NASA-CR-172,460

NASA Contractor Report 172460

NASA-CR-172460
19850002376

ADS - A FORTRAN PROGRAM FOR AUTOMATED
 DESIGN SYNTHESIS - VERSION 1.00

G. N. Vanderplaats
? FMMG
for fo as mizail frimi liag noo:s:

NAVAL POSTGRADUATE SCHOOL Monterey, California

Purchase Order L-9461B
October 1984

LIRMARV EGPY

Mn? ? 1984
LaNGLEY RESEARCH CENTER LIBRARY, NASA
HAMPTON, VIRGINIA

N/SA

National Aeronautics and Space Administration
Langley Research Center Hampton, Virginia 23665

CONTENTS

Page
1.0 INTRODUCTION 1
2.0 PROGRAM OPTIONS . 2
2.1 Strategy 2
2.2 Optimizer 2
2.3 One-Dimensional Search 3
2.4 Allowable Combinations of Algorithms : 4
3.0 PROGRAM FLOW LOGIC 4
4.0 USER INSTRUCTIONS 8
4.1 Calling Statement 8
4.2 Definitions of Parameters the Calling Statement 8
4.3 Over-Riding ADS Default Parameters 11
4.4 User-Supplied Gradients 15
4.5 Restarting ADS 15
4.6 Choosing an Algorithm 16
5.0 EXAMPLES 18
5.1 All Default Parameters 19
5.2 Initial Parameters are Modified 19
5.3 Gradients are Supplied by the User 19
6.0 MAIN PROGRAM FOR SIMPLIFIED USAGE OF ADS . 28
7.0 REFERENCES 30

APPENDIX A: QUICK REFERENCE TO ADS OPTIONS 32
APPENDIX B: USEFUL INFORMATION STORED IN ARRAYS UK AND INK 33
$\begin{aligned} \text { APPENDIX C: } & \text { SUBROUTINES NEEDED FOR A SPECIFIED COMBINATION OF } \\ & \text { ISTRAT, IOPT AND TONED }\end{aligned}$
APPENDIX D: ADS SYSTEM SUBROUTINES 37

FIGURES

1 Simplified Program Usage; All Default Parameters and Finite Difference Gradients
2 Program Flow Logic; Over-ride Default Parameters, Finite 6 Difference Gradients
3 Program Flow Logic; Over-ride Default Parameters and Provide 7 Gradients
4 Restarting ADS 16
5 Three-Bar truss 18
6 Example 1; All Default Parameter's 20
7 Example 1; Output 21
8 Example 2; Modify Initial Parameters 22
9 Example 2; Output 23
10 Example 3; Gradient Supplied by the User 24
11 Example 3; Output 26
12 Program for Simplified Usage of ADS 29
TABLES
1 STRATEGY OPTIONS 2
2 OPTIMIZER OPTIONS 3
3 ONE-DIMENSIONAL SEARCH OPTIONS 3
4 : ALLOWABLE COMBINATIONS OF ALGORITHMS 4
5 PARAMETERS IN THE ADS CALLING STATEMENT 8
6 REAL PARAMETERS STORED IN ARRAY WK 12
7 DEFINITIONS OF REAL PARAMETERS STORED IN ARRAY WK 13
8. INTEGER PARAMETERS STORED IN ARRAY IWK 14
9 DEFINITIONS OF INTEGER PARAMETERS STORED IN ARRAY IDK 15

1.0 INTRODUCTION

ADS is a general purpose numerical optimization program containing a wide variety of algorithms. The problem solved is:

Minimize $\quad \mathrm{F}(\mathrm{X})$

Subject to;

$$
\begin{array}{rlrl}
g_{j}(X) & \leq 0 & j=1, m \\
h_{k}(X) & =0 & k=1, \ell \\
X_{i}^{\ell} \leq X_{1} & \leq X_{1}^{M} & i=1, n
\end{array}
$$

The solution of this general problem is separated into three basic levels:

1. STRATEGY - For example, Sequential Unconstrained Minimization or Sequential Linear Programming.
2. OPTIMIZER - For example, Variable Metric methods for unconstrained minimization or the Method of Feasible Directions for constrained minimization.
3. ONE-DIMENSIONAL SEARCH - For example, Golden Section or Polynomial Interpolation.

Additionally; we may consider another component to be problem formulation. It is assumed that the engineer makes every effort to formulate the problem in a form amenable to efficient solution by numerical optimization. This aspect is perhaps the most important ingredient to the efficient use of the ADS program for solution of problems of practical significance.

By choosing the Strategy, Optimizer and One-Dimensional Search, the user is given considerable flexibility in creating an optimization program which works well for a given class of design problems.

The purpose here is to describe the use of the ADS program and the available program options. Section 2 identifies the available optimization strategies, optimizers and one-dimensional search algorithms. Section 3 defines the program organization, and Section 4 gives user instructions. Section 5 presents several simple examples to aid the user in becoming familiar with the ADS program. Section 6 gives a simple main program that is useful for general design applications.

In this section, the options available in the ADS program are identified. At each of the three solution levels, several options are. available to the user.

2.1 Strategy

Table 1 lists the strategies available. The parameter ISTRAT will be sent to the ADS program to identify the strategy the user wants. The ISTRAT=O option would indicate that control should transfer directly to the optimizer. This would be the case, for example, when using the Method of Feasible Directions to solve constrained optimization problems because the optimizer works directly with the constrained problem. On the other hand, if the constrained optimization problem is to be solved by creating a sequence of unconstrained minimizations, with penalty functions to deal with constraints, one of the appropriate strategies would be used.
table 1: STRATEGY OPTIONS

ISTRAT STRATEGY TO BE USED

0 None. Go directly to the optimizer:
1 . Sequential unconstrained minimization using the exterior penalty function method (refs. 1; 2).
2 Sequential unconstrained minimization using the linear extended interior penalty function method (refs. 3-5).
3 Sequential unconstrained minimization using the quadratic extended interior penalty function method (refs. 6, 7).
4 Sequential unconstrained minimization using the cubic extended interior penalty function method (ref. 8).
5 Augmented Lagrange Multiplier method (refs. 9-13).
6 Sequential Linear Programing (refs. 14, 15).
7 Method of Centers (method of inscribed hyperspheres) (ref. 16).
8 Sequential Quadratic Programming (refs. 11, 17, 18).

2.2 Optimizer

Table 2 lists the optimizers available. IOPT is the parameter used to indicate the optimizer desired.

TABLE 2: OPTIMLZER OPTIONS

IOPT OPTIMIZER TO BE USED

0 None. Go directly to the one-dimensional search. This option should be used only for program development.
1 Fletcher-Reeves algorithm for unconstrained minimization (refs. 19).
2 Davidon-Fletcher-Powell (DFP) variable metric method for unconstrained minimization (refs. 20, 21).
3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for unconstrained minimization (refs. 22-25).
4 Method of Feasible Directions (MFD) for constrained minimization (refs. 26, 27).
5 Modified Method of Feasible Directions for constrained minimization (ref. 28).

In choosing the optimizer (as well as strategy and one-dimensional search) it is assumed that the user is knowledgeable enough to choose an algorithm consistent with the problem at hand. For example, a variable metric optimizer would not be used to solve constrained problems unless a strategy is used to create the equivalent unconstrained minimization task via some form of penalty function.

2.3 One-Dimensional Search

Table 3 lists the one-dimensional search options available for unconstrained and constrained problems. Here. IONED identifies the algorithm to be used.

TABLE 3: ONE-DIMENSIONAL SEARCH OPTIONS
IONED

1 Find the minimum of an unconstrained function using the Golden Section method.
2 Find the minimum of an unconstrained function using the Golden Section method followed by polynomial interpolation:
3 Find the minimum of an unconstrained function by first finding bounds and then using polynomial interpolation.
4 Find the minimum of an unconstrained function by polynomial interpolation/extrapolation without first finding bounds on the solution.
5 Find the minimum of an constrained function using the Golden Section method.
6 Find the minimum of an constrained function using the Golden Section method followed by polynomial interpolation.
7 Find the minimum of an constrained function by first finding bounds and then using polynomial interpolation.
8 Find the minimum of an constrained function by polynomial interpolation/extrapolation without first finding bounds on the solution.

2.4 Allowable Combinations of Algorithms

Not all combinations of strategy, optimizer and one-dimensional search are meaningful. For example, constrained one-dimensional search is not meaningful when minimizing unconstrained functions.

Table 4 identifies the combinations of algorithms which are available in the ADS program. In this table, an X is used to denote an acceptable combination of strategy, optimizer and one-dimensional search. An example is shown by the heavy line on the table which indicates that constrained optimization is to be performed by the Augmented Lagrange Multiplier Method (ISTRAT=5), using the BFGS optimizer (IOPT=3) and polynomial interpolation with bounds for the onedimensional search (IONED=3). From the table, it is clear that a large number of possible combinations of algorithms are available.

TABLE 4: PROGRAM OPTIONS

	OPTIMIZER				
StRATEGY	1	2	3	4	5
0	X	X	X	X	X
1	X	X	X	0	0
2	X	x	X	0	0
3	X	X	X	0	0
4	X	X	X	0	0
(5)	X	X	\rightarrow (X)	0	0
6	0	0	0	x .	x
7	0	0	0	x	X
8	0	0	0	X	X
ONE-D SEARCH					
1	X	X	x	0	0
2	X	X	$\forall x$	0	0
3	x	X	(X)	0	0
4	x	X	X	0	0
5	0	0	0	X	X
6	0	0	0	X	x
7	0	0	0	x	x
8	0	0	0	X	x

Appendix A contains an annotated version of Table 4 for convenient reference once the user is familiar with ADS.

