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ABSTRACT

When a ceramic 1s brought into contact with a ceramic, a polymer, or a

metal, strong bond forces can develop between the materials. The bonding

forces will depend upon the state of the surfaces, cleanliness and the funda-

mental properties of the two solids, both surface and bulk. Adhesion between

a ceramic and another solid are discussed from a theoretical consideration of

the nature of the surfaces and experimentally by relating bond forces to the

interface resulting from solid state contact. Surface properties of ceramics

correlated with adhesion include, orientation, reconstruction and diffusion as

N
	 well as the chemistry of the surface specie. Where a ceramic is in contact

W	
with a metal their interactive chemistry and bond strength is considered.

Bulk properties examined include elastic and plastic behavior in the surficial

regions, cohesive binding energies, crystal structures and crystallographic
	 r

orientation. Materials examined with respect to interfacial adhesive interac-

tions include silicon carbide, nickel-zinc ferrite, manganese-zinc ferrite,

and aluminum oxide. The surfaces of the contacting solids are studied both in

the atomic or molecularly clean state and in the presence of selected surface

. .	 contaminants.

INTRODUCTION

Ceramics like metals when in the atomically clean state will exhibit

strong bonds of adhesion. This will occur for ceramics in contact with
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themselves and other materials. There are A number of both bulk and surface

properties of ceramics that will affect the nature and magnitude of the

adhesiva bond forces that develop for ceramics. With respect to surface

properties these include electronic surface states, ionic species present at

the surface, chemistry of the contacting material and the nature of surface

contaminants present. Bulk properties include cyrstallography, cohesive bind-

ing energy and the presence or absence of defects.

When two solids are brought into contact and adhesion occurs there are a

variety of methods which can be employed to quantify the bonding forces. Some

involve tensile type pulling on the interface. Others are based upon tangen-

tial shearing of the junction. Friction force measurements are based upon the

latter method. The stronger the interfacial bond strength the greater is the

resistance to move one surface relative to the other tangentially. Such meas-

urements are sufficiently sensitive that the effects of various "ractions of

an adsorbed monolayer on interfacial adhesion can be readily quantified

(Ref. 1).

The objective of this paper is to review the fundamental properties of

ceramics both surface and bulk and determine their influence on adhesive

behavior. Ceramics to be examined, by way of example, will include silicon

carbide, aluminum oxide, nick*1-zin;: ferrite, and manganese-zinc ferrite. The

ceramics will be examined in contact with themselves, a polymer composite and

with metals. Surface characterization will be used to establish surface

states and the influence of films and contaminants.

RESULTS AND DISCUSSIONS

Oxide Ceramics

Oxides such as aluminum oxide, titanium oxide (rutile) and magnesium oxide

have been considered for tribological applications. With these materials,
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both structure and surface chemistry are extremely important to adhesion

behavior.

aluminum oxide. - In order to determine if friction and accordingly adhe-

sion characteristics of sapphire were anisotroplc, experiments in vacuum were

conducted with two orientations of a sapphire bail. The first orientation

involved the lplane (0001) and the direction [1120] and the second the (10T0)

plane [0001] direction in adhesive contact'and sliding against a disk of sap-

phire with its basal plane essentially parallel (within 4 •) to the interface.

The results obtained in these experiments are presented in Fig. 1 together

with data for the (0001) plane and [1120] direction orientation examined in

air to demonstrate the influence of adsorbed films.

The data of Fig. 1 indicates that the adhesion and friction characteris-

tics of sapphire are highly anisotropic. At a moderate load of 0.25 N, the

friction coefficient for the basal orientation was less than half that ob-

tained for the prismatic orientation. As load is increased to 10 N both

orientations show a decrease in friction coefficient. The marked differences

in adhesion and friction for the two orientations are, however, maintained.

With metals, experiments conducted in vacuum serve to reduce the presence

of adsorbed films and surface oxides. Sapphire has a layer of surface oxygen

atoms as an inherent part of its structure, however adsorbed films may be

removed on vacuum degassing. The differences in friction coefficients for the

basal orientation of sapphire in air and at 10 -8 Pa (Fig. 1) may be related

to the influence of these films on the adhesion characteristics of sapphire.

