NASA TM-86146

NASA-TM-86146 19840027169

NASA

Technical Memorandum 86146

IMPLICATIONS OF A CLASS OF GRAND UNIFIED THEORIES FOR LARGE SCALE STRUCTURE IN THE UNIVERSE

Q. SHAFI F. W. STECKER

August 1984

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

IMPLICATIONS OF A CLASS OF GRAND UNIFIED THEORIES FOR LARGE SCALE STRUCTURE IN THE UNIVERSE

Q. Shafi*

Bartol Research Foundation

of The Franklin Institute

University of Deleware

Newark, DE 19716

and

F.W. Stecker

Laboratory for High Energy Astrophysics

NASA Goddard Space Flight Center

Greenbelt, MD 20771

*Work supported in part by the Department of Energy Contract No. DE-ACO2-73ERO5007

N84-35240

ABSTRACT

We consider a class of grand unified theories in which cosmologically significant axion and neutrino energy densities arise naturally. To obtain large scale structure we consider (1) an inflationary scenario, (2) inflation followed by string production, and (3) a non-inflationary scenario with density fluctuations caused solely by strings. We show that inflation may be compatible with the recent observational indications that $\Omega < 1$ on the scale of superclusters, particularly if strings are present.

•

Axions with mass on the order of 10^{-3} - 10^{-4} eV, have been suggested as candidates for the dark matter in galactic halos^{1,2}. It has also been shown that axions with a cosmologically significant energy density provide an important component in the mechanism for generating structure in the universe on scales up to 10^{15} M_{Θ} ^{3,4}. In this picture, axions, being gravitationally unstable on all scales, will cluster first, providing the seed potential wells for galaxy formation so that the galaxy distribution on scales up to $\sim 10^{15}$ M_{Θ} clusters would naturally follow the axion mass distribution. Observational support for such a relationship is discussed by Blumenthal et al.⁵. They point out that the ratio of dark to luminous mass is roughly constant up to the scale of rich galaxy clusters.

An SO(10) GUT framework which leads to the production of cosmologically significant axions has been given⁶. In this letter, we first argue that within this class of models (and suitable extensions thereof such as E_6), a cosmologically significant neutrino mass is obtained naturally. We then proceed to discuss some cosmological implications of this result for the formation of structure in the universe within the context of three different scenarios, (1) an inflationary scenario, (2) an inflationary scenario followed by string production, and (3) a non-inflationary scenario with density fluctuations produced solely by strings.

As an example of a grand unified theory which gives $\Omega_a = \Omega_v$, consider the following SO(10) model⁶ (the global U(1) Peccei-Quinn symmetry⁷ is not explicitly exhibited):

Both the global U(1) symmetry and the local B-L symmetry are broken at a scale of order 10^{12} GeV. (Note that the value of the intermediate scale is not put in by hand, but is determined from the renormalization group equations of the gauge couplings). From the results of Reference (1), it follows that $\Omega_a \approx 0.1$ -1.

Let us now consider neutrino masses in this model. The breaking of B-L at scale f_a , caused by a 126 -plet of Higgs fields, induces a Majorana mass term for the right-handed neutrino v_{R1} of order $h_i f_a$, where h_i denotes the Yukawa coupling of the 1th generation. The breaking of SU(2) x U(1) to U(1)_{em} is achieved by a Higgs 10 plet and gives rise to Dirac mass terms $m_{v_1}^{(D)} = m_{u_1}$ (where u_1 denotes u,c,t,...) linking the left and right-handed neutrinos. Moreover, it can be shown that an effective Majorana mass term for the left-handed neutrino v_{L1} of order $c_i \approx h_1 \left(\lambda_1/\lambda_2 \right) < \phi_{10} >^2/f_a$ is also induced⁸. Here λ_1 denotes the quartic higgs coupling between the 126 and the 10, λ_2 is the quartic self-coupling of 126, and $<\phi_{10}>$ is the vacuum expectation value of the 10. With $f_a \approx 10^{12}$ GeV, λ_1/λ_2 of order unity, and $h_i \sim 0 (g^2)$ (where g denotes the SO(10) gauge coupling), c_1 is in the electron volt range. Diagonalization of the neutrino mass matrix (neglecting, for simplicity, mixings between generations) yields the eigenvalues

$$(m_{v_1})_{heavy} = h_1 f_a,$$

$$(m_{v_1})_{light} = c_1 - m_{ui}^2 / (m_{v_1})_{heavy}.$$
(2)

