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ABSTRACT

The Plasma Science Experiment (PLS) on the Voyager spacecraft have provided a wealth of

data on tile plasma ions and clectro ►ls in the interpla ►tetary medium and the magnetospheres of the

gia ►tt planets Jupiter and Saturn, This report presents a description of the analysis used to obtain

electron parameters (density, temperature, etc,) fro ►ti the PLS electron measurements which cover

the energy range from 10 eV to 5950 cV, The electron sensor (>) cup) and its transmission charae-
t

teristics are described. A derivation of the fundamental analytical expression of the reduced distri-

bution function Pe is given. This is followed by discussion showing I loW the electron distributio ► i

function re, used in the moment integrations, can be derived from Cie. Positive ions produce a cor-

rection current (ton feedthrough) to the measured electron current, which can be important to the

measurements of the suprathermal electron component. I ► 1 the case of Saturn, we show that this	 x

correction current, which can either add to or subtract from the measured electron current, is less

than ?0'i< of the measured signal at all times. Though not shown here, these feedthrough correc- t

tions are very important during the Voyager I inbound pass through lo's plasma torus. We then 	 ►t
briefly comment about the corrections introduced by spacecraft charging to the Saturn encounter

data, which eau be important in regions of high density and shadow when the spacecraft ct ► n be-

conic negatively charged.
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PLASMA ELECTRON ANALYSIS; VOYAGER PLASMA SCIENCE EXPERIMENT
j

by E. C. Sittler, Jr.

SECTION 1

INTRODUCTION fi

The Plasma Science Experiment (PLS) on Voyager is a collection of potential modulated

Faraday cups which make both positive ion and electron measurements covering the energy per

charge range from 10 eV to 5950 eV, The PLS instrumentation has successfully measured the plas-

ma (ions and electrons) in the interplanetary medium (Sittler and Scudder (1980), Sittler et al.

(1981a), Belcher et al, (1981), Gazis and Lazarus (1982), La arus and Gazis (1983)), and the mag- .
netosplieres of Jupiter (Bridge et al, (1979a,b), Scudder et al, (1981), McNutt et al. (1981), Bagenal

and Sullivan (1981) and Saturn (Bridge et al, (1981, 1982), Sittler et al, (1981b), Hartle et al, (1982),

Eviator of al,, (1982, 1983), Goertz (1983), Sittler et al,, (1983), and Lazarus and McNutt (1983)). 	 t

The Voyager 2 PLS instrument has also played an important role in the detection of Jupiter's mag-

netotail beyond the orbit of Saturn (Kurth et al, (1981, 1982), Scarf et ai, (1981, 1983), Lepping

et al, (1982, 1983) and Desch (1983)). In this report we present a fairly detailed description of

the electron analysis which has produced the electron parameters (density, temperature, etc,) used

in many of the above studies, The analysis described herein is most descriptive of that used for the

most recent publication by Sittler et al, (1983) on plasma electrons in Saturn's magnetosphere and

is somewhat different from that used and briefly described in Scudder et al. (198 1 ) for Jupiter, 	 s

The ion analysis, which is fairly straightforward in the solar wind (Bridge et al, (1977), Belcher

et al, ( 198 1 )) but can be considerably more difficult in the magnetospheres of Jupiter (McNutt

et al,, (1981) and Saturn (Lazarus and McNutt (1983)) will not be discussed here, 	
NN

The paper is broken up into 8 sections with the introduction given in Section 1 and a de-
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scription of the instrument and its operation given in SECCtion 2 (a more complete description is

given in Bridge et al, (1977)), Section 3 gives aschematic description of the D cup and its transmis-

sion characteristics, followed in Section 4 by a formal derivation of the analytical expression used

in our fits to the measured electron spectra; all our parameter estimations, either directly or

indirectly, are derived from this expression. We then mention in Section 5 the fitting procedure used

in the analysis, which plays an important role in the moment integrations. In Section 6 we expand

upon the discussion in Scudder et al. (1981) cont, Thing the moment estimation of electron parame-

ters. Section 7 describes the effect of ion feedthrough corrections upon the electron measurements,

which in the case of Saturn, introduce a minor correction to the observed suprathermal component,	 1
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Finally, in Section S we comment about the effects of spacecraft charging upo11 the electron mea-

surelIi cil ts.

SECTION 2

INSTRUMENT DESCRIPTION AND OPERATION

Tile PLS instrument shown in Figure I is composed of four potential modulated Faraday

cups denoted by the letters A, B, C and D. Tile three main sensors A, B and C make only positive

ion measurements and, except for rare brief spacecraft maneuvers, are always pointed nearly along

the spacecraft-Sun line. The side sensor or I) cup makes both positive ion and electron nlcasure-

ments and is normally oriented nearly at right angles to the solar direction. The angular response of

the side sensor is cylindrically symmetric about its look direction, and provides a field of view with

conical half angle N 30' (FWLiM) about its normal. As shown in Section S, the D sensor makes

differential C011tigLloLls nlea.Wrenlents of the electron distribution flnlction along tile sensor normal.

Because the electron thermal speeds are much larger than flow speeds of the plasma, electron nlea-

surements are not very sensitive to sensor orientation, Lidless there are large pressure anisotropies,

Since the instrument angular field of view is fairly broad, uncertainties due to pressure anisotropies

are not expected to have an important effect upon the analysis.

For cold ions in the solar wind and ndagnetospheres of Jupiter and Saturn the mach nundbcrs

are usually greater than one and the measured currents are sensitive to sensor orientation. During

the cruise phasC of tide mission only the main sensors are sensitive to the supersonic ion component

of tilt solar wind, while the side sensor provides a one-dimensional view of the electrons at nearly

right angles to the flow direction. During the encounters with the giant planets, Jupiter and Saturn,

the D sensor was aligned to respond to the azimuthally flowing cold ions as much as possible. For

rnost of the inbound portion of the encounter trajectories the D sensor was aligned to view the cold

ions; while, except for the Voyager 1 Saturn encounter, the D sensor was not favorably aligned dur-

ing; the outbound passes. During the planetary encounters, the D sensor alignment was such that

the center of its held of view generally looked at electrons with pitch angles between 45° and 135 0 .

