
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19850002370 2020-03-20T21:38:59+00:00Z

«	 M

(MASA-CH-17524t)) FUNCTION ALGCBITHMS FOR	 N65-1067a
dke SCIENTIFIC SUBHGUTIUES, VOLUME 1
(600dyear AeLoSpaCe Corp.) 	 165 p
11L AUd/Mf AU1	 CSCL 09B	 Uuc:laS

G3/u1 23277

1	 I

1 °.1

olop _EAvy

î \ 	 J4

T

CODE [DENT NO. 25500

A
a w

GOODYEAR AEROSPACE
CORPORATION

AKRON, OHIO 44315

FUNCTION ALGORITHMS

FOR MPP

SCIENTIFIC SUBROUTINES

VOL. I

GER-1 7221	 FEBRUARY, 1984

Prepared by:

,,- ̂ .^Gouch

a

=0

fV

i

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES
Table of Contents

Chapter
	

Page

11-0	 General Summary1-1
1.1	 Requirements Summary1-1
1.2	 Results Summary1-z
1.2.1	 Timing Summary..................1 -3
1.2.2	 Summary of Error Conditions1-5
1.2.3	 Accuracy Summary ...1 -6

2.0	 Array Algorithms2-1
2.1	 General Description of Array Algorithms2-1
2091	 Natural Logarithm Array Subroutine Description2-1
2.1.2	 Exponential Array Subroutine Description2-10
2.1.3	 Square Root Array Subroutine Description2-18
2.1.4	 Sine and Cosine Array Subroutine Description2-22
2.1.5	 Arctangent Array Subroutine Description2-31
2.2	 HOL Interface Requirements for Array Subroutines....9.....2-40

3 00	 Sequential MCU Algorithms3-1
3.1	 General Description of Polynomial Method3-1
3.2	 Description of MCU Algorithms•3-3
3.20	 MCU Square Root Subroutine..,....3-4
3.292	 MCU Sine Subroutine3-11
3.2.3	 MCU Cosine Subroutine3-35
3.294	 MCU Aretangent Subroutine3-41
3.2.5	 MCU Natural Logarithm Subroutine.........9.9.9.3-67
3.2.6	 MCU Exponential Subroutine3-74
3.2.7	 MCU Common Subroutine : POLY323-84
3.2.8	 MCU Common Subroutine : MULT323-87
3.2.9	 MCU Common Subroutine : NORMV.. .,..,...,.3-91
3.3	 MCU Sequential Algorithms HOL Interfaces3-94

4.0	 Usage of the Scientific Subroutines4-1 	 j
4.1	 MCU Applications4-2 	 !!
492	 System Generation and Maintenance.,.,..4-2 	 i
4.3	 MCU Macros4-7 	 "
4.3.1	 LNA - Natural Logarithm of an Array4-8
4.3.2	 EXPA - Exponential of an Array4-9
4,393	 SQRTA - Square Root of an Array4-10
4,3.4	 SINA,COSA - Sine or-Cosine of an Array4-11
4.395	 SINCOS - Sine and Cosine of an Array4 -12
4.3.6	 ARCTNA - Aretangent of an Array4-13 	 i

Appendix

Generation of Function Interval DOL Polynomial Coefficients

iit

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

1.0 GENERAL, SUMMARY

This final report represents design documentation and user documentation for
Function Algorithms for the Massively Parallel Processor (MPP) developed by
Goodyear Aerospace Corporation (GAC) under NASA contract NAS5-27610.

The contract specifies development of MPP assembler instructions to perform
the following functions:

Natural Logarithm
Exponential (e to the x power)
Square Root
Sine
Cosine
Arctangent

To fulfill the requirements of the contract, parallel array and scalar
implementations for these functions have been developed on the PDP11/34
Program Development and Management Unit (PDMU) that is resident at the MPP
testbed installation located at the NASA Goddard facility,

1.1 REQUIREMENTS SUMMARY

Each function was specified to perform on parallel array data located in the
MPP Array Unit, and serial data located in the MPP Main Control Unit.
Function Arguments and results were specified as real VAX-standard 32-bit
floating-point format.

Arguments to the sine and cosine functions were required to be in radians.
Results of the arctangent functions were to range between -pi/2 and +pi/2.

Specifications for error conditions that were required of each function are:

natural logarithm -

exponential	 -

sine	 -
cosine	 -
arctangent
square root

overflow on arguments outside domain of
implementation,
overflow on arguments outside domain of
implementation,
nonev
none.
none*
error on negative input arguments.

Errors for the array functions were to be indicated by a logical one placed in
an error bitplane. Errors for the MCU functions were to be indicated by
setting error flag bits.

3

- 1-1 -

--	 t_

f

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Errors for the array functions were to be indicated by a logical one
placed in an error bitplane. Errors for the MCU functions were to be
indicated by setting error flag bits.

Accuracy for each function was specified as:

natural logarithm - results accurate to full range of
floating point format.

exponential	 - results accurate to full range of
floating point format.

sine	 - 6 digit precision to the right of
the decimal point.

cosine	 - 6 digit precision to the right of
the decimal point.

arctangent	 - 6 digit precision to the right of
the decimal point, and one integer,,,`
digit to the left of the decimal point.'

square root	 - results accurate to full range of	
s_

floating point format.

The contract deliverable items are:

- a Final Project Report containing:

algorithm descriptions for each function,
error conditions and their effects,
how each function may be accessed via a Higher Order Language (HOL
measured execution times,
MPP implementation descriptions.

- a VAX computer compatible tape containing all source code required
to generate the object code for each function to be executed on
the MPP.

- 1-2 -
i

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
OER-17221

162 RESULTS SUMMARY

Each function has been developed for parallel array data, and serial Main
Control Unit (MCU) data of the standard VAX 32-bit floating-point format.
The array functions were computed iteratively for the LNA, EXPA, SINA,
COSA, and SINCOS subroutines. Therefore, these functions require an MCU
subroutine portion as well as one or more PECU portions. The array
algorithms are discussed in Chapter 2.

All of the serial MCU functions were performed using Discrete Orthonormal
LeGendre Polynomial (DOW expansion. The MCU algorithms are discussed in
Chapter 3.

Chapter 4 describes the filename conventions, library names and user
information to incorporate these functions into MPP applications .

1.2.1 TIMING SUMMARY

Although the general theory of each algorithm would apply to other
formats, the implementation of the algorithms has been optimized for the
VAX format. In addition, optimization of PECU code was performed to
execute each array function in the fewest possible array cycles. The
execution times for each function are summarized in Table 1.0 .

Note the addition of SINCOS which computes both the Sine and Cosine
functions in the array. This function was made available with minimal
effort using the required Sine and Cosine functions, and provides both
results at a rate near the execution times of the individual subroutines
for Sine and Cosine.

3
t

-1-3-

MPP SCIENTIFIC SUBROUTINES

i

f i
/f

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 190 MPP Scientific Function Execution Times

ARRAY FUNCTION	 EXECUTION TIME (SEC x 1000-6)

LNA 557.9
EXPA 416.3
SQRTA 74.0
SINA 333.7
COSA 333.7
SINCOS 347.0
ATANA 391.7

MCU FUNCTION	 EXECUTION TIME (SEC x 1000-6)-------------	 -----------------------------
LNM	 62.7
EXPM	 65.5
SQRTM	 55.7
SINM	 42.7
COSM	 47.8
ATANM	 54.5

-1-4-

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

1.292 SUMMARRY OF ERROR CONDITIONS

Errors in array functions are indicated as bits 'set' within an error
bitplane. The error bitplane is designated by a function argument.
Errors in the MCU subroutines are indicated as bits 'set' within a
specific MCU register.

The error conditions are decribed in detail in the algorithm description
of each subroutine (See Table 3.0) and are summarized as follows:

Natural Logarithm - Errors occur for negative input values.

Exponential	 - Errors occur for input values with exponents
greater than 2007 and:

Positive Input - Overflow indicated
(output set to maximum VAX number).

Negative Input - Underflow indicated
(output set to VAX 10').

(For array inputs less than 2 00-31, the output
is clipped to VAX 1 0' and a status bit is set).

Square Root	 - Errors occur for negative input values.

Sine,Cosine	 - Errors occur for serial inputs greater than 20024.
(See Section 3.2.2).

Arctangent	 - None

- 1-5 -

• A

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

;a

1.2.3 ACCURACY SUMMARY

The array algorithms described in this report use iterative technique for
computing each function and are accurate over the full range of VAX
floating-point data.

Detailed theoretical error analysis for the MCU serial algorithms is
included in Appendix A,

- 1-6 -

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION

GER-17221

2.0 ARRAY ALGORITHMS

Section 2.0 describes the array scientific subroutines. See Section 3.0
for the description of the MCU subroutines.

2.1 GENERAL DESCRIPTION OF ALGORITHMS

2.1.1	 NATURAL LOGARITHM SUBROUTINE

The MPP array field function, ALOGA[X,Y,O,T], uses the input array
field designated by the dummy variable X to create the output

array field designated by the dummy variable, Y. At the row i,
column j (i=0,...,127; j=0,...,127) location of the X field,
the function develops the natural log corresponding to the value

of the element of X, namely, x(i,j), and places the result,
y(i,j), in the same row and column location of the Y field. In a
FORTRAN sense, the field function creates

y(i,j)=ALOG(x(i,j) 	 where

i=0,...,127 and
j=0,...,127.

On exit from the routine, the 1 bit slice field, 0,
provides error status information. The bit slice field, 0,
is set wherever the input, X, was negative.

Where an X element is zero, Y will be loaded with

the most negative VAX number possible, namely, Ymin where
Ymin=-(1-(2**(-24)))*(2**(+127)).

Where 0 is clear the output is in range; all non-zero,
non-negative, X element values produce in-range Y element values.

The 56 bit temporary field, T=(t0, t1, t2,...., t55) specifies
the array memory to be used for scratch purposes during function
execution.

2-1

MPP SCIENTIFIC SUBROUTINES

FUNCTION MASKING: Unmasked

GOODYEAR AEROSPACE
CORPOhATION
GER-17221

FIELD OVERLAP: The X. Y. O. and T fields are not permitted to be overlapped.

IWPUT VARIABLE FIELD X:
o Number of bit slices: 32
o X dement number typa: REAL

Each X elem~nt is a VAXll/780 single prec1sion floating point number
Its characteristics follow:

normalized
signed magnitude
exponent biased up by 128
base is 2
bit layout (from left to right):

1 sign bit.
S biased exponent bits, and

24 mantissa bits (including the suppressed
most significant mantissa bit).

o X units: Dimensionless
o Bit slice notatiun for X:

Arbitrary bit slice designator:
xO is the bit slice that holds the leftmost bits of the elements

of X.
x31 is the bit slice that holds the rightmost bits of the elements

of X.
X=(xO. xl, x2, x3, ••• , x31). i.e., X comprises the concatenation of

the 32 individual bit ~lices.
- Notation for sign bit slice: SX=(sxO)=(xO)
- Biased exponent bit slice designator:

EX=(exO, exl, ••• , ex7)=(xl, x2, ••• , x8)
The expon-.nts of the elements of X are given by EX-128; the base
for all elements is 2.
When X=O, EX=O.

- Mantissa bit slice designator:
MX=(mxO, mxl, •••• mx7)=(u, x9, xl0, •••• x31) where

u is impliCit. At one element of X.

u=l when at the element location, at least one b:.t of X is
non-zero and

u=O when at the element location, all bits of X are zero.

When the most significant bit (MSB) slice of the mantissa field.
namely, mxO. is stored into MPP array memory (i.e., when the
implicit MSB slice, u. is stored), the x8 bit slice is used for
storage. Prior to using the ex7 bit slice to store tMe implicit
u slice, the contents of the ex7 bit slice are stored into the
to bit slice.

- 2-2 -

J

HPP SCIENTIFIC SUBROUTINES

OUTPUT VARIABLE FIELD Y:
o Number of bit slices: 32
o Y element n:Jmber type: REAL

GOODYEAR AEROSPACE
CORPORATION
GEH-17221

Each Y element is a VAX11/780 single precision floating point number
Its characteristics follow:

normalized
signed magnitude
exponent biased up by 128
base is 2
bit layout (from left to right):

1 :sign bit.
a biased exponent bits. and

24 mantissa bits (including the suppressed
most significant mantissa bit).

o Y units: Dimensionless
o Bit slice notation for Y:

- Arbitrary bit slice designator:
yO is the bit slice that holds the leftmost bits of the elements

of Y.
y31 is the bit slice that hclds the rightmost bits of the elements

of Y.
Y=(yO. y1. y2. y3 ••••• y31). i.e •• Y comprises the concatenation of

the 32 individual bit slices.
- Notation for sign bit slice; SY=(syO)=(yO)
- Biased exponent bit slice designator:

EY=(eyO. ey1 ••••• ey7)=(y1. y2 ••••• y8)
The exponents of the elements of Yare given by EY-128; the base
for all elements is 2.
When Y=O. EY=O.

- Mantissa bit slice designator:
MY=(myO. my1 ••••• my7):(u. y9. y10 ••••• Y31) where

u is implicit. At one element of Y.

u=1 when at the element location. at least one bit of Y is
non-zero and

u=O when at the element location. all bits of Yare zero.

When the most significant bit (MSB) :slice of the mantissa field.
namely, myO, is stored into MPP array memory (i.e •• when the
implicit MSB slice, u, is stored). the ya bit slice is used for
storage. Prior to using the ey7 bit slice to store the implicit
u slice. the contents of the ey7 bit slice are stored into the
to bit slice.

OUT-OF-RANGE Y EL£~ENTS:

- 2-3 -
i ,

HPP SCIENTIFIC SUdROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-172?1

The range of y for the ALOG function is minus infinity to plus infinity.
(As will be seen, y values in only a very small f~action of the y range
are generated.) The domain of x corresponding to the y range extends
from x:O through x:+infinity.
Nega~ive X element values imply a complex Y element output. 0 is loaded
with (1,1) ir. suoh cases. Where an X element value 1s zero. a Y element
value of minus infinity is implied; in such case. the 0 field 1s loaded
with (0,1) and the Y element is loaded with

Ymin=-(1-(2··(-24»)·(2··(+127»

The next X element larger than zero that can be expressed
using the specified number form is

Xsmall:(1+(2··(-23»)·(2··(-129»

it causes the smallest possible signeJ Y element value. Ysmall. that
is derived from an X element value. It is given by

Ysmall=LN(Xsmall)=-89.4159861839

The very 191 'gest X element value. Xlarge,- causes the largest possiblf:
signed Y element. Specifically,

Ylarge=LN(Xlarge)=+88.0296918823 wh~re
Xlarge=(1-(2··(-24»)·(2··(+127»

For all X element values in the dom.in extending from Xsmall through
Xlargt, 0 will be loaded with O.

ALGORITHM DEVELOPMENT:
For each element of X (denoted x). y=ALOG(x) must be computed for all
in-rang~ x values. A~l positive x values are considered in-range;
however, the case of x=O must be treated specially.
The issue of computing y will be addressed first. An in-range x will be
assumed. Then the issue of determining whether or not x is in-range and
the special case of x=O will be addressed.

The starting expression is

1) y=LN(x) where LH(x) is the natural log of x.

The inverse form of 1) is

2) x=e··y where e=2.718281828

How e can be expressed as

- 2-4 -

I

,,	 MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

— 2-5 —

OF FOOR

;. a

3) a=2**a where a=1/LN(2)=1.4426950407

Using 3) in 2),

4) x=2* *(a*y)

Now, taking the logarithm of x, base 2 (i.e., LOG2(x)), of 4),

5) y=(LN(2))*LOG2(x)

The independent input variable x is a floating point number and so
is expressed as

6) x=S*(f*(2**N)) where

f is a fraction having a value less than 1 but greater than
or equal to 0.5 that has the number form (0.0.24),

N is an integer having a value less than 8 but greater than
or equal to —128 that has the number form (1.7.0), and

S is +1 if x is positive and is —1 if x is negative.

But x is positive only (S=+1), and so

7) x=(f*(2**N))

Using 7) in 5),

8) y=(LN(2))*LOG2(f*(2**N)) which reduces to

9) y=(LN(2))*(N-1+LOG2(2*f))

Let

10) g=2*f where

gMIN=1 and
gMAX=2*(1—(2**(-24)))

Using 10) in 9),

11) y=(LN(2))*(N-1+LOG2(g)) or,

alternatively, as

12) y=((LN(2))*N)+zz	 where

,

ORIGINAL PAGE 13

OF POOR QUALITY

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

zz=((LN(2))*LOG2(g))—LN(2).

The primary task needed to be performed to compute y is that of
generating LOG2(g). Let

13) z=LOG2(g) where

zMIN=O and
zMAX=1+LOG2(1—(2**(-24))) (if no guard bits are used).

But g can be expressed as the product

14) g=a0*a1*a2*a3* *aM* *a24*a25*a26*a27*.... where,

in BINARY,

a0=1,10.
a1=1, 1.1
a2_1, 1.01
a3=1, 1.001

aM=1; 1+(2**(—M))	 (for all M)

a24=1, 1.000000000000000000000001
a25=1, 1.0000000000000000000000001
a26=1, 1.00000000000000000000000001
a27=1, 1.000000000000000000000000001

Each "a" value can assume the value of 1 or the non—one value (to the
right of the comma in the list above). Either "a" value can be written
as 2 to some power. In particular,

15) aM=2**uM .

As a result, 14) can be written as

16) g=(2**u0)*(2**u1)*(2**u2)* ... *(2**uM)* ... *(2**u24)*(2**u25)*(2**u26)*...

or as

17) g=2**(u0+u1+u2+u3 uM+....+u24+u25+u26+u27+....)

— 2-6 —

+,

MPP SCIENTIFIC SUBROUTINES

	

	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Substituting 17) into 13) shows that

18) z=u0+u1+u2+u3+.. ..+uM u24+u25+u26+u27+....

When aM=1, uM =O. The list of non-zero "u" values (corresponding to "a"
values not equal to 1) is provided in Table 2.1.1 .

An iterative approach is used to find z. Assume that iteration (M-1)
has just taken place; an (M-1) iteration "g" value, g[M-1], as well as
an (M-1) iteration "z" value, z[M-17, have just been developed.
To accomplish the next iteration M values, g[M] and z[M], the following
expressions are used:

19) g[M]=g[M-1]*aM	 where

g[M1=g[M-11+SHFT(g[M-11,-M) and TEST=1 when aM*g[M-1]<g or

	

when aM*g[M-1]=g	 else,
g[M]=g[M-1]	 and TEST=O when aM*g[M-1]>g

Al so,

20) z[M]=z[M-1]+uM	 where

uM=LN(aM)/LN(2)	 when TEST=1	 else,
uM=O	 when TEST=O

The iterations begin at M=1. For the 1st iteration,

g[01 =1 	and	 z[0?=0 .

Using the expressions 19) and 20), z can be determined to any level
of precision. Using the z determined in 13) and then in 11),
y=ALOG(x) is determined.

A slightly more efficient way to compute y results by multiplying the
uM values with LN(2) prior to performing the iteration operations.
Substituting z from 13) into the auxiliary expression of 12) yields

21) zz=LN(2)*z-LN(2) .

Using 18) in 21) yields,

22) zz=(LN(2))*(u0+u1+u2+u3+....+uM u24+u25+u26+u27+....)-LN(2)

Let
23) vM=(LN(2))*(uM) for all M.	 Using 23) in 22),

— 2-7—

— 2-8 —

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

24) zz=(v0+vl+v2+v3+....+vM v24+v25+v26+v27+....)—LN(2)

(See Table 2.1.1 for vM values.)

:i As for z, an iterative approach can be used to find zz. Assume that
iteration (M-1) has just taken place; an (M-1) iteration "g" value,
g[M-17, as well as an (M-1) iteration "zz" value, zz[M-17, have just
been developed. To accomplish the next iteration M values, g[M] and
zz[M], the following expressions are used:

25) g[M1=g[M-11*aM	 where

g[M7=g[M-1]+SHFT(g[M-11,—M) and TEST=1 when aM*g[M-1]<g or

	

when aM*g[M-1]=g	 else,
g[M]=g[M-1]	 and TEST=O when aM*g[M-1]>g

Also,

26) zz[M7=zz[M-11+vM 	 where

vM=LN(aM)	 when TEST=1
else; vM=O	 when TEST=O

The iterations begin at M=1. For the 1st iteration,

g[0]=1	 and
zz[O]=—LN(2).

Using the zz[M] of 26) for zz in 12) permits y to be determined using an
economical common times a narrow 8 bit field multiply.

OF F ov.

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION

GER-17221

Table 2.1.1 - Values Of uM And vM Corresponding To Different aM Values

M	 aM=1+(.5 *OM) 	uM=LOG2(aM)	 vM=LN(2)euM

0 2 .99999999999 .693147180644
1 1.5 .584962500792 .405465108211
2 1.25 .321928094818 .223143551296
3 1.125 .169925001262 .117783035547
4 1.0625 .087462841164 .060624621765
5 1.03125 .044394119491 .030771658763
6 1.015625 .022367812829 .0155041864
7 1.0078125 .011227255583 .00778214055402
8 1.00390625 .00562454912855 .00389864037089

9 1.001953125 .00281501548714 .0019512200484
10 1.0009765625 .00140819422001 .00097608585341
11 1.0004882812 .00070426868758 .00048816185522
12 1.0002441406 .00035217719666 .00024411063096
13 1.0001220703 .00017609939459 .00012206279888
14 1.0000610351 .0000880523548428 .000061033241509
15 1.0000305175 .000044026841807 .0000305170812715
16 1.0000152587 .0000220134209034 .0000132585406357
17 1.0000076293 .0000110068765481 .0000076293854471
18 1.0000038146 .0000055034382739 .0000038146927235
19 1.0000019073 .0000027515530405 .0000019072312325
20 1.0000009536 .0000013756104239 9.53500487011E-7
21 1.0000004768 6.87639115553E-7 4.76635114251E-7
22 1.0000002384 3.44151750584E-7 2.38547815634E-7
23 1.0000001192 1.72075875292E-7 1.19273907817E-7
24 1.0000000596 8.6037937645E-8 5.9636953908E-8
25 1.0000000298 4.2852872417E-8 2.9703347699E-8
26 1.0000000149 2.1592532613E-8 1.4966803104E-8

27 1.0000000074 1.0630169902E-8 7.3682722976E-9
28 1.0000000037 4.98289214169E-9 3.4538776395E-9
29 1.0000000018 2.32534966612E-9 1.6118095651E-9
30 1.0000000009 1.32877123778E-9 9.210340372E-10
31 1.0000000004 6.6438561889E-10 4.605170186E-10
32 1.0000000002 0 0

- 2-9 -

+A

i

E

-1

ice_--11111 Wo _	

s »`

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

2.1.2 EXPONENTIAL ARRAY SUBROUTINE

DESCRIPTION: The MPP array field function, EXPA(X,Y,O,T), uses the input array
field designated by the dummy variable X to create the output
array field designated by the dummy variable, Y. At the row i,
column j (i=0,...,127; j=0,...,127) location of the X field,
the function exponentiates the value of the element of X,
namely, x(i,j), and places the result, y(i,j), in the same row
and column location of the Y field. In a FORTRAN sense, the
field function creates

y(i,j)=EXP(x(i,j))	 where

i=0,...,127 and
j=09...,127.

On exit from the routine, the field, 0=(00, 01 02), provides
out-of-range status information as follows:

oO - set where the output Y was declared equal to VAX '1'
because the input X was less than 2**-31, or nearly zero. 	 ;a +

01 - set where the output was too small to be represented in VAX	 =k

format because the input X was less than -2•*7;
the output Y will be cleared to all 0's for this case. 	 n,

o2 - set where overflow has occurred because the input X was
greater than 2*"7; the maximun VAX number will be
inserted in Y.

The 128 bit temporary field, T=(t0, t1, t2,...., t127), specifies
the array memory to be used for scratch purposes during function
execution.

FUNCTION MASKING: Unmasked

FIELD OVERLAP: The X, Y, 0, and T fields are not permitted to be overlapped.

INPUT VARIABLE FIELD X:
• Number of bit slices: 32
• X element number type: REAL

Each X element is a VAX11/780 single precision floating point number
Its characteristics follow:

normalized
signed magnitude

2-10 -

NTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

exponent biased up by 128
base is 2
bit layout (from left to right):

1 sign bit,
8 biased exponent bits, and

24 mantissa bits (including the suppressed
most significant mantissa bit).

snits: Dimensionless
V LiV slice notation for X:

Arbitrary bit slice designator:
x0 is the bit slice that holds the leftmost bits of the elements

of X.
x31 is the bit slice that holds the rightmost bits of the elements

of X.
X=(x0, x1, x2, x3,..., x31), i.e., X comprises the concatenation of

the 32 individual bit slices.
Notation for sign bit slice: SX=(sxO)=(x0)
Biased exponent bit slice designator:

EX=(exO, ex1,..., ex7)=(x1, x2,..., x8)
The exponents of the elements of X are given by EX-128; the base
for all elements is 2.
When X=O, EX=O.

— Mantissa bit slice designator:
MX=(mxO, mx1,..., mx7)=(u, x9, x10,..., x31) where

U is implicit. At one element of X,

u=1 when at the element location, at least one bit of X is
non—zero and

u=0 when at the element location, all bits of X are zero.

When the most significant bit (MSB) slice of the mantissa field,
namely, mxO, is stored into MPP array memory (i.e., when the
implicit MSB slice, u, is stored), the x8 bit slice is used for
storage. Prior to using the ex7 bit slice to store the implicit
u slice, the contents of the ex7 bit slice are stored into the
tO bit slice.

OUTPUT VARIABLE FIELD Y:
o Number of bit slices: 32
o Y element number type: REAL

Each Y element is a VAX11/780 single precision floating point number
Its characteristics follow:

normalized
signed magnitude
exponent biased up by 128
base is 2
bit layout (from left to right):

— 2-11 —	 f

.,I

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

1 sign bit,
8 bia36d exponent bits, and

24 mantissa bits (including the suppressed
most significant mantissa bit).

o Y units: Dimensionless
o Bit slice notation for Y:

— Arbitrary bit slice designator:
y0 is the bit slice that holds the leftmost bits of the elements

of Y.
Y31 is the bit slice that holds the rightmost bits of the elements

of Y.
Y=(y0, y1, y2, y3,..., Y3 1), i.e., Y comprises the concatenation of

the 32 individual bit slices.
— Notation for sign bit slice: SY= (3y0)=(y0)
— Biased exponent bit slice designator:

EY=(ey0, ey1,..., ey7)=(y1, y2,..., Y8)
The exponents of the elements of Y are given by EY-128; the base
for all elements is 2.
When Y=O, EY=O.

— Mantissa bit slice designator:
MY=(my0, my1,..., my7)=(u, Y9, Y10,..., Y31) where

U is implicit. At one element of Y,

u=1 when at the element location, at least one bit of Y is
non—zero and

u=0 when at the element location, all bits of Y are zero.

When the most significant bit (MSB) slice of the mantissa field,
namely, my0, is stored into MPP array memory (i.e., when the
implicit MSB slice, u, is stored), the y8 bit slice is used for
storage. Prior to using the ey7 bit slice to store the implicit
u slice, the contents of the ey7 bit slice are stored into the
t0 bit slice.

OUT—OF—RANGE Y ELEMENTS:
Assuming real values for the X elements the complete range of y for the
EXPA function is 0 through plus infinity. Only a countable number of
X and Y element can be represented by the specified floating point numbers.
In particular, the smallest magnitude non—zero Y element value that can be
represented using the VAX floating point form will be designated Ysmall;
the largest Y element value that can be represented using the VAX floating
point form will be designated Ylarge. Ysmall and Ylarge are given by

Y3mall=(1+(2**(-23)))*(2**(-129)) and
Ylarge=(1—(2**(-24)))*(2**(+127)) ,respectively.

Y element values that lie between 0 and Ysmall must be described as

—2-12-

-	 -	 -	 -- — -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

0 or Ysmall. It is reasonable to assert that a Y element with a value
that lies in the upper half of the 0 to Ysmall interval, i.e., between
Ymin=(1+(2**(-24)))*(2**(-129)) and Ysmall will be assigned the value
Ysmall. A Y element value smaller than Ymin (in the lower half of the
0 to Ysmall interval) will be set to 0 and the o1 bit slice will be
set (i,e., 0=(0,1)). The X element value corresponding to Ymin is

Xmin=LN(Ymin)=-89.4159862435.

Y element values that lie above Ylarge but are smaller than the value
Ymax=(1-=(2**(-25)))*(2**(+127)) will be assigned the value Ylarge.
Where Y element values lie above Ymax, the overflow out—of—range bit
will be set in the o0 bit slice (i.e., 0=(1,0)). The X element value
corresponding to Ymax is

Xmax=LN(Ymax)=+88.029691912

For Y element values that lie fron Ymin through Ymax, 0=(0,0).

E	 ALGORITHM DEVELOPMENT:
`

	

	 For each element of X (denoted x), y=EXP(x) mv3t be computed for all
in—range x values. In—range x values are larger than or equal to
Xmin and are smaller than or equal to Ymax .
The issue of computing y will be addressed first. An in—range x will be
assumed. Then the issue of determining whether or not x is in—range will

E	 be addressed.

The starting expression is

1) y=e**x where e=2.718281828

Now a can be expressed as

2) a=2**a where a=1/LN(2)=1.4426950407

Using 2) in 1),

3) Y=2**(a*x) .

The independent input variable x is a floating point number and so
is expressed as

4) x=S*(f*(2**N)) where

f is a fraction having a value less than 1 but greater than
or equal to 0.5 that has the number form (0.0.24),

N is an integer having a value less than 8 but greater than
or equal to —128 that has the number form (1.7.0), and

— 2-13 —

U.C.6wr A-

r

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

S is +1 if x is positive and is —1 if x is negative.

Using 4) in 3),

5) y=2**(S*(a*f)*(2**N))

Let

6) b_a*f where

bMAX=	 1.4426950407

bMINz	 .72134752035

Using 6) in 5),

7) y=2**(3*b*(2**N))

or since (2**N) simply causes a shift of the radix point of b,

8) y=2**(3*SHFT (b,N)) where

SHFT (b,N) implies a shift of the radix point of b equal to the
magnitude of N, to the right if the sign of N is + and to the
left if the sign of N is —.

As an aside, at the low end of the range of X (Xmin= -89.4159862435),

9) b=LN (Ymin)/(128*LN (2))=+1.0078124994,
N =7, and
S=-1.

At the top end of the range of X (Xmax =+88.029691912),

10) b=LN (Ymax)/(128*LN (2))=+. 992187499663,
N=7, and
S=+1.

Once SHFT (b,N) has been developed, it can be written as the sum of an
integer part, I, (+ or —) and an always + fractional part, g, i.e., as

11) I+g=SHFT(b,N)

Then, using 11) in 8),

— 2-14 —

A

J^

A
MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

12) yz2**(I+g)z(2**I)*(2**g):(2**(I+1))*((2**g)/2) .

The integer variable (I+1) is the unbiased exponent of the output
y value. The mantissa of the output is given by ((2**g)/2). Thus,
the primary task to be performed is that of generating 2**g. Let

13) zz2**g where

gMIN=0 and
gMAX=1—(2**(-24)) (if no guard bits are used).

But z can be expressed as the product

14) zzaO*al*a2*a3* *aM* *a24*a25*a26*a27*.... where,

	

	
)

'- 1
in BINARY,

a0=1,10.
alai, 1.1
a2a1, 1.01
a3zl, 1.001

aMzl, 1+(2**(—M))	 (for all M)

a24a1, 1.000000000000000000000001
a25a1, 1.0000000000000000000000001
a26a1, 1.00000000000000000000000001
a27=1, 1.000000000000000000000000001

Each "a" value can assume the value of 1 or the non—one value (to the
right of the comma in the list above). Either "a" value can be written
as 2 to some power. In particular,

15) aMz2**uM .

As a result, 14) can be written as

16) za(2**uO)*(2**ul)*(2**u2)*...*(2**uM)* ... *(2**u24)*(2**u25)*(2**u26)*...

,.	 or as

- 2-15 -	 -

r `^

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

17) z=2Ae (u0+ul+u2+u3+....+uM u24+u25+u26+u27+....)

Comparing 17) to 13) shows that

18) g=u0+ul+u2+u3 uM u24 +u25+u26+u27+....

When &Mal, uMsO. The list of non —zero "u" values (corresponding to "a"
values not equal to 1) is provided in Table 2.1.2 .

An iterative approach is used to find z. Assume that iter it;ion (M-1)
has ,just taken place; an (M-1) iteration "g" value, g[M-1], as well as
an (M-1) iteration "z" value, z[M-1], have ,just been developed.
To accomplish the next iteration M values, g[M] and z[M], the following
expressions are used:

19) g[M]=g[M-1]—uM	 where

uM=O	 when uM >g[M-1]	 else,
uM=LN (aM)/LN (2)	 when uM <g[M-1] or

when uM_g[M-1]

and

20) z[M]=z [M-11*aM or

=z[M-1]	 when uM =O	 else,
2z[M--l]+SHFT (z[M-1],—M) when uM =g[M-1]

The iterations begin at M=1. For the 1st iteration,

g[0]=g	 (the g of expression 13)) and
z[0]=1 .

Using the expressions 19) and 20), z can be determined to any level
of precision. By dividing z by 2 (by shifting the radix point of z
left by 1 bit position), the mantissa of y=EXP (x) is determined.

— 2-16 —

► 	 i", We k

ORIGINAL I-,,"' _ ':,
r	 MPP SCIENTIFIC SUBROUTINES 	 OF POOR QUALA-1	 GOODYEAR AEROSPACE
\	 CORPORATION

GER-17221

Table 2.1.2 - Values Of uM Corresponding To Different aM Values

M	 aMs1+(.5"M)	 uM:LOG2(aM)

0 2 1.000000000000
1 1.5 .584962500792
2 1.25 .321928094818
3 1.125 .169925001262
4 1.0625 .08746841164
5 1.03125 .044394119491

6 1.015625 .022367812829
7 1.0078125 .011227255583
8 1.00390625 .00562454912855
9 1.001953125 .00281501548714
10 1.0009765625 .00140819422001
11 1.0004882812 .00070426868758
12 1.0002441406 .00035217719666
13 1.0001220703 .00017609939459
14 1.0000610351 .0000880523548428
15 1.0000305175 .000044026841807
16 1.0000152587 .0000220134209034
17 1.0000076293 .0000110068765481

18 1.0000038146 .0000055034382739
19 1.0000019073 .0000027515530405
20 1.0000009536 .0000013756104239
21 1.0000004768 6.87639115553E-7
22 1.0000002384 3.44151750584E-7
23 1.0000001192 1.72075875292E-7
24 1.0000000596 8.6037937645E-8
25 1.0000000298 4.2852872417E-8
26 1.0000000149 2.1592532613E-8

27 1.0000000074 1.0630169902E-8
28 1.0000000037 4.98289214169E-9
29 1.0000000018 2.32534966612E-9
30 1.0000000009 1,32877123778E-9
31 1.0000000004 6.6438561889E-10
32 1.0000000002 0

- 2-17 -

- -	 -	 -	 ;^ -	
L!^1. _^+►.^^ ai+^+^ `tom-	

-	
^	 ^.

. 0

MPP SCIENTIFIC SUBROUTINES

	

	
GOODYEAR AEROSPACE

CORPORATION
GER-17221

2.1.3 SQUARE ROOT ARRAY SUBROUTINE

DESCRIPTION :

SQRTV is a PECU routine that computes the square root of an array (X) and
places the result in another array (Q). The entry point is SQRTV$. Arrays X
and Q each contain 32-bit floating-point numbers in VAX-F format. The routine
requires a 22-plane array for temporary storage M. No error occurs as long
as X is non-negative. The sign of X is stored in an error bit plane (E).

If an element of X is positive then its value is:

(0.5 + x2/4 + x3/8 + ... + x24/(2 ie24)) 6
26M (eO + 2061 + 4 602 + ... + 128 ;67 - 128)

where x2, x3, ..., x24 are the fraction bits and e0, e1, e7 are the
characteristic bits of the element. Similarly, its square root in Q has the
value:

(0.5 + q2/4 + q3/8 + ... + g24/(2 0024)) •
266 (yO + 26y1 + 4;y2 + ... + 123*y7 - 128)

where q2, q3, ..., q24 are the fraction bits and y0, yt, ..., y7 are the
characteristic bits.

If e0 s 1, then the X-fraction should be shifted right once and unity added to
the X-characteristic. This puts all X-fractions in the range of 0.25 to 1 and
makes all X-exponents even. Then the Q-exponent is half the X-exponent and
the Q-fraction is the square root of the X-fraction. When we take into
account the characteristic bias of 128 we obtain the following binary addition
for the Y-character13tiC:

0 e7 e6 e5 e4 e3 e2 el
+ 0	 1	 0 0 0 0 0 e0

Y7 Y6 Y5 Y4 Y3 y2 y1 y0

This arithmetic is performed near the end of the routine.