It follows from eq. (2) that electron volt neutrino masses arise naturally in the class of models under discussion. Indeed, due to the presence of the c_1 term in the mass matrix, the light neutrino of each

generation can have a mass in the electron volt range. Thus, neutrinos can contribute significantly to the dark matter in the universe.

We now discuss the implications of significant axion and neutrino energy densities for the evolution of structure in the universe. Two mechanisms for producing density fluctuations in the early universe have been extensively discussed, viz., inflation 9 and strings 10 . Recently, it was pointed out 11 that one could obtain another scenario in which inflation is followed by string production.

The inflationary phase is associated with the transition from SO(10) to $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. It can be implemented by generalizing the arguments of ref. (12) where the SU(5) model is discussed. The breaking of B-L and the U(1) symmetry can occur during, or at the end of the inflationary era. The spectrum of density fluctuations produced in this scenario is essentially of the Harrision-Zeldovich type.

According to recent observations 13 , the value for Ω obtained on scales up to $\sim 10^{15}$ M $_{\odot}$ is $\simeq 0.2 \pm 0.1$, considerably less than unity, the value predicted by the new inflationary cosmology. As a reasonable upper limit for $\Omega_{\rm SC}$ of superclusters 14 , we may take $\Omega_{\rm SC} \lesssim 0.5$. Therefore, since axions and baryons cluster on scales smaller than rich clusters and superclusters, their contribution to Ω must be $\lesssim 0.5$. The balance of the total Ω in the universe must therefore be in the mass density of a neutrino component which is not traced by the galaxy distribution if we are to have $\Omega=1$.

We must therefore require that the neutrinos be light enough so that they will not cluster on scales below $\sim 10^{16}~M_{\odot}$. In order to arrange this, especially since the neutrino Jeans mass drops significantly between the redshift $z_{\rm nr}$ when the neutrinos become nonrelativistic and the present time, we invoke neutrino phase space limits using the arguments of Tremaine and

Gunn¹⁵ in reverse to get an upper limit on m_{ν} . These authors find that for neutrinos to be able to cluster on the scale of rich clusters, their mass must be greater than ~ 4 $h_{50}^{-1/2}$ eV (where h_{50} is the Hubble constant in units of 50 kms⁻¹Mpc⁻¹).

The neutrino contribution to Ω is $\Omega_{\rm V}=4.56\times 10^{-2}~\rm m_{\rm V}(eV)N_{\rm f}~h_{\rm 50}^{-2}~T_{\rm 2.8}^3$ where N_f is the number of neutrino flavors of approximately equal mass and T_{2.8} is the present temperature of the cosmic blackbody radiation in units of 2.8 K. We require $\Omega_{\rm V}$ to be $\gtrsim 0.5$ so that the total $\Omega=1$. For this, one needs at least three flavors of neutrinos, each of approximately 3-4 eV. As discussed above, this situation is readily obtained in the SO(10) model. (If the neutrino clustering is inefficient (see discussion in Ref. 16), m_V could be larger and N_f smaller.)