Except for the Cruise 1 phase of the mission when electron measurements are made every

12 seconds and only the E 1 node is sampled, tile side sensor completes a measurement cycle in 96

seconds during which it passes through the mode sequence M, E1, L and E2, M and L are the high

and low resolution positive ion modes, respectively, while; E1 and E2 (see Figure 4) are the low and

I

x
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high energy electron modes, respectively. The energy range for f , I is 10 eV to 140 eV while for 1i2,

it is 140 eV to 5950 cV. Faach electron mode is composed of 16 contiguously spaced energy chan-

eels, for h-1 mode only tale upper 12 channels are used (lower 4 eha1111CIS not useful shlce suppres-

sor is biased at 95 volts; see discussion ill 	 3). The channels for 1) are nearly equally spaced

ill energy (x.099	 1 /I ( .37), while for I,? they are ► 11ore logarithmically spaced (A E /I = .29). The

sampling time for Moth energy modes is 3,34 seconds (0,96 second for Cruise 1) an(i 1.1 and f2

modes are separated ill 	 by 45 seconds, This large time gall between low and lhigll electron

energy measurements 
call 	 in diSCOIl till UOUS ChailgCS !n file COMPOSite enel'gy Sl)CCtr11111 across

the 140 eV boundary joining the two energy modes, Vortunahtely, this happens only rarely, and tile

cold and hot components characterizing tile electron distribution function within 	 or Saturn's

nlaglictosplicre are usually measured by the low a nd hig1 1 energy modes, respectively. The ion and

electron measurements are never made simultaneously (tile shortest time difference between ion

and electron spectra is 25 seconds), which may lead to tune aliasing problerns whenever intercom-

parisons between !oil and electron measurements are made,

SECTION 3

U SENSOR DESCRIPTION AND TRANSMISSION CHARACTERISTICS

The D Clll) or Side sensor is schematically displayed 1' 11 Figure 2, It has a cylindrical geometry

With entrance aperture at one end and collector plate at the other end, and numerous grid illeslles
ill 	 The orientation of the side sensor normal relative to the spacecraft coordinate system

is shown at the bottom of Figure 1, We have defined the sensor normal such that it points into

tile sensor and is thus oriented opposite to the sensor look direction. For added information about

potential modulated faraday caps we suggest reading the review article by Vasy]iunas (1971) which

gives all 	 discussion of the Ilse of potential modulated Faraday cups for space applications.

The Faraday cup sets up a o ►le-dimensional potential barrier, aligned along the sensor nor-

mal, between the modulator grid (grid3) and the ground grid (grid 2) shown ill 	 2. This bar-

rier is only effective for those charged particles having a charge of the same sign as the modulator

voltage VM relative to ground potential, The tic voltage V M defines the energy or speed channel at

which electrons are sampled, the superimposed 400 liz square wave voltage, shown schematically in

Figure 2 with amplitude 0 V M , defines the energy or speed channel window size. Note that V M is

negative for electron measurements. The instantaneous current received by the collector is the inte-

grated flux of electrons with velocity component v ll aligned along sensor normal such that

3
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I1) me 2 > q VM.,	 n

VM = VM ± 0 VM/2
	 (2)

and q = —e for electrons, A current with both a de and 400 Hz component flows into the collector,

Since the amplifiers are ac coupled to the collector, only those electrons satisfying the condition

v,lj _ 6 vn G vnj+	 (3)

where

2 
me vnj± 2	q(VMj t A VMj/2)	 (4)

for speed channel j are sampled. This signal is then amplified, phase detected, and integrated before

transmission. The role of the intermediary grids (4, 5 and G) is mainly to reduce the capacit-ive coup-

ling from modulator grid to collector plate. The suppressor grids (7 or 8 depending on instrument

mode) main purpose is to return secondary electrons emitted by the collector back to the collec-

tor, For electron measurements in the E1 and E2 modes, the suppressor voltage Vs is ­8 volts

and —95 volts, respectively. In the normal suppressor grid configuration (grid 8 is grounded and

grid 7 is biased at voltage VS) the suppressor is not very effective in returning electrons back to the

collector. Electron measurements are predominantly made in the normal grid configuration be-

cause the instrument is considerably quieter under these conditions (Lazarus, private communica-

tion), Preliminary estimates indicate that secondary electron corrections are only 10 % for the

th .rmal electrons (secondary electron yields are low), while 'v30% corrections are expected for

suprathermals, At present these corrections have not yet been incorporated into the electron analy-

sis. Because electrons with energies less than (Vs) cannot penetrate the potential barrier set up the

suppressor grid, measurements are confined to energies greater than (Vs). It is for this reason the

lower four E2 channels are not useable. We note that the D cup must be oriented at more than 75°

from the solar direction, otherwise UV Tight striking the modulator grid will cause photoemission

from the modulator grid, producing a contaminating signal that can swamp the measured current

due to the plasma -electrons. This problem was only intermittently present during the early phases

4
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of the cruise mission before the Jupiter encounters. Because the spacecraft is stabilized w,r,t, 3

axes, the electron measurements yield only a one-dimensional view of the electron distribution

function,

Transmission Function T(v ; vnj±)
t

In order to make a quantitative estimate of electron parameters such as the electron tem-

perature fro m the measured currents, one must have an accurate determination of the phase space

sampled by the sensor. This is given by the transmisison function T(vvnj±) for which the index j

specifies the speed channel. The transmission, function is defined to be that fraction of a monoener-

getic unidirectional beam of charged particles uniformly illuminating the entrance aperture which

reach the collector plate, Because of cylindrical symmetry of the D cup the angular dependence of

T is given solely by the angle of incidence relative to sensor normal 0 (see Figure 2). We introduce

the normalized response R(v;v nj±) where

T(v ; vnj±) = TNR(v ; vy1j ±)	 (5)	 4

The constant TN = 0.56 is the normal transmission of the sensor (i.e,, 0 = 0°) and it is equal

to the product of the transparencies of all grid meshes times the ratio of the shielding ring (shown in

Figure 2) and aperture cross-sectional areas. In Figure 3 we have plotted a family of curves for the

angular response R(v; vnj —) as a function of 0 = tan — I (vl /v ►I ). Each curve corresponds to a differ-

ent speed along sensor normal n within the speed window of the lowest E1 speed channel (i.e.,

vn 1 _< vn < vn	 The angular response of R with half width '^ 30 0 is principally caused by the

common overlapping areas of the aperture and shielding ring projected upon the collector at angle 0.

