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SECTION 1 

INTRODUCTION 

One way to lower the c o s t  of a i r c r a f t  and improve system r e l i a b i l -  

i t y  i s  t o  i n t e g r a t e  the  avionics  funct ions.  There is  p resen t ly  consid- 

e r a b l e  i n t e r e s t  i n  r ep lac ing  the mult iple  sensors  of a t y p i c a l  modern 

commercial a i r c r a f t  with a skewed a r r a y  of strapdown i n e r t i a l  navigat ion 

sensors .  Redundant computers are used t o  perform mult iple  funct ions such 

as f l i g h t  con t ro l ,  air-data processing, and strapdown navigation. N e t  

cost has been shown to be less than f o r  the c u r r e n t  non-integrated 

systems. The i n t e g r a t e d  avionics  approach depends upon redundancy t o  

achieve the required r e l i a b i l i t y .  Because f l i g h t  c o n t r o l ,  System reli-  

a b i l i t y  and s a f e t y  depend upon i n t e g r a t e d  avionics  r e l i a b i l i t y ,  thorough 

a n a l y s i s  of skewed sensor system r e l i a b i l i t y  is e s s e n t i a l .  

The p resen t  study w a s  undertaken within the  context  of t h i s  frame- 

work. It involved the eva lua t ion  and a n a l y s i s  of the Redundant Strapdown 

I n e r t i a l  Measurement Unit (RSDIMU) being developed and evaluated by the 

NASA Langley Research Center. The work w a s  conducted by The Charles  

S ta rk  Draper Laboratory, Inc. (CSDL) under NASA Contract NAS1-16887 

e n t i t l e d  the False Alarm/Rel iabi l i ty  Analyses f o r  a Separated Dual-Fail 

Operat ional  Redundant Strapdown I n e r t i a l  Measurement Unit. It  is  a 

follow-on t o  previous e f f o r t s  descr ibed i n  References 1 and 2. The goa l  

of t he  i n i t i a l  e f f o r t  w a s  t o  assess the  f e a s i b i l i t y  of performing f a i l u r e  

d e t e c t i o n  and i s o l a t i o n  (ED11 f o r  the RSDIMU i n  an a i r  t r a n s p o r t  environ- 

ment, develop and eva lua te  FDI algorithms for the  RSDIMU, and analyze ED1 

system performance. In Reference 2, a methodology f o r  q u a n t i t a t i v e l y  

analyzing the r e l i a b i l i t y  of redundant avionics  systems i n  general  and 
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t he  dual ,  separated R S D I M U  system i n  p a r t i c u l a r  is developed and appl ied  

using a Markov model r e l i a b i l i t y  ana lys i s  t oo l .  The r e s u l t s  of the  

parametr ic  s tudy of s i g n i f i c a n t  instrument  and FDI system va r i ab le s  are 

presented and discussed. 

The de tec t ion  and i s o l a t i o n  of f a i l u r e s  of the  dual, separa ted  

RSDIMU is accomplished by comparing a func t ion  of the sensor outputs  wi th  

a threshold.  The sepa ra t ion  of the  RSDIMU i n t o  two separated c l u s t e r s  

severe ly  complicates the s e l e c t i o n  of the  thresholds .  The incremental  

s t r u c t u r a l  mode and accelerometer  l eve r  arm e f f e c t s  between the  loca t ions  

of the  t w o  instrument  c lusters  must be taken i n t o  account. In  Reference 

2, a technique is developed and analyzed f o r  genera t ing  the thresholds  

f o r  a dual ,  separa ted  RSDIMU taking  i n t o  account f a c t o r s  such as the 

sensor errors, the  a i r c r a f t  dynamic environment, accelerometer l eve r  arm 

e f f e c t s  and vehic le  s t r u c t u r a l  modes. 

The p resen t  e f f o r t  was conducted to  f u r t h e r  develop and r e f i n e  the  

t e c h n i c a l  knowledge and s k i l l s  needed t o  make redundant strapdown I M U s  a 

v i ab le  component of t h e  a i r c r a f t  av ionics  system inventory.  Two major 

e f f o r t s  were undertaken. The f i r s t  w a s  an Aeroelastic Ef fec t s  Analysis ,  

t he  major goal  of which w a s  to  develop a methodology to  determine the  

e f f e c t s  of a i r c r a f t  a e r o e l a s t i c i t y  on gyro and accelerometer F D I  system 

c a p a b i l i t y .  P a r t i c u l a r  emphasis w a s  placed on determining the  e f f e c t s  

and s e n s i t i v i t y  of FDI system c a p a b i l i t y  t o  the mounting loca t ion  of a 

phys ica l ly  separa ted  RSDIMU. Another of CSDL's goals  with regard t o  t h i s  

s u b j e c t  was t o  develop and eva lua te  a technique f o r  genera t ing  F D I  system 

thresholds  which account f o r  a e r o e l a s t i c  e f f e c t s  and which are v a l i d  f o r  

mul t ip le ,  nonconcurrent f a i l u r e s .  CSDL's d e t e r m i n i s t i c  d i g i t a l  a i r c r a f t  

s imula t ion  w a s  used t o  assess the  impact of the aeroelastic e f f e c t s  on 

the c a p a b i l i t y  of the FDI  system and eva lua te  the  e f f e c t i v e n e s s  of t he  

method developed for genera t ing  the  dynamic thresholds .  

CSDL a l s o  inves t iga t ed  the  concept of F a i l u r e  Decision Function 

Compensation. The goal  of t h i s  task w a s  t o  account f o r  the  vehic le  

environment by compensating the  f a i l u r e  dec is ion  func t ion  by the  p a r i t y  

2 



r e s i d u a l  error covariance (Reference 1.  The major i n t e n t  is t o  assess 

the f e a s i b i l i t y  of t h i s  approach and compare it w i t h  the dynamic 

threshold  compensation method. The method t o  be inves t iga t ed  uses the 

Generalized Likelihood T e s t  (GLT) with a more genera l  form of the f a i l u r e  

dec is ion  and i s o l a t i o n  func t ions  than has been considered i n  the  previous 

phases of t h i s  study. 

The report is organized as follows. Sect ion 2 con ta ins  background 

information regarding the r e s u l t s  of previous work conducted by the C.S. 

Draper Laboratory with regard t o  the RSDIMU. A comparison of Generalized 

Likelihood T e s t  ED1 algori thms is contained i n  Sec t ion  3. The comparison 

is made between f a i l u r e  dec is ion  func t ions  which are compensated f o r  

sensor  errors o r  else normalized with respect to  them. The i n t e n t  of 

this s e c t i o n  is to determine i f  t he  use of compensated dec is ion  func t ions  

can e l imina te  the need f o r  the  dynamic f a i l u r e  d e t e c t i o n  thresholds  

requi red  with the normalized dec is ion  funct ion.  Sect ion 4 conta ins  a 

d iscuss ion  of noise  compensation i n  the  thresholds of the  FDI GLT a lgo-  

r i thm, a subject which has not been addressed up t o  t h i s  po in t  i n  the 

cons idera t ion  of the RSDIMU but  which is shown to  be necessary t o  e l i m i -  

n a t e  f a l s e  alarms. A cons idera t ion  of the e f f e c t s  of sensor loca t ion  and 

magnitude of the  s t r u c t u r a l  modes on FDI system performance is presented 

i n  Sect ion 5 .  This top ic  is s i g n i f i c a n t  s ince  the  des igners  of a i r c r a f t  

systems using an RSDIMU w i l l  have to  account f o r  these  f a c t o r s .  Sec t ion  

6 is devoted to  the development and ana lys i s  of an algori thm f o r  generat-  

i ng  the  f a i l u r e  de t ec t ion  thresholds  of the GLT algori thm using noise  

compensation and f i l t e r e d  p a r i t y  equat ion res idua ls .  The la t ter  is  a 

method of ob ta in ing  exac t  compensation of the high frequency s t r u c t u r a l  

mode and accelerometer l eve r  arm e f f e c t s .  Sect ion 7 presen t s  an FDI 

s t r a t e g y  based on the pairwise comparison of sensor  measurements. T h i s  

s t r a t e g y  uses GLT der ived de tec t ion  dec is ion  funct ions.  It  has the 

Cpeci f ic  a d d i t i o n a l  advantage of success fu l ly  d e t e c t i n g  and i s o l a t i n g  up 

t o  two simultaneously occurr ing  f a i l u r e s .  The l i m i t a t i o n s  of t h i s  

advantage are a l s o  demonstrated. F ina l ly ,  the  conten ts  of t h i s  r e p o r t  

are summarized and the  major conclusions are presented i n  Sect ion 8.  
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SECTION 2 

BACKGROUND 

2.1 Sensor Configurat ion 

The i n e r t i a l  measurement u n i t  shown i n  Figure 1 is  a redundant 

strapdown package employing four  two-degree-of-freedom (TDOF) gyros 

(accelerometers 1 i n  a semi-octahedral geometry. The instruments  are 

pos i t ioned  such t h a t  the  sp in  (pendulous) axes are normal t o  the  four  

f aces  of the  semi-octahedron and p o i n t  out .  The t w o  measurement axes of 

the  gyros and accelerometers  l i e  i n  the  plane of the  face  and are 

symmetric about the  face c e n t e r l i n e .  The RSDIMU c o n s i s t s  of t w o  Separate  

packages ( f a c e s  1 and 2, f aces  3 and 4 )  which may be s p a t i a l l y  separa ted  

along a t r ack  i n  the  lateral  d i r e c t i o n .  Thus it may be t r e a t e d  a s  two 

t e t r a d i c  I M U s  as ind ica t ed  i n  Figure 2. The reason f o r  s epa ra t ing  the  

RSDIMU i n t o  two halves  is  to  provide p ro tec t ion  a g a i n s t  damage e f f e c t s  

due to  l i gh tn ing ,  s t r u c t u r a l  f a i l u r e ,  etc. The b e n e f i t s  of redundancy i n  

t h e  form of improved system r e l i a b i l i t y  are r e t a ined  by using sensor  

information from both halves  of the  I M U  f o r  f a i l u r e  d e t e c t i o n  and i s o l a -  

t i o n  purposes . 
The nominal geometry matr ix ,  de f in ing  the sensor  inpu t  axes  

r e l a t i v e  to  the vehic le  body axes is 

5 
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Figure 1. FGDIMU Instrument Geometry 

x OFFSET OF IMU FROM 
O' VEHICLE CENTERLINE 

x SEPARATION OF IMUl, 2 *' FROM IMU CENTERLINE 

Figure 2. Separation of Sensor Configuration into Two IMUs 
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H =  

where 

- - 
a -6  Y 

-B a Y 

B a Y 

-a -B Y 

-a B Y 

B -a Y 

-B -a Y 

a B Y 

- - - - - - - -  

- 

47 - 1 

2 f 5  
a =  

The dashed l i n e  i n d i c a t e s  the sepa ra t ion  of the  RSDIMU i n t o  two ha lves .  

The nominal sensor  e r r o r  parameters used i n  this study a r e  presented i n  

Table 1 .  

2.2 General Conceots of FDI 

This s e c t i o n  is included t o  provide the reader  with a background 

i n  the genera l  concepts appl ied  to d e t e c t  and isolate  sensor  f a i l u r e s .  

It w i l l  a l low a g r e a t e r  understanding and apprec ia t ion  of the ma te r i a l  

presented i n  t he  following s e c t i o n s  of the report. 

In order  to  d e t e c t  and isolate sensor  f a i l u r e s ,  a system of p a r i t y  

equat ions is solved. P a r i t y  equat ions a r e  l i n e a r  combinations of the 

