]. As a consequence, the

usual compactness assumption on Q in parameter estimation problems

(see (HI) below) is fairly weak in the present case.

Remark 2.6. We have chosen three specific boundary conditions

here. Other "natural" boundary conditions, as for example

combining a simply supported beam with a clamped end, can be

treated by the technique that we used here, provided that it is

guaranteed that ¶Cv¶ defines a norm on dom C which is equivalent

to the H2-norm and that the result of Lemma 2.3 holds. For a

useful discussion of various boundary conditions see [8], for

example.
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5- Approximation of the Parameter Estimation Problem.

We return to the optimization problem (P) of Section I. It will

be convenient to introduce the notation

(u(t;q), v(t;q)) : TB(t;q)z , (uN(t;q), vN(t;q)) : T_(t;q)yNz ,

for z : (yo,yl) e _ • The abstract formulation of (P) is given by

(AP) minimize .[.19(ti,x _)_ - u(ti,xj;q)l 2 as q varies in Q
l,J

and a sequence of optimization problems which will be shown to

approximate (AP) is defined by

(AP)N minimize .[.19(ti,x j) -uN(ti,xj;q)l 2 as q varies in Q .
1,J

As in Section 2 we take XN _ H_k ) and xN : xIN × XoN

The following hypotheses will be used:

(HI) Q is a compact subset of Q (in the norm of

2 2 × L_ x L_ × H_k ) x H°) ,Hweak x Hweak

(H2) PNo " I strongly in H° and P_(ql ) - I strongly in

H_k ) for every ql contained in the first component of Q.

For the fit-to-data criteria in (AP) and (AP) N we also use the

notation
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J(q) : .[.l_(ti,xj) - u(ti,xj;q)l 2l,J

and

jN(q) = .[.l_(ti'xj)_ uN(ti'xj;q)12l,J

Lemma 3.1. Let (HI) hold. Then _p)N has a solution _N E Q for

each N.

Proof. From (2.21) and Gronwall's lemma it follows that qn . qO

in Q implies TN'B(t,qn) z - TN'B(t;q°)z in X and consequently

uN(t;q n) . uN(t;q °) in q uniformly in bounded intervals of t.

The result then follows from the special form of the fit-to-data

criterion and (HI).

Below Np and Mp denote subsequences of N that tend to - as p - - .

Theorem 3.1. Assume that (HI) and (H2) hold and let q* E Q be a

Np * *
limit point of {_N} , so that lim q = q is Q Then q is ap--

solution of (AP) and

N N o_ _p * . .(3.1) T P(t,q P)PN(9 ,Y )- T(t;q )(yo,yl) uniformly in

bounded intervals of [0,-),

and .

(3.2) jNp(Np) . J(q*)

Proof. Compactness of Q implies the existence of a subsequence

with the specified properties. For every p we have

Np Np
(3.3) J (q ) _<jNp(q) •
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for every q E Q We use Corollary 2.1 and take the limit on

both sides of (3.3). This implies J(q*) _ J(q) for all q E Q .

The remaining assertions follow trivially from Corollary 2.1

Remark 3.1. It is easily seen that a more general fit to data

criterion could be employed as well. In fact, let

J(q) = I(u(.;q),v(,;q),y) and jN(q) = i(uN(.;q),vN(.;q),_)

where I(-,_):C(O,T;K) - R is continuous and _ denotes some

appropriate measurements. Then the results of Theorem 3.1 remain

unchanged.

Remark 3.2. The numerically inclined reader might ask why we

did not attempt to demonstrate any rate of convergence, provided

the projections converge to the identity with a certain rate.

Certainly the methods of section 2 allow to demonstrate a rate

of convergence of the approximating semigroups to the semigroup

TB(t;q) on X, uniformly in q e Q It seems %o be difficult,

however, to obtain any estimate on the rate of convergence of

@

the solutions _N of (AP)N to q Such a rate was only proved

in a special case of an elliptic equation so far

[9]. The technique used in [9] does not generalize to other types

of equations and moreover it requires that every solution of the

infinite dimensional optimization problem satisfies a certain

regularity property. *

Remark 3.3. If the set Q in Theorem 3.1 is finite dimensional

-K. Kunisch and L. W. White have studied this regularity assumption
recently in a forthcoming paper "Regularity of the diffusion coefficient
in parameter estimation problems.'.
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(e.g. a set of cubic polynomials with unknown coefficients as

parameters), then (AP)N is a finite dimensional problem. If Q

itself is infinite dimensional, then a further approximation

of the elements in Q is required. We shall not pursue this

problem since the techniques and difficulties that arise

do not differ es_entially from those for parabolic problems of

second order which have been investigated in some detail in [4,13].

For a result on the approximation of variable, coefficients in

beam equations see [3].

