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1. Introduction

It is highly desirable to construct a reliable, shock capturing

finite difference method to solve the Euler equations for iuviscid,

supersonic flow past fighter and missile type of configurations. The

numerical method must have a firm theoretical foundation and must

be robust and efficient. It should be able to treat subsonic poczets

in a. predominantly supersonic flow. The method must also be easily

applicable to the complex topologies of the aerodynamic configuration

under consideration. In the rest of this report, we briefly describe

our ongoing approach to this task, We first present in Section

2, a background sketch on a scheme developed by Oster and his co-

workers. This scheme and analogous extensions to steady supersonic

flows is the basic numerical method. Some results of the first year's

effort are presented in Section 3. Results obtained during the
second year's effort are presented in Section 4. Results obtained

during the third year's effort are presented in Section 5. Results
obtained during this year's effort are presented in Section 6. A list of
references is complied in Section 7. A list of papers written during this
period is attached.

2. The Osher Scheme: A background

Engquist and Osher [1,2,3] developed circa 1980 a monotone, upwind

scheme for scalar conservation laws and applied it to the small

disturbance equation of transonic flow. This scheme is now incorporated

in produezion computer programs at both NASA's Ames Research Center

and Langley Research Center and has been found to be much more robust

than the conventional Mu_rman-Cole algorithm. The Engquist-Osher

algorithm was also more reliable in the expansion shocks were excluded
s.:

and stead flows were computed more quickly.y	 pu	 q k]y. Oster then developed

h	 a generalization of the scalar a.'Agorithm for hyperbolic systems of

conservation laws [41 which was further studied by Osher and Solomon

L7)
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The Osher scheme for systems is an upwind shock "capturing"

algorithm applied to the unsteady Eisler equations. It resembles

several others, such as Godunov's [6, 11 ], Roe's [8] and Steger and
Warmings's [9]. It can be applied to essentially all hyperbolic

systems of conservation laws arising in physics, but becomes

relatively s-hple for Euler's equations in general geometries using

body fitted coordinates. The latter extension resulted from a

collaboration between Osher and Chakravarthy [10,11]. The Osher

scheme is based on a Riemann solver, as in Godunov's but compression

waves are used to approximate shocks. This leads to a smoother and

simpler algorithm. The numerical flux functions are written in

closed form and include various switches which make them upwind.

Osher's algorithm reaches steady shock solutions exactly (for constant

states on either side of the shock) on the grid with a one or two

point monotone transition (the two point transition property carries

over for problems with nonzero gradients on either side of the shock).

The Osher algorithm for the unsteady Euler equation is currently

first order accurate and explicit in time. An extension to second

order accuracy and implicit temporal differencing is possible. While

the Osher methodology has so far been applied extensively to the

unsteady Euler equations, the scheme was a,..tually developed for

general systems of conservation laws. Thus an algorithm may also be

developed for steady supersonic flows where the marching direction

would be a spatial coordinate. These extensions are now incorporated

into the proposed task outline.

3. Results of the First Year's Effort
So far we have extended the basic algorithm to be second order

accurate. This involves using and modifying flux limiting techniques

first developed by Van Leer [12], cf. also Harten [13]. The technique

fits very well into our basic algorithm because of its inherent use

of a nonlinear field by field decomposition.
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The resulting algorithm is now at least second order accurate and

variation diminishing, hence no overshoot is possible. It still possesses

steady, di3crete shock profiles having a one or two point transition.

Moreover, the entropy condition, which ensures that only physically correct

limit solutions occur, is still valid. The full scheme involves, at most,

a five point discretization.

Explicit calculations were implemented through Richtmyer's version of

the Lax-Wendroff time discretization. The bouAidary treatment involves

using the first order scheme one point from the boundary, and using a

natural boundary condition Riemann problem solver at the physical and far

field boundaries.

4. Some Tesults Obtained During the Second Year's Effort

During this period, the details of the first order Osher algorithm

were worl.-=%! out for hyperbolic space marching for Euler's equations

in body-fitted coordinates. Further work was done to make it second

order accurate and "variation diminishing." Numerical comparisons with

Roe's algorithm were performed for this problem.

Implicit time marching algorithms were devised for the first and

second order unsteady algorithms. Using the upwind nature of the space

differences, it was found that extremely fast convergence to steady state

was possible. This was done using techniques borrowed from elliptic

equations to invert the implicit scheme for very large time steps. No

approximate factorization was used.

Algorithms for the unsteady problem based on triangulation of the

space region were devised. The control volume approximations use the

basic first order Osher algorithm together with multidimensional,

coordinate free, flux limiters. A very flexible and powerful algorithm

is being developed. Implicit calculations, using the algorithm withour

approximate factorization, can lead to rapid convergence to steady state

in very general geometries.

Finally, schemes based on Riemann solvers are known to have an

"entropy glitch," i.e. an O(Ax) expansion shock at sonic expansions.

For the Osher scheme, we have removed this by adding a simple multiplier

to our usual viscosity in the appropriate field. Besides cosmetics,

this also helps the robustness of implicit calculations.



5. Some Results Obtained L_ l ring the Third Year's Effort

During this period we devised MUSCL type high resolution algorithms

[171 	These are similar ( 5 point,
to those we devised earlier [18],

TVD, entropy condition satisfying)

but are somewhat more flexible, and

simpler to implement. The original MUSCL idea is due to van Leer [15].

We also constructed high resolution supersonic space marching

algorithms for Euler's equations.

We began to extend our techniques to laminar compressible Navier-

Stokes flow, avoiding spurious boundary layrers using results of [16],

1191.
The efficient implementation of these algorithms is proceeding

quite smoothly.

6. Some Results Obtained During the Present D--riod

During this period we made our high resolution algorithms even

more accuratF. In [20], we gave a systematic procedure for constructing

semi-discrete approximations to scalar conservation laws. Except for

isolated critical points, these schemes will have 2m - 1 order accuracy,

2m order dissipation, and a bandwidth using 2m + 1 points, for m any

integer between two and eight. They are in conservation form and TVD.

In [21] and [22] we included the simple 5 point, thirde order accurate,

TVD method into our Euler and Navier-Stokes codes, and much improvement

was found. Shocks were very crisply resolved, and phenomena such as

boundary larger separation were computed accurately.

There are improvements in time discretization to be obtained. It

would also be good to remove the degeneracy to first order accurac, which

is a problem in the efficient use of the higher than third order methods.

Worm is proceeding in this direction. The goal of a very efficient

compressible Navier-Stokes code is within reach.
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