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TECHNICAL MEMORANDUM 

A REVIEW OF MICROMETEOROID FLUX MEASUREMENTS 
AND MODELS FOR LOW ORBITAL ALTITUDES 

OF THE SPACi-: STATION 

I. INTRODUCTION 

The Space Station Program Elements (SSPE1s) micrometeoroid environment design 
criteria is  presented in NASA Technical Memorandum 86460, lTNatural Environment 
Design Criteria for the Space Station Program Definition and Prelin~inary Design 
(First Revision) ,I1 Vaughan (1984). Appendix A is an excerpt from the section in 
this report on the subject. Although the orbital altitudes are not yet precisely 
defined due to the evolutionary configuration of the Space Station, the lower and 
upper limits of the orbital altitudes will be based on the constraints set by the drag 
and orbital demy of the Space Station and payload delivery of weight to orbit criteria 
by the Shuttle. With these constraints, the lower and upper limits of the orbital 
altitudes of the Space Station may be between 250 n.mi. 2 460 km and 300 n.mi. r\, 

555 km, Susko (1984). 

This report is intended as a review and summary of information available on 
meteoroid flux. No new measurements have become available for analysis in recent 
years. In addition, the subject of space orbital debris has increased in importance 
during the past decade and further complicates the matter of orbital design and pro- 
tection from damage. A description of meteoroids is presented in Section 11. The 
total meteoroid flux mass model and the probability of meteoroid penetration of the 
bumper and main wall of the Space Station are discussed in Sections 111, IV, and V.  
Section VI gives the uncertainty in hypervelocity impact studies and Section VII lists 
the concluding remarks. 

11. DISCUSSION - METEOROIDS 

Meteoroids are extraterrestrial matter larger than molecular scale in size. The 
solid objects encompassed by the term llmeteoroids" range in size from microns to 

kilometers and in mass from - c 10-l2 g to - > 10l6 g. Those less than 1 gram are often 

called llmicrometeoroids.ll If objects of more than approximately loA6 g mass reach 
Earth's atmosphere, they are heated to incandescence, producing the visible effect 
called a lTmeteor.l' If the initial mass and composition permits some of the original 
meteoroid to reach Earth's surface unvaporized, the object is called a "meteorite." 

Meteorites are thought to derive primarily from comets and asteroids with 
perhelia near or inside Earth's orbit. The original objects were supposedly broken 
down into a distribution of smaller bodies by collisions. Meteoroids recently formed 
still tend to be concentrated near the orbital path of their parent body. These 
I1stream  meteoroid^^^ produce the well known meteor showers which occur at certain 
dates and from particular directions. Table 1, from NASA TM-82478, Burbank, et  al. , 
(1965), and Millman (1978) lists the major meteoroid streams. 

The average hourly rate of meteoroids increases at times during a calendar year 
due to meteoroid streams as previously noted. Their periods of activity and peak 
fluxes are given in Table 1, where Fmax is the ratio of the stream to the sporadic 



TABLE 1. MAJOR METEOROID STREAMS 

Fmax is the ratio of average maximum cumulative stream to average sporadic flux 

for a mass of 1 g and a velocity of 20 kmlsec. 