The influence of crystallographic direction for both prismatic and basal

orientations were determined and the results obtained are presented in Table

I. With the basal orientation less adhesion and a lower coefficient of fric-

tion was observed in the preferred slip direction [1120]. This orientation

3



i 7....,,andence is similar to that observed for the hexagonal metal berry111um in

Ref. 1.

The crystallographic direction of movement on a surface, reflecting

changes in atomic orientation also affect adhesion and friction force. This

is demonstrated in the data of Table I for the prismatic and basal orientation

of sapphire in contact with sapphire.

The results of Fig. 1 and Table I indicate that the adhesion and friction

characteristics of sapphire are highly anisotropic. There was further, marked

evidence for plastic deformation at the contacting interface of the crystals

as revealed by etching of sapphire crystals after the friction experiments.

The adhesion and friction behavior of sapphire in the figure and table is very

analogous to that observed with hexagonal metals in Refs. 2 and 3. With hexa-

gonal metals in sliding friction experiments the friction coefficient was

always less on preferred slip planes in preferred slip directions than for

other slip systems. Similar results were obtained in this investigation. The

easy g l ide or slip plane for sapphire is the basal plane under deformation.

Further the preferred slip direction is the [1120] direction when the crystal

is deformed plastically. With plastic deformation occurring at the contacting

interface under an applied load it might be anticipated that the prismatic

orientation of sapphire would exhibit stronger adhesion and higher coeffi-

cients of friction than the basal orientation. There are a number of prisma-

tic planes which can slip in the deformation process while. with the basal

plane oriented parallel to the sliding interface, only a single set of planes

are involved.

When plastic deformation occurs at the sliding interface and a larger num-

i	 ber of slip planes are involved, applied stresses in the form of the load may

be distributed over a number of equivalent planes. With the basal plane

4
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parallel to the sliding interface. any applied normal load can only tend to

compress basal planes and even with metals such as beryllium. this orientation

will support tremendous loads to the point where it will literally explode

w, th no evidence of slip occurring on other slip planes. A larger true con-

tact area can then occur in the sliding process with prismatic than with basal

orientation. Further, when a number of prismatic planes undergo slip, there
r

exists the possible interaction of such slip planes to produce locks similar

to the Lomer-Cottrell locks observed in the face centered cubic metals. Such

locks can produce marked increases in shear strength.

With sapphire the yield point for the prismatic orientation 1s.different

than that for the basal orientation. For the latter orientation the yield

stress is ten times less at elevated temperatures (Ref. 5).

The shear strength for sapphire calculated from adhesion and friction

measurements of this investigation together with bulk shear strength data

obtained from Ref. 4 are presented in Table II. The surface shear strength is

from twenty to thirty times that of the bulk shear strength. Similar results

have been observed with a number of inorganic crystals in Ref. 4. A possible

explanation for this increase may be that indicated in Ref. 5. Microscopic

plastic deformation occurring at the sliding interface permits relief of

stresses in the sapphire resulting in an increase in shear strength.

The authors of Refs. 6 to 13 were all concerned with the influence of

orientation on adhesion. friction and/or most frequently wear. The experi-

ments of these investigators were all conducted at higher speeds than employed

in this investigation. Loads, however, in many instances were lighter than

employed in this study. It should be indicated that interfaces temperatures

in a vacuum environment may be considerably higher than is encountered air

under equivalent conditions of load and speed because of poor heat

5



dissipation. Further, higher coefficients of friction in vacuum for sapphire

(Fig. 1) will further increase interface temperatures. For example, increases

in adhesion and friction c-bserved in this study at 500 • C was not observed in

shear strength measurements of Ref. 14 until temperatures of approximately

10000 C. Some surface contaminants such as chlorine are not fully removed

below 10000 C.