The dependence upon vn or electron energy, which can be seen to be small, results from the refraction

of electron trajectories as they pass through regions of nonzero electric field (e.g., between modu-

lator and ground grids 2 and 4). Furthermore, the angular and energy dependence is essentially

independent of speed channel.

Electrons typically have large thermal speeds we 7 1000 km/s relative to plasma flow speed

V < 600 km/s. It follows that the angular width of the electron distribution function fe seen by the

sensor at the one thermal speed level (transverse direction, vi = we) will be typically greater than
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25° in the lower speed channels. Therefore, the angular width of fe and R are comparable, resulting

in a folding or convolution of Instrument response with fe in the transverse dircetw., relative to sen-

sornormal, This effect is taken into account in the analysis,

In contrast to the broadness of R relative to fe in the transverse direction, the instrument

samples differential slices of fe along the sensor normal, To show this we present in Figure 4 a

plot of the observed reduced distribution function Fe (similar in shape to fe) measured within

Saturn's extended plasma sheet at 1981 238 09;04 SCUiT by the Voyager 2 spacecraft. The El and

E2 energy or speed ranges are denoted in the figure; the histogram format is used to indicate the

width (Avuj ) of each speed channel with mean speed Vilj , The abrupt change in channel width at

140 eV occurs at the boundary separating the E I and E2 energy ranges; the fractional window sizes

(Av/v) for E2 are about a factor of three larger than that for El. The two component structure of

the electron distribution function is clearly demonstrated by this figure, But most importantly,

with regard to the analysis, the figure shows the differential character of the measurements in veloc-

ity component v ll . Mathematically, this condition of differentiality, which is derived in the next

section, is given by

1 (—j
pll^ `<< 1	 ( )e j =	 —

e

where

Apnj = vilj+ — V 11 1—	 (7)

is the speed width of speed channel j, For the speed channels at which the thermal electron mea-

surements are confined (E1 mode), ov llj N300 kni/s, Referring to Eq, (6), along with the fact

that we > 1000 km/s, one finds ej to be < 2%a for all j; therefore, the E1 measurements are differ-

ential alongn̂ ^ Thus, because the speed channels are so narrow, one call principle measure elec-

tron temperatures less than 10 4° K or l ev^ In reality this is not always possible, because of the

contaminating signal introduced by the suprathernlal electrons near the breakpoint energy EB 1 (see

Figure 4). Furthermore, because the measurements are confined above 10 eV, the signal in the low-

est E1 channels for temperature T. < 1 eV will be more than 10 —4 below the peak flux level which

occurs at E < I eV. Therfore, electron densities must be sufficiently high ne > 20 to 300/cni3

(i.e., exact value depends on ITH or IN which are variable) with OSC = 0 volts, if the cold electrons

are to produce a signal greater than instrument threshold ITH ^- 10 to 10 3 femptoamp or instru-

ment noise IN > 75 fenlptoanlps in the first few E1 channels, In the interplanetary medium where

6
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OSC call exceed + 10 volts, a 1 eV low dettsity (fi e < I/cnl'3 ) electron component is detectable when-

ever spacecraft potentials are this high, The clectron measurements in the higher energy triode E
call

	 be shown to b q differential. At these higher energies (h > 140 eV) the thermal energy of 	 "►

the electrons usually seales with electron energy E (i.e.. power law i n clectron energy or speed),
r

therefore, at l kcV the thermal speeds we are^ A 18,000 km/s, At I keV the channel width ,; Av tl are

'u8,000 km/s, so that ej estimated from Eq. (6) is less than 1 is ; hence, tilt It" measurements are also

differential in velocity component v tl . With these facts ill mind, we will now proceed to derive the

analytical  expression for the reduced distribution function Fe used in our fits,

SECTION 4

DERIVATION OF ANALYTICAL EXPRESSION FOR REDUCED
DISTRIBUTION FUNCTION Fe

To begin it is necessary to write down the general expression relating the measured current

A Ij (ac component) and the electron distribution function fe(v) we are trying to determine, Keep-	 t
s

ing in mind the definition of the transmission function T(#'; v tlj±) anti the fact that one can ima-ine

r,(v) to be a weighted distribution of monocnergetic unidirectional beams of particles incident upon

the sensor, it follows that the sampled current A li is given by

dlj = gATN^ 
f 

dvx f dvy 
f 

re( V )12( v; v tlj_) vtldvtl

	

00	 —00	 Viii —

00

	

C8)	 ;I

^•	 dv 

f 
dv	 f v)R( v; v )v dvx	 y	 e(	 nj+ n n

	

_00	 _00	 vnj+	
1	 '`

where A = 100 cnh ) is the cross-sectional area of the entrance aperture, and V j2 = vx 2 + vy', It

can be shown (see Sittler, 1978) that these two integrals call 	 combined to an accuracy better

than i90 yielding

	

00	 00	 pnj+

	DIj=gATN	 f dvx f dvy f re(P)R( v,,v nj_)v n dv n	 (9)
_00	 _CIO	 vnj_

1

7
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Since the measurements are differential along vn it Is useful to use the mean value theorem

for the vn Integration, Doing this Eq, (9) becomes

00	 00

o	 gATN v nj ovnjf dux f dvyfc(vx, v
y'

unj *)R(v^ 2/^j2 ;Pnj_)	 (10)
_00	 —dA

where we have introduced the mean normalized response

v11j+

	

R(u12/v nj2 ; vnj_) = vno1vn
 f
	 R( 'P; vnj.) vndvn	 (11)

vnj_

The speed v tlj * has some value residing between vnj+ where

2 (vnj+ + vnj—)	 (12)

is the mean speed for the jth spud channel. If the speed windows are sufficiently narrow, then one

can further simplify Eq. (10) by setting vnj* = vnj, In order to estimate the error in making this

approximation we made a Taylor series expansion of fe about vnj and substituted It into Eq, (9).

