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Enthalpy Damping for the Steady Euler Equations 

DENNIS C. JESPERSEN l 
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SUMMARY. For inviscid steady !low problems where the enthalpy is constant at steady state, It has been proposed by Jameson, 
Schmidt, and Turkel to use the dilf'erence between the local enthalpy and the steady state enthalpy as a dnvlng term to accelerate 
convergence of Iterative schemes This Idea is analyzed here, both on the level of the partial dilf'erentlal equation and on the 
level of a particular finite dilf'erence scheme It is shown that lor the two.dimensional unsteady Euler equations, a hyperbolic 
system with eigenvalues on the ima~nary axi., there is no enthalpy damping strategy wruch can move all the eigenvalues into 
the open left half plane. For the numencal scheme, howe~ er, the analysis shows and examples verify that enthalpy damping can 
be elf'ectlve In accelerating convergence to steady state. 

1. INTRODUCTION 

Rapidly convergent numerical schemes for steady state solutions of the inviscid compreSSible fluid dynamics equa­
tions, the Euler equatIOns, have been studied mtensively m the last few years. Algorlthms and codes have been 
developed by Jameson, Schmidt, and Turkel (non-multigrid) (Ref 1); Jameson (multigrld) (Ref 2), Rizzi (Ref 3); 
Pulham (Ref. 4), Lerat, Sides, and Daru (Ref 5), Johnson (Ref. 6); NI (Ref. 7); Agarwal and Deese (Ref 8)i Osher 
and Chakravarthy (Ref. 9), Mulder and van Leer (Ref 10), and by Bunmg and Steger (Ref 11), among others One 
of the most successful and Widely used algorlthms is embodied in the FL052 codes of A Jameson The algorithm 
used for the Euler equations in these codes is based on an exphcit multistage tlme-steppmg scheme, with (for steady 
state problems) acceleratIOn deVices such as local time step selection, imphclt residual averagmg, multigrld, and en­
thalpy dampmg It is the purpose of thiS paper to prOVide an analysis of enthalpy dampmg for the two-dimensIOnal 
Euler equations 

The orlgmal derlvation of enthalpy damping by Jameson, Schmidt, and Turkel (Ref. 1) was based on reducing the 
unsteady Euler equatIOns to the unsteady potential equatIOn (a wave equation), mtroducmg frlctional damping to 
modify the equation to the telegraph equation, and translatmg the new equatIOn back to the Euler equations The 
next section begms by revlewmg thiS derlvatlon It can be verified that enthalpy damping IS effective in enhancing 
convergence for the Euler equatIOns, and an example calculation is mcIuded. 

The two-dimensIOnal Euler equatIOns With enthalpy damping are studied m section 3. The Euler equations are a 
system of partial differential equations of the form 

W, + ozt(w) + oy1(w) + aJl(w) = 0 (11) 

where the enthalpy dampmg IS embodied in the undifferentiated term JI, and a determines the strength of the 
damping term We hnearlze (11) around a state Wo With constant enthalpy, obtammg a hnear variable coeffiCient 
system 

W, + oz(A(wo(z, y))w) + 01l(B(wo(z, y))w) + aC(wo(z, y))w = 0 (12) 

where w IS the perturbation from Wo and A = at low, B = a1 law, C = aJi law. We study the frozen coefficient 
problem 

w, +Aazw + Ballw + aCw = 0 

Fourier transforming (13) gives the system 

(13) 

(14) 

where w(z, y, t) = e'(CJ1Z+CJ21/)w(t). For a = 0, the system (1 3) is hyperbolic and all solutions w of (1 4) are of the 
form w = 2:, e>'Jlw,(O) where ,\ is purely imaginary. For a> 0 the natural conjecture is that the enthalpy damping 
helps by pulhng the '\, into the left half of the complex plane. We show that of the four elgenvalues'\, for any 
pair (W"W:l), one eigenvalue always remams on the imagmary axIS, so the system (13) does not have the property 

I Research SCientist, Computational Fluid Dynamics Branch 



that all ItS solutions decay to zero. The analysis also suggests a form of the enthalpy damping term for the energy 
equation more natural than that of Jameson, Schmidt, and Turkel (Ref. 1). 

If the Euler equations at the partial differential equation level do not have decaying solutions when enthalpy 
damping is in effect, why do the numerical results show that enthalpy damping is useful? This question is addressed 
in section 4. To get a flavor of the idea, consider the system of ordinary differential equatIOns 

du 
-+Au=O 
dt 

(15) 

where the complex matrix A 15 assumed to be diagonalizable with all its eigenvalues on the Imagmary axis, say at 
''\l! j'\2," ,with 0 < '\1 < '\2 < .... Solutions to (15) do not decay to zero as t -> 00. However, if (15) is 
mtegrated with the Imphcit Euler method 