After shifting where eO : 1, the X-fraction is in the range of 0.2!
the Q-fraction is in the range of 0.5 to 1 and is automatically nor
The fraction bits of 0 are computed in the order q2, q3, q4, ..., q24,

—2-18—

ORIGINAL

MPP SCIENTIFIC SUBROUTINES
	

OF POOR QUAI_ITY
	

GOODYEAR AEROSPACE
CORPORATION
	

4
L
	

GER-17221

Bit q2 is 1 if and only if the Q-fraction value is 0.75 or more; that is, if
and only if the X-fraction value is 0.5625 or more (0.5625 = 0.75 * 0.75).
The initial part of the routine computes q2 by setting the shift register
lengths to 26, loading the X-fraction into the shift register, adding 0.5 for
the hidden bit, shifting right one place where e0 = 1, and subtracting 0.0625.
The result will be 0.5 or more where and only where q2 = 1 so the result bit
with weight 0.5 is stored as q2. Where e0 = 0, the binary arithmetic looks
like:

0 x2 x3 x4 x5 ... x23 x24 	 0
+	 0	 1	 1	 1	 0 ...	 0	 0	 0

r1 r2 r3 r4 r5 ... r23 r24 r25

and where e0 = 1, the binary arithmetic looks like:

0 0 x2 x3 x4 ...	 x22 x23 x24
+	 0 0 1 1 0 ...	 0 0 0

r1 r2 r3 r4 r5 ...	 r23 r24 r25

Bit r1 of the result is stored as q2 and the other result bits are used in the
computation of the other Q fraction bits.

To compute bits q3 through q24 the ra:tine enters the main loop (starting at
MAIN2). For j = 2, 3, ... assume that tits q2, q3, ..., q Q-1) have been
determined and bit qj is now being computed. Let Q(j) equal the value of the
Q-fraction if qj is replaced by 1 and qk is replaced by 0 for all k > J.
Thus:

Q(2) = 1/2 + 1/4
Q(3) = 1/2 + q2/4 + 1/8
Q(4) = 1/2 + q2/4 + q3/8 + 1/16
Q(24) = 1/2 + q2/4 + q3/8 + ... + g23/(2**23) + 1/(2**24)

Bit qj = 1 if and only the value of the X-fraction is Q(j)*Q(j) or more. For
j = 2, 3, ... we define:

R(j) = 1/2 + (2**(j-2)) * (X - Q(j)*Q(j))

With this definition, bit qj = 1 if and only if R(j) is 1/2 or more. Note
that when the routine enters the main loop at MAIN2, the value in the shift
register equals R(2). Iteration j-1 of the main loop first stores a bit of
R(j) into qj (it stores the bit with weight 112). Then it calculates R(j+1)
from R(j). From the definition of R(j) we have:

R(j+1)	 0 1/2 + (2**(j-1)) * (X - Q(j+1)*Q(j+1))
2 * R(j) = 1 + (2**(j-1)) * (X -	 Q(j)*Q(j))

- 2-19 -

•

NPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

So:

R(j+1) a 2*R(j) - 1/2 + (2**(j-1))*(Q(j)*Q(j) - Q(j+1)*Q(j+1))
R(j+1) = 20R(J) - 1/2 + (2**(j-1))*(Q(j) - Q(j+1))*(Q(j) + Q(j+1))

But Q(j) - Q(j+1) _ 0 - 2*qj)/(2**(j+1)), Q(j) + Q(j+1) = 2*Q(j) + (2*qj -
1)/(2**(j+1)), and (2*qj - 1)*(1 - 2*qj) _ -1 so:

R(j+1) = 2*R(j) -1/2 + (1-2*qj)*Q(j)/2 - 1/(2**(j+3))

Where qj = 0, we obtain the following binary addition for R(j+1):

2 * R(j):	 r2 r3 r4 r5 ...	 rj	 r(j+1) r(j+2) r(j+3) r(j+4)

+	 1	 1 q2 q3 .•• q(j-2) q(j-1)	 0	 1	 1

R Q+1):	 r1 r2 r3 r4 ... r(j-1)	 rj	 r(j+1) r(j+2) r(j+3)

and where qj = 1, we obtain the following binary addition for RQ +1):

2 * R(j):	 r2 r3 r4 r5 ...	 rj	 r(j+1) r(j+2) r(j+3) r(j+4)

+	 0	 0 q2 q3 ... qQ -2) q(j-1) 	 0	 1	 1

R(j+1):	 r1 r2 r3 r4 ... r(j-1)	 rj	 r(j+1) r(j+2) r(j+3)

The main loop will recirculate 2*R(j) through the A-register while
constructing the addend in the P-register, and performing the addition to get
R(j+1) in the B-register and the shift register. To ease the construction of
the addend in the P-register, bits t2 through t23 ara built up in the 22-plane
temporary storage array, where t2 = 1 0 q2 and ti = q(i-1) 0 qi for i in the
range of 3 to 23. When r1 of the previous addition is moved from the
B-register to qj, the P-register contains the complement of q(j-1), so a
simple logic operation will form tj in the P-register. Bit tj is stored in
the following cycle and P is set to 1 (R(j) is also shifted one place and 0
added with SHIFT A and HALFADD operations). Then R(j) is re-circulated 23-j
times with 0'3 added to bring bit r(j+4) into the A-register. Two cycles of
SHIFT A and FULLADD add 1'3 to bits r(j+4) and r(j+3). The next cycle does a
SHIFT A and HALFADD (to add 0 to bit r(j+2)) and loads tj = q(j-1) 0 qj into
the P-register (this is the correct addend to bit r(j+1)). Then j-2 addition
Cycles are performed while P is exclusive-or'ed with successive t bits (this
puts the correct addend in P whether qj = 0 or qj = 1).

When the main loop is finished (END1), bit q24 is stored and another step
performed to see if the round-bit (q25) is 0 or 1. The shift register length
is set to 30 and the round-bit is added to the q bits to obtain the final
fraction in the shift register. Then the characteristic of the result is 	 }
computed (described above) and stored in the shift register.

- 2-20 -

fa)

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

If the X-characteristic equals 0. then X = 0 and the result equals 0. The
G-register is cleared wherever X = 0 Then the shift register 13 stored in the

result array where G = 1. and 0 1 3 are stored where G = 0.

tl-
-Ae

F
I

4

i

i
l

2-21

t,MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION	

l

GER-17221

2.1.4 SINE and COSINE ARRAY SUBROUTINE

DESCRIPTION :

The MCL mnemonics using these functions are SINA, COSA, and SINCOSA. The MCL
statement:

SINA	 ang.31n,[temp]

generates an array of sines (sin) from an array of angles (ang).	 The MCL
statement:

COSA	 ang,cos,[temp]

generates an array of cosines (cos) from an array of angles (ang). The MCL
statement:

SINCOSA	 ang,sin,cos,[temp]

generates an array of sines (sin) and an array of cosines (cos) from an array
of angles (ang). Arrays ang, sin, and cos are in the 32-bit VAX-F
floating-point format. Angles are in radians. The optional parameter, temp,
is used to specify the location of a 90-plane array for temporary storage. If
temp is not specified then planes 884 through 973 are used.

Each mnemonic first calls a PECU routine (VFSC1$) to convert the angle array
to a fixed-point format. VFSC1$ adjusts the angles to lie in the first
quadrant (0 to 90 degrees), leaves them in the planar shift registers, and
initializes three planes, Z, COSSGN, and SINSGN, in temporary array storage.

Then each mnemonic calls a PECU routine, VFSC2$, twelve times to adjust the
angles and leave them close to 45 degrees.

Then VFSC3$ is called to generate the sine and cosine of the angles close to
45 degrees and leave them in SNA and CS, respectively.

Then VFSC4$ is called twelve times to adjust the sine and cosine arrays until
they are fixed-point versions of the desired results.

Finally, each mnemonic calls VFSCS$ to float the results and store them in the
result array(s), sin and/or cos. SINCOSA makes two calls to float both the
sine and cosine arrays. SINA and COSA each make only one call to float the
desired result.

- 2-22 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

TEMPORARY ARRAY STORAGE

These functions use 90 planes of temporary storage (planes 884 through 973 as
a default). Its layout is shown below:

i	 i	 i	 i	 i	 i	 i
i Z i COS i	 CS	 ; SIN i	 SNA	 i	 SNB
I	 i SGN i	 i SGN i
i	 i	 i	 i	 i	 i	 i
+--1--+--1--+------29-----+--1--+------29-------+------29

The COSSGN plane contains the sign of the cosine while the SINSGN plane
contains the sign of the sine. The CS array contains the fixed-point version
of the cosine magnitude; the MSB of CS has a weight of unity and the LSB of
CS has a weight of 2 ae (-28). The SNA array contains the fixed-point version
of the sine magnitude with the same scaling as CS. The SNB array is an
alternate copy of SNA. The Z-plane shows where the angle sense is reversed -
the value of Z depends on the quadrant containing the angle as shown below:

Quadrant	 Degrees	 Z
+	 i-----+
First ; 0 to 90 ; 0
Second 1 90 to 180 ; 1
Third ; 180 to 270 ; 0
Fourth ; 270 to 360 ; 1

+	 -----+

VFSC1$ ROUTINE

The VFSC1$ PECU routine converts a 32-bit VAX-F array of angles to fixed-point
and leaves the result in the planar shift registers. The routine also
initializes Z, COSSGN, and SINSGN.

The input angle array is in radians. If the angle magnitude is larger than a
revolution (2epi radians), the routine should subtract off any integral
multiple of revolutions to leave an angle with a magnitude less than a
revolution. The easiest way to accomplish this is to divide the angle by 2epi
and only treat the fractional part of the quotient. Another advantage of this
scaling is that the left-most pair of bits of the fractional part show which
quadrant contains the angle.

The division by 2epi is accomplished by multiplying the angle by 1/(2epi).
Let the angle be:

E-128
+ 2	 e F

- 2-23 -

IQ

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION	 }
GER-17221

where E is the 8-bit characteristic of the angle and F is the 23-bit fraction
of the angle (plus 0.5 for the hidden bit). Since 1/(2*pi) = 0.25 * 2/pi the
product is:

E-130
+ 2	 * (F * 2/pi)

We multiply the fraction, F, by 2/pi. Since F < 1, the product is less than
2/pi = 0.6366 and the MSB of the product has a weight of 0.5 revolutions.
Where E < 130 the product is shifted right 130 -E places with zero bits
inserted at the left end. Where E > 130 the product is shifted left E-130
places while discarding all bits shifted off the left end. Where E = 130 the
product is not shifted.

The constant, 2/pi, equals 0.1010 0010 1111 1001 1000 0011 0111 in binary with
a relative error of 1/1613825000. If we allow negative binary digits (4
meaning -1), the constant can be written as 0.1010 0104 0000 4.010 4 .000 0100
4004. Thus, F * 2/pi can be obtained with 10 additions and subtractions of F
shifted appropriately:

F * 2/pi = F/2 + F/8 + F/64 - F/256 - F/8192 + F/32768 - F/131072
+ F/(2**22) - F/(2**25) - F/(2**28)

The product, F * 2/pi, is computed with a precision of 31 bits; the MSB his a
weight of 0.5 revolution and the LSB has a weight of 2**(-31) revolutions.
The product is left in register A, register B, and the 30-bit-long planar
shift register.

If E < 99 then the product should be right-shifted 32 or more places and the
result will be zero. This will occur for any angle magnitude less than
2**(-30) radians.

If E > 161 then the product should be left-shifted 32 or more places. All
fraction bits of the product will be shifted off the left end to leave a
result of zero. This will occur for any angle magnitude greater than 2**33
radians. Such large angles should never occur in any reasonable application.
If such a large angle does occur, the weight of its LSB is at least 1024
radians so all significance is lost and an angle of zero is Just as good as
any other angle.

The angle characteristic, E, is u:aed to compute a six-bit shift constant, S.
Where S = 32 the product is not.shifted. Where S > 32 the product is shifted
left S-32 places. Where S < 32 the product is shifted right 32-S places. Let
Ei be the bit of E with weight 2**1 and let Si be the bit of S with weight
2**1. The shift constant, S, is computed with the following binary addition:

- 2-24 -

.•.W-f

s

i
E

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION	 J
GER-17221

E7 E6 E5 E4 E3 E2 E1 EO
0 E7	 0	 1	 1	 1	 1	 0

T7 T6 T5 T4 T3 T2 T1 TO

For i = 0, 1, 2, 3, 4, and 5, bit Si of S equals the logical-and of T7 and Ti.

Note that where E = 98 the addition will produce a sum of 128, bits T5 through
TO will all be zero, and S will be zero. Where E < 98 the addition will
produce a sum less than 128, bit T7 will be zero and S will be zero. Where E
> 161 the sum will overflow its limit of 255, bit T7 will be zero and S will
be zero. In all these cases S = 0 so the product, F * 2/pi, is right-shifted
32 places to produce a zero angle.

Where 98 < E < 128, the addition will produce a sum of E+30, T7 will be 1 and
S will equal E-98 so the product, F * 2/pi, is right shifted 32-S = 130-E
places. Where E = 128 or 129, the addition will produce a sum of E+94, T7

will be 1, S will equal E-98, and the product, F * 2/pi, will be right-shifted
32-5 = 130-E places. Where 129 < E < 162, the addition will produce a sum of
E+94, T7 will be 1. S will equal E-98, and the product, F * 2/pi, will be
left-shifted 5-32 = E-130 places.

First, VFSC1$ computes the shift constant S and stores it in six bits of the
temporary arrays. Then the product, F * 2/pi, is computed. Then the product
is right or left shifted depending on S.

When the routine computes the product, F * 2/pi, it leaves the MSB of the
product in the B-plane, the LSB at the end of the planar shift register, and

clears the A-plane to clear the bit to the right of the LSB. The routine then

shifts the products left and right depending on the shift constant, S, to
leave the bit with weight-pi (180 degrees) at the end of the planar shift
register, the bit with 90-degree weight in the A-plane, and the bit with

45-degree weight in the B-plane. This operation has three phases:
pre-rotation, clearing, and post-rotation. Pre-rotation aligns the products
so the subsequent clearing phase clears the correct bits. Where S > 32, the
clearing phase clears the leftmost S-32 bits of the product and where S < 32,
the clearing phase clears the rightmost 32-S bits of the product.
Post-rotation performs the final alignment of the product.

Where S < 32 (S5 = 0), the routine pre-rotates the products right 31 places
(equivalent to a left rotation of one place), clears 32-5 bits by shifting the
products right while clearing the A-plane, and then post-rotates the products
31 places (equivalent to another left rotation of one place). Where S5 = 1 (S
> 31), the routine pre-rotates the products right 63-5 places (equivalent to a
left rotation of S-31 places), clears S-32 bits by shifting the products right
while clearing the A-plane, and then post-rotates the products right 63-S
places.

- 2-25 -
1

t

r _	 -.

i

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

The pre-rotation phase and the post-rotation phase are identical. Each
rotation phase has five parts. In each part, the G-plane is loaded with a
certain mask and then a nu.wber of SHIFTM A 6 HALFADDM instructions are
performed to shift the products. The table below shows the mask and number of
instructions for each part:

+
Mask ; Number of SHIFTM A & HALFADDM instructions

S5 v S4 16

S5 v S3 ; 8

35 v 32 ; 4

S5vS1 ; 2

S5 v SO ; 1
+

The clearing phase has six parts. In each part a number of SHIFTM, HALFADDM,
6 CLEARAM instructions are performed with the G-plane loaded with a certain
mask as shown in the table below:

Mask ; Number of SHIFTM, HALFADDM, A CLEARAM instructions

S5 1

;	 S5 0 S4 ; 16

;	 S5 0 S3 ; 8

S5 0 S2 ; 4
;

;	 35- 0 S1 ; 2

;	 T5_ 0 SO ; 1

After the three phases of the alignment, VFSC1$ uses the sign of the angle and
the two leftmost bits of the product (the bits with weights 180 degrees and 90
degrees) to initialize Z, COSSGN, and SINSGN. The rest of the product is an
angle in the first quadrant and is left in the planar shift registers.

2-26 -

M

MPP SCIENTIFIC SUBROUTINES

	

	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

The Z-plane equals the product bit with weight 90 degrees. The COSSGN-plane
is the logical exclusive-or of the product bits with weights 180 degrees and
90 degrees. The SINSGN-plane is the logical exclusive-or of the product bit
with weight 180 degrees and the sign bit of the angle.

The VFSC1$ routine takes 469 machine cycles to execute.

VFSC2$ ROUTINE

The VFSC2$ routine is called twelve times by the MCU. The call index, N,
ranges from 1 to 12. Let AM = arotan(2**(-N)); A(1) = arctan(0.5) = 26.565
degrees; A(2) = arctan(0.25) = 14.036 degrees; etc. Each call to VFSC2$
checks the values of the angles in the planar shift registers. Where the
value is less than 45 degrees call-N adds AM to the angle and where the
value is 45 degrees or more call-N subtracts AM from the angle.

Initially the angles in the planar shift registers range from 0 degrees to 90
degrees. After cal?-1 the angles will range from 45 - 26.565 = 18.435 degrees
to 45 + 26.565 = 71.565 degrees. After call-N the angles will range from 45
degrees - AM to 45 degrees + AM. After call-12 the angles will range from
44.986 degrees to 45.014 degrees.

Twelve bit-planes in SNB are used to store the sign of the angle adjustment of
each call. Bit-plane Fn = 1 where AM was subtracted from the angle and Fn =
0 where AM was added to the angle.

When the MCU calls VFSC2$ it initializes bits 0 through 31 of the PECU common
register depending on the value of A(n). The value in the common register is
D(n) defined as follows. For i z 0, 1, ..., 29, let a(n,i) be the bit of A(n)
with weight 45 * (2**(-n)) degrees and let d(n,i) be the bit of D(n) put into
bit i of the common register. Then d(n,29) = a(n.29) and d(n,i) = a(n,i) 0
a(n,i+1) for i = 0, 1, ..., 28. Bits 30 and 31 of the common register are
always set to 0. The following table shows how the left half of the common
register should be initialized for n = 1, 2, 	 12:

- 2-27 -

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

+------++	 ---+
;	 n 11 Bits 0-31 of Common Register (hex)

1 ; ;	 DCBO 3088	 1

4	 1	 2 ii	 6835 23B4
i	 3 ii	 3000 C9FO	 i
i	 4 {;	 1E74 5F14

5 ;1	 OF39 E08C	 {
6 ;;	 079C 6888

i	 7 11	 03CE 13FC	 1

8 ii	 OIE7 OBD4

E	
;	 9 ;;	 OOF3 8504

10 ;;	 0079 CM
11 = ;	 003C E150
12 ;;	 001E 70A8	 i

Each call to VFSC2$ takes 33 machine cycles. Twelve calls require 396 cycles.

VFSC3$ ROUTINE

VFSC3$ computes the sine and cosine of the angles left in the planar shift
registers. These angles range from 44.986 degrees to 45.014 degrees. Let
such an angle be X + 45 degrees where -0.014 degrees < X < 0.014 degrees.
Then:

sin(X + 45 deg) o 31n(X) * c03(45 deg) + cos(X) * 31n(45 deg)

cos(X + 45 deg) : coa(X) * cos(45 deg) - sin(X) * 31n(45 deg)

But ain(45 deg) z c03(45 deg) = 3grt(0.5) so:

sin(X + 45 deg) o 3grt(0.5) * (cos(X) + sin(X))

coa(X + 45 deg) 2 3grt(0.5) * (003(X) - 31n(W

Since X is so close to zero we can approximate sin(X) with X (in radians) and
cos(X) with unity to obtain:

ain(X + 45 deg) s 3grt(0.5) * (1 + X)

cos(X + 45 deg) s 3grt(O.5) * (1 - X)

The error magnitude in these approximations is less than 2.11 * 10**(-8).

2-28 -

t
MPP SCIENTIFIC SUBROUTINES

	

	
GOODYE'R AEROSPACE

CORPORATION
GER-17221

When VFSC3$ is called the right—half of the common register should be loaded
with 09B7 4EDC in hex. VFSC3$ takes 321 machine cycles to execute.

VFSC4$ ROUTINE

The VFSC4$ routine is called twelve times. Call N causes a rotation of +
AM. After twelve calls SNA and CS contain fixed—point versions of desired
results. The well—known trigonometric identities:

ain(Y + Z) = sin(Y) * cos(Z) + CO3(Y) * sin(Z)

cos(Y + Z) 2 cos(Y) * cos(Z) — sin(Y) * sin(Z)

can be rewritten to obtain:

sin(Y + Z) 2 cos(Z) * (31n(Y) + cos(Y) * tan(Z))

cos(Y + Z) = cos(Z) * (cos(Y) — sin(Y) * tan(Z))

Let Z = + AM so tan(Z) _ + 2**(—N). Then:

31n(Y + AM) z cos(A(N)) * (31n(Y) + c03(Y)/(2**N))

31n(Y — AM) : cos(A(N)) * (31n(Y) — cos(Y)/(2**N))

coa(Y + AM) a cos(A(N)) * (cos(Y) — 31n(Y)/(2**N))

cos(Y — AM) = cos(A(N)) * (cos(Y) + sin(Y)/(2**N))

If the cos(A(N)) factor in these equations is ignored for the moment then
simple shifts and adds or subtracts generate Lhe sine and cosine of Y + A(N)
from the sine and cosine of Y. Twelve steps with N = 1, 2, 12,
respectively will generate the sine and cosine of the initial first quadrant
angle from sin(X + 45 deg) and cos(X + 45 deg). Let K e c03(A(1)) * c03(A(2))
* ... * e03(A(12)). Rather than multiply by cos(A(N)) in each of the twelve
steps VFSC3$ multiplies sin(X + 45 degrees) and cos(X + 45 degrees) by K so
after the twelfth call to VF3C4$ the results are correct.

Odd—numbered calls to VFSC4$ (N = 1, 3, 5, ..., 11) use SNA as a source of the
sine and put the new sine value in SNB. Even—numbered calls (N = 2, 4, 6,
..., 12) use SNB as a source of the sine and put the new sine value in SNA.
All calla to VFSC4$ use CS as a source for the cosine and put the new cosine
value back. into CS.

Call N to VFSC4$ takes 181 — 2*N machine cycles to execute. The twelve calls
to VFSC4$ require a total of 2016 cycles.

— 2-29 —

--	 -IV
i

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

VFSC5$ ROUTINE

VF3C53 floats a fixed—point value in SNA or C3 and puts the result in the
user's sine or cosine array. The SINCO3A mnemonic calls VFSC5$ twice to float
both results. SINA and COSA call VFSC5$ once to float only the desired
result. Each call to VFSC5$ takes 133 machine cycles.

TIMING

The 3INA and COSA mnemonics each require 3335 machine cycles to execute. Thus
sines or cosines can be computed at a rate higher than 49 MOPS.

The 3INCOSA mnemonic requires 3468 machine cycles to execute. Thus if one
wants both the sines and the cosines the rate is higher than 94 MOPS.

— 2-30 —

GOODYEAR AER03PACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

F	 _

2.1.5 ARCTANGENT ARRAY SUBROUTINE

DESCRIPTION :

The MCL mnemonic ARCTNA computes an array of arctangents from an array of
slopes. The form of the mnemonic is:

	

ARCPNA	 arctan,slope[,temp]

where arctan and slope are arrays of 32—bit VAX—F format floating-point
numbers. No restriction is placed on the values in the slope array. The
values computed in arctan will be in radians and range from —pi/2 to pi/2.
The optional parameter, temp, is an array of 82 bit planes used for temporary
storage — if temp is omitted then the routine uses bit planes 892 through 973.

METHOD

Since the sign of y z arctan(x) is the acme as the sign of x we ignore the
sign until the very end. Thus, we assume that both x and y are non—negative.

Let A(i) = arctan(2**(—i)) for i = 0, 1. 2. ... and let z be any angle. Then:

tan(z) — tan(A(i))
tan(z — A(i)) x

1 + (tan(z)*tan(A(i)))

Let tan(z) s N(i)/D(i) for some numbers NU) and D(i) and let tan(z—A(i)) e
N(i+1)/D(1+1). Since tan(A(i)) = 2**(-1) we have:

N(i+1)	 (N(i)/D(i)) — (2**(-1))

D(W)1 + (N(i)/(D(i)*(2**i)))

When we multiply the numerator and the denominator of the right side by D(i)
we obtain:

	

N(W)	 N(i) — D(1)/(2**i)

	D(i+1)	 D(i) + N(i)/(2**i)

—2-31—

^	 s

Ir	
-7T-

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

We equate the two numerators and equate the two denominators to obtain:

N(i+1) s N(1) — D(i)/(2**i)

D(i+1) : DM + N(0/12**0

One method to compute y : aretan (x) is to start with two numbers N(0) and D(0)
such that COMM : x and initialize a third number, Y(0), to zero. Then we
perform the following iteration stop for i z 0, 1, 2.n:

WHERE ((2**

D(i+1)
N(i+1)
Y(i+1)

ELSEWHERE
D(i+1)
N(i+1)

Y(i+1)

ENDWHERE

i) * NM > DM)
z DM + N(i)/(2**i)
it NM — D(i)/(2**i)
• Y(i) + AM

• DM
• NM
• Y(i)

For i z 0. 1, 2, ... define the angle Z(i) such that tan(Z(i)) z N(i)/D(i).
Than Z (0) x y and Z (0) + Y(0) z y. The first iteration, with i s 0, selects
those places where the slope, N(0)/D(0), is unity or higher (that is, where
Z(0) is A (0) or higher) and subtracts A(0) from Z(0) to obtain Z(1). In the
same places it adds A (0) to Y (0) to obtain Y(1). In all places Y(1) + Z(1)
y and Z(1) is less than A(0). Similarly, iteration i+1 selects those places
where the slope, N(i)/D(i). is (2**(-1)) or higher (that is, where Z(i) is
AM or higher) and subtracts AM from Z(i) to obtain Z(1+1). In the some

`	 places the iteration adds AM to Y (i) to obtain Y(i+1). In all places Y(i+1)
F	 + Z(i+1) z y and Z (i+1) is 1,033 than AM. Thus, the final iteration, with i
_

	

	 = n. leaves Z(n+1) less than A(n) so Y(n+1) is within A(n) of the desired
result, y. Since A(n) is less than (2* *(—n)) for any n we have computed y to
an accuracy of (2**(—n)).

Lat W (1) a (N(i)*N(i)) + (D(i) *D M) for i x 0. 1.. 2, n + 1. Then in the
places selected by iteration 1+1, W(i+1) a W(',) * 0 + (4**(-1))). In the
remaining places W(i+1) x WM so in all places. W(i+1) < W(i) * (1 +
(4**(-1))). Thus:

W(i+1) < W(0) * 2 * 1.25 * 1.0625 * ... * (1 + (4**(-1)))

W(i+1) < W(0) * 2.71182

Since D(i+i)*D(i+1) < W(i+1) we obtain:

D(i+1) < 1.6468 * sgrt(W(0))

Thus. D(1+1) can be bounded if W(0) can be bounded. Also we know that

— 2-32 —

D7

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
(CORPORATION
i	 GER-17221

N(i+1) /D(i+1) < (2**(-1)) so N(i+1) can also be bounded.

The test for the where condition in the above method is not convenient so we
modify the method as follows. For i = 0, 1, 2, ... let T(i) _ ((2**i)*N(i)) -
D(i) so N(i) _ (T(i)+D(i))/(2**i). Then T(0) = N(0) - D(0) and the iteration
step of the above method can be replaced by the following step which involves
T instead of N:

WHERE (T(i)
D(i+1)
T(i+1)
Y(i+1)

ELSEWHERE
D(i+1)
T(i+1)
Y(i+1)

ENDWHERE

> 0)
D(i) + (T(i) + D(i))/(4**i)
2*T(i) - D(i+1)

= Y(i) + AM

= D(i)
= 20T(i) + D(i+1)

Y(i)

Note that as i gets large the adjustment, D(i+1) - D(i), approaches zero and
this iteration step approaches the iteration step for the non-restoring
division algorithm. Since N(i+1)/D(i+1) < (2**(-1)) we have -D(i+1) < T(i+1)
< D(i+1) so T(i+1) is well-bounded.

The input operand, x, is a floating-point number in VAX-F format. Where x is
non-zero we have:

E-128
X = (F+0.5) *2

where E is the characteristic in the range of 1 to 255 and F is the 23-bit
fraction in the range of 0 to 0.5-(2**(-24)). Where x = 0 we have E = F = 0.

Where E > 129 we have x > 1 so y = arctan(x) > A(0). In these places we let
N(0) = F + 0.5 and initialize D(0) to 2**(128-E) so N(0)/D(0) = X. T(0) _
N(0) - D(0) is initialized to F + 0.5 - 2**(128-E), a non-negative number, so
these places are selected by the first iteration step where i = 0. Where E >
153, x is (2**24) or higher so y is pi/2 - (2**(-24)) or more. When y is
close to pi/2 the LSB of the y fraction has a weight of (2**(-23)) so the best
value for y is simply pi/2. Thus, where E > 153 we initialize D(0) to 0 and
T(0) to F + 0.5 so N(0)/D(0) is infinite and we generate y = pi/2.

Where E < 128, x < 1 so the i = 0 iteration will not select this place. In
fact, the first iteration that selects this place is when i = 129-E. Rather
than waste the i = 0, 1, 2, ..., 128-E iterations we will start this place at
i _ 129-E.	 This means that there is an array of iteration numbers in
temporary storage so each place can hold its own iteration number. 	 The

L.

	

	 iteration number, I, is initialized to 12 1!-E where E < 128 and initialized to
0 where E > 129. Where 1 < E < 128 we initialize D(129-E) to 0.5 and T(129-E)

2-33 -

jr

L:L^ J
x. i	 p.

•

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION)
GER-17221

to F so N(129-E) _ (T(129-E) + D(129-E)) * (2**(129-E)) = x/2	 and
N(129-E)/1),;129-E) _ X.

Where E = 0 we have x = 0. The method assumes the hidden bit equals 1 making
x = 2**(-129). It computes y = arctan (x) = 2**(-129) and when the hidden bit
is dropped from y it stores zeroes so y = arctan(x) = 0.

Thus, the method is initialized with the following rules:

I = 129-E where E < 128
I = 0	 where E > 129

D(I) = 0.5	 where E < 128
D(I) = 2**(128-E) where 129 < E < 152
D(I) = 0	 where E > 153

T(I) = F + 0.5 - D(I)

Where E > 129 we have N(0) = F + 0.5 < 1 and D (0) = 2**(128-E) < 0.5 so W(0) <
1.25.	 Where E < 128 we have N (I) = x/2 < 0.5 and D (I) = 0.5 so W(I) < 0.5.
Thus, D can be bounded by 1.6468 * 3grt(W(0)) < 1.8412. D is always
non-negative so it can be held in an array whose leftmost bit has a weight of
unity. Since -D < T < D, T is a signed quantity whose sign bit has a weight
of -2.

We compute y with an accuracy equal to the weight of the LSB of its fraction.
We will perform 26 iterations with i = I, I+1, I+2, ..., I+25. This will
leave 0 < Z(I+26) < A(I+25). If we add A(I+26) to Y(I +26) the maximum error
due to stopping the iteration at i = I+25 will be no more than A(I+26).

The LSB of T and D will have a weight of 2**(-26) so D has 27 places and T has
28 places. This means that the D(i+1) = D(i) + (T(i)+D(i))/(4**i) computation
in each iteration step may have an error between -(2**(-27)) and 2**(-27) when
I > 0. The minimum value for D(i+1) is 0.5 so the magnitude of the relative
error is no more than 2**(-26). The relative error in tan(Z(i+1)) is no more
than 2**(-26) so the maximum error in Z(i + 1) is less than (2**(-26))*Z(i+1) <
(2**(-26))*A(1). This error only occurs where T(i) > 0, that is, only where
A(i) is added to the final result, y. Thus, the contribution of this error to
the final error is bounded by (2**(-26))*y.

Another error source is in the summation of the various A (n) terms to form y.
This error is minimized by delaying the calculation of y until all iterations
have been performed - the Y (n+1) calculation in iteration n is replaced by:

F(n-I) = 1 where T(n) > 0
F(n-I) = 0 where T(n) < 0

The flag bit F (0) of the first iteration is always 1 and need not be stored.

- 2-34 -

- 2-35 -

MPP SCIENTIFIC SUBROUTINES

	

	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Flag bits F(1), F(2), ..., F(25) are Stored in the temporary array until the
end of the routine. As discussed above we always add A(I+26) to y so we
assume F(26) = 1 as well. Thus,

y = F(0)*A(I) + F(1)*A(I+1) + ... + F(26)*A(I+26)

The Taylor series expansion for AM is:

-3N	 -5N	 -7N	 -9N	 -11N
-N	 2	 2	 2	 2	 2

AM) = 2	 -	 + ---- -	 +	 -	 + .. .

3	 5	 7	 9	 11

Let B(N,J) _ ((-1)**J) * (2**(-N*(2J+1))) / (2J+1) so A(N) = B(N,0) + B(N,1) +
B(N,2) + B(N,3) + ... Then:

	

y = F(0)*B(I,0)	 + F(0)*B(I,1)	 + F(0)*B(I,2)	 + ...
+ F(1)*B(I+1,0)	 + F(1)*B(I+1,1)	 + F(1)*B(I+1,2)	 + ...

+ F(26)*B(I+26,0) + F(26)*B(I+26,1) + F(26)*B(I+26,2) + ...

We can change the order of summation to obtain:

y = C(I,0) + C(I,1) + C(I,2) + C(I,3) + C(I,4) + C(I,5) + ...

where C(I,J) = F(0)*B(I,J) + F(1)*B(I+1,J) + ... + F(26)*B(I+26;J)

We want to compute y as a floating-point number. Where I = 0 we have pi/4 < y

< pi/2 and where I > 0 we have A(I) < y < A(I-1). So pi/4 < (2**I)*y < 2
everywhere. Thus, we first compute (2**I)*y which needs only one
normalization step to put it into the range of floating-point fractions (0.5
to 1) and then compute the exponent of y.

Let D(I) = C(I,5) + C(I,6) + C(I,7) + ... 	 so (2**I)*y = (2**I)*(C(I,0) +
C(I,1) + C(I,2) + C(I,3) + C(I,4) + D(I)). We compute (2**I)*y as follows:

(1) - Compute (2**(9*I)) * C(I,4) * (4095/4096) and shift it right 2I
places.

(2) - Add (2**(7*I)) * C(I,3) * (4095/4096) to the result of (1) and
shift the sum right 2I places.

(3) - Add (2**(5*I)) * C(I,2) * (4095/4096) to the result of (2) and
shift the sum right 2I places.

(4) - Add (2**(3*I) * C(I,1) * (4095/4096) to the result of (3) and shift
the sum right 21 places.

h

r ^+

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE	 J
CoIVORATION
GER-17221

(5) — Multiply the result of (4) by 4096/4095.

(6) — Add (2**I) * D(I) to the result of (5).

(7) — Add (2**I) * C(I,0) to the result of (6) to obtain (2**I) * y.

Let F (0) = 1, F(1) = a, F(2) = b, and F (3) = c. Then (2* *'9*.':)) * C(I,4)
(4095/4096) equals the following binary fraction:

0.000 111 000 111 aaa 000 aaa bbb 00 1"It bbb ...

which can be formed in the P—register (LSB first) and ertcred into the shift
register in step (1).

Similarly, —(2**(7*I)) * C (I,3) * (4095/4096) equa 'tz: the following binary
fraction:

0.0010010 01a01aO Oab0abO ObcObcO ...

which can be formed in the P—register and :subtracted from the shift register
in step (2).

Similarly, (2**(5*I)) * C (I,2) * (4095 / 4096) is the sum of the following two
binary fractions:

0.00110 01100 11bbO Obb00 bbddO Odd00 ...
0.00000 OOaaO Oaa00 aaccO Occ00 ccee0 ...

where F (4) = d and F (5) = e.	 Each of these fractions is formed in the
P—register (LSB first) and added to the shift register in step (3).

Similarly, — (2**(3*I)) * C (I,1) * (4095/ 4096) is the sum of the following two
binary fractions:

0.010 1a1 aba bcb cdc ded efe fgf ghg hih ...
0.000 000 010 1a1 aba bcb cdc ded efe fgf ...

where F (6) = f, F(7) = g, F(8) = h, and F(9) = i. Each of these fractions is
formed in the P—register (LSB first) and subtracted from the shift register in
step (4).

In step (5) we multiply the shift register contents by 4096 / 4095. But:

4096	 4097	 (2**24)+1	 2**48

--- *	 --- * —
4095	 4096	 2**24	 (2**48)-1

With a relative error of (2**(-48)) we perform the multiplication by adding

11^	 I

— 2-36 —	 ^ a

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

the shift register to itself shifted right 24 places and then adding the shift
register to itself shifted right 12 places.

The magnitude of D(I) is less than (2**(-11*I))/11 so for I > 3 we have
(2**I)*D(I) < (2**(-30))/11 which can be neglected. Thus, D(I) only has
significance for I a 0, 1, and 2. Letting a a F(1) and b = F(2) we can find
the following binary fractions:

—D(0) = 0.0000 1100 1010 11a1 1aa0 a007a baba ...

—21)(1) = 0.0000 0000 0000 0100 1100 111a OaOa ...

—4D(2) = 0.0000 0000 0000 0000 0000 0001 0110 ...

In step (6) we select the places where I = 2 and add 41)(2) to the result of
(5), then we select the places where I = 1 and add 21)(1) to the result of (5),
and then we select the places where I = 0 and add D(0) to the result of (5).