Name 

Quadrantids 

Lyrids 

rt- Aquarids 

0-Cetids 

Arietids 

r;-ferseids 

B-Taurids 

6 -Aquarids 

Perseids 

Orionids 

Arietids , southern 

Taurids, northern 

Taurids, night 

Taurids, southern 

Leonids, southern 

Bielids 

Geminids 

Ursids 

Period of 
Activity 

January 2 to 4 

April 19 to 22 

May 1 to 8 

May 14 to 23 

May 29 to June 
19 

June 1 to 16 

June 24 to 
July 5 

July 26 to 
August 5 

July 15 to 
August 18 

October 15 to 25 

October through 
November 

October 26 to 
November 22 

November 

October 26 to 
November 22 

November 15 to 
2 0 

November 12 to 
16 

November 25 to 
December 17 

December 20 to 
24 

Date of Activity 

January 3 

April 21 

May 4 to 6 

May 14 to 23 

June 6 

June 6 

June 28 

July 8 

August 10 to 14 

October 20 to 23 

November 5 

November 10 

November 5 

November 16 to 17 

November 14 

December 12 to 13 

December 22 

Fmax 
Maximum 

8.0 

0.85 

2.2 

2.0 

4.5 

3.0 

2.0 

1.5 

5.0 

1.2 

1.1 

0.4 

1.0 

0 .9  

0.9 

0.4 

4.0 

2.5 

Geocentric 
Velocity 
(kmlsec) 

42 

4 8 

6 4 

37 

38 

29 

3 1 

4 0 

6 0 

66 

2 8 

29 

3 7 

28 

72 

16 

35 

3 7 
- - - - --- 



meteoroid cumulative flux levels. Note that there is little or no enhancement of the 

sporadic population for masses less than lo-' gm during stream activity. 

Meteoroids are assumed to be spherical in shape and to have a bulk mass 
density of 0.5 gmicc. However, this does not apply to micrometeoroids ( ~ 5 0  cl 
diameter) and it is generally assumed that a density of 2 gmlcc is more appropriate. 
The average atmospheric entry velocity of sporadic meteoroids is 20 km/s, which is 
the value generally used to assess impact damage to spacecraft in Earth orbit. 
Stream meteoroids generally enter much faster as seen in Table 1. 

Meteoroids may be classified by composition: stony, iron, and perhaps, icy. 
From their composition, the type of parent body can be inferred. Meteoroids are 
attracted by the Earth's gravity field so that the flux from allowed directions in 
near-Earth orbit is increased by approximately 1.7 over the interplanetary value. 
The Earth also shields certain arrival directions. 

The total mass infall to Earth is estimated to be 10" glyear. Figure 1 shows 
the distribution of number with mass, where N ( ~ m )  is the number flux with mass 
m, Gault (1970). The flux is low and, therefore, difficult to measure. Evidence 
includes: spherules on the sea floor and the polar icecaps, impacts detected with 
special sensors on satellites, meteor trails in the atmosphere observed visually by 
radar, lunar crater accounts, and zodical lights, Bless, et al. (1972) and Kessler, 
et al. (1980, 1968). Tha fluxes of Figure 1 are probably uncertain by a factor of 10. 

A review of meteoroid flux measurements by various experimenters, who con- 
tributed to the meteoroid flux measurements as presented in Figure 1, are as follows: 
The implied meteoroid flux measurements by Brownlee, et al. (1971) were in general 
agreement with Spacecraft Pioneer 8, 9, Cosmos 163, and Pegasus. Brownlee, et  al. 
(1967), as guest experimenters on the Gemini S-12 micrometeoriie-collection program, 
obtained space density of particles consistent with satellite-penetration data. Hodwe, 

WHIPPLE. METEORS 119671 

M O D I F I E D  NAUMANN ( 19661 

= - 1 0 8 5  L O G I O  m + 1 0 3 9 "  10 (LOGIOm) 

x' 