Doing this, assuming a step function for R in vn (good approximation, see Figure 3), using the

mean response R in place of R, and using a convected-Maxwellian for fe one gets

r
00	 0 _

AIj = gATN vnj A vnj	 J dvx f dvy fe(yx, vy, Vnj)R(v12/v nj2;vnj_)

—00	 —00	
(13)

1—
 6 (

4-nj 2 1__^ +
e	 nj

where V is the mean vector velocity of the electrons relative to the sensor coordinate system, Since

Vn < 600 km/s, and vnj > 2000 km/s, the term Vn/vnj << 1 and can thus be dropped, The result-

frig correction term Is identical to that in Eq. (6) where it was shown in general to be less than 2%.

The smallness of this correction term means the measurements are differential in vn, and the ap-

proximation setting vnj*	 vnj has an accuracy better than 2%. Then by noting the fact that R is

essentially identical for all speed channels, we get the following general expression for the measured

•

r
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currents

t11j 11 gATNunjAPIV	
f 

dvx f dvy fc(vx,vy, Pnj) (v12/;nj2)	 (14)
^.00	 ...00

with an accuracy better than 27c,

In order to write down an analytical expression for Eq. (14), when for Instance fe Is a bi,
Maxwellian, we fit the following sum of Gaussians to R,

fR(vl21vnj2) 	 AI	 a vl'l ►'nj2 + A2 c .-a2vi2/ vnj 2	 (15)

The result of this fit is shown in Figure 5, where Al 0,929, al t = 1,11, A2 0,0813, and
a 2

2 = 19-09, As can be seen this function gives a v,ry accurate description of R Substituting
Eq. (15) into (14) and integrating one gets

"	
Al

1

7	 DI = r A	 3	 1	 2	 ate	 _ (v	 V)2(I e b 2
j

Lq 
TN 'r nj punj	 Gjk 2 e l nj - n	 B n)

J k=1	 r3^22

(16)

where Gjk is the integrated response

ak U 2- -2	
ak2Uxj2	 ak 

Yj
2U 2

Gjk = Ak a
	1^.. q nj

2 ( 1 + e Bbx 2) + ak2 Rl- 2 (1 + e Bb 2) +ak2

(vnj2 910 + FBbx2) + ak2) (`' nj 2 al( I + eBby 2) + ak2)	
(17)

and fe, assumed to be a bi-Maxwellian, is given by the following expression

-► 	 ne 
fe( v _ 7r3/2 w,l wy 2 e—(Q1( vl -X7)2 +	 (vii — Yi )2)	 (18)	

^.

9
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	The parameters used III Eq, (16)  are defused as follows: (1) p 	 1 /wit„ ",
(2) 1/' me we t, 	k'l'lt, j. where T 11,1 is the electron temerature parallel and perpendicular to B.
respectively, (3) eB _ 41p3, is the anisotropy parameter where by pit - pl , (4) Ujj2 = (V.L/v'2^

Uxj' m (Vx/ v ►►j)2 and Uyj 2 x (Vy/ v ►^j)" (5) _ 9/13 is u unit vector parallel to I3 , anti w ,61 1e
is the electron density. If we assume isotrop y eBft0 (good 01)roximatio n for thermal clectrons)
hqs. 00) and (17) reduce to

	

A e (alc^tiN3.^)/00+v►,j'/wc '- )	
n	 (v^y^ 

V10-

[qATN7rV 3Qv l 	 e
nj 

[kS,l	 ,^ +N"`	 ^^; 3	 jr3/2we3 
c	

^'e ^ (i^1) s

where w e Is the electron thermal speed an(l wj " = V,'/w e', For purposes ofsimplicity we have

^,	 a2(v3,/v„j)2approximated tl ► c two C,altssla ►1 tit Isgt (15) with a single Gaussian R ^ e -
	

shown by
the dots in Figure 5 with a 2 = 1,35, By doing this I.;q, (19) reduces to

( r^^►►j — V02,

	

c (a 2 1VL 2 )/(a) + u'►^j'-/w e2) 	
e	

a	
w ^2 . ^.41j = ^gATNrry nj 3Av11j ] '	 2	

n	
e	 c	 (20)

	

a2 + v° ►1j:./we.,	 7r3/2wc3

which has an accuracy better than 5^; for ail speed channels, Finally, dividing both sides of hq, (20)

by (IA TN v►ij3 ^v ilj one gets the reduced distribution function

1 , -
Ile	

e^ 
C►tj Vn) 2/(we 2 )	 c^ (a2w12)/ (

`j-' 
+ i'►'j2/wc')a

c^	 ,r 3/2w ,3	 2	 ,	 '	 (..1)

This expression can be generalized to include the energy shift correction introduced by the

spacecraft potential OSC where most of the energy change is assumed to occur along the v ► , direction
(see Sittler, 1978). Doing this, 1 q, (21) has the more general form

n c v̂ nj2— "Sc” Vn ) 2/ wc2
E'ej 

= 3/2	
e

^ we3

where 1/2 me uSC2 e0 SC and 71ij 2 > uSG`

10

Ww12)/(a2 +unj2/wc2
e

a2 + v 11j 2/wet	(22)

{
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FITTING PROCEDU RE

The reduction of the integral expression hl Ertl, (8) to the .analytical expression in Eq. (22)

has achieved a tremendous simplification of the ar ► atysis, instead of having to evaluate two 3-

dimensional integrations for cacti measurement point 
ill

	 spectrum during, for example, a model

fit to the spectrr -zn„ one has only to compute 
ill

	 expression for each 111USUmnlent point.

Look-tit) taNe techniques could be used to enhance the computation speed of the analysis based oil

Eq, (8), but this method, which tends to he less flexible and not as intuitive, would still be slower

and require more memory ill computer. As shown h1 the next section, Eq. (22) also allows one to

directly extract f,, from the measurements, Ill the case where the electron distribution function is

well represented by a convected-Maxwellian, estimates of the Jectrotl density n e and temperature

T. call 	 obtained by fitting the right-hared side of Eq. (22) to the observed redu-cd distribution

function

^ Ij
F =	 (23)
ej	 gATN7r 7"llj3 .'^rinj

Ill reality, one cannot obtain all
	 of n  without having some nlcans for estimating the space-

craft potential O SC , In the case of tine cruise analysis, the ion analysis was used to give an estimate

of the electron density and charge neutrality was enforced. This approach, which gave a direct

measure of the spacecraft potential, was used to construct the return current relation presented ill

Scudder et al. (1981), This return current relation was then used as a constraint equation hl the

analysis whi-.h gave a self-consistent estimate of both the spacecraft potential and electron density.