Since (2**I) * C(I,0) is simply 1.abcd efgh step (7) is the addition of
the appropriate F(n) values to the corresponding bits of the result of (6) to
form (2**I) * y.

The magnitude of the error in this computation of (2**I)*y is less than 13.37
* (2**(-30)). If (2**I)*y is less than unity then the A(I+26) error is at
most 16 * (2**(-30)) and the D(i+1) error contribution is at most 16 *
(2**(-30)) so the maximum error is 45.37 * (2**(-30)). The round—off error in
rounding the answer to the VAX—F format is at most 32 * (2**(-30)) giving a
worst case error of 1.21 times the weight of the LSB of the final fraction.
If (2**I)*y is unity or greater the weight of the LSB is doubled so the effect
of the worst error is smaller.

TEMPORARY STORAGE

The 82—plane temporary storage region has the following layout:

27 14 27----
! IS S! 1
! T 11 11 D	 1
! 14 1 1

IF F F F!
! 1 1 1 2!
! 4 5 51

25

The first 25 planes store F(1) through F(25), respectively. 	 Planes F(15)
through F(25) are overlayed by the first 11 bits of the T array — array T is

2-37 -

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

not used to compute F(15) through F(25). Array T is only 27 bits long since
there is no need to store its MSB — the complement of its MSB equals F(1),

F(2), etc. on successive iterations.

The next fourteen planes store 314, 513, 512, ..., S1, respectively, where Sn

1 only where I > n. Thus, S1 flags where I > 0 and 314 flags where I > 13.

The last 27 planes store the D array.

VFATN$ ROUTINE

The VFATN$ routine computes the arctangents of elements of the x array and
places the results in corresponding elements of the y array. Both x and y are

arrays of 32—bit floating—point numbers in VAX—F format. The routine is
called with the following setup:

Common Register o FE6A C3DD 6CCD 994E (in hex)
R3 : LSB of y array
R4 = MSB of temporary storage
R5 = R4 + 40 = R6 — 41
R6 = LSB of temporary storage	 '.' 4
R7 : LSB of x array

If the default temporary array is being used then R4 = 892, R5 = 932. and R6 n

973.

The basic parts of the VFATN$ routine are: construct 31 through S14; perform
iteration I; perform iterations I+1 through I+14; perform iterations I+15

through I+25; and construct y. These are described in the following sections.

Construct S1 through S14 — The following diagram shows the values in planes S1

through S14 as a function of the initial iteration number I:

_ 2-38 '

- 2-39 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

I 3 3 3 S 3 S S S 3 S S S 3 3

1 2 3 4 5 6 7 8 9 1	 1 1	 1 1

0	 1 2 3 4
4

^0- 00000000000000
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 11000000000000 i

3 1	 1	 1 0 0 0 0 0 0 0 0 0 0 0

4 11110000000000

5 1	 1	 1	 1	 1	 0 0 0 0 0 0 0 0 0 f

6 1	 1	 1	 1	 1	 1 0 0 0 0 0 0 0 0

7 1	 1	 1	 1	 1	 1 1 0 0 0 0 0 0 0

8 1	 1	 1	 1	 1	 1 1	 1 0 0 0 0 0 0

9 1	 1	 1	 1	 1	 1 1	 1	 1	 0 0 0 0 0

10 1	 1	 1	 1	 1	 1 1	 1	 1	 1	 0 0 0 0

11 1	 1	 1	 1	 1	 1 1	 1	 1	 1	 1 0 0 0
12 1	 1	 1	 1	 1	 1 1	 1	 1	 1	 1 1	 0 0)

13 1	 1	 1	 1	 1	 1 1	 1	 1	 1	 1 1	 1 0

>14 1	 1	 1	 1	 1	 1 1	 1	 1	 1	 1 1	 1 1

First	 the PE shift registers are set to a length of 14. Thirteen zero planes _.
are shifted into the shift registers as the routine compute3•S14 in P.	 Let	 E :-
be	 the	 characteristic of x and let E7, E6, ...,	 EO be the bits of E where E7
is the MSB and EO is the LSB. 314 = 1 where I	 >	 14. Since I =	 129 - E,	 then _:__;

314 = 1 where E < 115.	 The logic equation for 914 is:

S14 = E7 0 v E5 v E4 v E3 E2)

Then	 the	 complement	 of EO is shifted into the shift registers.	 Then eight t
ones are shifted into the shift registers where S14 v (E3 O (E2	 v	 E1))	 _	 1 i
(where	 I	 >	 14	 or	 where E	 mod 16 = 2, 3,	 8, 9).	 Then four ones are !
shifted into the shift registers where S14 v (E2 O E1) = 1 (where I	 >	 14	 or
where	 E	 mod	 8	 =	 2. 3, 4, or 5).	 Then two ones are shifted into the shift
registers where 314 v E1 = 1	 (where I > 14 or where E mod 4 = 2 or 3).	 Where
E	 < 129 we shift the shift register into S13 through 31. respectively.	 Where
E > 129 we shift zeros into 313 through S1. This completes	 the	 construction
of	 S1 through S14.	 The complement of 31 is left in the P register for use in
the next part.	 Construction of 31 through 314 requires 49 machine cycles.

Perform Iteration I - The shift register lengths are set to 26. First D(I) is
constructed by clearing the shift registers to zeros and setting register B to
one. Where 31 = 0 (where E > 128) the shift register is shifted right E - 129
places. The first shift clears the B register. the shift registers.

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

2.2 HOL Interface Requirements for Array Subroutines

All MPP Array functions require loading the MCU Call Queue
registers with the arguments of the function .pith an MCU program,
and then calling a specific PECU Subroutine. This is usually
performed by an MCL MACRO, or by some Higher-Order-Language (HOL).
This Section describes the minimum requirements for a HOL or MACRO
to use the Scientific Functions.

Note that the subroutines ARCTNA, and SQRTA call the PECU directly,
and that LNA, EXPA, SINA, COSA AND SINCOS call MCU subroutines that
perform iterative PECU calls.

Tables 2.2.1 - 2.2.6 describe HOL interfaces for each Array subroutine.

a
al

{

:_;

}

— 2-40 —

MPH SCIENTIFIC SUBROUTINES

e

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 2.2.1 LNA - Natural Logarithm Subroutine
HOL Interface Specifications

Name :
	

LNA	 (X,Y,E,T)

Description
	

Compute Y s LN(X)

Global MCU Names
	

LN$V

Required Arguments	 X - Input Array in 32-bit VAX format
Y - Destination Array in 32-bit VAX format
E - Error Output Status bitplane:

Set if source 'X' was Negative
Clear Otherwise

T - Temporary Storage Array of 56 bitplanes

Required Main Control Queue Registers

Scalar Queue Registers :

R32 - 1 2EMODE I Code: 68*4
R33 - Cleared to 101
R34 - High Half of Ln(2) = X'B172'
R35 - Low Half of Ln(2) = X116B9'

PECU Queue Registers

R36 - N/U
R37 - LSB of 'T' Temporary Array
R38 - N/U
R39 - LSB of 'T' Temporary Array
R40 - LSB of 'E' Error Bitplane
R41 - LSB of 'X' Source Array
R42 - LSB of 'T' Temporary Array
R43 - LSB of 'Y' Destination Array

• Call via : CALL R15,LN$V
After Loading Queue Registers

- 2-41 -

Ai
"i	 ,'	 ►ter", !"•+^ '^ - :

MPP SCIENTIFIC SUBROUTINES.	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 29292 EXPA - Exponential Subroutine
HOL Interface Specifications

,

EXPA	 (X,Y,E,T)

Compute Y s e••%

EXP$V

X - Input Array in 32-bit VAX format
Y - Destination Array in 32-bit VAX format
E - Error Output Status of 3 bitplanes:

E(0) Set if input < 200-31; output set
to X 1 40800000' (VAX 111).

E(1) Set if overflow; output set to
X 1 7FFFFFFF I (max VAX value).

E(2) Set if underfloor; output set to
X 1 0' (VAX 0).

T - Temporary Storage Array of 43 bitplanes

Name :

Description

•

Global MCU Names

Required Arguments

Required Main Control Queue Registers
Scalar Queue Registers :

R32 - High Half of 1/ln(2) : X1453F
R33 - Low Half of i/ln(2) : X'D630'
R34 - N/U
R35 - N/U

PECU Queue Registers

R36 - N/U
R37 - N/U
R38 - N/U
R39 - LSB of 'T' Temporary Array
R40 - LSB of 'E' Error Array
R41 - LSB of 'X' Source Array
R42 - N/U
R43 - LSB of 'Y' Destination Array

• Call via : CALL R15,EXP$V
After Loading Queue Registers

2-42 -	 D ,w--- -40w-- SO& -	 j

a
MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 2.2.3 SQRTA - Square Root Subroutine
HOL Interface Specifications

Name :	 SQRTA (X,Y,E,T)

Description	 Compute Y : SQRT(X)
•

Global PECU Names :	 SQRTV$

Required Arguments : X - Input Array in 32-bit VAX format
Y - Destination Array in 32-bit VAX
E - Error bitplane, Set if X was Negative
T - Temporary Storage Array of 22 bitplanes

{	 Main Control Queue Registers :

Scalar Queue Registers

R32 - N/U
R33 - N/U
R34 - N/U
R35 - N/U

PECU Queue Registers

R36 - N/U
R37 - N/U
R38 - N/U
R39 - N/U
R40 - Error bitplane
R41 - MSB of 'T' Temporary Array
R42 - LSB of 'X' Source Array
R43 - LSB of 'Y' Destination Array

• Call via : LR	 R44,SQRTV$

- 2-43 -

f

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 2.2.4 SIN, COS - Sine, Cosine Subroutine
HOL Interface Specifications

Name :	 SINA, COSA (X,Y,T)

Description	 Compute Y m SIN(X), COS(X)

e

Global MCU Names	 SNCS$V

Required Arguments	 X - Input Array in 32-bit VAX format
Y - Destination Array: Function in 32-bit VAX
T - Temporary Storage Array of 90 bitplanes

Main Control Queue Registers

Scalar Queue Registers'

R32 - N/U (Set within SNCS$V)
R33 - N/U
R34 - N/U
R35 - N/U

PECU Queue Registers

i
R36 - N/U
R37 - N/U
R38 - LSB of 'Y' Destination Array
R39 - N/U
R40 - '1' for SINE; 1 2' for COSINE
R41 - LSB of 'X' Source Array
R42 - LSB of Source Exponent (84143)
R43 - LSB of Temporary Storage Array 'T'

e Call via : CALL R15,SNCS$V

2-44 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 2.2.5 SINCOS - SineCosine Subroutine
HOL Interface Specifications

Name :	 SINCOS (X,Y,Z,T)

Description

	

	 Compute Y a SIN(X), and Z n COS(X)
r

Global MCU Names	 SNCS$V

Required Arguments	 X - Input Array in 32-bit VAX format
Y - Destination Array 'SIN' in 32-Lit. VAX
Z - Destination Array 'COS' in 32-bit VAX
T - Temporary Storage Array of 90 bitplanes

Main Control Queue Registers

Scalar Queue Registers :

R32 - N/U (Set within SNCS;V)
R33 - N/U
R34 - N/U
R35 - N/U

PECU Queue Resisters

R36 - N/U
R37 - N/U
R38 - LSB of 'Y' Destination Array
R39 - LSB of 'Z' Destination Array
R40 - 1 4' denotes Sine and Cosine
R41 - LSB of 'X' Source Array
R42 - LSB of Source Exponent (R41-23)
R43 - LSB of Temporary Storage Array 'T'

Ia	
• Call via : CALL R15,SNCS$V

2-45 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 2.2.6 ATANA - Aretangent Array Subroutine
HOL Interface Specifications

ARCTNA (X,Y,T)

Compute Y 2 ARCTAN(X)

ATAM

X - Input Array in 32-bit VAX format
Y - Destination Array in 32-bit VAX
T - Temporary Storage Array of 82 bitplanes

Name

Description

Global PECU Name^ :

Required Arguments :

Main Control Queue Registers :
-- -----------------------------

Scalar Queue Registers

R32 - X'FE6A'
R33 - X`C3DD'
R34 - X16CCD'
R35 - X1994EI

PECU Queue Registers

R36 - NIU
R37 NIU
R38 - N: U
R39 - LSB of Destination Array 'Y'
R40— MSB of Temporary Array 'T'
R41 - LSB-41 of Temporary Array
R42 - LSB of Temporary Array
R43 - LSB of Input Array 'X'

# Call via : LR	 R44,ATANV$

2-46 -

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

3.0 SEQUENTIAL MCU ALGORITHMS

The MCU sequential (or serial) algorithms are described in this section. The
routines are 'sequential' in that a single 32-bit VAX input generates a single
VAX output. Each subroutine requires that input data be loaded into specific
MCU registers. Upon completion of each subroutine, the output function and
error status will also be contained in specific MCU registers. The specific
form of the 32-bit VAX real is described in Section 3.3•

361 GENERAL DESCRIPTION OF THE POLYNOMIAL METHOD

The iterative algorithms employed to implement the array function modules are
most efficient for processors that have no hardware multiplier resources.
Because the MCU has an embedded 16 bit hardware multiplier as well as a
hardware adder resource, an algorithm that makes effective use of these
resources is used in place of the iterative algorithms. The algorithm used is
the familiar Discrete Orthonormal Legendre (DOL) polynomial fitting algorithm.
For each function, the valid domain of the independent variable is segmented
into connected intervals. Within each interval, a polynomial that approximates
the function to a specified level of precision (or accuracy) is computed.

The form of the polynomial used to match the scalar function f(u) over an
u-interval is:

1) p(u)=AO+u*(A1+u*(A2+u*(A3+u*(A4+u*(A5+u*(A6+...+u*(AN)...))))))
where
o the A [J] values (J=0,1,2,...,N) are coefficients to be found while

trying to force p (u) to approximate the true function, f(u), over
the interval u[k] <= u < u[k+1], k=0,1,...,K

o u represents the independent input variable,
o k identifies the "k"th interval of the domain of u,
o K+1 specifies the total number of intervals that comprise the u

domain, and
o p(u) is the polynomial function.

Generally, the degree, "N", of the polynomial (and the number of operations
required to evaluate the polynomial) needed to approximate the function f(u)
to a given level of accuracy is reduced as K (the number of domain intervals)
is increased. It follows that K should be large in order to decrease the
number of operations (and execution time) required to compute "p". Within
certain "reasonable" K intervals, the statement above is true. However, if K
is too large, too many branching operations are required to identify the
particular interval in which an input "u" lies. Also, as K increases, the
amount of storage required for the "A" coefficients of all intervals tends to
increase even though the storage requirements for any one given interval tends
to decrease.

t

- 3-1 -_

^P	 ^• ^=++rig. ^-x ^. ^ --•	 ^,.,^^

•

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

To implement the scalar function modules, K values as small as 2 and as large
as 14 have been used. In general, the degree of approximating polynomials has
been low when K is high. In no case has the degree of the polynomial been
allowed to exceed 7. Execution times for modules utilizing small K values can
be speeded up by factors of 2:1 simply by increasing K. (In such case, more
memory would have to be expended for the modules.)

The input and output variable values for each of the eealar functions are 32
bit VAX real (floating point) values. Usually the "u" value used in the
polynomial of Eqe 1 e is a biased or scaled and biased version of the mantissa
of the input real variable. The implemented version of the Eq • 1 # polynomial
(POLY32) uses an input "u" that is a signed magnitude fraction that has the
magnitude form (0.0.32). (Note: The number form (s.i.f) describes the number
of sign bits, s, the number of integer bits, i, and the number of fractional
bits, f.) Two MCU registers are used to store the "u" magnitude; an additional
16 bit register is used to store the sign of "u". (When the sign register
contains hex 8000, "u" is positive. If the register is loaded with a "0", "u"
is negative. No other values are valid "u" sign indicators.) The permitted "u"
magnitude can range from "0" to less than 1.

The A[j] coefficients of the polynomial function are 2's complement numbers of
the form (1.32.0) # (2**(-32)). Thus, they may take on any value that lies in
the interval (-.5) <= A[J] < (+.5) .

The "p" value generated by the POLY32 routine is a 2's complement number of
the same form as A[J1 , namely, (1.32.0) ; (2#*(-32)). It may also take on any
value that lies in the interval (-65) <= p < (+.5) .

To evaluate functions using POLY32, Eq* 1 e is evaluated from right to left.
First, AN multiplies u. Then the result is added to A[N-1]. This result again
multiplies u, etc., until the AO addition is completed. To accomplish the
multiply using the 32 bit inputs specified for the POLY32 routine required the
development of a small 32 bit multiply routine, MULT32, that would accept one
operand of the form of A[J], another operand with the form of "u", and would
produce a result with the form of "p" (i.e., A[j]). To make best use of the 16
bit MCU hardware multiplier to perform a 32 bit times 32 bit multiply,
cardinal multiplies are performed.

Thus, MULT32 first converts the 2's complement input, B, to the routine (e.g.,
A[j]) to a signed magnitude form like that of "u". Then the high 16 bits of
"u" and the high 16 bits of the magnitude of B are cardinal multiplied. Also,
the low 16 bits of "u" cardinal multiply the high 16 bits of the magnitude of
B; and, in like manner, the low 16 bits of the magnitude of B cardinal
multiply the high 16 bits of "u". The three products (with appropriate
offsets) are added to form a 32 bit cardinal fraction with a precision of no
worse than + or - 2*e(-31).

- 3-2 -

K

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE

l^	
CORPORATION
GER-17221

Using the sign of "u" and B, the result is converted back to the same 2's
complement form as B and presented as MULT32 output. It should be noted that
the MULT32 output permits the immediate additions required by Eq e 1. Also,
the output of the addition is of the form of B and so can be used immediately
as input to the MULT32 routine, again, as required by Eq• 1.

The MULT32 routine is implemented so as to provide at least 6 guardbits during
each POLY32 multiply operation. Since no more than 7 adds are employed in
POLY32 and the multiplies have virtually no impact on the variance of each
sum, the variance of POLY32 is only about twice that of an "A" coefficient;
POLY32 has at least 5 guard bits.

The software modules developed to implement the scalar functions, POLY32, and
MULT32 are subroutines and so are re-entrant in character. Prior to a call to
any of the modules discussed, values and addresses of values needed to execute
the routines are pre-loaded into MCU registers allocated to the routines.
Results of executions are returned in MCU registers.

The call of any scalar function module will result in the automatic load of
both the POLY32 and MULT32 routines. Independent of the number of same or
different scalar function module calls made by a user's program, these modules
will be loaded once only. If no scalar function modules are called, these
modules will not be loaded.

The scalar routines use all MCU registers. Users must save register values
they want to preserve prior to calling any scalar module.

Section 3.3 describes the interface register requirements for each function.

The following section, Section 3.2, describes each function algorithm for the
MCU subroutines. The descriptions are given in Program Design Language (PDL)
form. In addition, the PDL steps have been numbered for reference and include
fractional partitioning using odd or even numbers to assist in identifying
logical paths.

Appendix A describes the generation of function interval polynomial
coeffinients for each of the MCU functions.

-3-3-

^ J

ORIGINAL PA's"
MPP SCIENTIFIC SUBROUTINES 	 OF POOR QUALITY

GOODYEAR AEROSPACE
CORPORATION
GER-17221

3.2	 DESCRIPTION	 OF MCU ALGORITHMS
----------«-------------------------

3.2.1 MCU SQUARE ROOT SUBROUTINE : SQRTM
--

This Subroutine develops the value, "Y", the square root of the input
variable, "X"e "X", the input, and "Y", the output, are 32 bit VAX floating
point numbers. Along with "Y", a 16 bit status value, S, is generated for
output; S=3 indicates a negative X. The "Y" value for such X has no meaning;
only positive "X" values are permitted as input arguments.

•rrrrrrseere*+tarefee +terefrerafrerareeefeeer*;refers*eereeereeaeeeees +^fe;e +^eef*:
When the exponent of "X" is even, the routine demands the calculation of
yl=(SQRT (w)) where . 5 <= w < 1 ; thus, the range of y1 is (.707...) <= y1 < 1.

The value of "y1" is established using the polynomial, "p1", given by

p1=A10*(U**O)+A11*(Usr1)+Al2*(Ur*2)+A13*(U**3)+.....+A1N*(U**N)
where U=2*(w-.75) ; thus, the range of p1 is (.707...-.75) <= p1 < (1-.75)

y

The polynomial "p1" is computed from right to left using

p1=A10+Ur (A11+Ur (Al2+Ur (A13+Ur (A14+U*(A15+U*(A16+.....+U*(A1N) .

The POLY32 routine used to compute p1 assumes that - 1/2 <= U < 1/2 and "U" has
the signed magnitude format [S, (0.31.0)1*2**(-32) and that p1 lies in the
range -1 /4 <= pt < 1/4 (it does) and has the 2's complement format
(1.31.0) #2*# (-32) .

The starting location of the memory space that stores the "A1" coefficients
needed to compute p1 and then y1 is COEF1. The coefficient data are assumed
stored in the sequence:

Address	 Item
COEF1 + 0	 A10(hi)
COEF1 + 2	 A10(lo)
COEF1 + 4	 A11(hi)
COEF1 + 6	 A11(lo)

COEF1 +4*N1	 A1N(hi)
COEF1 +4*N1+2 A1N(lo)

N1, the degree of the "p1" polynomial, is defined within this subroutine.

— 3-4 —

MF'P SCIENTIFIC SUBROUTINES	 ORIGIN)" L GOODYEAR AEROSPACE
OF Pou+J-'	 CORPORATION

GER-17221

Y=y1*(2**((EX-128)/2))
where EX is the VAX biased exponent of X.

When the exponent of "X" is odd, the routine demands the calculation of

y2=SQRT(w/2)
where .5 <= w < 1 ; thus, the range of y2 is .5 <= y2 < (.707...) .

The value of "y2" is established using the polynomial, "p2", given by

p2=A20*(U**0)+A21*(U**1)+A22*(U**2)+A23*(U**3) A2N*(U**N)
where U=2*(w-.75) ; thus, the range of p2 is (.707...-.75) <= p2 < (1-.75) .

The polynomial "p2" is computed from right to left using

p2=A20+U*(A21+U*(A22+U*(A23+U*(A24+U*(A25+U*(A26 U*(A2N)

The POLY32 routine used to compute p2 assumes that -1/2 <= U < 1/2 and "U" has
the signed magnitude format [S, (0.31.0)1*2**(-32) and that p2 lies in the
range -1/4 <= p2 < 1/4 (it does) and has the 2's complement format
(1.31.0)*2**(-32) .

The starting location of the memory space that stores the "A2" coefficients
needed to compute p2 and then y2 is COEF2. The coefficient data are assumed
stored in the sequence:
Address Item
COEF2+ O A20(hi)
COEF2+ 2 A20(lo)
COEF2+ 4 A21(hi)
COEF2+ 6 A21(lo)
COEF2+ 8 A22(hi)
COEF2+ 10 A22(lo)

COEF2+4 *N2 A2N(hi)
COEF2+4*N2+2 A2N(lo)

N2, the degree of the "p2" polynomial, is defined within this subroutine.

Once y2 is computed, the output floating point Y value is given by

Y=y2*(2**((EX-128+1)/2))

f

- 3-5 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

where EX is the VAX biased exponent of X.

For both the "p1" and "p2" polynomials above, coefficients of the polynomial
are assumed to have the same format as is used for the polynomial value. The
"Al" and "A2" coefficient blocks for both polynomials are stored as part of
this subroutine.

The degree of the polynomials is at least 1.

The entry branch and link register for this subroutine is RF. The subroutine
calls the P0LY32 subroutine by way of register RF. The POLY32 subroutine , in
turn, calls the subroutine, MULT32.MS, as an internal subroutine (i.e., no BAL
register is used) .

Registers directly required by this subroutine are marked with a "*".
Registers indirectly required by the P0LY32 routine are marked with a "#".
Registers indirectly required by the MULT32 . MS routine are marked with a

Register:; RE; RD; RC; RB I RA; R9; R8; RV R61 R5; R4; R3; R21 R1; RO

	

SQRTM Use:! 	i

	

P0LY32 Use:!	 i# i	 i	 i# i# i# i# i	 i	 i	 i	 i# i	 i#

	

MULT32.MS Use:!	 i$ 11 1	 $ I$ i	 i	 i	 $ i$ i$ i$ i$

ON ENTRY:
R9=Xlo
RB=Xhi

ON EXIT:
RO=Ylo
R2=Yhi

.bp

1. SQRTM entry .
Register:; RE; RD; RC; RBI RA; R9; R8; R7; R6; R51 R41 R3; R2; R1; R0

	

Use:!	 1	 i	 i Xhi i 	 i Xlo i 	 i	 i	 1	 1	 i

-3-6-

t

	

-,- T .	 - -

:^ al

vy

J

1+
• e{
j 9

End If.

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

2. RE-O (Set status to 0.)
Register:! RE! RD! RC! RBI RAI R91 R81 R71 R61 R51 R41 Rai R21 R1I RO!

Use:!	 C!	 !	 lXhi!	 'Xlo!	 I

3. IF RB=O (Check for X=O; re

X_negative; abort
Register:! RE! RD! RCI RBI

	

!	 !	 !!	 !

	

Use:!	 01	 !	 !
	

oil

turn with Y=l

with status
RAI R9I R81

!	 !	 !
Ixio!	 !

in such case. Also, check for

value of 3 in such case.)
RV R61 R51 R41 Rai R21 R11 RO

!	 !	 !	 !	 !	 !	 !

!	 !	 !	 !	 !	 !	 !

IF R9=0

RO=0 . (Ylo=O.)
R2=0 . (Yhi=O.)
RETURN (by way of RF).

Register:! RE! RD! RC! RBI RAI R91 R8; R7I R61 R51 R41 R31 R21 R1I R0

	

I	 !	 I	 I	 !	 !	 !	 !	 I	 !	 I	 !(0)!	 !(0)!

Use:!	 01	 It	 It	 0 11 	 1- 0 11 	 It	 !	 !	 !	 !	 Mil	 lYlo!

Else
Continue

Register:;REI RD! RCI RBI RAI R9I R8! RV R61 R5! R4I R3I R2I R11 RO!
11	 i

Use:!	 OI	 !	 I	 01	 !Xlo!	 !	 !	 !	 !	 !	 !	 !	 !	 !

End If.

Else
IF RB=negative

RE=X'0003'

RETURN (by way of RF).
Register:! RE! RD! RCI RBI RAI R91 R81 R7! R6I R51 R4I R3I R21 R11 ROI

Use:!	 311 	 I	 lXhil	 IXlo!	 !	 I	 !	 !	 !	 !	 !	 !	 !

Else
Continue

Register:!REI RD! RCI RBI RAI R9I R81 RV R61 R51 R41 R3I R21 R11 RO!

	

11	 11	 11	 1

Use:!	 01	 !	 Mil	 IXlo!	 !	 !	 !	 !	 !	 !	 !	 !	 !

End If.

- 3-7 -

Aow

*A

U

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE 	 /}
CORPORATION
GER-17221

4. (RB, RC):RB*X'0200 1 , cardinal multiply.
(Put X exponent (and "0" sign bit),
right justified, into RB; put true
mant133a-.75 into (R9, RA) (radix
point for X true mantissa is 1 bit
Position left of left edge of R9).
EX is biased exponent of X.)

Register:! RE! RD! RC! RB! RA! R91 R81 R71 R61 R5 1 R41 R31 R21 R11 RO!

Use:!	 0 1 	lmhl! EX!	 lXlo!	 !	 !	 !	 !	 !	 !	 !	 !	 !

09, RA) =R9*X'0200 1 , cardinal multiply.
Register:! RE! RD! RC! RB! RA! R91 R81 R71 R61 R51 R41 R31 R21 R11 R0

Use:!	 0 1 	lmhl! EX1mlolmh2!	 !	 !	 !	 !	 !	 !	 !	 !	 !

R9=R9 .OR. RC (Merge mantissa chunks.)
Register:! RE! RD! RC! RB! RA! R91 R81 RV R61 R51 R41 R31 R21 R11 RO!

Use:!	 0 1 	! - ! EXlmlolmhi!	 !	 !	 !	 !	 !	 !	 !	 !	 !
1

5. (Create true mantissa-.75 . Then conceptually multiply result by 2 to
create U. Radix point will then be at left edge of R9.)
RD=.NOT. R9 . (Lead bit of RD, RD(0), now contains sign bit of U.);
RD=RD .AND. X 1 8000'	 (Clears all but U sign bit.)
If RD=O

(Sign bit of U is 0, i.e., +.)
R9=R9 .EXCLUSIVE OR. X 1 8000'	 (Clear lead bit of R9 when

true mantissa- . 75 is +; creates	 =^
Uhi. Ulo already exists. Uhi,Ulo
is the magnitude of U.)

Else
R9=R9 .EXCLUSIVE OR. X 1 7FFF'	 (Clear lead bit of R9 when

true mantissa-.75 is -; complement
remaining bits of R9 to create
Uhi. Now proceed to complement
RA which becomes Ulo. Uhi,Ulo
is the magnitude of U.)

RA=RA . EXCLUSIVE OR. X'FFFF'	 (Complement complete.)
Register:! RE! RD! RC! RB! RA! R91 R81 R71 R61 R51 R41 R31 R21 R11 R0

Use:!	 01 SU! - ! EXlUlolUhi!	 !	 !	 !	 !	 !	 !	 !	 !	 !

6. RC=X ' 0001' (Detect odd /even character of X exponent.)
Register:! RE! RD! RC! RB!RA! R9! R8! R7! R6! R5! R41 R31 R21 R11 RO!

11	 11	 11	111	 0 11 	11	
1Use:!	 01 SU!	 11 EXIUlolUhi!	 !	 !	 !	 !	 !	 !	 !	 !	 !

-3-8-

I

GOODYEAR AEROSPACE
CORPORATION
GER-17221

(y	 MPP SCIENTIFIC SUBROUTINES
r

RCzRC .AND. RB (RC21 if EX is odd; RCzO if EX is even.)
Register:l RE! RD! RC! RBI RAI R9I R8I R7I R61 R51 Rol R3! n2! R1! ROI

	

1	 11	
il	 11	 11	 11

11	 1	 11	
11	 11	 1	 1

	Use:!	 01 SUIO/El EXIUlolUhil	 !	 !	 !	 !	 It	 !	 It	 !	 !

7. If RCzO

	

Register:! RE! RD! RCI RBI RAI R9I R8I RV R61 R51 Rol RV R21 R1! ROI
11 	11	 11i	 1	 i	 ii	 i	 i

	Use:!	 01 SO!	 01 EXlUlolUhi!	 11 !	 11	 l	 !	 !	 !	 !	 !

	R7=N1	 (Set degree for calculating "p1" (even EX).)
R8zCOEF1+4*N1+2 (Set to last 16 bit address of COEF1 block.)

Register:! RE!RD! RCI RBI RAI R91 R8I RV R61 R51 R41 R31 R21 R1! ROI

	

I	 1	 Oi	 i	 i	 i	 i	 ii	 i	 i

	

Use:!	 01 SO!	 01 EXIUlo Whilloclent!	 !	 I	 I	 !	 I	 l	 I
BAL,RF	 POLY32. (Compute "p1" polynomial.)

Register:! RE! RD! RCI RB! RAI R91 R81 RV R61 R51 R41 R31 R21 R1! ROI
(!	 11 O! 	11	 11	 11	 11	 11!	 !	 !	 !	 !	 p1 !	 !	 p1!

	

Use:;	 01 SO!	 01 EXIUlolUhi! - ! - !	 l	 ! - ! - ! hi! - ! lol

(Warning: Polynomial coefficients must be chosen so that the maximum
value of p1 is X'FFFFFFFF' for the maximum input X=X'FFFFFFFF'. Also,
polynomial coefficients must be chosen so that the minimum
value of pt is X'00000000' for the minimum input X=.S .)
R2=R2+X'4000' (Unbias p1 to create pt+.25=Y true mantissa-.5

Result is positive; lead sign bit is 0. Radix
point is at left edge of R2.)

RB=RB-128+0+256 (Preliminary development for biased "Y" exponent.)
(RB, RC)=RB*X'0040' , 2's complement multiply.

(Develop "Y" exponent and sign bit.)
(R2, R3)=R2*X'0100' , cardinal multiply. (Line up "Y" mantissa hi.)
(R0, R1)zRO*X'0100' , cardinal multiply. (Line up "Y" mantissa lo.)
R2=R2 .OR. RC (Merge "Y" sign, exponent, and mantissa hi.)
RO=R0 .OR. R3 (Merge "Y" mantissa lot with mantissa 102.)
RETURN (by way of RE).

Register:! RE! RD! RC!RB! RAI R91 R81 R71 R61 R51 R41 R31 R21 Ell ROI

	

I	 I	 of	 I	 !	 !	 !	 !	 !	 !	 !	 !	 !	 !	 !	 !
	Use:!	 01 SO!	 01 EXlUlolUhi! - l - !	 !	 l - l - lYhil - lYlol

Else
Register:! RE! RD! RC! RBI RA! R9I R81 R7! R61 R51 R41 R31 R21 Ell ROI

	

Use:!	 OI SO!	 01 EXIUIoIUhil	 !	 !	 I	 !	 I	 !	 !	 !	 !

..7zN2	 (Set degree for calculating "p2" (odd EX).)

- 3-9 -
t

qlvqfq^v
--fix-

GOODYEAR AEROSPACE
CORPORATION

GER-17221

MPP SCIENTIFIC SUBROUTINES

R8:COEF2+4*N2+2 (Set to last 16 bit address of COEF2 block.)
Register:! RE! RDI RCI RBI RA! R91 R81 R7! R61 R51 R41 R31 R21 R11 ROI

	

I	 I	 o!	 1	 1	 1	 1	 1	 1	 1	 11	 1	 1	 1	 1

	

Use:!	 01 SUI	 01 EXIUlolUhil loclontl 	 I	 I	 I	 I	 1	 I	 I

BAL,RF	 POLY32. (Compute " p2" polynomial.)
Register:! RE! RD! RCI RBI RAI R91 R81 RV R6! R51 R41 RV R21 R11 R01

	

I	 !	 0!	 1	 !	 !	 I	 !	 !	 1	 !	 !	 ! p2!	 !	 p21
	Use:!	 0 1 SUI	 01 EXlUlolUhil - 1 - 1 	 !	 ! - 1 - ! hi! - ! lo!

(Warning: Polynomial coefficients must be chosen so that the minimum
value of p2 is X'00000000' for the minimum input X-.25 .)
R2=R2+X 1 4000' (Unbias p2 to create p2+.25=Y true manti33a-.5

Result is positive; lead sign bit is 0. Radix
point is at left edge of R2.)

RB=RB- 128+1+256 (Preliminary development for biased "Y" exponent.)
(RB, RC) =RB*X'0040' , 2 0 3 complement multiply.

02, R*) =R2;X'0100' , cardinal multiply. (Line up "Y" mantissa hi.)
(R0, Rl) -R0*X'0100' , cardinal multiply. (Line up "Y" mantissa lo.)
R2sR2 .OR. RC (Merge "Y" sign, exponent, and mantissa hi.)
RO:RO .OR. R3 (Merge "Y" mantissa lot with mantissa lo2.)
RETURN (by way of RF).

Register:! RE! RD! RCI RBI RAI R91 R81 RV R61 R51 R41 R31 R21 R11 R01

	

Use:!	 01 SUI	 01 EXIUlo1Uhi! - 1 - 1	 1	 ! - ! - lYhi1 - IYlo1

End If.

END

- 3-10 -

z	 ---- -

Al

1

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION

.-17221

3.2.2 MCU SINE SUBROUTINE DESCRIPTION : SINM---
Subroutine develops the value, "Y", the sine of the input variable, "X".
"X", the input, and "Y", the output, are 32 bit VAX floating point numbers.
Along with "Y", a 16 bit status value, S, is generated for output; it is
0 when ;X; is leas than 2ee24. When ;X= is equal to or greater than 20#24,
the angular uncertainty is on the order of 2 radians and so the Y answer
becomes meaningless; the status is set to 3 in such case (no processing
is performed).

The "Y" value range is	 -1 <= Y <_ +1

•err*rr0000##ererrarr0000#####eererrereerrrrreerrrrrrererrrrrreerrrrrrrerr
The subroutine demands the calculation of

Y=SIN(X)=((-1) rrSX) rSIN(1X;) where
SX is the value of the sign bit of X, and
;X; symbolizes the absolute value of X.

;Y; must be computed using a number of different approximations. For true X
exponents (TEX) less than 0, the ;X; interval is dissected into 3 different
sub-intervals, namely,

1) TEX < (-10)	 or	 ;Xi < 2r0(-11)
2) (-10) <= TEX < (-4)	 or	 2er(-11) <_ ;X; < 2ee (-5)

and	 3)	 (-4) <= TEX < (0)	 or	 2r0(-5) <_ ;X; < 2r0 (-1)

For true X exponents greater than or equal to 0, ;Y; is computed only after
converting X to units of 1/4 rotations and then converting this resultant
value, R, to an integer form. To find ;Y; in such case, the fractional part
of R, Rf , is first dissected into 8 equal sub-intervals. For the appropriate
sub-intem,al ",j", the associated polynomial, aj, is used to approximate
((SIN(Rfr(PI/2)))/C")-.25 . Then, SIN(ARG) is approximated by 20(s,j+.5).
For odd quadrants,

ARG=(1+Rf) ePI/2 .

