https://ntrs.nasa.gov/search.jsp?R=19850002686 2020-03-20T21:15:50+00:00Z

NASA CR-167956

R81AEG597

National Aeronautics and Space Administration

ENERGY EFFICIENT ENGINE

LOW PRESSURE TURBINE TEST HARDWARE **DETAILED DESIGN REPORT**

By D.G. Cherry C.H. Gav D.T. Lenahan

トレント

11 2

i A a

يد بد بر

A 1 1

-

Ita z n E hGY

JULBINC (Gener

> RETOR U 3 5

N D I T A A 110

- C 1

(044701-475 M. 496) etm Philosophia ~

:4

Level at オコロカマ

2

GENERAL ELECTRIC COMPANY

AIRCRAFT ENGMIE BUSINESS GROUP ADVANCED TECHNOLOGY PROGRAMS DEPT. CINCINKATI JHIO 45215

Prepared for

LIBRARY COPY

169 - 883

LANGLEY RESEARCH CENTER LIBR RY NASA HAMPTON, VIRGINIA

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER 21000 BROOKPARK ROAD CLEVELAND, OHIO e 135

NASA - LEWIS RESEARCH CENTER Contract NAS3-20643

1 Report No		2 Government Accession No	3 Plecipient's Catalog No
NASA CR-1	67956	L	
A Trile and S	Subtitle		5 Report Date
Energy F	Efficient Engine		August 1982
Low Pres	ssure Turbine Test Hardw	ATC	6 Performing Organization Code
Detailed	d Design Report		
			8 Performing Organization Report No
D.G. Che	ETTY		RALAEG597
C.E. Gar	▼ /		
D.T. Let	nahan		10 Work Unit No
9 Pertorming	Organization Name and Address		
General	Electric Company		11 Constract or Grant No
Aircraft	t Engine Business Group		NA 53-2064 3
Cincinn	ati, Ohio .5215		13. Turn of Report and Period Covered
2 Sconeoring	s Agency Nerve and Address		Topical Report
Nat iona	1 Aeronautics and Space	Administration	14 Sponsoring Agency Code
Washing	ton, D.C. 20546		
3 3upplemen			
HASA PT	oject Manager: C.C. C	iepluch	Project Hanager: R.W. Bucy
HASA Pro	oject Engineer: R.P. D	engler	
6 Abstract			
Th	e low pressure curbine	for the Emergy Efficient Eng	ine is a five-stage configuration with
	<pre>a serod vn amic loading in</pre>	ncorporating advanced featur	es of decambered airfoils and extended
moderat	verlaps at platforms an	a shaalaa . Maabaalaal iseaa	as an of 18 000 hours on flownship compo-
blade of		g surouas. Perchanicai inceg	filly of 19,000 mouth of ricebern combo
moderat blade o nents a	nd 36,000 hours on all	other components is achieved	along with no aeromechanical instabili
moderat blade o nents a ties wi	nd 36,000 hours on all o thin the steady-state of	other components is achieved perating range. Selection o	a long with no aeromechanical instability of stage 4 blade
moderat blade o nents a ties wi togethe	nd 36,000 hours on all o thin the steady-state o r with an increased Sta	other components is achieved perating range. Selection o ge 4 vane-to-blade gap, assi	I along with no aeromechanical instabilities a large number (156) of Stage 4 blade sts in achieving FAR 36 acoustic goals.
moderat blade o nents a ties wi togethe Active	nd 36,000 hours on all (thin the steady-state of r with an increased Stat clearance control (ACC)	other components is achieved perating range. Selection o ge 6 vane-to-blade gap, assi of gaps at blade tips and i	File of the second s of a large number (156) of Stage 4 blade sets in achieving FAR 36 acoustic goals. Interstage seals is achieved by fan air
moderat blade o nents d ties wi togethe Active cocling	nd 36,000 hours on all (thin the sceady-state of r with an increased Sta clearance control (ACC) ; judiciously applied at	other components is achieved perating range. Selection o ge 6 vane-to-blade gap, assi of gaps at blade tips and i reaponaive locations on the	File of the second of the seco
moderat blade or nents a ties wi togethe Active cooling improve	nd 36,000 hours on all (thin the sceady-state of r with an increased Sta clearance control (ACC) ; judiciously applied at ment in preventing dete	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (filly of 16,000 hours on Hospith Coupo 5 along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air clasing. This ACC system is a major (0,015 in.) clearances required to meet
moderat blade or nents a ties wi togethe Active cooling improve the int	nd 36,000 hours on all (thin the sceady-state of r with an increased Sta clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9	File of 16,000 hours on rispant coups along with no aeromechanical instabili of a large number (156) of Stage 4 blads interstage seals is achieved by fan air c casing. This ACC system is a major (0,015 in.) clearances required to meet 01,12 and the flight probulsion system
moderat blade or nents at ties at togethe Active cocling improve the int efficie	nd 36,000 hours on all (thin the sceady-state of r with an increased Stan clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.71.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9	File of 16,000 hours on risepath coups a long with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0,015 in.) clearances required to meet 01,12 and the flight probulsion system
moderat blade of nents wi ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all (thin the steady-state of r with an increased Stan clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.72.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9	Filty of 16,000 hours on risepath coups E along with no aeromechanical instabili of a large number (156) of Stage 4 blade sets in achieving FAR 36 acoustic goals. interstage seals is achieved by fan air e casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system
moderat blade of nents wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-apool ency goal of 91.72.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9	Filty of 15,000 hours on hispath couple 5 along with no aeromechanical instabili 5 a large number (156) of Stage 4 blade sets in achieving FAR 36 acoustic goals. interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 91.12 and the flight probulsion system
moderat blade o nents & ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91,72.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9	Filty of 16,000 hours on Hospith Composition E along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system 1.12 and the flight probulsion system
moderat blade or nents & ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool movy goal of 91,72.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9	Filty of 16,000 hours on Hospith Coupo a long with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The casing of the flight probability of the flight probability of the flight probability of the flight of the f
moderat blade or nents at ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-apool ency goal of 91,72.	OF FOUR of Free of the control of the components is achieved perating range. Selection of ge 4 vane-to-blade gap, assisted tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR OF FOUR C	Filty of 16,000 hours on riospain composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air casing. This ACC system is a major (0.015 in.) clearances required to meet bl.12 and the flight probulsion system Try
moderat blade or nents wi ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool mov goal of 91.71.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR C	Filty of 16,000 hours on riospain composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blads interstage seals is achieved by fan air e casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system
moderat blade of nents wi ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool mov goal of 91.72.	other components is achieved perating range. Selection o ge 6 vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (Filty of 16,000 hours on riospain component is along with no aeromechanical instabili of a large number (156) of Stage 4 blads sats in achieving FAR 36 acoustic goals. interstage seals is achieved by fan air classing. This ACC system is a major (0.015 in.) clearances required to meet 01,12 and the flight probulsion system 11,13 and the flight probalsion system
moderat blade of nents wi ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stan clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.72.	Offer components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (Filty of 16,000 hours on Hospith Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blads interstage seals is achieved by fan air r casing. This ACC system is a major (0.015 in.) clearances required to meet 01,12 and the flight probulsion system The State of the system The State of the system is a second system 15,15 15 15 15 15 15 15 15 15 15
moderat blade of nents wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stan clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.72.	Other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF POUR C	Filty of 16,000 hours on Hospith Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air closing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system TY
moderat blade of nents wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stan clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.72.	other components is achieved perating range. Selection o of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR C	Filty of 16,000 hours on Hospith Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air closing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The flight probability of the system The system is a system of the system The system of the system of the system The system of the system of the system of the system The system of the system of the system of the system The system of the system of the system of the system The system of the system of the system of the system of the system The system of the system
moderat blade of nents wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.71.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (Filty of 16,000 hours on Hospith Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system 1.13
moderat blade of nents wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool ency goal of 91.71.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR C	Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The flight probability of the system The system is a system of the system The system of the system of the system of the system The system of the system of the system of the system of the system The system of the syst
noderat blade of nents at ties wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool movy goal of 91,72.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The flight probability of the system The system is a system of the system The system of the system of the system of the system The system of the system of the system of the system of the system The system of the system o
moderat blade or nents wi togethe Active cooling improve the int efficie	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool mov goal of 91,72.	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage scale is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The flight probability of the system The system is a system of the system The system of the system of the system of the system The system of the system of the system of the system The system of the system of the system of the system of the system The system of the system
moderat blade or nents wi togethe Active cooling improve the int efficie 17 Key Work	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool mov goal of 91,72. de (Suggested by Author(s)) Efficient Engine	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The casing of the flight probulsion system
moderat blade or nents wi togethe Active cooling improve the int efficie 17 Key Work Energy Low Pre	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool mov goal of 91,72. ds (Suggested by Author(s)) Efficient Engine essure Turbine	other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR C	Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air c casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The case of the flight probulsion system
<pre>moderat blade or nents wi togethe Active cooling improve the int efficie 17 Key Work Energy Low Pre Five St</pre>	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool may goal of 91,72.	OF FOUR OF CONTRACT AND A CONTRACT A	Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air r casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system 1.13 TYP
moderat blade or nents at ties wi togethe Active cooling improve the int efficie 17 Key Work Energy Low Pre Five St Active	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool may goal of 91,72. ds (Suggested by Author(s)) Efficient Engine essure Turbine tage Turbine Clearance Control	Offer components is achieved perating range. Selection of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR C	Filty of 16,000 hours on hiospeth Composition is along with no aeromechanical instabili of a large number (156) of Stage 4 blade interstage seals is achieved by fan air r casing. This ACC system is a major (0.015 in.) clearances required to meet 01.12 and the flight probulsion system The flight probability of the system The system is a system of the system The system of the system of the system of the system The system of the system of the system of the system The system of the system of the system of the system The system of the system of the system of the system of the system The system of the system of th
moderat blade or nents at ties wi togethe Active cooling improve the int efficie 17 Key Wor Energy Low Pre Five St Active	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool may goal of 91.72. de (Suggested by Author(s)) Efficient Engine ressure Turbine tage Turbine Clearance Control	Other components is achieved perating range. Selection o ge & vane-to-blade gap, assi of gaps at blade tips and i responsive locations on the rioration of the 0.0381 cm (turbine efficiency goal of 9 OF FOUR (<pre>introduct of the providence of the property of the order of the providence of t</pre>
moderat blade or nents at ties wi togethe Active cooling improve the int efficie 17 Key Wor Energy Low Pre Five St Active	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool may goal of 91.71. de (Suggested by Author(s)) Efficient Engine resoure Turbine tage Turbine Clearance Control	20 Security Cleant (of the page)	21 No of Page: 22 Price
moderat blade or nents at ties wi togethe Active cooling improve the int efficie 17 Key Word Energy Low Pre Five St Active	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool may goal of 91.72.	20 Security Cleant (of this page) Unclass if ed	21 No of Pape: 22 Price' 21 No of Pape: 22 Price' 141
moderat blade or nents at ties wi togethe Active cooling improve the int efficie 77 Key Word Energy Low Pre Five St Active 19 Security Unclass	nd 36,000 hours on all of thin the steady-state of r with an increased Stat clearance control (ACC) ; judiciously applied at ment in preventing dete egrated-core/low-spool may goal of 91.72.	20 Security Classified	21 No of Pape: 22 Price 21 No of Pape: 22 Price 21 No of Pape: 22 Price 21 No of Pape: 22 Price

う

NASA-C-168 (Rev 10-75)

ORIGINAL PAGE IS OF POOR QUALITY)

TABLE OF CONTENTS

Section		Page
1.0	I! TRODUCTION AND SUMMARY	1
2.0	AERODYNAMIC DESIGN	4
	2.1 Design Requirements	4
	2.2 Number of Stages	4
	2.3 Initial Flowpath Selection (Block 1)	4
	2.4 Block I Air lurbine Design and lest 2.5 Final Flownath Selection (Block II)	10
	2.6 Final Vector Diagrams	13
	2.7 Airfoil Design Analysis	13
	2.8 Block II Air Turbine Test	28
3.0	HEAT TRANSFER DESIGN	32
	3.1 Objective	32
	3.2 Design Conditions	32
	3.3 Cooling Air Supply System	35
	3.4 Design Mission	39
	3.5 Cooling Flow Definition	42
	3.7 Casing Cooling System	-1 <i>3</i> 50
	3.8 Stage 1 Nozzle	58
	3.9 Active Clearance Control	64
	3.10 Start Analysis	74
4.0	MECHANICAL DESIGN	76
	4.1 Overall Design Approach	76
	4.1.1 Description	76
	4.1.2 Lesign Loads and Limits	78
	4.1.3 Design Goals	78
	4.2 Rotor	82
	4.2.1 Blade Design	82
	4.2.2 Dovetail Attachments	102
	4.2.5 DISKS 4.2.4 Seale	102
	4.3 LPT Stator	108
	4.3.1. Stage 1 Nozzla Subaggambly	108
	4.3.2 Stages 2 Through 5 Nozzles	108
	4.3.3 LPT Casing	128
	4.3.4 HPT/LPT Flange Bolt Capability	128
	4.4 Active Clearance Control (ACC)	128
	4.4.1 Approach	128
	4.4.2 Casing Stress/Life	134
	4.4.3 Cooling Manifold	134
	4.4.4 Clearance Predictions	1 37
	4.5 Weight Status	141

.

iii

PRECEDING LAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS

1

Figures		Page
1.	LPT Flowpath, ICLS Configuration.	2
2.	Sealed Test Vehicle Flowpath, Block I Two-Stage Build.	7
3.	Block I, Stage 1 Vane Kinetic Energy Efficiency.	8
4.	Block I, Stage 1 Total-to-Total Efficiency.	9
5.	Block II, Stage : Stator and Transition Duct Compared to Current Block I Design.	11
6.	LP Turbine Flowpath Final for Block II.	12
7.	Axisymmetric Flow Analysis of Stage l Vane (Block II Redesign) Including Outer Wall Separation Sensitivities.	14
8.	E ³ ICLS LP Turbine Axisymmetric Calculation Model.	15
9.	Block II Stage 1 Vane Shapes and Stream Surface Velocity Distribution	18
10.	Block II Stage 1 Blade Shapes and Stream Surface Velocity Distributions.	19
11.	Block II Stage 2 Vane Shapes and Stream Surface Velocity Distributions.	20
12.	Block II Stage 2 Blade Shapes and Stream Surface Velocity Distributions.	21
13.	Block II Stage 3 Vane Shapes and Stream Surface Velocity Distributions.	22
14.	Block II Stage 3 Blade Snapes and Stream Surface Velocity Distributions.	23
15.	Block II Stage 4 Vane Shapes and Stream Surface Velocity Distributions.	24
16.	Block II Stage 4 Blade Shapes and Stream Surface Velocity Distributions.	25
17.	Block II Stage 5 Vane Shapes and Stream Surface Velocity Distributions.	

25

4

iν

LIST OF ILLUSTRATIONS (Continued)

())

Figures

3

	-	
18.	Block II Stage 5 Blade Shapes and Stream Surface Velocity Distributions.	Page
19.	Efficiency Vs. Loading for Two-Stage LPT.	27
20.	Scaled Test Vehicle, Five-Stage Configuration.	29
21.	Efficiency Vs. Loading for Five-Stage LPT.	JU 1
22.	E ³ LPT Cooling Air Requirements for the Base Engine.	37
23.	LPT Base Engine Stator Relative Gas Temperature Profile	24
24.	LPT Base Engine Blade Relative Gas Temperature Profile	סנ
25.	LPT Cas Temperature Profiles, 50°C (122°F) Day, Steady- State Idle Without Bleed.	38
26.	Takeoff-Climb-Cruise Flight Mission.	, ,,,
27.	E ³ LPT Rotor Speed Over a Typical Flight Cycle.	40
28.	E ³ LPT Cooling Air Requirement for the Growth Engine.	43
2 9 .	E ³ LPT Base Engine Maximum Pressures.	44
30.	E ³ LPT Cooling Supply and Nozzle Cooling System.	45
31.	E ³ LPT Cooling Supply System (ICLS).	47
32.	E ³ LPT/HPT Interturbine Seal Blockage.	48
33.	E ³ LPT Roto: Structure Heat Transfer Model.	51
34.	E ³ LPT Rotor Structure, Growth Engine.	52
35.	E ³ LPT Casing Cooling System.	53
36.	E ³ LPT Cooling/ACC Impingement Manifold.	55
37.	E ³ LPT Casing Detailed Thermal Transient Model.	56
38.	LPT Casing Transient Temperature Distribution.	57
39.	E ³ LPT Casing Transient Temperature Distribution.	59

v

•

LIST OF ILLUSTRATIONS (Continued)

(+)

. .

۰.

.

7

Figures		Page
40.	E ³ LPT Stage 1 Nozzle Support Structure Detailed Thermal Model.	60
41.	LPT Stage 1 Vane/Transition-Duct/Support THT Temperatures at 3450 Seconds (Decel).	62
42.	Stage 1 Vane 90% Span Steady-State Maximum Takeoff Temper- ature Distribution.	63
43.	Stage 1 Nozzle Hub Structure Detailed Thermal Transient Model.	65
44.	LPT Stage 1 Vane Inner Seal Temperatures at 30 Seconds in to HDTO.	66
45.	E ³ HPT/LPT Active Clearance Control Fan Duct Scoop.	69
46.	E ³ HPT/LPT Active Clearance Control Design Features.	71
47.	E ³ LPT Active Clearance Control casing Cooling Objective.	72
48.	E ³ LPT Active Clearance Control Payoff Potential	73
49.	E ³ LP Five-Stage Turbine Features.	77
50.	LPT Materials for FPS Major Components.	78
51.	Typical Flight Cycle.	79
52.	LPT Blade Features of Stages 1 Through 5.	83
53.	Stage l Blade Airfoil Configuration.	85
54.	LPT Blade Platform Planform Selection.	86
55.	LPT Stage 1 Blade Stress and Temperature Distribution.	87
56.	LPT Stage 1 Blade Airfoil Life Characteristics.	89
57.	LPT Stage 2 Blade Airfoil Life Characteristics.	90
58.	LPT Stage 3 Blade Airfoil Life Characteristics	91
59.	LPT Stage 4 Blade Airfoil Life Characteristics.	92
60.	LPT Stage 5 Blade Airfoil Life Characteristics.	93
61.	LPT Blade Natural Frequencies - Typical Mode Shapes.	94

vi

LIST OF ILLUSTRATIONS (Continued)

D)

-

()

Figures		Page
62.	Stage 1 Blade (Pinned Tip) Resonant Frequency Analysis.	95
63.	Stage 1 Coupled Blade Disk Campbell Diagram.	98
64.	LPT Tip Shrouds.	99
65.	LPT Blade Tip Shroud Features and Configuration.	100
66.	LPT Stage 1 Blade Tip Shroud Stress/Life and Frequency.	101
67.	LPT Stage 1 Blade Angel Wing Stress/Life and Frequency.	103
68.	Blade Retainers for Stages 1, 2, and 3.	104
69.	Blade Retainers for Stages 4 and 5.	105
70.	LPT Stage 1 Dovetail Stress Distribution.	106
71.	LPT Rotor Spacer Arm Stresses 60 Seconds into Takeoff Acceleration.	109
72.	LPT Stage 1 Disk Stress Distribution at Growth Conditions.	111
73.	LPT Stage 1 Nozzle Assembly.	113
74.	LPT Stage 1 Vane/Support Features.	114
75.	Support for Outer Transition Duct and LPT Stage 1 Nozzle: Effective Stresses at Takeoff.	116
76.	LPT Stage 1 Nozzle Tangential Load Stop.	117
77.	LPT Stage 1 Nozzle Hook Forces, Temperatures, and Stresses at Takeoff.	119
78.	LPT Stage 1 Vane Inner Seal Support Features.	120
79.	LPT Stage 1 Nozzle Inner Seal Supports: Effective Stresses at 1040 Seconds.	122
80.	LPT Stator Vane FPS Configuration.	124
81.	LPT Stages 2 Through 5 Nozzles: Airfoil Stress/Life at Takeoff	125

vii

LIST OF ILLUSTRATIONS (Concluded)

Ð

-)

÷.

ite and all all all

Ξ.