7 



Table 1 
Nominal Sensor Parameters 

PARAMETER 
~~~ ~ 

Gyros 

Bias 

Scale Factor Error 

Misalignment 

g Dependent Errors 

g2 Dependent Errors 

to2 Dependent Errors 

Accelerometers 

Bias 

Scale Factor Error 

Misalignment 

Inpu t-Pendu lou s Axes 
Acceleration Sensitivity 
Coefficient 

Input Axis Accelerometer 
Squared Sensitivity 
Coefficients 

VALUE 

0.01 deg/hr 

20.0 ppm 

50.0 prad 

0.005 deg/hr/g 

0.02 deg/hr/g2 

1 2 .4  deg/hr/ (rat 2 
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sensor  outputs  s e l ec t ed  t o  enhance the  u n c e r t a i n t i e s  ( f a i l u r e s  ) assoc i -  

a t ed  w i t h  the  sensors .  Furthermore, the  e f f e c t s  of the  q u a n t i t y  which 

t h e  instruments  measure, i.e., t he  angular  rates o r  l i n e a r  a c c e l e r a t i o n s ,  

are removed from cons idera t ion  by the  p a r i t y  equat ions.  

Failure de tec t ion  occurs as a r e s u l t  of comparing the p a r i t y  

equat ion r e s i d u a l s  or a func t ion  of them to  a threshold.  I f  the  thresh-  

o ld  is  exceeded, a f a i l u r e  i s  declared and the  f a i l u r e  is then i s o l a t e d .  

Fa i lu re  i s o l a t i o n  is accomplished using the  p a r i t y  equat ion r e s idua l s .  

Severa l  methods a r e  used depending upon the  algori thm employed. Logical 

opera t ions  based on the r e s i d u a l s  which exceed the  threshold  is one 

technique used, e.g., a combination of r e s i d u a l s  exceeding the  thresholds  

i n d i c a t e s  the  f a i l u r e  of a p a r t i c u l a r  sensor .  Another approach involves  

t h e  d o t  product of the vector of p a r i t y  equat ion r e s idua l s  with vec tors  

def ined by the  c o e f f i c i e n t s  of the p a r i t y  equat ions t o  isolate a f a i l u r e .  

This ,  i n  essence,  is the  methodology appl ied  t o  d e t e c t  and isolate 

sensor  f a i l u r e s .  However, complications . a r i s e  when it is appl ied  t o  a 

p r a c t i c a l  s i t u a t i o n  . For example, the  p a r i t y  equat ion r e s i d u a l s  are 

i d e a l l y  zero when a f a i l u r e  is not  p re sen t  and nonzero when a f a i l u r e  has 

occurred. In  r e a l i t y ,  the  r e s idua l s  are nonzero because of the uncer- 

t a i n t i e s  a s soc ia t ed  with the  sensors ,  i.e., the sensor  e r r o r s ,  sensor  

noise ,  s t r u c t u r a l  mode e f f e c t s ,  accelerometer lever-arm e f f e c t s ,  etc. 

The residuals due t o  these f a c t o r s  dictate  the l e v e l  of f a i l u r e  which can 

be de t ec t ed  s ince  they do not  arise from f a i l u r e s  and are a r e s u l t  of 

normal, al though undes i rab le ,  sensor  behavior.  In  a dynamic environment 

these  u n c e r t a i n t i e s  may be exc i t ed  t o  a g r e a t e r  degree. To avoid the 

f a l s e  d e t e c t i o n  of f a i l u r e s ,  i.e., f a l s e  a larms,  the thresholds  may have 

t o  be compensated f o r  t h i s  e f f e c t .  One poss ib l e  approach t o  handl ing 

t h i s  problem is the use of dynamic thresholds  which are a func t ion  of t he  

environment. Another i s  i n - f l i g h t  i d e n t i f i c a t i o n  and compensation of the  

sensor  e r r o r  e f f e c t s  i n  the  F D I  dec i s ion  process. 

Normally, u n f i l t e r e d  sensor  da t a  i s  used to  d e t e c t  and i s o l a t e  

sensor  f a i l u r e s  of a l a rge  magnitude s ince  it is des i r ed  t o  remove t h e i r  



e f f e c t s  before they a f f e c t  the  c o n t r o l l a b i l i t y  of the vehicle .  Another 

f a c t o r  i n  the design of F D I  systems is t h a t  t he  e f f e c t s  of s m a l l  

magnitude f a i l u r e s  may be masked by the  instrument  uncer ta in ty  e f f e c t s .  

F i l t e r i n g  of the  p a r i t y  equat ion r e s i d u a l s  may have to be introduced i n t o  

t h e  FDI system t o  enhance t h e i r  d e t e c t a b i l i t y .  This is a t  the  expense of 

a longer de t ec t ion  t i m e  and a design t radeoff  e x i s t s .  The presence of 

s e v e r a l  channels i n  the  FDI system to  d e t e c t  and i s o l a t e  d i f f e r e n t  l e v e l s  

of f a i l u r e s  may r e s u l t .  

2.3 Descript ion of t h e  Generalized Likelihood T e s t  Fa i lu re  
Detection and I s o l a t i o n  Algorithm 

The Generalized Likelihood T e s t  Fa i lu re  Detect ion and I s o l a t i o n  

algori thm has been used during t h i s  study. A b r i e f  desc r ip t ion  of it 

follows. Three levels of f a i l u r e  a r e  to  be detec ted  and i s o l a t e d .  They 

are : 

0 Hard f a i l u r e s :  those of a comparatively l a rge  magnitude, which 

p r imar i ly  a f f e c t  f l i g h t - c o n t r o l  performance. 

'0 Midvalue f a i l u r e s :  those of medium magnitude, which a f f e c t  

p i l o t  d i sp l ay  performance. 

0 S o f t  f a i l u r e s :  those of a comparatively s m a l l  magnitude, which 

a f f e c t  navigat ion performance. 

Consider f i r s t  t he  hard f a i l u r e  channel. I n  the absence of sensor  

f a i l u r e s  , the  measurement equat ion is  

m = H w + <  

A set of p a r i t y  equat ions is def ined by 

where 



v H = o  

V is assumed t o  be of dimension (n-3)xn. The matr ix  V can be chosen so 

t h a t  

VVT = I 

Combining the  previous equat ions y i e l d s  

I n  the absence of sensor f a i l u r e s ,  pN depends only on the  measurement 

noise .  I f  sensor  j experiences a bias-type f a i l u r e  and t h a t  f a i l u r e  is 

manifest  as an apparent  bias s h i f t  of magnitude b i n  measurement j, then 

= Vg + V.b 
PF 3 

The d i f f e rence  i n  the statistics of p ( i n  the  absence of f a i l u r e s )  and 

( i n  the  presence of f a i l u r e s )  provides a basis f o r  d e t e c t i n g  and 

i s o l a t i n g  f a i l u r e s .  The problems of de t ec t ing  and i s o l a t i n g  sensor  

f a i l u r e s  f a l l  wi th in  the genera l  framework of composite hypothesis  tests, 

s i n c e  the  s ign  as well as the  magnitude of the  b i a s  f a i l u r e  is unknown a 

pr ior i .  

N 

PF 

A GLT formation of the de tec t ion  and i s o l a t i o n  problems has been 

developed. Assume s ingle-ax is  f a i l u r e s  f o r  s impl i c i ty .  The GLT dec i s ion  

func t ions  f o r  de t ec t ion  and i s o l a t i o n  a r e  

DFD = pTCp -1 p 

11 



The de tec t ion  dec i s ion  i s  made by comparing D F  t o  a de t ec t ion  threshold .  

A sensor f a i l u r e  r e s u l t s  i n  a change i n  the mean value of a sensor  out-  

p u t ,  t he  par i ty-equat ion r e s i d u a l s ,  and the  f a i l u r e - d e t e c t i o n  func t ion .  

The i s o l a t i o n  dec i s ion  is then made by determining maxj(DFI.). 

of j t h a t  maximizes DFI 

have f a i l e d .  

D 

The value 
3 

i d e n t i f i e s  the  sensor  t h a t  is most l i k e l y  t o  
j 

The form of the  f a i l u r e  d e t e c t i o n  and i s o l a t i o n  func t ions  pre- 

sen ted  i n  the  previous paragraph is  more genera l  than that used i n  the  

p r i o r  s t u d i e s  of t he  RSDIMU i n  t h a t  t he  e f f e c t  of Cp is included. 

Decision func t ions ,  normalized t o  remove the  e f f e c t  of Cp, have been 

i n v e s t i g a t e d  previously.  A comparison of these  t w o  dec is ion  func t ion  

forms is  presented i n  Sec t ion  3 .  

The d e t e c t i o n  and i s o l a t i o n  of t he  mid and s o f t  f a i l u r e s  is  

accomplished using the same dec i s ion  func t ions  a s  for the ha rd - fa i lu re  

channel.  The only except ion i s  t h a t  t he  appropr i a t e ly  f i l t e r e d  pa r i ty -  

equat ion r e s i d u a l s  are used i n  l i e u  of the  u n f i l t e r e d  ones. Figure 3 i s  

a block diagram of the ED1 which has evolved dur ing  this program. 

2.4 System Simulation and h ra lua t ion  T r a j e c t o r i e s  

A d i g i t a l  a i r c r a f t  s imula t ion  w a s  used during t h i s  s tudy t o  

e v a l u a t e  the  t e c h n i c a l  areas and tasks of the Statement of Work. A block 

diagram of the  s imula t ion  used i s  shown i n  Figure 4.  The core of the  

s imula t ion  is  a s ix-degree  of freedom a i r c r a f t  model with nonl inear  

aerodynamics. Also modeled are a f l i g h t  c o n t r o l  system and turbulence.  

A n  a u t o p i l o t  "commands" the  vehic le  t o  fol low a des i r ed  t r a j e c t o r y  

p r o f i l e .  Skewed gyro and accelerometer  sensor  conf igu ra t ions  a r e  modeled 

wi th  the  loca t ion  of the  sensors  variable t o  p e r m i t  an assessment of 

accelerometer  lever-arm effects. The sensors  are assumed t o  be of 

navigat ion q u a l i t y  and used f o r  naviga t ion  and f l i g h t  c o n t r o l  purposes. 

The F D I  a lgori thm opera tes  on the  sensor  d a t a  t o  generate  the  i n p u t  

s i g n a l s  to  the f l i g h t  c o n t r o l  and naviga t ion  systems. Navigation accu- 

12 
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Figure 3 .  FDI Algorithm Block Diagram 
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racy is assessed by d i f f e renc ing  the outputs  of a strapdown loca l -  

vertical-wander-azimuth naviga t ion  system model and the  vehic le  states. 

Table 2 shows the  longer of the  two f l i g h t  p r o f i l e s  used t o  

eva lua te  the f a u l t - t o l e r a n t  system dur ing  the dynamic phases of veh ic l e  

f l i g h t .  The p r o f i l e  inc ludes  f e a t u r e s  from a t y p i c a l  t r a n s p o r t  a i r c r a f t  

mission p r o f i l e :  a climb to  a l t i t u d e ,  c r u i s e ,  heading changes, descent ,  

and a l o i t e r  maneuver. Shor te r  1 1  0 seconds and 500 second p r o f i l e s  were 

a l s o  used during t h i s  s tudy.  The 110-second p r o f i l e  is ou t l ined  i n  Table 

3 ,  and the  500-second p r o f i l e  i s  a l l - c r u i s e .  

2 .5 Separated Sensor Ef fec t s  

The p resen t  program is concerned w i t h  the development and evalua- 

t i o n  of an a n a l y t i c  technique f o r  t he  generat ion of ED1 thresholds  f o r  an 

a i r c r a f t  system with dua l ,  separa ted  I M U s .  The i n t e n t  is  t o  use a l l  

a v a i l a b l e  instruments  of both I M U s  t o  detect and i s o l a t e  sensor  

f a i l u r e s .  The sepa ra t ion  of the  I M U s  h inders  f a i l u r e  d e t e c t i o n  and 

i s o l a t i o n ,  s ince  the  r a w  structural-mode and accelerometer lever-arm 

e f f e c t s  which the  instruments  sense a r e  comparable i n  magnitude t o  the  

f a i l u r e s  which may be encountered and can r e s u l t  i n  t he  f a l s e  de t ec t ion  

of f a i l u r e s  i f  no t  properly accounted f o r .  The s e l e c t i o n  of th resholds ,  

a major cons idera t ion  i n  the  development of any FDI system, is  e s p e c i a l l y  

complicated when  separated, communicating IMUs are p resen t ,  s i n c e  these 

a d d i t i o n a l  f a c t o r s  must be taken i n t o  account. A spectrum of f a i l u r e  

magnitudes from hard through s o f t  is considered. F ina l ly ,  a i r c r a f t  

maneuvering adds a s i g n i f i c a n t  dimension to  the  problem. The 

structural-mode and accelerometer l e v e r  arm e f f e c t s  a r e  now def ined .  

2.5.1 Structural-Mode Ef fec t s  

Each s t r u c t u r a l  mode can be represented by a second-order 

d i f f e r e n t i a l  equat ion with a d d i t i o n a l  terms which, i n  genera l ,  couple i n  

t h e  basic rigid-body airframe response, the o the r  modes, and the  

cont ro l - sur face  d e f l e c t i o n s .  The e f f e c t  of the  s t r u c t u r a l  modes on the  

15 



TIME 
( sec 1 

0 - 50 
50 - 300 
300 - 500 
500 - 550 
550 - 750 
750 - 765 
765 - 1000 
1000 - 1015 
1015 - 1105 
1195 - 1705 
1705 - 1800 

Table 2 
30 Minute Evaluation Tra j ec to ry  

EVENT 

Cruise  

Ascent 

Cruise  

loo Heading Change 

Descent 

loo Heading Change 

Cruise  

l oo  Heading Change 

Cruise  

L o i t e r ,  one 360° t u rn  

Cruise  

ALTITUDE 
( m  1 

1497 

3974 

1497 

1497 

VELOCITY 
(m/sec 1 

166 

205 

166 

166 
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Table 3 
110 Second F l i g h t  Trajectory 

TIME 
(set) 

0 - 40 

40 - 100 

110 - 110 

EVENT 

Cruise 

3 deg/min C l i m b  

20 deg/min Bank 

90 deg/min Heading Change 

Cruise,  20 deg Bank Angle 

17 



angular rates and l i n e a r  a c c e l e r a t i o n s  is a funct ion of sensor loca t ions  

and is ind ica t ed  by the  following equations.  

' ' ' 
= p + 6PB = p + p' 11 + P' n5 + P' Q6 

PB '4 '5 '6 

' 
qg = q + 6q, = q + 9' rll + 9' n2 + 9' o3 

'1 '2 '3 

. 
r = r + 6 r  = r + r *  

B B n6'6 

.. 
n + n  - 

y y.. '6 n - n + 6 n  = 

YB '6 
YB Y 

.. .. .. 
2.. '3 + n  

2.. '2 
'1 '2 r13 

+ n  
2.. '1 

n - - n + 6nZ = n + n  
. B  

z 
B 

z z ( 3 )  

2.5.2 Accelerometer Lever-Arm E f f e c t s  

The l i n e a r  a c c e l e r a t i o n s  measured a t  a d i s t ance  d meters from the  

c.g. of the vehicle  ( i n  terms of the l i n e a r  a c c e l e r a t i o n s  a t  the  c.g. of - 

the veh ic l e  and the  accelerometer lever-arm e f f e c t s )  are def ined by t h e  

following equations.  

n + 6n - - n 
X X d cg Ra X 

n = n + 6n 
'd ycg 'Qa 
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2.6 The Derivat ion of Dynamic Thresholds 

The basic approach is t o  start  with an a n a l y t i c  expression f o r  the  

sensor  e r r o r ,  structural-mode, and lever-arm e f f e c t s  and ob ta in  expres- 

s ions  f o r  the  par i ty-equat ion r e s idua l s .  Upper bounds f o r  the pa r i ty -  

equat ion r e s i d u a l s  are then determined. The F D I  system threshold  is 

generated by dup l i ca t ing  the  s t e p s  involved i n  the computation of the 

fa i lu re -dec i s ion  func t ion  using the  upper bounds f o r  t he  par i ty-equat ion 

r e s i d u a l s  r a t h e r  than the  a c t u a l  r e s idua l s .  A block diagram of the  

process  f o r  the  mid o r  s o f t  f a i l u r e  channel is shown i n  Figure 5. 

It is necessary to  write expressions f o r  t he  l i n e a r  acce le ra t ions  

a t  one I M U  l oca t ion  i n  terms of those a t  the  others . .  Using the r i g h t  

ha l f  of the RSDIMU as a reference and Eqs. ( 3 )  and ( 4 )  l eads  t o  the  