For even quadrants,

ARG=(Rf) rPI/2 .
Yi=2r (aJ+.5) .

The final Y value is determined by the ;X; quadrant index and the sign of X.
i

- 3-11 -

"mac

^	 1

a

MPP SCIENTIFIC SUBROUTINES 	 fjOODYEAR AEROSPACE
CORPORATION
GER-17221

Specifically,

IYI:2*(sj+.5) and the sign of Y, SY, is 	 d

SY:SX . EXCLUSIVE OR. Qhi . EXCLUSIVE OR. Qlo where
'	 SX is the sign of X,

Qhi is the top bit of the 1X1 quadrant index, and
Qlo is the bottom bit of the IXI quadrant index.

The specific approximations for the 3 IXI sub-intervals Corresponding to
negative X exponents are listed below. Then, the 8 approximations used to
approximate	 ((SIN(Rf*(PI/2)))/2)-.25	 are listed.

APPROXIMATIONS

Sub-interval 1)

When the true exponent of X is less than -10, 	 y

'YisiXi.

^i

Sub-interval 2)

When the true exponent of X is less than -4 but greater than or equal
to -10, 1Y1 is given by

IYI=1X1-(1X1**3)/6 and so by

IYI=1X1 # (1- (2/3)*X2) 	where
X2z(iXi/2)**2.

POLY32, the polynomial expansion routine, is not uLad to compute this
approximation.

Sub-interval 3)

When the true exponent of X is less than 0 but greater than or equal
to -4, 1Y1 is found using

1Y1=1x1*(1-G(1X1/2)) where
G(IXI/2)=1-(SIN(iXi))/iXi

The value of G(IX1 /2) is established using the polynomial, "p1(U)", given by

p1(U)=A10 *(U**0)+A11*(U** 1)+Al2*(U**2)+A13*(U**3) A1N1*(U**N1) where

-3-12-

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Ua iX1/2 ,
the IXI range is	 1/32 <- ;X; < .5
the U range is	 1/64 <- U < .25 , and
P1 approximates (G(;X;/2))/2 .

The polynomial "p1" is computed from right to left u34ng

p1(U)aA10+Ur (A11+Ur (Al2+Ur (A13+Ur (A14+U6 (A15+U6 (A16 U6(A1N)

The POLY32 routine used to compute p1 assumes that 	 1/64 <a U < 1/4 and
"U" has the signed magnitude format 	 (S, (0.31.0)1 0 2 0 *(-32)	 and that
pt lies within the range -1/4 <- p1 <- 1/4 (it does) and has the 2'3
complement format	 (1.31.0) 0206 (-32) .

The starting location of the memory space that stores the "Al" coefficients
needed to compute p1 is COEF1. The coefficient data are assumed stored in
the sequence:

Address Item
COEF1+ 0 A10(hi)
COEF1+ 2 A10(10)
COEF1+ 4 A11(hi)
COEF1+ 6 A11(10)
COEF1+ 8 Al2(hi)
COEF1+ 10 Al2(lo)
COEF1+ 12 A13(hi)
COEF1+ 14 A13(lo)

COEF1+40N1 A1N(hi)
COEF1+40N1 +2 A1N(lo)

N1, the degree of the "p1" polynomial, and the COEF1 coefficient data are
defined within this subroutine.

Once p1 is computed, the output ;Y; value is given by

!Ylz!Xi 6 (1-26 p1)	 .

arrr.

X a) .5 approximations

..	 -When thetrue exponent of X is 0 or greater, ;Y= is found by first converting
the angle ;X; from a radian measure to a 1/4 rotations measure. The

- 3-13 -

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

converted angle is called "IRI" and is described in terms of units of
radians. 1R1, is defined by

,RIs;X1/(PI/2):1X1 *(2/PI/)	 (Unitssi /4 rotations).

The fractional part of 1Ri, Rf, is dissected into 8 equal sized sub-intervalz
that are indexed from 0 through 7. For each sub-interval, the SIN((PI/2)*Rf)
is approximated using the particular polynomial associated with the
sub-interval. The "J"th (J:O, 1,..., 7) sub-interval approximation of
SIN((PI/2) *Rf) is described in terms of the polynomial 3J(U) where U is
related to Rf using

RfsJ/8+(U/8)	 where
0 <2 U < 1 .

The polynomial, "sJ(U)", is defined by

sJ(U)sBJO*(U**0)+BJ1*(U**1)+BJ2*(U**2)+BJ3*(U** 3) BJMJ*(U**MJ) where
the Rf range is	 +'8 <: Rf < (J+1)/8 , Jz1,...,7
the U range is	 0 <s U < 1 , and
3J(U) approximates 	 (SIN((Rf*PI/2)))/2

The polynomial "sJ" is computed from right to left using

sJsBJO+U*(BJ1+U*(BJ2+U*(BI3+U*(BJ4+U*(BJ5+U*(BJ6 U*(BJMJ) .

The POLY32 routine used to compute sJ assumes that 	 0 <= U < 1 and
"U" has the signed magnitude format 	 (S, (0.31.0))*2**(-32)	 and that
sJ lies in the range	 -.5 <a aJ <s .5 (it does) and has the 2'3
complement format	 (1.31.0)*2**(-32) .

The starting location of the memory space that stores the "BJ"
coefficients needed to compute sJ is KOEFJ. The coefficient data
are assumed stored in the sequence:

Address Item
KOEFJ+ 0 BJO(hi)
KOEFJ+ 2 BJO(lo)
KOEFJ+ 4 BJi(hi)
KOEFJ+ 6 BJ1(le)
KOEFJ+ 8 BJ2(hi)
KOEFJ+ 10 BJ2(lo)
KOEFJ+ 12 BJ3(hi)
KOEFJ+ 14 BJ3(lo)

KOEFJ+4 *113 BJN(hi)

- 3-14 -

-	 ^-

f
Ir

•i
ORIGINAL PAGE

tLITYAAMPP SCIENTIFIC SUBROUTINES 	 OF POOR
QUALITY
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

KOEFJ+4*N3+2 BJN(lo) .

Mj, the degree of the "sj" polynomial, and the KOEFJ coefficient data are 	 '1 4

defined within this subroutine.

Once s3 is computed, the output SIN(Rf*(PI/2)) value is given by

SIN(Rf*(PI/2))=2 *sj .

For the "p1" and "sj" polynomials above, coefficients of the
polynomial have the 2's complement format	 (1.31.0)*2**(-32) , the same
format as is used for the polynomial value.

The degree of the polynomials is at least 1.

The entry branch and link register for this subroutine is RF. The subroutine
calls the POLY32 subroutine by way of register RF. The POLY32 subroutine , in
turn, calls the subroutine, MULT32.MS, as an internal subroutine (i.e., no BAL
register is used) .

Registers directly required by this subroutine are marked with a
Registers indirectly required by the POLY32 routine are marked with a 11#11.
Registers indirectly required by the MULT32.MS routine are marked with a "$".

Register:; RE; RD; RC; RB I RA; R9; R8; R7; R6; R51 R4; R3; R2; R1; RO

	1* I* 1* 1* 1* 1* 1* I* I* I* 1	 1* I* 1* 1* 1	
__

I	 II	 I	 I	 1	 1	 1	 1	 I	 1	 I	 I	 I	 1
POLY32 Use:!	 i# i	 i	 i# i# i# i# i# i	 i	 i	 i# i	 i#
MULT32 Use:!	 11$ i	 i	 i$ 11 $ i	 i	 i	 i	 i$ i$ i$ 11 $ i$

ON ENTRY:

R9_Xlo
RB=Xhi

ON EXIT:
RO=Ylo
R2=Yhi

rte-.

,% 1

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION	 -
GER-17221

SINM entry

##

1. SINM entry .

Register: ; RE; RD; RC; RB; RA; R9; E81 R7; R6; R5; R4; R3; R2; R1; RO
11	 11	 1

Use:i	 1	 i	 iXhii	 'Xlol	 i	 i	 i	 1	 i	 i	 1	 i	 i

2. RO=X'4000' . (Capture complement of true exponent sign bit in R0.)
Register:; RE; RD; RC; RB; RA; R9; R8; R71 R6; R51 R4; R3; R2; R1; R0;

Use: 1'	 i	 'Xhii	 iXlOi	 i	 i	 1	 i	 1	 1	 1	 Wsei

3. RO=R0 .AND. RB	 (Complement of sign of X true exponent in RO after step.)
Register:; RE;	 RD;	 RC;	 RB;	 RA;	 R9;	 R8;	 R71	 R6;	 R51	 R4;	 R3; R2;	 R1;	 RO

Use:1 i	 i	 iXhii	 iXloi	 i	 i	 i	 i	 i	 i i	 iSEXi

4. IF RO =0	 (Split processing based on true exponent (-) or	 (+,0).)
Register:; RE;	 RD;	 RC;	 RB;	 RA;	 R9;	 R8;	 R7;	 R6;	 R5;	 R4;	 R3; R2;	 R1;	 RO

Use:1 1	 1	 iXhii	 !XlOi	 i	 i	 i	 i	 i	 i i	 i-	 i
(The true X exponent must lie in the range, -128 <= EXP-128 <= -1
to branch in this direction. i

Develop X sign bit in R2(0) and "0" in other 15 bits.)
P

4.0 R2=X'8000'
R2=R2	 .AND. RB	 . (Sign bit now in R2(0).)

Register:; RE,	 RD;	 RC;	 RB;	 RA;	 R9;	 R8;	 R7;	 R6;	 R5;	 R4;	 R3; R2;	 R1;	 R0;

Use:; ;	 ;	 ;Xhi;	 ;Xlo;	 It	 ;	 It	 ;	 ;	 ; SX;

4.2 RB=RB .EXCLUSIVE OR. R2 	 . (Zero ' s out X sign bit in RB;
X becomes M.)

Register:; RE;	 RD;	 RC;	 RB;	 RA;	 R91	 R8;	 R7;	 P. j	 R5;	 R4;	 R3; R2;	 R1;	 RO
11 11W,
	 111	 1	 11
	 11	 11

Use: i 1	 1	 1	 hi;	 1	 loi	 i	 1	 1	 i	 i	 1 SXi	 i-
(Na termtne if X true exponent is less than -10.)

4.4 RO=RB	 . (Replicate ;X;	 high.) f
R0=R0-((128-10) # 128)	 (Remove exponent bias; add 10 to result.)
R0=R0 .AND. X'FF80'	 (Clear mantissa bits out of R0; RO value is

'

- 3-16 —

rr/
__ ^_-	 - `=

"rte' ^' -.••^,

M

ORIGINAL PAGE 19

	

MPP SCIENTIFIC SUBROUTINES 	 OF POOR QUALITY	 GOODYEAR AEROSPACE
CORPORATION

	

GER-17221	 !

(true X exponent + 10) # 128 ; final result
is T1.)

Register:! RE! RD! RCI RBI RA' R9' 1181 1171 R61 1151 1141 1131 1121 R11 R0; 	 1
!	 1111	 ! ! X''	 '	 !	 '	 '	 '	 !	 !	 !

Use:'	 !	 !	 ! hi'	 ' loll	 1	 !	 !	 !	 !	 ' SX!	 ! T1

4.6	 If RO=negative
(X true exponent is less than -10, T1 < 0; Y=X.)

4.6.0

	

	 R2=R2 .OR. RB . (Re-insert sign bit into 1X1 high in R2.
Yhi=Xhi.)

RO=R9	 (Ylo=Xlo.)
RE=O	 (Set status.)
RETURN (by way of RF).

Register:! RE! RD! RCI RBI RAI R91 1181 R71 R61 1151 R41 R31 R21 R1I ROI
!	 !	 !	 !!X!!	 !!X!'	 !	 !	 '	 !	 '	 !	 !	 !	 !

Use:!	 01	 It	 It hi!	 ! lo!	 It	 !	 !	 ' 	 !	 lYhi!	 lYlo!
##

i

Else f

(X true exponent is greater than or = to -10 but less than 0.
(0 <= T1	 <	 10).)

'	 Register:! RE' RD!	 RCI	 RBI	 RAI	 R91	 R8I	 B71	 1161	 R51	 R41	 R31	 R21	 R1I	 ROI
"X!'	 11 11 X11	 1	 '	 '	 '	 !	 '	 !	 '	 !	 1

y

Use:' ! '	 '	 hi'	 '	 loll	 1	 !	 !	 1	 '	 '	 SX'	 I	 T1'

4.6.1 (R0, R1)=R0 #X'0400'	 (card). (Let E2A=2 # (X true exponent + 10);
t

put E2A into R0.)
Register:! RE! RDi	 RC!	 RBI	 RAI	 R9!	 R81	 1171	 R61	 R51	 R41	 R31	 R21	 R1I	 ROI

Use:1 ! 1	 I	 hi ll	'	 lo ll	!	 !	 It	 !	 !	 !	 SX'	 -	 lE2A!

(Put X true mantissa magnitude into RC, RA.)
4.6.3 (RB, RC)=RB#X'0100'	 (card)	 . (Put X true mantissa (high) into

RC; radix point is on left edge
of RC.)

(R9, RA)=R9#X'0100'	 (card)	 . (Put X true mantissa (low) into
R9,	 RA.)

RC=RC .OR. R9	 . (Merge high mantissa bits.)
RC=RC .OR. X 1 8000'	 (Insert lead "1" bit into X mantissa;

result is X true mantissa, mX, in
(RC,	 RA)	 .)

Register:! REI RD!	 RCI	 RBI	 RAI	 R91	 R81	 RV	 R61	 115I	 R41	 R3I	 1121	 R11	 ROI
I	 mX'	 !	 mX'	 !	 !	 !	 !	 !	 '	 '	 !

Use:! ! '	 hi ll	-	 !	 lo!	 -	 I	 !	 It	 !	 !	 I	 '	 SX!	 -	 lE2A!

(Replicate true mantissa (magnitude); put (RC,RA) into (R5,R3).)
4.6.5 R5=RC	 .

R3=RA	 .

- 3-17 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER -17221

Register:! RE! RD! RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R1I R0

	

I	 !	 ! mX !	 1 mX !	 !	 _	 !	 ! IDX !	 ! mX i

	Use:!	 !	 1 hi! - ! lo= - 1	 !	 !	 ! hi!	 it lo ll SX! - I M I

(Make 1X1 /2 an integer. Its radix point is to be at the left
edge of R6. If R6, R5, and R3 are considered contiguous, and
the radix point now sits at the left edge of R6, then the X
true mantissa magnitude has been multiplied by 2ee (-16). To
make the integer 1X1 /2, the mX value should have been
multiplied by 2**(tru exp -1) and not by 2**(-16). To correct
the (R6, R5, R3) value, it gust be multiplied by
2**(tru exp + 15) or, since the RO value divided by 2 is
(tru exp + 10), by 2**((ROvalue/2)+5).
The values of RO range from 2*0 to 2*9. For the various values
of RO, the v;.lues of 2**((ROvalue/2)+5) will be pulled from the
MCU memory table, SHF . The table follows:

SHF Table

Location RO 2**(RO/2)
SHF + 0 2*0 X10001'
SHF + 2 2*1 X10002'
SHF + 4 2*2 X'0004'
SHF + 6 2*3 X'0008'
SHF + 8 2*4 X10010'
SHF +10 2*5 X10020'
SHF +12 2*6 X10040'
SHF +14 2*7 X10080'
SHF +16 2*8 X10100'
SHF +18 2*9 X10200'
SHF +20 2*10 X10400'
SHF +22 2*11 X10800'
SHF +24 2*12 X11000'
SHF +26 2*13 X12000'
SHF +28 2*14 X14000'
SHF +30 2*15 X18000'

	

4.6.7	 RO=RO+SHF5	 (SHF5=SHF+2*5 . Point to correct location in
shift table. PNT is the pointer value in R0.
E+5=2*(true X exponent+10+SHF5)=PNT.)

R1=0(RO)	 (Put the scaling value, SCL, in memory location
referenced by RO into R1.)

Register:! RE! RD! RC! RBI RA! R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI
1	 ! mXI	 ! mX!	 !	 !	 1	 1 mX!	 1 mX!	 !	 lPNTI

Use:!	 !	 ! hi! - ! lo ll - 1	 !	 1	 1 hil	 I loll SXISCLIE+SI

	

4.6.9	 (R5, R6)=R5*R1 (card) 	 (Shift X true mantissa high according
to SCL; create higher part of 1X!/2 .)

- 3-18 -

a

	MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

(R3, R4)=R3*R1 (card) . (Shift X true mantissa low according
to SCL; create lower part of 1X;/2 .)
R3=R3 .OR. R6 . (Merge low parts of integer ;X;/2; integer
1X;/2 is in (R5, R3) after step. Radix point
is at left edge of R5.)

Register:; RE; RD; RC; RB;RA; R9; R8; RV R6; R51 R4; R3; R2; R1; RO
1, mXi	 i mXi	 1	 i	 i	 lint,'	 'lint,'	 i	 1PNT

Use:', 1111 hi ll - 11 loll - 11 1	 11- iiXii - iiXii SXiSCLiE+Si

	

11 	 11	 11	 11	 111	 11 /2i	 1	 /21

	

i	 i	 i	 i	 1	 1	 1 hill	 1	 loll	 1

(Split processing where X true exponent is less than -4.)
4.6.B	 RO=RO-(SHF5+2*(10-4)) . (RO/2=tru exp + 4; E24=2*(tru exp + 4).)
Register:; RE; RD; RC; RB; RA; R9; R8; RV R6; R5 R4; R3; R21 R1; R0

	

mXi	 i	 i	 ilint
	

int;

	

Use:',i	 i hill - i loll - i	 i	 i- iiXii - iiXii SXi - iE24

	

1
/211
	 /2i

	

11 hi:	 loll	 i

4.6.D	 If RO=negative
(X true exponent is less than -4 but greater than or
equal to -10. Use ;Y;=;X;*(1-(2 /3)*(;X; /2)**2) for
computing ;Y;.
Square integer 1X;/2 1st.)

4.6.D.0	 (R3, R4)=R3*R5 (card) . (Multiply to times hi (int X).)
(R5, R6)=R5*R5 (card) . (Multiply hi times hi Unt X).)
R6=R6+R3 ,save carry out . (Partial square lo.)
R5=R5+carry in . (Partial square hi.)
R3=R3+R6 ,save carry out . (Full square lo.)
R5=R5+carry in . (Full square hi.)

Register:; RE; RD; RC; RBI RA; R9; R8; RV R6; R51 R4; R3; R2; R1; RO
IImXi	 i mXi	 1	 1	 1	 lint;	 lint!

	

Use:1	 1	 1 hill - 1 loll - i	 1	 i - iiXii - iiXii SXi - iE24

	

i	 i	 i 	 1	 1	 i	 i	 /21	 1 /21

	

i	 1	 1	 1sgri	 isciri

i hill	 i I

(Square of integer 1X;/2 is in (R5, R3); radix point is at
left edge of R5. Multiply square times (2/3)= .6666... and
call the result "D" . Then subtract "D" ,namely ,
(. 6666 ...*(iX;/2)**2) from 1 and call the result C.)

4.6.D.2	 (R3, R4)=R3*X'AAAA' (card) . (Multiply to (int 1Xi/2 sqr)
times both (2/3) hi and
(2/3) lo. The hi and to
part of (2/3)=X'AAAA';

ŝ	radix point of (2/3) hi
is at left edge of

- 3-19 -

•t

-sue•

vd

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE	 l
CORPORATION
GER-17221

at X'AAAA'.)
(R5, R6)=R5*X'AAAA' (card) . (Multiply hi (int 1X! /2 sqr)

times both (2/3) hi and
(2/3) lo.)

R6=R6+R5 ,save carry out . (Add for partial multiply, lo.)
R5=R5+carry in . (Add for partial multiply hi.)
R3=R3+R6 ,save carry out . (Add for full multiply, Dlo.)
R5=R5+carry in . (Add for full multiply, Dhi.)

Register:! RE! RD! RC! RBI RA! R91 R81 R7! R61 R51 R41 R31 R21 R11 RO!

	

I	 1

	Use:!	 !	 ! hill - ! loll - It	 It	 ! - IDhi! - Mo! SV - !E241'

("C" is now in (R5, R3). Develop C=1-D=1-(X**2)/6 .)
4.6.D.4	 R5=.NOT. R5 . (1-(X**2)/6 hi.)

R3=.NOT. R3 . (1-(X**2)/6 lo. "C" is now in (R5, R3).)
Register:! RE! RD! RC! RBI RA! R91 R8!R7! R6! R5! R4! R3! R2! R1! RO!

	

1	 1'	 11	 11	 1

	Use:!	 !	 ! hi! - ! lo! - !	 !	 ! - lChi! - lClo! SX! - !E2411

(Multiply the !X! true mantissa times "C" to get the
value, mX*(1-(X**2)/6). Call - the result mV. Put into
(R5, R3).)

4.6.D.6	 (RA, RB)=RA*R5 (card) . (Multiply mXlo times Chi.)
(R5, R6)=R5*RC (card) . (Multiply Chi times mXhi.)
RA=RA+R6 ,save carry out . (Add for partial multiply, lo.)
R5=R5+carry in . (Add for partial multiply hi.)
(R3, R4)=R3*RC (card) . (Multiply Clo times mXhi.)
R3=R3+RA ,save carry out . (Add for full multiply; mVlo.)
R5=R5+carry in . (Add for full multiply; mVhi.)

Register:! RE! RD! RC! RBI RA! R91 R81 R7! R6 11 R5! R4 11 R3 11 R211 R1! RO!
1

	Use:!	 !	 ! - ! - ! - ! - !	 It	 ! - ! hi! - ! lo! SX! - 1E241

(If R5 lead bit is 1 (i.e., if it looks negative, the
value is in the mantissa range of the output Y. Else,
mV is a hair below .5 and needs to be multiplied by 2.
Fix and produce output.)

4.6.D.8	 If R5=negative	 (mV=.5 test)
(Pseudonegative low likelihood branch direction;
the mV magnitude is => .5 .)

4.6.D.8.0	 RO=R0+2*(128-4-1) (((Biased exponent of Y)-1)*2;
to align exponent, need to
multiply RO by 64.)

(R5, R6)=R5*256 (Y true mantissa hi 8 bits
properly positioned in R5.)

(R3, R4)=R3*256 (Y true mantissa lowest 16 bits 	 .,
properly positioned in R3.)

- 3-20 -

•	 * `gip

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Else

	

4.6.D.8.1	 RO=RO+20(128-5-1) (((Biased exponent of Y)-1)02;
t align exponent, need to
multiply RO by 64.)

(R5, R6)=R50512 (Y true mantissa hi 8 bits
properly positioned in R5.)

(R3, R4)=R3 0512 (Y true mantissa lowest 16 bits
properly positioned in R3.)

End (4.6.D.8) If.

(Fix exponent.)

	

4.6.D.A	 (R0, R1)=R00X'0040'	 (Properly positioned biased
Y exponent is now in R1.)

(Fix mantissa.)
R3=R3 .OR. R6 . (Merge to bits of Y mantissa; Ylo.)
R5=R5 .AND. X'FF7F' (Clear lead mantissa bit.)
R2=R2 .OR. R5 (Sign and biased mantissa merge.)
R2=R2+R1 (Add aligned biased Y exponent to aligned

Mi ll mantissa.)

l	 R0=R3	 (Move Ylo into R1.)
RE--O . (Status.)
RETURN (by way of RF).

Register:; RE! RD! RCt' RBI RAI R91 R81 RV R61 R51 Rot' Rat' R21 R11 ROt'

	

Use:	 - t' - t' - t' - t' - t' - t' - t' - t' - t' - is - t' - ' Yhit' - IYlot'
0000rtxx0x0xxxxxxx0x0xxxxxxxxxxxxx0xxxxxxxx0xx0xxxx0xxxxx*00000x00

Else
(IXt' true exponent is less than 0 but greater than or
equal to -4. Use t'YIzIX; O (1-G(;X;/2)) for computing Y.)

Register:; REt' RD, RCt' RBI RAI R91 R81 RV R61 R51 Rot' Rat' R21 R11 Rol

	

i	 t'	 t' mXt'	 i mXi	 t'	 1	 t'	 lint!	 t'intt'	 t'	 t'	 1
	Use:',	 t'	 t' hill - t' loll - t' 	t'	 t' - t't'Xt't' - iiXii SXt' - IE2411

/2 t'	 t' /2,

	

t'	 t'	 t'	 t'	 t'	 t'	 t'	 t'	 t'	 t'	 hit'	 t'	 loll	 t'	 t'	 t'

4.6.D.1 R6=RA
RB=RO
RE=R2
R9=R5
RA=R3
RD=O
R7=N1

R8eC01

• (Save 1Xt' true mantissa low in R6.)
• (Save 20 (;X; true exponent + 4) in RB.)
• (Save X sign in RE.)
• (Move int 1Xt'/2 hi (Uhi) into R9.)
• (Move int 1Xt'/2 to (Ulo) into RA.)
• (Load sign bit of U, a magnitude, into RD.)
(Set degree for calculating "p1" where p1
approximates (G(IXI/2))/2a(1-SIN(IXI) /t'Xt') /2

71+40N1+2 (Set to last 16 bit address of COEF1
block.)

- 3-21 - d

r ^;

I

'i

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Register:! RE! RDI RCI RBI RAI R91 R81 R7 1 R6 1 R51 R4I R31 R21 R11 ROI
I	 1	 01 mXI	 Iintlint!	 I	 I mXI	 1	 1	 1	 1	 1	 1

Used SXI SUI hiIE2411XIIIXIlloclentl lol - I - 1 - 1 - 1 - I - 1
!	 I	 1	 1	 1 /21 /2 1 	!	 !	 1	 I	 !	 !	 !	 !	 !

i	 i	 i	 i	 iof hi ll
!	 1	 !	 !	 !	 !	 !	 !	 !	 !
!	 !	 1	 !	 lUlolUhi!	 !	 !	 1	 !	 !	 1	 1	 !	 1

	BAL,RF	 POLY32. (Compute "p1" polynomial (G(IXI/2)) .)
RE! RD! RCI RBI RAI R9 1 R81 R71 R61 R51 R41 R31 R21 R11 ROI

1	 01	 mXI	 lintlint!	 1	 1 mXI	 1	 1	 1 p1l	 1 p1l

SXI SUI hiIE24I j XIIiXIi - 1 - 1 lo! - 1 - 1 - 1 hil - 1 lo!
I	 I	 I	 ! /2 11 /2 1 	 1	 !	 !	 1	 !	 1	 !	 !	 !
I	 I	 !	 ! lo! hi!	 !	 !	 !	 !	 !	 !	 !	 !	 !

!	 !	 I	 lUlolUhil	 !	 !	 !	 !	 !	 !	 !	 !	 !

4.6.D.3

Register:!

Use:

(Generate C=(1-G(IXI/2)) approximation. Note: G(IXI/2)
radix point is 1 bit location right of the left edge
of R2.)

4.6.D.5	 R2=R2 .EXCLUSIVE OR. X 1 7FFF I . (Use p1 to approximate
G(!X! /2). Radix point of
p1 (but not G) is at left
edge of R2. Operation on
(R2, RO) yields the hi
part of (1-G(IXI/2)),
i.e., Chi, an unsigned
number.)

R0=R0 .EXCLUSIVE OR. X'FFFF' . (Low part of (1-G(IXI/2));
Clo.)

Register:!RE! RD! RCI RBI RAI R9I R81 R71 R61 R51 R41 R3I R21 R1! ROI
1	 11 mX!	 1,	 1,1	 1,1 mXI	 111	 1	 1	 1	 !

Use:! SXI SUI hiIE241 - 1 - 1 - 1 - 1 lol - 1 - I - !Chi! - IClo!

(Multiply the X true mantissa times "C" to get the value,
mX*(1-G(IXI/2)). Call the result mV. Put into (R2, RO).)

4.6.D.7	 (R6, R7) =R6*R2 (card) . (mXlo*Chi.)
(R0, R1)=R0 *RC (card) . (Clo*mXhi.)
(R2, R3) =R2*RC (card) . (Chi*mXhi.)
R6=R6 +R3, save carry out. (Combine lower bits of partial

product, mV=mX*(1-G(!XI/2)).
The radix point of mV is 1 bit
right of the left edge of R2.)

R2=R2+ carry in . (Combine upper bits of partial
product, mV=mX*(1-G(IXI/2)).)

RO=RO+R6, save carry out. (Combine lower bits of complete
product, mV:mX*(1-G(IXI/2)).)

R2=R2+ carry in . (Combine upper bits of complete

- 3-22 -

	

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

product, mV=mXO(1-G(IXI /2)).)
Register:= REI RD! RCI RBI RAI R91 R81 R71 R61 R51 R4I R31 R21 R11 ROI

I	 I	 i	 I	 I	 I	 I	 I	 I	 1	 I	 1 MV 11	 I MV I
Use:! SX I SU I- 1E241 - I- 1- I- 1- I- 1- I- I h i 1- I 1 o I

(If R2(1) bit is 1, the value is in the mantissa range
of the output Y. Else, mV is a hair below .5 and needs
to be multiplied by 2. Note: The radix point of mV is
1 bit right of the left edge of R2.
Fix and produce output.)

4.6.D.9 If R2(1)=0	 (Legs than .5 test.)
(The mV magnitude is 	 < .5	 branch direction.)

4.6.D.9.0 RB=RB+20(128-5-1)	 (((Biased exponent of Y)-1)02;
to align exponent, need to
multiply RO by 64.)

(R2, R3)=R20 1024	 (Y true mantissa hi 8 bits
properly positioned in R2.)

(RO, R1)=RO e 1024	 (Y true mantissa lowest 16 bits
properly positioned in RO.)

Else
(The mV magnitude is	 => .5	 branch direction.)	 .--

4.6.D.9.1 RE_RB+2e(128-4-1)	 (((Biased exponent of Y)-1) 02;	 R"=
to align exponent, need to
multiply RO by 64.)

(R2, R3)=82 0512	 (Y true mantissa hi 8 bits
properly positioned in R2.)

(RO, R1)=R0 0512	 (Y true mantissa lowest 16 bits
properly positioned in R0.)

End (4.6.D.9)	 If.

(Fix exponent.)
4.6.D.B (RB, RC)=RBOX'0040'	 (Properly positioned biased

Y exponent is now in RB.)
(Fix mantissa.)
R0=R0 .OR. R3	 . (Merge to bits of Y mantissa; Ylo.)
R2=R2 .AND. X 1 FF7F'	 (Clear lead mantissa bit.)
R2=R2+RC	 (Add aligned biased Y exponent to aligned

IYhil mantissa.)
R2=R2 .OR. RE	 (Sign and iYhil merge.)
REsO	 . (Status.)
RETURN	 (by way of RF).

Register:I	 RE! RD!	 RCI	 RBI	 RAI	 R91	 R81	 871	 R61	 R51	 R41	 R31	 R21	 R11	 ROi	 N,

I !! I	 I	 1	 i	 1	 i	 1	 i	 1	 1	 i	 1
Use :1	 -	 I -	 I	 -	 i	 -	 I	 -	 I	 -	 I	 -	 I	 -	 I	 -	 i	 -	 I	 -	 I	 -	 I Yhi I	 -	 i Ylo I
000000000r00000000000000000r000a000000000000000000000000000000r00

- 3-23 -

	

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

End (4.6.D) If.

Else

(X true exponent is 0 or + starting here.)
Reg13ter:1 BE! RDI RCI RBI RAI R9I R81 RV R61 R51 R41 Rai R21 R11 ROI

	

I	 I	 I	 i	 I	 1	 I	 I	 I	 1{	 1	 1	 1	 1	 1

	

Use:I	 I	 I	 IXhil	 IXlol	 I	 I	 i	 i	 I	 !	 1	 !- I

3-24 -

,. g

r

	

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

rrrrrrrrarrr0rrrrrrrrrrrrrrrrrrrrrr
4.1 RExX 1 8000 1 .(Prepare to capture X sign in RE(0); clear other bits.)

REsRE .AND. RB . (Sign of X in RE; other RE bits cleared.)
RBsRB .EXCLUSIVE OR. RE . (X changed to a magnitude, IXI.)

Register:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI
I	 I	 I	 IIXII	 I1XII	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

U3e:1 SXI	 I	 I hil	 I lol	 I	 I	 I	 I	 I	 I	 I	 I- I

4.3 If RB => (128+EXmax) 0 128 (EXmax=25. IXI greater than or equal to
20024 test.)

(IXI => 20024; too much angular uncertainty results. Return
with status value of 3.)

4.3.0 RE=3 . (Statu3=S=3. Worthless results exist in Yhi and Ylo
registers.)

RETURN via RF .
Reg13ter:I REI RDI RCI RBI RAI R91 R81 RV R61 R51 R41 R31 R21 R11 ROI

1	 3	 1	 1	 1	 1	 1	 1	 1	 I	 1	 1	 1	 i	 1	 I	 1
	Use: i S I	 I	 I- I	 I- I	 I	 I	 I	 I	 I	 t'	 I	 I -1

rrrrrrrrrrrrrrrrrrrr:rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr+r

Else
(IXI < 20024 along this path.)

4.3.1	 Continue.

End (4.3) If

(True exponent of IXI, TEX, lies in the range, 0 <= TEX <= 24
along this path.)
(Isolate IXI biased exponent (BEX) and biased mantissa (mx).)

4.5	 (RB, RC)xRB*X 1 020O' . (IXI biased mantissa hi left justified in RC;
IXI biased exponent, BEX, is in RB, right
justified.)

(R9, RA)=R90X'0200' . (IXI biased mantissa to left justified in
(R9, RA).)

R9=R9 .OR. RC . (IXI biased mantissa hi merged into R9.)
Register:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 B41 R31 R21 R11 ROI

I	 i	 I	 I	 I mXI mX1	 I	 i	 I	 I	 I	 I	 ► 	 1	 1
	U3e:1 SXI	 I- IBEXI lol hi ll 	 i	 i	 1	 I	 I	 I	 I	 It 	 It

(Multiply BEX by 2.)
(RB, RC)=RB02 . (Two times BEX, 2BE, is now in RC.)

Register:I REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI
i	 I	 I	 I	 I mXI mXl	 I	 I	 I	 I	 I	 I	 I	 1	 1

	Use:I SXI	 112BEI - I lot' hit	 I	 I	 I	 i	 I	 I	 I	 I- I

(The input angle value, IXI, is described in terms of units of
radians. For computational convenience, the angle must be converted

- 3-25 -

z. A;	 ..

j_	 'Mr,

	MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE'
CORPORATION
OER-17221	 1

to units of 1/4 rotations. This unit transformation is accomplished
by multiplying IXI by (2/PI); the resultant value, IRI, expresses
the input angle in terms of the 1/4 rotation units. The actual
transformation is accomplished by developing the true mantissa of

I times (2/PI); this result is called "m2p". IRI is dust "m2p"
times 2eeTEX where TEX is the true exponent of IXI. After the
development of JR1, it is converted to an integer form (0.2.30).
The fractional part of this integer form, Rf (a single quadrant
an le), in conjunction with the 2 integer bits of integer 1R1
(the quadrant index bits), will to used to find SIN(IXI.)

(Develop the X true mantissa times 2/PI. Note that in this section of
the PDL, mX is the biased mantissa; thus, to develop m2p,
mX*(2/PI)+K is computed where K:.5e (2/PI):1/PI . (The mX bias is
-.5 .)
The radix point of mX is 1 bit position left of the left edge of R9.
The value 2/PI is X1145F306E'*(2##(-29)).)

4.7	 R5=R9 . (Replicate mX hi in R5.)
(RA, RB)zRA*X'145F' (card) . (Product of mX to times 2/PI hi.)
(R5, R6):R5*X'306E' (card) . (Product of mX hi times 2/PI lo.)
R5=R5+RA, save carry . (Add for partial product lo.)
(R9, RA):R9*X'145F' (card) . (Product of mX hi times 2/PI hi.)
R9:R9+carry in . (Add for partial product hi.) 	 }
R5=R5+RA, save carry . (Add for full product lo.)
R9_R9+carry in . (Add for full product hi. Product of mX•(2/PI)

is now in (R9, We The radix point of the

	

product is 2 bit positions to the right of 	 E

the left edge of R9. Now add (2/PI)/2 to
account for the fact that mX is the true
X mantissa biased down by .5 .)

R5:R5+X'306E', save carry . (Add 1/PI to to to part of product.)
R9=R9+X'145F'+carry in . (Add 1/PI hi to hi part of product. 	 j

Product of X true mantissa times
(2/PI) now is in (R9, R5). Call this

	

result "m2P".)	
IRegister:; RE! RD! RCI RBI W R91 RSI RV B61 R51 R41 R31 R21 R11 RO

I	 t	 I	 1	 t	 1	 1	 1	 1	 1	 t	 It 	 1	 1	 1	 1
U3e:1 SXt	 11 2BEt - I- im2P1	 I	 I- im2Pit	 t	 t	 It 	 1

t	 t	 t	 It	 I	 I hit	 t	 t	 t lot	 I	 I	 i	 t	 t

(The product of tXl e (2/PI) is called IRI. Now develop integer
IRI from m2P and the exponent info of 2BE.)