Data of Ref. 3 showed the recrystailization of titanium metal at a 500 g

load and the same speed as employed in this study. Titanium would normally

recrystallize in the teor,*arature ranges of plastic deformation discussed here

for sapphire. It is therefore reasonable to assume plastic de g°ormation for

aluminum oxide under simlliar load conditions.

The lower coefficient of friction measured for the basal orientation of

sapphire sliding on sapphire in Fig. 1 are as might be predicted from observed

slip behavior. In plastic deformation experiments of Ref. 14 very little

resolved shear stress was necessary to initiate slip on basal planes while the

shearing stress for prismatic slip was at the maximum.

In this study, adhesion at the sliding interface with the prismatic orien-

tations resulted in prismatic slip. With hexagonal metals such as cobalt

orientation of single crystals for prismatic slip results in slip plane and

slip plane dislocation interaction, strain hardening and consequently increase

in measured friction. Cross slip mechanisms which can account for strain

hardening in metals must be modified for sapphire since only two slip systems

operate. Cross slip on the same system may not be possible but prismatic

plane dislocations can interact with stacking faults of the basal planes pro-

ducing strain-hardening. Ref. 14 referred to strain hardening for prismatic

slip in sapphire. This interaction of basal stacking faults cannot occur for

the basal slip mechanism because the basal dislocations and stacking faults
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lie in the same plane. The adhesion and friction data of this investigation

indicate, as.did the wear data of Ref. 6, that plastic deformation dictates

the adhesion and sliding behavior of sapphire.

When oxide ceramics are in solid state contact with softer materials such

as metals the marked difference in elastic and plastic deformation of the two

materials can result in considerable plastic deformation of the softer mate-

rial. This can contribute to the adhesion of the materials because it in-

creases real contact area. In Fig. 2 a rider (hemisphere) of sapphire slid on

a single crystal flat of copper. The specimen materials were then reversed so

that a single crystal copper rider slid on a sapphire flat. The coefficient

of friction for the sapphire sliding on copper was 1.5. With copper sliding

on sapphire, it was 0.2. In both instances, adhesion of copper to sapphire

occurred. The difference in friction coefficient for the two experiments is

due to the effects of plowing or plastic deformation of the copper. Plowing

of the copper disk, which dSd not occur with the sapphire disk contributed

heavily to measured friction.

Also in both experiments the sapphire adhered to the copper as indicated

in the photomicrographs of Fig. 2. The wear on the sapphire flat wrs occa-

sioned by fracture along (0001) planes and susurface and parallel to the

sliding interface. When metals contact oxide ceramics, surface chemistry

plays a very important role in the observed adhesion and friction behavior.

Various metals were slid on a flat of sapphire with the basal orientation in

the sapphire parallel to the sliding interface. With the metals which form

stable oxides such as copper, nickel, rhenium, cobalt and beryllium, adhesion

of the metal occurred to the oxygen ions in the outermost atomic layer of the

sapphire. The manner of bonding is shown in Fig. 3.

When the same sliding experiments are conducted with metals that do not
	 .

form stable oxides in vacuum (gold and silver) strong chemical bonding does

1
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not occur at the interface, adhesion is weak and wear to the hard oxide cera-

mic is absent. This is demonstrated in the data of Fig. 4 for gold and silver

sliding on the 'DO&W orientation of sapphire.

The photomicrographs of Fig. 4 indicate an absence of any wear to the sap-

phire such as observed in Fig. 2 with copper. The only surface markings in

Fig. 4 were polishing scratches. The coefficients of friction were also one-

half in Fig. 4 of that obsorved with copper in contact with sapphire in

Fig. 2. In Fig. 2 fracture occurred with adhesion in the sapphire because the

interfacial metal to the sapphire bond strength is greater than the cleavage

or fracture strength in the sapphire and accordingly sapphire fracture

occurs. With gold and silver in Fig. 4, the weakest region is the interface

and simple shear takes place at this location with bond strength no stronger

than found with lubricant molecules as evidenced by the friction coefficient

of 0.1 comparable to that experienced with effective boundary lubrication.