SHOEMAKCR AIRWAVE OBJECTS '1 / 
D l F l E D  AIRWAVE OBJECT 

HAWKINS. STONES 

OGO I l l  1 h MARINER l V  ALEXANDER 
EMAKER, APOLL 

9 PIONEER I 

PEGASUS I .  11. I l l ,  EXPLORER X V I .  XX111. 
N A U M A N N  (19661 

0 PRAIRIE NETWORK, McCROSKY 11968) 

+ APOLLO OBJECTS, WHIPPLE (1967) 
IR 

1 I I 

- 8  0 8 24 

Figure 1. Terrestrial mass-influx rates of meteoroids. N is the flux 
of particles with mass greater than m [Gault (1970)l. 
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et al. , ( 1972) performed optical and scanning electron microscope examination of four 
glass filters brought back by the Apollo 12 mission. No primary hypervelocity crater 
were found and this fact provided an upper limit to the flux of micrometeoroid par- 
ticles impacting the lunar surface that is low and that agrees well with results from 
Pegasus, Pioneer 819, and Cosmos spacecraft as shown in Figure 1. Flux measure- 
ments by Whipple (1967), Naumann ( 1966), Shoemaker (1965), Hawkins ( 1963), 
Alexander, et a1 (1969, were valuable contributors to the micrometeoroid flux measure 
ments. Davidson (1963) reported on the effect of meteoroid flux variations on the 
reliability of space vehicles. 

L Figure 2 shows a cornpilation of data for near-Earth space derived by various 
means over a more restricted mass range than Figure 1. (Thc t2uxes shown in Figs. 

1 and 2 are 1 year averages.) The flux for m c 10-l2 g is miher uncertain. There 
have been estimates of micrometeoroid flux a factor of 10 higher than those in Figure 
1 [ McDonnell ( 1976) 1 . This appears to be a real uncertainty. 

'--, ROCKET 
OCT . 7 j * , C O L ~ E C T ~ ~ ~  

LUNAR 

LUNA 16 SPH 

N - cumulattve flux 
rnttrr.2 sec-1 (2n st) 

m - mass (0) 
-18 LUNAR 

Figure 2. Cumulative particle fluxes from various data sources 
[Fields and Cameron ( 1976) 1 . 

Brownlee, et 81. (1974) and Lundquist (1979) presented measurements of ele- 
mental abundances in typical high velocity impact craters from micrometeoroids in 
Skylab's near-Earth orbit. Considerable amounts of micrometeoroid residue were 
found in the bottom of rough-textured craters, 
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The results of two electron-probe analyses are shown in Figure 3, the relative 
abundance being normalized to the amount of silicon found. Elements identified were 
iron, silicon, magnesium, calcium, nickel, chromium, and manganese. Upper limits 
were also obtained for titanium and cobalt. For comparison, the relative elemental 
abundances for two types of carbonaceous chrondrite meteorites (C1 and C3) are also 
given. There is a marked similarity, but this should not be construed as evidence 
that both objects have a common source. The similarities are possibly only a conse- 
quence of their both being primitive, well-preserved samples of carly solar system 
materials. A sulfur analysis at a later date indicated that sulfur is also present in 
the crater with an abundance similar to the abundances of iron, magnesium, and 
silicon and also comparable to the abundances for carbonaceous chondrites. 

Figure 3. Elemental composition (normalized to silicon) of micrometeoroid 
residue found in the crater. The open squares and circles 

represent different electron- beam probe runs,  The elemental 
compositions of two types of carbonaceous chondrite meteorites 
(C1 and C3), represented by solid circles and by crosses, 

respectively, are shown for comparison. 



Further information on meteoroid impact will be obtained from the Long Duration 
Exposure Facility (LDEF) NASA SP-473 (1984) which will be flown for one year (lift- 
off in April, 1984). The LDEF opportunity is a retrievable spacecraft. It wi l l  allow' 
investigators to gather data over a long period of time (approximately one year) and 
have their experiments returned for an in-depth analysis, increasing the different 
kinds of testing and the number of investigators. The micrometeoroid experiment on 
LDEF will use an aluminum plate as a detector to estimate the population and size 
distribution of meteoroids and space debris near Earth. The craters will be analyzed 
by X-ray spectroscopy, determining the abundance and the different elements. The 
impacting particle material will be used to distinguish between meteoroid craters and 
those caused by man-made debris. 

Because of flexibility in analysis, recoverable crater collection experiments are 
subject to fewer uncertainties in detection of impacts than are remote sensing experi- 
ments. Studies like the Skylab experiments provide. a permanent record of impact 
events which can be analyzed under laboratory conditions to yield information on 
particle mass, density, shape composition and velocity. Crater collection experiments 
also record impacts of particles too small or of too low density to register on existing 
remote sensing experiments. This information will be used to update the NASA Tech- 
nical Memorandum 82478, Space and Planetary Environment Criteria Guidelines for Use 
in Space Vehicle Development, 1982 Revision (Volume 1). 