ł

P

Figures		Page
82.	L2T Stage 2 Nozzle FPS Baseline Stresses, Temperatures, and Life at Takeoff.	126
83.	LPT Nozzle and Shroud Tangential Load Stop.	127
84.	Schematic of LPT Sealing Locations and Configurations.	129
85.	Major Features of the LPT Casing.	130
86.	Effective Surface Stresses for LPT Casing Attachments.	131
87.	End-Flange Stress/Life on LPT Casing Under Maximum Stress Condition.	132
88.	LPT Containment Capability.	133
89.	LPT Cooling Manifold (Axial View).	135
90.	LPT Cooling Manifold (Unwrapped View).	136
91.	Schematic of Sources of Excessive Clearance Between the Turbine Rotor and Shroud.	138
92.	LPT Stage 1 Basic Relative Diameters.	139

viii

.

,*****•

.

-

LIST OF TABLES

1 - I

١,

Table		Page
Ι.	Critical PT Operating Point Data.	5
II.	LPT Fina: Block II Vector Diagram Summary.	16
III.	Turbine Blading Solidity and Aspect Ratio Tabulations.	17
IV.	E ³ LFT Heat Transfer Design Parameters.	33
۷.	LPT Materials.	75
VI.	LPT Design Cycle Performance Parameters.	80
VII.	LPT Design FPS Aerodynamic Parameters, Design Point.	80
VIII.	Airfoil Stress Summary - Takeoff Condition.	88
IX.	LPT Mission Analysis Used for Airfoil Rupture/Creep Life Calculations.	88
Χ.	Blade Airfoil LCF LIfe.	96
XI.	LPT Flutter Analysis.	96
XII.	Dovetail Life Summary.	107
XIII.	LPT Rotor Bolt Analysis.	110
XIV.	Selected Bolts for Rotor Flanges.	110
xv.	LPT Rotor Disk Minimum Calculated LCF Life.	112
XVI.	LPT Stage 1 Nozzle Airfoil Operating Conditions and Calcu- lated Design Life.	118
XVII.	LPT Stages 2 Through 5 Tangential Load Stop Stresses.	123
XVIII.	FPS LPT Stage 1 Clearance Change for Maximum Closure.	140
XIX.	Typical LPT Stage 1 Combined Clearance Calculation.	141
XX .	Summary of LPT Clearance Calculations.	142
YXI.	LPT Weight Summary.	142

i x

SYMBOLS AND ABBREVIATIONS

(\$)

)

T

•

ACC	Active Clearance Control
Accel	Acceleration (from Low- to High-Power Engine Operation)
Amb	Ambient
AP.	Aspect Ratio, h/d _o or h/AW
AW	Airfoil Axial Width, cm (in.)
СН	Airfoil Chord
CF6	General Electric Commercial Turbofan Engine
D	Diameter, cm (in.)
d _o	Airfoil Throat Dimension, cm (in.)
DOC	Direct Operating Cost
Decel	Deceleration (trom high- to Low-Power Engine Operation)
DDR	Detailed Design Review
E 3	Energy Efficient Engine
F	Force, N (1bf)
FADEC	Full Authority Digital Electronic Control
FIDLE	Flight Idle
FPS	Flight Propulsion System - The fully developed configuration of the E^3 which would be suitable for installation on an airframe.
GIDLE	Ground Idle
Н	НиЬ
h	Airfoil Height at the Trailin, Edge, cm (in.)
HC F	High Cycle Fatigue
HDTO	Hot-Day Takeoff $\{(50^{\circ} C (122^{\circ} F)\}$
HLFT	Highly Loaded Fan Turbine

х

. .

-

Ī	Moment of Inertia
ICLS	Integrated Core/Low Spool - the Turbofan Configuration of the E^3
Inco	Inconel
κ _t	Stress Concentration Factor
L	Extended Aerodynamic Overhang
L	Airfoil Length, cm (in.)
LCF	Low Cycle Fatigue
LE	Leading Edge
LP	Low Pressure
LPT	Low Pressure Turbine
м	Mach Number
MXCR	Maximum Cruise Operating Point
N	Turbine Speed, rpm
n	Number of Airfoils per Blade Row
Р	Pressure, Pa (psi)
PT	Total Pressure, Pa (psi)
R	Rotor
R 1	Stage 1 Rotor
R2	Stage 2 Rotor
R3	Stage 3 Rotor
R4	Stage 4 Rotor
R5	Stage 5 Rotor
Rev	Revolution
sfc	Specific Fuel Consumption, kg/N • hr (lbm/ibf • hr)
S	Stator

(+)

(+)

SS	Stainless Steel
S1	Stage 1 Stator
S2	Stage 2 Stator
S 3	Stage 3 Stator
54	Stage 4 Stator
S 5	Stage 5 Stator
SLTO	Sea Level Take-off
t	Thickness, cm (in.)
Т	Total Temperature, Temperature, K, °C (°R, °F)
TE	Trailing Edge
TIG	Tungsten Inert Gas
u or U	Rotor Tangential Velocity at the Mean Radius, m/sec (ft/sec)
v	Absolute Velocity, m/sec (ft/sec)
W	Flow, kg/sec (1bm/sec)
a	Absolute Flow Angle, Degrees from Axial
ß	Relative Flow Angle, Degrees from Axial
Г	Turbine Exhaust Swirl, Degrees
Δ	Differential or Incremental Value (Prefix)
Δh	Energy Extraction, J/g (Btu/lbm)
∆T _{amb}	Temperature above Ambient, 15°C (59°F), on a Standard Day
ζ	Blade Tip Shroud Interlock Angle, Degrees
η	Turbine Efficiency
θ	Blade Tip Shroud Angle Denoting Direction of Shroud First- Flexural Vibration
μ	Coefficient of Friction
σ	Stress
♦	Assembly Pretwist Kotation of Blade Tip Shroud, Degrees

2

į

xii

•

2

(J)

*

 Turbine Loading, 2 	∆h/ s
--	-------

v Flutter Index

Subscripts

0	Turbine Stator Inlet Plane
1	Turbine Stator Exhaust/Rotor Inlet Plane, Also Bloderow Exit Plane in Figures 9-18
2	Turbine Rotor Exhaust Plane
25,2.5	Core Compressor Inlet Plane Cycle Designation
42,4.2	HPT Exhaust Plane, Cycle Designation
49,4.9	LPT Inlet Plane, Cycle Designation
50,5.0	LPT Exit Plane Cycle Designation
Alt	Alternating
amb	Ambient
c or C	Coolant Air
Eff	Effective (Combined effective stress per the Hinkey Von Mises theory)
L	Leakage
lax	Maximum Local Value
Mean	Mean Value of Stress Range
Nom	Nominal (i.e. without K _t)
R	Relative
Rad	Radial
p or P	Pitchline (mean radius), or peak
S	Static
Т	Tot al
TT	Denotes Condition Based on Total-To-Total Properties (P_{T_0}/P_{T_2})
Z	Axial
Z	Denotes Zweifel
θ	Tangential (as in tangential stress)

3

a i

بر مراجع

1.0 INTRODUCTION AND SUMMARY

This report describes the detailed aerodynamic, heat transfer, and mechanical design of the low pressure turbine (LPT) for the Energy Efficient Engine (E³). The LPT configuration in Figure 1 was selected after investigation of alternate designs, tradeoff studies, payoff evaluations, and extensive preliminary design analyses aimed at achieving high aerodynamic efficiency while maintaining maximum mechanical integrity.

The E^3 LPT is a five-stage, moderately loaded, low-through-flow design with a high outer wall slope of 25°. The LPT is close-coupled to the high pressure turbine (HPT) via a 7.62-cm (3-in.) axial length transition duct. The flowpath has been sized to match the fan characteristics and to achieve performance goals for the flight propulsion cycle. Provisions have been made to accommodate a potential growth application. The aerodynamic design point is the maximum-climb power setting at Mach 0.80 and 10.67-km (35,000-feet) altitude.

The design-point gas flow rate through the LPT is 22.7 kg/s-m² (4.6 lbm/ sec-ft²). The Stage 1 rotor has a tip radius of 0.45 m (17.55 in.) and a tip speed of 168.6 m/s (553 ft/sec). The Stage 5 rotor has a tip radius of 0.59 m (23.28 in.) and a tip speed of 223.7 m/s (734 ft/sec).

An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block I and Block II. The transition duct and the first two stages of the turbine were evaluated during the Block I phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of Stages 1 and 2 based on Block I data analysis, was tested as Block II in June through September 1981.

Results from the scaled air-turbine tests, which will be reviewed briefly herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5% at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1% for the ICLS and 91.7% for the flight propulsion system (FPS).

In order to improve roundness control and radial clearances, the casing is a full 360° structure, rather than two 180° halves, with nozzle stators attached in multivane segments. The LPT rotor assembly employs high-aspectratio, tip-shrouded blading in disks connected by bo'ted flanges in lowstress attachment areas. The rotor assembly is supported by a single bearing cone. The Stage 4 rotor-to-stator spacing employs a wide gap (1.4 blade chord lengths) to minimize turbine noise.

Cooling requirements have been minimized so that only the Stage 1 nozzle employs controlled purge air from the fifth-stage compressor bleed for seal blockage and disk rim purge.

 $\textcircled{\bullet}$

2

 (\bullet)

 (\mathbf{r})

3

Active clearance control (ACC) is an integral part of the LPT design. The ACC uses fan bleed air routed from pylon scoops to a distribution manifold for impingement on the casing. The ACC system reduces blade-tip and interstage-seal radial clearances at selected high-performance operating points.

Mechanical integrity is assured by designing airfoils for a service life of 18,000 missions and 18,000 stress orcles. The casing and rotor are sized for 36,000 missions and 72,000 stress sycles, respectively. Airfoil quantities and characteristics have been selected so that no resonances are predicted in the range of engine steady-state operating speed. All material-property design data are based on average-minus-three standard deviations (-3σ) and include section size considerations.

The capability of the LPT configuration to meet design and operating requirements in each technical area is discussed, and the technical details are presented in depth, in the following pages.

2.0 AERODYNAMIC DESIGN

2.1 DESIGN REQUIREMENTS

Historically in prototype engines, turbomachinery component efficiencies fall short of design goals by significant amounts. The consequent cycle rebalance causes components to operate off-design, further reducing efficiency. In an attempt to obviate this trend, the ICLS cycle was devised with appropriate derates on component efficiencies. Depending on the accuracy of the efficiency derates, turbomachinery components des gned to the requirements of the resultant cycle will avoid off-design penalties.

Table I presents LPT cycle data for the ICLS max-climb aerodynamic design point and, for comparison, data for the FPS maximum climb, maximum cruise, and sea level takeoff points. Note the relatively small differences between climb and cruise for the FPS. Note further that the ICLS has been designed to a flow function approximately 4% higher at climb than the FPS. This reflects the derated component efficiencies and estimated instrumentation losses in the ICLS.

Efficiency goals at Mach 0.8/10.67 km (35,000 ft) maximum climb are 0.911 (or 91.12) for the UCS and 0.917 (91.72) for the FPS.

2.2 NUMBER OF STAGES

The selection of a five-stage configuration for the E^3 LPT was based in part on results obtained during the IR&C-funded Highly Loaded Fan Turbine (HLFT) technology development program and also on system studies aimed at minimizing direct operating cost (DOC). These system studies evaluated the impact of turbine loading, weight, and cost on DOC and indicated a relative optimum at a loading level attainable in five stages. Further, significant performance gains at this loading level had been demonstrated in the HLFT program, indicating that the ICLS goal could be met with a five-stage turbine.

2.3 INITIAL FLOWPATH SELECTION (BLOCK I)

Maximum tip diameters for the HPT and LPT were set by mechanical and configuration control requirements at 76.2 cm (30 in.) and 118.1 cm (46.5 in.), respectively. In addition, the LPT flowpath outer-wall slope was limited to 25° through Stage 3, transitioning to cylindrical by the Stage 5 exit.

The initial (Block I) five-stage flowpath was defined through an iterative technique whereby a candidate outer-wall contour was selected (within the limitations on wall slope and exit diameter), and the inner wall contour and stage energy distribution were iterated concurrently to yield acceptable levels of loading (gJAh/2u²) and flow coefficient (V_z/u) for each stage. The

Tab'- I. Critical LPT Operating Point Data.

.

	e Takeoff +27° F	1128.7 2031.6	306.2 0.07315	10.61 75.53	3.967 80.90	1.355	0,921
FPS	Max. Cruis	1034.6 1998.2	322.3 0.07697	11.08 78.86	3.947 80.33	1, 308	0.916
	Max. Climb	1083.2 1949.8	326.5 0.07798	11.26 80.14	3.936 80.27	1.283	0.917
ICLS	Max. Climb	1099.8 1979.7	318.1 0.07597	11.07 78.82	4.098 83.57	1.292	116.0
	Units	× *	J/kg/K Bcu/lbm/°R	rad-sec/K rpm//* R	g'K/sec.Pa lbm/ R/sec. psi	1	1
	Parameter	Inlet Temp., T49	Energy, Δh/T	Speed, N//T	Corrected Flow, W/T/P	Loading, Ah/2u2	Efficiency, n

and the and the

D

(4)

hest candidate flowpaths were selected based on a tage-by-stage efficiency estimate which accounted for the effects of loading, flow coefficient, tip slope, aspect ratio, and clearance.

2.4 BLOCK I AIR TURBINE DESIGN AND TEST

The detailed aerodynamic design of Scages 1 and 2 of the Block I flowpath was executed according to HLFT design philosophy in a 0.67-scale test rig. The configurations tested, along with the approximate test dates, were as follows:

- Stage 1 nozzle annular cascade (March 1979)
- Stage 1 (April 1979)
- Stage 1 with Stage 2 nozzle annular cascade (June 1979)
- Two-stage group (August 1979).

The rig flowpath for the two-stage group is shown in Figure 2. Note that the HPT to LPT transition duct is an integral part of the Stage 1 vane assembly.

Total-to-total efficiency for the Block I two-stage build, as tested in the two-stage group, was below the pretest prediction. The following items were identified as possible contributors to the deficiency.

- 1. An area of secondary flow over the outer 40% of span of the Stage l vane was identified during the Configuration 1 test. This loss core, caused by the combination of a weakened inlet boundary layer (from the diffusing outer wall of the transition duct) and the high vane tip slope, induces deviation from the design-intent efficiency near the stator tip. Figure 3 presents the measured efficiency for Stator 1. Note that the transition duct loss is included in the cascade efficiency definition.
- 2. Similar secondary flow effects were noted during Configuration 3 testing over the outer 20% span of the Stage 2 vane.
- 3. Both rotating tests revealed unexpectedly poor performance in the region of the rotor hubs. Figure 4 presents the Stage 1 efficiency profile. Note that, in addition to the severe dropoff at the hub, performance in the outer half of the annulus is depressed due, in part, to the Stage 1 vane tip losses.

A stage-by-stage performance stackup for the ICLS turbine, using the trend and the level of the stage efficiency versus loading characteristic established by the Block I test series, indicated a status efficiency of 90.4% versus the ICLS goal of 91.1%, a 0.7% deficiency.

Based on extensive posttest data matching and data analysis, the following were identified as crucial items to be addressed during the Block II redesign:

.

يە تەر

T

Figure 2. Scaled Test Vehicle Flowpath, Block I Two-Stage Build.

4

7

*

1.00 0.98 0.96 Stator Efficiency 0.04 Γ 0.92 06.0 Р 0.88 100 80 60 40 20 Annulus Height, percent

,ñe

ORDEMAL SOLATION

(4)

り

Figure 3. Block I, Stage I Vane Kinetic Energy Efficiency.

ORIGINAL PACE IS OF POOR QUALITY

(+)

Γ

Figure 4. Block I, Stage 1 Total-to-Total Efficiency.

9

(+)

- o Stage 1 vane solidity is low, especially at the hub.
- o Stage 1 vane aspect ratio is low, especially near the tip.
- The solidity of rotor blade hubs is low, and there is excessive pressure-side diffusion near the leading edges.
- A severe performance penalty is incurred by the increase in outer wall slope from 22° (HLFT) to the current 25°. This is especially true in the vicinity of low-aspect-ratio-vane tips.
- Inner and outer-wall overlap geometry is degraded relative to HLFT. This refers specifically to the amount (or lack) of axial overlap between the stator bank and the rotor platforms/tip-shroud extensions.

2.5 FINAL FLOWPATH SELECTION (BLOCK II)

In order to address the issue of outer-wall slope and the influence it has on performance, several alternate flowpaths were developed and analyzed by those methods previously described. One ground rule that was enforced in the course of this alternate-flowpath study was that the overall length and diameter remain unchanged. Results of the study indicated that configurations which reduce wall slope via an increase in loading or through-flow velocity show a net loss relative to the base Block I flowpath. Consequently, the Block II (final aero) flowpath has remained essentially unchanged from the Block I status. However, the following modifications were incorporated to address the specific problems identified during Block I testing:

- o A higher aspect ratio, higher solidity version of the Stage 1 vane has been added, along with a modified transition duct, to accommodate the new vane design. Figure 5 shows a comparison of the Block I duct/vane with that of Block II. Note that the c 'idity was increased by raising the airfoil count from 56 ', this also increases the airfoil-throat aspect ratio (he inroat). The chordal aspect ratio was increased by reducing e axial chord at the outer wall.
- An effort to improve flowpath overlaps resulted in the Block II five-stage flowpath shown in Figure 6. A comparison of typical inner-wall overlap geometry for Block II with that of Block I (inset, Figure 6) shows that the rotor platforms have been extended to lap under the stator inner bands. Note also that the flow near the outer wall is effectively shielded from the open honeycomb of the tip shrouds; this was not the case in Block I (see Figure 2). The poor performance of the Block I stages near the walls is partly attributable to the overlap geometry, which is more open relative to past General Electeric AEBG (Aircraft Engine Business Group) air turbine rig flowpaths.

, ác

2

11

*

Figure 6. LP Turbine Flowpath Final for Block II.

ŧ.

• In an effort to increase blade hub solidity locally without a significant weight increase, rotor hub axial widths were retained at the Block I levels while the numbers of blades for each rotor were increased to yield the desired solidity at the hub, and the axial widths from the pitch line to the tip were reduced to get solidities there back to Block I levels.

Figure 7 presents the results, including inner- and outer-wall Mach number distributions, from an axisymmetric analysis of the final transition duct. Note that two additional lines have been added on the cuter wall in the vicinity of the vane leading edge to show stagnation and midchannel streamline Mach numbers as they approach the leading edge. Also included is a plot of a "separation parameter." This is an indicator of the sensitivity of a turbulent boundary layer (on the outer wall in this case) to separation in the presence of an adverse pressure gradient.

2.6 FINAL VECTOR DIAGRAMS

The gas path through-flow or vector diagram analysis was accomplished by using a calculation procedure that solves the full, three-dimensional, radialequilibrium equation for axisymmetric flow accounting for (1) streamline slope and curvature, (2) the effects of radial-component blade force due to airfoil sweep and dihedral, and (3) airfoil blockage and radial gradient of flow properties. Calculations were made with radial gradients of blading losses to simulate end-loss effects. The calculation model for the E^3 LPT showing meridional streamlines and intrablade-rev calculation stations is shown on Figure 8. Table II presents final Block II vector diagram data. These data served as boundary conditions for the airfoil design analysis.

2.7 AIRFOIL DESIGN ANALYSIS

Airfoil aerodynamic design analysis was initiated using vector diagram data from the through-flow analysis, Table II, and preliminary solidities determined during design studies. A tabulation of blading aerodynamic geometry is presented in Table III. The design process was initiated by generating approximate airfoil shapes using a numerical procedure which applies a thickness distribution to a mean camber line as a function of flow angles and appropriate input coefficients. These preliminary airfoil shapes were analyzed by a procedure that calculates the compressible flow along the stream surfaces determined from the through-flow analysis which accounted for the variation in stream tube thickness.

The undesirable features of the resultant surface-velocity distributions were corrected, and modified surface Mach number distributions were input to the analysis procedure which, in turn, made the necessary modifications to airfoil shapes in order to produce the desired velocity distribution. Final airfoil shapes and velocity distributions are shown in Figures 9 through 18 for stream surface sections at 10%, 50%, and 90% from the inner wall. The

-

(c) Block II Flowpath Streamlines

Figure 7. Axisymmetric Flow Analysis of Stage 1 Vane Including Outer Wall Separation Sensitivities.