fol lowing r e s u l t s .  

n - n + 6 n  
X R X L X 

n + 6n - 6n - - 
X X 

% RaR 
R X 

n = n + 6 n  
YL YR Y 

n + 6n - 6n + 6n - 6n - - 
Y Y Y Y 

RaL aaR BL BR YR 
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n + 6n - n - 
2 

R 
Z 

L 
2 

- - n + 6nz - 6nZ + 6nZ - 6nZ 

RaL RaR BL BR 
R 
2 

The output  of t he  jth accelerometer of the r i g h t  I M U  can be 

w r i t t e n  as 

6maj is a term rep resen t ing  the sensor 

f o r  t h i s  study, descr ibed i n  d e t a i l  i n  

n + H  a n  +6m } 
a 
j 

1 3  2, yR 

j = A3, B3, A4, B4 ( 5 )  

errors. The sensor models assumed 

Reference 1 ,  r e s u l t  i n  

H. ) n  = D T ~ G  4 1  { A .  + (IJ 1 1  + e j  ~ ~ ~ 1 1 - i ~  + ('j2 + 'j &ma 1 2  yR R j 

+ ('I3 + E: j Hj3)nzR 

+ a  ( H  a n  + H  a n  + H  a n  1 
R 

IP j l  X j 2  .yR j3 z R j 

. ( ~ ~ , . n  P + H '  a n  + H P  O n  ) 
R j2 yR j3 z R X 

(6) j = A3, B3, A4, B4 

A similar expression is obtained f o r  the output  of the k t h  accelerometer 

of the l e f t  IMU using the appropr i a t e  acce le ra t ions .  use of the 
equat ions f o r  the a c c e l e r a t i o n s  measured by the l e f t  ha l f  of the RSDIMU 

i n  terms of those of the r i g h t  h a l f  l eads  to  

t 
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R 
m = DT*G$ {sl nx + ylc2 nyR + %3 "z 

k R a 

+ 6 m  + t ~ c ~  6nx + %2 6n + %3 6nz} "k Y 

k = Al, B1, A2,  B2 ( 7 )  

S u b s t i t u t i n g  Eq. ( 5 )  and ( 7 )  i n t o  the p a r i t y  equat ions r e s u l t s  i n  

t h e  following r e s i d u a l s  

i = 1,2, .  . . ,n-3; j = A1 ,B1, .  . . ,A4,B4; k = A1 ,B1 ,A2,B2 ( 8 )  

This expression r e s u l t s  s i n c e  VH = 0. I t  c o n s i s t s  of t w o  t e r m s .  The 

f i r s t  results from the  sensor e r r o r s  and the second from the incremental  

s t r u c t u r a l  mode and lever-arm e f f e c t s  between the loca t ions  of t he  two 

halves  of the RSDIMU.  

An upper bound f o r  Eq. ( 8 1 i s  

i = 1 ,2  ,..., n-3; j = Al,Bl,..., A4,B4; k = Al,Bl,A2,B2 (9) 

The dynamic threshold is then obtained by summing the squares of t h e  

upper bound f o r  each p a r i t y  equation, i.e., d u p l i c a t i n g  the  generat ion of 

t he  dec i s ion  function. The r e s u l t i n g  expression i s  

2 
n-3 

T = 1 (P, 
A i = l  m 

I n  order  t o  calculate the FDI system thresholds ,  Eq. ( l o ) ,  and 

hence Eq. (91, must be ca l cu la t ed  i n  real t i m e .  Consider t he  f i r s t  term 
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of 4. (9). The V i j ' s  are known and &ma is  an a n a l y t i c  expression f o r  

t h e  upper bound of t he  sensor  e r r o r  e f f e c t s  given by 
m 

+ 'a m ( I O .  788675nx f 1 + (0.788675n y f I + (0.577350ni f I )  
+ ( f i I 1  + ct IP  ) [(10.788675nx I + (0.788675n Y I + )0.577350nZ( 1 2 1 f  1 

m m 

6m is obtained from Eq. ( 6 )  by assuming worst case condi t ions.  a m  
Hp and Hp is less than or equal  For example, the magnitude of Hj, I Hj2,  

to  0.788675, and the sensor  e r r o r s  are a d d i t i v e  and bounded by t h e i r  3 a  

values . 
1 2  11 

Each term of Eq. ( 9 )  a l s o  contains  a term which r e f l e c t s  t h e  

incremental  value of the sepa ra t ion  e f f e c t s  between the two IMU loca- 

t i ons .  If t h ree  or more independent measurements are available a t  each 

IMU l oca t ion ,  the required q u a n t i t i e s  can be obtained by generat ing a 

least-squares  s o l u t i o n  f o r  n n and n a t  each IMU l o c a t i o n  and 

d i f f e r e n c i n g  l i k e  q u a n t i t i e s .  This approach f a l l s  a p a r t  a f t e r  t he  f i r s t  

f a i l u r e  is detected and isolated s ince  one instrument is a n a l y t i c a l l y  

removed from the  system. Therefore,  a least-squares s o l u t i o n  can be 

obtained f o r  only one IMU. 

X I  y ,  Z 

Reference 2 p re sen t s  a technique f o r  generat ing the incrementa l  

s epa ra t ion  e f f e c t s  which overcomes the d e f i c i e n c i e s  of the approach 

descr ibed i n  the previous paragraph. The least-squares  s o l u t i o n  of only 

one of the I M U s  is required.  Assume f o r  t he  purposes of discussion t h a t  

t he  r i g h t  IMU is s e l e c t e d  as the reference.  A least-squares  s o l u t i o n  can 

be obtained f o r  the r i g h t  IMU r e s u l t i n g  i n  the  estimated q u a n t i t i e s  n̂  
GYRI and 

of t he  l e f t  IMU can be obtained by using Ax , 

XR' 
An estimate of t he  s e p a r a t i o n  e f f e c t s  on the instruments  

ZR. 
and Az t o  generate  an 

R YR' R 
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estimate of the measurements of the l e f t  I M U  and sub t r ac t ing  them from 

the a c t u a l  measurements. For example, 

A = DT*G$ {a;, 
m 

A1 R R a 

A 

m - m  - - 
AI a A1 a A1 

Following t h i s  procedure leads to  

Since the r i g h t  IMU is the r e fe rence  

= o  
A3 a 6; 

= o  
B3 

= o  
A4 a 6; 

= o  
B4 

(14) 
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The q u a n t i t i e s  needed f o r  the  thresholds  a re  obtained by reso lv ing  the  

u n c e r t a i n t i e s  of Eqs. ( 12 1, ( 13)  and ( 1 4 )  through the  p a r i t y  equat ions,  

t h a t  is, so lv ing  the  p a r i t y  equat ions using these  q u a n t i t i e s  f o r  the  

sensor  measurements. The absolu te  value of t he  s o l u t i o n  is then used f o r  

t he  threshold.  

Severa l  a d d i t i o n a l  i t e m s  regarding the  thresholds  should be 

pointed ou t  a t  t h i s  t i m e .  One is t h a t  t he  las t  value of the  l i n e a r  

accelerations (generated f o r  t he  f l i g h t - c o n t r o l  system from the  sensor  

s i g n a l s )  can be used t o  generate  the  thresholds .  Using these  s i g n a l s  

r e s u l t s  i n  th resholds  which r e f l e c t  the  c u r r e n t  state of the  a i r c r a f t  and 

i t s  environment. I n  order  to  make a va l id  comparison between the  

r e s i d u a l s  and thresholds ,  it is necessary t o  f i l t e r  each i n  an i d e n t i c a l  

fashion.  It  is p re fe rab le  t o  f i l t e r  t he  q u a n t i t i e s  required for the  

thresholds  before  the  maximization and absolu te  values  a r e  generated.  

This r e s u l t s  i n  a reduced l e v e l  of noise  which is not sub jec t  t o  mximi- 

z a t i o n  and leads  to  lower, more real is t ic  thresholds .  The s u b s c r i p t  f i n  

Eq.' ( 1  1 )  i n d i c a t e s  where the  f i l t e r i n g  of '6m 

genera t ion  of t he  thresholds .  

should occur i n  the am 

The e f f e c t  of f a i l u r e s  on the  thresholds  has a l s o  been consid- 

ered.  The s ta t is t ics  of t he  p a r i t y  equat ion r e s i d u a l s  change to  r e f l e c t  

t h e  presence of a f a i l u r e ,  e.g., the  mean changes due t o  a b i a s  f a i l u r e .  

The thresholds w i l l  a l s o  change due t o  the f a i l u r e ,  and de tec t ion  and 

i s o l a t i o n  is not  possible .  Modifications must be made t o  the FDI 

algori thm t o  e l imina te  t h i s  def ic iency .  The technique employed is t o  

pass  the estimated separa t ion  effects through washout f i l ters  before  

t ak ing  the  absolu te  value f o r  t he  thresholds .  washout f i l t e r i n g  removes 

the  e f f e c t  of the instrument  b i a ses  and b i a s  f a i l u r e s  from the sepa ra t ion  

e f f e c t s  so t h a t  the  thresholds  r e t u r n  to  t h e i r  p r e f a i l u r e  values. The 

p a r i t y  equation r e s idua l s  change t o  r e f l e c t  the  e f f e c t  of the f a i l u r e s  

and f a i l u r e  de t ec t ion  and isolat ion occurs  when the  thresholds  a r e  

exceeded . 
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SECTION 3 

A COMPARISON OF THE COMPENSATED AND 
UNCOMPENSATED GLT DECISION FUNCTIONS 

3.1 In t roduct ion  

Previous inves t iga t ions  of the  RSDIMU (References 1 and 2 )  have 

been concerned with the  uncompensated GLT algorithm. That is, the 

dec i s ion  func t ions  of Eq. ( 1 )  and ( 2 )  have been used with the covariance 

matr ix  Cp = I. Simpler dec is ion  func t ions  r e su l t ed .  However, dynamic 

th re sho ld  compensation had t o  be employed to  account f o r  the  a i r c r a f t  

system's environment, the  sensor  e r r o r s  and the s t r u c t u r a l  mode and 

accelerometer  l eve r  a r m  e f f e c t s .  

This s e c t i o n  compares the  uncompensated and compensated GLT 

dec i s ion  funct ions.  The motivation f o r  i n v e s t i g a t i n g  the  compensated 

dec i s ion  func t ion  is t h a t  it may be poss ib l e  to  employ cons tan t  th resh-  

olds i f  the sensed e r r o r  e f f e c t s  a r e  compensated f o r  i n  the dec is ion  

funct ion.  A s impler  system with improved F D I  performance may be 

poss ib le .  

A der iva t ion  of an a n a l y t i c  expression f o r  the covariance matr ix  

C p ,  requi red  f o r  dec is ion  func t ion  compensation, is presented. This 

a lgor i thm w a s  implemented i n  the CSDL d i g i t a l  a i r c r a f t  s imulat ion and i ts  

F D I  c a p a b i l i t y  evaluated.  Conclusions regarding the  f e a s i b i l i t y  of t h i s  

approach, its pros and cons and a comparison with r e s u l t s  obtained f o r  

the  uncompensated GLT dec is ion  func t ion  are presented.  Colocated senso r s  

are assumed f o r  the  i n i t i a l  eva lua t ion  , thereby s impl i fy ing  the  evalua- 

t i o n  of the concept s ince  the  s t r u c t u r a l  mode and accelerometer e f f e c t s  

can be neglected.  Reference 3 provided the  basis f o r  t h i s  study. 
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3.2 Derivation of the  Error  Covariance Matrix 

In  the  presence of instrument  e r r o r s ,  t he  instrument outputs  can 

be represented by 

m = Hw + e + e + .... e 
-1 -2 -k 

Thus, t h e  p a r i t y  vector  can be w r i t t e n  as 

p = Vm = V e  + Ve + ..Ve 
-1 -2 -k 

%c = E + E + . .  
-1 -2 

Assuming t h a t  the e r r o r  sources 5 are uncorrelated,  the covariance of 

p ,  Cp is given by 

‘k c = c , + c  +.. P 2 

where 

= E [ E . E T ]  = n [ e . e .  T T  IV 
‘i -1 -1 -1 -1 

= W i V T  

and R.  is the covariance of e . 
1 -i 

The e r r o r  sources f o r  the two-degree-of -freedom instruments 

considered are: 

e = error due t o  instrument  b i a s e s  
-1 

e = e r r o r  due t o  scale f a c t o r  e r r o r s  and inpu t  a x i s  
-2 

misalignments 
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e = error due to  g - s e n s i t i v i t i e s  of the i n p u t  axes (g- -3 
s e n s i t i v e  b i a s  1 

= quan t i za t ion  and sensor  noise  
=4 

The covariance of the e r r o r  term due t o  instrument biases and 

h y s t e r e s i s  is given by 

where 

" 

R1 = 

I 
- 2  

1 . p c  U 1 

0 I o  I 

U 2 1  
p C  ' 1  

t I 2 
1 PC 

uL is the sum of L e  squares of t he  1-sigma values of t he  
1 

inst rument  bias, h y s t e r e s i s ,  etc. 

pc  is the c o r r e l a t i o n  c o e f f i c i e n t  between the  instrument  p a i r .  

The covariance matrix R1 is  of dimension [nxnl. 

The e r r o r  term e is given by 
-2 

e = H W  
-2 m 

where the  elements of & r ep resen t  t he  instrument scale f a c t o r  errors 

and i n p u t  a x i s  misalignments. The con t r ibu t ion  o f .  t h i s  t e r m  to  the t o t a l  

p a r i t y  vector  is given by 
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e can also be expressed as 
-2 

where 

A 

n =  

and 

_ - - - - -  _ - -  T 
a = ( A A A A A  ... A A A - 11 12 13 21 22A23 m l  m2 m3 

where k is  the most recent estimate of w 

T -1 T j = ( H H )  ~m 

Therefore, C2 i s  calculated as 
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The de r iva t ion  of R includes the c ros s  c o r r e l a t i o n  between the i n s t r u -  

ment pairs. 
a - 

a can also be expressed as - 

z = V*h -m 

where 

v* = 

and 

V 1 2 1 3  ................. V I 
v1 1 I 3  In 3 

v2,13 .............................. v 1 2n 3 

V I ............................ V I 
n-3,l 3 n-3,n 3 

m h = [Hm Hm H H  -m m 11 12 13 21 

The covariance of a is given by - 

....... H m 1' 
n 3  

T = E[a a I = E[V*h h' -m -m Ra - -  

= V*RmV*' 

where 

R = E [ h  h'] m -m -m 
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The vector h may be p a r t i t i o n e d  as follows: -m 

hT = [hT hT h T 1 
-m -m -m 1 2  n -m 

where hT - m i  is the i - t h  row of Hm. 

each instrument axis pair are dependent 

Since the instrument e r r o r s  between 

R 1 
l 2  I 

m 
- - - -  
R I 

22 I 
m 

O3X3 

O3X3 

R 
33 m 

R 
43 m 

- - -  

- e -  

l 
I 

I 

I 

I 
I 

I 
I 

- 

- 

- 
I 
I 
I - 
I 
I 

i 
O3X3 

I 

I 
O3X3 
- - - - -  

I 34 
R 

I - - - - -  
R I 

44 I 
m 

- - - - -  
I 
I 

where 

= E[h hT 1 m -m.-m 
R 

i j  1 1  

% has dimension [3n x 3nl. 

Ra can be w r i t t e n  as (see Reference 3)  - 

- - - - -  

e - - - -  

- - - - -  

n-1 ,n-1 Rm 

n,n-1 Rm 

f Rm , n-1,n 

- u2 V*RmV*T 
+ (‘SF M I S  Ra - M I S  3(n-1 )x3(n-1) = u2 I 
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Thus, C2 is given by 

The i t h  element of the  error term due t o  the  g - s e n s i t i v i t y  of the 

inpu t  axes, e is given by -3i' 

S - - "z Hi3  g i  e -3i 

It is assumed tha t  the  normal a c c e l e r a t i o n  is much g r e a t e r  than the 

l o n g i t u d i n a l  and lateral  acce le ra t ions .  

Thus, R3 can be w r i t t e n  

R~ = 

2 2  
z s  = n u  

g 

Therefore,  

' 2  
H1 3 

c3 

*n3 2 IvT 
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Sensor noise  is not considered i n  t h i s  phase of the study. The 

quant iza t ion  compensation parameter is obtained from a s t r a i g h t  and l e v e l  

f l i g h t  simulation i n  the  absence of sensor noise  and e r ro r .  A compensa- 

t i o n  magnitude which corresponds to  a bias e r r o r  of 0.03 deg/hr has been 

used nominally. 

To summarize, the error-compensated de tec t ion  decis ion func t ion  

can be described as 

T T -1 DFDC = p [V(R1 + R2 + R3 + R4)V 1 P 

T -1 = p [C1 + c2 + c + c41 p 3 

T -1 
= P C P P  

A t  each measurement sampling period, Cp is updated and the  compensated 

dec is ion  funct ion compared to  a threshold t o  determine whether a f a i l u r e  

has occurred. When a f a i l u r e  is detected, it is isolated to  the sensor  