Experiments subsequent to those herein confirmed a chemical bond between

metals and the oxygen ions indicated in Fig. 3 (Ref. 15). The shear strength

of the metal to sapphire contact were correlated with the free energy of for-

motion of the metal oxide in Ref. 15.

Further attempts have been made to explain in a more fundamental manner

the.metal to sapphire bonding. This could assist in understanding the wear of

hard ceramic oxides in general. Molecular-orbital energies have been examined

for clusters in bulk sapphire and the metal-sapphire interface (Ref. 16).

Ferrites. - With oxide ceramic materials such as Mn-Zn and Ni-Zn ferrites

1 - 1	 adsorbates are present on the surface from the environment, and these include

water vapor and carbon, as typically shown in Fig. 5(a). With metals, in

addition to the presence of adsorbate films, beneath this layer of adsorbate

is generally a layer of metal oxide.
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The adsorbed films on ferrites and metals as well as oxides on metals can

generally be removed by sputtering or heating. For example, in Fig. 5(a) the

adsorbates have disappeared from the spectrum taken after sputter-cleaning.

In addition to oxygen and iron, which are associated with the composition of

Mn-?n ferrite, the XPS peaks obtained from the sputter cleaned surface indi-

cate manganese and zinc, but there is no adsorbate.

The adsorbates play a very large role in adhesion, mechanical and chemical

behavior of ferrite surfaces in tribological systems. Experiments carried out

in two environments, vacuum and argon at atmospheric pressure indicate the

effects of adsorbate and environment on adhesion and friction properties. The

removal of adsorbed films from the surfaces results in very strong interfacial

adhesion and high friction.

The data obtained from the experiments in vacuum are to be anticipated

from chemical interactions and the important role they play in the adhesion

and friction of clean ferrite-to-metal couples. The behavior is analagous to

that observed for aluminum oxide.

The coefficients of friction reflecting interfacial adhesion for various

metals sliding on ierrites in argon atmosphere were all nearly 0.1 to 0.2.

The'chemlcal activ`,ty or inactivity of metal does not appear to play a role as

to adhesion and friction in argon as the argon is only physical l y adsorbed. A

prerequisite for this sameness in friction is that the metals form a stable

metal oxide, and t" environment is responsible for providing the.adsorbates

on the surface.

Similiar exper ments with ferrites contacting polymeric magnetic indicate

that adsorbed nitrogen will appreciably reduce adhesion and accordingly fric-

tion. Oxygen conversely increases adhesion and friction.

The adhesion and accordingly coefficients of friction for polycrystalline

Ni-Zn and Mn-Zn ferrite in contact with metals can be correlated with the free
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energy of formation of the lowest metal oxides, as shown in Fig. 6. The cor-

relation sh 3wm in Fig. 6 clearl; indicates that the metal-ferrite adhesive

bond at the interface is primarily a chemical bond between the metal atoms and

the large oxygen anions in the ferrite surface, and the strength of this bond

is related to oxygen to metal bond strength in the metal oxide (Ref. 17.).

All metals indicated in Fig. 6 adhered and transferred to the surface of

the ferrltes. In general the less active the metal, the less adhesion and

trans*er there is to the ferrite. Titanium, having a much stronCer chemical

affinity to the elements of the ferrite, exhibited the greatest amount of

transfer (Ref. 18).

The relative chemical activity of the transition metals (metals with par-

tially filled d shells) as a group can be ascertained from their percentage

d-bond character, as established by Pauling (Ref. 19). The frictional proper-

ties of metal-metal and metal-nonmetal contacts have been shown to be related

to this character (Ref. 20 to 23). The greater the percentage of d-bond char-

acter, the less active is the metal, and the lower is the adhesion and fric-

tion. Conversely, the more active the metal, the greater is the adhesion.

The coefficients of friction for various metals in contact with Ni-Zn fer-

rites are replotted with solid symbols in Fig. 7 as a function of the d-bond

cna.racter of the transition metal. Titanium, which is a chemically active

metal, exhibits a considerably higher coefficient of friction in contact with

ferrite than does rhodium, which is a metal of lesser activity.