111. TOTAL METEOROID FLUX MASS MODEL 

From NASA SP-8013 (1969) the logarithms of the flux and mass values from 
Table 2 are plotted in Figure 4. Uncertainty in the directly measured flux is s m a l l  
( c  10 percent) as a result of the large number of penetrations obtained on each 
sensor system. The characteristic mass for the threshold penetration is probably 
correct within a factor of three. 

The data from the 0.046 cn! sensor on Pegasus I1 and I11 have been used to 
8 establish another point for the model. A cumulative flux of 8.00 x 10 particles per 

square meter per second from a mass of 10'~ gram or greater was ado~ted  (point B 
in Fig. 4).  

The data from Explorer XVI and XXIII are considered to be the most reliable 
and, as  shown in Figure 4, are consistent in showing a decrease in the slope of the 

flux-mass relationship in the mass range 14' to 1 0 ' ~  gram. Assuming the adopted 

flux at gram is reliable, the decrease in slope is in agreement with the evidence 
provided by the intensity of zodical light and the concept of its physical limit to the 
amount of particulate debris in the solar system. Further indication of the slope 
trend is provided by the Ariel I1 results of Jennison (1967). Accordingly, the 
Explorer data points have been used to determine the shape of the flu-mass curve at 

masses less than g. 

The summary of the model development as  pointed out in NASA SP-8013 (1969) 

in the mass range and greater (points A to B in Fig. 4).  a straight line varia- 

tion has been assumed; in the range gram and less, where the penetration data 
indicated a decrease in the slope of the flux-mass relationship with decreasing mass, 
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Figure 

\ 

0 EXPLORER XXlll 

A EXPLORER XVl 

0 PEGASUS I, II, & Ill 

* RADAR METEORS NILSSON (1967) 

@ PHOTOGRAPHIC METEORS LINBLAD 
(1967) 

0 GEMINI WINDOWS 

C 

-12 -10 -0 -6 4 -2 0 2 
LOG10 m (gmn) 

Comparison of cumulative sporadic meteoroid flux-mass data 
and the adopted sporadic model. 
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a non-linear variation passing through the Explorer data has been adopted between 

lo-' to 10-l2 gram. At the latter mass, the model was arbitrarily terminated. At 

point C in Figure 4 ,  a cumulative flux of 3.98 x particles per square meter per 

second together with a mass of 2.5 grams was chosen to best fit all four of the 
Explorer data points in determining an equation for the non-linear variation. The 
model along with the applicable mathematical equations is shown in Figure 5, NASA 
SP-8013 (1969); Naumann et a l . ,  (1971); Clifton (1973); and Brooks (1976). 

The well-known meteor showers shown in Table 1, which occur at certain dates 
and from particular directions are included in Figure 5, resulting in a 10 percent 
increase in average flux due to the major meteoroid streams, NASA SP-8013 (1969). 

-12 -10 -8 -6 -4 -2 0 2 
LOG10 m (GRAM) 

Figure 5. Average cumulative total meteoroid flux-mass r.ldoe1 for i A.U. 
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The number-mass distribution of meteoroids up to 1 g at 1 A.U. (the Earth's 
orbit) has been modeled in Reference NASA SP-8013 (1969) and the results are shown 

in Figure 5 [Brooks ( 1  976) 1 where number densities /m 3, have been multi- 
plied by a constant speed of 20 km Is to compute incident flux, 4.  This flux is 
assumed to be isotropic, on the average, with respect to randomly oriented objects. 
For spacecraft in orbit around the Earth, the flux values in Figure 5 for any given 
cumulative mass (i.e., the flux for all meteoroids greater than or equal to a given 
mass) must be multiplied by a defocusing factor G ,  Figure 6, a shielding factor, 6 , 
Figure 7 ,  to account for the Earth's gravitational focusing of meteoroids and also for 
the shielding provided by the Earth as  presented in NASA SP-8013 (1969). 

