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Enthalpy Damping for the Steady Euler Equatlions

DENNIS C. JESPERSEN!

MS 202A-1, NASA Ames Research Center
Moffett Field, CA 94035 USA

SUMMARY. For inviscid steady flow problems where the enthalpy is constant at steady state, 1t has been proposed by Jameson,
Schmidt, and Turkel to use the difference betweenthe local enthalpy and the steady state enthalpy as a dniving term to accelerate
convergence of 1terative schemes This idea is analyzed here, both on the level of the partial differential equation and on the
level of a particular finite difference scheme It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic
gystem with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which can move all the eigenvalues into
the open left half plane. For the numencal scheme, however, the analysis shows and examples verify that enthalpy damping can
be effective 1n accelerating convergence to steady state.

1. INTRODUCTION

Rapidly convergent numerical schemes for steady state solutions of the inviscid compressible fluid dynamics equa-
tions, the Euler equations, have been studied intensively in the last few years. Algonithms and codes have been
developed by Jameson, Schmidt, and Turkel (non-multigrid) (Ref 1); Jameson (multignd) (Ref 2), Rizzi (Ref 3);
Pulliam (Ref. 4), Lerat, Sidés, and Daru (Ref 5), Johnson (Ref. 6); N1 (Ref. 7); Agarwal and Dcese (Ref 8); Osher
and Chakravarthy (Ref. 9), Mulder and van Leer (Ref 10), and by Buning and Steger (Ref 11), among others One
of the most successful and widely used algorithms is embodied in the FLO52 codes of A Jameson The algonthm
used for the Euler equations in these codes is based on an exphcit multistage time-stepping scheme, with (for steady
state problems) acceleration devices such as local time step selection, impheit residual averaging, multignd, and en-
thalpy damping It is the purpose of this paper to provide an analysis of enthalpy damping for the two-dimensional
Euler equations

The ongmal denivation of enthalpy damping by Jameson, Schmidt, and Turkel (Ref. 1) was based on reducing the
unsteady Euler equations to the unsteady potential equation (a wave equation), mtroducing frictional damping to
modify the equation to the telegraph equation, and translating the new equation back to the Euler equations The
next section begins by reviewing this derivation It can be verified that enthalpy damping 1s effective in enhancing
convergence for the Euler equations, and an example calculation is included.

The two-dimensional Euler equations with enthalpy damping are studied 1n section 3. The Euler equations are a
system of partial differential equations of the form

we + 9 E(w) + 0, F(w) + aX(w) =0 (11)

where the enthalpy damping 1s embodied in the undifferentiated term ¥, and a determines the strength of the
damping term We hnearnize (1 1) around a state wo with constant enthalpy, obtaining a linear variable coefficient

system
we + 9z (A(wo(z, y))w) + 8y (B(wo(z, y))w) + aC(wo(z,y))w =0 (12)

where w 13 the perturbation from wy and 4 = 8€ /dw, B = Bf/aw, C = a}l/aw. We study the frozen coeflicient

problem
we + Ad;w+ Bi,w+aCw=0 (13)

Fourier transforming (1 3) gives the system

-d—'f'l(wlA'*'WQB)!TJ'f'aCﬁ:O (1 4)

di

4
where w(z,y,t) = e'(“17+vav)(t). For a = 0, the system (1 3) is hyperbolic and all solutions @ of (1 4) are of the
form @ = § e**ij,(0) where X is purely imaginary. For a > 0 the natural conjecture is that the enthalpy damping
helps by pulling the A, into the left half of the complex plane. We show that of the four eigenvalues A, for any
pair (wy,ws), one eigenvalue always rematns on the imaginary axis, so the system (1 3) does not have the property
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that all its solutions decay to zero. The analysis also suggests a form of the enthalpy damping term for the energy
equation more natural than that of Jameson, Schmidt, and Turkel (Ref. 1).

If the Euler equations at the partial differential equation level do not have decaying solutions when enthalpy
damping is in effect, why do the numerical results show that enthalpy damping is useful? This question is addressed
in section 4. To get a flavor of the idea, consider the system of ordinary differential equations

du

5 +Au=0 (15)
where the complex matrix A 1s assumed to be diagonalizable with all its eigenvalues on the imaginary axis, say at
1Ay, 1Az, .. , with 0 < A} < Xy < .... Soluttens to (15) do not decay to zero as ¢ — oco. However, if (15) is
mtegrated with the implicit Euler method