The use of Eq, (22) is also limited by the fact that r  is not described by a single Maxwellian for

the full energy range of the plasma instrument, As discussed extensively in Scudder et al(1981)

and Sittler et al. (1983), the distribution function is characterized by a cold rind llot component,

where the cold component is Maxwellian ill 	 while the hat component is non-Maxwellian in

its energy dependence (see Figure 4). To attack this problem we have fit a suns of three Maxwel-

lians to the reduced distribution function F e , w11-.re Eq. (22) is used for each Maxwellian compon-

ent, For the sl]eetrum in figure 4 we have superimposed the result of this three Maxwellian fit to

F  using the x symbol to denote the fit value at each speed channel. A single Maxwellian describes

the cold component quite well; two Maxwellians give a fair description of the supratherrnals, for

which a powQr law would probably give a better fit. As diSCUSSed 
ill

	 next section, the Maxwel-

lian fits to the hot component are only performed for • tlic: purpose of estimating the distribution

11
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function fe from Fe ; fe is then used in the moment integrations to compute moment estimates of
a

ne and Te'

The details of the analysis procedures used to perform these fits can become quite complex

because of the wide range of plasma regimes sampled; for example, one must guard against the

possible contamination by photoelectrons from the photoelectron sheath surrounding the space-

craft. In most simple terms, the analysis is performed by first fitting a Maxwellian to the cold elec-

trons in the first few speed channels. In the magnetosheath and magnetosphere regions, the flow

velocity has been set equal to zero, and in the solar wind the bulk speed from the ion analysis is

used, Once this has been done, the breakpoint energy E B i is computed, which is defined to be

the energy at which F e is twice the value of the Maxwellian fit F MC to the cold component FC

(see Figure 4). We then fit a Maxwellian to FH 1 ` Fe _ FMC in the third to seventh channels above

EB I , The Maxwellian FMH 1 fit to FH I is then subtracted from Fe in the energy channel below

EB I (i.e., FC
 : 

Fe ` FMH 1)• We then fit a Maxwellian to this revised F C and then repeated the
F

same above procedure used to compute EB 1 and obtain the Maxwellian fit to FH P A similar pro-	 ii
cedure is used to get a Maxwellian representation of the hot component FH2 above the second break-

point energy EB2 . As can be seen from Figure 4 this procedure yields a good description of the

observed reduced distribution function F e' The Maxwellian fits to the cold electron component aro	 a

usually very good, on average the goodness of fit parameter Xc2 - 5, The X 2 for the Maxwellian fits

to the the suprathermals are larger, being typically greater than 10, but usually give a good estimate
k

of the thermal width of the spectrum over the energy range each Maxwellian component is fit to.

SECTION 6	 ;a

MOMENTS

As discussed in Scudder et al, (1981) it is desirable to have a quantitative estimate of the

total density and mean random energy of the electron gas as a whole, since it is these quantities

which appear in the fluid equations, The fitting of a (Maxwellian to the distribution function is

only useful when it gives a good description of the particle population. Clearly, a Maxwellian
is

does not give a good representation of fe for the full energy range of the PLS instrument, but does

give a, good description of the sub-interval of energies occupied by the thermal electrons. The sup-

rathermal Electrons are definitely non-Maxwellian; as shown in Section 5, more than one

12
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Maxwellian is deeded to describe them, A power law or kappa distribution could be used and would

probably give a good but model dependent description of their energy dependence. The reduced

distribution function Fe, contrary to fe which has a direct connection with theory, contains the

effects of the instrument function. Furthermore, once fe is known, it is a relatively simple exercise

to integrate over fe and obtain model independent estimates of the density and temperature of the

gas as a whole,

As noted in Scudder et al, (1981) the distribution function fe 
call 	 retrieved from the

measurements, so long as the speed window size Av il is small compared to the local thermal speed

of fe. By local thermal speed we mean the magnitude of the square root of the local logarithmic

derivative of fe with respect to electron speed, Carefi ► i inspection of Eq, (22) reveals that one call

estimate fe from Fe if the distribution function is Maxwellian anti the thermal speed we is known,

Therefore

fej = fe(o,o, 7y) = Fej (a 2 + V►1j '/w e ')
	

(24)

where we have dropped 'the exponential term with argument proportional to W j2 , si;lce for the

electrons Wl2 < < 1, One can carry this approach one step further by saying that fej call 	 esti-

mated with Eq, (24) even if fe is not a Maxwellian at T ip by using in place of we in Eq, (24) the

locally determined thermal speed wej = we (F lj) of fe at speed vllj. Note that the correction factor

a2 + (^nj /w e) 2 is an indication of the angular width of fe relative to the sensor response R at

speed ullj. Therefore, by estimating the thermal width of fe along v n and assuming this

gives a good representation of the thermal width of fe in the transverse direction (isotropy asSUlhl-

ption), Eq, (24) should give an accurate estimate of fe at v llj. In order to snake use of Eq, (24) we

must have an estimate of wej, Two approaches have been used. In the first approach we make a

two point estimate of wej from Fej and F ej +I and using Eq, (22), In the second approach we make

use of the three Maxwellian fits to Fe to estimate wej. Centered oil 	 breakpoint energies EBI

and EB2 where the thermal speed we has a strong speed dependence, we have linearly interpolated

across the breakpoint energies EBI and EB2 to obtain an estimate of wej in these regions. Both

methods yield similar results whenever the signal is well above invArunlent noise or temporal fluctu-

ations are absent, In the lower density regions or whenever rapid temporal variations are present

in the spectra, the first method has problems because the noise or temporal fluctuations introduce

localized changes in tile slope of Fe which then introduce large errors in the estimation of wej.