which maximizes the compensated i s o l a t i o n  decis ion funct ion given by 

Equation ( 2 ) .  

3 . 3  Resul t s  

Simulation r e s u l t s  were obtained f o r  the  purpose of comparing the  

uncompensated and compensated dec is ion  funct ions f o r  f a i l u r e  de t ec t ion  

purposes. Two forms of the compensated f a i l u r e  de tec t ion  decis ion were 

a c t u a l l y  compared; the complete one as derived i n  the previous s e c t i o n  

and a s impl i f ied  one determined using only the  diagonal elements of Cp 

i n  the compensation. -1 This, of course, s i m p l i f i e s  the ca l cu la t ion  of C p  . 
Figure 6 shows the compensated and uncompensated f a i l u r e  dec is ion  

func t ions  obtained f o r  the  nominal sensor e r r o r  parameters. The e f f e c t  

of the compensation is r e f l e c t e d  i n  the d i f f e rence  i n  magnitude between 
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the two types of decis ion functions.  Furthermore, it is apparent t h a t  

t he  compensation is n o t  p e r f e c t  as evidenced by the  peaks i n  the compen- 

s a t e d  decis ion funct ion which occur when the vehicle  maneuvers. This 

means t h a t  t he  sensor error e f f e c t s  w i l l  have t o  be accu ra t e ly  i d e n t i f i e d  

t o  achieve a decis ion funct ion which is not a f f e c t e d  by the vehicle  

dynamics so t h a t  cons t an t  thresholds  can be implemented. Otherwise the  

r i s k  of a high f a l s e  alarm rate e x i s t s .  The resu l t s  of Figure 6 a l s o  

i n d i c a t e  t h a t  the s i m p l i f i e d  compensated dec i s ion  funct ion may be used i n  

l i e u  of the unsimplified one s ince  t h e i r  t i m e  h i s t o r i e s  are gene ra l ly  the 

same, d i f f e r i n g  only i n  magnitude. 

To allow a more thorough i n v e s t i g a t i o n  of the compensated GLT 

dec i s ion  funct ion,  t he  nominal error parameters used i n  the c a l c u l a t i o n  

of Cp were ad jus t ed  to  r e f l e c t  the variance of the actual sensor e r r o r  

parameters i n  the simulation. The scale f a c t o r  and misalignment e r r o r s  

used t o  c a l c u l a t e  Cp w e r e  increased by a f a c t o r  of 5 and the g- 

s e n s i t i v e  e r r o r s  by 24. Under t h i s  assumption, the peak value of the 

unsimplif ied compensated dec i s ion  func t ion  w a s  reduced by a f a c t o r  of 6 

and the s impl i f i ed  one by a f a c t o r  of 16. F a i r l y  uniform decis ion 

funct ions r e su l t ed .  

B i a s  f a i l u r e s  were introduced during the 30 minute s imulat ion run 

according to  the t i m e  h i s t o r y  given i n  Table 4. In  t h i s  table, as i n  

o t h e r s  which follow, sensor axes 1 ,  3, 5 and 7 correspond t o  a x i s  A of 

instruments  1 ,  2, 3 and 4, r e s p e c t i v e l y ,  while sensor axes 2,  4 ,  6 and 8 

correspond t o  a x i s  B of the same instruments.  The performance of the 

uncompensated and compensated GLT d e t e c t i o n  dec i s ion  funct ions is shown 

i n  Figures 7 ,  8 and 9 f o r  t he  ad jus t ed  sensor e r r o r  parameter case. The 

r e s u l t s  i n d i c a t e  t h a t  the Compensated dec i s ion  funct ions are q u i t e  

s e n s i t i v e  t o  a f a i l u r e  during a r e l a t i v e l y  mild maneuver. However, t he  

e f f e c t  of the  f a i l u r e  is  n o t  p r e s e n t  i n  the dec i s ion  funct ion during 

l a r g e  ro l l  maneuvers. This is due to  the e f f e c t  of the dynamic compensa- 

t i o n  term C 2 .  

between the s impl i f i ed  and unsimplif i e d  compensated de tec t ion  decis ion 

N o  s i g n i f i c a n t  d i f f e r e n c e  i n  performance can be observed 
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T a b l e  4 
F a i l u r e  P r o f i l e  for the 30 Minute hraluation Trajectory 

TIME 
(sec 1 

FAILURE MAGNITUDE SENSOR AXIS 
(deg/hr 1 FAILED 

2.0 
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funct ions.  I t  is a l s o  apparent  t h a t  the e f f e c t  of the f a i l u r e  is not as 

c l e a r l y  ev iden t  i n  the  uncompensated dec i s ion  func t ion  as i n  the compen- 

s a t e d  ones. 

To gain more i n s i g h t  i n t o  the  performance of the compensated 

d e t e c t i o n  decis ion funct ions during l a r g e  maneuvers the s h o r t e r  1 10 

second f l i g h t  p r o f i l e  def ined i n  Table 3 w a s  considered. Resul ts  are 

shown i n  Figure 10 f o r  t he  adjusted sensor parameter case with no 

f a i l u r e s .  The corresponding r e s u l t s  i n  the  presence of f a i l u r e s  are 

shown i n  Figure 11.  The f a i l u r e  p r o f i l e  is presented i n  Table 5. The 

f a i l u r e  e f f e c t  is c l e a r l y  ev iden t  when the f l i g h t  is l e v e l  and unaccel- 

e r a t e d  (0-40 sec). The s e n s i t i v i t y  of the compensated de tec t ion  decis ion 

func t ion  to  t h e  f a i l u r e  decreases  during the maneuver. I t  appears t h a t  

the f a i l u r e  can be detected with the s impl i f i ed  compensated de tec t ion  

dec i s ion  func t ion  during the  maneuver even though its magnitude has 

decreased a t  the start of the maneuver. Fa i lu re  de t ec t ion  does not 

appear p o s s i b l e  w i t h  t he  uncompensated d e t e c t i o n  dec i s ion  funct ion i n  

t h i s  s p e c i f i c  case. 

3.4 Conclusions 

The following conclusions can be drawn from t h i s  phase of the  

s tudy 

0 The r e s u l t s  obtained f o r  t he  GLT FDI approach which compensates 

f o r  the e f f e c t s  of sensor e r r o r s  0x1 the de tec t ion  decis ion 

funct ion looks encouraging. The study provided bet ter  i n s i g h t  

i n t o  the f a i l u r e  de t ec t ion  process. 

0 I n  a l l  the cases considered, the  use of only the diagonal  

elements i n  the computation of the de tec t ion  decis ion funct ion 

yielded very favorable  r e s u l t s .  This reduces the computational 

burden of i n v e r t i n g  the  updated matrix Cp. 

0 The compensated d e t e c t i o n  dec i s ion  funct ion shows remarkable 

s e n s i t i v i t y  to  small bias f a i l u r e s  during l e v e l  and unaccel- 
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Table 5 
F a i l u r e  P r o f i l e  f o r  t h e  110 Second Evalua t ion  T r a j e c t o r y  

FAILURE MAGNITUDE TIME 
(set) (deg/hr  1 

15 0.5 

50 2.5 

75 . 3.0 

SENSOR AXIS 
FAILED 

4 

4 

4 
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erated f l i g h t  and mild maneuvers. However, the problem of 

detect ing  f a i l u r e s  during maneuvers is s t i l l  unresolved. 

0 I t  is s t i l l  premature to consider this FDI scheme a s  a poten- 

t i a l  a l t ernat ive  to dynamic threshold compensation. This 

approach, however, deserves addi t ional  a t t ent ion .  

. 
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SECTION 4 

NOISE COMPENSATION FOR ED1 SYSTEMS 

The e f f e c t s  of sensor noise on the performance of the F D I  system 

are inves t iga ted .  This sub jec t  has received l i t t l e  a t t e n t i o n  thus fa r .  

The need f o r  noise compensation i n  the dynamic thresholds is e s t ab l i shed  

and a method f o r  accomplishing this is derived based upon the compensated 

de tec t ion  decis ion funct ion approach of the previous sec t ion .  The 

magnitude of the  noise leve l ,  the  degree of noise compensation, i.e., 

whether to  compensate l a  or  2a, etc., and the de tec t ion  f i l t e r  t i m e  

cons tan ts  are a l l  considered i n  t h i s  phase of the study. The e f f e c t s  of 

sensor  f a i l u r e s  are. also examined. 

4.1 Derivation of the  Sensor Noise Compensation Algorithm 

The sensor noise is compensated f o r  i n  the threshold by using the  

estimated noise  variance. The p a r i t y  equation residuals, the nominal 

sensor parameters, and the estimated lever arm and structural mode 

e f f e c t s  are used to  estimate the noise  variance. 

In  the  absence of f a i l u r e ,  the p a r i t y  equation r e s idua l  is given 

P vm e + E  + e  
-SE -NOISE -SM 

where 

47 



e = sensor  e r r o r  r e s i d u a l s  
-SE 

E = sensor  noise  r e s i d u a l s  excluding s t r u c t u r a l  -NOISE 
mode and l eve r  arm 

e = r e s i d u a l s  due to  s t r u c t u r a l  mode and lever -SM 
arm e f f e c t .  

The var iance of t he  p a r i t y  equat ion r e s idua l s  is given by 

2 2 2 1 + EIEsMl u = E[(pI2] E[€ -SE I + EIENOISE 2 
P 

It is assumed t h a t  t he  th ree  e r r o r  sources  are independent. The 

noise  var iance can be expressed as 

2 

ZSM 
- u  2 2 

E: 
= u - u  2 

U 
 NOISE -SE 

The var iance of the  p a r i t y  equat ion r e s i d u a l s  can be computed dynamically 

from the  time h i s t o r y  of the  p a r i t y  equat ion.  The sensor e r r o r  cont r ibu-  

t i o n  is computed using the  covariance es t imat ion  approach developed i n  

the  previous sec t ion .  The var iance of the  s t r u c t u r a l  mode and acce le r -  

ometer lever arm e f f e c t s  is determined by tak ing  the  expected value of 

the  square of the  a c c e l e r a t i o n  due t o  these  q u a n t i t i e s .  

4.2 Re s u  1 t s 

The sensor  noise  compensation w a s  implemented i n  the  gyro s o f t  

f a i l u r e  channel only. Compensation w a s  no t  used i n  the  accelerometer  

channel because resu l t s  ind ica t ed  t h a t  t h i s  por t ion  of the  ED1 system w a s  

not, very s e n s i t i v e  to  the  presence of noise .  Four important  parameters 

t h a t  a f f e c t  t he  performance of the  FDI system were considered. They are 

0 noise  l e v e l ,  

0 magnitude of the  noise  compensation, 
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0 t i m e  cons t an t  of the s o f t  f a i l u r e  d e t e c t i o n  channel, 

, -  

I 
0 magnitude of t h e  sensor  f a i l u r e .  

A s t r a i g h t  and l e v e l  c r u i s e  f l i g h t  p r o f i l e  w a s  used i n  all of the 

s imula t ion  runs. The e f f e c t s  of sensor  sepa ra t ion  and s t r u c t u r a l  modes 

are not  included f o r  s impl i c i ty .  

The variance of t he  noise l e v e l  is assumed t o  be cons t an t  f o r  a 

given type of sensor. A value of 0.002849 w a s  assumed f o r  t he  acceler- 

ometers and 49.5 deg/hr f o r  t he  gyros. The nominal l e v e l  of the gyro 

no i se  compensation is 1u. The s o f t  f a i l u r e  d e t e c t i o n  channel second 

o rde r  f i l t e r  t i m e  constant  is var ied from the nominal value of dlS.0 

seconds. A damping r a t i o  of one is always assumed. B i a s  f a i l u r e s  of 

var ious magnitudes have been considered. The f a i l u r e  p r o f i l e  is 

presented i n  Table 6 f o r  t h e  base case. 
/ 

Table 7 i n d i c a t e s  the need f o r  noise  compensation i n  the  gyro 

d e t e c t i o n  channel. The noise  l e v e l  must be about 5.0 deg/hr o r  less t o  

avoid f a l s e  alarms without compensation. The accelerometer de t ec t ion  

channel, on the o t h e r  hand, is no t  very s e n s i t i v e  to  n.oise. Hence, 

accelerometer noise  compensation may not be necessary. 

Table 8 summarizes the  e f f e c t  of t he  f i l t e r  t i m e  cons t an t  on FDI 

system noise  compensation. False  alarms can be reduced by increasing t h e  

t i m e  cons t an t  of the f i l t e r s .  The accelerometer channel is n o t  very 

s e n s i t i v e  to the f i l t e r  t i m e  constant although there is  a trend toward 

i n c r e a s i n g  d e t e c t i o n  time de lay  with inc reas ing  time constant .  The 

r e s u l t s  a l s o  i n d i c a t e  t h a t  the gyro channel t i m e  constants  have t o  be 

l a rge ;  about  100 seconds, without no i se  compensation. The use of l a r g e  

t i m e  constants  alone t o  compensate f o r  noise e f f e c t s  does not prevent the 

p o s s i b i l i t y  of F D I  system e r r o r s  i n  the  presence of sensor  f a i l u r e s .  The 

f a l s e  i s o l a t i o n  which occurred f o r  t he  case where f a i l u r e s  were i n t r o -  

duced confirms this conclusion. 

The e f f e c t s  of noise  compensation, t he  f i l t e r  t i m e  cons t an t  and 

sensor f a i l u r e s  on FDI system performance are summarized i n  Table 9. I n  
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T a b l e  6 
F a i l u r e  P r o f i l e  for N o i s e  C o m p e n s a t i o n  S t u d y  

TIME 
( s e c  1 

Acce le  rome ter 
( N o i s e  L e v e l  .00284 g) 

MAGNITUDE FAILED SENSOR AXIS 
( g  1 

TIME 
( s e c  1 

70 

0.003 1 1:; 1 0.003 

MAGNITUDE FAILED SEI&OR AXIS 
(deg/hr 1 

4.0 8 

Gyro 
( N o i s e  L e v e l  4 9 . S 0 / h r 1  

140 

21 0 

4.0 

4.0 

6 

4 
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I -  t h e  absence of a f a i l u r e ,  no f a l s e  alarm occurred i n  the s o f t  gyro 

d e t e c t i o n  channel with la no i se  compensation. The gyro f a i l u r e  l e v e l  

t h a t  can be detected under these  condi t ions is about 4.0 deg/hr. The.  

c o r r e c t  d e t e c t i o n  of a 2.0 deg/hr gyro f a i l u r e  is very s e n s i t i v e  t o  t h e  

f i l t e r  t i m e  constant  as ind ica t ed  by Cases 2, 4, 5 and 6. False  alarms 

can be avoided by inc reas ing  the l e v e l  of noise  compensation as demon- 

s t r a t e d  by Cases 8 and 9. 

Time h i s t o r i e s  of t he  s o f t  f a i l u r e  channel thresholds  and 

d e t e c t i o n  decis ion funct ions f o r  t w o  r ep resen ta t ive  cases with sensor 

no i se ,  with and without compensation, are presented i n  Figures 12 and 13, 

r e spec t ive ly .  

and the  nominal noise  level is 49.5 deg/hr. A white noise  model, with a 

power spectrum which is cons tan t  over a l l  f requencies ,  w a s  assumed. This 

c h a r a c t e r i s t i c  accounts f o r  t he  f a c t  t h a t  s o f t  f a i l u r e  decis ion funct ions 

on the  order  of t e n t h s  of a deg/hr are evident  i n  Figures 12 and 13 and 

The s o f t  f a i l u r e  channel f i l t e r  t i m e  constant  is  J1's sec 

. demonstrat'es a p o t e n t i a l  problem with ED1 f o r  t he  RSDIMU. The white 

noise  model introduces s i g n a l s  a t  f requencies  within the  passband of t h e  

s o f t  f a i l u r e  channel low pass f i l t e r  which are a t t enua ted  very l i t t l e  