(1.6) 

the numerical solutIOn Un wlll go to zero as n -> 00 because the eigenvalues of A are con tamed in the interior of the 
stabillty regIOn of the method Furthermore, the eigenvector associated with the eigenvalue i'\l will decay slowest 
because its dampmg factor IS closest to 1 Thus If the matrix A. is somehow modified so that the eigenvalue'\l moves 
to the left, such that the modified eigenvalue is farther from 1 in the complex plane than the original eigenvalue, and 
such that all the other eigenvalues are unchanged, then the numerical solution of the modified system Will decay to 
zero faster than the numerical solution of the original system In section 4 we attempt to show that roughly the same 
phenomenon occurs with the Euler equations and an exphcit multistage integration scheme (I e , the eigenvectors 
obstructmg the convergence are associated with eigenvalues which are moved to the left when enthalpy damping is 
used) Thus, even though one of the eigenvalues does not move off the imagmary axis, the convergence rate can 
stili Improve An attempt IS made to quantify the improvement in convergence rate and to find an optimal dampmg 
parameter cr 

The major omiSSion of thiS work IS the neglect of numerical dissipation. The numerical scheme IS actually an 
approximatIOn not to (11), but to 

Wt + ozl'(w) + 0l/l(w) + cr)l(w) + (D(w) = 0 (1.7) 

where D IS a diSSipatIOn operator (e g, a blend of second- and fourth-order dissipatIOn terms) The mclusion of a 
diSSipatIOn term makes the analYSIS much more cumbersome, a pomt which will be touched on again If an analysis 
mcludmg the dissipation term could be carried out, results more relevant to the performance of the computer codes 
could be obtamed 

The author has had the benefit of severallliuminatmg discussions With Ell Turkel m the course of this work Many 
of the algebraiC computations m sectIOns 3 and 4 were carried out With I1az.ma, the VAX version of MacByma (Ref. 
12) Some of the computations would have been extremely difficult or ImpOSSible Without I1az.ma. 

2. DERIVATION OF ENTHALPY DAMPING 

This section reviews the derivation of enthalpy damping via the unsteady potential equatIOn and telegraph equatIOn 
as orlgmally sketched m Jameson, Schmidt, and Turkel (Ref 1) The two-dimenSIOnal Euler equatIOns In conservation 
form for a perfect gas may be written 

Pt + (pu)z + (pv)1/ = 0 

(pu)t + (pu2 + p)z + (puv)1/ = 0 

(pv)t + (puv)z + (pv2 + p)1/ = 0 

(pElt + (puH)z + (pvH)1/ = 0 

(21) 

where p is the denSity, u and v are Cartesian velocity components, E is total energy per UnIt mass, P IS pressure, 
and H IS the enthalpy, defined by 

H=E+p/p 
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One can verify that 

.E..H =! op 
Dt pat 

where DID t is the material derivative DID t := a I a t + v ' V, (The notation a '= b means a is defined as b ) Hence 
in steady flow H is constant along streamhnes, and if flow conditions are uniform at upstream infinity, then H is 
everywhere constant at steady state. 

In nonconservatlve form the Euler equations may be written 

Pt + Upz + VPII + p( Uz + vII) = 0 

Ut + UUz + vUII + Pzlp = 0 

Vt + UVz + vVII + PilIp = 0 

P 1 
E t + uEz + vEil + -(Uz + VII) + -(Upz + VPII) = 0 

p P 

The fourth equation here can be replaced by the transport equation for entropy 

St + uSz + vSy = 0 

The choice of the fourth equation affects the form of enthalpy damping that is derived 

(22) 

If the flow IS barotropIc (i e., p = p(p)) one can show by differentiating the x-momentum equatIon WIth respect 
to y, the y-momentum equatlOn with respect to x, and subtracting the latter from the former, that the vorticity 
W = Vz - ul/ satisfies 

Wt + (wu)z + (wv)1I = 0 

WIth thiS and the use of the contInUIty equation one can show that 

(23) 

Thus If the flUId IS IrrotatlOnal (i e , W = 0) at tIme t = 0 then it IS irrotational for all t > O. For an IrrotatlOnal 
flUId a velOCIty potential ¢> may be introduced, where ¢>:r = U and ¢>11 = v Then the momentum equations may be 
intf'grated to gIve the unsteady Bernoulh equation 

o¢> + u
2 

+ v
2 

+ / dp = G(t) 
at 2 P 

(24) 

where G IS an arbItrary function of t If the flow IS homentroplc (entropy everywhere constant), then we have p = Ap"l' 

and J dp/p = ')'P/lb -1)p] For an Ideal gas we have p = b -1)p[E - (u2 + v2 )/2] where,), IS the ratlO of specific 
heats Hence 

and the unsteady Bernoulh equatIon becomes 

o¢> 
-+H=G(t) at 

For exterlOr flow problems, If the condItions are umform at infimty, thIS becomes 

where H 00 is the enthalpy at infinity 

a¢> 
-+H=Hoo 
at 

An alternate form of the unsteady Bernoulh equatIOn (25) is 

¢>t + ¢>~ + ¢>~ + _')'_Ap"l'-l = Hoo 
2 ,),-1 

3 
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To obtain the unsteady potential equation, this equation is differentiated with respect to t, Z, and y, and solved 
for Pt, P%, py. These expressions for Pt, P%, and Py are substituted into the mass conservation equation. Usmg the 
relation giving the speed of sound as c2 = ,pIp, one obtains the unsteady potential equation 