4. The penalized fit-to-data criterion.

The set Q in Theorem 5.1 is constrained in two distinct ways.

First there are pointwise constraints given in QI,Q2 which

guarantee wellposedness of the equation (I.I) _ (1.3) and

secondly there are constraints inherent in the compactness

assumption that give existence of solutions of (AP) and (AP)N.

In our numerical implementation of the problems (AP)N, however,

we use unconstrained optimization algorithms because they are

more simple to handle, - and because they work. To parallel &t

least partially what is done in practice we briefly discuss

the use of a simple penalization method. Another aspect calls

for the use of a penalization method as well: In practical

examples it is likely that a priori knowledge of the system

that is modelled leads us to expect the unknown parameter to
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lie within certain bounds and this knowledge should be used in

the fit-to-data criterion. In all the numerical tests that we

carried out a deliberate use of'a penalty term decreased the

cost of the calculations. For a discussion of the penalty method

for parameter estimation problems in second order parabolic

equations we refer to [14].

To simplify the presentation we assume the parameters (q2,q3,q4,

yo,yl) to be known and restrict our attention to estimating ql"

We agree to drop the index "I" henceforth so that q = ql For y > a

we introduce the set

(4.1) QI = {q e H2 : lqlH2 _ _ }

Note that Q1 N Q1 is nonempty closed and convex and therefore

a weakly closed subset of H2. Since Q1 a Q1 is also bounded,

this set is weakly compact in H2 and Theorem 3.1 is applicable,

provided (H2) holds. We need the following hypothesis:

(HS) The functional _ : H2 - _+ is weakly lower semicontinuous

and satisfies _(q) = O if and only if q E Q1 and

_(q) - - if lqIH2 -

In addition to (AP) and (AP)N we introduce the problems

(APP) M minimize J(q) + M_(q) as q varies in Q1 '

and

(APP) M'N minimize jN(q) + M@(q) as q varies £n Q1



3O

Lemma 4.1. Let (H3) hold. Then (APP)M and (APP)M'N have solutions

qM and _N in QI" The set {IqNIH2 :N=I,...; M=I,...} is bounded.

Proof. Since _ is radially unbounded, the existence of q_ and qM

trivially follows. Moreover for every q E Q1 A Q1 we have

 4.2) o . jNCq.

But {jN(q) : N:I,...} is bounded by Theorem 5.I and therefore

{_(q_) : N=I,...; M=I,...} is bounded. Using (H3) this implies

the claim.

Theorem 4.1. Assume that (H2) and (HS) hold and let q be a weak

_Np . H2limit point of {_N} so that qM " q weakly in with
_ * P

Np - _, Mp Then q E Q1 D Q1 is a solution of (AP) and

N Np Np .
T P(t;q M )_ (Yo,yl) - T(t;q )(yo,Yl) in _ ,P

uniformly in bounded inter_als of [0,-), and

N _Np N
J P(qM ) + Mp_(qMP) " J(q*) as p - -P P

Proof. The short proof is quite standard but it is included here

for the sake of completeness. From (4.2) it follows that

_Np _Np
lim _(qM ) = 0 Since 0 S ¢(q*) _ lim inf ¢(qM ) = 0 we have
P'_ p p-_ p

q e Q1 A QI The following inequality holds for each q • _I A Q1
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N _Np N Np N _ jNp(q) + : JN P(q)
(4.3) J P(qM ) s J P(qM ) + Mp(qMP) Mp(q)

p P P

Taking the limit p - - in (4.3) and using Theorem 3.I we

arrive at

(4.4) j(q*) _ J(q) fo_ every q E Q1 n ql

This implies that q* is a solution of (AP). The final assertion
.

in the statement of the theorem follows from (4.3) with q = q

5. An Example.

In this section we present numerical data for the approximation

of unknown.coefficients, where the exact solution of the

differential equation is known. The subspaces XN & H_k ) are

chosen as cubic spline functions, see [16, Chapter 4] with the

basis reduced by two degrees of freedom for k=l or 3 (four

degrees for k=2) to account for the boundary conditions. By

using elementary estimates on spline interpolation, it is simpie

to show that (H2) holds for boundary conditions of type k=1,2 or 3.

Once a basis for XN is chosen a matrix representation for the

ordinary differential equation corresponding to (2.21) is readily

derived. Depending on the parameters, this ordinary differential

equation may be stiff or also highly oscillatory. In the first
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case the NAG-impler.en%aricn of the Gear al_orithm was used to

solve the ordinary differential equation, in the latter we

either used the Gear algorithm or the NAG-implementation of

the Adams-Bashford algorithm. The minimization problem (AP)N

was solved by the IMSL-implementation of the Levenberg-Marquarat

algorithm. Some experience has to be obtained in tuning the

parameters of the Levenverg-Marquardt algorithm as applied to

the present problem. We had very good success using a three-

s_ep procedure: from one step to the next the convergence

criteria for the Levenberg-Marquardt algorithm as well as the

tolerance for the error test determining the variable stepsize

and order of the Gear (or Adams-Bashford) algorithm are sharpened,

and the approximated parameters of the previous step are used

as start up values in the succeeding one. All computations were

carried out in double precision in FORTRAN on the UNIVAC Ii00/81

computer at the computing center of the Technical University of

Graz. - Examples similar to the one presented here involving

quintic and cubic spline approximations are described in [2,5,7].