4.9	 If RC(10)=0	 (1X1 true exponent less than 16 test.)
(True X exponent is less than 16.)

4.9.0	 Continue.
Else

(True X exponent is at least 16 (but less than Max).)
4.9.1	 R9=R5

- 3-26 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

R520
End (4.9) If

4.B	 RC:RC-(20128-SHF) . ((True X exponent) 02 +SHF is now in RC.
RC:entry point to SHF table. SEE ATANF2
FOR SHF TABLE DETAILS.)

R8:0(RC) . (Content of SHF table now in R8.)
(R5, R6) nR50R8 (card). (Shift lo.)
(R8, R9)aR80R9 (card). (Shift hi.)
R9:R9 .OR. R5 . (Merge hi part of to product into hi result.)
RA:R6 . (Shifted product is in (R9, RA).)

Register:i REI RDI RCS RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R1I ROI
I	 I	 I	 i	 I int 1 int 1	 I	 I	 I	 I	 I	 I	 1	 !	 !

	U3e:1 SXI	 I- I- 11R111RIi - I	 I- I- I	 I	 I	 1	 1- I
I	 hit	 I	 I	 I	 1	 i	 1	 1	 1	 1

(The lead 2 bits of integer IRI (R9(0) 6 R9(1)) are integer
bits and define the quadrant in which the angle lies. The most
significant 3 fractional bits of IRI (R9(2), R9(3), 6 R9(4)) comprise
the argument range index, "J",epolynomial to be used in approximating
the output Y. The remaining bits of (R9, RA), appropriately aligned,
are used as input into the polynomial routine.)

(Fix output Y sign to account for quadrant; quadrant 2, 3 indicator
is in R9(0).)

4.D	 RE=RE .EXCLUSIVE OR. R9 . (Sign of Y, SY, in RE(0); garbage
elsewhere in RE.)

RE:RE .AND. X 1 8000'	 (Sign of Y in REM; "0" elsewhere in
RE.)

Register:! REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R2; R11 R01
I	 I	 I	 I	 ; int I int !	 I	 I	 i	 I	 I

Use:! SY!	 - i- iiRiilRii - i	 i- i-i-
1	 1	 !	 i	 1 lo', hi ll	 i	 i	 1

4.F	 If R9(1):1	 (Odd quadrant test.)
(Odd quadrant 1 or 3 involved. Since the angular range
to be approximated is 0 to less than 1 quarter rotations,
the angle value that is the fractional part of int IR;
must be subtracted from 1 (PI/2) for these quadrants.)

4.F.0	 RA=.NOT. RA . (Subtract angle to from 1 (unit=1/4
rotations).)

R9:.NOT. R9 . (Subtract angle hi from 1 (unit=1/4
rotations). Radix point 2 bits right of
left edge of R9.))

Else
(Even quadrants 0 or 2 involved.)

4.F.1	 Continue.
End (4.F) If

- 3-27 -

_79
1

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

(The approximation subinterval index, "J", is defined by the bits
R9(2), R9(3), A R9(4) . The index "J" establishes the appropriate
polynomial, "sj", to be used in finding IY1.)
(Isolate "J" and slide the lower bits (R9(5) thru RA(15)) to the
left 5 bit positions so that they butt up against the left edge
of R9. The result in (R9, RA) will be "U".)

401	 R4:R9	 . (Replicate int IRI hi in R40
(R4, R5)sR4*X'0020'. (Multiply int IRI hi in R4 by 32 in order

isolate quadrant/"J" data in R4; the lower
order bits remain, left justified, in
R5. They are all but the 3 top fractional
bits of int IRI hi.)

(RA, RB):RA*X'0020 1 . (Multiply int IRI to in RA by 32 in order
to slide int 1R1 to bits 5 bit positions
to the left; 1c: bits reside in RB.)

R5sR5 .OR. RA . (Merge Uhi bits in R5.)
RA:RB . (Ulo moved to RA.)
R9:R5 . (Uhi moved to R90
RDsO . (Clear sign bit of U. U is positive only; radix point :s

at left edge of R9.)
(Create 4*J to be able to access polynomial info GET table.)
R4:SHIFT(R4, +2) . (Shift value in R4 left 2 bit positions.)
R4:R4 .AND. X'001C'.(Ma3k out all but 4*j bits of R4; clear all

but bits 11,...,13 .)
Register:1 RE! RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

1	 i	 01	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1
	Use:! SY1 SUI - 1 - I U I U 1- 1	 1- 14*ji

I	 hit	 1	 1	 1	 i

05 is used to get access to the appropriate polynomial, si(U), for
approximating ((SIN(Rfm*(PI/2)))/2) .
Note that Rfmm(J/8)+(U/8) and that 0 <_ V < 1 .)
(The use of 4*,) to retrieve polynomial parameters follows.)

4.13	 R5=R5+GET . (R5 points to polynomial degree number
in "GET" table.)

"GET" Table

k 4*j+k Address Value

C 0 4*0+0 GET+ 0 M(0)
0 2 4*0+2 GET+ 2 KOEF(0)+4*MM0 .-2
1 0 40 1+0 GET+ 4 M(1)
1 2 4*1+2 GET+ 6 KOEF(1)+4*M(1)+e
2 0 4*2+0 GET+ 8 M(2)
2 2 4*2+2 GET+10 KOEF(2)+4*M(2) +2
3 0 4*3+0 CET+12 M(3)

- 3-28 -

0

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

3 2	 4#3+2	 GET+14 KOEF(3)+4#M(3)+2
4 0	 404+0	 GET+16 M(4)
4 2	 404+2	 GET+18 KOEF(4)+4#M(4)+2
5 0	 4#5+0	 GET+20 M(5)
5 2	 4#5+2	 GET+22 KOEF(5)+4#M(5)+2
6 0	 406+0	 GET+24 M(6)
6 2	 40 6+2	 GET+26 KOEF(6)+4#M(6)+2
7 0	 11#7+0	 GET+28 M(7)

2	 407+2	 GET+30 KOEF(7)+4#M(7)+2

R7=0(R5); R5=R5+2	 . (Load R7 with degree of selected
polynomial, M(J), held at address
p o inted to by value in R5. Then
bump "GET" table pointer, R5.)

R8=0(R5) (Load R8 with KOEF(J)+4 #M(J)+2	 ; the last
1b nit address of the KOEF Q) block, the
coefficients of the polynomial, r(j), held
at address pointed to by value in R5.)

Register:! RE!	 RD! RC!RB! RA!	 R9!	 R81	 R7!	 R6!	 R51	 R41	 R31	 R21	 R11	 RO!
!	 !	 0! 1 !	 !	 !	 !	 i !	 !	 !	 It	 1

Use:;	 SY!	 SU! -	 1	 - 1Ulo1Uhillocicnt!	 - 1	 -	 1	 1	 1	 1	 1	 -	 !

4.15	 BAL,RF	 POLY32. (Compute "r(,j)" polynomial.)
Register:! RE! RD! RC! RBI RA! R91 R81 R71 R61 R51 R41 R31 R21 R1! RO!

!	 !	 !	 !	 !	 !	 !	 !	 !	 !	 !	 !	 ! si!	 ! si!
Use: ! SY1 - ! -,1 - ! - ! - 1 - ! - 11 - ! - ! - it - 1 hi ll - ! loll

(The value of sj(U) polynomial approximates

(SIN(ARG))/2 where
ARG=(J/8+U/8)#(PI/2) , J=0,...,7, &

0 <= U < 1	 and
-.5 <= sJ <= .5 .)

(If R2(0) bit is 1 , the fii,z.' ,Yi true exponent must be 1. If
R2(0)is 0, exponents will be less than 1.

4.17	 If R2(0)_1	 (!Yl=1 test.)
(!Yl=1 branch direction. (SIN(Rfm# (PI/2)))/2 is equal to
.5 ; argument of SIN function is 90 degrees.)

4.17.0	 R2=X'4080' . (!Yj hi in R2.)
RO=X'0000' . (!Y! to in R0.)
R2=R2 .OR. RE . (Merge sign bit into !Y!; Y results.)
RE=O . (Status bit.)
RETURN via RF .

Register:! RE! RD! RC! RBI RA! R91 R81 R71 R61 R51 R41 R3! R21 R11 RO!
1	 0!	 1!!!	 11 	 1	 1	 1!	 1!!!!

Use:', S ! - 1 - ! - 1 - 1 - 1 - ! - ! - 1 - 1 - ! - 1 Yhi! - ! Ylo!

- 3-29 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION	 ,.
GER-17221	 1

Else
(;Y; < 1 branch direction. (SIN(Rfm# (PI/2)))/2 is less
than .5 ; argument of SIN function is less than 90
degrees.)

4070	 Continue

End (4617) If

4.19	 If R2(1)=0
O Yi < .5 branch direction. (SIN(Rfm4 (PI/2)))/2 is less
than .25 ; argument of SIN function is less than 30
degrees.)

4.19.0	 Continue

Else
(.5 <_ ;Y; < 1 branch direction. (SIN(Rfm#(PI/2)))/2
is less than .5 but greater than or equal to .25;
argument of SIN function is less than 90 degrees but
greater than or equal to 30 degrees.)

4.19.1	 (R2, R3)_R2#X'0200' . (Shift IY; mantissa kernal hi
left 9 bit places.)

(R0, R1)=RO#X'0200' . (Shift =Y; mantissa kernal to,
left 9 bit places.)

R0=R0 .OR. R3 . (Merge true mantissa to parts.)
R2=R2+((128-1) # 128) . (Establish ;Y; biased exponent.)
R2=R2 .OR. RE . (Merge sign bit into ;Y;; Y results.)
RE=O . (Status bit=S.)
RETURN via RF .

Register:; RE; RD; RC; RBI RA; R9; R8; RV R6; R5; R4; R3; R2; R1; R0;

i 0

Use:i S i	 i - i - i - i - i - i - i - i - i - i - iYhii - {Ylo

End (4.19) If

4.21	 If R2(2)=0
(;Y; < .25 branch direction. (SIN(Rfm # (PI/2)))/2 is less
than .125 ; argument of SIN function is less than
14.47751219 degrees.)

44,21.0	 Continue

Else
(.25 <= i'I < .5 bra_ncb direction. (SIN(Rfm•(PI/2)))/2
is less than .25 but greater than or equal to .125;
argument of SIN function is less than 30 degrees but
greater than or equal to 14.47751219 degrees.)

4.21.1	 (R2, R3)=R2#X'0400' . (Shift ;Y; mantissa kernal hi

- 3-30 -

+ t^

WWI

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

left 10 bit places.)
(R0, R1)=RO#X'0400' . (Shift IYI mantissa kernal to

left 10 bit places.)
RO:RO .OR. R3 . (Merge true mantissa to parts.)
R2=R2+((128-2) # 128) . (Establish IYI biased exponent.)
R2=R2 .OR. RE . (Merge sign bit into IYI; Y results.)
RE=O . (Status bit =S.)
RETURN via RF .

Register:! RE! RDI RCI RBI RAI R9I R8I R71 R6I R51 R41 R31 R21 R11 ROI
10	 I	 s	 s	 s	 s	 s	 1	 s	 s	 s	 s!!!!

Users S I - I - I - I - I - I - I - I - I - I - if - IYhis - iYlo!
##

End (4.21) If

4.23	 If R2(3)=0
(!YI < .125 branch direction. (SIN(Rfm # (PI/2)))/2 is less
than .0625 ; argument of SIN function is less than
7.180755781 degrees.)

4.23.0	 Continue

Else
(025 <= !YI < .25 branch direction. (SIN(Rfm#(P112)))/2
is less than .125 but greater than or equal to .0625;
argument of SIN function is less than 14.47751219 degrees
but greater than or equal to 7.180755781 degrees.)

4.23.1	 (R2, R3)=R2#X'0800' . (Shift !Y! mantissa kernal hi
left 11 bit places.)

)=R0#X'0800' . (Shift IYI mantissa kernal to
left 11 bit places.)

RO=RO .OR. R3 . (Herge true mantissa to parts.)
R2=R2+((128-3) # 128) . (Establish IYI biased exponent.)
R2=R2 .OR. RE . (Merge sign bit into IYI; Y results.)
RE=O . (Status bit=S.)
RETURN via RF .

Register:! RE! RD! RCI RBI RAI R9I R8I R7I R6I R51 R41 R31 R21 R11 ROI
i	 i	 !

Use:'. S i - ! - i - i - i - i - ! - i - ! - i - ! - IYhii - IYlos

End (4.23) If

(The 4 lead bits of "sj", R2(0), R2(1), R2(2), & R2(3)i, 	 \
are "0"; the most likely result cases have now been examined.
Now take care of the cases in which "sj" is very emall;

l	 i.e., (SIN(Rf1m# (PI/2)))/2 is less than .0625 or argument
3

3-31 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION	 -
GER-17221	 / }

of SIN function is less than 7.180755781 degrees.)
(First, define a new constant that eliminates the lead 4
zero bits of "WO

4.25	 (R2, R3)=R2*X'0010' . (Shift IYI mantissa kernal hi left 4
bit places.)

(R0, R1)=R0*X'0010' . (Shift IYI mantissa kernal to left 4
bit places.)

R3=R3 .OR. RO . (Merge 4 bit left-shifted (SIN(Rfm*(PI/2)))/2
hi parts; radix point for the above is 3 bit
intervals left of the left edge of R3. Note
that R3(0)=0. The to part of this value lies
in R1. Call this value "lsr" and consider its
radix point to lie at the left edge of R3.
Then, "13r"=8*(SIN(Rfm*(PI/2))) .)

Register:; RE; RD; RC; RBI RA; R9; R8; RV R6; R5; R4; R3; R2; R1; R0;
I	 1	 i	 {	 =	 1	 1	 lsri	 ilsri

	

Use:; SYi - i - i - It - i	 i - i - 1 - i - i - i hi ll	 1 loll -

4.27	 If R3=0
(The new variable "lsr" is smaller than 2**(-16) .)
Shift "lsr" value left by 16 bit positions.)

4.27.0	 R3=R1	 (Shift "lsr" to into "lsr" hi.)
R1=0	 (Shift "0" into "lsr" lo.)
RA=(128-1-3-16)*2 . (2*0Y; biased exponent kernal) in RA.)

Else
4.27.1	 RA=(128-1-3)*2 . ((2*(;Y; biased exponent kernal) in RA.)

End (4.27) If

4.29	 If R5 < X'FF00' . (Test mask for R3 lead bits, 8 bits wide.)
(The variable in (R3, R1) is smaller than 2**(-8) .)
Shift value left by 8 bit positions.)

4.29.0	 (R3, R4)=R3*X'0100' . (Shift hi left 8 places.)
R3=R4	 (Put shifted value back into R3.)
RC=8*2	 (Shift index is 8.)

Else
4.29.1	 RC=0*2	 (Shift index is 00

End (4.29) If

4.2B

4.2B.0

4.2B.1

If R5 < X'F000' . (Test mask for R3 lead bits, 4 bits wide.)
(The variable in (R3, R1) is smaller than 2**(-4) .)
Shift value left by 4 bit positions.)
(R3, R4)=R3*X'0010'	 (Shift hi left 4 places.)
R3=R4 . (Put shifted value back into R3.)
RC=RC+4*2	 (Shift index delta is 4.)

Else
Continue

End (4.2B) If

- 3-32 -

7wb° 17

I
MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE

CORPORATION
GER-17221

4.2D	 If R5 < X'0000' . (Test mask for R3 lead bits, 2 bits wide.)
(The variable in (R3, R1) is smaller than 2**(-2) .)
Shift value left by 2 bit positions.)

4.2D.0	 (R3, R4) =R3#X'0004' . (Shift hi left 2 places.)
R3=R4 . (Put shifted value back into R3.)
RC=RC+2*2	 (Shift index delta is 20

Else
4.2D.1	 Continue

End (4.2D) If

4.2F	 If R5 < X 1 8000' . (Test mask for R3 lead bits, 1 bits wide.)
(The variable in (R3, R1) is smaller than 2 **(-1) .)
Shift value left by 1 bit position.)

4.2F.0	 (R3, R4) =R3*X'0002' . (Shift hi left 1 places.)
R3=R4 . (Put shifted value back into R3.)
RC=RC+1*2 . (Shift index delta is 1.)

Else
4.2F.1	 Continue

End r 4.2F) If

4.31	 If R5=0
(The variable in (R3, R1) is 0.)

4.31.0	 R2=0 . (;Y;=O; R2=Yhi.)
RO=O . (iYi =O; R2=Ylo.)
RE=O . (Status=S.)
RETURN via RF

Register:; RE; RD; RCi RB I RA; Rq; R8; RV R6; R5; R4; R3; R2; R1: ROi	 0	 i	 i	 i	 i	 i	 i	 i	 i	 i	 i	 i	 0	 i	 i	 0	 It
Use:i S i - i - i - 9 - i -	 - 1 - i - i - i - i - iYhii - iYlo

Else
(The variable in 03, R1) is at least X1800000001.)

4.31.1	 RA=RA-RC . (Unaligned biased ; Y; exponent -1 is in RA.)
(RA, RB)=RA*64 . ((Biased I V exponent - 1)*128 in RB;

aligned data.)
RC=RC .OR. X'001F' . (Modulo 32 mask shift index times 2.)
RC=RC+SHF	 (Entry to shift table value.)
R6=0(RC)	 (Put shift value into R60
(R1, R2)=R1*R6 . (Shifted A aligned to part of 03, R1).)
(R3, R4) =R3*X'0100' . (Aligned hi part of (R3, R1) is in

R3; ;Y; hi biased, aligned
mantissa.)

R1=R1 .OR. R4 . (Merge ;Yi mantissa to pieces; Ylo
results.)

R3=R3+RB . (Add aligned ;Y; exponent data (short by 1)
to aligned mantissa data; lead mantissa bit
fixes exponent data.)

- 3-33 -

= gin ..	 •^.^• - - --

GOODYEAR AEROSPACE
CORPORATION
GER-17221

i! IF

a

i

tMPP SCIENTIFIC SUBROUTINES

R3=R3 .OR. RE . (IYI hi merged with sign of Y yields
Y hi.)

R2:R3 . (Put Yhi into R20
RO=R1 . (Put Ylo into R0.)
RE=O . (Status=S.)
RETURN via RF .

Register:= RE! RD! RC! RBI RAI R9I R81 R7I R61 R51 R41 R31 R21 R11 ROI
I	 O	 !	 !	 !	 !	 !	 !	 !	 !	 !	 !	 I	 !	 !	 !	 !

Use:! S ! - ! - ! - I - ! - ! - ! - ! - ! - ! - ! - I Yhi i - i Ylo!

End (4.31) If

End (4) If

END

- 3-34 -

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

v

3.2.3 MCU SUBROUTINE DESCRIPTION COSM

This Subroutine develops the value, "Y", the cosine of the input variable,
"X". "X", the input, and "Y", the output, are 32 bit VAX floating point
numbers. Along with "Y", a 16 bit status value, S, is generated for outpuS.;
it is 0 when ;X= is less than 2 0#24. When ;XI is equal to or greater than
20#24, the angular uncertainty is on the order of 2 radians and so the Y
answer becomes meaningless; the status is set to 3 in such case (no processing
is performed).

The "Y" value range is	 -1 <= Y <= +1	 .

The subroutine demands the calculation of

Y=CO3(X)=((-1)##SX)#COS(;X1) where
SX is the value of the sign bit of X, and
X; symbolizes the absolute value of X.

Y; is computed using the SINF subroutine after PI/2 has been added to ;X
and SX has been negated.

For all ;X; values less than 2 0#24, ;Y; is computed only after
converting X to units of 1/4 rotations and then converting this resultant
value, R, to an integer form. After negating SX and executing R=1+R, the
new R takes on the role of R of the SINF routine. The SINF code is then used
to complete the processing.

###

The entry branch and link register for this subroutine is RF. The subroutine
calls the POLY32 subroutine by way of register RF. The POLY32 subroutine , in
turn, calls the subroutine, MULT32.MS, as an internal subroutine (i.e., no BAL
register is used)

- 3-35 -

^^ t

d

- a

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Registers directly required by this subroutine are marked with a "*".
Registers indirectly required by the POLY32 routine are marked with a
Registers indirectly required by the MULT32 .MS routine are marked with a

Reg13ter :1 RE! RD! RCI RBI RAI R91 R81 R71 R61 R5 1 R41 Rai R21 R11 RO1

	

COSF Uae • 1 * ! * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1	 1 * i * 1 * 1 * 1
POLY32 Use:! 	 i# 1	 i	 i# i # i # i # I# i	 i	 i	 I# i	 i# i

MULT32 .MSUse:!	 1$ 1 	I	 1$1$I	 1	 1	 1	 i$ 1$1$1$1$1

ON ENTRY:
R9=Xlo
RB=Xhi

ON EXIT:
RO_Ylo
R2=Yhi

f^.

- 3-36 -

^I

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

##

COSM entry

##

1. COSM entry .
Register:! RE! RD! RCI RBI RA I R9 1 R8 1 R71 R61 R5 1 R41 R3 1 R21 R11 RO!

Use:!	 I	 !	 IXhiI	 'Xlo!	 !	 !	 !	 !	 !

2

	

	 RE=X 1 8000' . (Prepare to capture X sign in RE(0); clear other bits.)
RE=RE .AND. RB . (Sign of X in RE; other RE bits cleared.)
RB=RB .EXCLUSIVE OR. RE . (X changed to a magnitude, 1X1.)

Register := REI RDI RC! RBI RAI R9I R8I R71 R61 R51 R41 R31 R21 R11 R01

!	 !I	 !!X!!	 I I 	 1	 11	 1

Use:! SX1	 !	 ! hi!	 I lo!	 !	 !	 1	 !	 !	 !	 i

3	 If RB => (128+EXmax) # 128	 (EXmax =25. IXI greater than or equal to
2#024 test.)

(IX! => 2##24; too much angular uncertainty results. Return
with status value of 30

3.0

	

	 RE=3 . (Status =S=3. Worthless results exist in Yhi and Ylo

registers.)

RETURN via RF .
Register:! RE! RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 P21 R11 ROI

!	 !	 I	 !	 !	 !	 !	 !	 I	 I	 I	 I	 !	 !	 !

Use:! S !	 !	 !	 !	 !	 !	 !	 !	 I
Else

(!XI < 2##24 along this path.)
3.1	 Continue.

End (3) If

4

	

	 If RB => (128-12) 0 128	 (IX! greater than or equal to 2#0 (-13) test.)
(Y not equal to 10

4.0	 Continue.
Else

(Y = 1.)

^ ^ y

t

4

i
i

- 3-37 -

ft

0
Jrl-

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

4.1	 R2zX'4080' . (Y hi.)
RO=X'0000' . (Y lo.)
RE=0 . (Status=S.)
RETURN via RF .

Register:! REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI
1	 0	 1	 !!	 I	 I	 Z	 I	 i	 1	 1!	 I	 Z!	 1

	Use:I S I	 I	 I	 !	 I	 I	 I	 I	 I	 1	 I	 IYhi!	 IYlo1

End (4) If

(IX1 must be converted to 1/4 rotation angular units; then
the result will be converted to integer form. The fractional
part of this integer form will be used to find SIN(IX1.)
(Isolate IXI biased exponent (BEX) and biased mantissa (mx).)

5	 (RB, RC)=RB+X'0200' . (IXI biased mantissa hi left justified in RC;
1XI biased exponent, BEX, is in RB, right
,justified.)

(R9, RA)=R9 sX'0200' . (IX! biased mantissa to left Justified in
(R9, RA).)

R9=R9 .OR. RC . (1X1 biased mantissa hi merged into R9.)
Register:! RE! RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

I	 1	 !	 1	 ! mX1 mXI	 1	 1	 1	 1	 1	 1	 1	 !	 1
	Use:I SXI	 1	 IBEXI lol hil	 1	 1	 1	 1	 1	 1	 1	 1	 1

(Multiply BEX by 20
6	 (RB, RC)=RB*2 . (Two times BEX, 2BE, is now in RC.)
Register:', BE', RDI RCI RB! RAI R91 R81 R7! R61 R5! R41 R31 R21 R11 ROI

1	 1, 1	 1	 1, mX 1 mX I' 	 1	 1	 1	 1	 1	 I	 !	 !	 1
	Use:I SXI	 12BEI - I lot hi ll 	 I	 !	 I	 I	 I	 I	 I	 1	 !

(Multiply the X true mantissa times 2/PI. Note that mX is
the biased mantissa and that the radix point of mX is
1 bit position left of the left edge of R9. The value 2/PI
is X1145F306E1s(2ss(-13)).)

7	 R5=R9 . (Replicate mX hi in R50
(RA, RB)=RB"X'145F' (card) . (Product of mX to times 2/PI hi.)
(R5, R6)=R5*X'306E' (card) . (Product of mX hi times 2/PI lo.)
R5=R5+R!'. save carry . (Add for partial product lo.)
(R9, RA):R9 sX'145F' (card) . (Product of mX hi times 2/PI hi.)
R9=R9+carry in . (Add for partial product hi.)
R5=R5+RA, save carry . (Add for full product lo.)
R9=R9+carry in	 (Add for full product hi. Product of mXs(2/PI)

is now in (R9. R5). The radix point of the
product is 2 bit positions to the right of
the left edge of R9. Now add (2/PI)/2 to
account for the fact that mX is the true
X mantissa biased down by .5 .)

- 3-38 -

- 3-39 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION

E ^^

	
GER-17221

R5=R5+X'306E', save carry . (Add 1/PI to to to part of product.)
R9:R9+X'145F'+carry in . (Add 1/PI hi to hi part of product.

Product of X true mantissa times
/PI) now is in (R9, R5). Call this

result "m2P". Radix point of "m2P" is
between R90) and R9(2).)

Register:! REI RDI RC! RBI RAI R91 R81 R71 R61 R51 R41 Raj R21 R11 RO
I	 I	 I	 I m2P I	 I	 I	 1m2P 1	 1	 I	 I	 I	 I

	

U3e:1 SX!	 lZBEI - I- I hit	 I	 I- 1 lo!	 I	 1	 1	 1	 1

(The product of IXI*(2 /PI) is called IRI. Now develop integer
IRI from m2P and the exponent info of 2BE.)

8	 If RC < 128*2	 (Negative IXI exponent test.)
(IXI true exponent is negative.)
(Consider that m2P has been multiplied by 2**(-16) and exists
in (RA, R9, R5) where the radix point is between RAM and
RA(2). To make m2P an integer, the number in the three register
set must be shifted left by an amount JzIXI true exponent+16.
The value SHF+2 *,j points to the correct shift value to be
pulled from the SHF table.)
(Proceed to develop m2P as an integer.)

8.0	 RC_RC-((128-16) 02-SHF) . (RC points to shift value.)
R8=0(RC) . (Shift constant into R80
(R9, RA):R9*R8 (card) . (Output hi.)
05, R6)=R5*R8 (card) . (Output lo.)
RA=RA .OR. R5 . (Merge to parts.)

(Note that (R9, RA, R6) took on the role of the starting
3 registers, (RA, R9, R5), in the 3 preceding steps.)
(Add 1 (1/4 rotation) to the value in (R9, RA, R6). The
radix point of this value lies between R9(1) and R9(2).)

8.2	 R9:R9+X'4000' . (Quarter rotation has been added. Call result
int R*)

Register:! REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21R11 RO!

I	 'II	 I	 I int ! int I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Use:ISRI	 I -I-Ilolhil-1	 1-I-1	 1!	 1	 11 	1

8.4	 BA1., RF	 SINF3. , 4.D

RETURN via RF
Register:! REI RDI RCI RBI RAI R91 R81 R7! R61 B51 R41 R31 R21 R11 ROI

1	 0	 11	 1	 1!!	 1!	 1	 1	 1	 1	 1	 1	 1!
Use : I S I- I- I- 1- I- I- I- I- I- I- I- I Yhi I-! Yl o 1
rrrrrrrrrrrrrrrrrrrrrrrrr*rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr:

Else

4

s

^ i 	+
`	 MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE

CORPORATION
► 	 uER-17221	 {

(IXI true exponent is 0 or positive.)
Reg13tSr:l REI RDI RCI RBI RAI R91 R8 1 R7 1 R6I R51 R41 R31 B21 R11 ROI

I	 I	 I	 I	 I	 Im2P I	 I	 I	 Im2P I	 I	 I	 I	 I	 I
Use:l SXI	 12BE I - I- I hi l 	 I	 I- I lot	 I	 I	 I	 I	 I

	8.1	 If RC(10)20	 (Exponent less than 16 test.)
(True X exponent is less than 160

80.0	 Continue.
Else

(True X exponent is at least 16 (but less than EXmax).)
8.1.1	 R9=R5

R520
End (80) If

	

8.3	 RC=RC-(20128-SHF). ((True X exponent) 02 +SHF 13 now in RC.
RC:entry point to SHF table. SEE ATANF2
FOR SHF TABLE DETAILS.)

R8=0(RC) . (Content of SHF table now in R8.)
(R5, R6)=R5 0R8 (card). (Shift lo.)
(R8, R9) :R80R9 (card). (Shift hi.)
R9=R9 .OR. R5. (Merge hi part of to product into hi result.)
RA:R6 . (Shifted product is in (R9, RA).)

8.5	 R9=R9+X'40001.

fleg13ter:1 REI RD! RCI RBI RAI
I	 I	 I	 I	 lintl

	

Use:I SXI	 1 - 1 - IIRII
i	 I	 I	 I	 1 101

(Quarter rotation has been added. Call result
int R.)

R91 R81 P71 R61 R51 R41 B31 R21 R11 R01
inti	 i	 i	 1	 1	 i	 i	 i	 11 	 ItI R ! ! - I 	 I	 -I	 I	 I	 It	 I - I
hil	 It	 i	 i	 1	 1	 1	 1	 i	 i

8.7	 BAL,RF SINF3., 40
RETURN via RF .

Register:! REI RD! RCI RBI RAI R91 R81 R71 R61 R51 R41 R3I R21 R11 ROI
1	 o	 I	 1	 I	 I	 I	 1	 I	 I	 I	 I	 I	 I	 1	 I

	

Use: I S i- 1	 - 1 -• 1- I- 1- 1- 1- 1- I- I Yhi I- I Ylo I

End (8) If

rrrrrrrrrrrrrrr0rrrarr

END

- 3-40 -

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
CER-17221

3.2.4 MCU SUBROUTINE DESCRIPTION : ATANM
------ ------------- - ---- --- --- ft ----

This Subroutine develops the value, "Y", the aretangent of the input variablz,
"X". "X", the input, and "Y", the output, are 32 bit VAX floating point
numbers. Along with "Y", a 16 bit status value, S, is generated for output;
it should always be 0. The "Y" value range is (- PI /2) <- Y <s (PI/2) .

00frarseerref +rsfere##*rarf#re^ereefr* re;weeree^raeretaarr *ewaerrfeerrreeeesreese•

The subroutine demands the calculation of

YzATAN (X)z((-1) 00SX) OATAN0 X1) where
SX is the value of the sign bit of X, and
IXI symbolizes the absolute value of X.

IYI must be computed usl.iq a number of different approximations. For true X
exponents (TEX) 1033 than 2, the IXI interval is dissected into 5 different
3ub-interval3, namely,

1) TEX <	 (-11) or W < 200(-12)
2) (-11)	 <: TEX < (-5) or	 200(-12) <- 1X1 < 200 (-6)
3) (-5) <z TEX <	 (0) or	 200(-6) <- 1X1 < 200 (-1)
4) TEX z	 (0) or	 200(-1) <z IXI < 200 (0)

and	 5) TEX -	 (1) or	 200(0) <- IXI < 200 (1)

For true X exponents greater than or equal to 2, It1 is computed using
1Y1z(PI /2)-ATAN(1/IXI) . To find 1Y1 in such case, 11IXi is first computed.
Then the angle approximation associated with one of the 5 iX1 sub -intervals
shown above is used to compute ATAN (1/IXI)• Finally, this result is subtracted
from PI/2 .
The specific approximations for the 5 1X1 sub-intervals shown above are listed
below. The 8 approximations used to approximate the reciprocal are then listed.

APPROXIMATIONS

Sub-interval 1)

When the true exponent of X is less than -11,

MMIXI.

-3-41-

:

i	 r^r

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Sub-interval 2)--------------
When the true exponent of X is less than -5 but greater than or equal
to -11, IYI is given by

IYIsIXI-(1X1 0*3)/3 and so by

IYIsIXI *(1-(1/3) 0X2)	 Where
X2sIXI**2.

POLY32, the polynomial expansion routine, is not used to compute this
approximation.

Sub-interval 3)

When the true exponent of X is less than 0 but greater than or equal
to -5, IYI is found using

IYIsIXI *(1-G(IXi)) where
G(IXI)s1-(ATAN(IXI)) /IXI

The value of G(IXI) is established using the polynomial, "pi(U)", given by

p1(U)2A10*(U*00)+A11*(U**1)+Al2*(U**2)+A13*(U**3)+.....+A1N1*(U**N1) where
U=IXI	 ,
the IXI range is	 1/64 <s IXI < .5
the U range is	 1/64 <s U < .5 , and
p1 approximates G(IXi) .

The polynomial "p1" is onmputed from right to left using

p1(U)sA10+U*(A11+U*(Al2+U*(A1?+U*(A14+U*(A15+U*(A16 MAW .

The POLY32 routine used to compute pi assumes that 1/64 <a U < 1/2 and
"U" has the signed magnitude format	 (S, (0.31.0)1*2**(-32)	 and that
p1 lies within the range -1/4 <a p1 < 1/4 (it does) and has the 2 1 3 complemt
format	 (1.31.0)*2**(-32) .

The starting location of the memary space that stores the "Al" coefficients
needed to compute p1 is COEF1. The coefficient data are assumed stored in the
sequence:

Address	 Item
COEF1+ 0	 A10(hi)
COEF'1+ 2	 A10(10)

- 3-42 -

- 3-43 -

r

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE	 Y

CORPORATION
GER-17221

COEF1+ 4 A11(hi)
COEF1+ 6 A11(10)
COEF1+ 8 Al2(hi)
COEF1+ 10 Al2(lo)
COEF1+ 12 A13(hi)
COEF1+ 14 A13(10)

COEFI+4*N1 A1N(hi)
COEF1+4*N1+2 A1N(lo)

N1, the degree of the "p1" polynomial, and the COEF1 coefficient data are
defined within this subroutine.

Once p1 is computed, the output ;Y; value is given by

Y1'= iX1*(1-p1)

Sub-interval 4)

j	 When the true exponent of X is 0, ;Y; is found using

;Y;=p2(U)+.5 where
U=2*;X;-1.5 ,

The polynomial, "p2(U)", is defined by

p2=A20*(U**O)+A21*(U f*1)+A22*(UO*2)+A23*(U**3)+.....+A2N1 f (U*eNl) where
the ;X; range is	 1/2 <= ;X; < 1.0
the U range is	 -.5 <= U < .5 , and
p2(U) approximates 	 .5*(ATAN((U+1.5)/2))-.5

The polynomial 11p2" is computed from right to left using

p2(U)=A20+U*(A21+U*(A22+U*(A23+U*(A24+U*(A25+U*(A26+.....+U*(A2N)

The POLY32 routine used to compute p2 assumes that -1/2 <= U < 1/2 and
"U" has the signed magnitude format	 [S, (0.31.0)1*2**(-32)	 and that
p2 lies in the range -1/4 <= p2 < 1/4 (it does) and has the 2's complement
format	 (1.31.0)*2**(-32) .

The starting location of the memory space that stores the "A2" coefficients
needed to ecmpute p2 is COEF2. The coefficient data are assumed stored in
the sequence:

Address	 Item

AV

J
GOODYEAR AEROSPACE

CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

COEF2+ 0 A20(hi)
COEF2+ 2 A20(lo)
COEF2+ 4 A21(hi)
COEF2+ 6 A21(lo)
COEF2+ 8 A22(hi)
COEF2+ 10 A22(lo)
COEF2+ 12 A23(hi)
COEF2+ 14 A23(lo)

COEF2+4*N2 A2N(hi)
COEF2+4*N2+2 A2N(lo)

ORIGINAL PAGE 19
Or POOR QUALITY

N2, the degree of the "p2" polynomial, and the COEF2 coefficient data are
defined within this subroutine.

Once p2 is computed, the output ;Y; value is given by

!YI=2*(p2+.5) .

Sub-interval 5)

When the true exponent of X is 1, ;Y; is found using

;Yi=2*(p3(U)+.5) where
U=IXI-1.5 ,

The polynomial, "p3(U)", is defined by

P3(U)=A30*(U**O)+A31*(U**1)+A32*(U**2)+A33*(U**3)+.....+A3N1*(U**N1) where
the ;XI range is	 1.0 <_ ;X; < 2.0
the U range is	 -.5 <= U < .5 , and
p3(U) approximates	 .5*(ATAN(U+1.5)-•5

The polynomial "p3" is computed from right to left using

P3=A30+U*(A31+U*(A32+U*(A33+U*(A34+U*(A35+U*(A36+.....+U*(A3N) .

The POLY32 routine used to compute P3 assumes that -1/2 <= U < 1/2 and
"U" has the signed magnitude format 	 IS, (0.31.0)1*2**(-32)	 and that
P3 lies in the range -1/4 <= P3 < 1/4 (it does) and has the 2's complement
format	 (1.31.0)*2**(-32) .