The maximum neutrino Jeans mass for three neutrinos of roughly equal mass $1s^{17}$ M_J* $_{\text{J}\text{V}} = 2.7 \times 10^{18} \ [\text{m}_{\text{V}}(\text{eV})]^{-2} \text{M}_{\text{O}}$, which, for N_f = 3 and m_V = 3.6 eV gives M_J* $_{\text{V}} = 2 \times 10^{17} \ \text{M}_{\text{O}}$. The corresponding spatial scale at present for pancaking structure would be ~ 150 Mpc. It is interesting to note that this scale may correspond to the tentative "superpancaking" scale proposed recently by Dekel¹⁸ in order to attempt to account for the correlation function of clustering of superclusters.¹⁹ Structure on this scale would have to correspond to density perturbations $\delta \equiv \delta \rho/\rho$ just becoming nonlinear ($\delta = 0.5$ -1) at the present time.

The spectrum of perturbations in a universe dominated by axions and neutrinos is readily estimated by adopting the arguments previously given for a baryon-neutrino universe²⁰. It is convenient to define $\xi \equiv \Omega_{\rm a}/(\Omega_{\rm a}+\Omega_{\rm v})$ such that $\xi \leq 1/2$ (We assume, for simplicity, that $\Omega_{\rm b} << \Omega_{\rm a}$, $\Omega_{\rm v}$).

For z < z_{eq} = 0.93 x 10⁴ (1- ξ)⁻¹ Ω_{ν} h_{50}^2 $T_{2.8}^{-4}$ the neutrino Jeans mass decreases as (1+z)^{3/2}. (Here z_{eq} is the redshift corresponding to equal

matter and radiation densities in the universe.) Neutrino perturbations on scales below $M_{J_{\nu}}^{\star}$ are erased at z \approx z_{eq} . The axion perturbations, however, grow like

$$\frac{\delta \rho_a}{\rho_a} \equiv \delta_a \propto t^{\alpha} \propto (1+z)^{-3\alpha/2} \tag{3}$$

where $\alpha = (\sqrt{1+24\xi} - 1)/6$. (The growing mode solution is similar to that obtained for the baryon-neutrino hybrid scenerio after decoupling²⁰.) Thus,

$$\delta_a(z) \approx \delta_a(z_{eq}) \left(\frac{1+z_{eq}}{1+z}\right)^{3\alpha/2}$$
 (4)

This continues until $z = z_M$ when the neutrino Jeans mass becomes = M,

$$(1+z_{M}) \approx (\frac{M}{M_{JV}^{*}})^{2/3} (1+z_{eq})$$
 (5)

For z < z_M the overall density fluctuation $\delta \rho/\rho \propto t^{2/3} \propto (1+z)^{-1}$. Thus,

$$\frac{\delta\rho}{\rho} \left(z \langle z_{\mathsf{M}} \rangle \right) \approx \xi \, \delta_{\mathsf{a}}(z_{\mathsf{M}}) \, \left(\frac{1+z_{\mathsf{M}}}{1+z} \right) \approx \xi \, \delta_{\mathsf{a}}(z_{\mathsf{eq}}) \, \left(\frac{1+z_{\mathsf{eq}}}{1+z} \right) \, \left(\frac{\mathsf{M}}{\mathsf{M}_{\mathsf{J} \mathsf{V}}^{\star}} \right)^{(2/3-\alpha)} \tag{6}$$

As a rough approximation, $\delta_a(z_{eq}) \approx constant$ when M < M*, for a Zeldovich spectrum. (See, however, footnote 21). This gives

$$\frac{\delta \rho}{\rho} \propto M^{(2/3-\alpha)}$$
 (M < $M_{J\nu}^{\star}$) (inflation alone) (7)

which is an <u>increasing</u> function of M since $\alpha < 2/3$. For M > M * _{J ν}, the neutrino perturbations are not damped and $\delta \rho/\rho \propto M^{-2/3}$.

From this discussion it appears that even in the most optimistic case

where $\xi=1/2$, $\alpha=0.43$, so that the scales between the present neutrino Jeans mass and $M_{J\nu}^*$ may not collapse before $M_{J\nu}^*$ does. We thus run into the timing problems which are becoming well known for the neutrino pancaking scenario. In particular, it is hard to envision the development of quasars 22 and substructure 23 with such a model, although the situation here is not as difficult as that with pure neutrino pancakes owing to the presence of axions 21 , as we discuss below.