As mentioned in the introduction, cubic spline approximation

could be, used in [2,3,7] only after transforming (1.1) - (1.3)

to a system of three equations. In this case the structure of

the approximating system of the ordinary differential equations

is different from ours.

In our numerical experiments we took synthetic data as our

measurements 9(ti,xj ) For the example shown below the exact

value of the analytical solution was used, in all other examples

the data were generated by a finite difference scheme.
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We now turn to the specific equation

Ytt = -ql D4y - q2D4yt '

y(O,x) = q.6sinnx ,
(5.1)

Yt(O,x) = O ,

boundary conditions of type I ,

where ql,q2 and q6 are taken to be constants.

The solution of (5.1) for t Z 0 and 0 _ x S I is given by

(5.2a) u(t,x) : exp(-alt){C_exp(a2t) + Cl_exp(-a2t)}sinux,

if A : n4q 2 - 4ql > O ,

2(5.2b) u(t,x) : exp(-alt){C sin_t + C2cos a2t}sinux ,

if A < 0 , and

(5.2c) u(t,x) : {C_exp(-a2t) + C_t exp(-alt)}sinux ,

if a : 0 Here aI : (u4q2)/2 , a 2 : (u4V-_)/2 ,

1 2
C1 = q6(a1+a2.)/(2a2) , C_ = q6(a2-al)/2a2) , C1 = alq6/a 2 ,

2
C2 : q6 : C_ and C_ : q6(a1-1)

In the numerical experiments the "correct" value of the parameter

vector was taken to be

(_I,_2,_6) = (.I,.I,2.) .
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Each solution of (AP)N requires the approximate solution of

(5.1) via (2.21) many times (see "function evaluations" below).

It is therefore important that the algorithm for the approximation

of the partial differential equation is a powerful one. We

compared the numerical data given by the implementation of (2.21)

with XN taken as cubic spline functions as mentioned above,

to a finite difference scheme which is constructed by generalizing

an explicit scheme discussed in [1, pg. 280]. For (5.1) the

projection-spline-scheme was superior With regards to accuracy

as well as computing time. (The experience with all other

numerical examples showed superiority of the projection - ever

the finite difference scheme as well.)

In the tables below we show the relative error in percent of

the observed data, which is defined as

relative error in percent lexact value - approximation I: exact value I00

Table I shows the relative error (in percent) of the solution

calculated by a finite difference technique in the time interval

[0,2]." We took an equidistant grid of [0,I] of grid length N-I,

and a grid along the t-axis of grid size 2J-I.The numerical solution is

given at (t,x) = (2,.5) where the relative error in percent

EN(2.,.5) reached its maximum.
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Table I. Relative error i.p. of state at (2.,.5) (finite difference).

N/J 1oo Iooo 2000 hooo CPU-time for J=hooo

h 2.759 1.716 1.659 1.631 1.o74sec.
8 1.535 o.4933 0.4366 o.4082 2.563

16 1.249 o.2o71 o.15o4 o.1221 5.686
32 1.179 o.1367 o.o8oo o.05166 11.929

64 1.161 o.1192 0.06247 o.o341h 24.417

128 1.157 o.1148 0.058o9 0.02976 49.394

Table 2 gives the data for the same forward problem calculated

by means of the projection method with cubic spline subspaces,

using the Gear algorithm to solve the ordinary differential

equations and with N defined as above. The data are significantly

better. The rate of convergence seems to be like N-4 in this

example.

Table 2. Relative error i.p. of the state at (2.,.5) (cubic splines).

N EN(2_.5) maximum of absoluteerror CPU-time

h .8455 × 1o-2 .7885× lo-4 1.998 sec.

8 .4959 x Io-3 .4616 x Io-5 4.263

16 .3o17 × lo-4 .2827 × Io-6 Io.252

Next we show some results on the approximation of the "unknown"

parameter values (_i,_2,_6) The Levenberg-Marquardt minimization
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(0,0,0) for every N, although in practical examples one would

generally take the solution of (AP) N-1 as the start-up value

for (AP)N.

Table 3 contains the relative error in percent when each of the

parameters is searched for separately.

Table 5. Relative error i.p. for q1' q2' q3 separately.