ORIGINAL PAGE 13 OF POOR QUILITY

Radíus, inches

28

Figure 8. E³ ICLS LP Turbine Axisymmetric Calculation Model.

ORIGINAL PAGE IS OF POOR QUALITY

Ŷ

Ł

7

	2	itage l		ەر 	tage 2		9	: •Be 3		SC,	7 a3.		ŭ	~ •		
Energy Extraction, Ah		31.4			N 0			35.3			30.2			21.2		
Pressure Matio. PT/FT		1.30			1.35			1.40			1. 36			1.26		
Aero Loading, Ah/2u ²		1.71			1.58			1.43			1.13			0.80		
Flow Coefficient, V _s /u		1.25			90 - 1	1		1.04			98.0			۰0.1		
	Ŧ	e .	-	Ŧ	ند. ا	-	Ŧ	<u>-</u>	-	Ŧ	•	-	×	•	+	
React ion	0.256	0. 305	0. 390	0.280	156.0	0.422	0. 312	0. 372	0.440	0.255	0. 385	0.481	0.205	0.130	0.476	
Stator Exit Angle, al (degrees)	53.7	61.0	\$0.0	55.8	7.8	62.9	56.3	د . ۲	63.7	56.2	62.3	59.7	\$5.4	56.0	48.5	
Stator Exit Mach Mumber, My	0.660	0.633	0.530	0.669	0.625	0.533	0.711	0.041	9(C.)	0.686	0.593	0.490	0.575	166.0	0.452	
Rotor Belstive Inlet Angle, B. (degress)	43.0	47.9	13.7	44.5	49.3	0.11	44.7	47.8	1.16	44.3	40.0	10.01	40.5	24.2	- 8 . C	
Rotor Relative Inlet Mach Number, M _{R1}	0.485	0.430	0.368	0.475	0.407	0.330	0.508	146.0	0. 290	0.474	0.344	0.253	U. 365	0. 323	0. 305	
Rotor Relative Exit Angle, 02 (degrees)	55.6	6.18	¢0.0	\$5.8	63.8	62.8	\$5.7	63.8	62.7	\$5.4	60.5	58.2	48.5	30.0	4.84	
Notor Relative Krit Mach Mumber, M _{R1}	0.600	0.601	0.572	0.619	0.623	0.585	0.610	0.646	0. 564	0.619	0.600	0.544	0.464	0. 503	0. ¥2	
Stage Exit Swirl, degrees	41.2	47.6	37.0	40.0	49.1	36.8	1.65	47.7	0.10	36.5	0.16	16.5	20.02	12.5	0.1	
Stage Krit Arial Mach Mumber	0. 335	0.261	0. 303	0. 349	0.255	0.283	007 0	0.261	0.257	0.364	0, 200	0. 291	0.302	0.319	0.365	
		i			1											

Table II. LPT Final Block II Vector Diagram Summary.

16

CF POOR QUALITY

1.023 12.80 0.041 6.36 1.30 K5 0.045 13.87 0.984 5.41 1.48 5 1.079 0.072 20.82 8.62 1.23 H4 0.966 0.054 14.51 4.77 1.46 54 0.065 1.065 ויי, 16 5.74 1.24 КЗ 12.13 0.055 0.884 1.47 3.64 S.S 1.069 0.070 13.93 1.26 5.02 **R**2 0.924 0.058 10.51 1.44 3.27 S 2 11.04 1.094 0.070 1.33 KI 0.606 0.0431.55 5.96 S1 TE Blockage Blade Row AR, h/d_o AW/ t t 7

4.02

1.92

AK, h/AW

, **2**4

- 1

•

.

Turbine Blading Solidity and Aspect Ratio Tabulations. Table III.

N

17

 $\mathbf{ }$

يەتەر

Figure 9. Block II Stage 1 Vane Shapes and Stream Jurface Velocity Distributions.

 \mathbf{E}

.

18

<u>.</u>

OTION ALL CONTRACTOR

, **X**a

<u>ن</u>

.

-

.

5

19

20

(-)

)

20

G

ORIGIMME DISE 13 OF POOR QUALITY

 (\mathbf{f})

•

ية ر

-

ł

21

•)

-

-

ORIGINAL PAGE IS OF POOR QUALITY

Figure 13. Block II Stage 3 Vane Shapes and Stream Surface Velocity Distributions.

22

)

 (\mathbf{r})

OF POOR QUALITY

-

•

a a ser a

STREET.

F.

•

Ē 🛛

-

4

ية ر

Figure 14. Block II Stage 3 Blade Shapes and Stream Surface Velocity Distributions.

3

ORIGINAL PAGE IS OF POOR QUALITY **(,**)

24

G

 (\mathbf{f})

4

.*

سهر :

25

*

.

-

(

Ó

Figure 17. Block II Stage 5 Vane Shapes and Stream Surface Velocity Distributions.

+

ŧ.

26

)

 \sim

 $\mathbf{\widehat{S}}$

27

)

²Λ/Λ

ORIGINAL PAUE 13 OF POOR QUALITY

data are represented by plots of local surface velocity normalized by downstream exit velocity. The peak Mach number (Mp) is indicated on each velocity distribution. Airfoil coordinates for each of the sections in Figure 9 through 18 are presented in the Appendix.

2.8 BLOCK II AIR TURBINE TEST

The performance status of the Block II aerodynamic design we assessed through scaled rig testing of the following configurations (given with the approximate test dates):

- Two-stage group (June 1981)
- Five-stage group (September 198i)

Results of the Block II two-stage test are compared to the Block I twostage test results in Figure 19; group efficiency versus group loading is presented at design pressure ratio. Note that the redesign features incorporated into Block II have improved the efficiency at design loading by 0.75%. Note further that the Block II airfoils have improved tolerance to negative incidence, as evidenced by the increasing efficiency improvement at the lower loadings. Design-point loading for the Block II two-stage group is 89.1%.

The flowpath for the Block II five-stage rig is shown in Figure 20. Results of the five-stage test are presented in Figure 21 as group efficiency versus group loading at design pressure ratio. Note that the turbine designpoint efficiency is 92.0%. The following tabulation compares this result with a pretest estimate (based on extrapolation from Block I test results) made for the 1980 Detail Design Review (DDR):

	1980 Estimate	1981 Rig Test
ηTT	91.5%	92.0%
∆n edge blockage		+0.1
∆n purge air	+0.1	+0 1
An Reynolds number	-0.7	-0.7
mrr at Mach 0.8/10.67 km (35,000 ft), max climb	90.9%	91 5%

These are relative to program goals [at the Mach 0.8/10.67 km (35,000 ft), max-climb condition] of 91.1% for the ICLS and 91.7% for the FPS.

The correction for edge blockage accounts for the fact that all Block II rotor blades were received from the vendor with trailing edge diameters which were, on the average, 25% oversized relative to design intent.

The Δn for purge air reflects the availability of extra power from the inner-cavity purge as it enters the LPT flowpath in the front stages and expands through downstream stages. This was not simulated in the rig.

The Δn for Reynolds number is based on a Reynolds number excursion done on five-stage rig and verifies the 0.7% pretest prediction. This is the penalty for altitude operation.

The performance status of the E^3 LPT at the Mach 0.8/10.67 km (35,000 ft), max-climb design point is 91.4%, exceeding the ICLS goal by 0.3%.

, #e

Figure 19. Efficiency Vs. Loading for Two-Stage LPT.

٠.

7)

29

Þ

ORIGINAL PAGE IS OF POOR QUALITY

Figure 20. Scaled Test Vehicle, Five-Stage Configuration.

Ŷ

Ľ

.

 (\mathbf{F})

31

*

3.0 HEAT TRANSFER DESIGN

3.1 OBJECTIVE

To meet the stringent requirements for high performance in the E³ design, the development of a high-efficiency LPT is essential. An important factor in this development is limiting the amount of cooling air bled from the highpressure compressor (HPC) so the overall cycle performance is not unduly penalized but repsonable and acceptable temperatures are maintained for the LPT components. Initial design effort was directed at defining the cooling airflow requirements to keep the rotor and casing below the temperature limit for Inconel 718. During the detailed analysis, each component was analyzed in an effort to assure that the proper rupture and low-cycle fatigue (LCF) lives were obtained. Other efforts were directed at the ACC and the Stage 1 nozzle transient temperatures for both rupture and LCF analyses. The seal-blockage flow requirements also had to be defined by first looking at the relative rotor/stator transient growth in order to define the maximum clearance and the potential rub problem.

The rotor and casing cooling airflows were defined by first establishing the limit temperatures and seal-blockage airflows required to cool the casing and purge the rotor of any hot gases, thereby preventing ingestion. In order to achieve this, thermal transient analyses of both the rotor and stator were required. Also, ACC requirements had to be included in the analyses. The cooling air-delivery system, the impingement manifold, spent-impingement-air rejection system, and engine system performance payoff were also considered in the LPT cooling-design analysis.

3.2 DESIGN CONDITIONS

In most commercial engine applications the greatest thrust requirements occur at takeoff power. The large amount of thrust at takeoff is accomplished througn high flow and high temperatures in the core engine. The high flow and temperature drive the LPT which in turn drives the fan to generate most of the thrust. It is this high flow rate and high temperature of the gases entering the LPT during takeoff power that cause most observed distress. That is why the heat-transfer design point was established as the hot-day, max-power-takeoff cycle point.

The LPT heat transfer design for this engine study has been established by the overall engine cycle parameters. The most severe temperature and pressure conditions occur at maximum-power takeoff.

Table 1' and Figure 22 present the base FPS engine LPT design parameters. The design cycle condition was chosen as 50° C (122° F) day, maximum-power takeoff, sea level, at Mach 0.3. This represents the highest gas and coolact temperature condition. In order to prevent the LPT from being growto-limited.

Parameters
Design
Transfer
LPT Heat
IV. Е ³
Table

1

Mach
Ĭ
Takeof f
Leve l
Sea
Max.
Day
3
(122
ပ
3
•

eter ure 22)	base Engine FPS	I CLS**
	859° C (1578° F)	. 891°C (1647°F)
tin *	920° C (1684° F)	920° (1638° F)
	578° C (1073° F)	601 (1113, E)
		(misg 79.98) abs (81.97 psim)
	1.589	3.782
_	343° C (740° F)	119° ((114° F)
Stage	1.402 W25	1.402 W25
d Port	794.7 kPa (113.8 psia)	861.9 kPa aba (125 paia)
urbine	522.6 kPa abs (75.80 psia)	574.1 kPa abs (83.25 psia)
ž	3289	3419

: 13 - Y

33

(\$)

Figure 22. E^3 LPT Cooling Air Requirements for the Base Engine.

•

34

5

+

a design was required which ensured that the turbine structure could accommodate higher operating temperatures. This was accomplished by designing the rotor and stator casing for the growth-cycle environment. However, the flowpath components were designed to meet the base engine design objectives. The LPT inlet cycle-average design gas temperature, $T_{4,2}$, for the base engine is 859° C (1578° F), to which 61° C (110° F) of margin is added. The $T_{4,2}$ margin includes the effects of deterioration, engine-to-engine variation, transient overshoot, open clearances at takeoff, and control-system tolerance. Including margins, redline average LP⁺ inlet temperature is 920° C (1688° F) for the base engine and 966° C (1771° F) for the grow-a engine.

LPT design parameters for the FPS base engine and a growth-engine design are also presented in Table IV for comparison with the ICLS cycle data. The tabulation indicates that, for the assumed component efficiencies, the ICLS engine represents a deteriorated FPS base engine. Thus, the ICLS data will yield a good comparison with the FPS analysis (which was also done for a deteriorated engine).

The maximum peak temperature is defined as the hignest local temperature that might be encountered on a stationary component. Based on CF6 engine experience, the maximum predicted peak radial gas temperature profile at each LPT vane stage inlet at hot-day takeoff power for a deteriorated base engine is presented in Figure 23. The maximum peak gas-temperature radial profile at the inlet to the LPT is defined through analysis and utilization of commercial engine experience. The temperature drop through each stage in the turbine is determined from the normalized work extraction as defined by the detailed aerodynamic design at each stage.

Based on CF6 experience, the radial temperature distribution that the LPT rotor blade stages of the base engine will be subjected to during hot-day takeoff is presented in Figure 24. These radial temperature profiles are also defined with the use of commercial engine data and the zerodynamic vector diagram at each stage. Since there is no cooling in any of the five rotor stages, and since the relative blade Mach numbers are low, the blade metal temperature is assumed to be identical to the relative gas temperature. Radial conduction within the blades is also neglected.

In order to define the LCF life of the various flowpath components, it is necessary to evaluate the typical thermal transient from idle to maximum power. In order to accomplish this, the gas-temperature profile at idle power was defined. The maximum and average temperature profiles at the inlet and exit of the LPT at the idle power setting are presented in Figure 25. Because there is very little work extraction in the LPT at idle conditions, there is virtually no temperature drop of the gases. The profile is also peaked at the 75% span, as could be expected, because the combustor is lit on the pilot dome only.

3.3 COOLING AIR SUPPLY SYSTEM

The airflow that is used for cooling the LPT internal structure, Stage 1 nozzle, and rotor is extracted at the fifth stage of the compressor. Mechanical restrictions, such as the variable compressor vanes, prevented moving the

ORIGINAL PAGE IS OF POOR QUALITY

り

• M = 0.3, -18° C, (65° F) Day, SLTO • M = 0.3, -18° C, (65° F) Day, $T_{42} = 859°$ C, (1578° F) • $T_{42} = 859°$ C, (1578° F) • T_{42} Margin = 61° C, (110° F)

Figure 23. LPT Base Engine Stator Gas Temperature Profile.

36

•

\$

(Based on CF6 LPT Inlet Profile Experience)

and the second s

and the second second second .

T_{TR}, Blade Relative Gas Temperature, °C

850

900

950

37

ORIGHTEL PROF 13 OF POOR QUALITY 2

T.

Figure 25. LPT Gas Temperature Profiles 50° C (122° F) Day, Steady-State Idle Without Bleed.

compressor bleed location to the fourth stage of the compressor even though it would have been adequate. The extra pressure associated with Stage 5 bleed enabled this air to be used in the compressor ACC cooling circuit. After the fifth-stage compressor bleed air has been routed through the compressor ACC system and into the low pressure casing manifold, the pressure is 3% above the gas stream total pressure at the LPT inlet. This pressure is high enough to cool and purge the rotor but is not so high as to cause excessive leakage and degrade engine performance.

During an engine start cycle, the compressor pumping at the fifth stage is not adequate to yield a satisfactory cooling/purge-supply pressure for the LPT. For this reason, the compressor exit air is used to augment the LPT cooling/purge air. A check value is used in the compressor discharge circuit so that backflow into the fifth-stage compressor bleed system will not occur. This compressor discharge bleed augmentation system will be activated at any subidle power setting.

The LPT casing is cooled with fan air extracted from the fan bypass duct. The air enters a pair of scoops, one on each side of the pylon. After entering the scoops, the air is diffused before entering a 270° plenum surrounding the LPT. From this plenum, the fan air enters an array of tubes and then impinges on the outside of the LPT casing in order to cool the structure. The spent impingement air discharges through the rear frame struts and out the center vent. Air leaving the center vent mixes with the primary-nozzle gases and yields a small amount of thrust.

The air temperature rise resulting from cooling the LPT casing is adequate to offset the attendant pressure loss; this eliminates any significant loss in thrust when the cooling air reenters the main gas stream.

The LPT ACC system is also combined with the primary casing cooling system. This is done by incorporating a cooling-flow-modulation value between the fanduct scoop and the 270° manifold that surrounds the LPT.

3.4 DESIGN MISSION

The first step in the detailed thermal analysis of the LPT was to define the flight mission. The mission that was analyzed consisted of a 24-minute takeoff climb cycle and a 24-minute descent cycle. The takeoff/climb cycle presented in Figure 26 incorporated a 2-minute takeoff and a 22-minute climb. During climb, the aircraft is gradually accelerating to the maximum speed of Mach = 0.8 at 9.1 km (30,000 ft).

Because the engine does not reach the high ram Mach numbers until high altitude, the LPT does not achieve maximum rpm until 10.67 km (35,000 ft) at the maximum-climb power conditions. Figure 27 presents the LPT rpm excursions for a typical flight cycle. The takeoff mission starts at 1000 seconds and continues until about 2500 seconds at which point the aircraft has achieved a maximum-cruise condition. The landing mission starts at 3000 seconds and proceeds through flight idle, approach, touchdown, thrust reverse, and back to ground idle at the 4600-second point.

Altitude, ft 000 000 51 35,000 30,000 25,000 10,000 ٥،00،۶ 0 H = 0.8 1 56 Ţ Maximum Cruise 🛌 - 0.8 -24 22 Σ 20 Г 18 M = 0.8Elapsed Time, minutes 16 Maximum Climb 14 ٢ M = 0.761 12 01 H = 0.692 M = 0.576 LM - 0.452 30 H = 0.6317 Q Takeoff -H = 0.3 4 - 0.3 ~ r С 12 10 æ و 4 7 Altitude, kon

•

#

ORIGHERL DARE IN OF POOR QUALITY

Figure 27. E^3 LPT Rotor Speed Over Typical Flight Cycle.

5

LPT Rotor Speed, RPM

2

41

4

•)

3.5 COOLING FLOW DEFINITION

The required cooling air is presented in Figure 22 for the base engine and in Figure 28 for the growth engine. The major portion of the rotor purge air is defined by the estimates of the seal clearances and the required flow to block the seals and prevent the flowpath gases from being injected into the rotor cavity. To accomplish this, 1.40% of the fifth-stage compressor bleed air is used to purge the outer and inner bands of the Stage 1 nozzle, cool the vane approximately 56° C (100° F), block the HPT rotor balance seal, and purge the LPT rotor cavity. A small portion of the rotor purge air leaks into the sump purge cavity and eventually exits through the center vent of the primary exhaust nozzle. But the majority of the flow returns to the LPT flowpath; work is recovered as the purge air expands through the Stages 1, 2, and 3 rotor spacer arm flanges is defined by the required spacer arm temperatures.

The aft rotor cavity is purged with LPT exhaust gas. This is a significant change from the preliminary design where fifth-stage compressor bleed air was used to purge the cavity. The prime reason for purging the cavity with warm air was to improve engine performance and reduce thermal gradients in the rear frame hub and in the rotor disks of Stages 4 and 5. This system allowed a reduction in fifth-stage bleed air by 0.1% W₂₅ and provided better temperature matches in the frame hub and between the bores and rims of the disks.

The outer casing will be kept under the design objective metal temperature of 677° C (1250° F) by impingement cooling with fan air. The ACC and the casing impingement-cooling scheme are combined into one system. The cooling of the casing requires 0.1% W₂₅; this will be increased to 0.3% for maximum cooling in order to achieve the greatest clearance reduction.

To incorporate growth capability in the LPT rotor, it was necessary to increase the rotor cavity flows so that the disk spacer arms were kept within temperature limits. For the growth engine, cooling for the LPT was increased from 1.4% to 1.57% of the core compressor inlet airflow.

The LPT gas s*ream and cavity pressures at the 30° C (86° F) ambient temperature, maximum-takeoff, base-engine cycle point are presented in Figure 29. These cavity pressures were used to define the seal-blockage flow rates and various sink pressures for the cooling air.

The prime source of LPT cooling air is fifth-stage compressor bleed delivered to the turbine through six pipes equally spaced around the Stage 1 LPT nozzle cooling-supply manifold. This manifold, which is integral with the casing and outer transition duct hanger, distributes the cooling air uniformly around the inside of the casing. Next, cooling air is fed into the 72 nezzle vanes and across the flowpath to the inner nozzle support structure shown in Figure 30. The cooling air warms to about 72° C (130° F) while flowing through the vanes. The rotor cavity need not be cool d significantly below 593° C (1100° F), and this will happen when fifth-stage compressor bleed is used as coolant. Most nozzle cool on g is done near the leading edge where the

43

· A

Figure 29. F³ LPT Base Engine Max Pressures.