The presence of strings, which provide an additional source of density fluctuations, can eliminate the above difficulty 24 . Assume that topologically stable strings, with mass per unit length characterized by a superheavy (GUT) scale, appear at or near the end of the inflationary phase. A specific example showing how this could occur is shown in Ref. 11. In the present case this is readily achieved either by appending a new spontaneously broken global U(1) symmetry to the SO(10) model or using an E_6 model. Owing to the presence of strings, and, in particular of closed loops, 25 $\delta_a(z_{eq}) \propto M^{-1/3}$ for $(M < M_{J\nu}^*)$. Substitution in eq. (6) then gives

$$\frac{\delta\rho}{\rho} \propto M^{(1/3-\alpha)}$$
 (M < $M_{J\nu}^{\star}$) (string loops) (8)

as compared with the results of eq. (7) when loops are not present.

Using eq. (8) with $\xi=1/2$, and $\alpha=0.43$ we find $\delta\rho/\rho \propto M^{-0.1}$. Therefore, if $\delta\rho/\rho \sim 0(1)$ on scales $\sim 10^{16}$ – 10^{17} M_Q at z=0 as suggested by Dekel⁸, scales $\sim 10^{10}$ M_Q went non-linear at z $\simeq 4$, corresponding to the epoch of quasar formation. Thus, in the presence of axions and neutrinos, an inflationary scenario supplemented by strings (or wall-string systems ²⁴) appears to offer a better prospect of explaining the observed large scale structure in the universe than one without strings. Of course, more detailed numerical calculations and clustering simulations should be performed to test this conclusion. In fact, growth of axion perturbations

during the radiation era 23 will have the effect of increasing α to $\alpha_{\rm eff}$ = α + ϵ . This effect may be enough to make the spectrum in the case of inflation without strings flat at low M. In the string-inflation scenario, this effect eases the requirement on $\Omega_{\rm a}$ needed for an acceptable $\alpha_{\rm eff}$, making Ω < 0.5 (as indicated by the observations) acceptable.

Finally, let us discuss the scenario in which we dispense with inflation and density fluctuations are produced solely by strings. In this case, since the density parameter Ω need not be unity, ξ can be greater than 1/2 and α can be > 0.434. (Of course, we need have only one ν flavor in the eV mass range to get Dekel's 18 scale.) In particular for $\Omega_{\rm a}$ >> $\Omega_{\rm v}$, α = 2/3. A natural extension of SO(10) which gives the desired strings 25 is provided by the following breaking of E6 (once again the global U(1) Peccei-Quinn symmetry is broken at the same scale as B-L)

$$E_{6} \xrightarrow{+}_{10^{16} \text{GeV}} \text{SO(10)} \times Z_{2} \xrightarrow{+} \text{SU(3)} \times \text{SU(2)}_{L} \times \text{SU(2)}_{R} \times \text{U(1)}_{B-L} \times Z_{2}$$
 (9 SU(3) $\times \text{SU(2)}_{L} \text{U(1)} \times Z_{2}$

For E_6 symmetry breaking at a scale $n \sim 10^{16}$ GeV, the energy per unit length of the strings formed is $\mu \sim n^2 \simeq 10^{32}$ GeV². (A similar result can be obtained naturally in a Kaluza-Klein model leading to So(10) (Wetterich, private communication).) With this value of μ , it follows from the discussion of Ref. 25 that in this scenario neutrino perturbations would be on the verge of becoming non-linear at the "superpancake" scale at the present time, as suggested by observations 18 , 19 .

To conclude, significant axion and neutrino energy densities arise naturally in a class of grand unified theories. An axion-neutrino dominated universe model for the formation of large scale structure may avoid the problems associated with the pure neutrino dominated pancake models. These models also allow for structure on

scales greater than that given by the pure hierarchical clustering models of galaxy formation, which may be desirable in view of some recent analyses suggesting the clustering of clusters. Finally, the prediction of the new inflationary cosmology that Ω be unity can be reconciled with the observation $\Omega_{\rm SC}<1$ in this framework, particularly if string loops (or string-wall systems) are present 26 .