Figure 7 also presents the coefficient of friction for various metals in

contact with the ferrltes, to which both metal and ferrite specimens were

exposed to 02 gas (^9.99 percent pure). The data reveal increase in adhe-

sion and the coefficients of friction for N1-Zn ferrite-to-metal interface.

10



The enhanced bond of the metal oxide to ferrite my be due to the formation of

complex oxides on estrbllshing contacts.

Figure 8 presents the coefficients of friction for various magnetic tapes

in contact with ferrltes as a function of particle loading in vacuum. For the

experiments in vacuum the specimens were placed in the vacuum chamber, and the

system was evacuated and baked out to achiove a pressure of 30 nPa (10 -1 0 torr).

The ferrite specimen was then ion-sputter cleaned. The data shown with solid

symbols in Fig. 8 presents the coefficients of friction for the tapes sliding

against sputter cleaned ferrite. Sliding friction experiments were also

conducted with ferrite specimens, which were first argon-ton sputter cleaned,

exposed to 1000 L oxygen, and then were brought into contact with magnetic

tapes in the system reevacuated to a pressure of 30 nPa (10 -10 torr). These

results are presented in Fig. 8 with open symbols.

The data of Fig. 8 reveal that the adsorption of oxygen on polymeric mag-

netic tape and on sputter cleaned ferrite surfaces increases adhesion and the

coefficients of friction for ferrite-to-magnetic tape interfaces. The oxygen

exposures did strengthen the ferrite-to-tape adhesion and increased friction.

The coefficient of friction is also strongly dependent on the particle load-

ing. The greater the magnetic particle concentration (particle loading), the

lower the coefficient of friction.

NONOXIOE CERAMICS

The high strength and excellent oxidation and creep resistance of -noxide

ceramics such as silicon carbide make them extremely important materials for

high-temperature mechanical and electronic applications in severe environ-

tents. Materials such as silicon carbide are used for example, in stable

high-temperature semiconductors, in gas turbine blades, in turbine ceramic

seals, and as an abrasive for grinding (Refs. 24 and 25).
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In grinding, as a result of the extremely small chip size and the high

wheel speed involved, the instantaneous temperatures and pressures at the tip

of a silicon carbide abrasive particle are extremely high (Ref. 26). The tem-

perature and pressure my reacn the melting point and the yield pressure of

the metal workpiece. In addition, the freshly formed surfaces of silicon car-

bide are highly reactive with metals. The fundamentals of the surface chemis-

try involved in adhesion, and tribological properties of silicon carbide are

not clearly understood.

Experimental work has been conducted at room temperature to gain an under-

standing of the surface of silicon carbide and its adhesion and friction prop-

erties (Refs. •27 and 28). These properties depend strongly on the surface

characteristics of silicon carbide. In turn the surface characteristics of

silicon carbide are strongly affected by temperature.- For example, an in-

crease in temperature in vacuum can cause graphitization of the carbon and

depletion (by evaporation) of the silicon. The adhesion and tribological

behavior of silicon carbide at high temperatures in vacuum is therefore impor-

tant. The knowledge gained from such studies can assist in achieving a better

understanding of the surfaces characteristics of silicon carbide when in solid

state contact with other materials.

Tribological properties involve the adhesion, friction and wear of the

silicon carbide and the metal transfer to the silicon carbide. Surfaces of

silicon carbide were heated to 1500' C in a vacuum at a pressure of 10 nPa by

resistance heating and then the surfaces were analyzed at roam temperature.

The surface chemistry of silicon carbide crystals was analyzed by X-ray Photo-

electron Spectroscopy (XPS) as well as Auger Electron Spectroscopy (AES).

AES analysis of silicon cartide preheated above 1200 1 C indicated that the

silicon AES peak had almost disappeared and was nearly undetectable by AES,

12



and the carbon peak was only of the graphite form at the surface. But XPS

analysis clearly indicated that evidence for silicon and carbide being present

as well as graphite on the silicon carbide surface preheated above 1200 1 C.