Up4y — Up + A!Au,,.H =0 (1.6)

the numerical solution u, will go to zero as n — oo because the eigenvalues of A are contained in the interior of the
stability region of the method Furthermore, the eigenvector associated with the eigenvalue 1A, will decay slowest
because its damping factor s closest to 1 Thus if the matrix .4 is somehow modified so that the eigenvalue A; moves
to the left, such that the modified eigenvalue is farther from 1 in the complex plane than the original eigenvalue, and
such that all the other eigenvalues are unchanged, then the numerical solution of the modified system will decay to
zero faster than the numerical solution of the original system In section 4 we attempt to show that roughly the same
phenomenon occurs with the Euler equations and an explicit multistage integration scheme (1e, the eigenvectors
obstructing the convergence are associated with eigenvalues which are moved to the left when enthalpy damping is
used) Thus, even though one of the eigenvalues does not move off the imaginary axis, the convergence rate can
stil) improve An attempt 13 made to quantify the improvement in convergence rate and to find an optimal damping
parameter o

The major omission of this work 13 the neglect of numerical dissipation. The numerical scheme 13 actually an
approximation not to (1 1}, but to

w + 3, E(w) + 9, F(w) + al{w) +eD(w) =0 (L.7)

where D 1s a dissipation operator (e g, a blend of second- and fourth-order dissipation terms) The 1nclusion of a
dissipation term makes the analysis much more cumbersome, a pomnt which will be touched on again If an analysis
mcluding the dissipation term could be carried out, results more relevant to the performance of the computer codes
could be obtained

The author has had the benefit of severalilluminating discussions with Eli Turkel 1n the course of this work Many
of the algebraic computations 1 sections 3 and 4 were carried out with vazsma, the VAX version of Macsyma (Ref.
12) Some of the computations would have been extremely difficult or impossible without vazsma.

2. DERIVATION OF ENTHALPY DAMPING

This section reviews the derivation of enthalpy damping via the unsteady potential equation and telegraph equatton
as oniginally sketched in Jameson, Schmidt, and Turkel (Ref 1) The two-diunensional Euler equations 1n conservation
form for a perfect gas may be written

pr+ (pu)z + (pv)y =0

(pu)e + (pu® + p)z + (puv)y =0
(pv)e + (puv); + (pv* +p)y, =0
(PE)e + (puH)z + (pvH)y =0

(21)

where p is the density, u and v are Cartesian velocity components, E is total energy per umit mass, p 13 pressure,
and H 1s the enthalpy, defined by
H=E+p/p
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One can verify that

_D_ _1adp
Dt~ pot

where D/Dt is the material derivative D/Dt := 3/0t +v- V. (The notation @ ‘= b means a is defined as b ) Hence

in steady flow H is constant along streamhnes, and if flow conditions are uniform at upstream infinity, then H is

everywhere constant at steady state.
In nonconservative form the Euler equations may be written

p +up; +vpy +p(uz +v,) =0
U + uug + vy +p.fp=0
ve+uv: +vvy +p,[p=0 (22)

1
E¢+uE, +vE, + "—:(u, +vy) + (ups +vp,) = 0

The fourth equation here can be replaced by the transport equation for entropy
S¢+uS,+vSy =0

The choice of the fourth equation affects the form of enthalpy damping that is derived
If the flow 1s barotropic (ie., p = p(p)) one can show by differentiating the z-momentum equation with respect
to y, the y-momentum equation with respect to z, and subtracting the latter from the former, that the vorticity
w = vz — uy satisfles
we + (wu); + (wv)y, =0

With this and the use of the continuity equation one can show that
i}
—(-‘:;T/”l + udz(w/p) + vdy(w/p) =0 (23)

Thus if the fluid 1s irrotational (ie, w = 0) at time ¢ = O then it 1s irrotational for all ¢ > 0. For an irrotational
fluid a velocity potential ¢ may be introduced, where ¢; = u and ¢, = v Then the momentum equations may be
integrated to give the unsteady Bernoulh equation

8¢ ud+4? dp
W+—2 + p —-G(l) (2 4)

where G 1s an arbitrary function of ¢ If the flow 1s homentropic (entropy everywhere constant), then we have p = Ap?
and [dp/p = 1p/[(7 — 1)p] For an 1deal gas we have p = (7 — 1)p[E — (u? + v%)/2] where « 13 the ratio of specific
heats Hence

v p u+e
¥ - 1; 2

H=E+p/p=

and the unsteady Bernoulli equation becomes

a¢

S +H=G()

For exterior flow problems, if the conditions are umform at infinity, this becomes

2 +H=He (25)

where H, is the enthalpy at infinity
An alternate form of the unsteady Bernoulh equation (2 5) is

¢2+¢y+ 2

—T-ap"t = He
) P

o +



To obtain the unsteady potential equation, this equation is differentiated with respect to ¢, z, and y, and solved
for p;, pz, py.- These expressions for p;, p;, and py are substituted into the mass conservation equation. Using the
relation giving the speed of sound as ¢2 = 4p/p, one obtains the unsteady potential equation

bee + 2udzt + 200yt = (¢ — u?)dze — 2uvdsy + (c? — v?)y, (2.6)
For constant u and v the change of coordinates £ = z — ut, n = y — vt transforms this to the wave equation
ot = (dee + dnn)
A related equation (Ref. 13) is the telegraph equation
du +ady = ct(dee + dnn)