The starting location of the memory space that stores the "A3" coefficients
needed to compute p3 is COEF3. The coefficient data are assumed stored in
the sequence:

- 3-44 -

T	 i

a

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
	

r^

CORPORATION
GER-17221

ORIGINAL PAGE IS
OF POOR QUALITY

Address Item
COEF3+ 0 A30(hi)
COEF3+ 2 A30(10)
COEF3+ 4 A31(hi)
COEF3+ 6 A31(10)
COEF3+ 8 A32(hi)
COEF3+ 10 A32(lo)
COEF3+ 12 A33(hi)
COEF3+ 14 A33(lo)

COEF3+4 *N3 A3N(hi)
COEF3+4*N3+2 A3N(lo)

N3, the degree of the "P3" polynomial, and the COEF3 coefficient data are
defined within this subroutine.

Once p3 is computed, the output IYI value is given by

!YI=2*(p3+.5) .

Reciprocal

When the true exponent of X is 2 or greater, IYI is found by first computing
11IXI. The reciprocal of IX1, IRI, is defined by

IRI=(1/(4*mX))*(2**(-TEX+2)) where
mX here is the true mantissa of X, and
TEX is the true exponent of X.

The term 1/(4*mX) is approximated using 8 different polynomials. Each
polynomial corresponds to 1 of 8 equal sub-intervals into which the mX range
.5 <= mX < 1.0 , is divided. The "J"th (J=o, 1,..., 7) sub -interval
approximation of (1/(4 *mX)) is described by the polynomial rJ(U) where
U is related to mX using

mX=.5+J/16+(U*2) 	 where
0 <= U < 1/32 .

The polynomial, "rJ(U)", is defined by

rJ(U)=BJO*(U**o)+BJ 1*(U**1)+BJ2*(U**2)+BJ3*(U**3)+.....+BJMJ *(U**MJ) where
the mX range is	 .5 <= IXI < 1.0

- 3-45 -

v

Q^..

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

the U range is	 0 <= U < 1/32 , and
rj(U) approximates 	 (1/(4#mX))

The polynomial "rj" is computed from right to left using

rj=BjO+U#(Bj1+U#(Bj2+U#(Bj3+U#(Bj4+U#(Bj5+U#(Bj6+.....+U#(BjMj)

The POLY32 routine used to compute rj assumes that	 0 <= U < 1/32 and
"U" has the signed magnitude format [S, (0.31.0)] 020# (-32)	 and that
rj lies in the range	 0 <= rj <= 1/2 (it does) and has the 2 1 9 complement
format	 (1.31.0) #2#9 (-32) .

The starting location of the memory space that stores the "Bj" coefficients
needed to compute rj is KOEFj. The coefficient data are assumed stored in
the sequence:

Address Item
KOEFj+ 0 Bj0(hi)
KOEFj+ 2 Bj0(lo)
KOEFj+ 4 Bj1(hi)
KOEFj+ 6 Bj1(lo)
KOEFj+ 8 Bj2(hi)
KOEFj+ 10 Bj2(lo)
KOEFj+ 12 Bj3(hi)
KOEFj+ 14 Bj3(lo)

KOEFj+4#N3 BjN(hi)
KOEFj+4#N3+2 BjN(lo)

Mj, the degree of the "rj" polynomial, and the KOEFj coefficient data are
defined within this subroutine.

Once rj is computed, the output 111X; value is given by

1 /1X1=rj #(2##(-TEX+2))

For the "p1", "p2", "p3" and "rj" polynomials above, coefficients of the
polynomial have the 2 1 9 complement format	 (1.31.0) #2## (-32) , the same

j	 format as is used for the polynomial value.

The degree of the polynomials is at least 1.

The entry branch and link register for this subroutine is RF. The subroutine
calls the POLY32 subroutine by way of register RF. The POLY32 subroutine , in

- 3-46 -

. ,^

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

turn, calls the subroutine, MULT32.MS, am as internal subroutine (i.e., no BAL
register is used) .

Registers directly required by this subroutine are marked with a nea.
Registers indirectly required by the POLY32 routine are marked with a
Registers indirectly required by the MULT32.MS routine are marked with a

Regi:iter:i BE! RDI RCI RBI RA= R91 R81 RV R61 R51 R41 R31 R2 = R11 ROi

{

ATANM Use:!* i	 i • i	 i • i	 i	 i	 i # i	 i • i • i
POLY32 Use:!	 1# 1	 i	 i# i# i# i# i# i	 i	 i	 i# I	 i#
MULT32 Use : !	 1$ 1	 i$ i$ i	 i	 i	 1	 1$ 1$ l$ 1$ 1$ i

ON ENTRY:
R9=Xlo
RB=Xhi

ON EXIT:
RO=Ylo
R2=Yhi

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

s-	 T----

rrfee +^eeaeeerrererreererre +^#re*+^+^

ATANF entry

r^►eerreiseerarrr+Meer#eeeae^tre+teerferesrreaeerrsrree;r+^;:rf+^#eeeereeree^rer*r*e•

1. ATANF entry .
Register := RE! RD! RC! RBI RAI R9', R81 R71 R6 I R5', R4 1 Rai R2 I R11 ROI

	

Use:1	 ',	 ',	 ',Xhii	 ',Xlo',	 ',	 i	 I	 1	 I	 1	 1	 1	 1

2. RO=X ' 4000' . (Capture complement of true exponent sign bit in R0.)
Register:! RE! RD! RCI RBI RAI R91 R81 RV R61 R51 R41 R31 R21 R11 ROI

	

Use:',	 ',	 ',	 iXhil	 ', Xlo',	 ',	 ',	 ',	 ',	 ',	 ',	 ',	 !Use!

3. RO=RO .AND. RB (Complement of sign of X true exponent in RO after step.)

Register:! RE! RD,' RCI RB I' RA I' R9 1' R8 1' R71 R6 1 R51 R4 1 R31 R2', R1', ROI

	

1	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1..-. I

	

Use:',	 ',	 ',	 ',Xhi',	 'Xloi	 ',	 ',	 ',	 ',	 ',	 ',	 ',	 ', SEX!

4. IF RO=0 (Split processing based on true exponent (-) or (+,0).)
Register:! RE! RD! RCI RB', RAI R9', R81 R71 R6I R51 R41 R31 R2', R11 ROI

',	 ',

	

Use:!	 ',	 ',	 ',Xhi',	 ',Xlol	 ',	 1	 ',	 ',	 ',	 ',	 ', 	 ',

(The true X exponent must lie
to branch in this direction.
Develop sign bit in R2(0) and

4.0	 R2=X'8000' .

R2=R2 .AND. RB . (Sign bit ni
Register:! REI RD! RC! RB', RAI R91

Use:!	 !	 I	 Mi ll	 'Xlo!

in the range, - 128 <= EXP- 128 <= -1 9

"0" in other 15 bits.)

)w in R2(0).)
R61 R71 R6', R5', R41 R3', R21 R11 R01

I sX',

	

4.2	 RB=RB

Register:!
I

Use:!

(De te:
	4.4	 RO=RB

.EXCLUSIVE OR. R2	 (Zero's ou
X becomes

RE! RD! RCI RBI RA! R91 R81 R7

I	 I	 I IXI I! IX !',	 I',	 1	 1 hi!	 I lo',	 I	 I

.mine if X true exponent is less
. (Replicate IX! high.)

t X sign bit in RB;
', X II

R6 11 R5', Rol R31 R2 11 Ri 1 RO

',	 ',	 ',	 II	 I	 I	 ISXI	 I-!
than -11.)

- 3-48 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION	 !

(i
	

GER-17221

RO=RO-((128-11)#128) . (Remove exponent bias; add 11 to result.)
RO=RO .AND. X'FF80' . (Clear mantissa bits out of R0; RO value is

(true X exponent + 11) # 128 ; final result
is T1.)

Reg13ter:1 RE! RD! RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R1I ROI

	

]	 I]]]X11
	

IIXIII 	11

	Used	 I	 I	 1 hil
	

I lo ll 	I	 I	 1]]	 1 SXI] T1!

4.6	 If RO=negative
(X true exponent is less than -11, T1 < 0; Y=X.)

4.6.0	 R2=R2 .OR. RB . (Re-insert sign bit into X hipth in R2. Yhi=Xhi.;
RO=R9	 (Ylo=Xlo.)
RE_0	 (Set status.)
RETURN (by way of RF).

Register:! RE! RD] RCI RBI RAI R91 R81 R7! R61 R51 R41 R31 R21 R11 ROI

	

]]]	 I]XII]IX]]]]]	 1]]]]	 It

	Use:!	 01]	 It hi!] lo ll]]	 It	 i]] Yhi]]Ylol
##

Else
(X true
(0 <= T

Register:! RE! RD!

Use:!	 !	 !

exponent
< 11).)

RCI RB!

I hil

is greater than or = to -11 but less than 0.

RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

I lo!	 !	 !	 !]]	 ! SX]] T11,

	

4.6.1	 (R0, R1)=R0#X'0400' (card). (Let E21,,=2# (X true exponent + 11);
put E2P into R0.)

Register:! RE! RD! RC! RBI RA] B91 R81 R71 R61R51 R41 R31 R21 R11 R01

	

I	 1	 11x]]	 1]x1]	 11 I 	 !	 11 11It 	 11 !	 It

	

Use:]	 I	 I	 I hi!	 11 lo!	 1	 11	 11 1]] SXI - IE2B!

(Put X true mantissa magnitude into RC, RA.)
4.6.3 (RB, RC)=RB#X'0100' (card) . (Put X true mantissa (high) into

RC; radix point is on left edge
of RC.)

(R9, RA)=R9#X'0100' (card) . (Put X true mantissa (low) into
R9, RA.)

RC=RC .OR. R9 . (Concatenate high mantissa bits.)
RC=RC .OR. X 1 8000' . (Insert lead "1" bit into X mantissa.)

Register:! RE! RD! RC] RBI RA] R91 R81 RV R61 R51 R41 R31 R21 R11 ROI

	

]]] mY. i] MV,]	 1	 1]]]]]]]
	Use:]]] hi! -] lo] - !	 1	 1]	 1	 !] SXI -]E2B!

(Replicate true mantissa (magnitude); put (RC,RA) into (R5,R3)•)

- 3-49 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221	 ^	 r

	4.6.5	 RSxRC .
R3xRA .

Register:= REI RD! RCI RBI RAI R91 R81 RV R61 R5I R4 1 R31 R2 1 Ri I ROI

	

I	 1	 i	 mX i	 I	 1	 i	 1 mX i	 1 mX i	 1

	

Use:1	 1	 I hil - I	 lot - I	 I	 1	 I hit	 I lo ll 	 - IE2BI

(Make integer X magnitude. Its radix point is to be at the left
edge of R6. If R6, R5, and R3 are considered contiguous,
then the true X mant'Ldsa magnitude has been multiplied by
2**(-16). Instead, to make IXI an integer, it should have been
multiplied by 2**(tru exp). Thus, the (R6, R5, R3) value should
be multiplied by 2**(tru exp + 16) or, since the RO value
divided by 2 is (tru exp + 11), by 2**((ROvalue/2) +5). The
values of RO range from 2*0 to 2*10. For the various values of
R0, the values of 2**((ROvalue/2)+5) will be pulled from the
MCU memory table, SHF . The table follows:

SHF Table

	

Locatiou	 .RO	 2**(RO/2)

	

SHF + 0	 2*0	 X10001'

	

SHF + 2	 2*1	 X10002'

	

SHF + 4	 2*2	 X'0004'

	

SHF + 6	 2*3	 X10008'

	

SHF + 8	 2*4	 X10010'

	

SHF +10	 2*5	 X10020'

	

SHF +12	 2*6	 X10040'

	

SHF +14	 2*7	X10080'

	

SHF +16	 2*8	 X10100'

	

SHF +18	 2*9	 X10200'

	

SHF +20	 2*10	 X10400'

	

SHF +22	 2*11	 X10800'

	

SHF +24	 2*12	 X11000'

	

SHF +26	 2*13	 X12000'

	

SHF +28	 2*14	 X'4000'

	

SHF +30	 2*15	 X18000'

	4.6.7	 RO=RO+SHF5	 (SHF5=SHF+2*5 . Point to correct location in
shift table. PNT is the pointer value.
E+S=2*(true IXI exponent+ll)+SHF5*)

R1x0(RO) . (Put value in memory location referenced by RO into
R1.)

Register:! RE! RD! RCI RBI RAI R91 R81 R7! R61 R5I R41 R31 R21 R11 ROI

	

1	 i	 1mX 1 	 'ImXi 	I	 i 	 I	 I mXI	 1,mXi	 1	 1,

U3e:I 	 I	 i hil - i 	 loll - i 	 1	 i 	i hill	 i loll SXiPNTiE+SI

	

4.6.9	 (R5, R6)=R5*R1 (card) . (Shift X true mantissa high.)
(R3, R4)xR3*R1 (card) . (Shift X true mantissa low.)

- 3-50 -

•

	

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221	 1

R3:R3 .OR. R6 . (Concatenate low parts of integer IXI; integer
IXI is in (R5, R3) after step.)

Register:= REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 I	 I mXI	 I mXI	 I	 I	 I	 lintl	 lintl	 I	 I	 I
	Use:l	 I	 I hil - I lol - I	 I	 I - IIXII - IIXII SXIPNTIE+SI

	

I	 I	 1	 1	 1	 1	 1	 1	 1	 1 hil	 I lol	 1	 1	 1

(Split processing where X true exponent is less than -5•)
4.6.B	 RO=RO-(SHF5+2e(11-5)) . (RO/2stru exp + 5; E25z2 e (tru exp + 5).

Register:l REI RD! RCI RBI RAI R91 R81 RV R61 R51 B41 R31 R21 R11 ROI

	

I	 1	 1 mXI	 I mXI	 I	 I	 I	 Iintl	 lintl	 t'	 1	 I
	Use:I	 1	 1 hil - I lol - I	 I	 I - IIXII - 11XI1 SXI - jE251

	

I	 I	 I	 1	 1	 1	 I	 1	 1	 1 hi ll	 1 lo ll	 I	 I	 I

4.6.D	 If RO=negative
(X true exponent is less than -5 but greater than or
equal to -11. Use Y=X*(1-(1/3) aXae2) for computing Y.
Square integer IXI 1st.)

4.6.D.0	 03, R4)=R3*R5 (card) . (Multiply to times hi (int X).)
(R5, R6)nR5eR5 (card) . (Multiply hi times hi (int X).)
R6=R6+R3 ,save carry out . (Partial square lo.) 	 }
R5=R5+carry in . (Partial square hi.)

f	 R3zR3+R6 ,save carry out . (Full square lo.)	
-Y,=

R5=R5+oarry in . (Full square hi.)
Register:I REI RD! RCI RBI RAI R9I R81 R7I R61 R51 R4I R3I &2I R1I ROI

	

I	 I	 I mXt'	 I mXI	 I	 I t'	 Iinti	 Iintl	 1	 1	 1
Used	 t'	 1 hi ! - I lot' - t'	 1	 1 - IiXIi - t't'Xlt' SXt' .- IE251

	

I	 I	 1	 t'	 t'	 t'	 l	 I	 t'	 t'sgrt'	 t'sgrt'	 It	 t'	 t'

	

I	 t'	 I	 I	 1	 I	 1	 I	 l	 t'	 hi 	 I loll	 I	 I	 I	 `-

(Square of integer IXI is in (R5, R3); radix point is at
left edge of R5. Multiply square times (1/3)=•3333••• and
call the result "D" . Then subtract "D" (.3333•••eXae2)
from 1 and call the result C.)

4.60.2 (R3, R4)=R3eX'5555' (card) (Multiply to (int X sqr)
times both (1/3) hi and
(1/3) lo. The hi and to
part of (1/3)=X'55551;
radix point of (1/3) hi
is at left edge of
at X'55551.)

(R5, R6)=R5* X'5555' (card) (Multiply hi (int X sqr)
times both (1/3) hi and
(1/3) lo.)

R6=R6+R5 ,save carry out . (Partial multiply, lo.)
R5=R5+carry in . (Partial multiply hi.)
R3=R3+R6 ,save carry out . (Full multiply, Dlo.)
R5=R5+carry in . (Full multiply, Dhi.)

- 3-51 -

177.tr	 /	 t

.,

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Re913ter:1 REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 I	 I mX 1	 I mX 1	 I	 I	 I	 I	 I	 I	 I	 1	 1	 l
	Used	 I	 I hit - I lol - I	 I	 I - IDhil - IDloI SXI - IE251

("C" is now in (R5, R3). Develop C:1-Dx1-(X* 02)/3 .)
4.6.D.4	 R5:.NOT. R5 . (1-(X002)/3 hi.)

R3:.NOT. R3 . (1-(X002)/3 lo. "C" is now in (R5, R3).)
Regiater:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 I	 I mXl	 I mXl	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I
	Uae:l	 I	 I hit - I lol - I	 I	 I - lChil - IClol SXI - IE251

(Multiply the X true mantissa times "C" to get the value,
mX0 (1-(X002)/3). Call the result mV. Put into (R5, R3)+)
(RA, RB)sRA0R5 (card) . (Multiply mXlo times Chi.)
(R5, R6)2R50RC (card) . (Multiply Chi times mXhi.)
RAxRA+R6 ,save carry out . (Partial multiply, lo.)
R5=R5+carry in . (Partial multiply hi.)
(R3, R4)=R3 0RC (card) . (Multiply Clo times mXhi.)
R3:R3+RA ,save carry out . (Full multiply; mVlo.)
R5=R5+carry in . (Full multiply; mVhi.)

RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI
I	 I	 i	 I	 1	 i	 1	 1 mVI	 I mVl	 I	 It 	 I
I-I-1-I-1	 i	 1-I hi ll -I lo l' SX1-IE251

4.6.D.6

Register:I REI

	

I	 I
	Used	 I

(If R5 lead bit is 1 (i.e., if it looks negative, the
value is in the mantissa rango of the output Y. Else,
mV is a hair below .5 and needs to be multiplied b;r 2.
Fix and produce output.)

4.6.D.8
	

If R5=negative
(Pseudonegative branch direction; really, the mV
magnitude is = to or > .5 .)

4.6.D.8.0
	

ROzRO+10 (128-5) (Biased exponent of Y times 2;
need to multiply it by 64.)

(R5, R6):R50256 (Y true mantissa hi 8 bits
properly positioned in R5.)

(R3, R4)2R3 0256 (Y true mantissa lowest 16 bits
properly positioned in R3.)

4.6.D.8.1
Else

R0=R0+20(128-6)

(R5, R6):R50512

(R3, R4)sR30512

End (4.6.D.8) If.

(Biased exponent of Y times 2;
need to multiply it by 64.)
(Y true mantissa hi 8 bits
properly positioned in R5.)
(Y true mantissa lowest 16 bits

properly positioned in R30

t

- 3-52 -

e^q

'f

	MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
	

e

CORPORATION
GER-17221

(Fix exponent.)
4.6.D.A
	

(R0, R1):ROrX'0040' . (Properly positioned biased
Y exponent is now in R1.)

(Fix mantissa.)
R3:R3 .OR. R6 . (Merge to bits of Y mantissa; Ylo.)
RUES .AND. X'FF7F' (Clear lead mantissa bit.)
R2:R2 .OR. R5 (Sign and biased mantissa merge.)
R2:R2 .01. R1 (Merge biased Y exponent into Yhi.)
ROsR3	 (Move Ylo into R1.)
REsO . (Status.)
RETURN (by way of RF).

Register:! REI RDI RCI RBI RAI R91 R81 R71 :161 R51 R41 R31 R2 1 Ell ROl
1	 1	 1	 i	 I	 I	 1	 I	 i	 1	 I	 i	 I	 I	 It 	 I

Use: I - I - I - I - I - I - I - I - I - I - I - I - 1 Yhi 1 - !Ylo!
rrrrrrrrrrsrrrrrrsrrrrrrrrrrrrrrrrrrrrrr,^rrrrrrrrrrrrrrrrrrrrrrrr

Else
(X true exponent is leas than 0 but greater than or
equal to -5. Use Y:Xr (1-G(X)) for computing Y.)

Register:! REI RDI RCI RBI RAI R91 R81 RV R61 R51 R41 R31 R21 Ell ROi
I	 I	 I mX I	 I	 to	 I	 1 int I	 lint',	 !	 I	 I

Use:1	 I	 I hil - I lol - 1	 1	 1 - IIXII - 11XII SXI - IE251
I	 I	 I	 I	 I	 I	 I	 I	 I	 I hil	 1 lol	 I	 I	 I

4.6.D.1	 R6:RA . (Save X true mantissa low in R6.)
RB:RO	 (Save 20 (X true exponent + 5) in RB.)
RE=R2 . (Save X sign in RE.)
R9=R5 . (Move int X hi (Uhi) into R9.)
RA:R3 . (Move int X to (Ulo) into RA.)
RD:O	 . (Load sign bit of U, a magnitude, into RD.)
R7=N1	 (Set degree for calculating "p1" where

p1:G(X): (1-ATAN (U)/U) .)
R8xCOEF1+4 rN1+2 (Set to last 16 bit address of COEF1

block.)
Register:l RE! RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 Ell ROl

I	 I mX l 	 l int l int!	 1	 1 mXI	 1	 l	 1	 t'	 It 	 1
Use:l SXI SUI hiIE25IIXIH Xlt'loot'cntt' lol - I - 1 - 1 - 1 - I - 1

t'	 !	 !	 t'	 I lot' hil	 I	 t'	 i	 It	 1	 i	 t'	 i	 It

1	 I	 I	 I	 IUlolUhil	 !	 I	 1	 1	 !	 1	 1	 1	 !

4.6.D.3	 BAL,RF	 POLY32. (Compute "pl" polynomial.)
Register:! REI RDI RCI RBI RAI R91 R81 RV R61 R51 R41 RV R21 Ell ROl

1	 1	 01 mX!	 lintlintl	 I	 I mX l 	 I	 I	 I p il	 1 pil
Use:l SXI SUI hiIE25 11XIIIXII - I - 1 lol - I - 1 - I hit - 1 lol

1	 I	 t'	 1	 1 lot' hil	 I	 I	 I	 I	 I	 t'	 I	 I	 t'

1	 I	 t'	 1	 1	 s	 I	 s	 1	 t'	 1	 1	 1	 1 '1 	 t'

I	 I	 I	 I	 lUlolUhi!	 Is	 t'	 1	 I	 1	 I	 1	 1	 I

- 3-53 -

AiNk too

MP? SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

16-

of

(Generate C2(1-G(X)) .)
4.6.D.5	 R2z.NOT. R2 . (G(X)spl. Radix point of pi is at left

edge of R2. Complement of (R2, RO)
is (1-G(X)) as an unsigned number; Chi.)

ROs.NOT. RO . (Low part of (1-0(X)); Clo.)
Regiater:l R$1 RDI RCI RBI RAI R91 B81 R71 R61 R51 R41 R31 R21 R1I RO1

1	 1	 01 mX I	 I	 I	 I	 I	 I mX 1	 1	 1	 1	 1	 1	 1
Use:1 SXI SUI hi1E251 - I - 1 - I - 1 lol - I - I - 1Chil - IClol

(Multiply the X true mantissa times "C" to get the value,
mX*(1-G(X)). Call the result mV. Put into (R2, RO).)

4.6.D.7	 (R6, R7)sR6*R2 (card) . (mXlo*Chi.)
(R0, RIWOORC (card) . (Clo*mXhi.)
(R2, R3)sR2*RC (card) . (Chi*mXhi.)
R6zR6+R3, save carry out. (Combine lower bits of partial

product, mV2mX*(1-G(X)).)
R2sR2+ carry in . (Combine upper bits of partial

product, mVsmX' (l-G(X)).)
%Ca R0+R6, save carry out. (Combine lower bits of complete

product, mVsmX*(1-G(X)).)
R2zR2+ carry in . (Combine upper bits of complete

product, mVsmX*(1-G(X)).)
Reg13ter:j REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 B3I R21 R11 R01

I	 1	 01	 1	 1	 1	 1	 1	 1	 i	 1	 1	 1 mV 1	 I mV 1
Use:!SX1SU1-IE251- I-I-I-I-I-I-I -' hil -1lol

(If R2 lead bit is 1 (i.e., if it looks negative, the
value is in the mantissa range of the output Y. Else,
mV is a hair below .5 and needs to be multiplied by 2.
Fix and produce output.)

4.6.D.9

	

	 If R2:negative (PseudonegativE; really a magnitude.)
(Pseudonegative branch direction; really, the mV
magnitude is : to or > .5 .)

4.6.D.9.0

	

	 RBsRB+2*(128-5) (Biased exponent of Y times 2;
need to multiply it by 64.)

(R2, R3)sR2*256 (Y true mantissa hi 8 bits
pr perly positioned in R2.)

(NO, R1)2RO*256 (Y true mantissa lowest 16 bits
properly positioned in R0.)

Else
4.6.D.9.1

	

	 RB:RB+2*(128-6) (Biased exponent of Y times 2;
need to multiply it by 64.)

(R2, R3)sR2*512 (Y true mantissa hi 8 bits
properly positioned in R2.)

(RO, R1)sRO*512 (Y true mantissa lowest 16 bits
properly positioned in R0.)

- 3-54 -

VD

a

;N
GOODYEAR AEROSPACE

CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

End (4.6.D.9) If.

(Fix exponent.)
4.6.D.B	 (RB, RC):RB*X'0040' . (Properly positioned biased

Y exponent is now in RB.)
(Fix mantissa.)
RO:RO .OR. R3 . (Merge to bits of Y mantissa; Ylo.)
R2:R2 .AND. X'FF7F' (Clear lead mantissa bit.)
R2zR2 .OR. RE (Sign and biased mantissa merge.)
R2:R2 .OR. RC (Merge biased Y exponent into Yhi.)
RE:O . (Status.)
RET3JRN (by way of RF).

Register:= REI RDI RCI RBI RAI R91 HSI R71 R61 R51 R41 R31 R21 R11 ROI
I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

Use: I- I- I- I- I- I- I- I- I- I- I- I- I Yhi 1- I Ylo 1
•raarrrrrrrarrraarrrrrrrrrrarrrarrrarrrrrrrrrrrrrrrrrrrrarrrrraa•

End (4.6.D) If,

Else

- 3-55 -

i

i

l	 ^

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

ATANF entry

(X true exponent is 0 or + starting here.)
Register:! REI RDI RCI RBI RA! R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

11 ►► ! ► !	 11	 1	 1	 1	 11	 1 ► 	 1
Use:;	 I 	 Inv	 Ino ,,	 I	 I	 I

4.1	 RE=X18000' . (Prepare to capture X sign in RE(0); clear other bits.)
RE--RE .AND. RB . (Sign of X in RE; other RE bits cleared.)
RB=RB . EXCLUSIVE OR. RE . (X changed to a magnitude, 1X1.)

Register:! RE! RD! RCI RBI RAI R91 R81 R71 R61 R5; R41 R31R21 R11 RO1
I	 1	 11 1111X11	 111 X111 	 11 1 	111	 1 	 1	 11	 11	 11

Use:! SX1 	;	 ; hil	 1 lo 111	 1	 1	 1	 1	 1	 1	 1- 1

4.3	 (RB,

(R9,

R9=R
Register:! RE!

!	 i
Use:! SX;

RC)=RBiX'0200'

RA)=R9iX'0200'

9 .OR. RC . (IN
RDI RC1 RB! RAI

I	 !	 ! mX;

1 _ IEXPI lo;

. (1X1 biased mantissa hi left justified in RC;
IXI biased exponent, EXP, is in RB, right
justified.)

. (IXI biased mantissa to left justified in
(R9, RA).)

1 biased mantissa hi merged into R9.)
R91 R81 R7! R6 1 R51 R41 R31 R21 R11 RO!

Mxi	 1	 I	 I	 1	 !	 !	 I	 !
hi!	 !	 !	 !	 !	 !	 !	 !	 ! - !

4.5	 RB= RB-128 . (Unbiased exponent=EX.)
4.7	 If RB=O

(True exponent of 1X1 is 0 along this path. Polynomial to be
used is setup for the 1X1 interval, . 5 <= IX; < 1.0 .)

Register:! RE! RD! RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 RO1
I	 It	 11

Use:! SX1	 1 - 1 EXI lo! hi;	 ;	 !	 !	 ;	 !	 1	 !	 ! - !

(Bias down mantissa by an additional .25; then, describe
the resultant U as a magnitude with sign in RD.)
(Create true 1X1 mantissa- .75 . Then conceptually multiply
result by 2 to create U. Radix point will then be at left
edge of R9.)

4.7.0	 RD=. NOT. R9 . (Lead bit of RD, RD(0), now contains sign bit
of U.)

RD=RD .AND. X 1 8000' . (Clears all but U sign bit.)
4.7.2	 If RD_O

(Sign bit of U is 0, i.e., +.)
4.7.2.0	 R9=R9 . EXCLUSIVE OR. X 1 8000' . (Clear lead bit of R9

- 3-56 -

MV

MP? SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION a
GER-17221

r
r

when true mantissa-.75 is
+; creates Uhi. Ulo
already exists. Uhi,Ulo
is the magnitude of U.)

Else q
4.7.2.1 R9=R9 .EXCLUSIVE OR. X 1 7FFF I	 (Clear lead bit of R9

when true mantissa-.75 is
-; complement remaining
bits of R9 to create Uhi.
Now proceed to complement
RA which becomes Ulo. Uhi
Ulo is the magnitude of
U.)

RA=RA .EXCLUSIVE OR. X'FFFF'	 (Complement complete.) s

Register:; RE;	 RD;	 RC;	 RBI	 RA;	 R9;	 R9;	 R7;	 R6;	 R5;	 R4;	 R3;	 R2;	 R1;	 R0;

Use:; SX; SU;	 - ;	 EX;Ulo;Uhi;

End (4.7.2)	 If.

4.7.4 R7=N2	 (Set degree of polynomial for calculating "p2",
p2=ATAN(ARG)-.5, ARG=(U+1.5)/2 	 .)

R8=COEF2+4 *N2+2 	(Set to last 16 bit address of COEF2 block,
3-

the coefficients of p2.)
Register:; RE;	 RD;	 RC;	 RBI	 RA;	 R9;	 R81	 RV	 R6;	 R5;	 R4;	 R3;	 R2;	 R1;	 R0;

Use:; SX; SU; - ; EV Ulo Whi;loc;cnt;

BAL,RF	 POLY32.	 (Compute "p2" polynomial.)
Register:; RE;	 RD;	 RC;	 RBI	 RA;	 R9;	 R8;	 RV	 R6;	 R5;	 R4;	 R3;	 R21	 R1;	 R0

i i	 i	 i	 i	 i	 i	 i	 i	 i	 i	 i	 i	 p2 1I	 i	 p2
Use:; SX;	 SU;	 -	 ;	 EX;Ulo;Uhi;	 -	 ;	 -	 ;	 ;	 ;	 -	 ;	 -	 1	 hi;	 -	 ;	 to

(If R2 lead bit is 1 (i.e., if p2 is negative), the value
produces a Y mantissa that is a hair below .5 	 In such case
the final Y true exponent must be -1 and the bits of p2 must
be shifted left 1 bit position more than normal. Else, when p2
is positive, the Y true exponent is 0; a normal alignment
shift is required.)
(Fix p2 and produce output.)

4.7.6 If R2=negative
(The p2 value is negative branch direction.)

4.7.6.0 (R2, R3)=R2*512	 (Y true mantissa hi 8 bits
properly positioned in R2.)

(R0, R1)=R0*512	 (Y true mantissa lowest 16 bits
properly positioned in RO.)

R2=R2 .OR. X'3F80'	 . (Merge Y biased exponent of 127

- 3-57 -

!	 ^	 r

GOODYEAR AEROSPACE
CORPORATION
GER-17221

•,

into Yhi.)

Else
(The p2 value is .5 or somewhat greater branch
direction.)

4.7.6.1	 02, R3)=R2*256 (Y true mantissa hi 8 bits
properly positioned in R2.)

(R0, R1)=R0*256 (Y true mantissa lowest 16 bits
properly positioned in R0.)

R2=R2 .OR. X 1 4000 1 . (Merge Y biased exponent of 128
into Yhi.)

End (4.7.6) If.

(Fix mantissa.)
4.7.8	 RO-RO .OR. R3 . (Merge to bits of Y mantissa; Ylo.)

R2=R2 .OR. RE . (Merge Y sign into Yhi.)
RE--O . (Status.)
RETURN (by way of RF).

Register:; RE! RD! RCt' RBI RAI R91 R81 B71 R61 R51 Rot' Rat' R21 R11 ROt'

Use:,' - t' - It - t' - t' - t' - t' - it - t'

	

if - t' - t' Yhi t' - t' Ylo t'

_ter

Else

(True exponent of 1Xt' is greater than 0 along this path.
It will be necessary to differentiate the 1Xt' true exponent:+1
case from the cases for which the exponent is greater..)

Register:; RE! RD! RCt' RBI RAI Rot' R81 RV R61 R51 Rot' Rat' R21 R11 ROt'
I	 t'	 t'	 t'	 t' mXi mXt'	 t'

Use:! SXt'	 t'- t' EXt' lot' hit'	 t'

(Develo
4.7.1	 RB=RB-2

Register:; RE! RD!

Use:; SXt'	 t'

p EX2=EX-2.)

(, RB co
RCt' RB I' RAI

I	 t' mXt'
- 1EX21 lot'

ntai ns the 1Xt' true exponent -2.)
R91 R81 RV Riot' R51 Rot' Rai R21 R11 RO
mXt'	 t'	 t'	 t'	 t't'	 t'	 t'	 t'

hi t'	 t'	 t'	 t'	 t'	 t'	 t'	 t'	 1-

4.7.3	 If RB=negative
(The 1Xt' true exponent is +1 to branch in this direction.
Polynomial to be used is setup for the t'Xt' interval,
1.0 <= 1Xt' < 2.0 .)

(Bias down mantissa by an additional . 25; then, describe
the resultant U as a magnitude with sign in RD, i.e.,
create (true t'Xt' mantissa- . 75) . Then conceptually
multiply result by 2 to create U. Radix point will then

- 3-58 -

e
	

t'

GOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

E'

be at left edge of R9.)
4.7.3.0	 RD=.NOT. R9 . (Lead bit of RD, RD(0), now contains sign

bit of U.)
RD=RD .AND. X 1 8000' . (Clears all but U sign bit.)

4.7.3.2	 If RD=O
(Sign bit of U is 0, i.e., +.)

4.7.3.2.0	 R9=R9 .EXCLUSIVE OR. X 1 8000' . (Clear lead bit of
R9 when true manti3sa-.75
is +; creates Uhi. Ulo
already exists. Uhi,Ulo
is the magnitude of U.)

Else
4.7.3.2.1	 R9=R9 .EXCLUSIVE OR. X 1 7FFF I . (Clear lead bit of

R9 when true mantissa-.75
is -; complement remaining
bits of R9 to create Uhi.
Now proceed to complement
RA which becomes Ulo. Uhi,
Ulo is the magnitude of
U.)

RA=RA .EXCLUSIVE OR. X'FFFF' . (Complement done.)
Register:; RE! RD! RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

Use:1 SXI SUI - IEX2iUloIUhil

End (4.7.3.2) If.

4.7.3.4	 R7=N3	 (Set degree of polynomial for calculating
P3=(ATAN(ARG)/2)-.5, ARG=(U+1.5)/2 .)

R8=COEF3+4*N2+2 (Set to last 16 bit address of COEF3
block, the coefficients of p3.)

Register:; RE! RD! RCI RBI RAI R91 R81 RV R61 R51 R41 R31 R21 R11 ROI

	

Use:i SX1 SUI - IEX2iUloI 1 '*j ilocicntl	 i	 i	 i	 i	 It	 i- i

BAL,RF	 POLY32. (Compute "P3" polynomial.)
Register:; RE! RD! RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

I	 i	 i	 i	 I	 I	 i	 i	 i	 I	 i	 i	 i P31	 i P3

	

Use:! SX1 SUI - IEX21UlOIUhii - 1 - 1	 1	 1 - 1 - 1 hii - 1 to

(If R2 lead bit is 1 (i.e., if P3 is negative), ;,he value
produces a Y mantissa that is a hair below .5 . In such
case the final Y true exponent must be 0 and the bits of
P3 must be shifted left 1 bit position more than normal.
Else, when P3 is positive, the Y true exponent is 1; a
normal alignment shift is required.)
(Fix p3 and produce output.)

4.7.3.6	 If R2:negative

- 3-59 -

d

TT

	MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221	 3

(The p3 value is negative branch direction.)
4.7.3.6 . 0	 (R2, R3)-R2#512 (Y true mantissa hi 8 bits

properly positioned in R2.)
(R0, R1) =R0#512 (Y true mantissa lowest 16 bits

properly positioned in R0.)
R2=R2+(1250 128) . (Develop Y biased exponent of

128 in R2.)

Else
(The P3 value is .5 or somewhat greater branch
direction.)

4.7.3. 6 . 1 	 (R2, R3)=R2 #256 (Y true mantissa hi 8 bits
properly positioned in R2.)

(R0, R1)=R0#256 (Y true mantissa lowest 16 bits
properly positioned in R0.)

R2=R2 .OR. X 1 4080' . (Merge Y biased exponent of
129 into Yhi.)