The XPS spectra of the silicon carbide surface was uneffected by preheating in

thf temperature range of from 1200 0 to 1500 0 C.

A depth profile into the surface layers for slemeents present in silicon

carbide surface preheated to 1500 0 C was obtained as a function of sputtering

time and is presented in Figure 9. The graphite peak decreases ra?idly in the

first 30 minutes of sputtering, and thereafter it gradually decreases with an

increase in the sputtering time to about 18 hr. After 18 hr the graphite peak

does -not change much with sputtering time. On the otherhand, the silicon and

carbide-carbon peaks increase gradually with increasing sputtering time to

20 hr.

Ellipsometeric measurements have been conducted with two different (0001)

faces of the silicon carbide crystals, oree which crr.sisted of silicon atoms

(0001) and the other which consisted of carbon atoms (0001) at temperatures

above 1200° C (Ref. 29). In one hour of heating at 1300" C the layer, which

consists of carbon (graphite), on the C-face grows to about 100 nm, whereas

the layer on the Si-face did not grow thicker than 10 nm even with longer

heating.

The silicon carbide {0001} surfaces used in this investigation consisted

of both silicon atoms and carbon atoms because etching silicon carbide surface

in molten salt 1NaF + 2KCO3 gives both a smooth surface for the Si-face and

a rough one for the C-face. The apparent thickness of the layer, which con-

sists of graphite at the surface and is produced by heating above 1200° C for

1 hr, is about 100 nm (1000 A), and it is equivalent to a depth of ,a layer

sputter etched for about 18 hr shown in Fig. 9.

13
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The graphitization of the outermost surficial layer of silicon carbide is

helieved to be as follows. The analysis depth with AES is of the order of

1 m or less-and an elemental concentration as low as 0.1 percent of a mono-

layer can be detected and identified. Therefore, the outermost surficial

layer, which consists of mostly graphite and very little silicon, on the sili-

con carbide surface is concluded to be of the order of 1 nm. This estiimation

is consistent with the proposition of Bommel, et al. (Ref. 30), that is the

collapse of the carbon of three successive silicon carbide layers is the most

probable mechanism for the initial stages of the graphitization of silicon

carbide basal planes.

Adhesion and sliding friction experiments were conducted with single-

crystal silicon carbide in contact with '-on a vacuum. Friction-force traces

resulting from such sliding were generally characterized by strong adhesion

and a stick-slip behavior. All the coefficients of friction reported in

Fig. 10 are static values reflecting adhesion forces at the interface. The

coefficent of static friction is defined as: u s • F1 /W, where F1 is the

friction force at which the first break, in adhesion occurs, that is, first

motion 1s observed in the friction-force trace and W is the normal load.

The coefficient of friction of the silicon carbide 10001 surfaces in

contact with iron as a function of sliding temperatures is indicated in the

graph of Fig. 10. The iron rider was sputter cleaned with argon ions. The

silicon carbide was in the as-received state after it had been baked out in

the vacuum system. The specimen was then heated to the sliding temperature

before the friction experiment was Initiated. The coefficient of friction

increased slightly with increasing temperature at temperatures below 400° C.

Above 400° C, the coefficient of friction decreased with an increase in

14
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temperature in the range of 400 • to 6000 C. The general decrease in friction

at these temperatures is due to the gradual removal of - the contamin-nts of

carbon and oxygen from the surface. This is in contrast to metals where

removal of surface films increases friction. The coefficient of friction

increased wit', increasing temperature in the range of WOO to 8000 C. The

increase in friction at the temperature can be associated with increased adhe-

sion and increased plastic flow in the area of contact. Above 800• C the

coefficient of friction decreases rapidly with an increase of temperature.

The rapid decrease in friction above 800 0 C correlated with the graphitization

of the silicon carbide surface.

Inspection of the single-crystal silicon carbide surface after sliding

contact with iron revealed adhesion and transfer of iron to silicon carbide.