For o > 0 the solutions of this equation decay as ¢ — co. Transforming this equation back via z = £+ ut, y = g+ vt
we obtain the damped version of (2 6),

due + 2uday + 200y + ady = (¢? — u?)Pzz — 2uvdyy + (c? - v?)dyy (2.7)

This 15 the equation one would have obtained from the mass conservation equation 1if the mass conservation equation

had been
pt + upz +vpy + P(“: + Uy) = apd,

Now, ¢ 15 unknown, but the unsteady Bernoulli equation (2 5) allows us to replace ¢; by Ho, — H, obtaining the
modified mass conservation equation

pt +upy +vpy + p(uz +vy)+ap(H-Hy) =0 (28)

Using this 1 place of the first equation of (2 2} and recombining into conservation form, one obtains the system of

equations
pt+ (pu)z + (pv)y + ap(H — Hoo) = 0

(pu)e + (pu® + p)z + (puv)y + apu(H — Hy) =0
(pv)e + (puv)s + (pv? +p)y + apv(H — Hoo) =0
(pE)t + (puH): + (pvH)y + apE(H — Hoo) =0

(29)

If the entropy equation 1s used as the fourth equation of (2 2), recombining into conservation form produces a different
fourth equation m (29) Then (2 9) 1s replaced by

pe + (pu)z + (pv)y + ap(H — Heo) =0

(pu)e + (pu? +p)z + (puv)y + apu(H — Hoo) = 0
(pv)e + (puv)z + (pv? +p)y + apv(H — Hoo) =0
(PE)e + (puH): + (pvH)y + apH(H — Hyo) =0

(2 10)

In the next section we will analyze a general form of enthalpy damping which includes both (2 9) and (2 10).

In summary, for subsonic irrotational flow, systems (2 9) and (2 10) give rise (locally) to the telegraph equation
while the system (2 1) gives nise (locally) to the wave equation. Furthermore, we may hope that steady states of
(2 9) and (2 10) are steady states of (2 1), and vice versa. It is clear that any steady state of (2 1) is also a steady
state of (2.9) and (2 10) (since steady states of (2 1) have constant enthalpy). It is not clear that steady states of
(2 9) are steady states of (2 1). It 1s true, however, that steady solutions of (2 10) have enthalpy constant along
streamlines, hence if flow conditions are umform at upstream mfinity then steady solutions of (2 10) have enthalpy
constant everywhere, hence steady solutions of (2 10) are also steady solutions of (2 1). To see that steady solutions
of (2 10) have enthalpy constant along streamlines, multiply the first equation of (2 10) by H and subtract the result
from the fourth equation of (2 10). If the time derivatives are zero one finds that uH,+vH, = 0, hence H is constant
along streamlines



In place of the fourth equation of (2.9) we can use
(P(E — Hoo))e + (pu(H = Hoo))z + (pv(H = Hoo))y + ap(E — Hoo)(H — Hoo) = 0 (2.11)

which 1s obtained by multiplying the first equation of (2.9) by H, and subtracting from the last equation of (2.9).

It 1s suggested by Jameson, Schmidt, and Turkel (Ref. 1) that a forcing term apH (H — Hy,) in the fourth equation
of (2 9) “can be destabilizing,” and it is suggested that this term be replaced with a(H — Ho,). The computer codes
seen by this author use a foreing term ap(H — Hy) in (2 11); ie., E — Ho, 13 replaced by 1 in the fourth term
of (2 11). This ad hoe fix seems undesirable, if only on dimensional grounds. One of the purposes of this paper is
to rationally derive a reasonable form for the forcing term in the energy equation, thereby clearing up some of the
confusion that seems to exist.

Figure 2 1 shows a companson of a Euler equation calculation with and without enthalpy damping. The code
used was FLO52R (supplied by A Jameson) with the multigrid and implicit residual averaging options turned off.
The 1nitial solution was a partially converged solution obtained by grd continuation (interpolation from a coarser
grid) The enthalpy damping factor a was 005 The convergence rate improved from 09966 without enthalpy
damping to 0 9954 with enthalpy damping. Jameson, Schmidt, and Turkel (Ref. 1) show an example of improvement
in convergence rate from 0 9909 to 0 9863. The greater gain reported there may perhaps be due to the smaller
number of grid points {128 x 32) or other mesh differences, differences in the boundary conditions, or differences 1n
mmplementation of the numerical algornthm

3 ANALYSIS OF ENTHALPY DAMPING FOR THE DIFFERENTIAL EQUATION

Consider the system of partial differential equations
wy + 0,6 (w) + 9, F(w) + al{w) =0 (31)

where T

w = (p, pu, pv, pE)

£ = (pu, pu® + p, puv, puH)T -
F = (pv, puv, pv* + p, pvH)T (32)