End (4.7.3.6) If.

(Fix mantissa.)	
k.

4.7.3.8	 RO=RO .OR. R3	 (Merge to bits of Y mantissa; Ylo.)i 3 	 ,
R2_R2 .OR. RE	 (Merge Y sign into Yhi.)	 y
RE=O . (Status.)
RETURN (by way of RF).

Register:; RE; RD = RC; RB I RA; R9; R8; R7; R61 R5; R4; R3; R2; R1; R0;
i	 1	 ^	 ^	 ^	 ^	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	

c

Use:! -	 - i - i - i - _ - i - i - i - i - i - I - ', Yhi 't - i Ylo

Else
(The ;X: true exponent is greater than +1 to branch in
this direction. The ;X; values will be 2.0 or greater.
W	 ; in order
to get suitable expansions for the ATAN function.
Proceed to find the reciprocal of ;x;.

Register:; RE; RDI RC; RBI RAI R9; R8; RV R6; R51 R4; R3; R2; R1; R0

	

I	 Z	 i	 1, mx; mx=	 11 	 I	 I	 1	 11 	 1	 f

	

Use:j SXi	 11- iEX21I lot hill	 11	 11	 11	 =	 1	 11	 1	 11- 11

4.7.3.1	 R5=R9	 . (Replicate mXhi in R5.)
(R5, R6)=R5 #X'0020' . (Multiply range index,

,j=0,...,7 , by 32; R5=4#,j
results in bit's 11,...,13 .)

R5=R5 . AND. X ' 001C' . (Clear all but bits 11,...,13 .)
R9=R9 .AND. X 1 1FFF' . (Clear range interval index bits,

",j", of mXhi. Creates Uhi in R9 	 l

- 3-60 -

rook-	 - - -	 —

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION	 a,e

GER-17221

and Ulo in RA.)
RD=O . (Clear sign bit of U. U is positive only.)
R5=R5+GET . (R5 points to polynomial degree number

in "GET" table.)

"GET" Table

3 k 4*j+k Address	 Value

0 0 4*0+0	 GET+ 0	 M(0)
0 2 4*0+2	 GET+ 2 KOEF(0)+4*M(0)+2
1 0 4*1+0	 GET+ 4	 MM
1 2 4*1+2	 GET+ 6	 KOEF(1)+4*M(1)+2
2 0 4*2+0	 GET+ 8	 M(2)
2 2 4*2+2	 GET+10 KOEF(2)+4*M(2)+2
3 0 4*3+0	 GET+12	 M(3)
3 2 4*3+2	 GET+14 KOEF(3)+4*M(3)+2
4 0 4*4+0	 GET+16	 M(4)
4 2 4*4+2	 GET+18 KOEF(4)+4*M(4)+2
5 0 4*5+0	 GET+20	 M(5)
5 2 4*5+2	 GET+22 KOEF(5)+4*M(5)+2
6 0 4*6+0	 GET+24	 M(6)
6 2 4*6+2	 GET+26 KOEF(6)+4*M(6)+2
7 0 4*7+0	 GET+28	 M(7)
7 2 4*7+2	 GET+30 KOEF(7)+4*M(7)+2

R7=0(R5); R5=R5+2 . (Load R7 with degree of selected
polynomial, M(J), held at address
pointed to by value in R5. Then
bump "GET" table pointer, R5.)

R8=0(R5) . (Load R8 with KOEF(J)+4*M(J)+2 ; the last
16 bit address of the KOEF(J) block, the
coefficients of the polynomial, r(j), held
at address pointed to by value in R5.)

Register:! RE! RD! RCI RBI RAI R9I R81 R7I R61 R5I R4I R3I R2I R1I RO!

Use:! SX! SU! - 1EX21UlolUhillocicnt! - ! - ! 	 !	 !	 !	 ! - !

4 .7.3.3	 BAL,RF	 POLY32. (Compute "r(j)" polynomial.)
Register:= RE! RD! RC! RBI RAI R9I R8I R71 R61 R5 1 R4I R31 R21 R1I RO!

!	 !	 !	 _	 !	 !	 !	 !	 !	 !	 !	 !	 ! ri!	 !	 ri!
Use:! SXi SUI - IEX2!Ulo!Uhii - ! - !	 !	 ! - ! - ! hi! - I lo!

(The value of rj is given by

rj=1/(8*ARG) for ARG=1/2+J/16+U/2 , 0 <= U < 1/8.

If R20) bit is 1 , the final IX! reciprocal true

- 3-61 -

f

I

t

A

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

exponent must be -(EX2+2)+2=-EX2+0=(.NOT. EX2)+1 ; a
normal alignment shift is required. If R2 lead bit is 0
the final 1XI reciprocal true exponent must be
-(EX2+2) +1=-EX2-1=(.NOT. be shifted left 1 bit position
more than normal.)

(Fix r(j) and produce output 1XI reciprocal.)
4.7.3.5	 RB=.NOT. RB . (Complement EX2.)
4.7.3.7	 If R2(1) is set (Rare case; ARG=.5 test.)

(Normal alignment branch direction.)
4.7.3.7.0	 (R2, R3)=R2#X'200' . (Y true mantissa hi 8 bits

properly positioned in R2.)
(R0, R1)=RO#X'200' . (Y tree mantissa lowest 16

bits properly positioned in
Pi.)

RB=RB+128 . (Biased exponent of reciprocal-1.)

Else
(Additional bit shift alignment branch direction.)

4.7.3.7.1	 (R2, R3)=R2#X1 400' . (Y true mantissa hi 8 bits
properly positioned in R2.)

(R0, R1)=R0#X'400' . (Y true mantissa lowest 16
bits properly positioned in
R0.)

RB=RB+127 . (Biased exponent of reciprocal-1.)
End (4.7.3.7) If.

(Assemble X reciprocal, XR, in (RB, R9).)
4.7.3.9 (RB, RC)=RB#X'0080' . (Position exponent in RC.)

RB=RC . (Move aligned, biased exponent into RB.)
RB=RB+R2 . (Add aligned (biased exponent-1) & aligned

hi mantissa.)
RB=RB .OR. RE . (Merge sign, biased exponent & hi

mantissa.)
RO=R0 .OR. R3 . (Merge l0 mantissa bits into R0.)
R9=R0 . (Move mantissa to into RB.)

Register:l REI RD! RCI RBI RAI R91 R81 R71 R61 R51 R4I R31 R21 R11 ROI
i	 I	 I	 I XRi	 I XRI	 I	 I	 i	 I	 i	 i	 I

	

Use:I - I - I - Ihil - Iloi	 -I	 I	 I - I - I-I - i- I

(Reciprocal of X is now in the input X slot; find the
ATAN of the reciprocal.)

4.7.3.B	 BAL,RF ATANF entry . (Get ANG. Answer is PI/2-ANG.)
Register:1 RE1 RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 RO

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I ANG I	 ANG I
Use : I - I - I - I - I - I - I - I - I - I - I - I - I hi I - 1 101

- 3-62 -

s.: s= . S ,:,,

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

(Compute PI/2-ANG. ANG is floating point.)
4.7.3.D	 RE=X'8000' . (Prepare for sign bit isolation.)

RE_RE .AND. R2 . (ANG sign bit in RE(0); 0 elsewhere.
RE value is SA.)

R2=R2 .EXCLUSIVE OR. RE . (Absolute value of ANG, JAI,
now in (R2, RO).)

Register:) RE1 RDI RCI RBI RA1 R91 B81 B71 R61 R51 R41 R31 R21 R1J ROJ
I	 I	 I	 I	 J	 !	 !	 1	 1	 1	 1	 1	 I JAI I	 1 IA! J

Use: J SAI - I - I - I - I - I - ! - I - I - J - I - J hi ll - J loll

(Put 2 times the ANG biased exponent into R2. Also, save
JAI hi in R7.)

4.7.3.F	 R7=R2 . (Save JAJ in R7.)
(R2, R3)=R2 #X'0400' . (Bits 7,...,14 of R2 now holds

biased JAJ exponent.)
R2=R2 .AND. X 1 01FE' . (R" now holds

24 (biased JAI exponent)=2EB.)
Register:! RE! RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 Ell ROJ

1	 J	 1	 1	 1	 J	 !	 J JAl l	 !	 !	 J	 1	 !	 1 !A! !
Use: J SAI - I - I - J - ! - ! - J hi! - ! - ! - J - 12EB1I - J lo!

(Align !AI biased mantissa so that radix point is at
left edge of R7; then unbias it.)

4.7.3.11	 (R7, R8)=R7#X'0100' . (Move JAI biased mantissa hi into
R8.)

(R0, R1)=R0# X'0100' . (Shift hi part of biased mantissa
to into RO and to part into R1.)

R8=R8+RO . (Merge biased mantissa hi. pieces. Results in
biased mantissa hi of JAI in R8; to part is
in R1.)

R8=R8 .OR. X 1 8000' . (Unbias JAI biased mantissa hi
pieces. JAI true mantissa hi, mAu
hi, is in R8; JAI true mantissa
hi, mAu lo, is in R1.)

Register:! REI RDI RCI RBI RAJ R91 R81 R71 R61 B51 R41 R31 R21 P,11 RO!
I	 I	 I	 I	 I	 I	 ImAuJ	 I	 I	 I	 I	 I	 JmAuJ	 J

Use : J SAI - I - 1 - 1 - I - I hi J - I - 1 - I - I - 12EB J to ! - 1

(Develop JAI as an integer. Use the data derived from
ANG (SA, mAu, and 2EB) to do this. The 2EB value will be
used to access a shift constant from the SHF table; that
constant will be used to shift the mantissa (mAu) bits
to the left (relative to the mantissa's radix point); the
resultant value is the integer form of JAI.

- 3-63 -

t ^yGOODYEAR AEROSPACE
CORPORATION
GER-17221

MPP SCIENTIFIC SUBROUTINES

Initially, consider that mAu has been divided by 2*030;
the radix point is then 30 bit positions to the left
of the left edge of R8. In fact, if the 4 register
combination, (RC, RA, R8, R1), contains this value, then
RC and RA are conceptually filled with "O"'s and the
radix point lies 2 bits in from the left edge of RC, i.e.,
between RC (1) and RC(2). To get the true integer value of

IAJ, this value must be multiplied by 2**(EXA+30) where
EXA is the true exponent of JAI and the "30" compensates
for the earlier division by 2* 030. The quantity
20*(EXA+30) is the value extracted by appropriately
entering the SHF table.)
(Develop SHF table entry address.)

4.7.3.13	 R2=R2-((128-30) *2) . (Two times (JAI true exponent+30) is
put into R2 after removal of
exponent bias; result is called
2EA.)

R6g13ter : J REI RDI RCI RBI RAI R9I R8 1 R7 1 R6 1 R511 R4 1 R31 R21 R1I ROI

I	 I	 I	 I	 I	 I	 ImAuJI	 I	 I	 I	 I	 JmAuJ	 t
Use: J SAI - I - I - I - I - I hit - I - I - I - I - J 2EAI lot - It

(Create output Y for different exponent ranges of JAI. The
true exponent value of JAI can ' t be greater than -1.)

4.7.3.15	 If R2 =negative
(JAI true exponent is -31 or less. tYI=PI/2.)

4.7.3.15.0	 R2=X 1 4OC9' . (PI/2 (hi) for exponent -31 to -128.)
RO_X'OFDB' . (PI/2 (lo).)
R2=R2 .OR. RE . (Merge in sign bit of output.)
RE=O . (Set status.)
RETURN via RF .

Reg13ter : J AEI RDI RCI RBI RAI R9I R81 R71 R6I R51 R41 R31 R21 R1I RO

J	 I	 I	 I	 I	 I	 I	 J	 J	 J	 J	 J	 J	 J	 J	 tUse: J- I- I- I- I- I- I- I- I- I- I- I- J Yhi I- I Ylo t
r**0•*0r0000000*0*0*00*0***00000*00*0000*****0000000*000r

Else
Register : I REI RDI RCI RBI RAI R9I R81 R7 I R6 1 R5 1 R4I R3I R21 R1I ROt

I	 I	 I	 I	 II	 ImAut	 I	 I	 I	 I	 I	 ImAut	 t
Use: I SA I - I - I - I - I - I hit - I - I - I - I - J 2EA I lot - I

(The integer form of IAI must be developed in order
to execute the subtraction from PI / 2; the mAu
value must be shifted relative to the radix point by
an amount determined by JAI's true exponent. The
JAI exponent range is from -31 up through -1.)

4.7.3.15.1	 If R2(10)a1 .
(Data of (RC, RA, R8, R1) must be shifted left
by 16.)

4.7.3.15. 1.0 	 RA=R8

- 3-64 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

R8sR1
R2 .AND. X 1 001E' . (Clear lead bit of 2EA.)
Else

4.7.3.15.1.1	 RAsO . (Initialize RA.)
End (4.7.3.15.1) If

(Do the remaining (less than 16) shift to convert
JAI to an integer.)

4.7.3.15.3	 R2=R2+SHF	 (Develop address into table to get
shift factor.)

R5=002)	 (Put shift value into R5.)
(RA, RB) =RA*R5 . (Do hi shift. The role of RC of

the 4 register set, (RC , RA,R8,R1),
is now taken on by RA.)

(R8, R9)=R8eR5 . (Do to shift. The role of RA of
the 4 register set, (RC,RA,R8,R1),
is now taken on by R8.)

R8=R8 .OR. RB . (Merge bits of similar level of
significance in R8.)

Register : J REI RD1 RCI RB I RA I R91 R81 R7 1 R6 1 R5 1 R41 R31 R2 I R1 I ROI
I	 I	 I	 I	 Iint1	 I int l 	 I	 I	 I	 I	 I	 I	 I	 I

Use:I SAI - I - I - I JA I I - 11AI I - J - I - I - J - I - I - I - J

I	 I	 I	 I	 I hi ll 	I lo l 	 I	 I	 I	 1	 I	 1	 1	 1
((RA, R8) now contains the integer value of IAI; the

radix point lies between RAM and RA(2). Now
execute the (PI/2-(int JAI)) process.)

	

4.7.3.15.5	 R8s.NOT.R8 . (Negate int IAI lo.)
RA=.NOT.RA . (Negate int JAI hi.)
R8=R8+X'PI/2' ,save carry out. (Add PI/2 lo.)
RAsRA+X'PI/2' ,carry in. (Add PI/2 hi.)

(Convert int IYI into floating point Y.)

	

4.7.3.15.7	 (R8, R9)2 R8eX'0400' . (Align IYI mantissa lo.)
(RA, RB)sRA*X'0400' . (Align IYJ mantissa hi.)
R8+R8 .or. RB . (Merge mantissa pieces.)
RO:R8 . (Move Ylo into R0.)
R2sRA . (Move 1Y1 hi into R2.)
R2sR2 .OR. X 1 4080' . (Merge in biased exponent of
IYI corresponding to Y true exponent of 1.)
R22R2 .OR. RE . (Insert sign bit of Y.)
REsO . (Set status.)
RETURN via RF .

Register : I RE1 RDI RC1 RBI RAI R91 R81 R7 1 R61 R51 R41 R31 R21 R1 1 ROJ
I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1Use:1 - I- I- I- I- I- I- I- I- I- 1- I- I Yhi I- 1 Ylo 1
esreeer^rersers^rrsssserrfrrrr^tesrrreaa ;sr*•^rersrrerf *rrra^►

- 3-65 -

9

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION	 1

GER-17221

End (4.7.3.15) If

End (4.7.3) If

End (4.7) If

End (4) If

END

r

- 3-66 -

LW

W_

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

3.2.5 MCU NATURAL LOO SUBROUTINE DESCRIPTION : LNM
--------- -- ----- -- ---- --- --------------- -- --- -------

This Subroutine develops the value, "Y", the natural logarithm of the input
variable, "X". "X", the input, and "Y", the output, are 32 bit VAX floating
point numbers. Along with "Y", a 16 bit status vLlue, S, is generated for
output; it is 0 when X is positive and non-zero. The theory used for this MCU
computation if the natural logarithm, is identical to that for the parallel
array algorithm.

aaarrarrrrrraaaaaaarrrarrrrrrraraarraaaraararrararrrrraaaaraaraarrarr

The subroutine demands the calculation of

Y:LN(X)

aararaaasaaarrrrrrrraararraarraaaaaraaaaarrrrrrraaaaaaaraaaaarrarara

0.	 (ENTER LOGM.)

1. (Set the status bits to 0.)
Load R14 with X100001.

2. (Check for X=negative.)

If bit 0 of R11 is set

then,

Load register R2 with X'00031.

	

RETURN.	 Fatal error status if X was negative.

End If.

Else,

Continue.

- 3-67 —

e

^I

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AER03PACE
CORPORATION
OER-17221

3. (Check for X4.)
If R920,

If R11:0,

Load register R2 with X'FFFF'.

Load register RO with X'FFFF'.

Load register R14 with 1 2' to indicate underfloor.

RETURN.

Else,

Continue.

Else

Continue.

4. R9 and R11 contain X. Adjust the R11 X bits 9 bit positions to the left so
that the shifted R11 X bits lie in R12 and R11 as follows:

Address R11:

Address R12:

1

	

1	 1	 1	 1	 1	 11
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51

1	 1
ml ml ml ml ml ml ml 01 01 01 01 01 01 of 01 01

{	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

11 21 31 41 51 61 71	 {	 1	 1	 1	 1	 1	 1	 1	 1
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

I
	t 	 1	 1	 t	 t	 ti

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51
1	 {

of 01 01 01 01 01 01 SI e1 el e1 el el of e1 el
I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 I	 I	 i	 I	 I	 I
1	 I	 I	 f	 I	 I	 I	 1 01 11 21 31 41 51 61 71
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

- 3-68 -

C'

Perform cardinal multiply :

MLU R11,PX'200'

5. Adjust the R9 X bits 9 bit positions to the left so that the shifted R9
X bits lie in RIO and R9 as follows:

Address RIO:

Address R9:

	

1	 1	 1	 1	 1	 11
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51

1	 1
21 21 ml ml ml 21 m(01 01 01 01 01 01 01 01 01

	

11 11 11 21 21 21 21	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

71 81 91 01 11 21 31	 1	 1	 1	 1	 1	 1	 1	 1	 1
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

I

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51
1	 1

01 01 01 01 01 01 01 m; ml 21 ml 21 ml ml ml 21
I	 I	 I	 I	 1	 1	 1	 11	 1	 11	 11	 11	 11	 11	 11	 11
1	 I	 I	 I	 I	 1	 1 8; 91 01 11 21 31 41 51 61
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

Perform cardinal multiply :

MLU R9,#X'200' .

6. "OR" R9 with R12 to get:

Address R9:

I

	

1	 1	 1	 1	 1	 ,(
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51

1	 1
ml ml ml ml 21 21 01 mi 21 21 ml ml ml ml 21 ml

1	 1	 1	 1	 1	 1	 1	 1	 1	 ,(,(ti	 ti	 ,(t1	 t1
11 21 31 41 51 61 71 81 91 01 11 21 31 41 51 61

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

C.-

7. 12 the most significant mantissa bit is set,

then,	 use LECOE"I coefficients;

else,	 use LNCOEM coefficients;

- 3-69 -

IFT

,' 1

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

In general the polynomial coefficients are: 	 s

HEX address	 Coefficient

COEF+ 0	 AM (low)
COEF+ 1	 A(0) (high)
COEF+ 2	 A(1) (low)
COEF+ 3	 A(1) (high)

COEF+2*N 	 A(N) (low)
COEF+2*N+1	 A(N) (high)

Note that POLY computes:

H_A(O)+fb*(A(1)+fb*(A(2)+fb*(A(3)+fb*(A(4)+...+fb*(A(N-1)+fb*(A(N)))...).' 	 -

The steps to use POLY foll-.w.) 	
s

rt`

Load R8 with COEF block starting addres--

Load R7 with the degree of the polynomial, N.

CALL R15,PLY32$ to compute LN(ARG)-ARG.

8. Then, because the desired function is actually LN(ARG),
add in the input ARG contained in R10 and R9:

ADD RO,R10

ADDC R2,R9

We thus have computed the LN(1+U) term of the required:

Y = EXP*LN(2) -	 (128+1)*LN(2) + LN(1+U) - U

9. Sutraet 128+1 from the input exponent:

SUB R11,#128+1 for use in above equation;

- 3-70 -
r

4

d)

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Rpm

If R11 is negative,

then, Perform 2'3 complement of R11

and remember sign bit in R14 .

else,	 continue.

10. Save the exponent of R11 in R6. Perform the multiplication of the
exponent by the constant LN(2):

	

MLU	 R11,#X1B172' which is the high half of LN(2),

and,	 MLU	 R6,#X117F9'	 which is the low half.

Merge the two multiplication halves:

ADD	 R6,R12

	

ADDC	 R11

11. If EXP-129 was negative, the product is negative,

then, complement R6, R7, and R11 which contain (EXP-129)eLN(2).

12. Add the Polynomial results to R6, and R7

ADD	 R7,R0

ADDC	 R6,R2

	

INCRC	 R11

13. If this final result is negative,

then, remember the final sign bit in R14,

and complement R11, R6, and R7 to get a positive number.

Now the un-normalized Y value is contained in registers

- 3-71 -

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

R11 0 R6 and R7.

14. Normalize the Y value as follows:

If R11 is 1019

then, R6 and R7 contain the fractional bits;

CLR R10	 no exponent bias required;

CALL R15,NORMV$	 to normalize Y.

The output of NORMV$ is VAX 32-bit format in R2 and R0.

CLR R14	 clear status and,

RETURN

else,

continue.

15. Normalize the 48 possible bits in R11, R6 and R7:

Since the maximum number of exponent bits is 7,

Shift the value in R11 by 9 places (16 bit register -7) in order

to speed the normalization:

MLU	 R11,#X1200'

LR	 R8,R7	 save R7 temporarily;

MLU R6,#X'200'

MLU R8,#X'200'

- 3-72 -

4
4

J616jr

I
JJ^

,y '7(i MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION
GER-17221

Then merge the results:

OR R6,R12	

4
OR R7,R8

Save the shift count in R10 to be passed to NORMV$

so that the exponent may be adjusted; include also the 16 bits of R11:

LR	 R10 , #16-9 .

For the normalize routine NORMV $, the input registers are R3 and R1:

LR	 R3,R6

LR RIM
t

CALL R15,NORMV$.

Clear the status register:

CLR R14 and,

RETURN .

LT

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

3.3.6 MCU EXP SUBROUTINE DESCRIPTION : EXPM
-------------------- ------------ -- 	 ------

For the Exponential subroutine, X is the input variable, Y is the output
variable, and S is the output status indicator.

All 16 bits of S are normally 0. When S is 1, overflow has occurred; S set to
2 indicates underflow, a non fatal condition.

Y is set at X 1 7FFFFFFF I if Y goes out of range (overflows); Y is set at
X 1 00000000' if X underflows.

The algorithm used for this subroutine is identical to the algorithm used for
the array Logarithm function (LNA) described Section 2.

##

0. (ENTER EXPM.)

1. Set the status bits to 0.	 ry

Load R14 with X100001.

2. (Check for X=O.)
t

If R9=0,	 E,

If R11=0,	
f
f

Load register R2 with X100001.

Load register RO with X 1 4080'	 a VAX 1 1 1 .	 r

RETURN.

Else,.

Continue.

3-74 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

3. R11 and R9 contain X. Adjust the X bits 9 bit pot '.ons to the left so
that the shifted X bits lie in R9 and R10 as follc o.

l
1	 1	 1	 1	 1	 1{

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51
1	 1

R11:
	

m{ m{ ml m{ ml ml m{ 0{ 01 01 01 01 01 01 01 01
I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

11 21 31 41 51 61 71	 1	 1	 1	 1	 1	 1	 1	 1	 1

{{	 1	 1	 I	 1	 1	 1	 1	 1	 1	 I	 I	 I	 1	 1

1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51
1	 1

	R12:
	 01 01 01 01 01 01 01 S{ e{ el el el el el e{ e{

1	 I	 1	 I	 l	 1	 1	 1:	 1	 1	 1	 1:::

i	 1	 1	 1	 I	 {	 I	 1 01 11 21 31 41 51 61 71

I	 I	 1	 I	 1	 I	 I	 I	 I	 I	 I	 1	 I	 1	 I	 I

Perform cardinal multiply :

MLU R11, #X12001.

4. Adjust the R9 X bits 9 bit positions to the left so that the shifted R9
X bits lie in R10 and R9 as follows:

I	 I
{	 1	 1	 1	 1	 1	 1{
10 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51
1	 I	 1

R10: I m1 m{ ml m{ m{ ml m{ 01 01 01 01 01 01 01 01 01
1 11 11 11 21 21 21 21	 1	 1	 1	 1	 1	 1	 1	 1	 1
1 71 81 91 01 11 21 31	 1	 1	 1	 1	 1	 1	 1	 1	 1
1	 1	 1	 1:	 1	 1	 1	 1:	 1	 1	 1	 1{	 1{

:	 I

10 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51

	

119:	 1 01 01 01 01 01 01 01 m{ m{ m{ ml ml ml ml ml ml
I	 {	 I	 I	 I	 {	 1	 {	 1	 {	 ,I	 11	 tl	 11	 11	 11	 11
{	 {	 {	 {	 {	 {	 {	 { 81 91 01 11 21 31 41 51 61

1	 1	 I	 I	 l	 I	 1	 1	 1	 I	 1	 1	 1	 f	 1	 1	 1

w

f f	 ,7

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Perform cardinal multiply :

MLU R9,#X'200'

5. "OR" R9 with R12 to get:

1	 i
^	 1	 1	 1	 1	 1	 11

10 1 2 3 4 5 6 7 8 9 0 1 2 3 4 51
1	 I	 1

R9: I ml ml ml ml ml ml ml ml ml ml ml ml ml m; ml m;

1	 1	 I	 I	 I	 i	 I	 I	 1	 1111111 11 111111
1 11 21 31 41 51 61 71 81 91 CI 11 21 31 41 51 61
I	 I	 I	 1	 I	 I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1

6. Load register R2 with allI :X'2E2A' where ' a' is 1/LN(2).
Load register RO with aLO=X'8EC9'.

Then call the common multiply subroutine to obtain a; f:	 -

CALL R15,MULT32$.

The results are stored in HO and R2.

7. Add in the a/2 term:

ADD R0,#X'8ECA'

ADDC R2,#X'2E2A'.

These registers are the Ig bits of the final result.

8. Save the sign bit in R4, and Clear the sign bit of the exponent in R11.

9. If the integer part of Ig is a 1 0 1 , then the input exponent will
determine overflow if greater than 8. If the integer part of Ig
is '1' the overflow or underflow exists if the input exponent is
greater than 6:

If bit # 1 of R2 is 0,	 (Ig integer bit)

- 3-76 -

' SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION

GER-17221

1

then,

If R11 (input exponent) >s 128+8	 (include bias),

then,

Perform step 10 error return.

else,

If R11 (input exponent) < 	 128+7 (include bias),

then,

Perform step 10 error return.

else proceed to step 11 for normal execution
no overflow or underfloor exists.

10. When the input exponent becomes out of range:

If the sign bit of the exponent was positive,

then,

An overflow has occurred so

Set the output to the maximun VAX number

And set the status to '1'.

LR R0,#X'FFFF

LR R2,#X'7FFF'

LR R14,#1

RETURN.

else,

since the exponent was large and the sign negative,

((a non-fatal underflow condition exists; the output

L
becomes 1 0' and an underflow status is indicated:

- 3-77 -

EAR AEROSPACE
PORATION
R-17221

•	 't
CLR RO

MR R2

LR R14,#2

RETURN.

11.	 (NORMAL entry)

Compare R11 (the input exponent) with 128-31;

If R11 less than 20e-31

then,

force the output to '1' (since a* e0 = 1).

else,

continue.

12. Move the Ig values to R6 and R7.

13.(The registers, 06, R7) save the positive sum Ig=aef=(Ig1+Ig2+I83)+(a/2)
with the form (0.1.30). The value of Ig must be shifted an amount determined
by the pure biased exponent value of X stored in R10. But before proceeding
with the shift, multiply Ig by 2ee (-34). The scaled positive Ig value is
assumed to reside in the concatenation of registers, R10, R9, R8, R7, R6.
The bits of registers R10, R9, R8 must be loaded with toe sign bit of 0.
The radix point of the scaled Ig value lies at the boundary between R10 and
R9 (i.e., between R100 5) and R9 (0)). Now load the sign into the registers.)

Load R8 with 0.

Load R9 with 0.

Load R10 with 0.

(R10 will store the integer bits of the shifted Ig value.)

14.(The registers, (R6, R7) save the sum Ig=a ef: (Ig1+Ig2+Ig3)+(a/2) with
the form (0.1.30). The bits of R10, R9, R8, R7, R6 must be shifted left
an amount that is ultimately determined by the pure biased exponent value

- 3-78 -

•	 as	 ,..	 ^^ '^'^^.. yY+- ^,_ . c, ^, ♦

Load R7 with R6.

Load R6 with 0.

- 3-79 -

-	 ---	 4

.- 1

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

of X stored in R11. Before proceeding, create the shift constant by
subtracting 128 and adding 34 to the value stored in R11.

Add All to the negative of the exponent bias (-128) plus 34; store result
into R11. (R11 now contains the left shift valves!; it can't be bigger than
41 because of the operations of item 12.)

15.(Left shift the bits of R10, R9, R8, R7, R6 by the amount stored in R11.
The radix point between R10 and R9 remains fixed during the shift operations.
The shift is performed in 3 phases: shift by 32, shift by 16, and shift
by less than 16. The steps follow.)

(Check MSB of R11 exponent.)

If bit #10 of All s 0,

Continue. (MSB of R11 exponent is not set.)

Else

Load R9 with R7. (MSB of R11 exponent is set.)

Load R8 with R6. (Shift 32 bits).

Load R7 with 0.

Load R6 with 0.

End If.

(Check next r,SB of exponent).

If bit #11 of R11 exponent is 0,

Continue. (Next MSB of R3 is not set.)

Else

Load R9 with R8. (Next MSB of exponent is set.)

Load R8 with R7

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

End If.

"AND" X'OOOF' with R11; store result in R11. (Lowest 4 bits of shift value.)

Note: The SHFM data table contains 16 bit storage locations.
The starting address of this set of 16 values is SHF$. The values are:

Address	 Hex Value	 Address	 Hex Value

SHIFT+ 0 0001 SHIFT+ 8 0100
SHIFT+ 1 0002 SHin+ 9 0200
SHIFT+ 2 0004 SHIFT+10 0400
SHIFT+ 3 0008 SHIFT+11 0800
SHIFT+ 4 0010 SHIFT+12 1000
SHIFT+ 5 0020 SHIFT+13 2000	 a
SHIFT+ 6 0040 SHIFT+14 4000
SHIFT+ 7 0080 SHIFT+15 8000

The shifts will be accomplished with multiplies using the factors from
the SHIFT block.) -.

Load RO with value in SHIFT(R11e2).

Cardinal multiply R9 times R11; store result low in R9 and result high in
R11.

Cardinal multiply R8 times R11; store result low in R11 and result
high in R12.

"OR" R12 with R9; store result in R9.

Cardinal multiply R7 times R12; store result low in R7 and result high in
R8.

"OR" R11 with R8; store result in R8.

16.(The R10, R9, R8 registers hold the shifted positive sum Ig=a•f
:(Ig1+Ig2+Ig3)+(a/2) value which has the form (0.8.32). The radix point	

11)
remains between R10 and R9. But before proceeding, make the shifted Ig value
a 2's complement number.)

If R4:0,

Continue.

Else,

- 3-80 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Complement R10. (R10 stores the integer bits of the signed shifted
Ig value.)

Complement R9,

Complement R8.

End If.

16.(The R10, R9, R8 registers hold the signed, shifted positive sum Ig:a*f
s(lg1+Ig2+I83)+(a/2) value which has the form (8.8.32). The radix point
ruins between R10 and R9. To generate the biased exponent of the output
Y value, add the bias of 128 plus 1 to the R10 value.)

Add 128+1 to R10.

17.(The R9, R8 registers hold the signed, shifted positive fraction of the
sum Ig:aef: (Ig1+Ig2+I83)+(a /2) value which has the form (0.0.32). The radix
point ruins between R10 and R9. R10 contains the biased exponent of Y.
Check to see that the exponent is still in bound.)

Load R12 with X'FF00'.

"AND" R12 with R10; store results into R12.

If R12s0

Continue.

Else

Load R14 status with X100011.

Load R2 with X17FFF'.

Load RO with X'FFFF'.

RETURN.

End If.

18.(The R9, R8 registers hold the signed, shifted positive fraction of the
sum Ig:a#f:(Ig1 +Ig2+Ig3)+(a/2) value which has the fors (0.0.32). The radix
point remains between R10 and R9. R10 contains an in range biased exponent of

A	 Y. The fraotion in (R9, R8), called ff, determines the value of the function,

- 3-81 -

^ rem-Al

e

MPP SCIENTIFIC 3UBROUTINE3
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

H:(2**(ff))/2)-.75	 The range of ff in HEX is X'00000000'*2**(-32) to
X 1 FFFFFFFF'*2**(-32) Bias ff by .5 to create fb. Then
H:(2**(fb+.5)))/2)-.75 and the range of fb in HEX is X'80000000'*2**(-32)
to X 1 7FFFFFFF'*2**(-32) , i.e., -.5 <s fb <+.5 . (The range of H in HEX is
-.25 <: H <+.25 ; its form is (1.0.31).). Proceed to bias ff by .5 .)

19.(Call POLY32(R9, R10, R8, R5, R4, R3, R2). The input fraction fb is put
into R9, R10. The coefficients of the polynomial that fits H are in the
COW block of the MCU memory. R8 holds the starting address of the COEF
block. The degree of the polynomial to approximate, N, is held by R7.
Each coefficient has the form (1.0.31). The coefficients are stored
in the COEF block in ascending order. In particular,

HEX address

COEF+ 0
COEF+ 1
COEF+ 2
COEF+ 3

Coefficient

A(0) (low)
A(0) (high)
A(1) (low)
A(1) (high)

.

C06+2*11	 A(N) (low)
COEF+2*N+1	 AM (high)

Finally, after execution of POLY, H with form (1.0.31) is returned in
R2, R0. Note that POLY computes
H:A(0)+fb*(A(1)+fb*(A(2)+fb*(A(3)+fb*(A(4)+...+fb*(A(N-1)+fb*(A(N)))...).

The step* to use eOLY follow.)

Load R8 with COEF block start'ag address.

Load R7 with the degree of the polynomial, N.

CALL R15,POLY32$

R2 and RO contain the output of POLY32, R11 contains the exponent.
complement the sign bit of R2 (this is the hidden fraction bit).

20.	 (Pack data.)
Cardinal multiply R11 exponent with X 1 0080 1 ; store into R11, R12.
(Ignore hi part that fills R11. The Y sign bit and biased exponent
are now properly positioned in R12.)

Cardinal multiply R2 with X 1 0100 1 ; store into R2, R3. (The Y mantissa,
biased by .5, now is positioned correctly for merging with the sign

3-82 -

F

MPP 3CIENTIFIC SUHROUTINSS
	

GOODYEAR AEROSPACE
CORPORATION
OSR-17221

i-nd exponent data.)

"AND" R2 with X'007F'; store into R2.

"OR" R2 with R12; store into R2.

Cardinal multiply RO with X 1 0100 1 ; store into R0.

"OR" RO with R3; stare into R3.

RETURN

i

- 3-83 -
i

=a.- S- ; --t

j

,j

a

HP? SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

3.2.7 MCU COMMON SUBROUTINE : POLY32

This subroutine develops the value, "P", of a polynomial of degree "N" using
the independent variable "U" as the input. "U", the input, and "P", the
output, are 32 bit 2 1 s complement numbers. The value "P" is given by

P=AO*(U**0)+Ale(U**1)+A2*(U**2)+A3*(U**3) AN*(U**N)

"P" is computed from right to left using

P:AO+U*(Al+U*(A2+U*(A3+U*(A4+U*(A5+U*(A6+.....+U*(AN)

The routine assumes that -1/4 <= U < 1/4 and "U" has the signed magnitude
format	 [SU, (0.31.0)]*2**(-32)	 and that	 -1/4 <= P < 1/4 and "P" has the
2 1 3 complement format	 (1.31.0)*2**(-32) .

Whatever the starting location of the memory space that stores the "A"
coefficients, they are assumed stored in the sequence:

Address	 Item
"A"+ 0	 AO(hi)
"A"+ 2 AO(lo)
"A"+ 4	 A1(hi)
"A"+ 6	 A1(lo)
"A"+ 8	 A2(hi)
"A"+ 10	 '2(lo)
"A"+ 12	 A3(hi)
"A"+ 14	 A3(lo)

"A"+44 AN(lo)
"A"+4*N+2 A2(hi)

the "A" coefficients are assumed to have the same form as "P". The "A"
bloc. is stored outside of this subroutine.

The routine is given the location of the last 2 byte word of the "A"
coefficient block in R8. The degree of the polynomial is given in R7.

The degree of the polynomial is at least 1.

The entry branch and link register for this subroutine is RF. This subroutine,
in turn, calls the subroutine, MULT32, as an inter-.al subroutine (i.e., no
RAL register is used) .