(\P)

)

ORIGINAL PAGE IS OF POOR QUALITY

44

(+

.

Figure 30. $E^{\frac{3}{2}}$ LPT Cooling Supply and Nozzle Cooling System.

highest stresses occur. Once the cooling air reaches the nozzle hub it is delivered into the wheel-space supply plenum by 72 spoolies. The total cooling air passing through the nozzle is 1.2% W₂₅, of which 0.14% is used to help purge the nozzle inner-flowpath structure. Of the remaining 1.06% that enters the 360° wheel-space supply plenum, 0.56% is supplied to the forward wheel-space cavity, and 0.5% is supplied to the aft wheel-space cavity. The plenum supply pressure is 545 kPa abs (79 psia) while the forward wheel space cavity pressure is 488 kPa abs (70.8 psid) as shown in Figure 31. This yields a 1.08 pressure ratio across the wheel-space injection holes. The holes are angled 60° from the circumferential direction and yield a tangential velocity of 149 m/sec (488 ft/sec). This tangential velocity reduces the amount of boundary layer pumping that the HPT rotor must do. The wheel-space cavity pumping analysis indicates that the velocity of the air should be about 50% of wheel speed. Since the aft cavity is at a pressure of 410 kPa abs (.9.5 psia), the cooling-air injection pressure ratio is higher, and a higher tangential velocity is achievable. The LPT rotor is rotating at less than 30% of the HPT rotor speed; therefore, the tangential velocity leaving the injection holes is better than twice the LPT rotor wheel speed. With this system, a substantial amount of work will be obtained from the injected air as it is pumped up on the rotor disks.

Of the 0.56% W25 that is injected into the forward wheel-space cavity, 0.4% leaks back through the interturbine seal and into the LPT rotor cavity. Extensive seal-clearance studies have been conducted on the interturbine seal to define the proper quantity of blockage air. Over the engine operating range, it is expected that the seal clearance will vary between 0.025 cm (10 mils) and 0.068 cm (27 mils) as shown in Figure 32. The tightest clearance occurs during cold-start takeoff transients with a new seal; the most open clearance occurs at nominal cruise power with a deteriorated seal. The seal will flow 0.67% W_{25} when the clearance has opened up to 0.09 cm (36 mils). This could call occur as part of an engine failure, and only then would hot flowpath gases be injected into the HPT aft rotor cavity. In conclusion, the seal blockage air is satisfactory from an engine safety standpoint and yields the best overall performance. During the ICLS test, important information on the windage temperature rise and vortex pressure gradients will be obtained in the wheel-space cavities. These data will be very beneficial in developing the seal design for the FPS.

The LPT rotor cooling/purge air supply consists of interturbine seal leakage air and air that is injected tangentially into the rotor cavity from the wheel-space-cooling-supply plenum. The total cooling-air supply to the rotor cavity will be 0.91% W₂₅ for the base engine and 1.08% for the growth engine. The extra cooling flow of 0.17% W₂₅ for the growth engine is required in order to dilute the 36° C (64° F) hotter gas around the rotor spacer arms. The disk spacer arms are exposed to higher gas temperatures; thus, more wheelspace purge air is required to dilute the gases and keep the metal within acceptable limits. The wheel-space purge air requirements were defined by evaluating the allowable gas temperatures in a detailed thermal model. Then dilution airflow requirements were defined in order to bring the gas temperatures down to the allowable level. This cooling scheme will also allow the

46

¥

00.000

WHEEL -Tangential Velocity of Wheel at Radius of Inducer

Figure 31. E² LPT Cooling Supply System (ICLS).

(�)

47

•]

Figure 32. E³ LPT/HPT Interturbine Seal Blockage.

cool dilution air to circulate through the taps between dovetails and disk posts and keep those components within limits. The wheel-space purge air is metered through slots in the upstream spacer arm bolt flange. This will yield a consistently small flow area needed to meter the flow. The purge airflows (Figure 22) are 0.16, 0.10, and 0.06 % W25 for the first, second, and third wheel-space cavities, respectively. An additional 0.03% is supplied through the main torque-bolt flange. This helps to define the flow under the Stage 3 disk and the through-flow in the cavity bounded by the Stage 3 disk and the main torque cone. Of the 0.91% W25 that dumps into the rotor cavity, 0.16% leaves through the sump bypass seal. This air then flows around the aft sump and dumps into the centerbody at the back of the engine. From there it flows out through the primary-nozzle center vents, recovering a portion of the thrust. An extensive analysis has been conducted in an effort to keep the sump bypass leakage seal as small in diameter as possible to keep the clearance to a minimum.

The remaining rotor-cooling flow $(0.4\% W_{25})$ is supplied to the seal ahead of the Stage 1 rotor. This flow is more than adequate to cool and purge the Stage 1 forward wheel-space cavity. The quantity of flow must be kept at a high level to compensate for significant variations in seal clearance during normal operation. The flow tolerance of the interturbine seal is 0.16 to 0.41% W25, and the flow tolerance of the sump bypass seal is 0.05 to 0.20% W25. The wheel-space-metering-slot tolerance could shift the flow from 0.25 to 0.45% W25. When the worst tolerance stackup clearance arrangement is evaluated, there will still be a small quantity of wheel-space air flowing through the Stage 1 rotor forward seal.

As mentioned previously, no cooling air is used to purge the aft rotor cavity. The aft cavity, Rotors 4 and 5, is now purged with LPT exhaust gas at the hub of the fifth-stage rotor exit; 0.147% W₂₅ of this gas is allowed to circulate down around the two disks in the aft cavity before dumping into the aft sump bypass cavity. Not only does this reduce the temperature gradients in the rear frame hub and between the bore and rim of the Stages 4 and 5 disks during transients, it also improves engine performance. The fifth-stage compressor bleed air used to purge this cavity is now allowed to flow through the complete engine before being extracted at the LPT rotor exit. In transient operations, the hot gas is used to heat the forward, inner-hub structure of the turbine rear frame more quickly during engine accelerations; thus, thermally induced stresses in the frame struts are mitigated. The maximum gas temperature at the hub of the five-stage rotor is 599° C (1110° F) for a deteriorated FPS engine. This is not a severely high temperature, and the gas can be used for disk temperature control. Between idle power and maximum takeoff power, this gas temperature changes by only 111 to 167° C (200 to 300° F); therefore, thermal gradients at high rpm are moderate.

3.6 ROTOR TEMPERATURE DISTRIBUTION

A detailed heat-transfer analysis of the total rotor structure has been completed. This analysis included both the FPS and the growth engine. The

transient cnalysis considered a complete mission from steady-state ground idle through takeoff and climb to maximum cruise. Included in the transient was a throttle chop from maximum at 6.09 km (20,000 ft) climb to flight idle. After holding to flight idle for 320 seconds the engine was taken back to maximum-climb power. This maximum-climb, hot-rotor reburst was analyzed to determine the relative clearance between the rotor and casing.

The rotor gas temperatures at idle and maximum power were defined by using commercial engine data. At idle power the combustor is burning on the pilot dome only; this generates a spiked profile that persists even into the LPT. The spiked profile does mix out as the gases flow through the five stages of the LPT. But since there is not much work extraction in the LPT at idle power, temperature drop through the five stages is insignificant. The profile effect combined with the low-work-extraction effect causes the hub temperature to increase as the gas flows through the turbine. This is typified by the idle profile at the LPT inlet and exit as presented in Figure 25.

A detailed thermal model of the rotor structure was constructed. It contained 532 nodes, as shown in Figure 33, and extended from the Stage 1 disk forward seal back through the fifth-stage rotor. A generous portion of the torque cone was included so that boundary effects could be evaluated. The heat-transfer model also included 192 separate time-dependent boundary conditions, 173 metal-to-metal contact resistances, and 4 separate temperature-dependent material property tables. Rotor temperatures throughout the mission were defined for both the base and the growth engines. Figure 34 shows rotor temperatures at various locations for the growth engine 120 seconds into a hot-day takeoff. The spacer arm reached a temperature of 616° C (1141° F), well within the temperature limits of the Inco 718 material. But the seal reached a temperature of 668° C (1235° F); this made it the temperature-limiting item in the rotor assembly. However, the seal temperature was still within the design limit of 677° C (1250° F).

3.7 CASING COOLING SYSTEM

The LPT is cooled with fan air impinging on the outside of the casing from an array of holes located in a manifold surrounding the complete casing. Commercial experience has shown this approach to be reliable and the least costly from a performance standpoint since LPT fan air is used. Thrust is also recovered from the fan air as it is ejected out the primary-nozzle center vent. As shown in Figure 35, the impingement holes are located over the vane/ seal hangers. These areas are the hottest part of the casing and need the most cooling. The objective is to keep the maximum Inco 718 casing temperature below 677° C (1250° F) and meet the life objectives at the same time. The detailed transient temperature analysis indicates that this is feasible when the contact area between vanes and casing is kept to a minimum. It was also necessary to minimize the length of the hangers and to increase the conduction area between the hanger and casing. Blankets of low-conductivity material were placed between the flowpath components and the casing. This insulation helps reduce the radiation and gas circulation between the hot

Input

- 532 Nodes
- 192 Boundary Conditions
- 4 Materials
- 173 Contact Resistances

Results

- Transfent Temperature Distribution
- Takeoff (Idle Takeoff Climb Cruise)
- Descent (Thrust Reverse Idle Cruise Descent -

ORIGINAL POLIZ 13 OF POCK QUALITY

Approach - Touchdown)

Figure 33. E³ LPT Rotor Structure Heat Transfer Model.

4

4

, ão

•

D

52

(+)

, ******

flowpath and the casing. Each insulation blanket is covered with 0.005 to 0.008 cm (2 to 3 mil) thick Inco 600 metal foil to help maintain the integrity of the insulation material between overhauls. Where the foil might be exposed to hot, high-velocity flowpath gases, the foil thickness has been increased to 0.015 cm (6 mils).

Casing cooling is accomplished by means of an impingement manifold extending around the complete LPT casing. The coolant is collected by a scoop located in the fan bypass duct. The cooling air is then fed through a circumferential duct to the LPT casing impingement manifold. The impingement manifold consists of four 90° sectors with one axial distribution plenum per section as shown in Figure 36; 1.27-cm (0.5-in.) diameter tubes distribute the cooling air circumferentially around the casing. The cooling air leaves the tubes through 0.064-cm (25-mil) diameter impingement holes evenly distributed in each circumferential tube. The 0.064-cm (25-mil) impingement hole is the minimum size that extensive commercial engine experience has shown to have no plugging problems. The hole spacing in each ring has been adjusted to give the desired cooling for each turbine stage. The spacing parameter (distance + diameter) varies from 9 to 16, and the total number of holes yields a total impingement flow area of 13.97 cm^2 (2.165 in^2). This impingement flow area is the minimum flow area in the cooling-supply system. All other pipes and ducts have flow areas at least three times larger than the impingement flow area.

In order to complete the detailed heat-transfer analysis of the casing, a thermal model was constructed. Figure 37 illustrates the detailed thermal model; it consists of 534 nodes, 5 different materials, 121 metal-to-metal contact resistances, and 56 time-dependent boundary conditions of temperature and heat-transfer coefficients. The thermal model extended from ahead of the Stage 1 LPT nozzle flange to beyond the Stage 5 shroud aft-support flange.

The high heat transfer coefficients associated with the LPT gas flowpath and the low heat-transfer coefficients associated with the casing external impingement cooling system were input into the detailed thermal model. Radiation from the casing was also factored into the detailed thermal model. The gas temperatures along the casing flowpath, with only the combustor pilot stage burning, were factored into the idle-temperature definition. A complete flight transient analysis was conducted. The most severe temperature distribution occurs at the end of the maximum takeoff segment of the flight mission and last for 2 minutes. After this point, the engine is throttled back to maximum-climb power setting, and the LPT inlet temperature drops by 56° C (100° F).

Since the LPT ACC is combined with the casing cooling system, two analyses were conducted on the casing. The two analyses consisted of the casing cooling extremes: (1) minimum cooling to keep the casing temperatures within limits and (2) maximum cooling to define the closure capability of the cooling system and worst temperature gradients. The temperature distribution in the casing at 2 minutes into the takeoff transient is presented in Figure 38 for the minimim cocling of 0.08% W₂₅. The temperature distribution at the end of

, *****•

Figure 36. E³ LPT Cooling/ACC Impingement Mauifold.

ŗ Ē LPT Casing Aft Flange Nozzle Outer Band Koa-Woul Insulation Blanket (Between Casing and Hot Flow Path) Blade Tip Honeycomb Seal 5 Places 5 Places Reduced Hot-Gas Circulation Reduced Heat Conduction Reduced Radiation Payoff 121 Contact Resistances 56 Boundary Conditions 5 Materials • 534 Nodes Model Input lPT Casing Forward Flange • THE I

.**

جر ز

4

Figure 37. E³ LPT Casing Detailed Thermal Transient Model.

\$

ORIGINAL PAGE DU OF POOR QUALITY

56

 $(\mathbf{+})$

. Z.

.

Ð

ę

Figure 38. LPT Casing Transient Temperature Distribution.

F)

takeoff with the maximum cooling of 0.3% is presented in Figure 39. The analyses indicated that 0.08% W₂₅ casing cooling at the second-stage nozzle hangers may not be enough. With the maximum cooling of 0.4% W₂₅, the stage 2 nozzle hangers are well below the 677° C (1250° F) temperature. These areas will be watched closely in the ICLS test in order to find out if additional flow will be required to keep the casing hanger temperatures at an acceptable level.

3.8 STAGE 1 NOZZLE

Extensive analysis on the heat transfer design of the Stage 1 nozzle has been completed. This analysis includes the outer casing and flowpath structure, the Stage 1 vane, and the inner flowpath structure (see Figure 30). Because of the critical nature of the nozzle support structure, the HPT aft wheel-space purge, the interturbine seal blockage, and the LPT rotor blockage, a detailed temperature analysis has been made of each of these areas.

The analysis of the outer flowpath structure included the casing, the nozzle support ring, the transition flowpath, and the HPT Stage 2 aft shroudsupport ring. Several changes were made in the design of the nozzle support structure during the detail design phase. Most of these changes were directed toward establishing an effective, reliable means of supplying rotor cooling air while keeping air leakage to a minimum and meeting the hardware life requirements. The final design meets these objectives. A detailed trans.ent heattransfer analysis of the final design has been completed. The thermal model (Figure 40) contains 375 nodes of 4 different materials, 37 contact resistances, and 27 time-dependent boundary conditions of temperature and heattransfer coefficients. Also, radiation from the casing was factored into the model. The complete flight mission was analyzed thermally. The analysis included the effects of ACC cooling on the HPT/LPT casing. The point in the engine mission exhibiting the most severe thermal gradients occurred 30 seconds after the 10-second accel from ground idle to full-power takeoff on a hot day.

Cne of the concerns with the design was the rabbet seal between the nozzle support ring and the casing. It is imperative that the rotor cooling supply system seal leakage be kept to a minimum. Extensive investigative analysis was done to assure that the seal stayed tight under all transient conditions. The critical takeoff portion of the mission presented no problems. The internal nozzle support structure quickly heated while the casing was somewhat slower to respond. The thermal coefficient of expansion is comparable for both rings and results in a tight fit since the fast-responding inner ring grows outward against the slow-responding casing. Some leakage occurs during the descent transient from maximum cruise to flight idle where the seal has a tendency to open up. The fast-responding inner ring cools faster than the casing, and eventually the inside ring is cooler than the casing. The worse condition occurs at about 450 seconds after the throttle chop from maximum cruise to flight idle. In order to overcome this leak problem, a 360° heat shield was placed over the rabbet seal ring. Because the heat comes from the rotor purge air, the heat shield reduces the effective heat transfer coefficient, thus slowing the rate of response. The shield eliminates the temperature-gradient reversal during the descent transient. The detailed temperature

and the state of the

Figure 39. E^3 LPT Casing Transient Temperature Distribution.

 \odot

59

)

Figure 40. E^3 LPT Stage I Nozzle Support Structure Detailed Thermal Model.

)

distribution was defined and mechanical loads were evaluated at the 450-second point into the descent transient in an effort to evaluate the seal gap. The temperature distribution at the critical time is given in Figure 41. Although the seal ring is 12° C (22° F) warmer than the adjacent casing, the seal will open to 0.013 cm (5 mils). This results in a 0.22% W_{25} leak through the gap. Inasmuch as this occurs during the flight descent, no service problems will result, but efforts have continued in order to further reduce the gap. The prime thermal mismatch is caused by the other sections of the 360° plenum cooling, by as much as 83° C (150° F), faster than the casing. The biggest problem was caused by the cooling air impinging on the 360° manifold at six locations around the casing where the LPT cooling air entered the through-pipes in the casing. To further improve the clearance between the casing and seal ring, a heat/splash shield was placed under each of the six pipes entering the casing. The splash shield is 15.2 cm (6 in.) wide in the circumferential direction and fastened to the nozzle support ring by two bolts. The improvement produced by the heat/splash shield will cut seal leakage virtually to zero. The end result is a plenum that has a good thermal match with the casing to keep the seal leakage to a minimum over the complete mission. The interference fit between the seal ring and the casing during accel will also be reduced. This will diminish the possibility of wear due to transient axial-growth variation when there is a large interference fit at the seal. In addition, the Stage 1 vane was analyzed because it is the prime load-carrying member for the inner flowpath structure and the flowpath for the rotor cooling air. From previous engine experience, the highest stress point is the vane leading edge (LE). Early in the detail design, the preliminary heat-transfer calculations indicated that it was reasonable to reduce the LE temperature 28° C (50° F) below gas stream. Since the gas-stream temperature at the 90% vane span was 949° C (1740° F) for a hot streak on a deteriorated engine, the LE had to be cooled below 921° C (1690° F). At the same time, the pressure drop required to maintain sufficient cooling flow through the nozzle had to be kept to a minimum. Temperature reduction and pressure-loss objectives were achieved by adding two ribs in the vane. The ribs were slanted so that the flow was restricted in the forward cavity at the outer band; the flow was diffused by tilting the rib aft and gradually increasing the flow area at the hub. This resulted in LE cavity with the minimum flow area at 90% span and maximum flow area at the hub. The flow area distribution in the two aft cavities were reversed from the LE cavity. The maximum flow area was at the vane 90% span, and the minimum flow area was at the hub. This design approach resulted in a high-velocity cooling flow at the vane outer flowpath LE cavity and a high heat-transfer coefficient. Turbulence promoters were also added to the inside of the LE radial cavity as a means of further enhancing the coolant heat transfer.

A detailed thermal model was set up to assess the temperature distribution in the vane at the LE and in the rest of the vane, including the trailing edge. The gas-side heat transfer was defined by using the design velocity distribution and heat-transfer design practice for this type of airfoil with no film holes and low Reynolds number. Local metal and steady-state temperatures at maximum takeoff are presented in Figure 42. The maximum LE temperature was reduced by more than 28° C (50° F) below gas stream to 918° C (1684° F). The bulk metal temperature dropped to 871° C (1599° F); this kept the

ORIGINAL PAGE IS OF POOR QUALITY

at 3450 Seconds (Decel).

 (\mathbf{r})

*

450 seconds into Descent

, **2**4

1.00

.

maximum LE-to-bulk-temperature difference to 47° C (85° F). Due to the low cooling at the trailing edge, that section of the airfoil will be effectively the same as the gas temperature. Even with the worst possible temperature profile, at the 60 to 70% span, the gas temperature will not get much above 982° C (1800° F) and therefore will not cause any significant life problem with the René 125 material in the FPS nozzles or René 77 in the ICLS nozzles.

Because of the critical nature of the load-carrying capability of the Stage 1 vane LE, investigation was extended to the fillet region of the vane and outer band. The vane wall thickness was kept the same as the maximum thickness at the 90% span. But, because the curvature of the LE was greater, the gas-side heat transfer was reduced, and the area ratio $(A_{gas}/A_{coolant})$ went down. Although the coolant heat-transfer coefficients went down due to the reduced flow velocity, net cooling was improved because the cooling surface area increase had the dominating effect. This resulted in a lower metal temperature at the LE.