WHERE R IS THE RANGE OF THE SPACECRAFT FROM 
THE CENTER OF THE EARTH IN  EARTH RADII 

L 
.51 

J 
2 4 6 8 10 20 40 60 

DISTANCE FROM CENTER OF EARTH (EARTH RADII) 

Figure 6. Defocusing factor due to Earth's gravity for average 
meteoroid velocity of 20 km Is. 

2 The model states that the average annual cumulative total flux, 4 ,  in impacts/ 
m s of n~eteoroids of mass m and greater in gram on a spacecraft is 

for m between 10-l2 2 m 2 10'~. and 

-6 < < 0 for m between 10 = m = 10 . 



SHIELDING BODY 
(E tRTH OR MOON) 

BODY SHIELDING FACTOR, f: (DEFINED AS RATIO OF THE SHIELDED TO UNSHlELDED FLUX) 

WHERE: 

R RADIUS OF SHIELDING BODY 
H ALTITUDE ABOVE SURFACE 

SUBSCRIPTS: 

e EARTH 

m MOON 

Figure 7. Method for determining body shielding fector for 
randomly oriented spacecraft. 

IV. PROBABILITY OF METEOROID PENETRATION 

The probability of meteoroid penetration (assuming that this number is less than 
1) is related to flux through a Poisson distribution presented by Cour-Palais (1969) in 
[NASA SP-8013 (1969) ; Humes (1981)l. 

-$,At 
P = +  A t e  = mp At (1 - qp At + Pp ~~t~ - ...) 

P P 

where 

P = probability of penetration 

2 4 = flux against a spacecraft structure, impacts per m per s 

A = area of a spacecraft structure, m 2 

t = time, s 

Subscript p = penetration . 



> One of the factors in establishing the area of the space station is that the view 
of space from the modules may be partially obstructed by other modules so that the 

i effective area of each module is less than its actual area. For micrometeoroids 
approaching with equal probability from all directions, the effective area of a cell 
from Humes (1981) is, 

where 

y = the view angle of space measured from the normal to the surface 

f l(y,x,y)  = the frac?ion of the view angle y (from a point x,y)  in the module 
that is obstructed by other spacecraft components on one side of 
the rr~odule 

f2(y ,x,y) = the corresponding function for the other side of the panel 

w = the width of the module 

1 = length of the module. 

The cosy appears in equation ( 2 )  because the projected area of the surface element 
depends on the viewing angle. 

V.  METEOROID PENETRATION - BUMPER AND MAIN WALL 

4 

An empirical equation based on hypervelocity impacts used to establish a 
characteristic mass for threshold penetration of the detector panels employed on the 

r: Pegasus and Explorer meteoroid detection satellites was determined by Naumann, et al. , 
(1969) and presented in NASA SP-8013 (1969) is as follows: 

where 

t = the thickness of the plate penetrated (cm) 



K1 = a constant 

3 
P = the mass density of the meteoroid (glcm ) 

m = the mass of the meteoroid ( g )  

v = the normal impact velocity of the meteoroid (km Is) . 

The constant, K1, is a characteristic of the plate material. It reflects the 

combined effects of the material strength, density, ductility, and temperature on 
threshold penetration as determined from hypervelocity tests. In applying the 

equation, p was taken as 0.5 g/cm3 (the chosen average mass density of meteoroids), 
v as 20 km 1s (the adopted average velocity of sporadic meteoroids), and K1 as deter- 

mined from hypervelocity impact tests on materials. Table 2 presents the calculated 
characteristic mass for the sensors indicated, the value of K1 for each sensor material 

involved, and the cumulative flux :is determined from each penetration sensor system. 