(2.6) 

For constant u and v the change of coordinates ~ = Z - ut, " = y - vt transforms this to the wave equatlOn 

A related equation (Ref. 13) is the telegraph equation 

rPu + arPt = c2 (rPee + rP'I'I) 

For a > 0 the solutions of this equation decay as t -+ 00. Transforming this equation back via Z = e + ut, y = " + vt 
we obtam the damped verSlOn of (2 6), 

(2.7) 

This IS the equatlOn one would have obtamed from the mass conservation equation If the mass conservation equation 
had been 

Pt + up% + VPy + p(u% + vy) = aprPt 

Now, rP IS unknown, but the unsteady Bernoulli equation (25) allows us to replace rPt by Hoo - H, obtaining the 
modified mass conservatlOn equation 

Pt + up% + VPy + p(u% + vy) + ap(H - Hoo) = 0 (28) 

Usmg thiS m place of the first equation of (22) and recombmmg mto conservation form, one obtams the system of 
equatIOns 

Pt + (pu)% + (pv)y + ap(H - Hoo) = 0 

(pu)t + (pu2 + p)% + (puv)y + apu(H - Hoo) = 0 

(pv)t + (puv)% + (pv2 + p)y + apv(H - Hoo) = 0 

(pE)t + (puH)% + (pvH)y + apE(H - Hoo) = 0 

(29) 

If the entropy equatlOn IS used as the fourth equation of (22), recombmmg mto conservatlOn form produces a different 
fourth equatIOn m l29) Then (29) IS replaced by 

Pt + (pu)% + (pv)y + ap(H - Hoo) = 0 

(pu)t + (pu2 + p)% + (puv)y + apu(H - Hoo) = 0 

(pv)t + (puv)% + (pv2 + p)y + apv(H - Hoo) = 0 

(pElt + (puH)% + (pvH)y + apH(H - Hoo) = 0 

In the next section we will analyze a general form of enthalpy damping which includes both (29) and (210). 

(210) 

In summary, for subsoDlc lrrotatlOnal flow, systems (29) and (210) give rise (locally) to the telegraph equation 
whlle the system (21) gives nse (locally) to the wave equatlOn. Furthermore, we may hope that steady states of 
(29) and (210) are steady states of (2 I), and vice versa. It is clear that any steady state of (2 1) is also a steady 
state of (2.9) and (210) (since steady states of (21) have constant enthalpy). It is not clear that steady states of 
(29) are steady '!tates of (21). It IS true, however, that steady solutions of (210) have enthalpy constant along 
streamhnes, henre if flow conditions are uniform at upstream mflmty then steady solutIOns of (2 10) have enthalpy 
constant everywhere, hence steady solutions of (2 10) are also steady solutions of (21). To see that steady solutlOns 
of (2 10) have enthalpy constant along streamlines, multiply the first equation of (2 10) by H and subtract the result 
from the fourth equation of (2 10). Ifthe time derivatives are zero one finds that uH % + vHy = 0, hence H is constant 
along streamhnes 



In place of the fourth equation of (2.9) we can use 

(2.11) 

which IS obtained by multiplying the first equation of (2.9) by Hoo and subtracting from the last equation of (2.9). 
It IS suggested by Jameson, Schmidt, and Turkel (Ref. 1) that a forcing term apH(H - Hoo) in the fourth equatIon 

of (2 9) "can be destabilizing," and it is suggested that this term be replaced with a(H - Hoo). The computer codes 
seen by thiS author use a forcing term ap(H - Hoo) in (211); i.e., E - Hoo IS replaced by 1 in the fourth term 
of (2 11). ThIS ad hoc fix seems undesirable, if only on dimensional grounds. One of the purposes of this paper is 
to rationally derive a reasonable form for the forcing term in the energy equation, thereby clearing up some of the 
confusion that seems to eXist. 

Figure 2 1 shows a comparISon of a Euler equation calculation with and without enthalpy damping. The code 
used was FL052R (supplied by A Jameson) with the multigrid and implicit residual averaging options turned off. 
The initial solutIon was a partIally converged solutIOn obtained by grid continuation (interpolation from a coarser 
grid) The enthalpy damping factor a was 005 The convergence rate improved from 09966 without enthalpy 
damping to 0 9954 With enthalpy dampmg. Jameson, Schmidt, and Turkel (Ref. 1) show an example of improvement 
in convergence rate from 0 9909 to 0 9863. The greater gain reported there may perhaps be due to the smaller 
number of grid pOints (128 x 32) or other mesh differences, differences In the boundary conditions, or differences In 
Implementation of the numerical algOrithm 

3 ANALYSIS OF ENTHALPY DAMPING FOR THE DIFFERENTIAL EQUATION 

ConSider the system of partial differential equations 

where 
w = (p,pu,pv,pE)T 

t = (pu, pu2 + p, puv, puH)T 

J = (pv, puv, pv2 + p, pvH)T 

}( = (p(H - Hoo ), pu(H - Hoo ), pv(H - Hoo ), ph4 (H - Hoo))T 

(31) 