The next item in the rotor cooling-air-supply system is the inner nozzle support structure and the inner HPT/LPT transition-duct flowpath and rotor cavity air-supply plenum. Of the air that is supplied through the vanes, 1.06% is fed through the spoolies into the rotor supply plenum, and 0.14% is used for structure purge and spoolie leakage in the inner nozzle cavity, as shown in Figures 30 and 31. The purge air will help prevent any hot-gas leakage from circulating into the cavities around the nozzle inner flowpath cavity. This will help the nozzle aerodynamic performance by keeping the high-momentum gases in the flowpath and will improve the hardware life by preventing high thermal stresses associated with high temperature gradients around the structure delivering the rotor cooling air.

In order to define the temperature distribution in the nozzle inner flowpath structure, a detailed thermal model was constructed. This model (Figure 43) included the 10% vane span, the transition structure, the vane and seal support structure, and the rotor air-supply plenum. The thermal model contained 238 nodes of 4 materials and 32 contact resistances. There were 25 different time-dependent boundary conditions of temperature and heat-transfer coefficients included in the model. The most severe temperatures occurred 3G seconds after takeoff from ground idle power. Selected temperatures at this particular time are presented in Figure 44. A transient analysis was carried out from takeoff through cruise in an effort to define the interturbine seal growth for clearance definition in order to assure proper rotor cavity purge at all cycle conditions.

3.9 ACTIVE CLEARANCE CONTROL

In the design of a high-performance engine like the E³, component efficiencies must be maintained at a high level. Each component was examined to define which factors contributed to potential deterioration of engine performance. It was found that blade tip clearances had a significant impact on compressor and HPT/LPT performance. No matter how close the clearances are

(\$)

66

)

set at engine assembly, they cannot be kept to a minimum at all engine operating conditions without an independant means of control. Various factors contribute to increased blade tip clearance, thereby reducing component/engine performance. In the LPT, the items that contribute to tip clearance deterioration are:

- 1. <u>Transient Thermal/Mechanical Growth</u> Mechanical growth of the rotor structure and mechanical-plus-thermal growth of the airfoils occur within 10 to 20 seconds after start of a typical accel from ground idle to maximum-power takeoff. Thermal growth of the casing is significantly slower. Such growth will cause the blade tip clearance to transiently close, possibly causing a tip rub. In the LPT the stationary shrouds are constructed of metal honeycomb which can be rubbed out very easily by the blade tip-seal teeth. However, as the casing heats up, it moves rapidly out and away from the rotor and leaves a gap between the stationary shroud and the blade seal teeth.
- 2. Engine Bending - Engine bending occurs because thrust reaction must be carried out of the engine to the airframe through the engine mounts. Thrust at sea level static, maximum-power takeoff is six times higher than cruise thrust. The high takeoff thrust reaction causes the casing to distort and go out of round. Sections of the stationary shrouds will rub while other sections will have larger than normal clearance and will not rub. When the thrust loads are reduced, the casing returns to a normal, round configuation. The sections of the shrouds that were subjected to a rub now have a larger clearance between the honeycomb seal and the blade seal teeth. Flight maneuver loads can also cause a rub. Because of the mass and inertia of the rotor, a rub can occur when a sudden flight maneuver is transmitted to the rotor through the roller and thrust bearings. There will be bending in the rotor structure between bearings; this will result in a rub between the blades and stationary shrouds. The magnitude and location of the rub will depend on the severity and direction of the maneumer. Once the rub has occurred and the flight maneuver ceases, the rotor will return to the normal position relative to the casing, and locally the clearances will be larger. Larger clearances will also be available during takeoff and climb, when the maximum distortions are expected.

3. Rotor and Stator Vibrations - The rotor will be subjected to various levels of vibration depending on the natural frequencies and excitations that might exist in the engine. The vibration will increase when the frequency of the stimulus approaches the natural frequency of the rotor or a component in the rotor structure. Similarly, the casing or stationary components also can vibrate and can enhance the possibility of a blade rub.

If the performance of an engine is to be improved by reducing the LPT blade tip clearance, the above-mentioned distortions must be reduced, or the configuration must be designed to accommodate them. Both methods of improvement are being incorporated in the E^3 . Distortions are being reduced by

evaluating better methods of transmitting engine loads. Vibrations are being kept to a minimum through the judicious location of the bearings designed to transmit loads with a minimum of structural distortion. At cruise, once the distortion loads and vibration have diminished, the clearances are closed down by the ACC system.

ACC in the E^3 LPT is accomplished by shrinking the casing that supports the stationary seals. During steady-state cruise conditions, the casing skrinkage is accomplished by cooling the metal - taking advantage of the high coefficient of thermal expansion of Inco 718. By cooling the casing 167°C (300° F) it is quite possible to reduce the casing diameter by 0.304 cm (120 mils). This temperature reduction will reduce the clearance by 0.152 cm (60 mils) and is more than adequate to accomplish the objective of active clearance control. The casing-cooling system relies heavily on experience with the CF6-50 LPT casing impingement-cooling system. In this system the lowpressure, low-temperature fan air is used as coolant and is impinged on the outside of the LPT casing by means of an array of manifolds. In the E^3 system, fan air is extracted from the fan duct by means of a scoop. The air is routed to the impingement manifold through a control valve and 270° core-cowl manifold. Clearance control is accomplished by adjustment of the impingement cooling flow by means of an air valve. By judiciously setting the valve, by means of the engine control system, the quantity of impingement-cooling flow to the LPT casing can be controlled. The controlled flow rate, in turn, controls the amount of casing temperature reduction; this defines the casing shrinkage and thus blade-tip clearance. As the control-valve flow area is increased, reducing the flow restrictions, more air will flow from the fan stream to the impingement manifold, cooling the casing to a lower temperature. As the casing temperature is reduced, the diameter shrinks, and the blade tip clearance becomes smaller.

The ACC value in the FPS will be controlled by the full-authority, digital electronic control (FADEC). Fan speed, fuel flow, and compressor exit temperature and pressure will be the FADEC input used to control the LPT ACC system. The FADEC will define the best clearances for a particular flight condition. The thermal nistory of the rotor and casing will be factored into the control so that the required cooling for the casing can be defined. The value setting required to achieve the desired cooling flow will then be met.

The ACC fan scoop (Figure 45) is a split design combining the HPT and LPT ACC air supplies. This design was chosen over the separate-scoop design as a means of keeping the amount of fan-duct blockage and scoop drag to a minimum. The fan-duct scoop is split down the middle into the HPT and LPT sections by a sheet metal divider. This divider segregates the HPT and LPT cooling air from the inlet of the scoop unit after impingement. Separate valves are provided to control the amount of cooling air delivered to the HPT.

The scoop is mounted away from the wall to avoid ingestion of the boundary layer flow. After the air enters the scoop it is diffused in an effort to recover as much of the fan-duct dynamic pressure as possible. After the air

 (\mathbf{A})

X · · ·

ORIGINAL PAGE IS OF POOR QUALITY

diffuses to a 2:1 area ratio, it dumps into a rectangular duct that directs the air to the control valve (Figure 46). After flowing through the valve the air dumps into a 270° sector ranifold inside the core engine cowl. The flow splits and flows circumferentially around the LPT in the rectangular duct. The flow divides and flows circumferentially around the LPT in the rectangular duct. The flow is bled off the rectangular core-cowl plenum at four locations (two on each side of the engine) and into the LPT casing impingement manifold. After the air impinges on the casing, it discharges through the rear frame and out the primary-nozzle center vent. A bulkhead is required to segregate the core-cowl purge air from both the HPT and the LPT ACC air. This is located ahead of the HPT casing and extends from the casing to the core cowl. An extensive effort has been made to seal all possible leaks into the core cowl in order to maintain the performance of the ACC cooling system.

To evaluate the ACC, it was first necessary to look at the required casing cooling at various engine cycle conditions. Shown in Figure 47 are several engine cycle conditions that were evaluated. At ground idle, the casing cooling will be reduced to a minimum value. This will allow the casing to be at a higher temperature during takeoff transients but still keep it within the material limiting temperature of 677° C (1250° F). Maximum rotational loads occur after the engine has undergone acceleration to full takeoff power and after liftoff has occurred; then casing cooling can be initiated. The ACC will open the valve and admit 0.15% W_{25} of fan airflow to the impingement manifold where it cools the casing and closes the clearances to the required range. Since the rotor rpm and blade metal temperatures are at the highes. level, very little clearance closure is required. As the engine is throttled back to maximum-climb power, the metal temperatures drop. When this occurs, more casing clearance closure, and thus more cooling, is required. At maximum cruise, 66% of the maximum clearance closure is required; 4t 60% maximum cruise, all of the ACC cooling is required. Of course, there are few cycle points in the engine mission below 60% maximum cruise where the ACC will be needed. During approach and flight idle the ACC cooling will be sout off in anticipation of a throttle burst to a higher power setting.

The performance payoff of the ACC system was defined at the LPT design point: maximum-climb power at an altitude of 10.67 km (35,000 ft). The clearances with minimum casing cooling ranged between 0.112 cm (44 mils) on the last stage to 0.022 cm (48 mils) on the first three stages. Since these clearances can be reduced to 0.041 cm (16 mils) at this power setting, the potential clearance reduction is between 0.07 cm (28 mils) on the last stage to 0.08 cm (32 mils) on the first three stages, as shown in Figure 48. This can be accomplished with the use of about two-thirds of the cooling capability of the system. The performance payoff for each stage was evaluated, and the overall LPT efficiency increase was 0.5%. When the cost of the fan air is factored in, the net payoff is a 0.33% reduction in specific fuel consumption (sfc). It should be noted that this improvement in performance is not only due to the reduction in blade tip clearance but also to the hub interstage seal clearances. In cooling the casing, the nozzle diaphragm moved radially inward and closed down the interstage seal clearances as well. The interstage seal clearances represent about one-third of the overall system payoff.

, **z**.

4

٠.

3

71

Ħ.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 47. E^3 LPT Active Clearance Control Casing Cooling Objective.

 $(\mathbf{\hat{\mathbf{v}}})$

ŢĽ.

72

+

Max. Cruise 10.67 km (35 K Ft.)

. .

3.10 START ANALYSIS

In the development of the E^3 , the compressor has continued to be a critical item. The 23:1 pressure ratio, single-spool compressor is truly an advancement in the state of the art for axial-flow compressors. However, the high pressure ratio of the compressor necessitated several features The variable stators in the first five stages had to have more control during startup and low-power conditions. The compressor also was designed to provide stall margin in the front stages during starting conditions. Without bleed, the aft end of the compressor cannot pass the flow that the front stages are delivering. The compressor bleed is extracted at the seventh stage where it has the greatest payoff in terms of flow stability during start. The seventhstage bleed air is dumped overboard.

During the early E^3 program start analysis, the required bleed flow was defined at a maximum of 30% of the compressor inlet flow. This flow required the turbine inlet temperature to be set at 1149° C (2100° F) if the engine was to be started and accelerated to idle speed within the designated start time. Several assumptions had to be made in conducting the early start analysis. These assumptions addressed

- Compressor efficiency at subidle
- Turbine efficiency at subidle
- Compressor stall margin at subidle

All these factors have a significant impact on the required turbine inlet temperature and on compressor-bleed requirements.

During 1980-1981, both the 2-stage HP air turbine test and the 10-stage compressor test were completed. The results from these two tests had a significant impact on the engine start analysis. The factors that affected the engine start analysis are:

- Ten-point compressor efficiency improvement during start
- Five-point HPT efficiency improvement during start
- Stall margin achieved with reduced seventh-stage bleed
- HPT flow function decrease during start

These improvements during start conditions allow the engine to be accelerated to idle speed within the required time at a reduced turbine inlet temperature. The HPT inlet temperature reduction amounts to a 200° C (360° F) drop to 949° C (1740° F). The LPT inlet temperature reduction amounts to a more impressive 289° C (520° F) drop to 627° C (1160° F). This was attributable to the improvement in turbine efficiency and a reduction in the turbine flow function.

With the substantial reduction in cycle average temperature entering both the HPT and the LPT, the engine could be started and accelerated to idle

74

speed with only the pilot combustor burning. This causes a substantial outward skewing of the combustor exit profile. The maximum (peak) pattern factor at the HPT vane inlet is 1.26, and the circumferential-average pattern factor is 0.63. Although this results in local gas-stream temperatures above the maximum design value, the steady-state metal temperature does not become excessive. This is due to the reduced cooling-air temperature and the heat-flux environment (low pressure) during engine start conditions. By the time the hot streak has reached the LPT, the temperature has attenuated by mixing and work extraction; the maximum peak pattern factor at the LFT is down to 0.27, and the circumferential pattern factor is down to 0.21. The attenuation factors for the double-annular combustor, burning on the pilot stage only, were defined in the CF6-50 double-annular combustor program. After the 49° C (88° F) $T_{4,9}$ design margin is added to the 627° C (1160° F) $T_{4.9}$ cycle temperature, the peak pattern factor yields a hot-streak temperature of 801°C (1474°F). This is the highest temperature that the LPT Stage 1 vane will be exposed to during start. Because the trailing edge (TE) of this vane is uncooled, a temperature gradient is set up between the bulk metal and the TE. The maximum temperature gradient on the vane will not exceed 779° C (138° F) under steady-state conditions. The maximum transient temperature gradient has been estimated to be 203° C (365° F). This is within acceptable limits.

With an average circumferential pattern factor of 0.21, the LPT vane inlet yields a 777° C (1431° F) temperature. This is the highest temperature that the first-stage blade might be exposed to during engine start. There is no cooling in the blade, so the only temperature gradients are set up during the transient. The highest gradient between the TE and the bulk metal temperature during the start transient is 172° C (310° F) and occurs 40 seconds after start. Beause the LPT rotor spool is at a very low speed at this point, no significant mechanical-load stresses occur. Therefore, the combined thermal and mechanical stresses are pot excessive.

A review of component life, based on updated start temperatures and thermal gradients, showed that full-life goals can be expected. The start-transient thermal gradients in the LPT vanes are less severe than the steady-state, hot-day-takeoff gradients in the highly cooled HPT Stage 1 vane and occur at a substantially lower temperature. The blade transient metal temperature gradients have been found to be less severe than an earlier analysis indicated. In the early analysis, which was based on the original dynamic start model, the full blade life for the required flight missions was achieved. Only a small percentage of the blade life was used up during the start cycle. These factors lead to the conclusion that the LPT life objectives can be achieved with the current start cycle.

The effects of engine starting on HPT and LPT temperatures will be monitored closely during the E^3 program. As information is obtained from tests of the compressor, the HPT/LPT air turbines, and the core engine, it will be factored into the engine-start dynamic model to assure the reliability of both the ICLS and the FPS.

4.0 MECHANICAL DESIGN

4.1 OVERALL DESIGN APPROACH

4.1.1 Description

The LPT to be used in the ICLS test is a moderately loaded, closecoupled, five-stage turbine with uncooled airfoils. Mechanical features are shown in the Figure 49 cross section.

The LPT casing is a continuous, no-split-flange design with wall insulation and local impingement cooling for improved clearance control. The Stage l nozzle is a conventionally cast, four-vane segment attached by a hooked tang at the outer flowpath. Stages 2 through 5 nozzle vanes are cast, multivane segments attached by hook tangs to the outer-case supports. Outer honeycomb seals are brazed to sheet metal backing strips that hook into the outer casing and assist in the radial retention of the Stages 2 through 5 nozzles. The inner diameters of these vanes have integral seals which consist of honeycomb brazed to the cast vane seal support. A full-ring inner seal is bolted to the Stage 1 vane and consists of three sections of honeycomb brazed to a sheet metal structure.

Material selections for the LPT static parts are shown in Figure 50 and listed in Table V.

Component	ICLS	FPS
Stator Vane 1 Vanes 2-5 Casing Manifold Seals Bolts Nuts	René 77 René 77 Inco 718 321 SS Hastelloy X Inco 718 Waspaloy	René 125 René 77 Inco 718 321 SS Hastelloy X Inco 718 Waspaloy
Rotor Blades 1-5 Disks 1-5 Blade Retainers Bolts Nuts	René 77 Inco 718 Inco 718 Inco 718 Waspaloy	René 77 Inco 718 Inco 718 Inco 718 Waspaloy

Table V. LPT Materials.

 $\widehat{}$

 \mathbf{E}

The LPT rotor is an uncooled design comprising disks with integral spacer arms and bolted joints between each stage. The main support cone extends from the sump between the HPT and LPT rotors and attaches at the LPT spool between the Stage 3 and Stage 4 disks. LPT blading is a proven, cast design with tip shrouds and multitang dovetails. Inner stage seals of the LPT spool are repairable, two-tooth designs and are attached at the bolted flange joints between the disk spacer connections. They provide good performance (low leakage) and easy replacement. The rotor materials are shown in Figure 50 and listed in Table V.

Overall, the selected LPT configuration is a balanced design with a strong emphasis on high efficiency and performance while retaining good maintenance features and low cost.

4.1.2 Design Loads and Limits

The LPT is designed to meet the mechanical loads and limits that are defined in the E³ technical requirements and according to GE design practices. Basic engine cycle performance parameters defining the aerodynamic design point and the maximum rotor speeds are given in Table VI. The ICLS engine hardware is designed to meet two levels of requirements. The blades are designed for FPS conditions, and the rotor spool and support structures are designed for growth conditions. Basic aerodynamic design parameters for Stages 1 and 5 rotors are shown in Table VII and indicate the range between LPT inlet and exit characteristics.

Design limit stresses are set by the -3σ material properties. For highcycle fatigue (HCF) life evaluation, a Goodman diagram is used to predict the maximum allowable vibratory stress where infinite life can be achieved. Lowcycle fatigue (LCF) stress levels are based on limits as set by parts usage on 36,000 aircraft missions with two stress cycles per mission for rotor parts. This results in requirements of 72,000 stress cycles for rotor parts and 36,000 stress cycles for all other components. In addition, the disks must be designed to provide a residual life of 6,000 cycles when the disk has a defect of the size: 0.025 x 0.076 cm (0.01 x 0.03 in.).

Acoustic considerations imposed separate requirements on the Stage 4 rotor where a 1.4-chord, axial, blade-to-vane gap and a rotor with 156 blades were needed.

The typical mission with the major time-lapse increments denoted is shown in Figure 51.

4.1.3 Design Goals

The LPT mechanical configuration is based on meeting the overall engine requirements of sfc and DOC within the following goals:

Figure 50. LPT Materials for FPS Major Components.

ORIGINAL PAGE S

(🔶)

I. Flowpath and Clearance FPS Growth Calculation Cycle Case No. 41 Altitude 10,668 m (35,000 ft) 10,668 m (35,000 ft) Mach No. 0.80 0.80 ΔT_{amb} +10° C (+18° F) +10° C (+18° F) Rating Max. Climb Max. Climb Fan Physical Speed 3539 rpm 3939 rpm II. Maximum Stress Calculations Cycle Case No. 72 Altitude 5791 m (19,000 ft) 5791 m (19,000 ft) Mach No. 0.30 0.30 ΔTamb +35° C (+63° F) +35° C (+63° F) Rating Takeoff Takeoff Rotor Physical Speed 3611 rpm 4079 rpm (at 2.6% Overspeed) (3707 rpm) (4160 rpm) Cycle Case No. 27 Altitude Sea Level Static Sea Level Static Mach No. 0.30 0.30 ^{∆T}amb +35° C (+63° F) +35° C (+63° F) Rating Takeoff Takeoff Rotor Physical Speed 3289 rpm 3679 rpm (at 2.6% Overspeed) (3376 rpm) (3777 rpm)

Table VI. LPT Design Cycle Performance Parameters.

Table VII. LPT Design FPS Aerodynamic Parameters, Design Point.

Parameter	Stage 1 Rotor	Stage 5 Rotor			
Tip Diameter	89.1 cm (35.1 in.)	118.3 cm (46.56 in.)			
Tip Speed	168.6 m/sec (553 ft/sec)	23.7 m/sec (734 ft/sec)			
Airflow	67.8 kg/sec (149.5 1b/sec)	67.0 kg/sec (149.5 lb/sec)			
Inlet Radius Ratio	0.76	0.64			
Aspect Ratio	3.54	5.72			
P _T /P _T	1.30	1.26			
Numbers of Blades	122	110			

OF PUOR CONTRACT

, **z**.