To conserve computer storage, it may be desirable to use only those subroutines in the ADS system needed for a given combination of ISTRAT, IOPT and IONED. Appendix C provides the information necessary for this. Appendix D lists the subroutines with a very brief description of each.

3.0 PROGRAM FLOW LOGIC

ADS is called by a user-supplied calling program. ADS does not call any user-supplied subroutines. Instead, ADS returns control to the calling program when function or gradient information is needed. The required information is evaluated and ADS is called again. This provides considerable flexibility in program organization and restart capabilities.

ADS can be used in four principal modes:

1. Default Control parameters and finite difference gradients.
2. Over-ride default parameters, use finite difference gradients.
3. Default control parameters and user-supplied gradients.
4. Over-ride default parameters and user-supplied gradient.

The first mode is the simplest "black box" approach. In the second mode, the user over-rides the default parameters to "fine tune" the program for efficiency. In modes 3 and 4, the user supplies all needed gradient information to the program.

Figure 1 is the program flow diagram for the simplest use of ADS. The user begins by defining the basic control parameters and arrays (to be described in Section 4). The gradient computation parameter, IGRAD, is set to zero to indicate that finite difference gradients will be used. The information parameter, INFO, is initialized to zero and $A D S$ is called for optimization. Whenever the values of the objective, OBJ, and constraints, $G(I), I=1, N C O N$, are required, control is returned to the user with INFO=1. The functions are then evaluated and ADS is called again. When $I N F O=0$ is returned to the user, the optimization is complete.

BEGIN

DIMENSION ARRAYS
DEFINE BASIC VARIABLES
IGRAD $\longleftarrow 0$
INFO $\longleftarrow 0$

Figure 1: Simplified Program Usage; All Default Parameters and Finite Difference Gradients

Figure 2 is the program flow diagram for the case where the user wishes to over-ride one or more internal parameters, such as convergence criteria or maximum number of iterations. Here, after initialization of basic parameters and arrays, the information parameter, INFO, is set to -2. ADS is then called to initialize all internal parameters and allocate storage space for internal arrays. Control is then returned to the user, at which point these parameters, for example convergence criteria, can be over-ridden if desired. : At this point, the information parameter, INFO, will have a value of -1 and should not be changed. ADS is then called again and the optimization proceeds. Section 4.3 provides a list of internal parameters which may be modified, along with their locations in the work arrays WK and IWK.

BEGIN
DIMENSION ARRAYS
DEFINE BASIC VARIABLES

$$
\text { IGRAD } \longleftarrow 0
$$

INFO ${ }^{*} \longleftarrow-2$
CALL ADS (INFO . . .)
OVER-RIDE`DEFAULT PARAMETERS
WHICH ARE NOW CONTAINED IN
ARRAYS WK AND IWK IF DESIRED

Figure 2: Program Flow Logic; Over-ride Default
Parameters, Finite Difference Gradients

Figure 3 is the flow diagram for the case where the user wishes to provide gradient information to ADS, rather than having ADS calculate this information using finite difference methods. In Figure 3, it is aiso assumed that the user will over-ride some internal parameters, so the difference between Figures 2 and 3 is that IGRAD is now set to 1 and
the user will now provide gradients during optimization. If the user does not wish to over-ride any default parameters, INFO is initialized to zero and the first call to ADS is omitted (as in Figure 1). Now, when control is returned to the user, the information parameter will have a value of 1 or 2 (if INFO=0, the optimization is complete, as before). If INFO=1, the objective and constraint functions are evaluated and $A D S$ is called again, just as in Figure 2. If INFO=2, the gradient, DF, of the objective function is evaluated as well as the gradients of NGT constraints defined by vector IC.

BEGIN

DIMENSION ARRAYS

DEFINE BASIC VARIABLES
IGRAD $\longleftrightarrow 1$
INFO $\leftarrow-2$
CALL ADS (INFO • . .)
OVER-RIDE DEFAULT PARAMETERS
WHICH ARE NOW CONTAINED IN ARRAYS WK AND IWK IF DESIRED

[^0]In this section, the use of the ADS program is outiined. The FORTRAN Call statement to $A D S$ is given first, and then the parameters in the calling statement are defined. Section 4.3 identifies parameters that the user may wish to over-ride to make more effective use of ADS. Arrays are designated by boldface print.

4.1 Calling Statement

ADS is invoked by the following FORTRAN calling statement in the user's program:

CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,

* VLB, VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA , NCOLA ,WK, NRWK, IWK, NRIWK)
4.2 Definitions of Parameters in the ADS Calling Statement

Table 5 lists the parameters in the calling statement to ADS. Where arrays are defined, the required dimension size is given as the array argument.

TABLE 5: PARAMETERS IN THE ADS ARGUMENT LIST
PARAMETER
DEFINITION
INFO . Information parameter. On the first call to ADS, INFO=0 or - 2 . INFO=0 is used if the user does not wish to over-ride internal parameters and INFO $=-2$ is used if internal parameters are to be changed. When control returns form ADS to the calling program, INFO will have a value of 0 , 1 , or 2. If $I N F O=0$, the optimization is complete. If INFO=1, the user must evaluate the objective, $O B J$, and constraint functions, $G(I), I=1, N C O N$, and call ADS again. If INFO=2, the user must evaluate the gradient of the objective and the NGT constraints identified by the vector IC, and call ADS again. If the gradient calculation control, IGRAD=0, INFO=2 will never be returned from ADS, and all gradient information is calcluated by finite difference within ADS.
ISTRAT Optimization strategy to be used. Available options are identified in Tables 1 and 4.
IOPT Optimizer to be used. Available options are identified in Tables 2 and 4.
IONED One-dimensional search algorithm to be used. Available options are identified in Tables 3 and 4.

TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST
PARAMETER
IPRINT A four-digit print control. IPRINT=IJKL where I, J, K and L have the following definitions:
I ADS system print control.
0 - No print.
1 - Print inftial and final information.
2 - Same as 1 plus parameter values and storage needs. 3 - Same as 2 plus scaling information calculated by ADS.
J Strategy print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration. 3 - Same as 2 plus G at each iteration. 4 - Same as 3 plus intermediate information. 5 - Same as 4 plus gradients of constraints.
K Optimizer print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus constraints at each iteration.
4 - Same as 3 plus intermediate optimization and one-dimensional search information.
5 - Same as 4 plus gradients of constraints.
L One-Dimensional search print control, (debug only). 0 - No print.
1 - One-dimensional search debug information.
2 - More of the same.
Example: IPRINT=3120 corresponds to $I=3, J=1, K=2$ and $L=0$.
NOTE: IPRINT can be changed at any time control is returned to the user.
IGRAD Gradient calculation control. If IGRAD=0 is input to ADS, all gradient computations are done within ADS by first forward finite difference. If $\operatorname{IGRAD}=1$, the user will supply gradient information as indicated by the value of INFO.
NDV Number of design variables contained in vector X. NDV is the same as n in the mathematical problem statement.
NCON Number of constraint values contained in array G. NCO. is the same as m+ in the mathematical problem statement given in Section l.0. $N C O N=0$ is allowed.
$X(N D V+1)$ Vector containing the design variables. On the first call to ADS, this is the user's initial estimate to the design. On return from ADS, this is the design for which function or gradient values are required. On the final return from ADS (INFO=0 is returned), the vector X contains the optimum design.
VLB(NDV+1) Array containing lower bounds on the design variables, x. If no lower bounds are imposed on one or more of the design variables, the corresponding component(s) of VLB must be set to a large negative number, say $-1.0 \mathrm{E}+15$.
$\operatorname{VUB}(N D V=1)$ Array containing upper bounds on the design variables, x. If no upper bounds are imposed on one or more of the design variables, the corresponding component(s) of VUB must be set to a large positive number, say $1.0 \mathrm{E}+15$.

TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST PARAMETER

DEFINITION
OBJ Value of the objective function corresponding to the current values of the design variables contained in X. On the first call to ADS, OBJ need not be defined. ADS will return a value of $1 N F O=1$ to indicate that the user mus't evaluate OBJ and call ADS again. Subsequently, any time a value of INFO=1 is returned from ADS, the objective, OBJ, must be evaluated for the current design and ADS must be called again. OBJ has the same meaning as $F(X)$ in the mathematical problem statement given in Section 1.0.
G(NCON) Array containing NCON constraint values corresponding to the current design contained in \mathbf{X}. On the first call to ADS, the constraint values need not be defined. On return from ADS, if INFO $=1$, the constraints must be evaluated for the current X and ADS called again. If NCON=0, array G should be dimensioned to unity, but no constraint values need to be provided.
IDG(NCON) Array containing identifiers indicating the type of the constraints contained in array G. IDG(I) $=-2$ for linear equality, constraint. IDG(I) $=-1$ for nonlinear equality constraint. $\operatorname{IDG}(I)=0$ or 1 for nonlinear inequality constraint. IDG(I) $=2$ for linear inequality constraint. NOTE: In ADS Version 1.00, equality constraints are only operational for SUMT methods, ISTRAT=1,5.
NGT Number of constraints for which gradients must be supplied. NGT is defined by ADS as the minimum of NCOLA and NCON and is returned to the user.
IC(NGT) Array identifying constraints for which gradients are required. IC is defined by ADS and returned to the user. If INFO $=2$ is returned to the user, the gradient of the objective and the NGT constraints must be evaluated and stored in arrays DF and A, respectively, and ADS must be called again.
DF(NDV+1) Array containing the gradient of the objective corresponding to the current \mathbb{X}. Array DF must be defined by the user when INFO $=2$ is returned from ADS. This will not occur if IGRAD $=0$, in which case array DF is evaluated by ADS.
A(NRA,NCOLA) Array containing the gradients of the NGT constraints identified by array IC. That is, column J of array A contains the gradient of constraint number K, where $K=I C(J)$. Array A must be defined by the user when $I N F O=2$ is returned from ADS and when NGT.GT.0. This will not occur if IGRAD $=0$, in which case, array A is evaluated by ADS. NRA is the dimensioned rows of array A. NCOLA is the dimensioned columns of array A.
NRA Dimensioned rows of array A. NRA must be at least NDV+1.
NCOLA Dimensioned columns of array A. NCOLA should be at least the minimum of NCON and $2 \star \mathrm{NDV}$. If enough storage is available, and if gradients are easily provided or are calculated by finite difference, then $N C O L A=N C O N+N D V$ is ideal.
WK(NRWK) User provided work array for real variables. Array WK is used to store internal scalar variables and arrays used by ADS. WK must be dimensioned at least 100 , but usually much larger. If the use has not provided enough storage, ADS will print the appropriate message and terminate the optimization.

NRWK	Dimensioned size of work array $\mathbf{U K}$. A good estimate is NRWK $=500+10 *(N D V+N C O N)+N C O L A *(N C O L A+3)+N *(N / 2+1)$, where $N=\operatorname{MAX}(N D V, N C O L A)$.
	User provided work array for integer variables. Array IWK is used to store internal scalar variables and arrays used by ADS. IWK must be dimensioned at least 200, but usually much larger.
	If the user has not provided enough storage, ADS will print the appropriate message and terminate the optimization.
NRIWK	Dimensioned size of work array IWK. A good estimate is
	MAX (NDV

4.3 Over-Riding ADS Default Parameters

Various internal parameters are defined on the first call to ADS which work well for the "average" optimization task. However, it is of ten desirable to change these in order to gain maximum utility of the program. This mode of operation is shown in Figures 2 and 3. After the first call to ADS, various real and integer scalar parameters are stored in arrays WK and IWK respectively. Those which the user may wish to change are listed in Tables 6 through 9, together with their default values and definitions. If the user wishes to change any of these, the appropriate component of WK or IWK is simply re-defined after the first call to ADS. For example, if the relative convergence criterion, DELOBJ, is to be changed to 0.002 , this is done with the FORTRAN statement;
$W K(12)=0.002$
because WR(12) contains the value of DELOBJ.

TABLE 6: REAL PARAMETERS STORED IN ARRAY WK

PARAMETER	LOCATION	N DEFAULT	MODULES WHERE USED		
			ISTRAT	IOPT	IONED
ALAMDZ	1	0.0	5	-	-
BETAMC	2	0.0	7	-	-
CT^{1}	3	-0.03	-	4,5	-
CTL	4	-0.005	-	4,5	-
CTLMIN	5	0.001	-	4,5	-
CTMIN	6	0.01	-	4,5	-
DABALP ${ }^{2}$	7	0.0001	-	ALL	-
DABOBJ	8 A	ABS (F0)/10000	ALL	-	-
DABOBM	9 A	ABS(F0)/1000	ALL	-	-
DABSTR	10	$\mathrm{ABS}(\mathrm{FO}) / 10000$	ALL	-	
DELALP ${ }^{3}$	11	0.005	-	-	1,2,5,6
DELOBJ	12	0.001	-	ALL	1,2,5,
DELOBM	13	0.01	ALL	-	-
DELSTR	14	0.001	ALL	-	-
DLOBJ1	15	0.1	-	ALL	-
DLOBJ2	16	1000.0	-	ALL	-
DXI	17	0.01	-	ALL	-
DX2	18	0.2	-	ALL	-
EPSPEN	19	-0.05	2,3,4	AL	-
EXTRAP	20	5.0	,3,	-	ALL
FDCH	21	0.01	-	ALL	ALL
FDCHM	22	0.001	-	ALL	-
gmultz	23	10.0	8	ALL	-
PSAIZ	24	0.95	8	-	-
RMULT	25	5.0	1,5	-	-
RMVLMZ	26	0.2	6,7,8	-	-
RP	27	10.0	1,5	-	-
RPMAX	28	1.0E+10	1,5	-	-
RPMULT	29	0.2	1,5	-	-
RPPMIN	30	1.0E-10	2,3,4	-	-
RPPRIM	31	100.0	2,3,4	-	-
SCFO	32	1.0	ALL	ALL	ALL
SCLMIN	33	0.001	ALL	ALL	ALL
STOL	34	0.001	ALT	4,5	ALL
THETAZ	35	0.1	-	4,5	-
XMULT	36	2.618034	-	-	1,2,3,5,6,7
ZRO	37	0.00001	ALL	ALL	ALL

1 If $\mathrm{IOPT}=4, \mathrm{CT}=-0.1$
2 If IONED $=3$ or 8, $D A B A L P=0.001$
3 If IONED=3 or 8, DELALP $=0.05$
NOTE: FO is the objective function value for the initial design.

TABLE 7: DEFINITIONS OF REAL PARAMETERS CONTAINED IN ARRAY WK

ALAMDZ Initial estimate of the Lagrange Multipliers in the Augmented Lagrange Multiplier Method.
BETAMC Additional steepest descent fraction in the method of centers. After moving to the center of the hypersphere, a steepest descent move is made equal to BETAMC times the radius of the hypersphere.
CT Constraint tolerance in the Method of Feasible Directions or the Modified Method of Feasible Directions. A constraint is active if its numerical value is more positive than CT.
CTL Same as CT, but for linear constraints.
CTLMIN Same as CTMIN, but for linear constraints.
CTMIN Minimum constraint tolerance for nonlinear constraints. If a constraint is more positive than CTMIN, it is considered to be violated.
DABALP Absolute convergence criteria for the one-dimensional search when using the Golden Section method.
DABOBJ Maximum absolute change in the objective between two consecutive iterations to indicate convergence in optimization.
DABOBM Absolute convergence criterion for the optimization subproblem when using sequential minimization techniques.
DABSTR Same as DABOBJ, but used at the strategy level.
DELALP Relative convergence criteria for the one-dimensional search when using the Golden Section method.
DELOBJ Maximum relative change in the objective between two consecutive iterations to indicate convergence in optimization.
DELOBM Relative convergence criterion for the optimization subproblem when using sequential minimization techniques.
DELSTR Same as DELOBJ, but used at the strategy level.
DLOBJI Relative change in the objective function attempted on the first optimization iteration. Used to estimate initial move in the one-dimensional search. Updated as the optimization progresses.
DLOBJ2 Absolute change in the objective function attempted on the first optimization iteration. Used to estimate initial move in the one-dimensional search. Updated as the optimization progresses.
DX1 Maximum relative change in a design variable attempted on the first optimization iteration. Used to estimate the initial move in the one-dimensional search. Updated as the optimization progresses.
DX2 Maximum absolute change in a design variable attempted on the first optimization iteration. Used to estimate the initial move in the one-dimensional search. Updated as the optimization progresses.
EPSPEN Initial transition point for extended penalty function methods. Updated as the optimization progresses.
EXTRAP Maximum multiplier on the one-dimensional search parameter, ALPHA in the one-dimensional search using polynomial interpolation/extrapolation.

TABLE 7 CONCLUDED: DEFINITIONS OF REAL PARAMETERS CONTAINED IN ARRAY HR PARAMETER DEFINITION
FDCH Relative finite difference step when calculating gradients. FDCHM Minimum absolute value of the finite difference step when calculating gradients. This prevents too small a step when $X(I)$ is near zero.
GMULTZ Initial penalty parameter in Sequential Quadratic programming.
PSAIZ Move fraction to avoid constraint violations in Sequential Quadratic Programming.
RMULT Penalty function multiplier for the exterior penalty function method. Must be greater than 1.0 .
RMVLMZ Initial relative move limit. Used to set the move limits in sequential linear programming, method of inscribed. hyperspheres and sequential quadratic programming as a fraction of the value of $X(I), I=1, N D V$.
RP Initial penalty parameter for the exterior penalty function method or the Augmented Lagrange Multiplier method.
RPMAX Maximum value of RP for the exterior penalty function method or the Augmented Lagrange Multiplier method.
RPMULT Multiplier on RP for consequtive iterations.
RRPMIN Minimum value of RPPRIM to indicate convergence.
RPPRIM Initial penalty parameter for extended interior penalty function methods.
SCFO The user-supplied value of the scale factor for the objective function if the default or calculated value is to be overridden.
SCLMIN Minimum numerical value of any scale factor allowed. STOL Tolerance on the components of the calculated search direction to indicate that the Kuhn-Tucker conditions are satisfied.
THETAZ Nominal value of the push-off factor in the Method of Feasible Directions.
XMULT Multipifer on the move parameter, ALPHA, in the one-
ZRO . dimensional search to find bounds on the solution. Numerical estimate of zero on the computer. Usually the default value is adequate. If a computer with a short word length is used, $\mathrm{ZRO}=1.0 \mathrm{E}-4$ may be preferred.
table 8: INTEGER PARAMETERS STORED IN ARRAY IWK
MODULES WHERE USED

			MODULES WHERE USED		
PARAMETER	LOCATION	DEFAULT	ISTRAT	IOPT	IONED
ICNDIR	1	NDV +1	-	ALL	-
ISCAL	2	1	ALL	ALL	ALL
ITMAX	3	40	-	ALL	-
ITRMOP	4	3	-	$1,2,3$	-
ITRMST	5	2	ALL	-	-
JONED	6	IONED	8	-	-
JTMAX	7	20	ALL	-	-

TABLE 9: DEFINITIONS OF INTEGER PARAMETERS CONTAINED IN ARRAY IWR PARAMETER
 DEFINITION

ICNDIR	Restart parameter for conjugate direction and variable metric methods. Unconstrained minimization is restarted with a
steepest descent direction every ICNDIR iterations.	