(32) 

Here we have taken a fairly general form of the fourth component of }(, With h4 = h4 (w) On dimensional grounds, 
h4 should have the same Units as E 

The first step IS to linearize about a steady solution wo, and since we are Interested In steady solutIOns With 
constant enthalpy, we Will assume Wo has constant enthalpy The first-order terms III the equation for the variation 
Wo + w then give the linear variable coeffiCient equatIOn for w 

0IW + o:,c{A(wo(z, y))w) + oy(B(wo(z,y))w) + aC(wo(z,y))w = 0 (33) 

where A, B, C are the Jacobian matrices of t, J, and }(, respectively We will study thiS variable coeffiCient system 
by freeZing the coeffiCients at an arbitrary (zo, Yo) ThiS gives the constant coefficient problem 

(34) 

The Justification for thiS reduction is the conjecture that if all the constant coeffiCient problems (34) haH w --+ 0 
as t --+ 00, then the variable coefficient problem (3 3) has w --+ 0 as t --+ 00, and that If the variable coeffiCient 
problem (33) has w --+ 0 as t --+ 00 then the nonlinear problem IS (locally) asymptotically stable at a steady state 
With constant enthalpy This author IS not aware of any theorems which rigorously quantify these conjectures 

We will analyze (3 4) by Fourier methods, take 
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Figure 2 1 L2 norm of residual in density equation for FL052R without 
enthalpy dampIng (sohd line) and with enthalpy dampIng (dashed line) 
NACA0012 airfoIl, Moo = 08, angle of attack= 1 25°, 192 x 32 mesh, 
CFL=2, four-stage method, coefficients (1/4.1/3,1/2,1), two dissipation 
evaluations Iteration started with partially converged solution. 

and substitute in (34) to obtaIn the ordInary differential equation 

~~ + [I (WI A + w2B) + aCjw = 0 

Here take tV = eztw where z is complex and w is a constant four-vector. ThIS gives 

(zl + i(WIA + W2B) + aC)w = 0 

(35) 

(36) 

If all the zeros of the polynomial p( z) := det( zl + i( wlA + w2B) + aC) lie in the left half-plane {!Jl( z) < O}, then all 
solutIOns of (3 4) deray to 0 as t -+ 00. 

Note that C has rank one, since we have Ji(w) = (Wit W2, Ws, w1h4 )T (H - Hoo) and 
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The zeros of the polynomial p(z) are -1 times the eigenvalues of the matrix i(WIA + w2B) + aC. We know that 
i(wIA + W2B) is diagonalizable with eigenvalues iwU, iwU, iw(U + e), and iw(U - e), where U = WI" + W2V and 
w2 = wl + w~. The following is a theorem about rank one perturbations of diagonalizable matrices with multiple 
eigenvalues 

THEOREM. Let R be a (complex) matrix with a double eigenvalue ,\ and two linearly independent eigenvectors 
associated WJth ,\. Let S have rank one. Then R + S has ,\ as an eigenvalue. 

PROOF Let Vb v2 be two lInearly independent eigenvectors associated with ,\. Smce S has rank one, there IS some 
nontrivial combmation aVl + bV2 such that S(avl + bV2) = o. Then (R + S)(avl + bV2) = '\(avl + bV2) 

Applying the theorem with R = .(wIA + W2B) and S = aC, we see that .(w1A + W2B) + aC has an eigenvalue 
IWU. Thls leads to the conclusion that enthalpy dampmg cannot produce a system (3.4) whlch has solutlOns that 
decay to 0 as t -+ 00. This result is very general; it applies to any form of enthalpy damping for which the enthalpy 
dampmg term is proportional to the difference between the local enthalpy and the freestream enthalpy Indeed, if 
the enthalpy dampmg term in (32) IS formulated as JI = (H - Hoo)(Px{w), P2(W), P~(w), P.(w))T, then the matrix 
C has rank one. 

We are going to further study the system of equations with enthalpy dampmg, to mvestxgate the behavior of the 
eigenvalues that do move off the imagmary axiS and, to find a reasonable chOIce for h. To do this, It IS not convenient 
to work with the matrices A and B, for the entries of these matrices are complIcated functions of (WI, W2, W~, w.) It 
IS easier to work With similarity transforms N-I AN and N-I BN, where N IS the matrIX ow/ow and w = (p, U, V, pl. 
ThiS Simply amounts to writing the Euler equatIOns 10 primitive variables rather than in conservatIve variables One 
has 

p 

o p 

pu pv 

N-I _ - u/p l/p 

( 

1 

- - vIp 0 

b - l)(u2 + v2 )/2 (1- 7)U 

The matrices N-I AN and N-I BN have been gIven m Warm10g and Beam (Ref. 14) They are 

ThE' matrIX N-ICN turns out to be 

p 

u 

o 
pc2 

N-1CN = 0 0 0 0 
( 

c2 / (1 - 7) pu pv 7/ b - 1) 

o 0 0 0 

< first row times (1- 7)(u2 + v2 - 2h.)/2 > 
) 