A s  indicated in NASA SP-8013 (1969), conversion of penetration data from 
sensor material thickness to particle mass has been accomplished by calculating the 
critical mass that will just perforate the sensor thickness in question. Currently, no 
direct experimental determination of the critical mass is possible at  the average impact 
velocity of sporadic meteoroids which is 20 km 1s. Velocities of 7.5 to 12 km Is and 
extrapolation of these laboratory velocities to average meteoroid velocities are used to 
obtain critical mass, Naumann (1966) and Fish and Summers (1965). 

Whipple (1947) suggested that damage to a spacecraft from a ceteoroid impact 
could be greatly reduced by placing a thin shield around the spacecraft at some 
distance from the hull. Whipple envisioned that this shield, which he called a meteor 
bumper, would vaporize meteoroids upon impact thus dissipating their penetrating 
powers. Theoretically, the function of the bumpers is to generate a shock wave 
which compresses the material and then o release wave fragments the material into 
small pieces. 

The principle of the micrometeoroid shield was shown experimentally during the 
Skylab IV tests of stacked gold foils over stainless steel substrate. A micrometeoroid 
struck the first gold foil and shattered into fragments, which in turn penetrated the 
second gold foil. The micrometeroid must have been quite fragile, since it frag- 
mented upon striking a foil much thinner than its  dimension. In one case, two small 
craters were found in the stainless steel substrate after a particle penetrated two 
layers of gold foil. Fragmentation of micrometeorites striking the shield would 
greatly reduce the possibility of damage to the spacecraft wall. Although Skylab's 
0.6 mm-thick micrometeoroid shield was lost, the orbital workshop's 3.18 mm thick wall 
was not penetrated during the 67 day Skylab IV mission, indicating there was little 
meteoroid hazard with such wall thickness. 

Essentially Humes (1981) indicated that the bumper concept was demonstrated 
in a number of laboratory tests. Even at an impact speed too low to cause vaporiza- 
tion, a bumper was seen to fragment the projectile and disperse the fragments over a 
large area of the main wall, giving the double-wall structure a much greater resist- 
ance to penetration than a single wall of the same thickness. A s  indicated by Humes 
(1981), a11 the laboratory tests were conducted at impact speeds less than the average 
meteoroid impact speed, and it is  unclear how the data should be extrapolated to 
meteoroid velocities. 
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Experimental hypervelocity impact studies of the bumper and main wall impact 
were made by Swift (1983); Humes (1981, 1969, 1965, 1963); Nysmith (1969); 
Naumann, et al., (1969); Madden (1967); Jex, et al. (1970); Cour-Palais (1979, 1973, 
1969); and others. 

Swift, et al., (1983) presented a new analysis for designing dual layer shields 
based on energy and momentum conservation, fundamental electromagnetic radiation 
physi.2,; and the observation of results of extensive experimental impact studies per- 
foimed at relatively low velocities near 7 kmls. Equation (5) follows: 

Wquativn (5) is the direct consequence of the fact that impact crater volume is nearly 
proporiional to the kinetic energy of the impactor, with the proportionality factor 
being c .ependent upon materials properties of both the impactor and target. The pro- 

10 3 9 3  portionality constants are approximately R = 10 erglcm (10 J/m ) for low density 
piwjectiles striking hard aluminum targets. Now, 

r = meteoroid radius m 

"m = density of mateoroid material 

Um = meteoroid velocity 

r = impact crater radius (depth) . 
C 

The impact threat :.!,ld the resulting impact crater radius (depth) to the main wall 
from the meteors gassing holes in the bumper plate can be predicted using equation 
(5) [Swift, et al. (1983)J. 

The above relationship may be extended slightly to evaluate the ballistic limit 
thicknes!~ of the underlying plate (main wall) by noting that plates 1.5 times as thick 
as the crater depth are usually needed to achieve ballistic limit conditions as pre- 
sented in equation (6). 