- 3-84 -

SWW4W

	MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Registers directly required by the POLY32 routine are marked with a "#" below.
Registers indirectly required by the MULT32 routine are marked with a
below.

Register:{ REI RDI RCI RBI RAI B91 R81 R71 B61 R51 R41 R31 R21 R11 ROI
I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 1

POLY32 Use: I	 I# I	 I	 I# I# I# I# I	 I	 I	 I	 I# I	 I# I
14ULT32 Use : I	 1$ 1	 1	 1$ 1$ 1	 1	 1	 1	 1$ 1$ 1$ 1$ 1 3 1

4

ON ENTRY:
R7_N
R8=COEF[function]+4 ;N+2
R9=Uhi
RA_Ulo
RD=SU (the sign of U exista in the most significant

remaining bits are "0".)

ON EXIT:
RO=Plo
R2_Phi

bit location; all

1. POLY32 entry .
Register:I REl RDI RCI RBI RAI R91 R81 R7I R6 11 R51 R41 R31 R2 11 R11 ROI

	

1	 I	 1!	 I!	 I	 I!!!!!	 1	 I!

	

I	 1	 1	 I	 1UhiIUlollocicnt!	 1	 1	 I	 I	 I	 I	 1

2. R0=008); R8=R8-2 . (Load RO with ANlo; decrement the address register.)
Register:! RE! RD! RCI RBI RAI R91 R81 B71 R61 R51 R41 R31 R21 R11 ROI

	

1	 1	 1	 I	 I	 1!	 I	 I!	 I	 I	 1!!!
Use:ISAVI SUI	 I	 1UhilUlolloclent!	 I	 l	 I	 I	 I	 I AN',

	

I	 I	 I	 I	 I	 1	 I -21	 1	 I	 I	 1	 I	 I	 I lo',

3. R2=0(R8); R8=R8-2 . (Load R2 with ANhi; decrement the address register.)
R0g13ter:I REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R1I ROI

	

11{	 1	 I	 I	 I	 1	 I	 I	 I	 I	 I	 I	 I	 1
Use:ISAVI SUI	 I	 IUhilUlollocicntl	 I	 I	 I	 I AN!	 It AN,

	

I	 I	 I	 I	 I	 1	 1 -21	 1	 1	 1	 1	 It hi l	 I to l

4. Bal(RF) to MULT32.MS . (V is the 2's complement multiplier result.)
Register:l REI RD) RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

	

1	 1	 1	 1	 1!	 1{	 1{	 1	 1	 1{	 1	 1
	Use:ISAVI SUI	 I	 IUhi{Ulolloclentlball	 I	 I	 IVhil	 IVlo1

- 3-85 -

1

• i

.^e

	

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

5. RO=RO+O(R8); R8=R8-2 . (No carry-in; save carry-out.)
Register : l REi RDI RCI RBI RAI R91 R8 1 R71 R61 R51 R41 R31 R21 R11 ROi

I	 I	 1	 I	 I	 1	 I	 I	 I	 1	 1	 1	 1	 I	 1	 I

	

Use:ISAVI SUI	 I	 IUhilUloilocicntl - I	 1	 i	 iVhil	 Mol

1	 1	 1	 I	 1	 1	 1 -21	 1	 1	 1	 1	 1	 1	 1 +I
1	 1	 1	 I	 1	 i	 1	 I	 I	 1	 1	 I	 1	 1	 IAloi
1	 I	 1	 I	 1	 i	 1	 1	 1	 1	 1	 1	 I	 1	 1	 1
i	 :	 I	 :	 I	 :	 1	 1	 I	 :	 1	 :	 I	 1	 J Alo l

6. R2=R2+0 (R8); R8=R8-2 . (Carry-in.)
Register : l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 Rai R21 R11 R01

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

U3e:1SAV1 SUI	 I	 1UhilUloiloclenti - i	 I-	 i	 IVhil	 iAloi

I	 I	 I	 I	 I	 1	 1 -21	 1	 1	 1	 1	 1+ I	 I	 I
i	 1	 I	 1	 1	 I	 1	 i	 I	 I	 I	 I	 IAhi i 	I	 I
11	 1	 1	 l	 I	 1	 1	 I	 I	 I

::	 1	 1	 ::	 1	 I	 I	 1	 I	 I	 i Ahii	 I	 I

7. R7=R7-1 . (Decrement count register.)
Register:I REI RDI RCI RBI RAI R9I R81 R71 R61 R51 R41 Rai R21 R11 ROi

I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 i	 1	 1	 1

	

Uae:ISAVI SUI	 I	 iUhilUlollocienti - I	 I	 I	 iAhil	 iAlo l

i	 I	 i	 I	 I	 1	 1	 1 -21	 1	 1	 1	 I	 1	 1	 1

8. IF R7=0
RETURN via RF register.

Register:I REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 k1I ROi

1	 1	 I	 I	 1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Uae:ISAVI SUI	 I	 iUhilUlollocientl - I	 I	 I	 IAhil	 IAloi

Else

Go to 4.

End If.

END

"I,

3-86 -

3.2.8 MCU COMMON SUBROUTINE : MULT32
M-----------------------------------

This subroutine multiplies a 2 1 3 complement 32 b^ 1%; "A" times a 32 bit signed
magnitude number, "U", to produce a 2'3 complement 32 bit "V". The low 32 bits
of the product are dropped; the high 32 bits form

eeereeeeerereeerffefefffe#eeeerrrereeeeferaeefef*srs^reererrerrer+^asffra•

	

Registers directly required by the MULT32 	 .,outine are marked with a
below.

Register:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R2 I R11 R0 1

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

MULT32 Use dI	 1$ 1	 I	 I$ I* I	 I	 I	 1	 1$ 1$ 1$ I$ I$ I

ON ENTRY:
RO=Alo
R2=khi
R9=Uhi
RA=Ulo
RD=SU (the sign of U)

ON EXIT:
RO=Vlo
R2=Vhi

1. MULT32 entry .
Register:l REI RDI RCI RBI RAI R91 B81 R71 R61 R51 R41 R31 R21 R11 R01

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Use:1	 I SUI	 I	 lUlolUhil	 I	 I	 I	 I	 I	 IAhiI	 IAlol

2. R4=X'8000' . (Generate magnitude of "A" input; sign in R4.)
Register:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

U3e:1	 I SUI	 I	 I Ulo l Uhil 	 I	 I	 I	 IUsel	 1AhiI	 I AlOI

R4=R4.AND.R2	 (Sign of "A" ends up in R4(0), 0 in remaining bits.)
Register:l REI	 RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

- 3-87 -

	

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION

GER-17221

3. IF R4:0

Continue
Regiater:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 s	 I	 s	 1	 i	 s	 s	 s	 1	 s	 s	 s	 1	 s	 s
	Uae:I	 I SUI	 I	 IUlolUhil	 I	 I	 I	 I SAI	 1Ahil	 IAlol

Else
'.	 RO-.NOT.RO .

R2:.N0T.R2
Regi'ter:I REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

	

1	 1	 1	 1	 I	 1	 1	 1	 1	 I	 I	 1	 1	 s	 1{

	

U3e:1	 I SUI	 I	 IUlolUhil	 I	 I	 I	 I SAI	 IAhil	 IA1ol

End If.

4. R4zR4.E%CLUSIVE OR.RD . (Sign of "V", the product output.)
Reg13terd REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I
	Use:I	 I SUI	 I	 IUlolUhil	 I	 I	 I	 I SVI	 IAhi1	 IAlol

	

. I	 I	 I	 I	 I	 I	 I	 s	 I	 I	 s	 I	 Imag I	 Imag I

5. (R0, R1)_ROeR9 . (Cardinal multiply; AloeUhi.)
Regiater:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I
	Used	 I SUI	 I	 IUlolUhil	 I	 I	 I	 I SVI	 IAhi1AlolAlolI	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1maglmag1magl1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1 . 1 0 1

	

1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 I Uhi l Uhi l

	

s	 1:	 1	 I	 I	 I	 s	 I	 i	 s	 1	 I	 1	 I	 I:	 1	 1	 s	 I	 I	 I	 I	 1	 I	 I	 s	 I	 Imag Imag I

	

s	 s	 :	 1	 I	 I	 I	 I	 1	 s	 I	 I	 I	 I lo; hi l

6. R1oR2 .
Regi3ter:I REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I
	Used	 I SUI	 I	 IUlolUhil	 I	 I	 I	 I SVI	 IAhilAhi1Alol

	

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 Imag Imag Imag s

	

1	 1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 I	 I	 1*	 1

	

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 Whi l

	

1	 11 	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

	

I	 I	 1	 I	 I	 I	 I	 I	 1	 I	 I	 1	 I	 I	 Image

	

1	 I	 i	 s	 I	 I	 I	 I	 I	 s	 I	 I	 I	 I	 I hil

- 3-88 -

GOODYEAR AEROSPACE
CORPORATION	

t.

CER-17221

MPP SCIENTIFIC SUBROUTINES

7. (R3, R2):R2#R9 . (Cardinal multiply; AhieUhi.)
Register:{ REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R1I ROl

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Use:I	 { SUI	 I	 lUloluhil	 I	 I	 I	 I SVIAhilAhilAhilAlol

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 Imag{mag{maglmagi

	

I	 1	 I	 I	 l	 1	 i	 I	 I	 I	 I	 { e 1* 1	 1* 1

	

I	 I	 I	 I	 1	 1	 {	 I	 1	 1	 1	 lUhilUhi{	 IUhil

	

I	 I{	 I	 I	 I	 I	 I

	

1	 {	 l	 1	 {	 {	 I	 I	 I	 I	 I	 Imaglmagl	 Imagl

	

{	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I lol hil	 I hil

8. R3=R3+RO . (No carry-in; preserve carry-out.) "P"=lAlhieUhi+lAllosUhi
R2=R2+0	 . (Carry-in.)

Register:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROl

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Used	 I SUI	 I	 lUlolUhil	 I	 I	 I	 I SVIP1olPhilAhil - I

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I .	 I	 Imag i	 I

9. RO=R1	 (Put IAlhi into R0.)
Regiater:l REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROl

	

I	 I	 l	 I	 i	 I	 I	 I	 I	 I	 I	 i	 I	 I	 i	 I

	

Used	 I SUI	 I	 IUlolUhil	 I	 I	 I	 I SVIPlolPhil - lAhil

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1 mag l

10. (R0, R1)=R0•RA . (Cardinal multiply; AhieUlo.)
Register:l REI RDI RCI RBI RAI R91 R81 R71 R61 E51 R41 R31 R21 R11 ROl

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Used	 I SUI	 I	 loiolUhil	 I	 I	 I	 I SVIP1olPhilAhilAhil

	

{	 I	 {	 I	 I	 i	 {	 I	 I	 1	 {	 I	 I	 lmaglmagl

	

l	 i	 i	 I	 1	 1	 I	 I	 I	 1	 I	 I	 I	 1 0	 1 . 1

	

I	 1	 I	 I	 I	 1	 I	 I	 I	 I	 I	 I	 I	 lUlolUlol

	

i	 i	 I{	 i	 I	 l	 I	 I	 I	 I 	 I	 i	 I	 I

	

:	 I	 I	 I	 I	 I	 1	 {	 I	 I	 I	 I	 I	 lmagimagl

	

I	 l	 I	 {	 1	 1	 i	 I	 I	 I	 I	 I	 I	 I to l hil

1C,

- 3-89 -	 I

1

,7.k

!PP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
COMRATION
GER-17221

11. R02RO+R3 . (No carry-in; preserve carry-out.) IVI=P+lAlhieUlo

	

R2=R2+0	 . (Carry-in.)
Regiater:I REI RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 R01

I	 i	 I	 I	 I	 1	 I	 1	 I	 I	 1	 I	 I	 I	 I	 I
Used	 I SUl	 I	 lUlolUhil	 I	 I	 I	 I SVI - IVhil - IVlol

1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 I	 lmag 1	 Imag I

12. IF R4=0
Continue . (Product sign bit is 0.)

Register:l REl RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

1	 1	 I	 1	 1	 1	 I	 I	 I	 I	 1	 I	 1	 I	 1	 I

	

Used	 I SUl	 I	 lUlolUhil	 I	 I	 I	 I- I- 1Vhil - IVlol

Else

RO=.NOT.RO .
R2=.NOT.RO .

Register:l REl RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

Use:l	 I SUl	 I	 IUlolUhil	 I	 I	 I	 I- I- 1Vhil - IVlol

End IP.

t	
r ^

^i

13. RETURN .
Register:l RE1 RDI RCI RBI RAI R91 R81 R71 R61 R51 R41 R31 R21 R11 ROI

	

I	 i	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 1

	

U3e: 1 	1 SUl	 I	 1UlolUhil	 I	 I	 I	 I- I- 1Vhil - lvlol

END

- 3-90 -

`=:	 ,•
Ii

^" J

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

3.2.9 MCU COMMON SUBROUTINE : NORMV

This subroutine takes 32 bits of fractional data input contained in two 16-bit
halves and performs a floating point normalization. A VAX 32-bit format
floating point number with sign and biased exponent becomes the resultant
output.

Input registers:

R3 contains the High half of the input fraction.
R1 contains the Low half of the input fraction.
R10 contains a 2's complement scale factor (known bias)

or 0 0' if none.
R14 contains the sign bit of the result; given as

either X 1 8000' or 101.

Output registers:

R2 High Half of VAX aligned, normalized input (sign and exponent).
RO Low half of Vax aligned, normalized input.

0. ENTRY NORM.

1. If the most significant half of the input is 10'
then,	 the input is less than 260-16.

If the least significant half of the input is 101,
then,	 the output must be true VAX 101.

CLR RO
CLR R2
RETURN.

else, swap the input halves and adjust the exponent of R10

^^	

by 128- 16 (bias plus a shift of 16).

- 3-91 -

E

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

LR	 R3,R1
CLR R1
ADD R10,#F128-16.

else, some bits are set in the high half; add bias to exponent.

ADD R10,#128

2. Check the high byte of the input fraction for any bits set. Note R12
counts the number of shifts required to obtain bit(0) set in the
input fraction; initialize R12 to 0.

CLR R12
LR	 R5,#X 1 FF00' (mask for high byte).
AND R5,R3

If no bits are set in the high half, a shift of 8 may be performed by
a multiplication, and the exponent adjusted by 8:

MLU R3,#FX' 100'
MLU R1,iX'100'
OR	 R4,R1
SUB R10,#8	 (exponent adjust).

Otherwise, starting with bit 0 and working through bit 6 of R3,
test each bit for a 1 1 1 , and increment R12 if not set:

BBS	 (R3,0),NORMALIZE
.INCR R12

BBS (R3,6)NORMALIZE
INCR R12.

3. (NORMALIZE).
Adjust the final exponent in R10 by the shift as indicated by R12.
From the number of shifts required, obtain a shift multiplication

- 3-92 -

I

^„	 r r,..

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

factor contained in Table SNP$ (R12 + SHF$) and perform the exact
number of shifts required to normalize R3 and R1:

SUB R10,R12
ASL R12
ADD R12,SHF$
MLU R3,(R12)
MLU R1,(R12)
OR	 R4,R1.

The nomalized fraction is now oontaned in registers R4 and R2.

4. Now align the normalized fraction of R4 and R2 into VAX format
(mantissa bits only) and clear out the suppressed MSB of the mantissa:

MLU R2 , iX' 100'

MLU 84,•X1100'
AND R4,#X'007F'.

R4 now contains the correct high half mantissa bits. R2 and R5 must be "ORed"
to obtain the low half mantissa bits:

OR R2, R5

	

LR	 RO,R2.

RO now contains the ouput data for the low half VAX format .

5. The exponent of R10 must be inserted into the high half of the VAX format,
and the final sign bit of R14 "ORED" in:

MLU R10,fX'100' (shift the exponent).

	

OR	 R11,R4

	

LR	 R2,R11

	

OR	 R2,R14

RETURN.

I V
1- 3-93 -

MPP SCIENTIFIC SUBROUTINES

	

	
GOODYEAR AEROSPACE

CORPORATION
GER-17221

3.3 MCU SEQUENTIAL ALGORITHMS HOL INTERFACE

All of the MCU subroutines use identical interface conventions for input and
output data formats. Each subroutine requires that input data be loaded (from

MCU memory) into MCU registers R9 and Rll. Upon completion of each
subroutine, the output function will be contained in MCU registers R2 and R0.
Error status is returned in R14.

Because the VAX 32-bit format requires two 16-bit MCU storage locations, a

;high half' register (which includes the sign and exponent) and 'low' half
register (least significant mantissa bits) will be defined as shown below.

X input registers:

Rll -
High half
X

R9 -
Low Half
X

1 1 1 1 1	 1

0	 1	 2	 3	 4	 5	 6	 7 8	 9	 0 1 2 3 4	 5

eI51 e I	 e I	 e I	 e e e el m I	 m I m I m m m m

0 1 11 1 1 3 1 4 1 5 1 6 1 7 1 1 1 21 31 41 51 61 7

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

m m m m m m m m m m m m m m m m
1 1 1 1 1 1 1 1 1 1 2 2 2 2

8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

- 3-94 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE

CORPORATION
GER-17221

Y output registers:

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

R2
High half	 S e e e e e e e e m m m m m m m

f.

	 Y	

0 1 2I 3 4 5 6 7 1 2 3 4 5 6 7

I1 1 1 1 1 1

0	 1	 2 3 4 5 6 7 8 9 0	 1 2 3 4 5
RO -
Low Half ml ml ml ml ml ml MF-MIM -MI ml ml ml	 MI ml ml ml m
Y 1 1 1 1 1 1 1 1	 1 2 2 2 2

1819101 11 2 3 4 5 6 7 8	 9 0 1 2 3

(The symbol, -, indicates the location of the radix point for the

value stored in a register.)

R14 -	 Status storage

1	 1	 1	 1	 1 1
0	 1	 2	 3	 4	 5	 6	 7	 8 9	 0 1 2 3 4 5

a s s a a s a a s
^1

s s s a s
1 111 1 1 1 1

1011213141316191819191 1121314151

- 3-95 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GFR-17221

•

The loading of the MCU registers upon input, and the eventual storage to MCU
memory is the responsibility of either a HOL or MCL MACRO, however the

recommended convention for storage is as follows:

ADDRESS	 High Half Data

ADDRESS+2	 Low Half Data

Note - All MCU registers will be destroyed upon completetion of each function,

with the output and status as shown above.

Each MCU algorithm description provides the details of error detection in

section 3.2 . For interface convenience, the specific error conditions have
been summarized in Table 3.0; normal status is "0" for all functions.

- 3-96 -

J

I

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE

CORPORATION
1

CER-17221	 +i

Table 3.0 MCU SUBROUTINE ERROR STATUS

FUNCTION	 ERROR STATUS (R15) Y OUTPUT

Natural Logarithm.... 1 1' denotes overflow X17FFFFFFFI

1 2' denotes underfloor X'0'
1 3' denotes X negative undetermined

(original X)

Exponential.... I l l denotes overflow X17FFFFFFFI

1 2' denotes undeflow X'0'

Square Root...... 3 1 denotes negative X undetermined
(original X)

•

Sine3' derotes X > 2e *24 undetermined

Cosine3' denotes X > 20024 undetermined

Arctangent......6.0..'0' always Arctangent

angular uncertainty nea 2 radians

- 3-97 -

. .,

MPP SCIENTIFIC SUBROUTINES	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

4.0 USAGE OF THE MPP SCIENTIFIC SUBROUTINES
--

The following sections describe the filenames, library names, and conventions
for using the MPP scientific functions decribed in this document. The
information contained in this section describes the configuration of NASA MPP
disk files in UIC [2,51• The details of creation of libraries and tasks may
differ slightly for use with other configurations.

Table 4.0 contains a list of all PRL and MCL filenames and their global entry
points for the parallel array routines. The serial MCU routine filenames and
global entry points are listed in Table 4.1.

Section 4.1 contains MPP applications programmer information.

Section 4.2 contains systems programmer information for generating t;.e new VAX
subroutines and/or libraries from source.

Section 4.3 describes the MCL macros that exist for t"e VAX 32-bit format
functions, and contain programmer information for using the functions directly
from MCL.

4-1

LAMI

i

^1

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE

is
	

CORPORATION
GER-17221

491	 MCU APPLICATIONS

MCU applications programmers assume the existance of 'PELIBR.PST', (a global
symbol table that must be used to build MCU tasks) and 'PELIBR.PTK' the
parallel subroutine library task (that must be loaded into PECU memory to
provide array functions). These files reside in UIC [2,1].

In order to preserve existing MPP applications, the VAX scientific functions
described in this document have been incorporated into 'PELIBR.PTK'. (See
Section 4.2 for instructions to include the VAX subroutines).

Existing array functions have not been affected, and existing MPP applications
should experience no difficulty in using the new version of 'PELIBR.TSK'. The
VAX subroutines reside in high PECU memory addresses, therefore entry points
to previously existing subroutines have not changed. In the event of
incompatibility with the new VAX version of the array functions, a task build
of the MCU programs (with reference to the new VAX PELIBR.PST) will be
required.

The VAX serial MCU algorithms and the MCU portions of the array functions have
been included in the existing library file 1 [2,1]MCLIBR.MOL' (See Section 4.2
for instructions to include the VAX routines).

All existing MCU tasks must make reference to 'MCLIBR.MOL' ; therefore, if
sequential MCU functions or parallel VAX functions are incorporated into
existing applications, the task build procedure for the MCU portion will not
be affected. New applications that may include VAX scientific functions,
should refer to Section 3.5.4 of MPP User's Guide GER-17141 which describes
the procedure for building an MCU program.

492 SYSTEM GENERATION and MAINTENANCE

This Section describes the procedures for incorporating the MPP VAX Scientific
Subroutines into the MPP system. A complete list of filenames for the array
subroutines, and MCU subroutines is provided in Table 4.0, and Table 4.1 .
The files reside in UIC [2,5] of the NASA PDP-11 system disk.

Generation of the scientific functions presumes the existence of PE Subroutine
object library [2,17]PELIBR.POL and MCU object library [2,1]MCLIBR.MOL . Files
are obtained from [2,1]PELIBR.POL, and files are inserted into
[2,1]MCLIBR.MOL; therefore, these libraries must exist prior to generation of
the VAX scientific functions.

- 4-2 -

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Table 4.0 ARRAY SCIENTIFIC SUBROUTINES
Filename References

PE SUBR MACRO MCU SUBROUTINE MCU GLOBAL PECU SUBR PECU GLOBAL
MACRO SOURCE SOURCE ENTRY SOURCE ENTRY
NAME FILE FILE NAME FILE NAME

LNA

LNA.MCL LNV.MCL

- ----------------------

LN$V LNV.PRL

LNV$
NRMZV.PRL NRMZV$

EXFA EXPA.MCL EXPV.MCL EXP$V EXPV.PRL EXPV$
EXPSHIFT.PRL EXPSH$
EXPUM.PRL EXPUM$

SINA SINA.MCL SNCSNV.MCL SNCS$V VFSCI.PRL VFSC1$
COSA COSA.MCL " " VFSC2.PRL VFSC2$
SINCOS SINCOS.MCL " " VFSC3.PRL VFSC3$

VFSC4.PRL VFSC4$
VFSC5.PRL VFSC5$

SQRTA SQRTA.MCL N/A N/A SQRTV.PRL SQRTV$

ARCTNA ARCTNA.MCL N/A N/A ATANV.PRL ATANV$

- 4-3 -

(+1

3

 1

ti

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
r '	 CORPORATION

GER-17221

Table 4.1 MCU SCIENTIFIC SUBROUTINES
Filename References

MAIN CONTROL UNIT SUBROUTINES

MCU SUBROUTINE NAME
----- -----------------------

MCU SOURCE CODE
- ------ - -------------

MCU GLOBAL ENTRY
------ ----- --

LNM LNMV.MCL LNM$V

EXPM EXPM.MCL EXPM$V

SINM SINM.MCL SINM$V

COSM COSMV.MCL COSM$V

SQRTM SQRTM.MCL SQRTM$V

ATANM ATANMV.MCL ATNM$V

COMMON SUBROUTINES MULT32.MCL MULT32$
NORMV.MCL NORMV$
POLY32.MCL POLY32$
SHFM.MCL SHFM$

- 4-4 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

Several RSX-11M command files have been written to create the VAX functions
from source, create intermediate libraries, and to build a new PE subroutine
library task. These command files may be invoked in the logical order
necessary to generate all the required files by executing the MCR ccmmand:

MCR> @VAXLIBGEN

This invokes a command file which prompts the operator to make decisions on
system generation steps. All, part, or none of the steps may be performed.
This provides the operator with several options of starting, or terminating
the system generation of the scientific functions.

The results of the VAXLIBGEN command file are:

- that-all PECU object files are concatenated into:

[2,5]VAXPELIBR.POL which is a new object library;

- all MCU object files are inserted into:

[1,2]MCLIBR.MOL which is an existing object library.

- a new PECU Subroutine libray task and symbol table are created:

[2,5]VAXPELIBR.PTK which is the task,
and	 [2,5]VAXPELIBR.PST which is the symbol table.

The libraries should be maintained with the current versions of the VAX
scientific functions.

From the command file VAXLIBGEN, as described above, the final PECU subroutine
library task and symbol table are created in UIC [2,5] (VAXPELIBR.PTK and
VAXPELIBR.PST).

These are temporary versions of the PECU subroutines that may be loaded and
tried. After verification, these two files must be re-named and transferred to
the library UIC [2,1] as PELIBR.TSK and PELIBR.PST to provide the system
compatibility described in Section 4.1 .

A seperatc command file may be requescad to perform this transfer and re-name
by executing:

- 4-5 -

• ,

MPP SCIENTIFIC SUBROUTINES GOODYEAR AEROSPACE
CORPORATION

GER••17221

MCR> @VAXSYSLIB

Note - This Transfer command file also may be selected as part of the
previously mentioned VAXLIBGEN command file.

- 4-6 -

-ate ^ ^^^ ^•s ._	 -^:.

- 4-7 -

MPP SCIENTIFIC SUBROUTINES 	 GOODYEAR AEROSPACE
CORPORATION
GER-17221

4.3 MCU MACROS

The array functions described in this document must initialize MCU Call Queue
registers and request either an MCU or PECU program to perform the desired
function. The operations required to execute array functions are listed in
Section 2.2 . These operations have also been incorporated into MCL Macros for
the array functions only. The interface requirements for the serial MCU
functions are described in Section 393 ; since the MCU serial functions
required only register loads and stores, Macros have not been developed for
these functions.

The following Sections describe the Macros that exist for the VAX scientific
functions. Table 4,0 lists the Macro name for each function. These Macros
have been incorporated into the the MCL Macro library and may be called by any
MCL program,

GOODYEAR AEROSPACE
CORPORATION
GER-17221

Wit/ i

MPP SCIENTIFIC SUBROUTINES

t

t

4

4,3.1 LNA - NATURAL LOGARITHM OF AN ARRAY
- ---

This instruction will compute the natural lorarithm of a VAX 32-bit floating
point format variable in the array, and store the result in the array also
in VAX 32-bit format.

Format	 LABEL	 I	 COMMAND	 I	 ARGUMENTS
--
[s]	 I	 LNA	 I	 X,Y,E,[T]

*Label	 The label field is optional.

*Command	 LNA

*Arguments Three arguments are required. T is an optional temporary storage
array of at least 56 bits; if T is not specified, the top 56 bits
of array memory will be used with the LSB at 973•

*X	 VAX 32-bit floating point source.

*Y	 VAX 32-bit floating point destination where Y = LN(X).

*E	 Error bitplane; Set where X was negative, Clear otherwise.
Y not determined.

*T	 Optional parameter specifying a 56-bit temporary storage area to be
used by this subroutine. If not specified, array memory starting at
LSB 973 will be used as scratch area.

4
J

- 4-8 -

GOODYEAR AF
CORPORAT]
GER-17221

1

MPP SCIENTIFIC SUBROUTINES

4.3.2 EXPA - EXPONENTIAL OF AN ARRAY
--

This instruction will compute the exponential of a VAX 32-bit floating
point format variable in the array, and store the result in the array also
in VAX 32-bit format.

Format LABEL	 I	 COMMAND	 I	 ARGUMENTS
--
[s]	 I	 EXPA	 I	 X,Y,E,[T]

*Label The label field	 is optional.

*Command EXPA

*Arguments Three arguments are required. T is an optional temporary storage
array of at least 43 bits; if T is not specified, the top 43 bits
of array memory will be used with the LSB at 973-

;X VAX 32-bit floating point source.

•Y VAX 32-bit floating point destination where Y = EXP(X).

•E 3-bit error array	 E(0)	 set where output clipped to 0
because X <2ee-31.

E(1)	 set where Y overflowed.
E(2)	 set where Y underflowed

•T Optional parameter specifying a 43-bit temporary storage area to be
used by this subroutine.	 If not specified, array memory starting at
LSB 973 will be used as scratch area.

- 4-9 -

^^I

• .il

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE

1 e
	

CORPORATION
GER-17221

1

4.393 SQRTA - SQUARE ROOT OF AN ARRAY
--

This instruction will compute the square root of a VAX 32-bit floating
point format variable in the array, and store the result in the array also
in VAX 32-bit format.

Format	 LABEL	 I	 COMMAND	 I	 ARGUMENTS
--

[s]	 I	 SQRTA	 I	 X,Y,E,(T]

*Label	 The label field is optional.

*Command	 SQRTA

*Arguments Three arguments are required. T is an optional temporary storage
array of at least 22 bits; if T is not specified, the top 22 bits
of array memory will be used with the LSB at 973-

*X	 VAX 32-bit floating point source-

*Y	 VAX 32-bit floating point destination where Y = SQRT(X).

*E	 Error bitplane set where X was negative, clear otherwise.

*T	 Optional parameter specifying a 22-bit temporary storage area to be
used by this subroutine. If not specified, array memory starting at
LSB 973 will be used as scratch area.

\	 I

- 4-10 -

i

. Al

MPP SCIENTIFIC SUBROUTINES
	

GOODYEAR AEROSPACE
CORPORATION
GER-17221

4.3.4 SINA,COSA - SINE or COSINE OF AN ARRAY
--

These instructions will compute the sine or cosine of a VAX 32-bit floating
point format variable in the array, and store the result in the array also
in VAX 32-bit format.

Fomat	 LABEL	 I COMMAND	 I	 ARGUMENTS
---------------- ------------------------- - ----------------------- -

[s^	 I	 SING	 I	 X,Y,[T]
COSA

*Label	 The label field is optional.

*Command	 SINA or COSA

*Arguments Two arguments are required. T is an optional temporary storage
array of at least 90 bits; if T is not specified, the top 90 bits
of array memory will be used with the LSB at 973•

*X	 VAX 32-bit floating point source.

*Y	 VAX 32-bit floating point destination where Y = SIN(X) or Y = COS(X).

*T	 Optional parameter specifying a 90-bit temporary storage area to be
used by this subroutine. If not sp-^ified, array memory starting at
LSB 973 will be used as scratch area.

- 4-11 -

V

MPP SCIENTIFIC SUBROUTINES

(LL

1
GOODYEAR AEROSPACE

CORPORATION
GER-17221

C

493.5 SINCOS - SINE AND COSINE OF AN ARRAY
--M-----`------------------------M------------

This intructions will compute the sine and cosine of a VAX 32-bit floating
point format variable in the array, and store the rasults in the array also
in VAX 32-bit format.

Format	 LABEL	 I COMMAND	 I	 ARGUMENTS
---------- ---------- --------------- --------- ------ -- ----------- ---

(sJ	 I	 SINCOS	 I	 X,Y,Z,[T]

*Label	 The label field is optional.

+Command	 SINCOS

;Arguments Three arguments are required. T is an optional temporary storage
array of at least 90 bits; if T is not specified, the top 90 bits
of array memory will be used with the LSB at 9739

OX	 VAX 32-bit floating point source.

*Y	 VAX 32-bit floating point destination where Y = SIN(X) .

OZ	 VAX 32-bit floating point destination where Z = COS(X) .

•T	 Optional parameter specifying a 90-bit temporary storage area to be
used by this subroutine, If not specified, array memory starting at
LSB 973 will be used as scratch area.

- 4-12 - 0

e,

MPP SCIENTIFIC SUBROUTINES

.R

i

GOODYEAR AEROSPACE	

ol

CORPORATION
GER-17221

4.3.6 ARCTNA - ARCTANGENT OF AN ARRAY
----- ------- -- ------------------ --- ----- ---

This instruction will compute the arctangent of a VAX 32-bit floating
point format variable in the array, and store the result in the array also
in VAX 32-bit format.

Format	 LABEL	 I COMMAND	 I	 ARGUMENTS
--
[s]	 I	 ARCTNA	 (X,Y,[T]

*Label	 The label field is optional.

*Command	 ARCTNA

*Arguments Two arguments are required. T is an optional temporary storage
array of at least 82 bits; if T is not specified, the top 82 bits
of array memory wiAll be used with the LSB at 973.

*X	 VAX 32-bit floating point source.

*Y	 VAX 32-bit floating point destination where Y = ATAN(X) .

*T	 Optional parameter specifying a 82-bit temporary storage area to be
used by this subroutine. If not specified, array memory starting at
LSB 973 will be used as scratch area.

M.

-4-t3-	

7)

	GeneralDisclaimer.pdf
	0007A02.pdf
	0007A03.pdf
	0007A04.pdf
	0007A05.pdf
	0007A06.pdf
	0007A07.pdf
	0007A08.pdf
	0007A09.pdf
	0007A10.pdf
	0007A11.pdf
	0007A12.pdf
	0007A13.pdf
	0007A14.pdf
	0007B01.pdf
	0007B02.pdf
	0007B03.pdf
	0007B04.pdf
	0007B05.pdf
	0007B06.pdf
	0007B07.pdf
	0007B08.pdf
	0007B09.pdf
	0007B10.pdf
	0007B11.pdf
	0007B12.pdf
	0007B13.pdf
	0007B14.pdf
	0007C01.pdf
	0007C02.pdf
	0007C03.pdf
	0007C04.pdf
	0007C05.pdf
	0007C06.pdf
	0007C07.pdf
	0007C08.pdf
	0007C09.pdf
	0007C10.pdf
	0007C11.pdf
	0007C12.pdf
	0007C13.pdf
	0007C14.pdf
	0007D01.pdf
	0007D02.pdf
	0007D03.pdf
	0007D04.pdf
	0007D05.pdf
	0007D06.pdf
	0007D07.pdf
	0007D08.pdf
	0007D09.pdf
	0007D10.pdf
	0007D11.pdf
	0007D12.pdf
	0007D13.pdf
	0007D14.pdf
	0007E01.pdf
	0007E02.pdf
	0007E03.pdf
	0007E04.pdf
	0007E05.pdf
	0007E06.pdf
	0007E07.pdf
	0007E08.pdf
	0007E09.pdf
	0007E10.pdf
	0007E11.pdf
	0007E12.pdf
	0007E13.pdf
	0007E14.pdf
	0007F01.pdf
	0007F02.pdf
	0007F03.pdf
	0007F04.pdf
	0007F05.pdf
	0007F06.pdf
	0007F07.pdf
	0007F08.pdf
	0007F09.pdf
	0007F10.pdf
	0007F11.pdf
	0007F12.pdf
	0007F13.pdf
	0007F14.pdf
	0007G01.pdf
	0007G02.pdf
	0007G03.pdf
	0007G04.pdf
	0007G05.pdf
	0007G06.pdf
	0007G07.pdf
	0007G08.pdf
	0007G09.pdf
	0007G10.pdf
	0007G11.pdf
	0007G12.pdf
	0007G13.pdf
	0007G14.pdf
	0008A02.pdf
	0008A03.pdf
	0008A04.pdf
	0008A05.pdf
	0008A06.pdf
	0008A07.pdf
	0008A08.pdf
	0008A09.pdf
	0008A10.pdf
	0008A11.pdf
	0008A12.pdf
	0008A13.pdf
	0008A14.pdf
	0008B01.pdf
	0008B02.pdf
	0008B03.pdf
	0008B04.pdf
	0008B05.pdf
	0008B06.pdf
	0008B07.pdf
	0008B08.pdf
	0008B09.pdf
	0008B10.pdf
	0008B11.pdf
	0008B12.pdf
	0008B13.pdf
	0008B14.pdf
	0008C01.pdf
	0008C02.pdf
	0008C03.pdf
	0008C04.pdf
	0008C05.pdf
	0008C06.pdf
	0008C07.pdf
	0008C08.pdf
	0008C09.pdf
	0008C10.pdf
	0008C11.pdf
	0008C12.pdf
	0008C13.pdf
	0008C14.pdf
	0008D01.pdf
	0008D02.pdf
	0008D03.pdf
	0008D04.pdf
	0008D05.pdf
	0008D06.pdf
	0008D07.pdf
	0008D08.pdf
	0008D09.pdf
	0008D10.pdf
	0008D11.pdf
	0008D12.pdf
	0008D13.pdf
	0008D14.pdf
	0008E01.pdf
	0008E02.pdf
	0008E03.pdf
	0008E04.pdf
	0008E05.pdf
	0008E06.pdf
	0008E07.pdf
	0008E08.pdf
	0008E09.pdf
	0008E10.pdf
	0008E11.pdf
	0008E12.pdf
	0008E13.pdf