4.4 User-Supplied Gradients

If it is convenient to supply analytic gradients to ADS, rather than using internal finite difference calculations, considerable optimization efficiency is attainable. If the user wishes to supply gradients, the flow logic given in Figure 3 is used. In this case, the information parameter, INFO, will be returned to the user with a value of INFO $=2$ when gradients are needed. The user calculates the NGT gradients of the constraints identified by array IC and stores these in the first NGT columns of array A. That is column I of A contains the gradient of constraint J, where $J=I C(I)$,

4.5 Restarting ADS

When solving large and complex design problems, or when multi-level optimization is being performed, it is often desirable to terminate the optimization process and restart from that point at a later time. This is easily accomplished using the ADS program. Figure 4 provides the basic flowchart for this process. Whenever control is returned from ADS to the calling program, the entire contents of the parameter iist are written to disk (or a file in a database management system). The program is then stopped at this point. Later, the program is restarted by reading the information back from disk and continuing from this point. If optimization is performed as a sub-problem within analysis, the information from the system level optimization is written to disk and the analysis is called. The analysis module can then call ADS to perform the sub-optimization task. Then, upon return from analysis, the system level information is read back from storage and the optimization proceeds as usual. From this, it is seen that considerable flexibility exists for multi-level and multi-discipline optimization with ADS; where the ADS program is used for multiple tasks within the overall design process.

The user may wish to stop the optimization at specific times during the process. The parameter IMAT is array IWK gives general information regarding the progress of the optimization. Appendix B provides details of this parameter as well as other parameters stored in WK and IWK which may be useful to the experienced user of ADS.

Figure 4: Restarting ADS

4.6 Choosing An Algorithm

One difficulty with a program such as ADS, which provides numerous options, is that of picking the best combination of algorithms to solve a given problem. While it is not possible to provide a concise set of rules, some general guidelines are offered here based on the author's experience. The user is strongly encouraged to try many different options in order to gain familiarity with ADS and to improve the probability that the best combination of algorithms is found for the particular class of problems being solved.

```
UNCONSTRAINED FUNCTIONS (NCON=0, SIde Constraints OK)
    ISTRAT=0
    Is computer storage very limited?
    Yes - IOPT=1. Are function evaluations expensive?
        Yes - Is the objective known to be approximately quadratic?
            Yes - IONED=4
            No - IONED=3
        No - IONED=1 or 2
    No - Is the analysis iterative?
        Yes - IOPT=3. Are function evaluations expensive?
            Yes - Is the objective known to be approximately quadratic?
            Yes - IONED=4
            No - IONED=3
            No - IONED=1 or 2
        No - IOPT=2 or 3. Are function evaluations expensive?
            Yes - Is the objective known to be approximately quadratic?
            Yes - IONED=4
            No - IONED=3
            No - IONED=1 or 2
CONSTRAINED FUNCTIONS (NCON>0)
Are relative minima known to exist?
    Yes - ISTRAT=1, IOPT=3. Are function evaluations expensive?
        Yes - IONED=3
        No - IONED=1 or 2
    No - Are the objective and/or constraints highly nonlinear?
        Yes - Are function evaluations expensive?
            Yes - ISTRAT=0, IOPT=4, IONED=7
            No - ISTRAT=2, 3 or 5, IOPT=2 or 3, IONED=1 or 2
        No - Is the design expected to be fully-constrained?
            (i.e. NDV active constraints at the optimum)
            Yes - ISTRAT=6, IOPT=5, IONED=6
            No - Is the analysis iterative?
                Yes - ISTRAT=0, IOPT=4, IONED=7 or
                ISTRAT=8, IOPT=5, IONED=7
            No - ISTRAT=0, IOPT=5, IONED=7 or
                    ISTRAT=8, IOPT=5, IONED=7
```


GENERAL APPLICATIONS

Often little is known about the nature of the problem being solved. Based on experience with a wide variety of problems, a very direct approach is given here for using ADS. The following table of parameters is offered as a sequence of algorithms. When using ADS the first few times, the user may prefer to run the cases given here, rather than using the decision approach given above. It is assumed here that a constrained optimization problem is being solved. If the problem is unconstrained, ISTRAT $=0$, IOPT $=3$ and IONED $=2$ or 3 is recommended.

ISTRAT	IOPT	IONED	IPRINT
8	5	7	2200
0	5	7	2020
0	4	7	2020
6	5	6	2200
5	3	3	2200
2	3	3	2200
1	3	3	2200

5.0 EXAMPLES

Consider the following two-variable optimization problem with two nonlinear constraints:

$$
\begin{aligned}
& \text { Minimize } \quad \begin{array}{l}
O B J
\end{array}=2 \sqrt{2} A_{1}+A_{2} \\
& \text { Subject to; } \quad G(1)=\frac{2 A_{1}+\sqrt{2} A_{2}}{2 A_{1}\left[A_{1}+\sqrt{2} A_{2}\right]}-1 \\
& G(2)=\frac{1}{2\left[A_{1}+\sqrt{2} A_{2}\right]}-1 \\
& 0.01 \leq A_{i} \leq 1.0 \mathrm{E}+20 \quad i=1,2
\end{aligned}
$$

This is actually the optimization of the classical 3-bar truss shown in Figure 5 where, for simplicity, only the tensile stress constraints in members 1 and 2 under load P_{1} are included. The loads, P_{1} and P_{2}, are applied separately and the material specific weight is 0.11 b . per cubic inch. The structure is required to be symmetric so $X(1)$ corresponds to the cross-sectional area of members 1 and 3 and $X(2)$ corresponds to the cross-sectional area of member 2.

Figure 5: Three-Bar Truss

Figure 6 gives the FORTRAN program to be used with ADS to solve this problem. Only one line of data is read by this program to define the values of ISTRAT, IOPT, IONED and IPRINT and the FORMAT is 4I5. When the optimization is complete, another case may be run by reading a new set of data. The program terminates when ISTRAT $=-1$ is read as data.

Figure 7 gives the results obtained with ISTRAT=0, IOPT=4, IONED=7 and IPRINT=1000. The reader is encouraged to experiment with this program using various combinations of the options from Table 4.

5.2 Example 2; Initial Parameters Are Modified

The 3-bar truss designed in Section 5.1 is now designed with the following changes in the internal parameters:

Parameter	New Value	Location in WK	Location in IWK
CT	-0.1	3	-
CTMIN	0.002	6	-
THETAZ	1.0	35	-
ITRMOP	2	-	4

The FORTRAN program used here is shown in Figure 8 and the results are given in Figure 9.
5.3 Example 3; Gradients Supplied by the User

The 3-bar truss designed in Sections 5.1 and 5.2 is designed here with user-supplied gradients. The parameters CT, CTMIN, CTMIN, THETAZ and ITRMOP are over-ridden as in Section 5.2. Also, now IPRINT=2020 to provide a more typical level of optimization output.

The FORTRAN program associated with this example is given in Figure 10. Figure 11 gives the results.

C SIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUSS.
C REQUIRED ARRAYS. DIMENSION $\mathrm{X}(3), \mathrm{VLB}(3), \operatorname{VUB}(3), \mathrm{G}(2), \operatorname{IDG}(2), \operatorname{IC}(2), \operatorname{DF}(3), \mathrm{A}(2,2)$, 1 WK(1000), IWK(500)
C ARRAY DIMENSIONS.
NRA $=2$
NCOLA=2
NRWK $=1000$
NRIWK=500
C PARAMETERS. IGRAD $=0$
NDV=2
$\mathrm{NCON}=2$
C INITIAL DESIGN. $X(1)=1$ 。
$X(2)=1$.
C BOUNDS.
$\operatorname{VLB}(1)=.01$
$\operatorname{VLB}(2)=.01$
$\operatorname{VUB}(1)=1.0 \mathrm{E}+20$
$\operatorname{VUB}(2)=1.0 \mathrm{E}+20$
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY. IDG(1)=0
$\operatorname{IDG}(2)=0$
C INPUT.
$\operatorname{READ}(5,30)$ ISTRAT, IOPT, IONED,IPRINT
C OPTIMIZE. INFO $=0$
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV , NCON, X, VLB , 1 VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA ,WK, NRWK, IWK, NRIWK) IF (INFO.EQ.O) GO TO 20
C EVALUATE OBJECTIVE AND CONSTRAINTS. $\mathrm{OBJ}=2 . * \operatorname{SQRT}(2.) \star \mathrm{X}(1)+\mathrm{X}(2)$
$\mathrm{G}(1)=(2 . * \mathrm{X}(1)+\operatorname{SQRT}(2) * .\mathrm{X}(2)) /(2 . * X(1) * X(1)+\operatorname{SQRT}(2) * X.(2)))-1$. $G(2)=.5 /(X(1)+S Q R T(2) * X.(2))-1$.
C GO CONTINUE WITH OPTIMIZATION.
GO TO 10
20 CONTINUE
C PRINT RESULTS.
WRITE (6, 40) OBJ, X(1), X(2), G(1), G(2)
STOP
30 FORMAT (4I5)
40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ $=, \mathrm{E} 12.5 / / 5 \mathrm{X}, 6 \mathrm{HX}(1)=, \mathrm{E} 12.5,5 \mathrm{X}$, $16 \mathrm{HX}(2)=, \mathrm{El2} .5 / 5 \mathrm{X}, 6 \mathrm{HG}(1)=, \mathrm{E} 12.5,5 \mathrm{X}, 6 \mathrm{HG}(2)=, \mathrm{E} 12.5$) END

Figure 6: Example 1; All Default Parameters

AAAAA		DDDDDD		SSSSSS	
A	A	D	D	S	
A	A	D	D	S	
AAAAAAA	D	D	SSSSS		
A	A	D	D	S	
A	A	D	D	S	
A	A	DDDDDD	SSSSSS		

FORTRANPROGRAM

$$
F O R
$$

AUTOMATED DESIGN.SYNTHESIS

$$
\text { VERSION } 1.00
$$

```
CONTROL PARAMETERS
ISTRAT = 0 IOPT = 4 IONED = 7 IPRINT = 1000
IGRAD = 0 NDV =2 NCON = 2
```

 OPTIMIZATION RESULTS
 OBJECTIVE FUNCTION VALUE $0.26279 \mathrm{E}+01$

DESIGN VARIABLES

	LOWER		UPPER
VARIABLE	BOUND	VALUE	BOUND
1	$0.10000 \mathrm{E}-01$	$0.78131 \mathrm{E}+00$	$0.10000 \mathrm{E}+21$
2	$0.10000 \mathrm{E}-01$	$0.41804 \mathrm{E}+00$	$0.10000 \mathrm{E}+21$

DESIGN CONSTRAINTS

1) $0.4248 \mathrm{E}-02-0.6357 \mathrm{E}+00$

FUNCTION EVALUATIONS = 55

OPTIMUM $\quad O B J=0.26279 \mathrm{E}+01$
$X(1)=0.78131 E+00 \quad X(2)=0.41804 E+00$
$G(1)=0.42477 E-02 \quad G(2)=-0.63570 E+00$
Figure 7: Example 1; Output

C USAGE OF ADS. OVER-RIDING DEFAULT PARAMETERS.
C THE THREE-BAR TRUSS.
C REQUIRED ARRAYS. DIMENSION X(3), VLB(3), VUB(3), $\mathrm{G}(2), \operatorname{IDG}(2), \operatorname{IC}(2), \operatorname{DF}(3), \mathrm{A}(2,2)$, 1 WK(1000), IWK(500)
C ARRAY DIMENSIONS.
NRA=2
NCOLA $=2$
NRWK=1000
NRIWK=500
C PARAMETERS.

- IGRAD $=0$

NDV=2
$\mathrm{NCON}=2$
C INITIAL DESIGN.
$X(1)=1$ 。
$X(2)=1$ 。
C BOUNDS.
$\operatorname{VLB}(1)=.01$
$\operatorname{VLB}(2)=.01$
$\operatorname{VUB}(1)=1.0 \mathrm{E}+20$
$\operatorname{VUB}(2)=1.0 \mathrm{E}+20$
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
$\operatorname{IDG}(1)=0$
$\operatorname{IDG}(2)=0$
C INPUT.
$\operatorname{READ}(5,30)$ ISTRAT, IOPT, IONED, IPRINT
C INITIALIZE INTERNAL PARAMETERS. INFO $=-2$
CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV ,NCON, X, VLB , 1 VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA, WK, NRWK, IWK, NRIWK)
C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP. WK (3) $=-0.1$
$W K(6)=0.002$
$W K(35)=1.0$
IWK (4) $=2$
C OPTIMIZE.
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD , NDV , NCON, X, VLB , 1 VUB, OBJ, G, IDG, NGT , IC, DF , A, NRA, NCOLA , WK, NRWK, IWK, NRIWK) IF (INFO.EQ.0) GO TO 20
C EVALUATE OBJECTIVE AND CONSTRAINTS. OBJ $=2 . * S Q R T(2) * X.(1)+X(2)$
$G(1)=(2 . * X(1)+S Q R T(2) * X.(2)) /(2 . * X(1) * X(1)+S Q R T(2) * X.(2)))-1$. $G(2)=.5 /(X(1)+S Q R T(2) * X.(2))-1$.
C GO CONTINUE WITH OPTIMIZATION.
GO TO 10
20 CONTINUE
C PRINT RESULTS.
WRITE $(6,40)$ OBJ, X(1), X(2), $G(1), G(2)$
STOP
30 FORMAT (4I5)
40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ $=\mathrm{E} 12.5 / / 5 \mathrm{X}, 6 \mathrm{HX}(1)=, \mathrm{E} 12.5,5 \mathrm{X}$,
1 6HX(2) $=, \mathrm{E} 12.5 / 5 \mathrm{X}, 6 \mathrm{HG}(1)=, \mathrm{E} 12.5,5 \mathrm{X}, 6 \mathrm{HG}(2)=, \mathrm{E} 12.5$) END
Figure 8: Example 2; Modify Default Parameters
AAAAA DDDDDD SSSSSS
A \quad A D D D
AAAAAAA D D SSSSS
A A D D S
A A D DA A DDDDDD SSSSSS
FORTRAN PROGRAM
F 0 R
AUTOMATED DESIGN S Y NTHESIS
V ERSION 1.00
CONTROL PARAMETERS
ISTRAT $=0 \quad$ IOPT $=4$ IONED $=7 \quad$ IPRINT $=1000$ IGRAD $=0$ NDV $=2$ NCON $=2$
OPTIMIZATION RESULTS
OBJECTIVE FUNCTION VALUE $0.26396 \mathrm{E}+01$
DESIGN VARIABLES

	LOWER		UPPER
VARIABLE	BOUND	VALUE	BOUND
1	$0.10000 \mathrm{E}-01$	$0.78786 \mathrm{E}+00$	$0.10000 \mathrm{E}+21$
2	$0.10000 \mathrm{E}-01$	$0.41121 \mathrm{E}+00$	$0.10000 \mathrm{E}+21$

DESIGN CONSTRAINTS

$$
\text { 1) }-0.2431 \mathrm{E}-03-0.6349 \mathrm{E}+00
$$

FUNCTION EVALUATIONS 20
OPTIMUM $O B J=0.26396 \mathrm{E}+01$
$X(1)=0.78786 \mathrm{E}+00$ $X(2)=0.41121 \mathrm{E}+00$$G(1)=-0.24313 \mathrm{E}-03 \quad G(2)=-0.63488 \mathrm{E}+00$
Figure 9: Example 2; Output

C USAGE OF ADS. OVER-RIDING DEFAULT PARAMETERS, AND PROVIDING
C GRADIENTS. THE THREE-BAR TRUSS.
C REQUIRED ARRAYS. DIMENSION $X(3), \operatorname{VLB}(3), \operatorname{VUB}(3), \dot{G}(2), \operatorname{IDG}(2), \operatorname{IC}(2), \operatorname{DF}(3), \mathrm{A}(2,2)$, 1 WK(1000), IWK(500) DIMENSION B(2,2)
C ARRAY DIMENSIONS. NRA $=2$
NCOLA $=2$
NRWK=1000
NRIWK=500
C PARAMETERS. IGRAD $=0$ NDV $=2$ NCON=2
C INITIAL DESIGN.
$\mathrm{X}(1)=1$.
$X(2)=1$.
C BOUNDS.
$\operatorname{VLB}(1)=.01$
$\operatorname{VLB}(2)=.01$
$\operatorname{VUB}(1)=1.0 \mathrm{E}+20$
$\operatorname{VUB}(2)=1.0 E+20$
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY. $\operatorname{IDG}(1)=0$
$\operatorname{IDG}(2)=0$
C INPUT.
READ $(5,30)$ ISTRAT, IOPT, IONED, IPRINT
C INITIALIZE INTERNAL PARAMETERS.
INFO $=-2$
CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV , NCON, X, VLB, 1 VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA, WK, NRWK, IWK, NRIWK)
C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMDP. $W K(3)=-0.1$
$\mathrm{WK}(6)=0.002$
$W K(35)=1.0$
IWK (4) $=2$
C. OPTIMIZE.