N = (p(H — Hoo), pu(H — Hoo), pv(H — Hoo), phe(H — Hoo))T

Here we have taken a fairly general form of the fourth component of ¥, with Z, = %,(w) On dimensional grounds,
714 should have the same units as E

The first step 1s to lineanze about a steady solution wy, and since we are mterested in steady solutions with
constant enthalpy, we will assume wy has constant enthalpy The first-order terms 1n the equation for the variation
wo + w then give the hnear variable coefficient equation for w

Oyw + 0z (A(wo(z, y))w) + 0y (B(wo (2, y))w) + aC(wo(z, y)}w =0 (33)

where A, B, C are the Jacobian matrices of £, ¥, and X, respectively We will study this variable coefficient system
by freezing the coefficients at an arbitrary {zo,yo} This gives the constant coefficient problem

diw + Adw + Boyw + aCw =0, (34)
The justification for this reduction is the conjecture that if all the constant coefficient problems (3 4) have w — 0
as { — oo, then the variable coefficient problem (3 3) has w — 0 as t — oo, and that 1f the vanable coefficient
problem (3 3) has w — 0 as { — oo then the nonlnear problem 1s (locally) asymptotically stable at a steady state

with constant enthalpy This author 1s not aware of any theorems which rigorously quantify these conjectures
We will analyze (3 4) by Fourier methods, take

w(z, g, 1) = (1)
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Figure 21 L, norm of residual in demnsity equation for FLO52R without
enthalpy damping (sohd line) and with enthalpy damping (dashed line)
NACAO0012 airfoil, M, = 08, angle of attack= 1 25°, 192 x 32 mesh,
CFL=2, four-stage method, coefficients (1/4,1/3,1/2,1), two dissipation
evaluations Iteration started with partially converged solution.

and substitute in (3 4) to obtain the ordinary differential equation

dw ~

Ft:}- + [1{w1A + weB) + aCl® =0 (35)
Here take i = e**w where z is complex and w is a constant four-vector. This gives

(27 +i(wiA +w2B) +aC)w =0 (36)

If all the zeros of the polynomial p(z) := det(z] +i(w A + w2 B) + aC) lie in the left half-plane {R(z) < 0}, then all
solutions of (3 4) decay to 0 as ¢ — oo.

Note that C has rank one, since we have N(w) = (w,, w2, ws, wﬁ,)r (H — Ho) and

wy

c=9 =l ™ |.v.m
0w |y=p, ws
wehy



The zeros of the polynomial p(z) are —1 times the eigenvalues of the matrix i(w;A + w2B) + aC. We know that
i(w1A + w,B) is diagonalizable with eigenvalues iwU, iwU, iw(U + ¢), and iw(U - ¢), where U = w,u + w,v and
w3 = w} + w3. The following is a theorem about rank one perturbations of diagonalizable matrices with multiple
eigenvalues

THEOREM. Let R be a (complex) matrix with a double eigenvalue A and two linearly independent eigenvectors
associated with A. Let S have rank one. Then R + S has A as an eigenvalue.

PROOF Let vy, vy be two hnearly independent eigenvectors associated with A. Since S has rank one, there 1s some
nontrivial combination av; + bvs such that S(avy + bv;) = 0. Then (R + S)(avy + bvy) = A{avy + bv,)

Applying the theorem with R = 1(w;A + w;B) and S = aC, we see that 3(w1A + wyB) + aC has an eigenvalue
wU. This leads to the conclusion that enthalpy damping cannot produce a system (3.4) which has solutions that
decay to 0 as ¢t — co. This result is very general; it applies to any form of enthalpy damping for which the enthalpy
damping term is proportional to the difference between the local enthalpy and the freestream enthalpy Indeed, if
the enthalpy damping term in (3 2) 1s formulated as ¥ = (H — Hoo){B1(w), B2(w), Bs(w), B+(w))T, then the matrix
C has rank one.

We are going to further study the system of equations with enthalpy damping, to investigate the behavior of the
eigenvalues that do move off the imaginary axis and, to find a reasonable choice for ﬂ, To do this, 1t 15 not convenient
to work with the matrices A and B, for the entries of these matrices are complicated functions of (wy, we, ws, wy) It
13 easier to work with similarity transforms N~ AN and N=!BN, where N 1s the matrix dw /3% and & = (p, u, v, p).
This simply amounts to writing the Euler equations 1n primitive variables rather than in conservative variables One

has

( 1

u P
N= v 0 »p
\(u2+vz)/2 pu pv 1/(y-1)
1
N-l= ( —u/p l/p

—v/p 0 1/p

\ (v - 1)(u? + v?)/2 (1-%)u (1—4)v v-1
The matrices N"'AN and N™!BN have been given in Warming and Beam (Ref. 14) They are

u p 0 0 v 0 p 0
0 u 0 1/p 0 v 0 O
-1 _ -1 _
NTAN=19 0 w o | N BVN=[g o , 1/p
0 pc* 0 u 0 0 pc2 v
The matrix N~1CN turns out to be
f(1=7v) pu pv 7/(v-1)
0 0 0 0
-1 —
N=ON = 0 0 o 0