Smce p(z) = det(zI + .(wIN-IAN + W2N-IBN) + aN-ICN), we can use the expressIOns for N-IAN, N-IBN, 
and N-1CN to compute p(z). It turns out that With U = wIU+W2v and w2 .= w~+w~ we havep(z) = po(z)+aq(z) 
where 

po(z) = (z + iWU)2(Z + iw(U + c))(z + iw(U - e)) 

q(z) = 7(h. - E)z~ + .wU((2/' + l)(h. - E) - e2 h)z2 

e2 (h - E) w2[_(2U2 _e2 )+ 4 (c2-b+2)U2)JZ 
72 7 

(3 7) 

~ 2 2 - c2 

-.w U(U - C )(h4 - E - -) 
7 
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The polynomial Po (z) is the polynomial one would obtain with no enthalpy damping; its roots are purely imaginary, 
which shows that the Euler equations without enthalpy damping are a hyperbolic system. (To show hyperbohcity, 
one also has to verify that there are linearly independent eigenvectors associated with the double zero at z = -iwU.) 
It can be verified that q( -iwU) = 0; this is a consequence of the theorem stated above. 

We can obtam further information. First, take U = cM and replace z by cw~. Next, take 'h. - E = kc2 h. Note 
that for k = 0 we have 'h. = E and for k = 1 we have 'h. = H. The polynomial p(z) becomes 

exc 3 • 2 + -{k~ + -M(2k, + k - 1)~ w , 

+ !((2 - 2k - k,)M2 + k - 1)~ - !.(k - I)M(M2 - Inl , , 
This factors as 

w.c. (~+ IM){~3 + 3iM ~2 + (1 - 3M2)~ + .M(I- M2) + ~lk~2 + i M 
(-yk + k - 1)~ + k - 1 (1- M2)]} W, , (38) 

=: w·c·(~ + iM)R(d 

(The polynomial R(d IS exactly the polynomial one would obtam by analyzmg enthalpy damping apphcd to the 
Euler equatlOns m one space dlmenslOn.) The plan now is to study the location of the zeros of the polynomial R(d. 
Assume ex > 0 Wrltmg R(d = S(d + (exc/w)T(d, we note that for ~ on the imaginary axis, S(d IS purely Imaginary 
and T(d IS real, hence R cannot vamsh on the Imagmary axIS unless Sand T have a common zero on the Imaginary 
axiS. The zeros of S he on the Imagmary axis and are -iM, -i(M + 1), -i(M - 1) At these ~, T(d takes on the 
values (k -1)/1, -(M + l)(ik- k+ 1)/1, and (M -1)(-yk - k+ 1)/1, respectively. Thus If M2 f 1 and k f 1, R has 
no zeros on the imagmary axiS Hence m this case we may choose any convenient value of M and use the algorithm 
given by J J. H. Miller (Ref. 15) for decldmg whether a polynomial has all Its roots in the open left half-plane. 

The algorithm IS as follows For any functlOn p( z), deflne p. (z) = p( - z) Given a polynomial p( z), take a pomt ~ 
m the left half-plane for which p(z) i- 0 i- p·(z), and define 

p(z) = p·(dp(z) - p(dp·(z) 
z-~ 

Then p( z) IS a polynomial of degree less than p( z) The theorem IS that p( z) has all Its zeros in the open left 
half-plane If and only If Ip· (d I > Ip( d I and p has all ItS zeros m the open left half-plane Thus one can fC("urslvely 
apply thiS theorem, the degree of the polynomial decreasmg at each step 

ConSider the rase Af2 < 1. In this case AI = 0 IS a convement value to pick, and one can show (usmg Miller's 
algOrithm) that R has all ItS zeros m {!Jl(d < o} If and only If k > 1. Now consider the case M2 > 1 In this case 
one can choose .\1 = 2 (for example), the result is that R never has all Its zeros in the open left half-plane No" 
conSider the case M2 = 1 In thiS case R has a zero at ~ = 0, and one can show that the other zeros of Rare m the 
open left half-plane If and only If k > 1. In summary, the polynomial R(d has all its zeros m the open left half-plane 
{!Jl(~) < o} If and only If M2 < 1 and k > 1 Note that the condition M2 < liS (WIU + W2V)2 < c2(w1 + w~), which 
holds for all (WIt W2) If and only If u2 + v2 < c2 , ie, the flow is subsonic It is mteresting to note further that k = 0 
(unstable) is the case 'h. = E, the formulation of enthalpy damping we obtamed m sectlOn 2 from the potential 
equatlOn With enthalpy dampmg, while the case k = 1 (neutrally stable) IS the same as 'h. = H, the formulation that 
"can lead to lllstablhty" accordmg to Jameson, Schmidt, and Turkel (Ref 1) 