10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV , NCON, X, VLB , 1 VUB, OBJ, G, IDG, NGT, IC, DF, A, NRA, NCOLA, WK, NRWK, IWK, NRIWK) IF (INFO.EQ.0) GO TO 60 IF (INFO.GT.1) GO TO 20
C EVALUATE OBJECTIVE AND CONSTRAINTS." OBJ=2.*SQRT (2.) $\mathrm{K}(1)+\dot{X}(2)$
$\mathrm{G}(1)=(2 . * \mathrm{X}(1)+\operatorname{SQRT}(2 \cdot) * \mathrm{X}(2)) /(2 . * \mathrm{X}(1) * \mathrm{X}(1)+\operatorname{SQRT}(2) * X.(2)))-1$. $G(2)=.5 /(X(1)+\operatorname{SQRT}(2) * X.(2))-1$.
C GO CONTINUE WITH OPTIMIZATION. GO TO 10

Figure 10: Example 3; Gradients Supplied by the User
CONTINUE
C GRADIENT OF OBJ.
DF(1)=2.*SQRT(1.)
DF(2)=1.0
IF (NGT.EQ.0) GO TO 10
C CONSTRAINT GRADIENTS. USE ARRAY B FOR TEMPORARY STORAGE.
D1=(X(1)+SQRT(X(2))**2
C G(1).
B(1,1)=-(2.*X(1)*X(1)+2.*SQRT(2.)*X(1)*X(2)+SQRT(2.)*X(2)*X(2)/
1 (2.*X(1)*X(1)*D1)
B(2,1)=-1./(SQRT(2.)*D1)
C G(2).
B(1,2)=-0.5/D1
B(2,2)=SQRT(2.)*B(1,2)
C STORE APPROPRIATE GRADIENTS IN ARRAY A.
DO 30 J=1,NGT
K=IC(J)
A(1,J)=B(1,K)
A(2,J)=B(2,K)
GO TO 10
CONTINUE
C PRINT RESULTS.
WRITE (6,40) OBJ,X(1),X(2),G(1),G(2)
STOP
30 FORMAT (4I5)
40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ =,E12.5//5X,6HX(1) =,E12.5,5X,
1 6HX(2) =, El2.5/5X,6HG(1) =,E12.5,5X,6HG(2) =,E12.5)
END

```

Figure 10 Concluded: Example 3; Gradients Supplied by the User
\begin{tabular}{lllll}
\multicolumn{2}{c}{ AAAAA } & \multicolumn{2}{l}{ DDDDD } & \multicolumn{1}{c}{ SSSSSS } \\
A & A & D & D & S \\
A & A & D & D & S \\
AAAAAAAA & D & D & SSSSS \\
A & A & D & D & S \\
A & A & D & D & S \\
A & A & DDDDDD & \multicolumn{2}{l}{ SSSSSS }
\end{tabular}

\section*{FORTRAN PROGRAM}

F 0 R
AUTOMATED DESIGN SYNTHESIS
VERSION 1.00

CONTROL PARAMETERS
\begin{tabular}{llllll} 
ISTRAT \(=\) & 0 & IOPT & \(=4\) & IONED & \(=7\) \\
IGRAD & 1 \\
NDV & \(=\) & IPRINT \(=2020\)
\end{tabular}

SCALAR PROGRAM PARAMETERS
REAL PARAMETERS
1) ALAMDZ \(=0.0\)
2) BETAMC \(=0.0\)
3) \(\mathrm{CT}=-0.10000 \mathrm{E}+00\)
4) \(\mathrm{CTL}=-0.50000 \mathrm{E}-02\)
5) CTLMIN \(=0.10000 \mathrm{E}-02\)
6) CTMIN \(=0.20000 \mathrm{E}-02\)
7) DABALP \(=0.10000 \mathrm{E}-03\)
8) DABOBJ \(=0.38284 \mathrm{E}-03\)
9) \(\operatorname{DABOBM}=0.38284 \mathrm{E}-03\)
10) DABSTR \(=0.38284 \mathrm{E}-03\)
11) DELALP \(=0.50000 \mathrm{E}-02\)
20) EXTRAP \(=0.50000 \mathrm{E}+01\)
21) \(\mathrm{FDCH}=0.10000 \mathrm{E}-01\)
22) \(\mathrm{FDCHM}=0.10000 \mathrm{E}-02\)
23) GMULTZ \(=0.10000 \mathrm{E}+02\)
24) \(\mathrm{PSAIZ}=0.95000 \mathrm{E}+00\)
25) RMULT \(=0.50000 \mathrm{E}+01\)
26) \(\mathrm{RMVLMZ}=0.20000 \mathrm{E}+00\)
27) \(\mathrm{RP}=0.10000 \mathrm{E}+02\)
28) \(\operatorname{RPMAX}=0.10000 \mathrm{E}+09\)
29) RMULT \(=0.20000 \mathrm{E}+00\)
30) RPPMIN \(=0.10000 \mathrm{E}-07\)
12) DELOBJ \(=0.10000 \mathrm{E}-02\)
31) RPPRIM \(=0.10000 \mathrm{E}+03\)
13) DELOBM \(=0.50000 \mathrm{E}-04\)
32) \(\mathrm{SCFO}=0.10000 \mathrm{E}+01\)
14) DELSTR \(=0.10000 \mathrm{E}-02\)
15) DLOBJ1 \(=0.10000 \mathrm{E}+00\)
16) DLOBJ2 \(=0.10000 \mathrm{E}+04\)
17) \(\operatorname{DX1}=0.10000 \mathrm{E}-01\)
18) \(\mathrm{DX2}=0.20000 \mathrm{E}+00\)
19) \(\operatorname{EPSPEN}=-0.50000 \mathrm{E}-01\)
34) STOL \(=0.10000 \mathrm{E}-02\)
35) THETAZ \(=0.10000 \mathrm{E}+01\)
36) XMULT \(=0.26180 \mathrm{E}+01\)
37) \(\mathrm{ZRO}=0.10000 \mathrm{E}-04\)

\section*{INTEGER PARAMETERS}
1) ICNDIR \(=3\)
2) \(\operatorname{ISCAL}=1\)
3) \(\operatorname{ITMAX}=40\)
4) ITRMOP \(=\). 2
5) \(\operatorname{ITRMST}=2\)
6) JONED \(=7\)
7) JTMAX \(=20\)

Figure 11: Example 3 - Output
```

ARRAY STORAGE REQUIREMENTS
DIMENSIONED REQUIRED
ARRAY SIZE SIZE
WK 1000 197
IWK 500 184
IOPT = 4; METHOD OF FEASIBLE DIRECTIONS
-- INITIAL DESIGN
OBJ = 0.38284E+01
DECISION VARIABLES (X-VECTOR)
1) 0.10000E+01 0.10000E+01
LOWER BOUNDS ON THE DECISION VARIABLES (VLB-VECTOR)
1) 0.10000E-01 0.10000E-01
UPPER BOUNDS ON THE DECISION VARIABLES (VUB-VECTOR)
l) 0.10000E+21 0.10000E+21
CONSTRAINT VALUES (G-VECTOR)
1) -0.31371E+00 -0.17040E+0,1

- ITERATION 1 OBJ = 0.26874E+01
DECISION VARIABLES (X-VECTOR)

1) 0.71816E+00 0.65616E+00
-- ITERATION 2 OBJ = 0.26398E+01
DECISION VARIABLES (X-VECTOR)
2) 0.79473E+00 0.39196E'00
FINAL OPTIMIZATION RESULTS
NUMBER OF ITERATIONS = 3
OBJECTIVE =0.26398E+01
DECISION VARIABLES (X-VECTOR)
3) 0.79473E+00 0.39196E+00
CONSTRAINT VALUES (G-VECTOR)
4) -0.23724E-03 -0.13526E+01
CONSTRAINT TOLORANCE, CT = -0.10000E+00 CTL = -0.50000E-02
Figure 11 Continued: Example 3 - Output

```
```

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 vIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
l
THERE ARE 0 ACTIVE SIDE CONSTRAINTS
TERMINATION CRITERIA
KUHN-TUCKER PARAMETER, BETA = 0.70453E-04 IS LESS THAN 0.10000E-0
OPTIMIZATION RESULTS
OBJECTIVE FUNCTION VALUE $0.26398 \mathrm{E}+01$
DESIGN VARIABLES

	LOWER		UPPER
VARIABLE	BOUND	VALUE	BOUND
1	$0.10000 \mathrm{E}-01$	$0.79473 \mathrm{E}+00$	$0.10000 \mathrm{E}+21$
2	$0.10000 \mathrm{E}-01$	$0.39196 \mathrm{E}+00$	$0.10000 \mathrm{E}+21$