compared to  the  high frequency noise  components and poss ib ly  no t  a t  a l l  

i n  the  worst case. 

Figure 12 was obtained f o r  t he  system without noise  compensation 

i n  the threshold. Three false alarms, due to the presence of the noise, 

were ' rapidly de t ec t ed  between 50 t o  75 sec i n t o  the run, c l e a r l y  demon- 

s t r a t i n g  the need f o r  compensation. The software w a s  s p e c i f i c a l l y  

w r i t t e n  t o  exclude the d e t e c t i o n  of f a i l u r e s  f o r  t he  f i r s t  45 sec of a 

s imulat ion run and is the reason that f a l s e  alarms were not encountered 

p r i o r  t o  the  times ind ica t ed  on Figure 12. Furthermore, t he  software is 

a l s o  w r i t t e n  so t h a t  the thresholds  are not computed a f t e r  three f a i l u r e s  

are de tec t ed  and exp la ins  why t h e  threshold is  zero f o r  times g r e a t e r  

than 75 seconds. 

The r e s u l t s  of Figure 13 w e r e  obtained with la noise  compensation 

i n  the threshold and th ree  4 deg/hr f a i l u r e s  introduced as ind ica t ed  i n  
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Table 6. The nominal sensor e r r o r  values were used t o  compute the noise  

compensation and n o t  t he  ad jus t ed  values which l ed  t o  the r e s u l t s  

presented i n  Figure 11.  The th ree  f a i l u r e s  w e r e  detected and c o r r e c t l y  

i s o l a t e d .  I n  f a c t ,  t he  second f a i l u r e  w a s  de t ec t ed  a f t e r  the t h i r d  w a s  

introduced and i ts  e f f e c t  not f u l l y  manifested i n  the  decis ion function. 

The r e s u l t s  of Figure 13 confirm the  v a l i d i t y  of noise  compensation i n  

the  f a i l u r e  de t ec t ion  system thresholds .  

4.3 Summary and Conclusions 

The performance of t h e  F D I  algorithm i n  t he  presence of noise  has 

been inves t iga t ed .  The effects of noise l e v e l ,  f a i l u r e  l e v e l ,  noise  

compensation l e v e l  and f i l t e r  t i m e  cons t an t s  have been considered. A 

s t r a i g h t  and l e v e l  f l i g h t  p r o f i l e  has been used for s imulat ion purposes. 

Several  conclusions were drawn during the course of t h i s  study. 

They w e r e  : 

0 Gyro noise  compensation is necessary to  prevent  f a l s e  alarms. 

Without noise compensation, the gyro de tec t ion  channel can only 

tolerate a l o w  noise  l e v e l  of about 5 deg/hr. However, t h e  

accelerometer channel is not  very s e n s i t i v e  t o  noise. 

0 Noise can be compensated f o r  by a d j u s t i n g  the f i l t e r  t i m e  

cons t an t s  of the ED1 system or by accounting f o r  the presence 

of no i se  i n  the  d e t e c t i o n  threshold using a covariance compu- 

t a t i o n  scheme. 

0 Large f i l t e r  t i m e  cons t an t s  by themselves are n o t  s u f f i c i e n t  t o  

prevent f a l s e  alarms i n  the  presence of noise  and f a i l u r e s .  

Noise compensation i n  the  threshold is necessary. 

0 A high l e v e l  of noise  compensation i n  the  threshold provides a 

means of preventing f a l s e  alarms at. t he  expense of decreased 

f a i l u r e  de t ec t ion  c a p a b i l i t y .  
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SECTION 5 

THE EFFECT OF SENSOR LOCATION AND MAGNITUDE OF THE 
STRUCTURAL MODES ON FDI SYSTEM PERFORMANCE 

5.1 In t roduc t ion  

The impact of sensor loca t ion  and magnitude of the s t r u c t u r a l  mode 

e f f e c t s  on FDI system performance must be considered i n  the implementa- 

t i o n  and u t i l i z a t i o n  of an RSDIMU i n  an a i r c r a f t  system. Given complete 

freedom, the a i r c r a f t  c o n t r o l  system designer  w i l l  p lace the  acceler- 

ometers a t  t h e  nodes and t h e  gyros a t  the ant inodes of the s t r u c t u r a l  

modes to l e s sen  t h e i r  sensed e f f e c t s .  This freedom is taken away from 

t h e  a i r c r a f t  system designer  when-an RSDIMU is .implemented s ince  the 

accelerometers and gyros are colocated. The impl i ca t ion  of t h i s  restric- 

t i o n  must be assessed. However, a complete and thorough study of sensor 

l o c a t i o n  and s t r u c t u r a l  mode e f f e c t s  would be extremely complex, involv- 

i n g  a d e t a i l e d  considerat ion of control system s t a b i l i t y ,  phase and gain 

margins, etc., which is  d e f i n i t e l y  beyond the scope of the p re sen t  

effort. As a c o m p r o m i s e ,  the subjects of sensor loca t ion  and s t r u c t u r a l  

mode e f f e c t s  w i l l  be assessed v i a  s imulat ion.  

This t a sk  is divided i n t o  t w o  p a r t s .  The f i rs t  involves  t h e  

i n v e s t i g a t i o n  of the e f f e c t s  of sensor  l o c a t i o n  on FDI system perform- 

ance. The two halves of t he  RSDIMU are placed a t  d i f f e r e n t  l o c a t i o n s  

along the veh ic l e  fuselage.  The s t r u c t u r a l  mode c o e f f i c i e n t s  are va r i ed  

with the loca t ion  of t he  RSDIMU. The presence of sensor f a i l u r e s  is a l s o  

evaluated.  In  the second part of t h i s  s e c t i o n ,  the e f f e c t s  of changes i n  

t h e  magnitudes of t he  s t r u c t u r a l  modes are considered. The abso lu te  

values of a l l  of the s t r u c t u r a l  mode c o e f f i c i e n t s  f o r  an RSDIMU c l u s t e r  

are changed by a s p e c i f i e d  percent .  In  both cases, the 30 minute f l i g h t  
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p r o f i l e  of Table 2 is used. Sensor noise  is  not considered. The 

loca t ions  assumed for the RSDIMU c l u s t e r s  are given i n  Table 10. 

5.2 Resul t s  of t h e  Sensor Location Parametric Study 

The r e s u l t s  obtained f o r  t he  sensor  loca t ion  e f f e c t s  s tudy are 

presented i n  Table 11 f o r  those cases i n  which sensor  f a i l u r e s  are no t  

present .  They i n d i c a t e  that the effects of lateral sepa ra t ion  are not 

s i g n i f i c a n t  (Case 4 VS. C a s e  6).  A similar r e s u l t  can be expected when 

the sensor  c l u s t e r s  are separa ted  i n  the normal d i r e c t i o n  s ince  the 

s t r u c t u r a l  mode c o e f f i c i e n t s  are only long i tud ina l ly  dependent. False 

alarms occur when a t  least one half  of the  RSDIMU is placed a t  the rear 

of the  a i r c r a f t  (Cases 3 and 5 ) .  The a i r p l a n e  response also becomes 

uns t ab le  With both halves of the RSDIMU located far aft of the c.g. This 

i n s t a b i l i t y  may be due to  the d e s t a b i l i z i n g  inf luence  of the  p i t c h  rate 

feedback term induced by the normal accelerometer  l eve r  arm t e r m .  False 

alarms d id  not  occur i n  those cases i n  which the  sensors  are loca ted  

forward of the a i r c r a f t  c.g. 

The r e s u l t s  f o r  the  cases i n  which sensor  f a i l u r e s  are introduced 

are summarized i n  Table 12. Only two l oca t ions  were considered, FS77 and 

FS313. N o  problems were encountered w i t h  the  ED1 system. For example, 

the gyro channel performed p e r f e c t l y  despite the long t i m e  it took t o  

detect the  3.0 deg/hr f a i l u r e  introduced during the loiter maneuver. I n  

add i t ion ,  the order i n  which the  sensor  f a i l e d  did not  a f f e c t  t he  

r e s u l t s  . 
The a n a l y t i c  compensation of the accelerometer outputs  f o r  t he  

l eve r  arm e f f e c t s  w a s  also eva lua ted  during t h i s  phase of the  study. 

Bas ica l ly ,  the  lever arm terms of 4 s .  ( 3 )  and ( 4 )  were computed using 

the RSDIMU outputs .  The angular  a c c e l e r a t i o n s  w e r e  obtained by pass ing  

the  RSDIMU angular velocities through washout f i l t e r s .  This approach was 

abandoned a f t e r  s imula t ion  eva lua t ion  due t o  the  f a c t  t h a t  it introduced 

false alarms i n t o  the system. It  w a s  found to  be better t o  include a 
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T a b l e  10 
L o c a t i o n  of RSDIMU C l u s t e r s  R e l a t i v e  to V e h i c l e  c o g .  

LOCATION 

FS77 

FS200 

FS313 

FS563 

~ 

X-DISTANCE 
(Meters ) 

6- 172 

3.048 

1777 

-6.172 

y-D I STANCE 
( M e t e r s )  

4572 

04572 

7 4572 

4572 

2-DISTANCE 
( M e t e r s  1 

3048 

1524 

0 

-04572 
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term i n  the FDI system thresholds  t o  account f o r  the accelerometer l eve r  

arm e f f e c t s  than t o  a n a l y t i c a l l y  compensate the  accelerometer outputs  f o r  

t h e i r  presence and not  account f o r  them i n  the  thresholds.  The a n a l y t i c  

compensation process introduced high frequency u n c e r t a i n t i e s  i n t o  t h e  

system due to  the  d i f f e r e n t i a t i o n  of the angular rates which r e s u l t e d  i n  

f a l s e  alarms. 

5.3 The E f f e c t  of t he  Magnitude of t h e  S t r u c t u r a l  
Modes on F D I  Svstem Performance 

The r e s u l t s  are summarized i n  Table 13 with the e f f e c t s  of sensor  

l o c a t i o n  and changes i n  the magnitudes of the s t r u c t u r a l  modes 

presented. Deviations of about  20% from the nominal s t r u c t u r a l  mode 

c o e f f i c i e n t s  led to  a f a l s e  alarm i n  the  gyro s o f t  f a i l u r e  d e t e c t i o n  

channel. The accelerometer s o f t  f a i l u r e  channel is less s e n s i t i v e  t o  the  

s t r u c t u r a l  modes s ince  a f a l s e  alarm w a s  not induced when t h e i r  magnitude 

w a s  increased by 20%. ' 

5.4 Summary and Conclusions 

This phase of the study d e a l t  with an i n v e s t i g a t i o n  of the e f f e c t s  

of sensor  l o c a t i o n  on F D I  system performance. The r e s u l t s  i n d i c a t e  t h a t  

0 Location of the RSDIMU a f t  of the vehicle  c.g. is n e i t h e r  

d e s i r a b l e  nor acceptable .  However, an assessment of t he  i m p a c t  

' of the RSDIMU on the s t a b i l i t y  and c o n t r o l  of the a i r c r a f t  

system is a complex problem which must be addressed from t h e  

i n t e g r a t e d  systems p o i n t  of v i e w .  

0 The e f f e c t s  of lateral  and normal sepa ra t ions  of the RSDIMU on 

t h e  FDI process are not very s i g n i f i c a n t .  

0 The a n a l y t i c  compensation of t he  accelerometer outputs  for 

l e v e r  arm e f f e c t s  r e s u l t e d  i n  poor F D I  system performance and 

f a l s e  alarms. 
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A second task  involved a parametr ic  s tudy of the  e f f e c t s  of the  

magnitude of the s t r u c t u r a l  modes on the FDI system. It w a s  concluded 

f o r  this phase of the  s tudy t h a t  

0 The gyro channel is  more s e n s i t i v e  t o  v a r i a t i o n s  i n  the 

s t r u c t u r a l  modes than the accelerometer channel. 

0 S t r u c t u r a l  mode e f f e c t s  which are l a rge  relative t o  the other 

RSDIMU u n c e r t a i n t i e s  may adversely impact the  performance'of 

the  FDI algori thm. 
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SECTION 6 

THRESHOLD GENERATION U S I N G  NOISE COMPENSATION 
AND FILTERED PARITY EQUATION RESIDUALS 

6.1 In t roduc t ion  

The threshold generat ion scheme used up t o  t h i s  p o i n t  i n  the  

program is  t h a t  developed i n  Section 2 of t h i s  r e p o r t  and designated the  

least squares e s t ima t ion  approach. The s t r u c t u r a l  mode and accelerometer 

l e v e l  arm threshold e f f e c t s  are obtained by 

c a l c u l a t i n g  a least square estimate of the l i n e a r  a c c e l e r a t i o n s  

and angular  velocities. 

e s t ima t ing  the sensor outputs  using these estimated parameters. 

s u b t r a c t i n g  the  a c t u a l  and est imated sensor s i g n a l s  to  ob ta in  

an estimate of the sensor  u n c e r t a i n t i e s .  

so lv ing  the p a r i t y  equations using these sensor u n c e r t a i n t i e s .  

using the absolute  values of the  p a r i t y  equation r e s i d u a l s  

obtained i n  the  thresholds.  

The above defined approach has several shortcomings. I n  

p a r t i c u l a r ,  it does not include noise  compensation as developed i n  

Sect ion 4. Furthermore, the p a r i t y  equation r e s i d u a l s  obtained w i t h  t h i s  

approach are corrupted by the sensor errors. It  has been demonstrated 

t h a t  the presence of these sensor  error e f f e c t s  can lead t o  f a l s e  alarms. 
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6.2 The Reformulated Threshold Algorithm 

An al ternate  approach t o  threshold  generat ion w a s  explored t o  

overcome these  shortcomings. A block diagram of the  scheme mechanized is  

shown i n  Figure 14. Noise compensation, as developed i n  Sec t ion  4, is 

included. In  add i t ion ,  the  threshold  terms, required to  compensate f o r  

the  s t r u c t u r a l  mode e f f e c t s ,  are obtained by f i l t e r i n g  the  p a r i t y  

equat ion r e s idua l s .  This approach w a s  recommended by F. Morrell of NASA 

Langley. The s t r u c t u r a l  mode e f f e c t s  are high frequency i n  nature .  

Their  f requencies  are much higher  than those of the bare a i r f rame of the  

vehic le .  The q u a n t i t y  required t o  compensate f o r  the s t r u c t u r a l  mode 

e f f e c t s  i n  the  thresholds  is given i n  4. ( 9 )  and can be obtained exac t ly  

by washout or  high pass f i l t e r i n g  the  par i ty  equat ion r e s idua l s .  

A s l i g h t l y  d i f f e r e n t  approach is required with the  accelerometer 

lever arm e f f e c t s .  In  t h i s  case, both l o w  and high frequency compensa- 

t i o n  must be considered. The high f requencies  are important  during 

veh ic l e  t r a n s i e n t s  while the l o w  f requencies  are s i g n i f i c a n t  during s l o w  

maneuvers such as a l o i t e r .  The high. frequency po r t ions  of t he  l eve r  arm 

con t r ibu t ion  to  the threshold  a r e  obtained with the high pass f i l t e r i n g  

of the  p a r i t y  equat ion res idua ls .  The l o w  frequency por t ion  can be 

obtained by c a l c u l a t i n g  the  accelerometer lever arm e f f e c t s  using ?Ae 

a n a l y t i c  expression of 4. ( 4 ) .  The angular  acce le ra t ions  requi red  to  do 

t h i s  can be obtained by high pass f i l t e r i n g  the  angular  rates. The 