Thus enthalpy damping leads to a differential system which has a general solution that does not decay to zero 
Of the four eigenvalues on the Imaginary axiS when there is no enthalpy damping, one stays on the imaginary axiS 
when enthalpy dampmg is introduced and three move off the Imagmary axIS The analysis suggests that the energy 
equatlOn With enthalpy dampmg be Written m the form 

(pE), + (puH)z + (pvH)!/ + exp(E + kc2 h)(H - Hoo) = 0 

The eigenvalues that move off the Imaginary axiS move mto the left half-plane provided that k > 1 and u2 + v2 < c2 
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It is appropriate here to comment on the missing factor in the analysis, the dissipation term Going back to (1.7), 
take a dissIpation term of the form 

D(w) = (a: + a;HwI, W:l, W3, pHV 

The point here is that the fourth component is not w., it is instead pH. This is done because the system of equations 
with artificial dissipation still admits steady solutions with H = Hoo. To see this, note that when the continuity 
equation with dissipation is multlphed by Hoo and subtracted from the energy equation with dissipation we obtain 

(p(E - Hoo))t+(pu(H - Hoo)):r + (pv(H - Hoo))l/ 

+ O'p(h. - Hoo)(H - Hoo) + /:(a: + a!)p(H - Hoo) = 0 

which eVidently admits steady solutions with H = Hoo. We would want to look at the polynomial 

where D = aD/aw. If we do this and then form N-IDN, we find 

00) 100 
010 
o 0 'Y 

The fact that the fourth row here is not the fourth row of the Identity matrix has the consequence that p(z) with 
l :f. 0 IS vastly more comphcated than p( z) with t: = 0 This author has not been able to make any headway m 
analyzlDg the case l :f. 0 because of the formidable algebraic difficulties In fact, even for the case of no (nthalpy 
damplDg (0' = 0) thiS author is not aware of any proof of stablhty of the hnearlzed system with diSSipatIOn, because 
the dissipation term IS applied to a nonlinear functIOn of w 

Some experiments were done With the code FL052R in changmg the form of the enthalpy dampmg term m the 
energy equatIOn The form h. = E + kc2 h was used, and various values of k were tried Only one hne of the code 
was changed The first case was flow about a NACA0012 airfOIl at a freest ream Mach number 08 and at an angle of 
attack of 1 25° The code was run m multi grid mode with 40 cycles on a 48 X 8 mesh. then 40 cycles on a 96 X 16 
mesh. and finally 100 cycles on a 192 X 32 mesh. A five-stage scheme With coeffiCients (1/4,1/6,3/8, 1/2,1) was used, 
With two dISSipatIOn evaluations per time step For the unmodified code, the convergence rate for 100 cycles on the 
192 X 32 grid was 09557 A table of convergence rate vs k for the modified code IS shown here 

k 100 125 1 50 1 75 200 250 300 400 
convergence rate o 9864 0 9565 0 9538 0 9553 0 9580 0 9630 0 9672 0 9788 

EVidently the optimum k IS approximately 1 5 For a subcrlhcal case with a freest ream Mach number of 0 63 and 
an angle of attack of 2°, with all other p<J.rameters the same, the unmodified code had convergence rate 0 9288 The 
modified code produced the followmg results' 

k 1.00 1 50 2 00 2 50 3 00 3 50 4 00 
convergence rate o 9451 0.9303 0 9282 0 9276 0 9273 0.9275 0 9302 

Here the optimal k IS apparently between 2 5 and 3 5 In both cases It is clearly difficult to Improve on the Original 
code ThiS author beheves the excellent convergence behaVIOr of the unmodified code may be explamed as follows. 

The energy equation enthalpy dampmg term in the unmodified code comes from dlscretIzing 

Ie, thiS equatIOn IS used m place of the fourth equation of (2 9). In terms of the partial differential equation system, 
an eqUIvalent equation IS obtained by multiplymg the first equation of (2 9) by Hoo and adding to this, obtaining 

at (pE) + a:r(puH) + al/(pvH) + O'p(H - HooHHoo + 1) = 0 
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In the notation of (32), Ii. = Hoo + 1. With the definitIOn of Ii. as Ii. = E + kc2 h we would obtam h. = Hoo + 1 
If we had k = '1(Eoo - E + c~h + 1)/c2

• Now, the nondlmensionahzation in the FL052 codes is such that c~ = '1, 

hence at freest ream conditions we would have k = 2. Thus Ii. = E + 2c2 h is roughly the same as the unmodified 
code; also the previously noted expenments showed k = 15m one case and k E (25,35) in the other case were 
near-optimal. Thus k = 2 (nearly the onginal code) would be expected to give excellent results It lS also clear 
that the unmodlfied code is equivalent to a code with locally varying k; this author has not expenmented wlth other 
forms of locally varying enthalpy damping terms. 

4. FINITE DIFFERENCE FORMULATION WITH ENTHALPY DAMPING 

The mm of this section is to study the actual finite difference implementation of enthalpy damping. The aim is to 
understand why enthalpy damping can be effective in practice when on the level of the partial differential equation 
It does not produce a system with solutions which tend to zero. 