Equation (6) .-. ly be used to determine the ballistic limit size for meteoroids 
10 

impacting with t l -?  bumper plate. Again, a value of R = 10 ergslcm3 is appropriate 
for most such .,alculations where near optimum shield configurations are being con- 
sidered. Equation (6) follows: 

where 

dbl 1 -  ballistic limit thickness. 



Extrapolation of equation (6) to the velocity ranges typical of meteoroid impacts 
in near-Earth space produces results which are intuitively reasonable, according to 
Swift, et al. (1983). 

VI. UNCERTAINTY IN HYPERVELOCITY LABORATORY STUDIES 

The greatest uncertainty in hypervelocity laboratory experiments is the mass of 
the projectile, ~ o t  knowing how much material is ablated by the drag acceleration. 
According to Naumann, et al. (1969), one of the major difficulties in calibrating the 
flight detectors lies in the very small particle sizes that must be used. Particles as  
small as 20 microns were used for the thinnest detector samples. With such sizes 
there is no method of photographing the projectile just prior to impact, as is standard 
procedure in most hypervelocity ranges. Even if such a particle could be resolved, 
at 10 km/s it travels i ts  own diameter in 2 nanoseconds, which makes it 'oeyond the 
state of the art to stop i ts  motion. In any launch process there is fine, high-velocity 
debris from gun parts,  fragmented projectiles, sabot fragments, etc. In dealing with 
larger projectiles, the presence of such debris is not usually a problem since the 
damage from the projectile can be distinguished from the debris. However, when the 
projectile size is smaller than some of the debris, it becomes very difficult to make 
such a determination. 

VII. CONCLUDING REMARKS 

The meteoroid flux mass model, the defocusing and shielding factors that affect 
the model, and the probability of penetration equations for design of the main wall of 
the space station have been presented. The review of meteoroid flux measurements 
and models for low orbital altitudes has revealed three things that may damage the 
main wall of the Space Station if a meteoroid passes through the bumper. They are: 

1) The meteoroid fragments individually might penetrate the main wall. 

2) Meteoroid fragments collectively can strike the main wall like a pressure 
pulse, and may make the main wall bulge, crack, and petal open. 

3) Bumper fragments might individually penetrate the main Wall depending 
upon its design capability. 

Experiments by Whipple (1947, 1967) ; Humes (1981, 1969, 1965, 1963) ; Madden 
(1967) ; Naumann (1969) ; Nysmith (1969) ; Swift ( 1983) ; and Jex (1970) were con- 
ducted at impact speeds less than the average meteoroid impact speeds, and it is 
unclear how the data should be extrapolated to meteoroid velocities. Essentially, the 
experiments were designed to compute a critical thickness of the bumper, and a 
critical distance between the bumper and main wall and the thickness of the main wall. 
Kessler (1980, 1978, 1972) presented information on the debris resulting from rocket 
explosions and the trend for collisions between orbiting fragments. Cour-Palais, et 
al (1972) and Flaherty , et al. (1970) gave results of inpact damage to Surveyor 3 
and Gemini spacecraft, respectively. Pioneer work in meteoroid flux measurements 
was done by Davidson ( 1963, 1968). 
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A NASA workshop on "Space Debris and Meteoroid Technology and Implications 
to Space Stationw was held September 5-6, 1984, at NASA's Marshall Space Flight 
Center. It was sponsored by the NASA Office of Aeronautics and Space Technology 
and included participation from the Jet Proputsion Laboratory, Ames Research Center, 
Johnson Space Center, Langley Research Center, Marshall Space Flight Center, and 
Army's Corps of Engineers. 

The participants discussed the general technology status of both the environ- 
ment definition and the capabilities to protect the Space Station Program Elements 
against the full range of predicted particle masses and velocities. The general tech- 
nology needs as reflected in the minutes of the workshop in order of priority are: 

1) Improve the definition and confidence of predicting the space debris environ . 
ment during the orbital lifetime of the Space Station. 

2) Develop criteria for design and testing of Space Station subsystem hardware 
Establish trade-offs for determining desired protection levels versus criticality in con- 
junction with replaceability and redundancy options. 