Fig. 11 shows scanning electron micrographs at beginning the of wear tracks on

the as-received and treated surfaces of silicon carbide generated by a single

pass of the iron at sliding temperatures of room, 800° and 1200 0 C. It is

obvious from Fig. 11 the copious amount of iron adhered and transferred to the

silicon carbide. The increase in friction at these higher temperatures can be

associated with increased adhesion and increased plastic flow in the area of

contact. Above 8000 C the coefficient of friction decreases rapidly with an

increase of temperature. The rapid decrease in friction above 800° C corre-

lated with the graphitization of the silicon carbide surface.

Iron undergoes the crystal transformation from BCC ti FCC at 912° C but

this does not account for observed friction behavior. Similiar experiments

with rhodium metal, where a transformation does not occur gave similiar

friction.

Inspection of the single-crystal silicon carbide surface after sliding

contact with iron revealed adhesion and transfer of iron to silicon carbide.

15



Figure 11 shows scanning electron micrographs at beginning of wear tracks on

the as-received and treated surfaces of silicon carbide generated by a single

pass of the iron at sliding temperatures of room, 800 0 and 1200° C. It is

obvious from Fig. 11 that the copious amount of iron adhered and transferred

`o the silicon carbide. As may be seen in Fig. 1(a), sliding at 800° C pro-

duces more transfer than does sliding a, room temperature. In general, a very

thin transfer film and very small particles are seen in the contact area. The

higher the sliding temperature, the more adhesive transfer produced. Above

800° C, there was very little evidence for a smooth and continuous adhered

transfer film on the wear track, as typically seen in Fig. 11(c). There was

rather transfer that was rough, and discontinuous in nature. The appearance

of iron transfer may be related to the graphite layer, of the order of to

1 nm, on the silicon carbide surface.

The adhesion and sliding of ir6n ua a silicon carbide surface at elevated

temperatures results in formation of cracks and fracture pits in the silicon

carbide surface. The fracture wear occurs very locally and in very small

areas in the sliding contact region.

Figure 12 presents scanning electron micrographs of the wear track on the

silicon carbide surface; where the wear track is generated by a single-pass

sliding of the iron rider. The wear track has in it microfracture pits and

debr is resulting from adhesion. Two kinds of fracture pits are generally

clearly observed in the wear track: (1) pit with a spherical particle, and

(2) pit with a multiangular shaped wear debris particles having crystallogra-

phically oriented sharp edges and which are nearly all of a platelet hexagonal

shape.

Such multiangular wear debris are generated by surface cracking along

1161-0 1 or j1120} and the sub-surface cracking long (0001) planes, which

16



are parallel to the sliding interface. It is understandable that the fractur-

ing in the single crystal of silicon carbide is characterized by crystallogra-

phic orientation. However, the appearance of fracture pits with a spherical

shape is an interesting observation.

Various fracture pits with spherical particles were observed in the very

local area of wear tracks. It was found in Ref. 22 that spherical wear parti-

cles of silicon carbide are observed as a result of sliding friction experi-

ments with iron binary alloys. A mechanism for the generation of fracture pit

with a spherical particle seems to be very similar to that of spherical wear

particles described in Ref. 22.

Two possible mechanisms for the generation and formation of the spherical

wear debris particles were described: (1) a penny-shaped crack along the cir-

cular stress trajectories and (2) an attrition, of ::ear pa;ticias. However,

the second mechanism is not applied to the fracture pit with the spherical

particles. The possible mechanism is the first one, that is, the penny-shaped

cracking. The details of the penny-shaped fracture mechanism was described in

Ref. 21. Briefly stated, the stress trajectories under the point contact

loading at the interface is similar to the HertMan field (Ref. 22). The

stress concentration acts in very small contact region and produces a small

zone of inelastic deformation. This deformation will induce the generation

and propagation of cracks. The cracks will suddenly initiate at locations of.

pre-existing flaw, almost certainly at the surface just outside the stress

concentrated contact area where the contours of greatest principal tensile

stress exist during sliding. A cracking mechanism is therefore the sudden

development of a penny-shaped crack along the circular stress trajectories

produce,'.