< first row times (1 — v)(u? + v? — 2ﬁ4)/2 >

Since p(z) = det(z] + 1{wyN"'AN + weN~1BN) + aN~-!CN), we can use the expressions for N"1AN, N~1BN,
and N~'CN to compute p(z). It turns out that with U = wju+wsv and w? .= wi+w? we have p(z) = po(2) +aq(z)

where
po(2) = (2 +iwU ) (z + iw(U + ¢))(z + iw(U - ¢))

4(z) = 7(ky = E)2 +1U((2y +1)(hy - E) = *[1)*
(q

A1 -+ LB a1 gy (37)

~ 2
- nw’U(U’ - 02)(’14 ~-F - -”—)
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The polynomial po(2) is the polynomial one would obtain with no enthalpy damping; its roots are purely imaginary,
which shows that the Euler equations without enthalpy damping are a hyperbolic system. (To show hyperbolicity,
one also has to verify that there are linearly independent eigenvectors associated with the double zero at z = —iwU.)
It can be venfied that g(—iwU) = 0; this is a consequence of the theorem stated above.

We can obtam further information. First, take U = cM and replace z by cw¢. Next, take hy — E = kc? /1. Note
that for k = 0 we have hy = E and for k = 1 we have hy = H. The polynomial p(z) becomes

wiet|(s + iM)2(¢ +i(M + 1))(s +1(M - 1))
+ Z{ke® + ZM(2ky + k- 1)g?

w 9

+ -i-((z =2k~ k7)M? +k = 1) = Z(k - YM(M? - 1))
This factors as

4.4 s snr.2 2 2 ac, 2 , .M k-1 2
wict(¢ + M) {¢> +3iM¢? + (1 - 3M?)s +sM(1 - M )+U[kg +|T(~yk+k—1);+7(1—M N}
=:whct(¢ + iM)R(s)

(38)

(The polynomial R(¢) 1s exactly the polynomial one would obtamm by analyzing enthalpy damping applied to the
Euler equations mm one space dimension.) The plan now is to study the location of the zeros of the polynomial R(¢).
Assume a > 0 Wnting R(¢) = S(¢) + (ac/w)T(¢), we note that for ¢ on the imaginary axis, S(¢) 1s purely imaginary
and T'(¢) 1s real, hence R cannot vamsh on the imaginary axis unless S and T have a common zero on the umaginary
axis. The zeros of S he on the imaginary axis and are —iM, —i(M + 1), —i(M —1) At these ¢, T(¢) takes on the
values (k~1)/v, —(M +1)(vk—~k+1)/7, and (M —1)(vk—k+1)/7, respectively. Thus 1f M2 # 1 and k¥ # 1, R has
no zerns on the imaginary axis Hence 1n this case we may choose any convenient value of M and use the algorithm
given by J J. H. Miller (Ref. 15) for deciding whether a polynomial has all its roots in the open left half-plane.

The algorithm 1s as follows For any function p(z), define p*(z) = p(—~%) Given a polynomal p(z), take a pomnt ¢
1 the left half-plane for which p(z) # 0 # p*(z), and define

) = p’(c)p(ZL :x;(s‘)p‘(Z)

Then p(z) 1s a polynomal of degree less than p(z) The theorem 1s that p(z) has all its zeros in the open left
half-plane if and only 1if |p*(¢)| > |p(¢)| and p has all its zeros in the open left half-plane Thus one can recursively
apply this theorem, the degree of the polynomial decreasing at each step

Consider the case M2 < 1. In this case M = 013 a convenient value to pick, and one can show (using Miller’s
algorithm) that R has all its zeros in {R(¢) < 0} if and only if £ > 1. Now consider the case M2 > 1 In this case
one can choose M = 2 (for example), the result is that R never has all its zeros in the open left half-plane Now
consider the case M2 =1 In this case R has a zero at ¢ = 0, and one can show that the other zeros of R are 1n the
open left half-plane if and only if ¥ > 1. In summary, the polynomial R(¢) has all its zeros in the open left half-plane
{R(¢) < 0} 1f and only if M? < 1 and k > 1 Note that the condition M? < 113 (wju + wev)? < c?(w} + wi), which
holds for all (w),w) if and only 1if u? + v? < ¢, ie, the flow is subsonic It is interesting to note further that k¥ = 0
(unstable) is the case 7:4 = E, the formulation of enthalpy damping we obtained 1n section 2 from the potential
equation with enthalpy damping, while the case k = 1 (neutrally stable) 1s the same as 714 = H, the formulation that
“can lead to mstability” according to Jameson, Schmmdt, and Turkel (Ref 1)