DESIGN CONSTRAINTS

1) $-0.2215 \mathrm{E}-03-0.6294 \mathrm{E}+00$
FUNCTION EVALUATIONS $=8$
GRADIENT EVALUATIONS = 3
OPTIMUM \quad OBJ $=0.26398 \mathrm{E}+01$
$\begin{array}{ll}X(1)=0.79473 \mathrm{E}+00 & X(2)=0.39196 \mathrm{E}+00 \\ G(1)=-0.22149 \mathrm{E}-03 & G(2)=-0.62937 \mathrm{E}+00\end{array}$
$G(1)=-0.22149 \mathrm{E}-03 \quad G(2)=-0.62937 \mathrm{E}+00$
```

Figure 11 Concluded: Example 3; Output
6.0 MAIN PROGRAM FOR SIMPLIFIED USAGE OF ADS

Figure 11 is a general-purpose calling program for use with ADS. The arrays are dimensioned sufficient to solve problems of up to 20 design variables and 100 constraints. Arrays IC and A are dimensioned to allow for evaluation of 30 constraint gradients. Wherever a question mark (?) is given, it is understood that the user will supply the appropriate information. Note that the statement \(X(I)=\) ?, \(I=1, N D V\) is not an implied FORTRAN DO LOOP, but simply denotes that the value of the NDV design variables must be defined here.

Subroutine EVAL is the user-supplied subroutine for evaluating functions and gradients (if user-supplied).

Subroutine EVAL has the following call statement:
CALL EVAL (INFO, NDV, NCON , OBJ , X, G, DF , NGT , IC , A, NRA)
The parameters INFO, NDV, NCON, \(X, N G T, I C\) and NRA are input to Subroutine EVAL, whilc OBJ, G, DF and A are output. Depending on the user needs, this may be simplified. For example, if \(I G R A D=0\) and \(N D V\) and NCON are not required by the analysis, the calling statement may be

CALL EVAL (OBJ, X,G)
Alternatively, INFO may be used as a print control so, after the optimization is complete, \(I N F O=3\) is sent to \(E V A L\) to indicate that analysis information should be printed. Note however, that during optimization, the value of INFO returned from ADS must be the same when caliing ADS to continue optimization (eg. it may be safer to use another user-defined parameter as a print control).

C SIMPLIFIED USAGE OF THE ADS OPTIMIZATION PROGRAM. DIMENSION X(21),VLB(21),VUB(21),G(100), IDG(100), IC(30), DF(21), * A(21,30),WK(10000),IWK(2000)

NRA \(=21\)
NCOLA \(=30\)
NRWK=10000
NRIWK=2000
C INITIALIZATION.
IGRAD=?
NDV=?
NCON=?
\(X(I)=\) ? , \(I=1, N D V\)
\(\operatorname{VLB}(I)=?, \quad I=1, N D V\) \(\operatorname{VUB}(I)=?, \quad I=1, N D V\) \(\operatorname{IDG}(I)=? \quad I=1, N C O N\) ISTRAT=? IOPT=? IONED=?
IPRINT=? INFO \(=0\)
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT, IGRAD,NDV,NCON,X, * VLB, VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA ,WK, NRWK, IWK, NRIWK) CALL EVAL (INFO, NDV,NCON,OBJ,X,G,DF,NGT,IC,A,NRA) IF (INFO.GT.0) GO TO 10
C OPTIMIZATION IS COMPLETE. PRINT RESULTS. STOP END

Figure 12: Program for Simplified Usage of ADS

\subsection*{7.0 REFERENCES}
1. Fox, R. L.: "Optimization Methods for Engineering Design," AddisonWesley, 1971.
2. Fiacco, A. V., and McCormick, G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John WiTey and Sons, 1968 .
3. Kavlie, D., and Moe, J.: "Automated Design of Frame Structures," ASCE Journal of Structural Div., Vol. ST1, Jan. 1971, pp. 33-62.
4. Cassis, J. H.: "Optimum Design of Structures Subjected to Dynamic Loads." Ph.D. Thesis, University of California, Los Angeles, 1974.
5. Cassis, J. H., and Schmit, L. A.: "On Implementation of the Extended Interior Penalty Function." International Journal of Numerical Methods in Engineering, Vol. 10, No. 1, 1976, pp. 3-23.
6. Haftka, R. T., and Starnes, J. H., Jr.: "Application of a Quadratic Extended Interior Penalty Function for Structural Optimization.i. AIAA Journal, Vol. 14, June 1976, pp. 718-724.
7. Prasad, B., and Haftka, R. T.: "Optimum Structural Design with Plate Finite Elements." ASCE Journal of Structural Div., Vol. ST11, Nov. 1979,
8. Prasad, B.: "A Class of Generalized Variable Penalty Methods for Nonl inear Programming." Journal of Optimization Theory and Applications, Vol. 35, No. 2, Oct. 1981, pp. 159-182.
9. Rockafellar, R. T.: "The Multiplier Method of Hestenes and Powell Applied to Convex Programming." Journal of Optimization Theory and Application, Vol. 12, No. 6, 1973, pp. 555-562.
10. Pierre, D. A., and Lowe, M. J.: "Mathematical Programming Via Augmented Lagrangians." Applied Mathematics and Computation Series, Addison-Wesley,
19.75.
11. Powell, M. J. D.: "Algorithms for Nonlinear Constraints that Use Lagrangian Functions." Mathematical Programming, Vol. 14, No. 2, 1978, pp. 224-248.
12. Imai, K.: "Configuration Optimization of Trusses by the Multipitier Method:" Ph.D. Thesis, University of California, Los Angeles, 1978.
13. Imai, K.; and Schmit, L. A.: "Configuration Optimization of Trusses." Journal of the Structural Division, ASCE, Vol. 107, No. ST5, May 1981 ,
pp. \(745-756\).
14. Kelley, J. E.: "The Cutting Plane Method for Solving Convex Programs." J. SIAM, 1960, pp. 703-712.
15. Moses, F.: "Optimum Structural Design Using Linear Programming." Proc. ASCE, Vol. 90, No. ST6, 1964, pp. 89-104.
16. Baldur, R.: "Structural Optimization by Inscribed Hyperspheres." Journal of Engineering Mechanics, ASCE, Vol. 98, No. EM3, June 1972,
pp. 503-508:
17. Powell, M. J. D.: "An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives." Computer J.,
7 (4), 1964 , pp. 303-307.
18. Powell, M. J. D.: "A Fast Al gorithm for Nonlinearly Constrained Optimization Calcu7ations." Report DAMTP77/NA2, University of Cambridge, England, 1977.
19. Fletcher, R., and Reeves, C. M.: "Function Minimization by Conjugate Gradients." Computer J., Vol. 7, No. 2, 1964, pp. 149-154.
20. Davidon, W. C.: "Variable Metric Method for Minimization, " Argone National Laboratory, ANL-5990 Rev., University of Chicago, 1959.
21. Fletcher, R. and Powell, M. J. D., "A Rapidly Convergent Method for Minimization," Computer Journal, Vol. 6, No. 2, 1963, pp. 163-168.
22. Broydon, C. G., "The Convergence of a Class of Double Rank Minimization Algorithms," Parts I and II, J. Inst. Maths. Applns., Vol. 6, 1970, pp. 76-90 and 222-231.
23. Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer Journa1, Vo1. 13, 1970, pp. 317-322.
24. Goldfarb, D., A Family of Variable Metric Methods Derived by Variational Means," Maths. Comput., Vol. 24, 1970, pp. 23-36.
25. Shanno, D. F., "Conditioning of Quasi-Newton Methods for Function Minimization," Maths. Comput., Vol. 24, 1970, pp. 647-656.
26. Zoutendijk, M., Methods of Feasible Directions, Elsevier Publishing Co., Amsterdam, 1960.
27. Vanderplaats, G. N. and Moses, F., "Structural Optimization by Methods of Feasible Directions," Journal of Computers and Structures, Vol. 3, Pergamon Press, July 1973, pp. 739-755.
28. Vanderplaats, G. N., "A Robust Feasible Directions Algorithm for Design Synthesis," Proc. AIAA/ASME/ASCE/AHS 24 th Structures, Structural Dynamics and Materials Conference, Lake Tahoe, Nevada, May 2-4, 1983.
29. Himmelblau, D. M., Applied Nonlinear Programming, McGraw-Hil1, 1972.
30. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design: With Applications, McGraw-Hill, 1984.


NOTE: An \(X\) denotes an allowed combination of algorithms.

\section*{APPENDIX B \\ USEFUL INFORMATION STORED IN ARRAYS WK AND IWK}

Arrays WR and IWK contain information calculated by ADS which is sometimes useful in monitering the progress of the optimization. Tables \(B-1\) and \(B-2\) identify parameters which may be of interest to the user. Note that these parameters must not be changed by the user during the optimization process.
\begin{tabular}{lcl}
\begin{tabular}{l} 
TABLE B-1: \\
PARAL PARAMETERS STORED IN ARRAY WK \\
LOCATION
\end{tabular} \\
\hline DEPINITION
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PARAMETER & LOCATION & DEFINITIOA \\
\hline IDAB & 23 & Number of consecutive times the absolute convergence criterion has been satisfied at the optimization level. \\
\hline IDAB3 & 24 & Same as IDAB, but at the strategy level. \\
\hline IDEL & 25 & Number of consecutive times the relative convergence criterion has been satisfied at the optimization level. \\
\hline IDEL3 & 26 & Same as IDEL, but at the strategy level. \\
\hline IFCALL & 28 & The number of times the objective and constraint functions have been evaluated. \\
\hline IGCALL & 29 & The number of times analytic gradients have been evaluated. \\
\hline IMAT & 34 & \begin{tabular}{l}
Pointer telling the status of the optimization process. \\
0 - Optimization is complete. \\
1 - Initialization is complete and control is being returned to the user to over-ride default parameters. \\
2 - Initial function evaluation. \\
3 - Calculating analytic gradients. \\
4 - Calculating finite difference gradients. NXFD identifies the design variable being changed. \\
5 - One-dimensional search is being performed. See LGOTO.
\end{tabular} \\
\hline ITER & 45 & Iteration number at the optimization level. \\
\hline JTER & 46 & Iteration number at the strategy level. \\
\hline LGOTO & 54 & \begin{tabular}{l}
Location in one-dimensional search. \\
1 - Finding bounds on the solution. \\
2 - Golden Section method. \\
3 - Polynomial interpolation after Golden Section. \\
4 - Polynomial interpolation after getting bounds. \\
5 - Polynomial interpolation/extrapolation.
\end{tabular} \\
\hline NAC & 58 & Number of active constraints. \\
\hline NACS & 59 & Number of active side constraints. \\
\hline NVC & 68 & Number of violated constraints. \\
\hline NXFD & 69 & Design variable being perturbed during finite difference gradients. \\
\hline
\end{tabular}

\section*{APPENDIX C}

SUBROUTINES NEEDED FOR A SPECIFIED COMBINATION OF ISTRAT, IOPT AND IONED
Depending on the combination of ISTRAT, IOPT and IONED, on 1 y a subset of subroutines contained in the ADS system are used. Therefore, if computer memory is limited, it may be desired only to load those routines which are actually used. This will result in "unsatisfied externals" at run time, but on most systems the program can be executed anyway since the unsatisfied external routines are not actually called. Below is a list of the routines needed for a given combination of algorithms.' In some cases, slightly more routines are included than are absolutely necessary, but they are short and a more precise list would be undully complicated.

ALWAYS LOAD THE FOLLOWING SUBROUTINES:
ADS, ADS001, ADS002, ADS004, ADS005, ADS006, ADS007, ADS009, ADS010, ADS102, ADS 103, ADS 105, ADS 112, ADS 122, ADS20,1, ADS206, ADS211, ADS216, ADS236, ADS401, ADS402, ADS403, ADS420, ADS503, ADS504, ADS506, ADS510

\section*{STRATEGY LEVEL}

Depending on the value of ISTRAT, the following subroutines are also required:

ISTRAT \(=0\), No strategy routines are added. Go to the optimizer level.
ISTRAT \(=1\), Add: ADS008, ADS301, ADS302, ADS508
ISTRAT \(=2\), Add: ADS008, ADS302, ADS303, ADS 308, ADS508
ISTRAT \(=3\), Add: ADS008, ADS302, ADS304, ADS308, ADS508
ISTRAT \(=4\), Add: ADS008, ADS302, ADS 305, ADS308, ADS508
ISTRAT \(=5\), Add: ADS008, ADS302, ADS306, ADS307, ADS508
ISTRAT \(=6\), Add: ADS320, ADS321, ADS323, ADS333
ISTRAT \(=7\), Add: ADS323, ADS330, ADS331, ADS333
ISTRAT \(=8\), Add: ADS207, ADS217, ADS218, ADS221, ADS223, ADS310, ADS 333, ADS371, ADS375, ADS376, ADS377, ADS378, ADS404, ADS507, ADS508, ADS509

OPTIMIZER LEVEL
Depending on the value of IOPT, the following subroutines are also required: ,
```