Therefore, we have used the second approach which is less sensitive to noise or temporal fluctua-

tions since the thermal speed is estimated over a broader e, 	 range and more points are used in

13
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4	 estimating the local slope of I'd (i,c„ thermal speed estimation less sensitive to single point fluctu-

ations in the energy spectra), One memis of checking this procedure for estimating fe, is to see ]tow

well the Maxwellian fits in Fe vs v ii "phase space" compare in fe vs vas plhnse space. If the conver-

sion hay been done properly, and the fit to Fe is of a good quality, then tie same fit parameters

should yield a good match to fe where

cfej _ _, ^	 c (v
nj 2 — uSC2 _ V11)2/we"	 (25)

jr3i2 ^e3	 F

is used for each Maxwellian component. Figure 6, which is the same spectrum plotted in Figure

4 except that fe is plotted instead of Fe, shows the Maxwellian fits give a good match to both Fe'

and fc. For all spectra this comparison has been made we found a similarly good match,

r	 Once the distribution function fe is known, one call 	 to make moment estimates of
u

tite total density iie and temperature To as outlined in Scudder et al, (1981), For reference pur-

J	 hoses we write file integral expressions foi - ne and Te, respectively,

1
00

n,	 4 n f f (v ) v' du^	 3 	 e ci d` d

o^

00

Te	 4 ir f fe(pd)n1cVd2 V C1	 u^l / ( 3 lie kg)	 (27)
o	

y

where	 l

^

	

V d - IVo`  2c0SC / me	 (28)

is the electron speed outside the photoelectron sheath surrounding the spacecraft, The speed uo 	 ^I
is the observed electron speed at the spacecraft surface, e is the unit electric charge, me is the elec-

tron mass, kB is Boltzmann's constant, and OSC is the spacecraft potential, The above integrals

assume isotropy in fe where we have taken advantage of the subsonic character of electrons and

j	 assumed corrections introduced by pressure anisotropies to be small. As a first approximation,

we have only considered the energy shift correction caused by the spacecraft potential in Eqs, (26)

to (28). In Sittler et al, (1983) the upper limit used in the integrals 26 and 27 is set by the maxi-

mum channel electron fluxes are observed above ITH or 4*IN (IN is the theoretically estimated

14
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x.
lower limit of the instrument noise; fn reality the i ►tst ►•u ►tle ►lt noise call 	 greater than I	 such

that the maximum energy of tile integral 
call

	 no more than 6 kcV. Because the bulk of the dis-

tribution Is below 6 keV within Saturn's magnetosphere, the upper limit for the integrations is

essentially infinity. In Scudder et al. ( 198 1) we extrapolated the hltegrals to infinity, since the

suprathermal electrons in Jupiter's magnetosphere were hotter (T N — few keV) and noise in the

higher channels less prevalent.

We now amplify the point made i ► 1 Scudder ct al, ( 198 1 ) concerning the extrapolation

down to zero energy, Because the measurements are confined above 10 eV, one must use the esti-

mated temperature Tc for the cold electrons to extrapolate fe down to zero energy in order to com-

plete the moment integrations. As al•ga ► ed in Scudder ct al,, this portion of the Integral will plot

make a significant contribution to the integral it' f e does not vary too much below 10 cV or deviate

significantly from that indicated above 10 eV. The first condition is violated whenever Te < 10 eV

(density dominated by cold electrons) since the integrals will peak near or below 10 eV. Further-

more, as the electron temperatures become lower (T c < 3 eV) most cold electrons have energies

< 10 eV, and fluxes above 10 eV 
call 	 dominated by supratlll-rmals so that it becomes more and

more difficult to make an accurate estimate ofT c , Ifsuprather ►mals are absent, the cold electron

fluxes call 	 below instrument threshold and/or instrument noise. At these low temperatures,

the error in estimating T  nlay be no more than a factor of two, but since the spectrum is so

steep below 10 cV, large erorrs in the density call 	 This accounts for some of the data gaps

in the density plots in Sittler et al. (1983), while no data gap is present in the temperature plots;

in the same plots other regions have been omitted altogether, Eventually, by using the ion and elec-

tron data sets together, the successful analysis in these ;^ooler regions in Saturn's magnetosphere

is anticipated.

Another complication arises whenever the Mllperaturc of the thermal electrons Tc ex-

ceeds'020 eV, such that a turnover in the spectrum ill the lower energy channels tends to occur.

That is, the predicted phase density for energies below 20 eV from a Maxwellian tit to energy

channels greater than 20 eV, exceeds that observed below 20 eV, This low energy turnover in the

spectrum has two possible explanations: (1) we are seeing all 	 similar to that seen in the

Earth's nlagnetosheath where the electron distribution function is observed to have a flat

topped shape at lower energies; ion acoustic waves have been proposed as the means for providing

this distortion of fe (Dum et al., 1974); or (2) it is an instrumental effect caused by tile emission

of secondary electrons from the modulator grid, This latter ill cell anisnl, first proposed by Vasyli-

unas (1971) is caused by Ile change in energy of primary electrons incident upon Ile modulator

a
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grid as the modulation voltage is varied; by changing their energy the secondary electron yield,

which is a function of the primary electron energy, will also change. Then if the flux of electrons

is greater at higher speed channels, a significant correction to the lower electron channel is feas-

ible, where this correction current will tend to reduce the measured signal in the lower electron

channels (Le,, below 100 eV the secondary yield is all 	 function of primary electron

energy), Since the flux maximizes at the electron thermal speed, this effect, if important, will

occur whenever Te > 20 eV and will affect only those speed channels below we.

Detailed calculations of this effect are being planned for the future. For now we have cir-

cumvented this problem by confining our analysis to speed channels above this turnover in the spec-

trum, If the first explanation applies, then as noted above, we will make only a modest overesti-

mate of the electron density by extrapolating to zero energy the Maxwellian fit to speed channels

above the low energy turnover in the spectrum. If it is an instrumental effect, then we make no

error by extrapolating to zero energy the Maxwellian fit to speed channels above this turnover in

the spectrum.