The general formulatIOn of enthalpy dampmg to be studied is as follows. Frrst spatial dlfferencing is apphed, 
sendmg wR to iifi := 1( wR

). Then enthalpy damping is applied, via 

(4.1) 

For example, the first equation could be taken to be 

"...., +,,-....,... 
P

R+l _ pR + (X~tpR l(HR - H ) = 0 
'} '} '} '} 00 

Notice that in this formulatIOn (the FL052 formulation) the enthalpy damping term lS in a seml-imphcit form whlch 
lS readlly solved for p~/l. If the enthalpy dampmg term were fully lmpliclt, it would be nonhnear m WR+l and 
difficult to solve 

We plan to study the stabihty of (4 1) about a solution w* wlth w* = l(w*) and }{(w*, w*) = o. Perturbmg to 
w* + fUJ, we find the perturbation equatIOn is 

where 
J. = Dl(w*) (the Jacobian matrIX) 

8l = Dl}{(W*, w*) (Jacobian wlth respect to first argument) 

82 = D2 }{ (w* , w*) (Jacobian with respect to second argument) 

The equation (42) is eqUivalent to 

Let us take 
){( WR+l , iifi) = (~ - Hoo) }('(WR+l, iifi) 

(42) 

(4.3) 

Then 81 = 0 and ~ = }('(w*,w*)· V~(~ - Hoc}. Furthermore, if the basic iteration scheme is an expliclt 
multistage method with central spatial dlfferencing, then l(wR) = P(~tL)WR, where P IS a polynomial, L = 
A6%/2~z + B611/2~y, and 6% and 611 are central space difference operators Thus the matrix problem (43) becomes 

Fourier transforming in space produces the problem 

where ~tL = ;(wIA + W2B) and WI = ~t sm 0/ ~:t, W2 = t!t.t sin r/J/ t!t.y, and 0, r/J are the Fourier dual variables. 
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Figure 41. Contours of IP(z}l in the complex plane for classical 
fourth-order Runge-Kutta. Contour levels: 0 1, 0.2, 03, ... , 1 O. 

A reasonable form (consistent with the work of section 3) for the implementation of the enthalpy dampmg step is 

pn+l _ p;a + a~tpn+I(Hn - Hoo) = 0 

(put+I - (~n + a~t(put+I(Hn - Hoo) = 0 

(pv)n+I - (p;}n + a~t(pv)n+l(Hn - Hoo) = 0 

(pE)n+I - (PE)n + a~tl(pE)n+I + kpn](Hn - Hoo) = 0 

The parameter k here IS the same as in the previous section Then our perturbation equation is 

wn+I = (1 - a~t~)P(~tL) 

(44) 

For the decay of perturbations about w·, it is necessary and sufficient that all eigenvalues ~ of (1 - a~tB2)P(AtL) 
satisfy I~I < 1 Furthermore, the asymptotic rate of decay is given by the modulus of the largest eigenvalue. For 
a = 0 (no enthalpy damping) we recover the usual CFL-like conditIOn max, IP(~J}I < 1, where ~, are the eigen"alues 
of ~tL: ~l = ~2 = iwU, ~3 = iw(U + e), ~. = iw(U - e), where wU:= WIU + W2V and w2 := wl + w~. 

For example, the explicit Euler method has P(~tL) = 1 - ~tL (this is unstable); the classical fourth-order 
Runge-Kutta method has P(z) = 1 - z + z2/2 - z3/6 + z· /24, for which it is known that the stability condition 
max,IP(~,}1 < 1 becomes max,I~,1 < 2J2. Contours of IP(z)1 in the complex z-plane are shown in Figure 41 for 
the fourth-order Runge-Kutta method. 
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The question before us now is, does the modulus of the m3.Xlmum eigenvalue decrease when atJ.t is increased from 
O? Also, what are good values for atJ.t and k? For}( as in (4.4) we have 

( 

p ) pu 1 
~ = . -( -"fE + b - l)(u2 + v2

), (1- "f)u, (1 - "f)v, "f) 
pv p 

pE+kp 

Again we have a matrix of rank one, ~, and a diagonalizable matrIX P(tJ.tL) with a double eigenvalue at P(iwU), 
so the theorem of the previous section implies that (1 - atJ.t~)P(tJ.tL) has as one of its eigenvalues P(IWU). Thus 
If this eigenvalue is the eigenvalue of maximum modulus, then enthalpy damping will not improve the convergence 
rate of the iteration. On the other hand, if one of the other eigenvalues IS obstructlllg the convergence, then enthalpy 
dampmg may help. 