Sliding of iron on a silicon carbide surface results in both the transfer

of iron to silicon carbide and very occasionally a transfer of silicon carbide

17
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wear debris on the iron rider. Above 400 0 C, graphite produced on the silicon

carbide surface transfers to the iron pin during sliding contacts.

SUMMARY REMARKS

The adhesion behavior of ceramics in contact with themselves, metals and

polymers is strongly dependent upon the chemistry of the ceramic surface and

that of the solids with which contact is made. With clean ceramic surfaces in

contact crystallographic orientation influences adhesion as determined by

friction force measurements. Friction force measurements are especially

effective in gaining quantitative information on interfacial bond strengths.

Ceramics, just as has been observed with metals, exhibit the smallest

adhesive bond forces and accordingly the lowest friction for the high atomic

density low surface energy crystallographic planes. This has been observed

with oxide ceramics such as aluminum oxide and nonoxide ceramics such as sili-

con carbide.

With ceramics in contact with polymeric materials such as magnetic tapes

environment is extremely important. For example, with the ferrites contacting

polymeric tapes adsorption of nitrogen on the surface will appreciably reduce

adhesion of the polymeric structure to the ferrite ceramic while the adsorp-

tion of oxygen will appreciably increase adhesion and measured friction force!:.

When metals are in contact with ferrites (Ni-Zn and Mn-Zn ferrites) the

adhesion and friction behavior can be related to the d valence bond charac-

ter of the metals. The greater tha percent bond saturation, the lower is the

adhesion and friction for the metals in contact with the ferrites. Similarly,

the adhesion and friction can be related to the free energy of formation of

the lowest metal oxide. The less the energy, the lower the adhesive and fric-

tional bond forces. Again, as with polymer, exposure to oxygen results in an

increase in adhesive bond strength. It appears that oxygen acts, as it were,

as an adhesive for these contacts.

18
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For metals contacting aluminum oxide again the chemical activity of the

metal is important to adhesive behavior. With noble metals silver and gold

interfacial adhesive bonds were sufficiently weak so as not to result on sepa-

ration of damage to the surfaces of the contacting solids. With other metals

that form stable oxides the interfacial adhesive bonds were sufficiently

strong so as to result in fracture of single crystal sapphire when cleavage

planes were parallel to the contact interface. Metals undergo shear when the

ceramic is polycrystalline aluminum oxide and attempts are made to, by tangen-

tial motion to fracture the adhered interface. Adsorbates reduce signifi-

cantly adhesion and friction forces.

With the nonoxide ceramic, silicon carbide, heating to temperatures above

800• C results in reconstruction of the surface with the formation or graph-

ite. The graphite reduces adhesion. Just as with oxide ceramics metals whose

surfaces-are chemically active bond very strongly to the silicon carbide. The

interfacial bond strength is generally stronger than the cohesive bonds in the

metal and metal will transfer to the silicon carbide. Under certain condi-

tions, however, fracture will occur in the silicon carbide on separation. It

can follow crystallography yielding hexagonal shaped fracture pits on the

basal plane of alpha silicon carbide or completely ignore orientation and pro-

duce spherically shaped pits completely independent of crystal structure.
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TABLE I. - THE INFLUENCE OF

CRYSTALLOGRAPHIC DIRECTION

ON THE COEFFICIENT OF

FRICTION FOR SAPHIRE

SLIDING ON SAPPHIRE

IN VACUUM (30 nPa)

[Load, 10 N; sliding velocity,
0.013 cm/sec.]

Plane Direction Coefficient of
friction

Prismatic [1120] 0.93
(1010) [0001] 1.00

Basal [1120] .50

(0001) [1010] .96

TABLE II. - BULK AND SURFACE SHEAR

STRENGTH DATA FOR SAPPHIRE 

Source Shear strenggth

1 x106 NP
Bulk shear strength 34.0

Surface shear strength
from friction

(0001)	 [1120] 680.0

(1010)	 [0001] 1020.0

a Surface shear strengths calculated
from friction values.
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