General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FINAL REPORT

FOR

STUDY OF OUTGASSING AND DECOMPOSITION OF SPACE SHUTTLE HEAT PROTECTION TILES, FILLERS, AND ADHESIVE

> NASA KESEARCH GRANT NAG-1-256 (UTD ACCOUNT E0589-01; 22781-961)

> > SUBMITTED TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LANGLEY RESEARCH CENFER

HAMPTON, VIRGINIA

23665

BY

THE UNIVERSITY OF TEXAS AT DALLAS

CENTER FOR SPACE SCIENCES

P. O. BOX 830688

RICHARDSON, TEXAS 75083-0688

Bertha L. Proctor Co-Investigator Environmental Sciences and Engineering Head, Physics Programs

John H. Hoffman Principal Investigator

Blair Jol

Research Associate Enviornmental Sciences and Engineering

(NASA-CR-173974) STUDY OF CUTGASSING AND DECOMPOSITION OF SPACE SHUTTLE HEAT PROTECTION TILES, FILLERS AND ADHESIVE Final Report (Texas Univ.) 5 p Unclas HC A02/MP A01 CSCL 22B G3/16 01160

N84-34465

COMPOUNDS DESORBING FROM THE SPACE SHUTTLE TILES

Bertha L. Proctor and John Blair Graduate Program in Environmental Sciences & Engineering University of Texas at Dallas

. ..

The purpose of this project was to determine the chemicals desorbing from the space shuttle heat protection tiles. The original protocol for this project involved direct insertion probe mass spectrometry (DIPMS) analysis of the outgassing products from the tiles. This procedure allowed us to examine the desorbing chemicals for the tile material subjected to temperatures ranging between ambient temperature to 500° C at a pressure of 10^{-3} torr. However, this method proved unsatisfactory due to the large number of compounds desorbing from the tiles. Analysis by DIPMS does not allow for separation of compounds with the same volatility (1). The large number of compounds desorbing from the tile material resulted in unresolved complex organic mixture.

A purge and trap technique (2) was then employed to collect and separate the chemicals desorbing from the tiles. The maximum temperature in this analysis was 280° C which is the gas chromatograph fused silica capillary column's temperature limit. The desorption was also carried out at atmospheric pressure with helium as the purge gas. A description of the modified protocol is given below. All compounds are tentatively identified and have not been confirmed.

Material and Methods

Sample Collection

Interior Tile Material: A tared, preconditioned (1 hour at 550° C) quartz tube (3 mm I.D. x 5 cm) was inserted directly into the tiles to a depth ranging between 3-4.5 cm. The

'

black protective skin on the surface of the tiles was removed prior to insertion of the quartz sample tube. Care was also taken to avoid the adhesive material on the bottom of the tiles. Samples represented a vertical profile of the upper half of most tiles tested. Aliquots of the tile material ranged between Ø.8-1.1 grams. After collection of tile material the samples were placed in the purge and trap chamber for analysis.

Exterior Tile Materials: The black protective skin (0.3-0.5 mm thick) or the surface of the tiles was carefully removed and quantitatively transferred to the quartz desorption tubes. Aliquots of this material weighed between 0.3-0.45 grams. It should be noted that it was virtually impossible to separate all of the black skin from the white subsurface tile material.

Method

Purge:

The quartz tube containing the tile material was heated to 280°C and held at that temperature for 15 minutes. There was a constant flow of helium through the purge chamber to sweep the desorbing compounds into the gas chromatograph where they were cryogenically trapped onto the fused silica capillary column. The inlet of the column was held at - 30° C throughout the desorption phase. After desorption the purge chamber was cooled to room temperature and the trapped compounds separated and analyzed by gas chromatography-mass spectrometry (GC-MS).

Instrumentation and Conditions;

4 6 4 4

Mass Spectrometer	Nermag R-10-10
Conditions	Electron Impact Mode
	Filiment current 70eV
	Mass Range 60-500 amu
	Scan Rate 2 msec per amu
Gas Chromatograph:	Carlo Erba (model 4160) equipped with a
	purge and trap unit constructed at UT-
	Dallas.
Conditions	Column: 30 meter-bonded fused silica
	capillary column DB5 (J&W)
	Carrier Gas: He.
Temperature Program:	The initial column temperature of $\emptyset^{O}C$
	was maintained for one minute. The oven
•	temperature was then raised at a rate of
	5°C per minute to a final temperature of
	28°°C. The final temperature was
	maintained for 15 minutes.