To help in studying this question, it is useful to diagonahze the matrix L. The matrix T which diagonalizes 
wlA + W2B is known analytically (see Warming and Beam (Ref 14)). It is 

Then 

pI(J2e) 
wI/(J2w) 
w2/(J2w) 

pelJ2 

T- I (1 - atJ.t~)P(tJ.tL)T = (1 - atJ.tT- I ~T)T-I P(tJ.tL)T 

= (1 - atJ.tT-I ~T) 

. diag{P(iwU), P(iwU), P(iw[U + cD, P(IW[U - cD}. 
The characteristic polynomial of this matrIX vanIShes at P(IWU), and upon diVision by z - P(iwU) the characteristic 
polynomial becomes (wrlting (1 = P(iwU), (1+ = P(IW[U + cD, (1_ = P(IW[U - cD, and M = U Ie), 

(z - (1)(z - (1+)(z - (1_) 

atJ.te2 
+ __ [Z2 {2(k - 1)(1 + (1 + M)("tk - k + 1)(1+ + (1- M)("tk - k + 1)(1_}-

2/ 

- z( bk(1 + M) + (k - 1)(1- M)}(1(1+ + bk(l- M) + (k - 1)(1 + M)}(1(1_ 

+ 2bk - k + 1)(1+(1_) 

+ 2/k(1(1+(1_! 

Note that a has units of time- I velocity-2 (d. (44)), so atJ.te2 is dimensionless. 

(45) 

We will study the roots of the polynomialm (45) numerically. FIX a "Mach number" M = Ule. Define v ("CFL 
number") as max(lwU[, Iw(u + ell, [w(U - em. Then 

wU = {~sgn(M)1 max (I 1 + 1/MI, 11- 1/MI), ifM ~ 0 
If M =0 

(46) 

Now for a given M we can graph the spectral radius vs v by using the definition of wU from (4 6) and then numerically 
findlllg the roots of the polynomial (45). We can further search for an optimal value of the dimensIOnless parameter 
atJ.te2 by uSlllg as optimality critenon the Integral between the curves of spectral radIUS vs. v for atJ.te2 = 0 and 
atJ.te2 ~ 0, and searching far atJ.te2 which maximizes this integral (Numerically, the composite trapezOIdal rule was 
used for the integration.) Two typical graphs of spectral radIUS vs. v without and with enthalpy damping are shown 
in Figure 42 Note that enthalpy damping has little or no effect at small CFL numbers, it is only for CFL numbers 
near the stabihty limit that enthalpy damping is significantly helpful For supersonic flow (M > 1), the spectral 
radIUS with enthalpy damping was observed to be greater than 1. In all subsonic cases investigated, the spectral 
radIUS With enthalpy damping was exactly the same as or slightly less than the spectral radIUS without enthalpy 
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Figure 42(a). Spectral radIUs vs. CFL number for numerical scheme without and with enthalpy 
damping. Five-stage method with coefficients (1/4,1/6,3/8,1/2,1), M = 08, k = 2, a~tc2 = 0 25 
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Figure 42(b). Same as (a) except a~tc2 = 0 5. 

damplDg, at least in the region of stability The five-stage method with coefficients (1/4,1/6,3/8,1/2,1) was studied, 
with 0 :5 v :5 4 (the stabibty limit) With k = 2 and two different Mach numbers, M = 08 and M = 04, the 
following results were obtained for the area between the curves as a function of a ~tc2. 

a~tc2 .... 
area (M = 0 8) 
area (M = 0.4) 

ow oro QW oro QW OM 000 100 
o 0840 0.0967 0.101 0 103 0 104 0 105 0.105 0 0685 
0.0039 0 0039 0 0039 0 0039 0 0039 0 0039 0 0039 0.00277 
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Evidently there is not a sharp optimum value of aAtr?, for in the flrst case any aAtc' between 05 and 09 gives 
approximately the same result, while m the second case any aAtc' E (0.3,0.9) can be chosen. If the speed of ~ound 
is normalIzed to be 'Y at infinity (as in the FL052 codes), then our good range for adt becomes adt E (036,064) 
in the flrst case, and aAt E (0.21,0.64) in the second case. 

5. CONCLUSIONS 

The Euler equations with enthalpy damping can be studied as a system of partIal differential equatIOns. Lmear 
stabilIty analysis of the system around a state with constant enthalpy shows that not all solutions decay to zero. The 
analysis suggests that the enthalpy damping term in the energy equation be written as ap(E + kc2 hHH - Hoc). 
For this formulatIOn, the lInear stabilIty analysis shows stability (neutral stabilIty, i e., no eigenvalues m the open 
right half plane) if k ~ 1 and the flow is subsonic. 

When the equations are dlscretized via an explicit multistage method, the spectral radius can be decreased by 
enthalpy dampmg, even though It IS again the case that one of the eigenvalues is unchanged. A numerIcal study with 
k = 2 revealed that aAtc' :::::! 0 5 should give good results The particular value of aAt this leads to depends on the 
nondlmenslOnahzatlOn of a given computer code 

This analysIs has not taken the diSSipatIOn term into account, because the dissipatIOn operator m the energy 
equatIon IS applIed to pH, not pE (so that the equations with dissipation will still have constant enthalpy at 
steady state), which makes the analysIs much more complIcated All the analysis shows that enthalpy dampmg 
should be destabllIzmg for supersOnIC flow, but in practIce enthalpy damping does not harm the convergence for the 
FL052 codes In the transonic range. It is probably the case that the diSSipatIOn term is effective in stabilizing the 
computatIon, even In locally superSOnIC regions of flow 
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