E4 E8 E 16 CPU-time for N=4,16

ql .17 x 1o.2 .78 x 10-4 .27 × 10-4 1o.6, 60.7 sec

q_2 .11 x lo-2 .5_ x lo-4 .2h x lo -_ 11.4, 65.8

q6 .24 x Io-2 .18 x Io-3 .92 x Io-4 8.8, 5o.1

For each value of N the total number of iteration for the "three

step" Levenberg-Marquardt algorithm was 7 for q1" 9 or I0 for q2

and 5 for q6" A total of 19 function evaluations was necessary

for the estimation of ql , 22 for q2 and 15 for q6" When pairs of

parameter values were searched simultaneously the results were

not significantly different and the calculations were roughly

twice as costly. Finally we give the data, when (ql,q2,q6) were

searched simultaneously. Again the start-up value is (0,0,0).
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Table 4. Relative error i.p. for (ql,q2,q6) simultaneously.

Eh E8 E 16 CPU-time for

ql .57 x 1o-I .31 x lo-2 .11 x 1o-2 N=h: 36.692

q2 .57 x io-I .31 x io-2 .11 x io-2 N=8:5o.6h9

q6 .26 x io-h .hox lo-h .52 x lo-h N=16: 137.ool

Depending on N there were 52-59 function evaluations necessary

and 16-17 iterations of the Levenberg-Marquardt algorithm. When

the start-up values in the three parameter search were taken as

large as (.5,.5,5.) the algorithm was shown to be still

convergent.

We also made experiments to study the effect of noise-corrupted

observations. Table 5 shows the relative error in percent of

the estimated parameters for N=4, when Gaussian noise with

standard deviation e is added to the exact solution 9(ti,x j)

For N=8 or 16 the relative error was not significantly different

from that for N=4. Moreover, comparing the relative error of the

estimated parameters under exact measurements with those of the

corrupted ones, we observe that for a=.Oi the relative error in

percent increases roughly speaking hundred times and for _=.1

about thousand times. Rows 1-3 give the relative errors in percent

when the parameters are estimated separately, rows 4-9, when

they are searched for in pairs and rows 10-12 show the results

for simultaneous estimation of (ql,q2,q6). A cross in the table

indicates that the results were obviously worthless.
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Table 5. Relative error i.p. for N=4 and n0ise-corrupted data.

0 = .00 0 = .01 0 = .1

-2
ql .17 x lo .12 2._

-2
q2 .11 x lo .12 2.8

q6 .2_ x lo -2 .27 1.6

ql .57 x 1o 1.1

q2 .57 x Io-I 1.1

ql .12 x lo -2 .2h 1,3

q6 .28 x 1o-2 .35 1.7

q2 .16 x Io-2 .20 1.9

q6 .28 x 1o-2 .33 .98

ql .57 x 1o-I _._ \/

q2 .57 x Io-I _.I

q6 .26 x 1o-_ .55

Finally we give an example in which the penalty method was used

effectively. Again we consider (5.1) and the "observations" are

calculated from (5.2). In this case we take as initial guess

(.3,0,0). This leads to a highly oscillatory behaviour of the

trajectories of the differential equation and requires to

decrease the tolerance in the Gear algorithm to 10 -5 With

this small value for the tolerance the three-level Levenberg-

Marquardt became ineffective and in Table 6 we therefore show

the numerical data that were obtained after the first level.

The penalty function _ was taken to be _ = _I + _2 + _6 ' where
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I 0 for a _ ql _ b

¢1(qi) :
(ql-a) 2 for ql < a

(ql-b) 2 for ql > b

with 42 and 46 defined analoguously. The "correct value"

for the parameter vector is (_1,_2,_6) = (.1,.1,2) , as before.

Table 6. Optimal parameter and relative error i.p. for simultaneous

(ql,q2,q6)-search with use of penalty functional (N=4).

E4
optim.param, a b M CPU-time

ql - -

q2 _

q3 _

ql .Iooo49 .49 x Io-I Io-5 .35 too 23.9

q2 "1o0049 .49 x Io-I -.1 .2 1oo

q6 2.ooo153 .77 x Io-2 .o 2.5 Ioo

ql .Ioooih .14 x Io-I Io-5 .35 4oo 25.h

q2 .100014 .14 x 1o-I -.I .15 boo

q6 2.000074 .37 x lo-2 .o 2.5 4oo
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The numerical results of Table 6 were obtained with the scaling

factor (modifying the Marquardt parameter) set initially at the

same value (2.0) as in all other examples. In this case the

scheme without penalization term does not converge. Convergence

of the scheme without penalization can be obtained by taking

the scaling factor as small as 1.1; in this case the optimal

parameters do not differ essentially from those of Table 6 when

penalization is used. This and other examples demonstrate that

by using a penalty functional in the fit to data criterion some

robustness in the choice of the parameters in the Levenberg-

Marquardt algorith_ is gained.
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