Acknowledgements

We are grateful to Dr. Alexander Vilenkin for many helpful discussions.

REFERENCES

- J. Preskill, M.B. Wise, and F. Wilczek, Phys. Lett. <u>120B</u>, 127 (1983); L.F. Abbott and P. Sikivie, <u>1bid</u>., pg. 133; M. Dine and W. Fischler, <u>ibid</u>. pg. 137.
- 2. J. Ipser and P.Sikivie, Phys. Rev. Lett. 50, 925 (1983).
- 3. F.W. Stecker and Q. Shafi, Phys. Rev. Lett. <u>50</u>, 928 (1983).
- M. S. Turner, F. Wilczek and A. Zee, Phys. Lett. <u>125B</u>, 35 (1983); M. Axendides,
 R. Brandenberger and M. Turner, Phys. Lett. <u>126B</u>, 178 (1983); M. Fukugita
 and M. Yoshimura, Phys. Lett. <u>127B</u>, 181 (1983).
- 5. G. R. Blumenthal, S. M. Faber, J. R. Primack and M. J. Rees, preprint.
- R. Holman, G. Lazarides and Q. Shafi, Phys. Rev. <u>D27</u>, 995 (1983). See also Q. Shafi in Proc. Europhysics meeting, Erice, Italy, Feb. 1983; R. N. Mohapatra and G. Senjanović, Z. Phys. C17, 53 (1983).
- 7. R. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- 8. C. Wetterich, Nucl. Phys. <u>B187</u>, 343 (1981) and references therein; For a review of the subject of neutrino masses and cosmological implications, see F. W. Stecker in <u>Electroweak Interactions</u> (Proc. 21st International Winterschool on Theoretical Physics, Schladming, Austria) ed. H. Mitter, Springer-Verlag, Vienna, 307 (1983).
- S. W. Hawking, Phys. Lett. <u>115B</u>, 295 (1982); A. H. Guth and S. Y. Pi, Phys.
 Rev. Lett. <u>49</u>, 1110 (1982); A. Starobinsky, Phys. Lett. <u>117B</u>, 175 (1982); J.
 Bardeen, P. J. Steinhardt and M. S. Turner, Phys. Rev. <u>D28</u>, 679 (1983).
- 10. Ya. B. Zeldovich, Mon. Not. Royal Astron. Soc. <u>192</u>, 663 (1980); A. Vilenkin, Phys. Rev. Lett. 46, 1169, 1496 (E) (1981) and Phys. Rev. D24, 2082 (1981).
- 11. Q. Shafi and A. Vilenkin, Phys. Rev. <u>D29</u>, 1870 (1984).
- 12. Q. Shafi and A. Vilenkin, Phys. Rev. Lett. 54, 691 (1984).

- 13. A. Yahil, Ann. N. Y. Acad. Sci. 375, 169 (1981); R. J. Harms, et al., ibid.

 178; M. Davis and J. Huchra, Astrophys. J. 254, 437 (1982); J. P. Huchra,

 Highlights in Astronomy 6, 749 (1983); M. Davis, J. Huchra and D. Latham in

 Early Evolution of the Universe and Its Present Structure ed. G. O. Abell

 and G. Chincarini, Reidel Pub. Co. Dordrecht p. 167 (1983); J. Bean, et al.,

 1bid., p. 175; R. J. Harms, et al., ibid. p. 285.
- 14. M. Davis and P. J. E. Peebles, Ann. Rev. Astron. Astrophys. 21, 109 (1983).
- S. Tremaine and J.E. Gunn, Phys. Rev. Lett. 42, 407 (1979).
- J. R. Bond, A. S. Szalay and S. D. M. White, Nature 301, 584 (1983).
- 17. J. R. Bond and A. S. Szalay, <u>Proceedings Neutrino 81 International Conference</u>