3) Define by test secondary effects of meteoroid or space debris impact, 
especially penetration into a cabin atmosphere, using hypervelocity test facilities. 
Upgrade and maintain the existing NASA light gas gun facilities and instrumentation 
to support all necessary testing. 

4) Assess applicability of advanced armor concepts to Space Station wall designs 
Investigate long duration meteoroid exposure effects on windows, vulnerable surfaces 
such as radiators, thermal coatings, and solar arrays. 

5) Determine the applicability of advanced hydrodynamic computer codes to 
supplement or replace hypervelocity impact testing. 
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APPENDIX A 

* NATURAL ENVIRONMENT DESIGN CRITERIA FOR THE SPACE STATION 
PROGRAM DEFINITION AND PRELIMINARY DESIGN (FIRST REVISION) 

6.0 METEOROIDS 

The SSPE1s will be designed to prevent loss of functional capability for all 
items critical to maintaining crew safety and minimum operational s u p p o ~ t  The SSPE's 
will otherwise be designed for a t  least a 0.95 probability of no penetratiw during the 
10-year on-orbit design lifetime. The meteoroid flux model given in Figure 2-14, page 

s .  2-2?, of NASA TM 82478 will be used (see section 2.6 of NASA TM 82478). It is  
I further defined in NASA SP- 8013, "Meteoroid Environment Model. '' 

The logarithmic cumulative flux distribution model for the sporadic meteoroid 
population is given by the expressions : 

a) Log N = -14.41 - 1.22 LoglOm; for c m < 10 10 - 

where N is  the cumulative flux, rn-2 s - l  ( I n  s t )  and m is moss, g. The sporadic flux 
is omnidirectional and the SSPE in orbit will be partially shielded by the Earth. The 
extent of the shielding is  a function of altitude, and the shielded flux is  equal to 

l+cos e (,-)N where: 

sine - R 
R+H 

R = Raiius of the Earth 

and H = altitude of SSPE above Earth's surface. 

The average hourly rate of meteoroids increases at times during a calendar year 
due to meteoroid streams as previously noted. Their periods of activity and peak 
fluxes are given in Table 2-3, page 2-20, of NASA TM-82478, where Fmax is the ratio 
of the stream to the sporadic meteoroid cumulative flux levels. Note that there is 
little or  no enhancement of the sporadic population for masses less than 10-6 gm 
during stream activity. 

Meteoroids are assumed to be spherical in shape and to have a bulk mass den- 
sity of 0.5 gm Icc. However, this does not apply to micrometooroids (<50 p diameter) 
and it is generally assumed that a density of 2 gmlcc is more appropriate. The 
aver,?ge atmospheric entry velocity of sporadic meteoroids is 20 kmlsec, which is  the 
value generally used to assess impact damage to spacecraft in Earth orbit. Stream 
meteoroids generally enter much faster as is seen in Table 2-3, page 2-20, NASA 
TM-82478. 

Space debris has become a s i r  ificant factor of concern in recent years. Since 
it is a man-made environment and no; a natural environment parameter, it is covered 
elsewhere in the SSPE requirements. The flux of space debris may exceed that of 



meteoroids. Therefore, NASA JSC Design Standard 20001 "Orbital Debris Environ- 
ment for Space Station" should be consulted to insure that an overall SSPE design for 
both space debris and micrometeoroids damage protection results which will permit 
accomplishment of the SSPE operational requirements. 

6.1 Manned Volumes and Pressure Loss 

The SSP manned volume will be protected from meteoroid impact damage which 
would result in pressure loss that is critical to the crew's safety. 

6.2 Pressure Storage Tanks 

The SSPEqs pressurized storage tanks will be designed to ensure n6 toxic gas 
on liquid leak from meteoroid impact damage. 

6.3 Functional Capability 

The probability of no penetration shall be assessed on each SSPA: . . 'erms of 
the criticality of loss for its functional capability. 
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