Thus enthalpy damping leads to a differential system which has a general solution that does not decay to zero
Of the four eigenvalues on the imaginary axis when there is no enthalpy damping, one stays on the imaginary axis
when enthalpy damping is introduced and three move off the imaginary axis The analysis suggests that the energy
equation with enthalpy damping be written 1n the form

(PE)t + (puH)z + (pvH)y + ap(E + kc? [7)(H - Hoo) =0
The eigenvalues that move off the imaginary axis move nto the left half-plane provided that k£ > 1 and u? + v? < ¢2

8



It is appropriate here to comment on the missing factor in the analysis, the dissipation term Going back to (1.7),

take a dissipation term of the form
D(w) = (97 + 8,) (w1, wa, ws, pH)T

The point here is that the fourth component is not wy, it is instead pH. This is done because the system of equations
with artificial dissipation still admits steady solutions with H = H.,. To see this, note that when the continuity
equation with dissipation is multiplied by H, and subtracted from the energy equation with dissipation we obtain

(P(E = Hoo))e+(pu(H — Hoo))z + (pv(H — Hoo))y
+ ap(hy — Hoo)(H = Hoo) + (04 4+ 83)p(H — Hoo) =0

which evidently admits steady solutions with H = H,,. We would want to look at the polynomal
p(z) .= det(z] + i(w A+ w2 B) + aC + ¢(w} + w})D)

where D = @D /dw. If we do this and then form N~1DN, we find

1 0o
0 1 00
N-IDN =
0 010
(v-1)%(u®>+0%)/2 0 0 «

The fact that the fourth row here is not the fourth row of the identity matrix has the consequence that p(z) with
€ # 013 vastly more complicated than p(z) with ¢ = 0 This author has not been able to make any headway n
analyzing the case € # 0 because of the formidable algebraic difficulties In fact, even for the case of no ¢nthalpy
damping (@ = 0) this author is not aware of any proof of stability of the hinearized system with dissipation, because
the dissipation term 13 applied to a nonlinear function of w

Some experiments were done with the code FLO52R in changing the form of the enthalpy damping term in the
energy equation The form 54 = E + kc? [y was used, and various values of k were tried Only one line of the code
was changed The first case was flow about a NACAO0012 airfoll at a freestream Mach number 0 8 and at an angle of
attack of 1 25° The code was run 1n multigrid mode with 40 cycles on a 48 x 8 mesh, then 40 cycles on a 96 x 16
mesh, and finally 100 cycles on a 192 x 32 mesh. A five-stage scheme with coefficients (1/4,1/6,3/8,1/2, 1) was used,
with two dissipation evaluations per time step For the unmodified code, the convergence rate for 100 cycles on the
192 x 32 grid was 0 9557 A table of convergence rate vs k for the modified code 1s shown here

k e e e e 100 125 150 175 200 250 300 400
convergence rate . 09864 09565 09538 09553 09580 09630 09672 09788

Evidently the optimum k 1s approximately 1 5 For a subcritical case with a freestream Mach number of 0 63 and
an angle of attack of 2°, with all other parameters the same, the unmodified code had convergence rate 0 9288 The
modified code produced the following results

k... . 1.00 150 200 250 300 350 400
convergence rate . . 09451 0.9303 09282 09276 09273 0.9275 09302

Here the optimal k 15 apparently between 25 and 35 In both cases 1t is clearly difficult to improve on the original

code This author believes the excellent convergence behavior of the unmodified code may be explamned as follows.
The energy equation enthalpy damping term in the unmodified code comes from discretizing

t(p(E — Hyo)) + 0z (pu(H — Hy)) + 0y{pv(H — Hoo)) + ap(H — Hy,) =0

1e, this equation 13 used 1n place of the fourth equation of (2 9). In terms of the partial differential equation system,
an equivalent equation 1s obtained by multiplying the first equation of (2 9) by H, and adding to this, obtaining

dt(pE) + 3 (puH) + 0y (pvH) + ap(H — Hyo)(Hoo +1) =0

9



In the notation of (3 2), 714 = H,, + 1. With the definition of 7|4 as 7;4 = E + kc? [4 we would obtamn he=He+1
if we had k = ¥(Eco — E + ¢4, /7 + 1) [c*. Now, the nondimensionalization in the FLO52 codes is such that cZ, = v,
hence at freestream conditions we would have k = 2. Thus hy = E + 2¢? /7 is roughly the same as the unmodified
code; also the previously noted experiments showed k¥ = 15 1n one case and k € (25,3 5) in the other case were
near-optimal. Thus k = 2 (nearly the onginal code) would be expected to give excellent results It 1s also clear
that the unmodified code is equivalent to a code with locally varying k; this author has not experimented with other
forms of locally varying enthalpy damping terms.