e f f e c t  of the  low frequency l eve r  arm u n c e r t a i n t i e s  on the  ind iv idua l  

sensors  can be obtained by reso lv ing  these  u n c e r t a i n t i e s  through the  

sensor  geometry matrix. The l eve r  arm e f f e c t s  required f o r  t he  thresh-  

o lds  can be obtained by l o w  pass f i l t e r i n g  the  r e s u l t a n t  res idues  and 

adding i n  the high frequency con t r ibu t ion  obtained by f i l t e r i n g  the 

p a r i t y  equations.  The low pass and high pass f i l ters used i n  t h i s  

process  are complementary. 

The f i l t e r e d  p a r i t y  equat ion approach t o  threshold  genera t ion  i s  

n o t  without  i ts  p o t e n t i a l  shortcomings. S p e c i f i c a l l y ,  a problem could 

a r i s e  w i t h  the  acceleration channel when an undetected gyro f a i l u r e  is 
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present .  In  t h i s  ins tance ,  the  est imated angular  r a t e s  of t he  vehic le  

are corrupted by the  gyro f a i l u r e  which, i n  tu rn ,  a f f e c t s  the  estimates 

of t he  l i n e a r  acce le ra t ion  due to  the  l eve r  arm e f f e c t s .  Since this 

q u a n t i t y  is l o w  pass f i l t e r e d  the  undetected gyro f a i l u r e  a f f e c t s  t he  

threshold.  The consequences of i ts  e f f e c t  cannot be predicted.  I f  t he  

threshold  is lowered a f a l s e  alarm could r e s u l t  or i f  the  threshold  is 

increased  the  f a i l u r e  could go undetected o r  a longer de t ec t ion  t i m e  

could r e s u l t .  The problem j u s t  discussed w a s  evaluated v ia  s imulat ion.  

It w a s  shown t o  be of only neg l ig ib l e  concern f o r  small undetected gyro 

f a i l u r e .  Large undetected gyro f a i l u r e s  a f f e c t  the vehic le  c o n t r o l l a b i l -  

i t y  which is a problem of much greater consequence. 

The estimates of the gyro and accelerometer  s t r u c t u r a l  mode and 

high frequency l eve r  arm e f f e c t s  required f o r  t he  thresholds  are not  

a f f e c t e d  by an undetected f a i l u r e .  Each of these  q u a n t i t i e s  is obtained 

by high pass f i l t e r i n g  the  p a r i t y  equat ion r e s i d u a l s  and the  e f f e c t s  of 

an undetected f a i l u r e  w i l l  not  be t ransmi t ted .  

The noise  compensation is  not  a f f e c t e d  by an undetected f a i l u r e  

s i n c e  both up and uE 

‘ESE 
c o r r e c t .  

i nc rease  to  r e f l e c t  the  presence of t he  f a i l u r e .  
,SE 

is  subs t r ac t ed  from up so t h a t  the  e f f e c t  is cance l led  out  and un i s  

The e f f e c t  of an undetected sensor  f a i l u r e  on the  estimates of the  

sensor  error e f f e c t s  f o r  t he  threshold  is second order  i n  nature .  The 

es t imated  angular rates or linear a c c e l e r a t i o n s  are modified by the 

nominal estimate of the  sensor  error which g r e a t l y  reduced its e f f e c t .  

6.3 Algorithm Evaluat ion 

The values of t he  t i m e  cons tan ts  f o r  t he  washout and l o w  pass 

f i l t e r s  required f o r  the  estimates of the s t r u c t u r a l  mode and l eve r  arm 

e f f e c t s  f o r  the thresholds  w e r e  determined via s imulat ion.  Noise and 

sensor  e r r o r  e f f e c t s  w e r e  not  included and a t r i a l  and error approach 

employed. The washout t i m e  cons tan ts  were s e l e c t e d  by comparing t i m e  

h i s t o r i e s  of the  a c t u a l  and est imated e f f e c t s .  The low pass  f i l t e r  t i m e  
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cons tan t  f o r  t he  accelerometer l eve r  arm e f f e c t s  w a s  set equal t o  t h a t  of 

t he  high pass  f i l t e r  i n  complementary f i l t e r i n g  fashion. The value of 

t h e  accelerometer t i m e  constants  w a s  confirmed f o r  both the s t r u c t u r a l  

mode and lever arm e f f e c t s .  For t h i s  phase of t he  study, the RSDIMU w a s  

l oca t ed  a t  FS313 and FS77. Sensor f a i l u r e s  were a l s o  considered b u t  only 

t h e  s o f t  f a i l u r e  channel w a s  dealt with. 

Based upon the r e s u l t s  obtained, washout f i l t e r  t i m e  constants  of 

15.0 sec and 25.0 sec were selected f o r  the accelerometer and gyros 

r e spec t ive ly .  The accelerometer l o w  pass f i l t e r  t i m e  constant  is 15.0 

sec. 

constants .  I f  the washout t i m e  cons t an t s  are made l a r g e r ,  the s t ruc -  

t u r a l  mode and high frequency l e v e r  arm estimates contain lower frequen- 

cies. However, a longer f a i l u r e  de t ec t ion  t i m e  r e s u l t s .  On the o the r  

hand, i f  t he  washout f i l t e r  t i m e  cons t an t  is smaller, the des i r ed  

estimates are not adequate and f a l s e  alarms r e s u l t .  These t r a d e o f f s  were 

ev iden t  with the range of s imulat ion runs made to  select the  f i l t e r  t i m e  

cons t an t s  . 

Se'Geral t r a d e o f f s  are p resen t  i n  the s e l e c t i o n  of t hese  t i m e  

The FDI threshold generat ion algorithm developed i n  t h i s  s e c t i o n  

w a s  evaluated i n  much g r e a t e r  d e t a i l .  More s p e c i f i c a l l y ,  t he  s e n s i t i v i t y  

of t he  FDI system performance and t h e  gyro s o f t  f a i l u r e  channel i n  

p a r t i c u l a r  t o  noise  and second order  system f i l t e r  t i m e  constant  was 

determined. The r e s u l t s  f o r  s t r a i g h t  and l e v e l  f l i g h t  are presented i n  

Figure 15.  mree 2.0 deg/hr f a i l u r e s  were i n j e c t e d  i n t o  the system a t  

100, 200 and 300 seconds during a 400 sec run. The noise  l e v e l  t h a t  can 

be t o l e r a t e d  inc reases  with the  second order  f i l t e r  t i m e  constant.  A 

f i l t e r  t i m e  cons t an t  t h a t  is longer than 40 seconds is no t  considered, i n  

o rde r  to  prevent possible masking o u t  of a f a i l u r e  i f  it occurs immedi- 

a t e l y  a f t e r  t he  previous f a i l u r e  or i n  between maneuvers and also t o  

prevent  long de tec t ion  delay. 

Figure 16 shows the  performance of the FDI system being evaluated 

i n  maneuvering f l i g h t .  The 1800 second f l i g h t  p r o f i l e  of Table 2 is  used 

with 2.0 deg/hr f a i l u r e  introduced a t  500, 1000 and 1500 sec i n t o  sensor  
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axes 8 ,  6 and 4,  r e spec t ive ly .  The t o l e r a b l e  noise l e v e l  appears t o  be 

l i n e a r l y  r e l a t e d  with the  time cons tan t  between 20 and 40 seconds. The 

t o l e r a b l e  noise  l e v e l  for t h i s  range of t i m e  constants  is l o w e r  than t h a t  

f o r  s t r a i g h t  and level  f l i g h t .  

6.4 A Threshold Algorithm Modification f o r  Reconfiguration 

The threshold funct ion,  defined i n  t h i s  s ec t ion ,  w a s  a l s o  modified 

t o  account f o r  the memory of the l o w  pass f i l t e r s  a s soc ia t ed  w i t h  it. I n  

t h e  event of f a i l u r e  de t ec t ion  and i s o l a t i o n ,  the sensor system i s  

reconfigured, the number of p a r i t y  equat ions reduced and the threshold 

func t ion  changed t o  r e f l e c t  this reduction. This is accomplished by 

changing a subse t  of t he  p a r i t y  equations and s e t t i n g  o the r s  t o  zero. 

S t ep  decreases  i n  the  threshold funct ion r e s u l t .  I t  has been observed 

t h a t  a f t e r  reconfigurat ion,  t he  d e t e c t i o n  funct ion can inc rease  before  

t h e  threshold funct ion can respond to  compensate f o r  such e f f e c t s .  The 

reqson f o r  t h i s  i s  t h a t  t h e  f i l t e r s  r e t a i n  some information r e f l e c t i n g  

t h e  s ta te  of t he  system p r i o r  t o  f a i l u r e  i s o l a t i o n .  To prevent f a l s e  

alarms a r i s i n g  because of t h i s  phenomena, t he  threshold funct ion has been 

modified so t h a t  it decays exponent ia l ly  when a f a i l u r e  is  detected and 

i s o l a t e d .  A time cons tan t  of 20 sec has been used f o r  the f i l t e r .  

The s u b j e c t  of threshold t r a n s i t i o n  a f t e r  f a i l u r e  de t ec t ion  and 

i s o l a t i o n  is addressed i n  Figure 17. The f a i l u r e  de t ec t ion  dec i s ion  

func t ion  is shown i n  the top  t i m e  h i s t o r y .  2.0 deg/hr f a i l u r e s  w e r e  

i n j e c t e d  i n t o  the system a t  t h e  t i m e s  i nd ica t ed .  The middle t i m e  h i s t o r y  

i s  the gyro threshold without an exponent ia l  decay a f t e r  f a i l u r e  detec- 

t i o n  and i s o l a t i o n .  An instantaneous change i n  the  threshold occurs 

a f t e r  t he  de t ec t ion  and i s o l a t i o n  of the second f a i l u r e  which r e s u l t s  i n  

a f a l s e  alarm. The gyro threshold func t ion  with an exponent ia l  decay 

a f t e r  f a i l u r e  i s o l a t i o n  is  shown i n  the  bottom f igu re  and c o r r e c t  detec- 

t i o n  and i s o l a t i o n  of a l l  t h r e e  f a i l u r e  occurs.  
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6.5 E f f e c t  of Sensor Location on Navigation Performance 

The reformulated threshold algori thm was a l s o  used to  eva lua te  the  

e f f e c t  of sensor loca t ion  on navigat ion performance. Simulation runs 

were made using the  fol lowing loca t ions  f o r  t he  RSDIMU. 

0 All sensors  located near the  a i r c r a f t  cen ter  of g rav i ty ,  FS313 

0 All sensors  located near the f r o n t  of the fuse lage  a t  FS77 

0 One-half of t he  RSDIMU a t  FS313 and the  o ther  half  a t  FS77 

(nominal case 1. 

Each case w a s  run with and without f a i l u r e s .  

Table 14 lists the  e r r o r  ranges f o r  d i f f e r e n t  navigat ion v a r i a b l e s  

obta ined  f o r  the  1800 second eva lua t ion  run with no f a i l u r e s  present .  

All four  sensors  were used. The range of error magnitudes is comparable 

f o r  a l l  combinations of sensor loca t ions .  The b igges t  d i f f e rence  among 

the  e r r o r  va r i ab le s  f o r  the  d i f f e r e n t  l oca t ions  is t h a t  the  error 

t r a j e c t o r i e s  are not equal ly  smooth f o r  a l l  var iab les .  For example, the  

a l t i t u d e  rate error time h i s t o r y  w a s  smoothest when both halves  of the  

RSDIMU are near FS313. A similar d i f f e rence  i n  smoothness w a s  ev ident  

f o r  t he  yaw angle  e r r o r .  This t i m e ,  however, the curve is n o i s i e s t  f o r  

a l l  sensors  loca ted  a t  FS313. All o the r  navigat ion error t i m e  h i s t o r i e s  

w e r e  similar i n  na ture  and noise  c h a r a c t e r i s t i c s  f o r  a l l  RSDIMU sensor  

loca t ions .  

The s imula t ion  run which r e s u l t e d  i n  Table 14 w a s  repeated with 

s o f t  accelerometer f a i l u r e s  i n j e c t e d  i n t o  the  system t o  see what 

inf luence ,  i f  any, #is would have on naviga t ion  system performance. The 

f a i l u r e s  were de tec ted  and c o r r e c t l y  i s o l a t e d .  N o  major d i f f e rences  

between the  f a i l u r e  and no f a i l u r e  cases were evident .  

The e f f e c t  of sensor  location on navigat ion error when only two 

sensors  are i n  use w a s  also examined. The outputs  of only two sensors  

w i l l  be used f o r  navigat ion purposes i n  an ope ra t iona l  system so t h a t  

sensor  f a i l u r e s  w i l l  no t  a f f e c t  navigat ion accuracy. Multiple naviga t ion  
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so lu t ions  based on a l l  combinations of two sensor  outputs  w i l l  be gener- 

a ted.  Only s o l u t i o n s  obtained from f a i l u r e - f  ree sensors  are va l id .  

Switching from the  fai lure-contaminated so lu t ions  t o  the  f a i l u r e - f r e e  

s o l u t i o n s  w i l l  be part of t he  system reconfigurat ion.  

Simulation runs were made using the  following loca t ions  f o r  t he  

sensor  pair: 

0 Two sensors  located near the  f r o n t  of the fuselage a t  FS77. 

0 One sensor  loca ted  near the  f r o n t  of the  fuse lage  a t  FS77 and 

the  o ther  near t he  a i r c r a f t  cen te r  of g rav i ty  a t  FS313. 

0 Two sensors  located near the cen te r  of g rav i ty  a t  FS313. 

The r e s u l t s  obtained from the  s imulat ion runs were compared t o  each 

o the r ,  as w e l l  as t o  the nominal case, where four  sensors  w e r e  used, t w o  

a t  FS77 and two a t  FS313. Figure 18 i l l u s t r a t e s  the r e s u l t s  f o r  a l t i t u d e  

rate e r r o r s .  Figure 18b i n d i c a t e s  t h a t  the error obtained w i t h  t w o  

sensors  a t  FS77 is even smaller than those obtained f o r  t he  four  sensor  

nominal case of Figure 18a. The d i f f e rence  i n  r e s u l t s  can be q u i t e  l a r g e  

f o r  some va r i ab le s ,  as Figure 19 shows f o r  the east ve loc i ty  error. 

The r e s u l t s  of Figures  18 and 19, however, represent  only a few 

samples from the  spectrum of those poss ib le .  CSDL could not  d r a w  a 

genera l  conclusion regarding the  p re fe rab le  loca t ion  f o r  a sensor pair 

wi th  regard t o  navigat ion system performance . A covariance,  r a t h e r  than 

a d e t e r m i n i s t i c ,  approach to  the  problem is suggested as a p re fe rab le  way 

t o  ob ta in  the  des i red  conclusion. 

6.6 Resul t s  of Sensor Error Parametr ic  Study on FDI Performance 

Attempts to  reduce the  l e v e l  of the  threshold  func t ion  der ived i n  
Sec t ion  6.4 were made i n  order  to  improve the  s o f t  f a i l u r e  de t ec t ion  

c a p a b i l i t y  of the FDI algorithm. The lower the  threshold l e v e l ,  however, 

t h e  higher  the  p r o b a b i l i t y  of f a l s e  alarm. I n  order  to  determine a l o w e r  

l i m i t  on the l e v e l  of the threshold  funct ion,  a parametric a n a l y s i s  w a s  

conducted i n  which the  sensor  e r r o r  terms represented i n  t he  threshold  
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Figure 18. Al t i tude  rate error when only  t w o  sensors are used 
i n  m / s  (fps) . 

a) Nominal Case: Two sensors at FS77, t w o  a t  FS313. 
b) Two sensors a t  FS77. 
c )  One sensor a t  FS77, and one at FS313. 
d) Two sensors at  FS313. 
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Figure 19. E a s t  v e l o c i t y  error when only t w o  sensors  a r e  used 