 (ed. R. J. Cence, E. Ma and A. Roberts, Univ. Hawaii) 1, 59 (1981).
- 18. A. Dekel, Astrophys. J., in press.
- 19. N. A. Bahcall and R. M. Soniera, Astrophys. J. 277, 27 (1983).
- J. R. Bond, G. Efstathiou and J. Silk, Phys. Rev. Lett. <u>45</u>, 1980 (1980); A. G. Doroshkevich, Ya. B. Zeldovich, R. A. Syunyaev and M. Yu. Khlopov, Pisma Astron. Zh. <u>6</u>, 457 (1980) (Sov. Astron. Lett. <u>6</u>, 252 (1981)).
- 21. Owing to some growth at the low mass end of the axion pertubation spectrum during the radiation dominated era, the pertubation spectra will be a bit different than those given by eqs. (7) and (8). P. J. E. Peebles, Astrophys. J. 263, L1 (1982) discusses this effect in a pure axion type scenario.
- M. Davis, J. Huchra, D. W. Latham and J. Tonry, Astrophys. J. <u>253</u>, 423 (1982);
 S. D. M. White, C. S. Frenk and M. Davis, Astrophys. J. <u>274</u>, L1 (1983); P. J. E. Peebles, Astrophys. J., <u>274</u>, 1 (1983); N. Kaiser, Astrophys. J. <u>273</u>, L17 (1983).
- 23. I. M. Gioia, <u>et al.</u>, Astrophys. J. <u>255</u>, L17 (1983); J. P. Huchra and M. J. Geller, Astrophys. J. 264, 356 (1982); G. D. Bothum, M. J. Geller, T. C.

- Beers in Early Evolution of the Universe and Its Present Structure, ibid., p. 231.
- 24. An alternative source of density fluctuations involving domain wall-string systems of the type discussed in Ref. 3 has recently been considered by G. Lazarides and Q. Shafi within the context of inflationary scenarios.
- 25. A. Vilenkin and Q. Shafi, Phys. Rev. Lett. <u>51</u>, 1716 (1983).
- 26. M. S. Turner, G. Steigman and L. M. Krauss, Phys. Rev. Letters <u>52</u>, 2080 (1984), suggest a different mechanism for reconciling new inflation with the observational data.

BIBLIOGRAPHIC DATA SHEET

1 Report No.	2. Government Acc	cession No 3	Recipient's Catalo	g No
TM 86146			B D	
4. Title and Subtitle IMPLICATIONS OF A CLASS (5 Report Date D August, 1984			
THEORIES FOR LARGE SCALE		6 Performing Organization Code		
UNIVERSE	660			
7. Author(s)	8.	. Performing Organ	zation Report No	
Q. Shafi & F. W. Stecker			··	
9. Performing Organization Name and Address Lab. for High Energy Astrophysics		10	10 Work Unit No 11. Contract or Grant No	
Lab. 101 migh Elicigy 7.5 of opings 105		111		
	13. Type of Report and Period Covered			
12. Sponsoring Agency Name and Ad				
			6 A C	
	14 Sponsoring Agency Code			
15 Supplementary Notes				
To appear in Physical Review Letters				
16. Above				
16 Abstract				
We consider a class of grand unified theories in which cosmologically				
significant axion and neutrino energy densities arise naturally. To				
obtain large scale structure, we consider (1) an inflationary scenario, (2) inflation followed by string production, and (3) a non-inflationary				
l scenario with density fluctuations caused solely by strings. We snow that				
l inflation may be compatible with recent observational indications that				
Ω < 1 on the scale of superclusters, particularly if strings are present.				
17 Key Words (Selected by Author(s))		18. Distribution Statement		
grand unified theories, particle physics, neutri				
galaxy formation				
19 Security Classif (of this report)	20 Security Class	if (of this page)	21 No of Pages	22 Price*
UN	UN		14	
	1			