Since the suprathermal electrons in Saturn's magnetospliere are non-Maxwellian, we have

used moment estimates of their density and temperature in our discussions about them in Sittler

et al. (1983). As in Scudder et al. (198 1 ) the lower limit of the integration is set by the

breakpoint energy EBI ; the upper limit is the same as that used for the density and temperature

determinations in Sittler et al. Note that this method will tend to underestimate the density n H and

pressure PH of the hot electrons since we are ignoring their phase density below E B 1 . This was done to

avoid numerical problems which occur if we equate the fractional density 111­1 to the difference

n e — n c where n c is the fit density of the cold electrons. These numerical problems will occur when-

ever n H/nc	0.05 or when the fit to the cold electrons is poor (which will happen when E1 mode

fluxes are nearinstrument noise). This method is also desirable because it allows one to study more

clearly the variations of the more energetic suprathermal electrons above the breakpoint energy EBV

Before the integrations are performed we first subtract the cold component from f  by using the

Maxwellian fit to the cold electrons. Finally, whenever the measured current is below I TH or 4*1N,

the distribution function fe is set to equal zero. This approach, which is also used for the n e and T.

integrations, eliminates the possibility of over estimating the integrals because of noise, while tending

to under estimate the integrals because signal less than I TH or 4*IN may be present.
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SECTION 7

ION FEEDTHROUGH CORRECTIONS

In Scudder et al. (1981) we made a point that because the instrument records and teleme-

ters only an ac synchronously detected signal, do background corrections are not a problem, For

the high energy particle population this is a correct statement, But low energy positive ions, which

have energies per charges < 6 keV comparable in magnitude to the potential applied to the modula-

tor grid of the D cup, will produce an in phase ac signal when the instrument is in the electron

mode that may or may not introduce an important correction to the measured electron currents,

This feedthrough current If+ originally pointed out by Vasyliunas (1971) as a possible correction

current, is caused by slight changes in the ion tra.'-ctories (see Figure 2) as they pass through

regions of nonzero electric field within the sensor (e.g,, the modulator grid), When the voltage on

the modulator grid is varied at 400 Hz, ions with same energy, angle of incidence, and point of entry

will experience slightly different deflections in their trajectories. This will cause some of them to

either hit or miss the collector plate (which is ac coupled to the amplifier network) at a 400 Hz rate,

The end result, as noted above, is an in phase ac signal to the amplifier network, The sign of this ion

feedthrough current I fed is such that it will add to the electron current l e (e.g., L OBS = le + Ifed
where I OBS is the observed current),

Using the simulation program dev1loped by Vasyliunas (see Hartle et al,, 198, in which elec-

tron feedthrough corrections to the ion measurements were computed) and predicted ion parameters

at the spacecraft position from scale height model calemations, we computed estimates of ion feed-

through currents for all electron energy channels thrOUghout a major part of the Saturn encounter

period for both Voyager encounters, Tile results displayed in Figures 7 and 8 show that the ob-

served electron currents due to the thermal electrons are more than two orders of magnitude

greater than these correction currents, an expected result. For the suprathermal electrons, for

which these corrections have the potential of being important, the feedthrough currents are found

to be no more than 20% of the observed signal, As demonstrated in Sittler et al. (1983), the

suprathermals contribute about 10°Io to 20110 of the total electron density, It then follows that

these feedthrough currents are expected to be important whenever 11H/ne	 I%, a situation which

is known to occur during the Voyager 1 inbound pass through Io's plasma torus at Jupiter. Since

these corrections are only minor at Saturn, we have not included them in the analysis presented in

Sittler et al, Whenever the ion analysis is completed, these correction currents will be incorporated

into the final electron analysis that is to be part of a future ion and electron paper for Saturn.
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You will note that there are occasions at the higher energy channels (clnuntels 25 to 28)

Mien the feedtlirougll current I fed exceeds the measured current IOBS. At first thought this is

difficult to understand since I OBS ' Ic Iced should always be greater than Ifed. focusing our

attention oil th e Voyager I data from 0100 to 0400 on (lay 318 (similar arguments can be made

for the Voyager 2 data near the end of day 237), we see that the observed spectra display a strongly

energy dependent behavior at higher energies and that signal is confined near or below signal thresh-

old at the higher energy channels (bite-out signatures discussed in Sittler ct al, (1981 b, 1983)), This

should be contrasted with the relatively flat spectrum characteristic of the feedthrougll current

lied produced by the cold ions, We further note that the density profile of the cold ions produc-

ing Ifed displays a gradual rise during this shine time period (Laxar(us and McNutt, 1983), while

LOBS for the hot electrons can be quite variable, So the variations in the electron current, which

can be quite variable and display a significantly stronger energy dependence than I fed , cannot be

caused by density variations ill 	 ions, but rather are caused by real changes in the hot electron

fluxes, The above discrepancy can be understood in terms of a feedtllrough current Ifed with
sign opposite to that of I -+ , that is produced by ion impact upon the modulator grid with subse-

quent secondary electron emission from it. This feedtilroiugll current I fed , based upon preliminary

estimates discussed below, is generally small compared to I fed except at the high energy channels,

Therefore, at these higher channels the feedtllrough current is expected to be small and possibly

negative.

The inechanisnl producing this negative feedtllrough rtirrent is similar to that discussed in

Section 6, except the incident particles are ions and not electrons. Because the positive ions have

polarities opposite to that applied to the modulator grid, all the incident ions are accelerated to-

ward the modulator grid between grids 2 and 3 (see figure 2). By varying the voltage applied to

the modulator grid, the energy at which the lass strike it is varied, Then if the secondary yield
is energy dependent, the secondary electron current is also varied, This feedtllrough current will

be out of phase (negative) with le if the secondary yield Yi is an increasing function of ion energy

Ei, For Ei < 1 keV the secondary yield Yi is < 0.1 and essentially independent of Ei (Whipple,

1965). Therefore, for those energy channels the ions strike the modulator grid with Ei < 1 keV, the

feedthrough current I fed will be near zero and unimportant.. In the case of tungsten (material

grid wires made from) and protons being the incident ion, the yield Yi is all increasing function of

ion energy i keV < Ei < 100 keV (Whipple, 1965). A similar energy dependence is expected for

0+ ions. Therefore, t,c Fcedthrougll current Ifed will be negative and reduce the observed current

18
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IOBS = le + I& + I fed . Because Yi is an increasing function of ion energy and the energy win-

(low size qi aVMj increases with VMj (E2 mode), I fed will be most important at tine ]nigher energy

Channels for which the ions are accelerated up to energies near 6 keV before striking the modulator

grid and secondary yields are approaching. I O' i = 0.5 at E1= S keV for protons).