i n  m / s  (fps) 

a)  Nominal Case: TWO sensors  a t  FS77, t w o  a t  FS313. 
b) Two sensors  a t  FS77. 
c) One sensor  a t  FS77, and one sensor  a t  FS313. 
d) Two sensors  a t  FS313. 
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w e r e  lowered simultaneously u n t i l  a false alarm w a s  obtained. For both 

the  accelerometer and gyro sensors ,  t h e  following error terms were 

considered: 

0 instrument bias 

0 misalignment 

0 scale f a c t o r  

0 g - s e n s i t i v i t y  due to  1-9 f l i g h t  

For the gyros, the g - s e n s i t i v i t y  and instrument bias error e f f e c t  were 

combined i n t o  one term i n  the  threshold s ince  the f l i g h t  t r a j e c t o r y  is 

nominally 1-9. 

The 1800 second s imulat ion t r a j e c t o r y  was used i n  order  t o  examine 

the e f f e c t  of maneuvers on lowered threshold l eve l s .  The r e su l t s  

obtained are shown i n  Table 15 for t he  accelerometer and i n  Table 16 f o r  

the gyroscopes. These r e s u l t s  i n d i c a t e  how l o w  the threshold level can 

be set before obtaining f a l s e  alarms. 

The threshold e r r o r  terms can be lowered s i g n i f i c a n t l y  from the  

nominal values. N o  f a i l u r e s  were i n j e c t e d  i n t o  the s imulat ion runs up t o  

t h i s  point .  A subset  of these runs w a s ,  however, repeated with s o f t  

accelerometer and gyro f a i l u r e s  i n j e c t e d  i n t o  the  system t o  see whether 

the r e s u l t s  of Tables 15 and 16 were s t i l l  v a l i d  when only two or t h r e e  

senso r s  are functioning. I t  w a s  found that the r e s u l t s  are indeed repre- 

s e n t a t i v e  f o r  cases w i t h  as w e l l  as without f a i l u r e s .  

6.7 The E f f e c t  of Fa i lu re  Order on FDI Performance 

A l a rge  number of simulation runs w e r e  made t o  determine whether 

f a i l i n g  two sensors  i n  d i f f e r e n t  order  or a t  d i f f e r e n t  times a f f e c t e d  

f a i l u r e  d e t e c t i o n  and i s o l a t i o n  system performance. For this set of 

experiments, one ha l f  of the RSDIMU w a s  placed a t  the f r o n t  of the 

fuse l age  (FS77) and the o the r  ha l f  a t  t he  cen te r  of g r a v i t y  (FS313) .  The 
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Table 15 
Accelerometer Threshold Sensor Error  Values 

For Paramet r ic  Study 

ERROR 
TERM 

Instrument  B i a s  

Mi s a li gnme n t  

Sca le  Fac tor  

ERROR 
TERM 

UNIT NOMINAL 
VALUE 

deg/hr 0.03 

p rad  150 

PPm 60 

Instrument  B i a s  

0.0054 

Misalignment 

0.0045 

Sca le  Fac tor  

g-sens i t i v i  t y 

UNIT NOMINAL 
VALUE 

150. 

86.6 

86.6 

90. 

LOWEST VALUE 
WITHOUT 

FALSE A L A R M  

25 .O 

21.5 

21.5 

35 

FIRST VALUE 
RESULTING I N  
FALSE ALARM 

18.5 

16.5 

16.5 

31.5 

Table 16 
Gyro Threshold Sensor Error Values 

For Pa rame t r i c  Study 

I I 

LOWEST VALUE 
WITHOUT 

FALSE ALARM 

FIRST VALUE 
RESULTING I N  
FALSE ALARM 

I 

37.5 

15 

32.5 

12.5 
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following s imulat ion runs were made f o r  both the gyros and the  acceler- 

ome ters sepa ra t e ly :  

0 Two sensors  a t  FS77 f a i l e d  

0 One sensor a t  FS77 and one sensor a t  FS313 f a i l e d  

0 Two sensors  a t  FS313 f a i l e d  

For these runs, t h e  1800 second as w e l l  as the a l l - c r u i s e  500 second 

s imulat ion t r a j e c t o r i e s  were used. Two s o f t  f a i l u r e s  were introduced 

s e p a r a t e l y  f o r  the gyro and the accelerometer during the  1800 second 

s imulat ion t r a j e c t o r y ,  one a t  1000 seconds and the o the r  a t  1500 

seconds. For the 500 second s imulat ion run, they were i n j e c t e d  a t  150 

and 300 seconds. Accelerometer f a i l u r e s  of 0.003 g were i n j e c t e d ,  while 

f o r  the gyro the magnitude w a s  2.0 degrees/hour. I n  a l l  in s t ances ,  t h e  

f a i l u r e  order  had no e f f e c t  on e i t h e r  t he  occurrences of f a l s e  alarms or 

f a l s e  i s o l a t i o n .  A l l  f a i l u r e s  w e r e  de t ec t ed  and i s o l a t e d  within 25 

seconds. D e t e c t a b i l i t y  f o r  t he  second f a i l u r e ,  however, var ied depending 

on which instruments had a l r eady  been i s o l a t e d .  This i s s u e  w a s  discussed 

i n  Reference 1 . 
6.8 Summary 

A reformulation of the F D I  system threshold generat ion algori thm 

us ing  noise  compensation and filtered p a r i t y  equation r e s i d u a l s  for 

s t r u c t u r a l  mode and lever arm e f f e c t s  has been examined. This technique 

provides  exact  compensation of the high frequency s t r u c t u r a l  mode and 

l e v e r  arm e f f e c t s  i n  a computationally e f f i c i e n t  manner. The l o w  

frequency l eve r  and compensation terms are computed using t h e  angular 

v e l o c i t i e s  computed by the RSDIMU. A shortcoming with t h i s  approach w a s  

d iscussed,  which can arise due to  the  presence of an undetected gyro 

f a i l u r e .  P o t e n t i a l  consequences of this shortcoming are f a l s e  alarms o r  

undetected accelerometer f a i l u r e s .  S u i t a b l e  values f o r  the t i m e  

cons t an t s  of the f i l t e r s  a s soc ia t ed  with t h i s  a lgori thm w e r e  15 sec f o r  

t h e  accelerometers and 25 sec f o r  t he  gyros. The performance of the 
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reformulated FDI th reshold  generat ion algori thm w a s  evaluated i n  the  

presence of noise  as a func t ion  of the  t i m e  cons tan t  of the  second o rde r  

l o w  pass f i l t e r  associated with the  gyro s o f t  f a i l u r e  channel. A greater 

to l e rance  to  noise  w a s  i nd ica t ed  with inc reas ing  second order  f i l t e r  t i m e  

constant .  Maneuvering f l i g h t  also decreased the  system performance i n  

the  presence of noise .  

Considerat ion w a s  a l s o  given to  the  eva lua t ion  of an exponent ia l  

t r a n s i t i o n  i n  the  threshold  when reconf igura t ion  of the ED1 system 

occurs. This f e a t u r e  w a s  included t o  prevent  f a l s e  alarms as ind ica t ed  

by the  s imula t ion  r e s u l t s  included i n  the repor t .  

An i n v e s t i g a t i o n  of the  e f f e c t  of sensor loca t ion  on the  naviga- 

t i o n  performance of the  a i r c r a f t  system with an RSDIMU w a s  presented. 

Only minor d i f f e rences  were evident. I n  order  to  enhance the FDI's s o f t  

f a i l u r e  de tec t ion  capability, a threshold sensor  error parametric s tudy  

was conducted to  determine how low the thresholds  can be set  before  f a l s e  

alarms a r e  obtained. S i g n i f i c a n t  reduct ions  can be implemented. 

F ina l ly ,  s imulat ion runs were c a r r i e d  i n  order  t o  determine whether t he  

order  i n  which f a i l u r e s  occur has an e f f e c t  on F D I  performance. N o  

d i f f e r e n c e  was evident .  
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SECTION 7 

A GLT FDI SYSTEM STRATEGY BASED ON THE 
PAIRWISE COMPARISON OF SENSOR MEASUREMENTS 

7.1 Descr ipt ion of t h e  Algorithm 

An F D I  methodology which combines the d e t e c t i o n  and i s o l a t i o n  

process  i n  one step, is described i n  t h i s  sect ion.  Previously,  one 

p a r i t y  vector  p w a s  c a l c u l a t e d  using a set  of e i g h t  measurements, ou tpu t  

by fou r  sensors .  The d e t e c t i o n  dec i s ion  funct ion used, DF = p p, w a s  

der ived based on a Generalized Likelihood Rat io  T e s t  and the ex i s t ence  of 

a f a i l u r e  w a s  declared i f  .the de tec t ion  decis ion funct ion exceeded a 

p r e s p e c i f i e d  threshold.  Next, t he  f a i l u r e  was i s o l a t e d  based on t h e  

func t ion  DFI given by 4. ( 2 )  f o r  each sensor j. The i s o l a t i o n  

dec i s ion  is then made by determining max j (DFI. 1. The value of j t h a t  

maximizes DFI i d e n t i f i e s  the sensor that  is most l i k e l y  to  have f a i l e d .  

T 
D 

j 

3 

j 

The methodology suggested here  is a l s o  based on a Generalized 

Likelihood T e s t ,  bu t  i n s t ead  of ob ta in ing  a s i n g l e  p a r i t y  vector based on 

a l l  measurements, each p o s s i b l e  p a i r  of s enso r s  is used to  generate  one 

p a r i t y  vector ,  and, i n  tu rn ,  a d e t e c t i o n  decis ion function. This gives a 

t o t a l  of ( 2 )  = 6 decis ion funct ions,  each to be compared t o  a threshold.  

Thus, f o r  a pair of sensors i and j, the  p a r i t y  vector p i ,  is  def ined as 

4 
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and the corresponding dec i s ion  funct ion is 

T DF - - Pi j  P i j  
Di j 

(14 )  

Since each sensor  is represented i n  th ree  dec i s ion  funct ions,  a d e c i s i o n  

on whether a f a i l u r e  occurred, and, if so, which sensor t o  i s o l a t e  it t o ,  

can be made concurrent ly .  Table 1 7  i l l u s t r a t e s  t h i s  process for  a 

f a i l u r e  i n  sensor 2. The number of decis ion funct ions which exceed the  

threshold f o r  a sensor j is  called the degree of measurement incons i s -  

tency of sensor j ,  or D . Thus, as Table 17 i n d i c a t e s ,  D = 1 ,  D2 = 3,  
j 1 

D3 = 1 ,  D4 = 1 ,  assuming, of course,  t h a t  a l l  t he  GLT tests ran success- 

f u l l y .  

In  practice, a dec i s ion  t o  isolate  sensor j is taken i f  Dj > 2. - 
Thus, f o r  each sensor pair i , j ,  de f ine  the  l o g i c a l  va r i ab le  

= DFD > Tij ( i , j  = 1 , . . . , 4  i + j )  
i j  Fi j 

Considering sensor 2 ,  c o n s t r u c t  t he  l o g i c a l  expression 

G2 = ( F 1 2  and F 1 or ( F 1 2  and F 1 or (F23 and F24) 
23  2 4  

I f  D2 - > 2 ,  then a t  least one of the expressions i n  parentheses i n  the 

above equation w i l l  be t r u e ,  which means G2 will be t r u e  or equal  to  

, D1 = 1 ,  so t h a t  F = 1 ,  and F = F = 0. 
1 2  13 14 

one. For sensor 1 ,  however 

Thus, 

and F G1 = ( F 1 2  ) or ( F 1 2  and F 1 3 )  or ( F 1 3  and F23) 23  

= (1.0) + (1.0) + (1 .0 )  = 0 

To i s o l a t e  a second f a i l u r e ,  given instrument i has f a i l e d ,  
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I Table 17 
Example I l l u s t r a t i n g  Degree of Inconsis tency 

For Each Sensor When Sensor 2 is Failed 

Is DFD > T12? 
12 

Is DFD > T,3? 
13 

Is DF > T14? 
Dl 4 

> T233 Is DFD 

> T243 
Is DFD 

Is DFD 

23 

24 

> T343 34 

Degree of sensor 
inconsis tency 

1 

Y e s  

No 

No 

D1 = 1 

SENSOR 

2 

Y e s  

- 

- 

Y e s  

Y e s  

- 

D2 = 3 

3 

No 

Y e s  

No 

D3 = 1 

4 

- 

No 

No 

- 

Y e s  

No. 

D4 = 1 
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G = F F  
j jk j 2  

where i, j ,  k, R is a c y c l i c  permutation of 1 ,  2, 3, 4. That is, 

Instrument 1 Instrument 2 Instrument 3 Instrument 4 
Fa i l ed  Fa i l ed  Failed Fa i l ed  

G 1 = F F  
G 2 = F F  23 24 1 = F13F14 G1 = F12F14 12 13 

G 3 = F F  
G4 24 34 G4 = F14F34 G4 = F14F24 13 23 = F F  

I n  terms of the degree of inconsis tency,  Dj = 2 i f  sensor j is f a i l e d ,  

or D j  = 1 otherwise,  as shown i n  Table 18, f o r  t he  case where sensor 2 

w a s  f i r s t  f a i l e d ,  and sensor 1 f a i l e d  second. 

It can be seen t h a t  t h i s  a lgori thm resembles the Edge Vector T e s t ,  

described i n  Reference 1 ,  with i ts  o v e r a l l  logic of comparing pairs of 

sensor measurements. One d i f f e r e n c e  is  t h a t  the p a r i t y  equation c o e f f i -  

c i e n t s ,  given i n  Table 19, are der ived based on an algorithm, given i n  

Reference 4, which uses a least  square approach. More important,  t he  

dec i s ion  funct ion is  obtained through a s ta t i s t ica l  hypothesis test, 

namely, the GLT. The EVT's dec i s ion  funct ion,  on the o the r  hand, i s  

based on the p ro jec t ion  of measurements taken by two sensors  along the  

l i n e  of i n t e r s e c t i o n  of t he  same t w o  sensors '  planes.  

7 .2  The Algorithm's S e n s i t i v i t y  t o  F a i l u r e s  

The o r i e n t a t i o n  of the sensors  with respect to  the vehicle  body 

axes and the r e s u l t i n g  system of p a r i t y  equations have a profound e f f e c t  

on the  magnitude of sensor f a i l u r e s  which can be de tec t ed  and i s o l a t e d .  

This aspect of the FDI problem f o r  the redundant IMU sensor conf igu ra t ion  

and the  algorithm under considerat ion is  explored i n  this sect ion.  

Single  degree-of-freedom instrument f a i l u r e s  are assumed because it 
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Table 18 
Example I l l u s t r a t i n g  Degree of Inconsistency 

For Each Sensor When Sensor 1 is  Fai led,  
A f t e r  Sensor 2 Has Been Correctly I so la ted  

Is DFD > T13? 
13  

Is DFD > T14? 
14 

Is DFD > T34? 
34 

Degree of sensor 
inconsistency 

1 

Y e s  

Y e s  

~ 

D, = 2 

SENSOR 

3 

Yes 

No 

D = 1  
3 

4 

Y e s  

No 

D = 1  
4 
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Table 19 
Parity Equation Coefficients 

For Pairwise-Comparison GLT Algorithm 

- e  18301 Adj acen t 
Instruments 
1 & 2, 3 & 4, etc. 

- e  68301 

I 

e 5  Two Opposite 
Sensors 
1 & 3 , 2 & 4  

-. 5 

L 

Coefficients of 
First Sensor 

First Axis Second Axis ===I= 
e68301 m18301 

I 

Coefficients of 
Second Sensor 

First Axis Second Axis & 

90 



I 
1 .  

s i m p l i f i e s  the d iscuss ion  and gives  i n s i g h t  i n t o  the  area of FDI sens i -  

t i v i t y ,  and because f a i l u r e  modes of t h i s  na ture  are a d i s t i n c t  p o s s i b i l -  

i t y  with TDOF gyros. 

The p a r i t y  equat ions a t t e n u a t e  the  e f f e c t  of a sensor  f a i l u r e ,  

thus  reducing i ts  magnitude i n  the  par i ty-equat ion r e s idua l s .  To i l l u s -  

trate t h i s  f a c t ,  consider  a f a i l u r e  of magnitude b i n  Axis A. The 

measurement m i  would be 

The p a r i t y  veclxr  i s  

.6830b + Residual t e r m  = !  = V.  . m  'i j ij i j  

.5b + Residual term 

where 

- m - 
i j  

i f  i, j are ad jacen t  sensors  

i f  i , j  are separa ted  sensors  

Ai 
P 

This  f a i l u r e  magnitude is  r e f l e c t e d  i n  the dec is ion  . func t ion  as 

f 0 1 lows : 