IOPT = 1, Add: ADS204, ADS213, ADS214, ADS509

```
IOPT \(=2\), Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509
IOPT \(=3\), Add: \(\operatorname{ADS} 213, \operatorname{ADS} 214, \operatorname{ADS} 235, \operatorname{ADS} 404, \operatorname{ADS} 503, \operatorname{ADS} 509\)
IOPT \(=4\), Add: ADS201, ADS205, ADS207, ADS217, ADS218, ADS221, ADS223,
    ADS 507
IOPT \(=5\), Add: \(\operatorname{ADS} 201, \operatorname{ADS} 202, \operatorname{ADS} 203, \operatorname{ADS} 207, \operatorname{ADS} 209, \operatorname{ADS} 217, \operatorname{ADS} 218\),
                        ADS221, ADS223, ADS235, ADS507

ONE-DIMENSIONAL SEARCH LEVEL
Depending on the value of IONED, the following subroutines are also required:

IONED \(=1-4\), Add: ADS116, ADS117, ADS118, ADS121, ADS126, ADS 127
IONED \(=5-8\), Add: ADS101, ADS104, ADS106, ADS108, ADS109, ADS 110, ADS111, ADS115, ADS119, ADS123, ADS 124, ADS125, ADS502

\section*{APPENDIX D}

ADS SYSTEM SUBROUTINES

The subroutines in the ADS system are listed here with a very brief description of each. Most subroutines are internally documented, and the user is referred to the program listing for more details.

Generally, ADS001-ADS099 are control level routines. ADS101ADS199 are one-dimensional search level routines, ADS201-ADS 299 are optimization level routines and ADS30l-ADS399 are strategy level routines. ADS40l-ADS499 are print routines and ADS501-ADS599 are utility routines.

ROUTINE
PURPOSE
\begin{tabular}{|c|c|}
\hline ADS & - Main control routine for optimization. \\
\hline ADS001 & - Control one-dimensional search level. \\
\hline ADS002 & - Control optimizer level. \\
\hline ADS003 & - Control strategy level. \\
\hline ADS004 & - Define work array storage allocations. \\
\hline ADS005 & - Initialize scalar parameters to their default values. \\
\hline ADS006 & - Initialize scale factors. \\
\hline ADS007 & - Calculate scale factors, scale, unscale. \\
\hline ADS008 & - Calculate gradients of pseudo-objective for ISTRATal-5. \\
\hline ADS009 & - Re-order IC and A arrays. \\
\hline ADS010 & - Calculates convergence criteria parameters. \\
\hline ADS101 & - Coefficients of linear polynomial. \\
\hline ADS 102 & - Coefficients of quadratic polynomial. \\
\hline ADS103 & - Coefficients of cubic polynomial. \\
\hline ADS 104 & - Zeroes of polynomial to third-order. \\
\hline ADS 105 & - Minimums of polynomial to third-order. \\
\hline ADS 106 & - Evaluate n-th order polynomial. \\
\hline ADS108 & - Find minimum of a function by polynomial interpolation. \\
\hline ADS 109 & - Find zeroes of a function by polynomial interpolation. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline ADS209 & - Calculate \(B=A-T\) Transpose times \(A\). \\
\hline ADS211 & - Update convergence parameters IDEL and IDAB. \\
\hline ADS213 & - Calculate initial ALPHA for one-dimensional search based on objective function value. \\
\hline ADS214 & - Calculate initial ALPHA for one-dimensional search based on X -values. \\
\hline ADS216 & - Finite difference gradients of objective and constraints. \\
\hline ADS217 & - Solve direction-finding task for Methods of Feasible Directions. \\
\hline ADS218 & - Solve special LP sub-problem from ADS217. \\
\hline ADS221 & - Push-off factors for Methods of Feasible Directions. \\
\hline ADS223 & - Identify active side constraints. \\
\hline ADS231 & - Modified Method of Feasible Directions. \\
\hline ADS 235 & - Variable Metric Methods, IOPT=2,3. \\
\hline ADS236 & - Search direction for Variable Metric Methods. \\
\hline ADS301 & - Exterior Penalty Function Method, IStrat=1. \\
\hline ADS 302 & - Calculates penalty for penalty function methods, ISTRAT=1-5. \\
\hline ADS 303 & - Linear Extended Penalty function Method, ISTRAT=2. \\
\hline ADS304 & - Quadratic Extended Penalty Function Method, ISTRat=3. \\
\hline ADS305 & - Cubic Extended Penalty Function Method, istrat \(=4\). \\
\hline ADS306 & - Augmented Lagrange Multiplier Method, ISTRAT=5. \\
\hline ADS307 & - Update Lagrange Multipliers, ISTRAT=5. \\
\hline ADS308 & - Calculate penalty parameters, ISTRAT=5. \\
\hline ADS 310 & - Sequential Quadratic Programming, ISTRAT=8. \\
\hline ADS 320 & - Sequential linear Programming, istratab. \\
\hline ADS 321 & - Control solution of LP sub-problem, ISTRAT=6. \\
\hline ADS323 & - Update move limits, ISTRAT=6,7. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ADS 330 & - Method of Centers, ISTRAT=7. \\
\hline ADS331 & - Control solution of LP sub-problem, ISTRAT=7. \\
\hline ADS333 & - Calculate maximum constraint value. \\
\hline ADS371 & - Control solution of QP sub-problem, ISTRAT=8. \\
\hline ADS375 & - Temporary objective, ISTRAT=8. \\
\hline ADS376 & - Gradient of pseudo-objective for one-dimensional search, ISTRAT \(=8\). \\
\hline ADS377 & - Change in objective gradients, ISTRAT=8. \\
\hline ADS378 & - Update Hessian matrix, ISTRAT=8. \\
\hline ADS401 & - Print arrays. \\
\hline ADS402 & - Print array title and array. Calls ADS40l. \\
\hline ADS403 & - Print scalar control parameters. \\
\hline ADS 404 & - Print Hessian matrix. \\
\hline ADS420 & - Print final optimization results. \\
\hline ADS501 & - Evaluate scalar product of two vectors. \\
\hline ADS502 & - Find maximum component of vector. \\
\hline ADS503 & - Equate two vectors. \\
\hline ADS504 & - Matrix-vector product. \\
\hline ADS506 & - Inftialize symmetric matrix to the identity matrix. \\
\hline ADS507 & - Normalize vector by dividing by maximum component. \\
\hline ADS 508 & - Calculate gradient of pseudo-objective for ISTRAT=1-5. Called by ADS008. \\
\hline ADS 509 & - Identify active side constraints. \\
\hline ADS510 & - Scale, unscale the X-vector. \\
\hline
\end{tabular}
\(\because\)
```


[^0]: Figure 3: Program Flow Logic; Over-ride Default Parameters and Provide Gradients