4

4

In higure 9, we have plotted I013S, If eel , I feel and I fed :2 1 fed + I fed versus channel num-

ber for plasma data nneasured near the Voyager I rink plane crossing at Saturn. The ion parameters

used to compute I fed and I fed were supplied by R. L. McNutt (private communication) for the

ion spectrum measured nearly time concident with the electron spectrum, Nxeept for channels

?S to 213, I ►ecf is I -ss than 201ir of the observed current 10135. I fed is negligible below channel 2-2,

above which it riscs rapidly and exceeds I f. d at channel 28, the uppermost channel, When we combine

'fed and Ifed' 
the feedthrough current: 'fed is no more than 10i"r of LOBS, anti the observed

variations in IOBS between 0100 and 0400 on day 318 for Voyager I and 1930 to 2400 on day

237 for Voyager 2 are most assuredly due to real changes in supratherntal electron fluxes,

SECTION 8

SPACECRAFT CHARGING EFFECTS AT SATURN

The electron analysis for the Saturn and Jupiter data sets uses an empirical return current

law to estimate ¢SC, this law only considers the balance between the photoelectron current emitted

by the spacecraft and the incident plasma electron current on to the spacecraft. This approach is

sufficiently accurate for electron parameter determinations, so long as the incident plasma electron

current outside the sheath is not high enough to enforce a negative potential on the spacecraft. This

will happen when the plasma electron current exceeds the photoemissio ►n saturation current JSAT

as defined in Scudder et al., plus the incident positive ion current and secondary electron emission

current. The preliminary estimate for J SAT in Scudder et al., is now estimated to be about a fac-

tor of 3 lower, though this estimate will probably require further revision, as we did not take into

full account the positive ion current above 6 keV and associated secondary electron emission ct ► r-

rent. Using this , ^viseci value for JSAT, we expect the spacecraft to remain positive in Saturn's

magnetosphere so long as election densities remain below 10/cm 3 for To = 10 eV. Since this

estimate has not included the ion and secondary electron emission currents, the spacecraft could

remain positive for even higher densities and temperatures. Except for the Voyager I ring plane

crossing period at Saturn this condition is probably met. Detailed comparisons with ion data so

}
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fair support this conclusion, It is for this reason we feel the electron analysis of the Saturn data

set is in good shape at this time, except for periods of shadow and high density (tie> 10/cm3)

when the spacecraft may have become negatively charged.
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FIGURE CAPTIONS

Figure 1, Photograph of the Voyager Plasma Science lixperlment showing the three main sensors
A. B. and C 

and 
the side sensor 1). Contrary to the main sensors, the D cup has the usual cylindrf,

cal geometry,

Figure 2. Schematic cross-sectional view ol` 1)•cup. Trajectories of incident primary electron and
emitted secondary electron are displayed. Figure shows capacitive coupling between collector
Mate and amplifier chair. Only current 11ac is amplified, phase detected and telemeter.td , Voltage
levels indicated for suppressor grid pertain to when the Instrument Is In E l mode; when in 12 mode,
Vs a ­95 volts, Angle 0 and primary electron normal v11 and transverse vj velocity component axes
are shown, The lower left inset shows the orientation of the sensor coordinate axis (XS, YS, ZS)
relative to payload coordinate axis (XS/( ,, VS!C, ZS/C), Angles 0 1r - 924, ¢n a 43 4 and ZS -- s--.;

f1gure 3. Normalized angular response of D-cup R(v, vii l —) plotted versus angle of incidence 0.
Instrument is In El mode, lowest speed channel, raid modulator set at lower sliced level vn I —,
Each curve corresponds to electron velocity component v 11 (k) = v ►► I —, + Av ►i I (K/5) for K = I to S,
the uppermost ^.urve corresponds to K a S (P I, = vii I+), See text for definitions,

Figure 4. Not of Voyager 2 electron reduced distribution function Fe plotted versus normal com-
ponent of electron velocity v 11 into D•cup. Spectrum measured in Saturn's magnetosphere during
outbound pass at L = S. IIistogram format used for data, X's used to denote st , ~i of three Wxwel-
lion fit to data, Cold component Fe, and lrot components FH I and F112 are indicated, Breakpoint
paint energies EBI and EB3 defined in Section 5 are denoted as well as speed range covered by E1
and E2 modes, The one telemetry count level (onc TMC) and noise level are displayed.

Figure 5, Plot of mean normalized response R(vl'1v►1 2 ; v ►11—) plotted versus angle of incidence
0 of primary electron, — Mean response computed from normalized response plotted in Figure 3,
Actual mean response R terminates at 0 = ±60 4 . The two gaussian fit is indicated by the solid
curve which exceeds 11 at 0 = 04 and is non-zero beyond 0 = ±60 0 . Circles used to indicate single
g ►u►sian fit with a 3 = 1,35,

Figure 6, Electron speed distribution function fe (circles) computed from electron reduced distri-
bution function Fe in Figure 4, Cold component fe and hot components flil and fF12 are denoted;
breakpoint energies EBI and F132 are ti l so indicated. Solid curve displays sun of three Maxwellian
lit to data in Figun, 4 (see Section 5), r -ne telemetry count level (one TMC) and noise level are
displayed,	 I

4

Figure 7. Plot versus time of the measured electron current IOUS and predicted ion feedthrough
current Ited for all 28 energy channels (channels I to 16 for El ; channels 5 to 16 for E2); currents
are in femptoamps, The data was measured during the Voyager 1 encounter with Saturn. The 	 +
ion parameters are computed from a scale height model calculation; uncertainties in composition
are not expected to produce significant errors in our estimation of I fed ' The data plotted with an
X symbol at 0406 day 318 were computed from ion parameters determined frown a detailed fit to
the ion spectrum at this time (ion parameters provided by R. L. McNutt, private communication).
As can be seen the model and fit ion parameters yield nearly identical results, Noise and one
telemetry count (TMC) levels are also displayed,

FIgure 8, Same as Figure 7 except Voyager 2 Saturn encounter data are used,	 ti

23



t.y

Figure 9, Observed electron current JOBS (solid line) and ion reedthrough currents If6d (dotted
line), Iced (short dash) and Ifed = Ifed + I red (long dash, plotted versus channel number for the
Voyager l electron spectrum measured at 318 Oa OG SCET; currents are In remptoamps. The reed-
througli current I red represents an upper estimate, but Is probably correct within a factor or,-).
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