سجر ز

Figure 51. Typical Flight Cycle.

う

1. Performance

• Provide a loading parameter of 1.29 at a physical speed of 3457 rpm at a fully developed efficiency of 91.7% at the Mach 0.8/10.7 km (35,000 ft) cruise match point.

2. Life

- 18,000 hours/18,000 flight cycles for cold (nonflowpath) parts
- 9,000 hours/9,000 flight cycles for hot (flowpath) parts
- Minimize potentially damaging airfoil vibrations
- Rotor structures unaffected by blade-out-induced vibrations
- Rotor structure designed to 122% of maximum-rated growth physical speed

3. Reliability

- Elimination of bolt holes in live disk
- Proven blade design

4. Turbine Development

- Develop the aerodynamic efficiencies of the blading by a systematic building-block-approach, air-turbine test program.
- Design the rotor and blading systems to achieve cost, aerodynamic, and aeromechanical requirements as well as initial reliability equal to or better than current high-bypass turbofans.

4.2 Rotor

4.2.1 Blade Design

The Block IIB air turbine blade features shown in Figure 52 reflect successful commercial engine experience. All five stages of the blades are solid and uncooled and have two-tang dovetails. The tip shrouds are cast integrally with the airfoils and have two-tooth seals to prevent leakage past the blade.

The blade airfoils were designed (quantity, chord, shape, size) initially to meet aerodynamic requirements and then modified (quantity or shape) as needed to meet additional mechanical-stress or frequency requirements. Figure 52 shows the major airfoil geometry features. The blade airfoils range in length from 10.90 cm (4.29 in.) on Stage 1 to 22.58 cm (8.89 in.) on Stage 5.

ORIGINAL FACE IS DE POOR QUALITY

	Number of Blades	C _H , Root Chord, cm (in.)	Tip Chord, cm (in.)	L, Blade Length, cm (in.)	Aspect Katio	
Stage 1	120	3.05 (1.20)	3.10 (1.22)	10.90 (4.29)	3.54	
Stage 2	122	3.05 (1.20)	3.18 (1.25)	13.74 (5.41)	4.39	
Stage 3	122	3.30 (1.30)	3.51 (1.38)	16.66 (6.56)	4.99	
Stage 4	156	3.07 (1.21)	2.90 (1.14)	20.22 (7.96)	7.47	
Stage 5	110	3.66 (1.44)	4.22 (1.66)	22.58 (8.89)	5.72	

Figure 52. LPT Blade Features of Stages 1 Through 5.

The aspect ratios range from 3.54 on Stage 1 to 7.47 on Stage 4. The large aspect ratio on Stage 4 is due to the aerodynamic "flask" design of the airfoil. The chord dimension decreases from the root to the pitch and then increases from the pitch to the tip. The smaller chord at midspan produces a larger aspect ratio. Also, there are more blades in Stage 4 than in any other stage. The larger number of blades (156) was selected to improve acoustic emissions by increasing blade-passing frequency and by providing a larger nozzle-to-blade gap due to the shorter blade chord.

Additional typical airfoil geometry features are shown in Figure 53. Leading-edge and trailing-edge diameters are shown for the root, pitch, and tip sections. They range from 0.079 cm (0.031 in.) on Stage 1 to 0.048 cm (0.019 in.) on Stage 4. In addition, area and maximum thickness are plotted versus percent span. In all stages, the maximum thickness and area through the blade shank are larger than those through the airfoil in order to provide added strength adjacent to the dovetail attachment. An angled platform (5° from axial) was used on the Stage 4 blade to provide an adequate platform for the highly staggered airfoil shape (Figure 54).

Each blade airfoil was analyzed for combined spanwise stresses. Figure 55 shows these stresses for significant Stage 1 airfoil locations. The airfoil was tilted tangentially to balance the leading-edge and maximum-convex stresses. Axial and tangential offsets were provided at the blade root to reduce the peak stresses in the dovetail. A summary of airfoil stresses is presented in Table VIII.

Blade airfoil rupture life was calculated by using a mission-mix analysis. Seven operating points were chosen to represent the full range of engine/aircraft mission points (Table IX). The resulting rupture lives and HCF allowable stresses for the airfoils are shown in Figures 56 through 60. The minimum allowable vibratory stress value is based on GE engine experience. All blades were found to have adequate rupture lives and HCF vibratory capabilities.

LCF lives were calculated at maximum hot-day takeoff stresses. For each mission, it was c iservatively assumed that there were two LCF cycles: one for takeoff and the for thrust reverse. Therefore, 36,000 cycles would result from 18,000 missions. All blades were found to have LCF life in excess of 100,000 cycles, versus 36,000 cycles required, as shown in Table X.

Vibration analyses were performed to ensure that there were no resonances of blade natural frequencies with major engine stimulation forces in the steady-state operating range. Typical mode shapes investigated were first flex, first torsion, first axial, and two-stripe (Figure 61).

Results of the resonance study for the Stage 1 blade are shown in Figure 62. The only cross points (intersections of forcing functions with blade natural frequencies) near the steady-state operating range are for the second torsional mode with both the Stage 1 vane line (72/rev) and the Stage 2 vane line (102/rev). (There are no known problems in the second torsional mode for previous engine designs; therefore, no problems are expected with this blade.)

 $\langle -2$

.

يك.

-

Figure 53. Stage 1 Blade Airfoil Configuration.

CRIGINAL PAGE IS OF POOR QUALITY

Figure 54. Blade Platform Planform Selection.

ì

ORIGINAL PAGE IS OF POOR QUALITY

Figure 55. LPT Stage 1 Blade Stress and Temperature Distribution.

يتر.

ORIGINAL FAGE IS OF POOR QUALITY

7

)

St age	1	2	3	4	j
Centrifugal Stress					
Pitch, MPa (ksi)	41.3	57.9	62.7	84.8	93.1
	(6.0)	(8.4)	(9.1)	(12.3)	(13.5)
Root, MPa (ksi)	53.1	66.7	87.5	88.2	136.5
	(7.7)	(9.7)	(12.7)	(12.8)	(19.8)
Leading Edge Resultant Stress					
Pitch, MPa (ksi)	73.8	101.3	104.1	124.1	106.9
	(10.7)	(14.7)	(15.1)	(18.0)	(15.5)
Root, MPa (ksi)	62.7	59.3	96.5	88.9	134.4
	(9.1)	(8.6)	(14.0)	(12.9)	(19.5)
Uncorrected Gas Bending Stress					
Root, H Pa (ksi)	133.1	150.3	157.9	207.5	248.2
	(19.3)	(21.8)	(22.9)	(30.1)	(36.0)

Table VIII. Airfoil Stress Summary - Takeoff Condition.

Table IX. LPT Mission Analysis Used for Airfoil Rupture Creep Life Calculations.

Power Setting	Time at Condition (hr)	Altitude, m(ft)	Mach No.	▲ T _{amb} • C (* F)	r pa	T₄g • C (• ₽)	P ₄₉ Tot kPa (psi)
Max. Takeoff	159.5	0	0.3	+18 (+33)	3707	920 (.588)	586 (85)
Max. Takeoff	159.5	0	0.3	+3 (+6)	3707	873 (1604)	586 (85)
Max. Climb	1,685	3,048 (10,000)	0.453	+10 (+18)	3453	871 (1601)	462 (67)
Max. Climb	1,685	10,668 (35,000)	0.8	+10 (+18)	3633	870 (159 9)	262 (38)
Max. Cruise	5,515	10,668 (35,000)	0.8	+10 (+18)	3526	843 (1549)	248 (36)
Max. Cruise	1,838	15,240 (50,000)	0.8	+10 (+18)	3477	844 (1552)	120 (17.4)
Approach Idle	6,958 	0	0	+10 (+18)	2800	677 (1250)	207 (30)

ORIGINAL PACE IS OF POOR QUALITY

للمرز

Y

ORIGINAL PAGE 13 OF POOR QUALITY

•

·**-**

 \mathbf{C}

ŧ

ORIGINAL PARTIES 280 40 HCF Vibratory Stress, MPa HCF Vibratory Stress, ksi MXCR ---HDTO-210 ٥٤ Figure 58. LPT Stage 3 Blade Airfoil Life Characteristics. Allowable -Minimum 20 140 10 20 100 80 60 40 20 0 Percent Span Rupture Life > 100,000 Hours Versus 18,000 Hours Required R 3 R3

> 2 $\mathcal{L}_{\mathcal{L}}$

and the Rest of the Party of th

CONTRACTOR AND A CONTRA

-

And Barrison . Constant

P

. Za

المرزان

Figure 59. LPT Stage 4 Blade Airfoil Life Characteristics.

92

(+)

ORIGINAL PAGE IS OF POOR QUALITY

 $\mathbf{\mathbf{A}}$

 (\mathbf{A})

93

Ì

 (\mathbf{f})

ORIGINAL PAGE IS OF POOR QUALITY

Stage	σ _{Max} , MPa (ksi)	% Span	Temperature, °C (°F)	LCF Life Cycles*
1 2 3 4 5	75.85 (11.0) 101.36 (14.7) 107.56 (15.6) 129.63 (18.8) 148.24 (21.5)	30 50 30 40 20	882 (1620) 838 (1540) 746 (1375) 693 (1280) 624 (1155)	>105 >105 >105 >105 >105 >105
*Requir	red Life = 36,000	Cyc les		

Table X. Blade Airfoil LCF Life.

Thus, the vibration characteristics of the Stage 1 blade are completely satisfactory.

Similar analyses were performed on blade designs for Stages 2 through 5 blades; no indications of vibration problems were found.

The blades were also analyzed for sensitivity to flow-induced vibration (flutter). A flutter index was calculated for the torsional and flexural modes of vibration, and this index was compared with values obtained from prior GE engine evaluations. All blade designs met the flutter-vibration requirements as shown in Table XI.

Table XI. LPT Flutter Analysis.

Calculation Flutter Index = v = Relative Flow Velocity • 1/2 Blade Chord · Blade Natural Frequency Check Both Flexural and Torsional Flutter • Safety Factor * Max. Allowable/ Calculated Results Stage Safety Factor 1 2 3 4 5 • Torsion 2.3 1.8 1.6 1.0 1.3 • Flex 4.9 4.0 3.4 1.8 2.2 Conclusion All Blades Meet Flutter Vibration Requirements (Factor 21)

96

Analyses were performed to determine combined blade/disk vibration frequencies in the operating range and to establish that there were no resulting detrimental excitations. The modes investigated were the 2, 4, and 6 diameter types. The combined blade/disk natural frequencies for each disk stage are plotted against existing engine excitations in Figure 63 for Stage 1. A review of this plot (Campbell diagram) showed that even the potentially limiting mode, the 2-diameter on Stage 1, has greater than the desired frequency margin with the 2/rev excitation line throughout the engine operating range. Thus, no vibration problems are indicated at any frequency.

The blade tip shrouds provide rotational fixity for resistance to vibuation and also serve as tip seals against gas leakage. The tip shroud sizing and design considerations are listed in Figure 64. The tip shroud geometries were based on commercial engine experience with thicknesses set by stress and frequency requirements. Temperatures considered in the analyses were for the hot-day takeoff condition.

Figure 65 shows a typical view of two adjacent tip shrouds after assembly. Saw teeth are used on the seals so that they will cut into the stationary honeycomb seals rather than crushing into them. A hard coating, applied by flame-spraying, is used on the tip-shroud interlock surfaces to prevent excessive wear. CM64 hard coat will be used on Stages 1 and 2 because it has good high-temperature wear characteristics, and Triballoy T800 will be used on Stages 3, 4, and 5 because it has excellent wear characteristics at lower temperatures.

An LPT flowpath improvement in the Block IIB design provided axial lengthening in the upstream portion of the tip shrouds on Stages 1, 2, and 3 in order to achieve larger overlaps at the outer flowpath. This tip shroud extension, although improving performance, had adverse effects with respect to stresses and vibrations. Consequently, the first three stages of tip shrouds were thickened to ensure that they would meet the life requirements and that the lowest natural frequencies would be higher than vane-passing frequencies by sufficient margins.

Figure 66 shows the results of the Stage 1 blade tip-shroud analysis. The tip shrouds were analyzed for stress and frequency. A creep limit stress was calculated based on reaching plastic creep curing the 18,000-hour mission shown in Table IX. The frequencies of the overhangs were calculated and compared to the vane-passing frequencies of the adjacent stages. As indicated in Figure 66, the Stage 1 tip shroud meets the creep limit stress criteria and has sufficient frequency margins over vane-passing frequencies. Similar analyses were made for the shrouds of Stages 2 through 5; again, no problems were found with vibration stresses.

One additional region, the blade platform angel wings, was checked for potential vibration problems. Short overlaps are used in current GE engines, and these angel wings have natural frequencies much higher than any stator vane-passing-frequency excitation. The E^3 LPT angel wings are much longer, for improved performance, so they have lower frequencies and, thus, greater potential for coincidence with stator excitation. The analyses performed on

Figure 63. Stage 1 Coupled Blade Disk Cambell Diagram.

VIBRATION - Overhangs have Sufficient Frequency Margins

Over Vane Per Revs

- Correlated with Commercial Engine Experience

STRFSS - Meets Life Requirements

- Seal Teeth: Height Set by Flowpath Angles

TEMPERATURES - Considers Gas Profile

- Hot Day Takeoff

- Thickness: Set by Stress and Frequency

Requirements

: Provides Tip Lockup

- Angle: Based on Commercial Engine Experience

Sizing - Overhang: Balanced Over Airfoil

GEOMETRY

UL PAGE IS C. I DOR QUALITY 4

Figure 64. LPT Tip Shrouds.

99

-

-

First Flex Mode

4

	Stress	MPa (ksi)	Fre	quency
Section	Actual	Creep Limit	Actual (Hz)	% Margin Over 102 S2*
1-1	82.7 (12.0)	87.6 (12.7)	10,490	40
2-2	78.6 (11.4)	87.6 (12.7)	14,620	57
3-3	51.0 (7.4)	87.6 (12.7)	15,800	60
4-4	75.8 (11.0)	87.6 (12.7)	15,310	59

Other Shrouds Also Meet Stress and Frequency Requirements

*Stage 2 Vane Fourced Vibration, 102 per Revolution

Figure 66. LPT Stage 1 Blade Tip Shroud Stress/Life and Frequency.

(4)

the blade angel wings were comparable to those for the tip shrouds described above. The angel wings were analyzed as cantilevered beams. Figure 67 shows that the Stage 1 angel wings met the creep limit stress criteria and that they had sufficient frequency margins over vane-passing frequencies. Similar analyses were made for Stages 2 through 5 angel wings. Again, no problems were indicated.

The LPT blades are retained in dovetail slots by two different methods. On Stages 1, 2, and 3, they are retained from aft movement by integrally cast retainers on the ends of the dovetails, as shown in Figure 68, and are retained against forward movement by the rotor seals. On Stages 4 and 5 the blades are retained against forward and aft movement by formed tab retainers as shown in Figure 69.

Stages 1, 2, and 3 blade retainers were designed so that they would not exceed material limits when a maximum design force (larger than the expected steady-state force) was applied at the end of the retainer. Figure 68 shows that all these retainers either meet or exceed the required strength.

The designs of the Stage 4 and 5 blade retainers were based on correlations with CF6 load tests. Thickening of the retainers was necessary for resisting axial transition (push-out) to meet requirements. The depths of the disk dovetail slots were increased slightly to allow room for the thickened retainers. The blade retainers are designed to withstand push-out force greater than the calculated applied loads.

As a result of these stress/life and frequency studies, the blade designs for all five stages are judged mechanically acceptable.

4.2.2 Dovetail Attachments

The dovetail design has been specifically tailored to the load conditions and design requirements of the E³. Commonality in dovetail size was achieved by using the same size for Stages 1, 2, and 3; this provides a substantial saving in the cost of cutting tools. Stage 5 uses the same dovetail configuration except that the slot bottom was altered to permit a larger blade retainer. The Stage 4 dovetail is smaller due to the larger number of Stage 4 blades (required for acoustic considerations) which must fit into the same disk-rim circumference.

Detail stress distributions for the Stage 1 dovetail are shown in Figure 70. The peak stresses for the blade and disk are indicated by the "boxed" values and are the LCF life-limiting locations. A summary of peak stresses and life values is shown in Table XII for all five stages of blades and disks. Life requirements are met for all stages.

4.2.3 Disks

Each disk is sized in proportion to the centrifugal loading of the blade row. The spacer arms are forged integrally with the disks and are tapered to

•

.

Ż

3

· · · · · · · · ·

• Other Stage Angel Wings Also Meet Stress and Frequency Requirements

	Stress, MP	a (ksi)	Frequency	
Section	Actual	Creep Limit	Actual, (Hz)	% Margin Over 102 S2*
Forward Angel Wing	40.7 (5.9)	162 (23.5)	12,725	50%
Aft Angel Wing	67.6 (9.8)	162 (23.5)	8,170	23%