4. FINITE DIFFERENCE FORMULATION WITH ENTHALPY DAMPING

The amm of this section is to study the actual finite difference implementation of enthalpy damping. The aim is to
understand why enthalpy damping can be effective in practice when on the level of the partial differential equation
1t does not produce a system with solutions which tend to zero.

The general formulation of enthalpy damping to be studied is as follows. First spatial differencing is apphed,
sending w" to w* := F(w"). Then enthalpy damping is applied, via

w*t! — @ 4 aAtH (v, wh) =0 (4.1)
For example, the first equation could be taken to be
P — pF + a At (HE — Hoo) = 0

Notice that in this formulation (the FLO52 formulation) the enthalpy damping term 1s in a serm-imphcit form which
18 readily solved for p:'J'*'l. If the enthalpy damping term were fully implicit, it would be nonlinear mm w®+! and
difficult to solve

We plan to study the stability of (4 1) about a solution w* with w* = F(w*) and X¥(w*,w*) = 0. Perturbing to
w* + ew, we find the perturbation equation is

vt — Aw” + aAL(Byw™t! + By Aw™) =0 (42)

where

A=DF(w*) (the Jacobian matrix)
B, = Dy }(w*,w*) (Jacobian with respect to first argument)

By = Dl (w*,w*) (Jacobian with respect to second argument)

The equation (4 2) is equivalent to
(I + aAtBy)uwt! = (I — aAtBy) Aw™ (4.3)

Let us take —
H(w*t, wh) = (H® — Hoo) X' (™!, w?)

Then B; = 0 and B; = N'(w*,w*) - V;;;(;I\'; — Hy). Furthermore, if the basic iteration scheme is an explicit
multistage method with central spatial differencing, then F(w") = P(AtL)w™, where P 1s a polynomial, L =
Ab;[2Az + Bé,[2Ay, and 6, and 6, are central space difference operators Thus the matrix problem (4 3) becomes
w*t! = (I - aAtB;)P(ALL)w"™
Fourier transforming in space produces the problem
"t = (I - aAtB;)P(ALL)D"
where AtL = i(wiA +w,B) and w; = Atsm6/Az, wy = Atsing/Ay, and 8, ¢ are the Fourier dual variables.
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Figure 4 1. Contours of |P(z}| in the complex plane for classical
fourth-order Runge-Kutta. Contour levels: 01,0.2,03,...,10.

A reasonable form (consistent with the work of section 3) for the implementation of the enthalpy damping step is
Pt — R 4 aAtp M (HR — Ho) =0
(pu)*+* = (pu)™ + adt(pu)™+ (B - Hoo) = 0
(p0)™*! = (pv)" + a At(pv)"+ (HF - Hoo) = 0
(PE)™** = (pE)™ + alM{(pE)"** + kp¥|(H" — Hoo) =0
The parameter k here 1s the same as in the previous section Then our perturbation equation is
w*t! = (I - aAtB;)P(AtL)

For the decay of perturbations about w*, it is necessary and sufficient that all eigenvalues A of (I — aAtB;)P(ALL)
satisfy [A\] < 1 Furthermore, the asymptotic rate of decay is given by the modulus of the largest eigenvalue, For
a = 0 (no enthalpy damping) we recover the usual CFL-like condition max, [P(),}| < 1, where ), are the eigenvalues
of AtL: Ay = Ay = iwlU, As = iw(U + ¢}, Ay = iw(U — c), where wU := wyu + wzv and w? := w? + wi.

For example, the explicit Euler method has P(AtL) = I — AL (this is unstable); the classical fourth-order
Runge-Kutta method has P(z) = 1 — z + 22/2 — 23 [6 + 2* /24, for which it is known that the stability condition
max, |P(A,)| < 1 becomes max, |A,| < 2y/2. Contours of |P(z)| in the complex z-plane are shown in Figure 4 1 for
the fourth-order Runge-Kutta method.

(44)
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The question before us now is, does the modulus of the maximum eigenvalue decrease when aAt is increased from
0? Also, what are good values for aAt and k? For X as in (4.4) we have

p
B=| -%(—7E+(7-1)(u2+v’), (1 =7)u, (1 =7)v,7)
pE + kp

Again we have a matrix of rank one, B;, ard a diagonalizable matrix P(Atf) with a double eigenvalue at P(iwl),
so the theorem of the previous section implies that (I — aAtB;)P(A!L) has as one of its eigenvalues P(swU). Thus
if this eigenvalue is the eigenvalue of maximum modulus, then enthalpy damping will not improve the convergence
rate of the iteration. On the other hand, if one of the other eigenvaluesis obstructing the convergence, then enthalpy
damping may help.