T T T T  - = (v.  . m .  . I  (V i jmi j I  = m (V.  . V .  . ) m i j  13 13 i j  ij ij - P i j  P i j  
i j  

DFD 

i f  i, j are a d j a c e n t  

i f  i , j  are separa ted  

2 
( .6830b) + Residual term 

= f  ( .5b12 + Residual term 



The f a i l u r e  de t ec t ion  s e n s i t i v i t y  of sensor i can now be def ined 

as the square root of the c o e f f i c i e n t  of the term due t o  f a i l u r e  i n  the  

This is exac t ly  the same d e f i n i t i o n  used i n  dec i s ion  funct ion DFD 

Reference 1 f o r  the GLT algorithm, where s e n s i t i v i t y  is defined as the  

square root of the sum of the squares of t he  elements of a column of t he  

p a r i t y  equation matrices. Table 20 lists these c o e f f i c i e n t s ,  where it i s  

seen t h a t  uniform d e t e c t i b i l i t y  of the f i r s t  f a i l u r e  does exist with t h i s  

algorithm, s i n c e  a l l  of the c o e f f i c i e n t s  obtained f o r  it are permutations 

of each other .  The a b i l i t y  t o  d e t e c t  f a i l u r e s  degrades f o r  t he  second 

and t h i r d  f a i l u r e s ,  and the magnitude of f a i l u r e  which can go undetected 

i s  l a r g e r  f o r  t h ree  instruments than it is f o r  four. When f a i l u r e  

d e t e c t i o n  f o r  the two-instrument c l u s t e r s  is considered, it is once aga in  

e v i d e n t  that a f a i l u r e  l a r g e r  than t h a t  needed i n  the  three-  or four- 

instrument  cases has to  occur before it is detected. Table 20 shows that  

t h e  d i s p a r i t y  is most evident  when, f o r  instance,  sensors  1 and 4 are 

a l r eady  f a i l e d  and the t h i r d  f a i l u r e  occurs i n  one of the two i nne r  axes  

. of the remaining sensors ,  namely sensors  2 and 3. I n  t h i s  i n s t ance ,  the 

i j '  

. 

f a i l u r e  must be 2.732 times l a r g e r  than the minimum f a i l u r e  magnitude 

d e t e c t e d  the  f i r s t  t i m e .  

7.3 Threshold Se lec t ion  

The th re sho lds  used w i t h  t h i s  a lgori thm can be generated using a 

method very similar t o  t h a t  used f o r  t he  GLT algorithm, as descr ibed i n  

Sec t ion  2.6. They a l s o  c o n s i s t  of a cons t an t  po r t ion  and a dynamic 

port ion.  The dynamic th re sho lds  are again generated from an a n a l y t i c  

expression f o r  the upper bound of the sensor  errors and par i ty-equat ion 

r e s idua l s .  As with the GLT algorithm, the f a i lu re -dec i s ion  funct ions are 

the  sum of the  squares of t he  par i ty-equat ion r e s i d u a l s ,  except t h a t  

s enso r s  are taken two a t  a t i m e .  

Consider the development of the th re sho lds  f o r  a sensor  pair i, j 

Following 4. (81, the p a r i t y  equation r e s i d u a l s  is given by 
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Table 20 
Pairwise Comparison GLT Sens i t iv i ty  Coeff ic ients 

PARITY EQUATION SENSITIVITY COEFFICIENT 

12 
6DFD 

0683 
.183 . 183 
.683 

-683 
.183 
.183 
-683 

.683 

.183 . 183 

.683 

.683 

.183 

.183 

.683 

13 

0.5 
0.5 

0.5 
0.5 

0.5 
0.5 

0.5 
0.5 

0.5 
0.5 
0.5 
0.5 

.183 

.683 

.683 

.183 
-683 

.683 I . 183 

.683 . 183 . 183 
-683 

.683 

.183 

.183 

.683 

.183 
-683 
-683 
.183 
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4 
= 1 Vk $m + s t r u c t u r a l  mode terms i , j  = 1,...,4 

k=l i j  k i j  i f  j "i j 

An upper bound f o r  p i j  is,  as i n  4. (9) 

I I ) + \ s t r u c t u r a l  mode terms 
i j  

= 6 m ~ .  11 . (  k=l 1 'k ij "m 

Given the f a i l u r e  dec i s ion  funct ion DF of Eq. (141,  the upper bound 

f o r  DFD is  
D i  j 

i j  

Tij  = (om 2 

i j  

The cons t an t  po r t ion  of the threshold is added t o  t h i s  when it is neces- 

s a r y  t o  account f o r  quan t i za t ion  and sensor noise  as i n  the ha rd - fa i lu re  

channe 1. 

One a d d i t i o n a l  important conclusion can be drawn regarding the 

thresholds  determined f o r  t he  GLT. The thresholds  are no t  a funct ion of 

the number of instruments i n  the configurat ion.  This means t h a t  t he  

lower f a i l u r e - d e t e c t i o n  s e n s i t i v i t y  ev iden t  i n  Table 20 f o r  a configura- 

t i o n  with fewer sensors  i n  the  c l u s t e r  is  not  compensated for by a corre- 

sponding lowering of the f a i lu re -de tec t ion  thresholds. 

7.4 Simultaneous F a i l u r e s  

This s ec t ion  considers  the e f f e c t  of simultaneous f a i l u r e s  on the 

pairwise-comparison GLT algorithm. Simultaneous f a i l u r e s  can occur, f o r  

i n s t ance ,  i f  a sensor is  phys ica l ly  damaged, so t h a t  t he  two axes of t h a t  

sensor  would show c o r r u p t  measurements. I n  a t e t r a h e d r a l  RSDIMU with two 

separable halves,  two sensors ,  i. e., four  measurements, can become 

i n v a l i d  a t  the same i n s t a n t  i f  damage occurs i n  t h a t  area of the a i r p l a n e  
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where t h a t  half  is located.  In  t h i s  s e c t i o n ,  cases with only two simul- 

taneous f a i l u r e s  w i l l  be considered. 

As an example, consider  t he  case where the  two axes of sensor 1 

f a i l ,  ax i s  A with magnitude 

e f f e c t  on dec is ion  func t ion  

- - T - 
- p 1 2  p 1 2  

12  
DFD 

b l ,  and axis B with magnitude b2. The 

DFD12 w i l l  be 

( V 1 2 m 1 2 ~ T ~ V 1 2 m 1 2 )  = mT 1 2  vT 1 2  v 12 m 12 

= (.6830b1 + .1830b l 2  + Residual term 
2 

The e f f e c t  on dec is ion  func t ions  DFD and DFD is, r e spec t ive ly ,  13 14 

= .25(bl - b 2 )  + Residual term 
DFDl 3 

= (.1830bl + .683Ob2l2 + Residual t e r m  
14 

DFD 

This means t h a t  the e f f e c t  on the t w o  ad jacen t  sensors  is superaddi t ive ,  

and t h a t  on the  one opposi te  sensor  is subaddi t ive.  Since it is s u f f i -  

c i e n t  t o  have two decis ion  func t ions  c ross ing  the threshold ,  sensor  1 

w i l l  be de tec ted  and c o r r e c t l y  i so l a t ed .  

Consider now the  case where the A a x i s  of both sensor  1 and sensor  

2 has f a i l e d ,  t he  f i r s t  with a f a i l u r e  magnitude bl and the  second with 

a f a i l u r e  magnitude b2, both f a i l u r e s  being i n  the  p o s i t i v e  d i r ec t ion .  

The e f f e c t  on each of the  dec is ion  func t ions  is  l i s t e d  i n  Table 21. It is  

seen t h a t  the e f f e c t  on DFD is subaddi t ive ,  so t h a t  i f ,  f o r  i n s t ance ,  

b2 = (.6830/.1830)b , no e f f e c t  w i l l  be seen a t  a l l .  

t h e  algori thm cannot handle such a case. I f  DFD f a i l s  t o  c ros s  the  

threshold,  the  degree of incons is tency  of each of the  four  sensors  w i l l  

be 2 ,  and with the  algori thm as it is, a l l  four  sensors  will be i s o l a t e d .  

1 2  
Table 22 shows t h a t  1 

12 
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6DFD 
12 

~ D F ~  
13 

6 DFD 
14 

6DFD 
23 

6DFD 
24 

6 DFD 
34 

Table 21 
Effec ts  of a Failure of A x i s  A 

i n  Each of Sensors 1 and 2 on D e c i s i o n  Functions 

FAILURE OF 
MAGNITUDE bl 
ON A A X I S  I N  

SENSOR 1 ALONE 

( .6830b1 ) 2 

2 
(05bl 1 

( .1830bl ) 2 

0 

0 '  

0 

FAILURE O F  
MAGNITfiDE b2 
ON A A X I S  I N  

SENSOR 2 ALONE 

( .1830b2) 2 

0 

0 

2 
( . 6830b2 1 

0 

FAILURE OF MAGNITUDE 

AND OF MAGNITUDE b2 ON 
A A X I S  OF SENSOR 2 

bl on A A X I S  OF SENSOR 1 

(.6830b1 - .1830b2) 2 

2 
( . 1 830bl ) 

2 
(. 6830b2 ) 

0 
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A 
I Table 22 

Degree of Incons i s t ency  f o r  Each Sensor 
When Sensors  1 and 2 are Fa i l ed  

DECISION FUNCTION 

Is DF > T12? 

Is DFD > T,3? 
13  

Is DFD > T14? 
14 

> T23? Is DFD 
23 

Is DF > T24? 
D24 

Dl 2 

Is DFD > .  T34? 
34 

Degree of Sensor 
Incons i s  t ency  

1 

Y e s  or N o  

Y e s  

Y e s  

D, = 3 or 2 

2 

Y e s  or N o  

Y e s  

Y e s  

D2 = 3 or 2 

SENSOR 

3 

Y e s  

Y e s  

N o  

D3 = 2 

4 

Yes 

Y e s  

N o  

D4 = 2 
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The las t  example above i l l u s t r a t e s  a l i m i t a t i o n  of the  algori thm 

which occurs whenever two d i f f e r e n t  sensors  f a i l  simultaneously,  and the  

f a i l u r e s  are i n  the  same d i r e c t i o n  and of comparable magnitude. 

i s  much l a r g e r  than b or vice versa, f o r  ins tance  i f  b /b > 5 or 

b /b > 5, then the f a i l u r e s  w i l l  not  be t o t a l l y  masked and the  chances 

are improved t h a t  correct i s o l a t i o n  w i l l  occur. For t h i s  reason, the  

a lgor i thm must be constructed so t h a t  a degree of inconsis tency D, = 3 

i s  requi red  i f  Dj = 2 f o r  more than one sensor  j. 

t h e  simultaneous i s o l a t i o n  of more than two sensors. F ina l ly ,  Figure 20 

shows a flow diagram of the modified algorithm. 

I f  bl 

2 '  1 2  

2 1  

This will prevent  

7.5 Conclusion 

A new FDI system s t r a t e g y  f o r  f a i l u r e  de t ec t ion  and i s o l a t i o n  has 

been presented i n  t h i s  s ec t ion .  The fol lowing conclusions regarding t h i s  

methodology can be drawn from this phase of the study: 

0 The algori thm o f f e r s  a concrete  s t r a t e g y  f o r  dea l ing  w i t h  two 

simultaneously occurr ing f a i l u r e s .  

0 Limi ta t ions  on t h i s  c a p a b i l i t y  do e x i s t ,  as descr ibed i n  

Sect ion 7.4. 

0 It is st i l l  premature to cons ider  t h i s  FDI as a p o t e n t i a l  

a l t e r n a t i v e  t o  the  o r i g i n a l  GLT algori thm, s ince  experience 

through s imula t ion  is s t i l l  needed. The s t r a t e g y  is, however, 

worth pursuing fu r the r .  
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Figure 20. Flowchart for Pairwise Comparison Algorithm 

99 



, -  

SECTION 8 

SUMMARY AND CONCLUSIONS 

The basic goal  of t h i s  s tudy e f f o r t  w a s  t o  f u r t h e r  develop and 

r e f i n e  the  t e c h n i c a l  knowledge and s k i l l s  needed to  make redundant 

strapdown i n e r t i a l  measurement u n i t s  a v i ab le  component of the a i r c r a f t  

av ion ic s  system inventory.  This s tudy was s p e c i f i c a l l y  addressed t o  the 

RSDIMU being developed and evaluated by the NASA Langley Research 

Center. Two major t a s k s  were undertaken: Aeroelast ic  E f fec t s  Analysis 

and F a i l u r e  Decision Function Compensation Analysis. 

I n  S&ction 3 ,  compensated and uncompensated GLT ED1 algorithm 

dec i s ion  func t ions  w e r e  compared. The i n t e n t  w a s  to determine i f  the 

compensated GLT dec i s ion  funct ions could be employed t o  e l imina te  the  

need f o r  the dynamic FDI thresholds  required with the uncompensated 

dec i s ion  funct ions.  The compensated dec i s ion  funct ion was very s e n s i t i v e  

t o  the var iance of the sensor  errors, implying t h a t  cons t an t  thresholds  

can only be obtained i f  these parameters are known accurately for a given 

sensor  package. In add i t ion ,  f a i l u r e s  tended to be masked during 

maneuvers. On the  o the r  hand, t he  algorithm w a s  q u i t e  s e n s i t i v e  t o  s o f t  

sensor  f a i l u r e s  and the approach deserves  f u r t h e r  considerat ion.  

The i n v e s t i g a t i o n  of t he  compensated GLT decis ion funct ion 

provided a basis from which t o  consider  t he  compensation of no i se  i n  the  

GLT thresholds .  This compensation is  required to  e l imina te  f a l s e  alarms 

which can ar ise  i f  noise  e f f e c t s  are no t  taken i n t o  account. An 

algori thm t o  achieve noise  compensation was developed , implemented and 

evaluated.  An i n v e s t i g a t i o n  of the impact of the FDI system l o w  pass 

f i l t e r  t i m e  cons t an t  on system performance with noise p re sen t  was a l s o  
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conducted. I t  w a s  concluded that noise  compensation is  st i l l  r equ i r ed  

even though l a r g e r  f i l t e r  time cons tan t s  l e s sen  the de t r imen ta l  e f f e c t s  

of noise.  

A n  important cons ide ra t ion  i n  the design of RSDIMUs is the impact 

of sensor loca t ion  and magnitude of the s t r u c t u r a l  modes on ED1 system 

performance. This s u b j e c t  w a s  addressed i n  Section 5. I t  w a s  determined 

t h a t  l oca t ion  of the sensors  a f t  of the vehicle  c.g. is no t  d e s i r a b l e ,  

t h a t  lateral  and normal sepa ra t ion  of the RSDIMU are n o t  s i g n i f i c a n t  and 

t h a t  a n a l y t i c  compensation of the accelerometer outputs  f o r  l eve r  arm 

e f f e c t s  i n h i b i t s  F D I  system performance. 

~n FDI system threshold generat ion scheme w a s  developed and 

evaluated i n  Sect ion 6 .  This algorithm incorporated noise  compensation 

and f i l t e r e d  par i ty  equation r e s i d u a l s .  The f i l t e r i n g  of the par i ty  

equat ion r e s i d u a l s  provided a means of ob ta in ing  the e x a c t  compensation 

of the high frequency s t r u c t u r a l  modes and l e v e r  arm e f f e c t s  required f o r  

the  thresholds .  T h i s  algorithm w a s  evaluated f o r  d i f f e r e n t  noise  l e v e l s  

and second order  f i l t e r  t i m e  cons t an t s  i n  both c r u i s e  and maneuvering 

f l i g h t .  A b r i e f  i n v e s t i g a t i o n  of the e f f e c t s  of RSDIMU sensor l o c a t i o n  

on navigat ion system performance was conducted. In  order  t o  enhance the 

mi's system s o f t  f a i l u r e  d e t e c t i o n  c a p a b i l i t y ,  a sensor error parametric 

s tudy w a s  conducted t o  determine how low the threshold can be set  without 

ob ta in ing  f a l s e  alarms. Simulation runs were a l s o  c a r r i e d  i n  o rde r  t o  

determine whether t h e  d i f f e r e n t  o rde r s  i n  which f a i l u r e s  can be i n j e c t e d  

have d i f f e r e n t  e f f e c t s  on FDI system performance. No d i f f e r e n c e  was 

evident .  

A GLT FDI system s t r a t e g y  based on the pairwise comparison of 

sensor  measurements was descr ibed i n  Section 7. The advantage of t h i s  

s t r a t e g y  is  its a b i l i t y  t o  d e t e c t  two simultaneously occurr ing f a i l u r e s ,  

al though l i m i t a t i o n s  do exist on t h i s  c a p a b i l i t y .  
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