*Stage 2 Vane Forced Vibration, 102 per Revolution

Figure 67. LPT Stage 1 Blade Angel Wing Stress/Life and Frequency.

~~~~

103

.

Ta

ORIGINAL PAGE IS OF POOR QUALITY •

)



|         |                           |                           |            |                         | Design Allowable:                          |
|---------|---------------------------|---------------------------|------------|-------------------------|--------------------------------------------|
|         | t <sub>1</sub> , cm (in.) | t <sub>2</sub> , cm (in.) | F, N (1bf) | d<br>max., MPa<br>(kei) | 0.22 Yield Strength<br>at 649° C (1200° F) |
| Stage 1 | 0.109 (0.043)             | 0 267 (0 105)             |            | (101)                   | mra (ksi)                                  |
| Stage 2 | 0.107 (0.000)             | 0.207 (0.103)             | 894 (201)  | 620.5 ( <b>9</b> 0)     | 634.3 (92)                                 |
|         | 0.127 (0.050)             | 0,292 (0,115)             | 1103 (248) | 627.5 (91)              | 63/ 2 (02)                                 |
| Stage 3 | 0.173 (0.068)             | 0.343 (0.135)             | 1561 (351) | 63/ 2 (02)              | 034:3 (92)                                 |
|         |                           |                           | 1001 (001) | 034.3 (92)              | 634.3 (92)                                 |

Figure 68. Blade Retainers for Stages 1, 2, and 3.

Configuration - Sheet Metal •

- Material Inco 718
- Analysis/Design Utilize CF6-50, -80 Load Tests .





105

ORIGINAL PAGE NE OF POOR QUALITY 4

)



Stresses (ksi)

Position

| Locati | on | 1                      | 2               | 3                        | 4               | 5               | 6               | К <sub>t</sub> |
|--------|----|------------------------|-----------------|--------------------------|-----------------|-----------------|-----------------|----------------|
| B) ade | A  | 118.6<br>(17.2)        | 191.8<br>(27.8) | 165.5<br><b>(24</b> .0)  | 91.7<br>(13.3)  | 178.6<br>(25.9) | 104.8<br>(15.2) | 1.62           |
| DIade  | В  | 136.5<br><b>(19.8)</b> | 215.8<br>(31.3) | 186.2<br>( <b>27.</b> 0) | 106.2<br>(15.4) | 201.3<br>(29.2) | 121.4<br>(17.6) | 1.59           |
| Disk   | с  | 66.9<br>(9.7)          | 191.7<br>(27.8) | 171.0<br><b>*(24.8)</b>  | 46.9<br>(6.8)   | 181.3<br>(26.3) | 57.2<br>(8.3)   | 1.60           |
|        | D  | 144.8<br>(21.0)        | 143.4<br>(20.8) | 180.0<br>(26.1)          | 116.5<br>(16.9) | 194.4<br>(28.2) | 130.3<br>(18.9) | 1.60           |
|        |    | :                      |                 | Maxim.<br>Stress         | 1 <b>m</b><br>5 |                 |                 |                |

+

6

مؤلفه معامد معاديد

بربران الاستريسية والمسير

ŀ

Ļ

.

Ì.

| Summary. |
|----------|
| Life     |
| Dovetail |
| X11.     |
| Table    |

Γ

6

|            |                   |                                  | Blade    |                                                            |                                  | Disk |                                          |
|------------|-------------------|----------------------------------|----------|------------------------------------------------------------|----------------------------------|------|------------------------------------------|
| Stages     | Temp.<br>• C(• F) | <sup>d</sup> Max<br>MPa<br>(ksi) | ĸ        | Calculated<br>LCF Life<br>(36,000 Cycles<br>Life Required) | <sup>d</sup> Max<br>MPa<br>(kai) | 2    | Celenlated<br>LCF Life<br>(72,000 Cycles |
| 1          | 596<br>(1104)     | 215.8<br>(31.3)                  | 1.59     | >105                                                       | 208.2<br>(30.2)                  | 1.60 | >105                                     |
| ~          | 607<br>(1125)     | 248.2<br>(36.0)                  | 1.60     | 2105                                                       | 228.2<br>(33.1)                  | 1.62 | 5012                                     |
| m          | 593<br>(1100)     | 297.2<br>(43.1)                  | 1.60     | 2105                                                       | 262.0<br>(38.0)                  | 1.62 | >105                                     |
| 4          | 593<br>(1100)     | 190.3<br>(27.6)                  | 1.65     | 2017                                                       | 201.3<br>(29.2)                  | 1.63 | 2105                                     |
| 5          | 560<br>(1040)     | 289.6<br>(42.0)                  | 1.60     | 2105                                                       | 242.7<br>(35.2)                  | 1.63 |                                          |
| Conclusi   | :uo               |                                  |          |                                                            |                                  |      |                                          |
| <b>All</b> | Dovetails N       | Meet LCF                         | Life Req | uirements                                                  |                                  |      |                                          |

•

DRICTIAL PAGE IS CF POOR QUALITY

Ð

become thinner in the region away from the disk web attachment. Spacer arm stresses in the LPT rotor were calculated at the limiting time steps and are shown in Figure 71. There are no bolt hole stress concentrations in the main load-carrying disk webs. Instead, the bolt holes are located in the lowstressed spacer arms. A bolt analysis was conducted, and the results are shown in Table XIII. The available clamping load of the bolting was shown to exceed the requirements, even after the relaxation effects of 9000 hours of engine operation. Table XIV describes the bolts and nuts selected for each disk stage and also lists the limiting mode of "failure."

Analyses of transient engine operation were run to identify the critical operating point (combined speed and temperature gradient) for each disk. As a typical example, Figure 72 shows the stress distributions for the Stage 1 disk at the critical operating point. A summary of disk LCF life limits is given in Table XV. All disk designs meet or exceed the minimum life requirement: 72,000 cycles. An overspeed analysis was conducted to determine whether the disks met the 120% redline speed requirement. All disks meet burst-speed requirements with margin to spare.

### 4.2.4 Seals

LPT rotor seals have several functions. The primary function is to prevent leakage past the vanes. Stages 1, 2, and 3 seals have two other important functions: to prevent forward movement of the blades and to direct cooling flow to the blade/disk dovetails. All seals meet life requirements.

### 4.3 LPT STATOR

### 4.3.1 Stage 1 Nozzle Subassembly

The Stage 1 LPT nozzle assembly comprises the inner and outer transition ducts, Stage 1 LPT nozzle, nozzle support, forward inner seal support, aft inner seal support, and miscellaneous parts such as spoolies, windage shields, heat shield, splash shield, nuts, and bolts. A schematic of this assembly is shown in Figure 73.

One unique f\_ature of this assembly is to direct fifth-stage compressor air down through the nozzle airfoils to purge the Stage 2 HPT disk aft cavity and to pressurize and purge the Stages 1 through 3 LPT rotor cavity.

### Outer Duct

The outer HPT/LPT transition duct is assembled from 18 René 80 cast and machined segments. The segments are supported in the front by the nozzle support and at the rear by a bolted joint as shown in Figure 74. A transient heat-transfer analysis was completed for the HPT aft case and adjacent hardware including the outer ducts. The forward attachment hook of each duct

OF POOR QUALITY





÷

# ORIGINAL PAGE IS OF POOR QUALITY

|        | Required                               | Clamp Load,               | N (1b <sub>f</sub> ) | Available Clamp             | ing Load, N(1bf)                             |
|--------|----------------------------------------|---------------------------|----------------------|-----------------------------|----------------------------------------------|
| Stages | Torque and<br>Radial Shear<br>. = 0.15 | <b>Torque</b><br>µ = 0.10 | Separation           | Cold<br>Assy. Clamp<br>Load | Residual Cold<br>Clamp Load<br>After 9000 Hr |
| 1-2    | .1,525                                 | 13,745                    | 7,184                | 34,430                      | 21,796                                       |
|        | (2,591)                                | (3,090)                   | (1,615)              | (7,740)                     | (4,900)                                      |
| 2-3    | 13,736                                 | 20,017                    | 8,229                | 34,430                      | 21,796                                       |
|        | (3,088)                                | (4,500)                   | (1,850)              | (7,740)                     | (4,900)                                      |
| 3-4    | 29,625                                 | 27,525                    | 15,680               | 53,379                      | 33,139                                       |
|        | (0,660)                                | (6,188)                   | (3,525)              | (12,000)                    | (7,400)                                      |
| 4-5    | 10,253                                 | 8,398                     | 12,588               | 34,429                      | 21,796                                       |
|        | (2,305)                                | (1,888)                   | (2,830)              | (7,740)                     | (4,900)                                      |

# Table XIII. LPT Rotor Bolt Analysis.

Table XIV. Selected Bolts for Rotor Flanges.

| Stages                | Bolt Size<br>cm (in.) | Quantity   | Bolt Material     | Nut Material      | Limiting Hode*          |
|-----------------------|-----------------------|------------|-------------------|-------------------|-------------------------|
| Stage 1<br>Fwd Flange | 0.635 *<br>(1/4 D-28) | * 40       | Inco 718          | Waspaloy          | Maximum<br>Bolt Spacing |
| 1-2                   | 0.794<br>(5/16 D-24)  | 40         | Inco 718          | H <b>aspa</b> loy | Torque                  |
| 2-3                   | 0.794<br>(5/16 D-24)  | 52         | Inco 718          | Kaapaloy          | Torque                  |
| 3–4                   | 0.953<br>(3/8 D-24)   | 76         | Inco 718          | Waspaloy          | Torque                  |
| 4-5                   | 0.794<br>(5/16 D/24)  | 40         | Inco 718          | Waspaloy          | Flange<br>Separation    |
| *Design req           | uirement whic         | h determin | es bolt selection | on.               | L                       |

, Ze

\*\*(  $\frac{1}{4}$  Diameter - 28 Threads per inch)



, **Z** 

•:

•

1.

\_

Figure 72. Stage 1 LPT Disk Stress Distribution at Growth Conditions.

h

111

<u>N.</u>;

Table XV. LPT Rotor Disk Minimum Calculated LCF Life.

| Limiting Mission Daint                       |              |              | Disk St      | age          |              |
|----------------------------------------------|--------------|--------------|--------------|--------------|--------------|
|                                              | I            | 2            | 3            | 4            | 5            |
| Time After Takeoff Initiation 🕁              | 60 sec       | 60 sec       | 20 sec       | 60 sec       | 20 sec       |
| Bore                                         |              |              |              |              |              |
| Hoop Stress, 1/2 of Peak Value               | 351          | 351          | 351          | 303          | 317          |
| MFA (KSI)                                    | (10)         | (15)         | (15)         | (44)         | (46)         |
| Temperature,<br>° C (° F)                    | 315<br>(600) | 302<br>(575) | 304<br>(580) | 482<br>(900) | 454<br>(850) |
| Allowable LCF Cycles                         | 72,000       | 72,000       | 72,000       | >105         | >105         |
| Dovetail Slot Botton<br>K <sub>t</sub> = 1.7 |              |              |              |              |              |
| Hoop Stress, 1/2 of Peak Value<br>MPa (ksi)  | 193<br>(28)  | 186<br>(27)  | 179<br>(26)  | 234<br>(34)  | 234<br>(34)  |
| Temperature, °C (°F)                         | 375<br>(708) | 377<br>(710) | 371<br>(700) | 477<br>(890) | 461<br>(862) |
| Allowable LCF Cycles                         | >105         | >105         | >105         | 72,000       | 72,000       |

ORIGINAL PAGE IS OF POOR QUIL TY **()** 

12

(+



Figure 73. LPT Stage 1 Nozzle Assembly.



**.** -

.

**?** 

D

B

segment is scalloped to reduce the conduction heat-transfer path into the support. Both the forward attachment hook and the aft attachment flange are saw-cut to reduce thermal stresses. The forward hook is also costed with Triballoy 800 to reduce wear.

All 18 ducts are identical for both the ICLS and the FPS. However, for ICLS testing, provisions were made in the ducts for accepting 14  $T_{42}$  and  $P_{42}$  probes spaced circumferentially around the HPT aft casing.

### Outer Transition-Duct/Nozzle Support

The final configuration of the outer transition-duct/nozzle support is shown in Figure 74. This support is a 360° ring machined from an Inco 718 forging and forms a plenum for the fifth-stage cooling air. The design features a cylindrical support "arm" that has an interference fit with the HPT casing and allows the support bolted flange to grow radially during accel, thereby maintaining a positive seal with the casing. Figure 75 shows effective stresses at takeoff, as calculated by the GE CLASS/MASS computer program.

The deflection analysis of the support showed that the cylindrical "arm" would not remain in contact with the HPT casing during a portion of the engine decel; fifth-stage air leakage would occur at that point. It was determined that this would occur because of the faster cooling rate of the support compared to the casing, and a thermal shield was added to minimize the probability of this leakage occurring.

To reduce wear, all support surfaces which mate with the HPT casing will be thermal sprayed with Triballoy 800.

The only difference between the FPS and the ICLS designs is the addition of 14 bosses (spaced circumferentially) on the ICLS support. These bosses will provide seating surfaces for the temperature and pressure probes which will be mounted on the HPT casing.

#### Stage 1 LPT Nozzle

The LPT Stage 1 nozzle design has been modified significantly since the preliminary design phase. The final design (Figure 73) is a high-aspectratio, 72-vane design with constant projected axial chord and radial trailing edges. A total of 18 nozzle segments per engine set with 4 vanes per segment will be cast from René 125. The front hook of each segment will be bolted to the outer-duct/nozzle support. The nozzle aft hook radial loads will be carried by the HPT casing. Axial airfoil gas loads and inner seal loads will be resisted by the LPT casing forward flange. The tangential gas load on the airfoils is transmitted through the nozzle outer band, the aft hook, and into the HPT casing via lugs brazed to the aft nozzle hook as shown in Figure 76. The operating conditions and calculated design life for the



Figure 75. Support for Outer Transition Duct and LPT Stage 1 Nozzle: Effective Stresses at Takevif.

**♦** 

116



Figure 76. LPT Stage 1 Nozzle Tangential Load Stop.

# ORIGINAL PAGE IS OF POOR QUALITY

Stage 1 nozzle airfoil are displayed in Table XVI and meet all design requirements. The results of a similar analysis of the attachment hooks of the Stage 1 nozzle are given in Figure 77 and are satisfactory.

Table XVI. LPT Stage 1 Nozzle Airfoil Operating Conditions and Calculated Design Life.

• Takeoff, FPS Baseline

Material: René 125  $T_{Gas Max.} = 957^{\circ} C (1755^{\circ} F) at 95% Span$ T<sub>Metal</sub> = 931° C (1708° F), 8° C (47° F) Cooling  $T_{Cooling}$  (Fifth-Stage Purge) = 404° C (760° F) 1.27 Fifth-Stage Purge Air Maximum Cooling Capability = 22° C (72° F) Axial Gas Load/Vane = 291 N (55.4 1bf)Tangential Gas Lcad/Vane = 348 N (78.2 lbf)  $\Delta P \text{ Load}/V_{\Delta ne} = 263.5 \text{ N} (59.25 \text{ lbf})$ Bending Stress at Limiting Section (Tip, Leading Edge)  $\sigma = 118.6 \text{ MPa} (17.2 \text{ ksi})$ Rupture Life = 3.4 0.5% Creep Life = 4.3 Required Life LCF Life - = 1 **Required** Life Leading Edge to Airfoil Radius  $K_t = 2.02$ 

The inner seal support region is made up of three major components (the aft inner seal support, the forward inner seal support, and the mixer transition duct); features are illustrated in Figure 78.

- 24



.

.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 77. LPT Stage 1 Nozzle Hook Forces, Temperatures, and Stresses at Takeoff.

Ŷ



•

٦ (ح)

.

Ē

È 🔶

One difference between the FPS and ICLS nozzle designs is that the ICLS nozzle will be cast René 77, rather than Kené 125, in order to reduce cost. The lower creep and rupture life of René 77 will be satisfactory for the planned ICLS testing. Another difference between the two designs is that an integrally cast  $T_{42}$  probe pad on the nozzle outer band was eliminated from the ICLS design in order to simplify tooling for the castings. The FPS nozzles will also be Codep coated; the ICLS parts will not.

### Inner HPT/LPT Transition Duct

The inner transition duct is similar to the outer in that it is assembled from 18 cast René 80 segments (Figure 78). The duct segments are supported radially in the front by the forward inner seal support and at the rear by slots in the Stage 1 nozzle inner band. The ducts are clamped axially between a flange on the forward inner seal support and the Stage 1 nozzle inner band and are positioned tangentially by pins in the seal-support flange. The duct forward attachment surfaces are coated with Triballoy 800 to reduce wear. The FPS and ICLS designs are identical.

#### Forward Inner Seal Support

The forward inner seal support configuration (Figure 78) is a 360° ring machined from an Inco 718 forging. This structure provides support for a honeycomb seal located above the Stage 2 HPT blade retainer. Stresses calculated by CLASS/MASS for the maximum stress condition (takeoff) are shown in Figure 79.

### Aft Inner Seal Support

The LPT aft inner seal support is shown in Figure 78. This support is fabricated from an Inco 718 ring forging with Inco 718 sheet metal joined to it by tungsten inert gas (TIG) welds. A flash-welded Inco 718 ring that forms the backing for the honeycomb seal is then TIG welded to the sheet metal.

The aft inner seal support has several functions: (1) it provides support for the honeycomb seal over the HPT rotating seals, (2) it ducts fifthstage cooling air forward to purge the Stage 2 HPT disk cavity, (3) it directs cooling air back to purge the LPT Stage 1-3 rotor cavity, (4) it provides support for a honeycomb seal over the Stage 1 LPT rotating seal, (5) it is a pressure-balance seal between the HPT and LPT, and (6) together with the forward inner seal support, it positions and clamps the inner ducts in place. The calculated temperatures at takeoff along with the predicted pressure loads were used in a CLASS/MASS stress and deflection analysis. Analytical stress values at takeoff are shown in Figure 79.

#### Miscellaneous Hardware

Other miscellaneous hardware associated with the Stage 1 LPT nozzle subassembly are: (1) air-transfer tubes or "spoolies" which help to seal and

ORIGINAL PAGE IS OF POOR QUALITY



Figure 79. LPT Stage 1 Nozzle Inner Seal Supports: Effective Stresses at 1040 Seconds.

122

\*

# ORIGINAL PAGE IS OF POOR QUALITY

direct the fifth-stage compressor cooling air from the nozzles into the aft inner seal support, (2) a gang channel nut plate that also serves as a windage shield over the nuts, (3) a windage shield over the heads of the 36 bolts that clamp the forward and aft seal supports together, (4) a heat shield over the flexible arm of the outer-duct support as described earlier, and (5) a splash shield at the fifth-stage purge air inlets to minimize circumferential tem perature variations around the outer duct support. Items 1, 2, and 3 are shown in Figure 78, and Items 4 and 5 are shown in Figure 74.

### 4.3.2 Stages 2 Through 5 Nozzles

Each of the  $E^3$  LPT Stages 2, 3, 4, and 5 stators is cast from René 77. There are six vanes per segment. The quantity of vanes and segments is shown in Figure 80. Stages 2 and 3 nozzle segments have hollow airfoils for reduced weight, but Stages 4 and 5 nozzles are solid. (However, for the ICLS engine, Stages 2 and 3 airfoils will be solid for reduced tooling costs.) All four stages will have uncoated nozzle segments.

Each stage airfoil was analyzed for gas bending stress and life, assuming the airfoil was cantilevered in the axial and tangential directions. The results are shown in Figure 81. Bending stress, LCF, creep, and rupture lives due to reaction loads at the hocks were also calculated for each stage. Figure 82 tabulates the results of the hock calculations for Stage 2. Stresses for Stages 3 through 5 are equal to or less than those shown for Stage 2.

The tangential gas load is transmitted from the nozzle, by means of a slot in the aft rail of each nozzle segment, through a lug brazed into the adjacent shroud. This lug fits into a slot in the LPT casing (Figure 83), thereby transferring the load into the casing. Table XVII shows the tangential gas load for each of the four stages and the resulting shear and bearing stresses.

| Stages | Tangential<br>Gas Load,<br>N(lbf)/Segment | Load Stop Slug<br>Shear Stress,<br>MPa (ksi) | Nozzle Hook<br>Bearing Stress<br>MPa (ksi) | Casing Hook<br>Bearing Stress,<br>MPa (ksi) |
|--------|-------------------------------------------|----------------------------------------------|--------------------------------------------|---------------------------------------------|
| 2      | 2173 (488.5)                              | 63.4 (9.2)                                   | 382.6 (55.5)                               | 80.0 (11.6)                                 |
| 3      | 2288 (514.4)                              | 64.8 (9.4)                                   | 443.3 (64.3)                               | 78.6 (11.4)                                 |
| 4      | 1733 (389.6)                              | 37.2 (5.4)                                   | 182.7 (26.5)                               | 55.8 (8.1)                                  |
| 5      | 1266 (284.7)                              | 33.3 (4.4)                                   | 153.3 (22.2)                               | 43.4 (6.3)                                  |
| Stress |                                           |                                              |                                            |                                             |
| Limit  |                                           | 372.3 (54)                                   | 517.1 (75)                                 | 289.6 (42)                                  |

Table XVII. LPT Stages 2 Through 5 Tangential Load Stop Stresses.

Hot-Day Takeoff, FPS Baseline



• •

Figure 50. LPT Statur Vane FPS Configuration.

 $(\mathbf{A})$ 

)

.

| - Î |
|-----|
| 1   |
| 36  |
| Ba  |
| FPS |



ζ

Figure 81. LPT Stages 2 Through 5 Nozzles: Airfoil Stress/Life at Takeoff.

OF POOR QUALITY

 $(\mathbf{a})$ 

ORIGINAL PAGE IS OF POOR QUALITY

| Location                        | A-A              | B-B                      | U<br>U        | 6                | ы                | ĩ.               |
|---------------------------------|------------------|--------------------------|---------------|------------------|------------------|------------------|
| on MPa                          | 85.5             | 131                      | 24.1          | 31.7             | 62.1             | 97.8             |
| (ks1)                           | (12.4)           | (0.61)                   | (3.5)         | (4.6)            | (0.6)            | (14.18)          |
| ۲,                              | 1.288            | 1.288                    | 1.0           | 2                |                  | 2.02             |
| o <sub>Max</sub> . MPa<br>(ks1) | 110.3<br>(16.0)  | 168.9<br>(24.5)          | 24.1<br>(3.5) | 63.4<br>(9.2)    | 124.1<br>(18.0)  | 197.5<br>(28.64) |