To help in studying this question, it is useful to diagonalhze the matrix L. The matrix T which diagonalizes
w1 A + wy B is known analytically (see Warming and Beam (Ref 14)). It is

1o pl(V2c) o/ V2e
ro |0 wle w/(Vw) -wu/(Vw)
0 —wifw wf(VIw) = wa/(v2w)
0 0 pc/ /2 pe/V2
Then R R
T~Y(I — aAtBy)P(ALL)T = (I — aAIT'B,T)T~' P(ALL)T
=(I- aAtT-lBgT)
- diag{ P (wU), P(iwU), P(iw|U +¢]), P(sw|U - c})}.
The characteristic polynomal of this matrix vanishes at P(swU), and upon division by z — P(iwU) the charactenstic
polynomal becomes (wniting ¢ = P(iwU), o4 = P(sw[U +¢]), o— = P(sw|U —c}), and M =U/e),

(z-0)(z=0o4)(z—0-)
+ -(ZI%;iz[z2 {26-1o+(1+M)1k-k+1)op + (1= M)(vk—k+1)o_}—
—z({vk(1 + M) + (k= 1)(1 — M)}oo, + {7k(1 — M)+ (k- 1){1 + M)}oo_
+2(vk—k+1)oyo_)
+ 2vkooyo_]

(45)

Note that a has units of time~!velocity=2 (cf. (4 4)), so aAtc? is dimensionless.
We will study the roots of the polynomial in (4 5) numerically. Fix a “Mach number” M = U/c. Define v (“CFL

number”) as max(|wU|, [w(U + ¢)|, |[w(U — ¢}|). Then

— [vsgn(M)/max([1+1/M|,|1-1/M]), HM#0
o0 = {7 fM=0 (46)

Now for a given M we can graph the spectral radius vs v by using the definition of wU from (4 6) and then numerically
finding the roots of the polynomial (4 5). We can further search for an optimal value of the dimensionless parameter
aAtc? by using as optimality criterion the mtegral between the curves of spectral radius vs. v for aAtc? = 0 and
aAtc? # 0, and searching far aAtc? which maximizes this integral (Numerically, the composite trapezoidal rule was
used for the integration.) Two typical graphs of spectral radwus vs. v without and with enthalpy damping are shown
in Figure 4 2 Note that enthalpy damping has little or no effect at small CFL numbers, it is only for CFL numbers
near the stability limit that enthalpy damping is significantly helpful For supersonic flow (M > 1), the spectral
radius with enthalpy damping was observed to be greater than 1. In all subsonic cases investigated, the spectral
radius with enthalpy damping was exactly the same as or slightly less than the spectral radius without enthalpy
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Figure 4 2(a). Spectral radius vs. CFL number for numerical scheme without and with enthalpy
damping. Five-stage method with coefficients (1/4,1/6,3/8,1/2,1),M =08,k =2, aAtc? =025
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Figure 4 2(b). Same as (a) except aAtc? =05.

damping, at least in the region of stability The five-stage method with coefficients (1/4,1/6,3/8,1/2, 1) was studied,
with 0 < v < 4 (the stability limit) With k = 2 and two different Mach numbers, M = 08 and M = 04, the
following results were obtained for the area between the curves as a function of aAtc?.

alAte? . ... ... 030 040 0.50 060 0.70 080 090 100
area(M=08) . .. 00840 0.0967 0.101 0103 0104 0105 0.105 00685
area(M =04) . . . 0.0039 00039 00039 00039 00039 00039 00039 0.00277
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Evidently there is not a sharp optimum value of aAtc?, for in the first case any aAtc? between 05 and 0 9 gives
approximately the same result, while 1 the second case any aAtc? € (0.3,0.9) can be chosen. If the speed of sound
is normalzed to be + at infinity (as in the FLO52 codes), then our good range for aA? becomes aAt € (0 36,0 64)
in the first case, and aAt € (0.21,0.64) in the second case.

5. CONCLUSIONS

The Euler equations with enthalpy damping can be studied as a system of partial differential equations. Linear
stability analysis of the system around a state with constant enthalpy shows that not all solutions decay to zero. The
analysis suggests that the enthalpy damping term in the energy equation be written as ap(E + kc? [7)(H — Ho)-
For this formulation, the hnear stability analysis shows stability (neutral stability, i e., no eigenvalues in the open
right half plane) if £ > 1 and the flow is subsonic.

When the equations are discretized via an explicit multistage method, the spectral radius can be decreased by
enthalpy damping, even though 1t 1s again the case that one of the eigenvalues is unchanged. A numerical study with
k = 2 revealed that aAtc? ~ 0 5 should give good results The particular value of aAt this leads to depends on the
nondimensionalization of a given computer code

This analysis has not taken the dissipation term into account, because the dissipation operator in the energy
equation 13 applied to pH, not pE (so that the equations with dissipation will still have constant enthalpy at
steady state), which makes the analysis much more complicated All the analysis shows that enthalpy damping
should be destabilizing for supersonic flow, but in practice enthalpy damping does not harm the convergence for the
FLO52 codes 1n the transonic range. It is probably the case that the dissipation term is effective in stabilizing the
computation, even 1n locally supersonic regions of flow
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