| T, °C<br>(°F)                   | 802<br>(1475)    | 802<br>(1475)            | 891<br>(1635) | 891<br>(1635)    | 835<br>(1535)    | 891<br>(1635)    |
| LCF (Cycles)                    | ~10 <sup>5</sup> | <u>~</u> 10 <sup>5</sup> | 2105          | >10 <sup>5</sup> | 210 <sup>5</sup> | ~10 <sup>5</sup> |
| 0.2% Creep<br>Margin            | ×10              | >10                      | >10           | 4.7              | 3.78             | 1.0              |
| Rupture Margin                  | 0.<              | >10                      | >10           | >10              | >10              | 1.47             |



2

Figure 82. LPT Stage 2 Nozzle FPS Baseline Stresses/Temperatures at Takeoff.

Stages 3 - 5 Similar

....



Ù



FOUR QUALITY

ţ

.\*

•

 $\overline{\phantom{a}}$ 

127

ŧ.

The circumferential gaps between nozzle segments for all five LPT stages were set to minimize leakage between nozzle segments but still prevent arch bind. The overall sealing scheme throughout the LPT stator is shown in Figure 84.

### 4.3.3 LPT Casing

The  $E^3$  LPT casing is a 360° case fabricated from two Inco 718 cylindrical forgings connected by one circumferential, electron-beam (EB) weld near the axial center. There are no horizontal flanges as on current, commercial turbofan engines. Pads for borescope ports (one for each stage) are EB welded in place. Four loca<sup>3</sup> bolt flanges, for attachment of the cooling manifold, are integrally machined into the outer skin. A total of 132 bolts attach the LPT casing flange to the HPT casing flange, and 120 bolts are used to attach the aft frame flange to the aft casing flange. The LPT nozzles attach to the casing by first engaging the front hook with the nozzle segment tilted forward. The nozzle segment is moved forward and tilted back to engage the aft hook. The shroud set is then installed, and this locks the nozzle segments into the casing (Figure 85).

An analysis of the combined effects of thermal and mechanical loads during transient operation was made using the computer model CLASS/MASS. The results were used to calculate stress for "worst case" conditions and to calculate casing deflections. These calculations allowed predictions to be made of cooling effectiveness for the ACC system. Calculated stresses are shown in Figures 86 and 87; LPT clearances based on deflections are addressed later in this report.

Figure 88 indicates that the containment capability of the LPT casing and shrouds is satisfactory for the calculated impact energy of a given  $E^3$  LPT blade, based on the minimum combined thickness for this design.

## 4.3.4 HPT/LPT Flange Bolt Capability

The HPT/LPT connecting-flange bolts are designed to provide axial containment of the LPT rotor in the event the LPT shaft fails. The bolts selected are 0.79 cm (5/16 in.) in diameter, and in the event of a failure the bolts must absorb the energy generated by the aft motion of the free LPT rotor. This bolt diameter provides more than enough energy aborption capability in the event of failure.

### 4.4 ACTIVE CLEARANCE CONTROL (ACC)

## 4.4.1 Approach

The mechanical design of the ACC for the LPT is discussed in Section 3.5 with respect to both purpose and operational characteristics. The basic intent of the design is to allow engine operation with small shroud and seal



Figure 84. Schematic of LPT Sealing Locations and Configurations.

129

OFFICINAL PAGE IS OF FOOR QUALITY ł

7



.--

(see Figure 80)

(4)

,

١.

È I



- Inconel 718 Material Properties Correspond to 72,000 Cycles: A = 1
- 120 Seconds into HDTO



|  |            | suchin Stress    | 8 C (1000 F)       | 101     | (102)    |         |           |         |           |         |            |         |          |
|--|------------|------------------|--------------------|---------|----------|---------|-----------|---------|-----------|---------|------------|---------|----------|
|  |            |                  | 5                  |         |          |         | 2)        | -       | - (0      |         |            |         | 5)       |
|  | ter Surfac | Strees           | -                  | ,       | ,        | 200     | (29) (1   | 221 13  | (32) (2   | 11 202  | 10<br>(00) | 310 15  | (45) (2  |
|  | 0          | fective          | ×                  | •       | ,        | 365     | (63)      | 386     | (95)      | 177     | (75)       | ,       | ,        |
|  |            | lated Ef         | 2                  | 276     | (0)      | 159     | (23)      | 110     | (16)      | 124     | (18)       | 96      | (14)     |
|  |            | Calcui           | ۵                  | ,       | •        | 110     | (91)      | 159     | (23)      | 611     | (16)       | 130     | (30)     |
|  |            |                  | ن<br>ح             | •       | ı        | 204     | (6C)      | 100     | (89)      | 200     | (53)       | 172     | (3)      |
|  |            | Allowable Stress | at 649° C (1200° F | 786     | (114)    |         | -         |         |           |         |            |         | -        |
|  | ur facen   | ress             | 045 K              | •       | ı        | 241 1.4 | (35 11.4) | 103:1.4 | (44 21.4) | 4.13210 | (34 21.4)  | 4.1.162 | (77:1.4) |
|  | Inner Su   | SCLIVE SL        | F.K                | •       | 1        | 8.1.822 | (8:1:8)   | 21 :1.8 | (3:1.8)   | 28:1.8  | (4:1.8)    | 6.4,1.8 | (8.1;1)  |
|  |            | lculated Eff     | B:K                | 15911.3 | (23:1.3) | 16521.8 | (24:1.8)  | 172:1.8 | (25:1.8)  | 148,1.8 | (21:1.8)   | 117:1.8 | (17:1.8) |
|  |            | 5                | <                  | 234     | (34)     | 214     | (10)      | 207     | ()<br>()  | 234     | (34)       | 193     | (87)     |
|  |            |                  | - 94               | -       |          | ç       | •         | ~       | •         | ~       | ,          |         |          |

,z.

.

OF POOR QUALITY

\* includes Respective  $K_{\rm c}$  Applied to Hoop Stress at Slots for Tangential Load Stops.

Figure 36. Effective Surface Stresses for LPT Casing Attachments.
OF POOR QUALITY



|          | Effective | Stress, | Most Severe | Condition      |                              |
|----------|-----------|---------|-------------|----------------|------------------------------|
| Location | (No K)    | MPa     | (ksi)       | к <sub>т</sub> | LCF Predicted<br>Life,Cycles |
| Forward: | A         | 241     | (35)        | 1.4            | )                            |
|          | В         | 228     | (33)        | 2.32           |                              |
|          | C*        | 262     | (38)        | 1.0            | 10 <sup>5</sup> or           |
| Aft:     | A         | 103     | (15)        | 1.0            | Greater                      |
|          | В         | 110     | (16)        | 3.02           |                              |
|          | с         | 75.8    | (11)        | 1              |                              |
|          | D         | 207     | (30)        | 1.4            | J                            |

- 120 Seconds into HDTO, Minimum Cooling (Except as Denoted by \*)
  (\* 30 Seconds into HDTO, Minimum Cooling)
- Conclusion: End Flanges Meet 36,000 Cycle Requirements

Figure 87. End-Flange Stress/Life on LPT Casing Under Maximum Stress Condition.

يەتەر



A CONTRACTOR OF

ORIGE CU PAGE IS OF POOR QUALITY

Figure 88. LPT Casing Containment Capability

clearances, compared to current designs, in order to prevent significant deterioration in LPT efficiency. The design provides for the directed distribution of cooling air at appropriate times on the points of shroud and seal attachments, yet the casing configuration will provide adequate life when subjected to the resiltant thermal cycling.

The description of the ACC configuration, the LPT clearance improvements it provides, and the stress/life of the components are discussed in the follow-ing paragraphs.

#### 4.4.2 Casing Stress/Life

As discussed in Section 4.3.3, the casing, which is the only component significantly stressed by ACC cycling, is fully capable of completing more than the required 36,000 mission cycles.

#### 4.4.3 Cooling Manifold

The air-distribution system for the LPT ACC employs a cooling manifold to deliver air from the fan airflow to be impinged on the LPT case at the outer diameter of the 10 nozzle and shroud support hooks. By controlling the temperatures of these support hooks, the casing size is controlled. This, in turn, controls the shroud seal clearance at the blade tip of all five stages. Thus, the efficiency of the LPT is improved.

The complete LPT cooling manifold is composed of four sectors, each covering a 90° arc (as in Figure 89). Each sector is a backbone/rib-type configuration - i.e., an axial distribution manifold with 10 circumferential tubes extending from each side of the manifold (Figure 90). The axial manifold is further divided into aft and forward parts. The forward part of the manifold contains the seven distribution tubes impinging on the casing over the first four stages of the LPT; the aft portion contains the three distribution tubes impinging on the casing over Stage 5 of the LPT. The forward and aft portions of the manifold are connected by a bolted flange. An orifice plate, installed at engine assembly, allows impingement cooling to be adjusted or eliminated for Stage 5. By testing with various orifice plates, the effectiveness of the ACC cooling and tip clearance control on Stage 5 of the LPT

The cooling manifold, including the tubes and support brackets, is made of 321 stainless steel. The welded and brazed assembly is fabricated of tubing and sheet stock.

The cooling manifold is secured by a forward, middle, and aft mount at the axial manifold backbone and the tube support on each side of the axial manifold. The forward mount is  $\varepsilon$  hard-mounted, bolted joint. The middle mount is a bolted joint spring-mounted to allow axial slip. The aft mount is composed of two pins captured in and protruding from the LPT aft flange.



Figure 89. LPT Cooling Manifold (Axial View).

OF POOR QUALITY



.

.

Figure 90. LPT Cooling Manifold (Unwrapped View).

136

These pins engage the aft end of the manifold and the tube supports, allowing axial slip. By allowing axial slip at the middle and aft supports, differential thermal expansion between the LPT case and the cooling manifold is accommodated.

Another feature of the cooling manifold mounting is the capability of separating the HPT/LPT casing interface flange without requiring the removal of the cooling manifold. This is accomplished by positioning the forward mount brackets on the aft side of the bolted flange and designing the HPT/ LPT flange bolts to be inserted from the aft side of the flange. Another important benefit of this bolting arrangement is the small envelope required by the bolt head versus the large envelope required by a nut and protruding bolt threads with the large associated tolerance buildup. The smaller head envelope allows the front tube of the cooling manifold to be positioned over the front shroud support hook without compromising the impingement distance of the cooling air.

#### 4.4.4 Clearance Predictions

Small rotor-to-shroud radial clearances are extremely difficult to achieve and maintain because of the varying dimensional changes of the rotor and shroud that are brought about by operational changes (Figure 91).

With this background, the approach for setting close clearances in the  $E^3$  LPT is as follows:

- For the full aircraft mission, determine radial dimension changes for the rotor and shrouds, separately. These assume "round engine" conditions.
- Determine clearance deviation values from "round engine" values (e.g., maneuvering, concentricity, etc.).
- Evaluate closure capability of ACC system.
- Include abradable characteristics of blade and shroud (e.g., wear ratio).

Using this approach, the results of "round engine" clearances for the Stage 1 rotor and shroud (casing) are illustrated in Figure 92. The presented data cover the range of aircraft operating points from ground idle (GIDLE) through takeoff (T.O.), maximum climb (MXCL), a transient chop to flight idle (FIDLE), then reacceleration (REBURST), out to maximum cruise (MXCR), and cruise (CR). Superimposed on a normal casing-clearance trace are the reduced casing clearances at MXCR and CR with full ACC cooling air on.

Continuing this approach, with Stage 1 as an example, Table XVIII shows the calculated out-of-round deflections. Clearance changes are presented for various sources such as beam bending, vibration, and ovalization and are shown



يكر

.



Ŷ



4

Radius Increase Over Cold Rotor, in.

Figure 92. LPT Stage 1 Basic Relative Diameters.

Table XVIII. FPS LPT Stage 1 Clearance Change for Maximum Closure.

 $( \mathbf{A} )$ 

|                                            | Cleara                                        | ance Change = mm (                                                 | mils), Closure =                              | I                                             |
|--------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
|                                            |                                               | Clock P                                                            | losition                                      |                                               |
| Out-of-Round Factors                       | 3                                             | 6                                                                  | 12                                            | 6                                             |
| Takcoff Rotation                           |                                               |                                                                    |                                               |                                               |
| Beam Bending<br>Vibration                  | -0.244 (-9.62)<br>-0.076 (-3.00)              | -0.244 (-9.62)<br>-0.076 (-3.00)                                   | -0.114 (-4.74)<br>-0.076 (-3.00)              | -0.066 (-2.59)<br>-0.076 (-3.00)              |
| Ovalization<br>Sum                         | -0.028(-1.12)<br>-0.348(-13.74)               | $\begin{array}{c} -0.037 \ (-1.47) \\ -0.357 (-14.09) \end{array}$ | +0.027 (+1.05)<br>-0.193 (-6.69)              | +0.041 (+1.60)<br>0.031 (-3.99)               |
| 2nd Segment Climb                          |                                               |                                                                    |                                               |                                               |
| Beam Bending                               | -0.330(-12.99)                                | -0.330(-12.99)                                                     | -0.390(-15.36)                                | -0.460(-13.12)<br>-0.076 (-4.00)              |
| vibration<br>Ovalization<br>Sum            | -0.024 (-0.96)<br>-0.430(-16.95)              | -0.036(-1.41)<br>-0.442(-17.40)                                    | +0.029 (+1.14)<br>-0.437(-17.22)              | +0.034 (+1.34)<br>-0.502(-19.78)              |
| Low Mach Cruise                            |                                               |                                                                    |                                               |                                               |
| Beam Bending<br>Vibration                  | -0.104 (-4.09)<br>-0.076 (-3.00)              | -0.104 (-4.09)<br>-0.076 (-3.00)                                   | -0.139 (-5.49)<br>-0.076 (-3.00)              | -0.182 (-7.15)<br>-0.076 (-3.00)              |
| Ovalization<br>Sum                         | <u>-0.018 (-0.71)</u><br>-0.198 (-7.80)       | <u>-0.025 (-1.00)</u><br>-0.205 (-8.09)                            | $\frac{+0.021 \ (+0.81)}{-0.194 \ (-7.68)}$   | +0.024 (+0.94)<br>-0.234 (-9.21)              |
| Rotor (Root Mean <sup>c</sup> quar         | (83)                                          |                                                                    |                                               |                                               |
| No Assy. Tip Grind<br>With Assy. Tip Grind | $0.0003 (\pm 0.010)$<br>$0.00005 (\pm 0.002)$ | $0.0003 (\pm 0.010)$<br>$0.00005(\pm 0.002)$                       | $0.0003 (\pm 0.010)$<br>$0.00005 (\pm 0.002)$ | $0.0003 (\pm 0.010)$<br>$0.00005 (\pm 0.002)$ |

1

ORIGINAL PAGE IS OF POOR QUALITY 7.9)

ORIGINAL DETT IS OF POOR QUALTY

for engine operation at three major points: takeoff rotation, climb, and cruise. Deflection values are given at each quadrant (3, 6, 9, 12 o'clock); these are the expected peak-deflection locations. Also listed is the cummula-tive stackup tolerance of the rotor assembly.

The combination of round-engine deflections with out-of-round imposed deflections is shown in Table XIX. The shroud/seal diameters are selected such that round-engine clearance is zero initially (rotor/shroud touching) at the minimum closure point (takeoff), and operating gaps are larger at all other operating conditions. With calculated out-of-round values added, a maximum rub of 0.036 cm (0.014 in.) occurs during takeoff and opens up all clearances to the "resultant gap" values. Reduction of the large resultant gaps (Table XIX) to the desired 0.038 cm (0.015 in.) gap requires ACC closures, as shown, which are well within the capability of the system.

A summary of LPT clearance values is shown in Table XX. This indicates that new engine clearances will be exceptionally good and much better than the 0.038 cm (0.015 in.) goal. With extended operating time and assuming maximum service conditions (imposed out-of-round conditions), clearances would progressively open to slightly greater than the goal value.

#### 4.5 WEIGHT STATUS

£/

٠.

A summary of weights for the LPT components in the FPS design is presented in Table XXI. All major components are represented for the rotor and stator assemblies. As indicated, the rotor and stator assemblies are approximately equal in weight (254.4 versus 250.4 kg). Although not indicated, the airfoils account for more than half of the total weight.

Table XIX. Typical LPT Stage 1 Combined Clearance Calculation.

|                            |                                                 |                                     |                                 |                              | ACC CLO                                             | sure                   |
|----------------------------|-------------------------------------------------|-------------------------------------|---------------------------------|------------------------------|-----------------------------------------------------|------------------------|
| Flight Condition           | Tip<br>Clearance<br>Round<br>Engine<br>cm (in.) | Out-of-Round<br>Imposed<br>cm (in.) | Single Point<br>Rub<br>cm (in.) | Resultant<br>Gap<br>cm (in.) | Aced for<br>0.038 cm Gap<br>(0.015 in.)<br>cm (in.) | Capability<br>cm (in.) |
| Cold Assembly              | 6.050 (0.023)                                   |                                     |                                 | 0.094 (0.037)                |                                                     |                        |
| Takeoff                    | (0)                                             | 0.036 (0.014)                       | -0.036 (-0.014)*                | 0.036 (0.014)                |                                                     |                        |
| Nam. Climb                 | 0.066 (0.026)                                   | 0.051 (0.020)                       | +0.015 (+0.006)                 | 0.102 (0.040)                | 0.064 (0.025)**                                     | 0.163 (0.064)          |
| Cruise                     | 0.091 (0.036)                                   | 0.023 (0.009)                       | +0.069 (+0.027)                 | 0.127 (0.050)                | 0.029 (0.035)                                       | 0.163 (0.064)          |
| *Limiting Rub Poi          | iat                                             |                                     |                                 |                              |                                                     |                        |
| <b>•••</b> ••• • • • • • • | • • •                                           |                                     |                                 |                              |                                                     |                        |

•)

|         | Critical<br>Operating                                | Critical<br>Operating ACC Closure cm (in.) |                                | Operating Clearance<br>with 0.004 Rotor Tolerance cm (in.) |                    |  |  |  |
|---------|------------------------------------------------------|--------------------------------------------|--------------------------------|------------------------------------------------------------|--------------------|--|--|--|
| Stages  | Point                                                | Needed                                     | Capability                     | New                                                        | After Max. Service |  |  |  |
| 1       | Takeoff                                              | 0.064 (0.025)                              | 0.163 (0.064)                  | 0.010 (0.004)                                              | 0.061 (0.024)      |  |  |  |
| 3       | Takeoff                                              | 0.069 (0.027)                              | 0.163 (0.064)                  | 0.010 (0.004)                                              | 0.038 (0.015)      |  |  |  |
| 5       | Takeoff                                              | 0.114 (0.045)                              | 0.142 (0.056)                  | 0.010 (0.004)                                              | 0.094 (0.037)      |  |  |  |
| Goal of | 0.038 cm (0<br>- Achieved                            | .015 in.) Operat                           | ing Clearance:<br>n New Engine | •••••••••••••••••••••••••••••••••••••••                    |                    |  |  |  |
|         | - Over Goal if Subjected to Max. Survice Environment |                                            |                                |                                                            |                    |  |  |  |

## Table XX. Summary of LPT Clearance Calculations.

Table XXI. LPT Weight Summary.

| Rot         | tor          |        | Stator                 |             |         |
|-------------|--------------|--------|------------------------|-------------|---------|
| Blade Stage | Weight       | kg (15 | ) Vane Stage           | Weight      | kg (1b) |
| 1           | 21.3         | (47)   | 1                      | 26.8        | (59)    |
| 2           | 24.9         | (55)   | 2                      | 22.7        | (50)    |
| 3           | 31.7         | (70)   | 3                      | 27.6        | (61)    |
| 4           | <b>29</b> .0 | (64)   | 4                      | 31.3        | (69)    |
| 5           | 28.1         | (62)   | 5                      | 33.1        | (73)    |
| Disk Stage  |              |        |                        |             |         |
| 1           | 14.1         | (31)   | Casing, ACC Manifold   | 59 C        | (130)   |
| 2           | 17.7         | (39)   | Seals, Ring, Fasteners | <b>→9.9</b> | (110)   |
| 3           | 22.2         | (49)   |                        | 250.4       | (552)   |

| 5 | 20.0 | (44) |
|---|------|------|
|   |      |      |

Seals, Retain-

4

ers, Fasteners 21.8 (48)

254.4 (561)

23.6 (52)

Total Weight = 504.8 kg (1113 1b)

•

, **2**4

142

SA LUL JE MAN

متريكم طيليا اللير

#### APPENDIX

•

2

,

### LPT Airfoil Coordinates

. 2

Suction Surface

(†

Pressure Sulface

(4)

)

| Ž                        | R                      | RTHETA     | - Z         | R          | RTHETA    |
|--------------------------|------------------------|------------|-------------|------------|-----------|
| 2.694786                 | 13.122117              | 0.030561   | 2.694786    | 13. 122117 | 0.030561  |
| 2.696492                 | 13.122778              | 0.016558   | 2.697191    | 13.123049  | 0.040420  |
| 2.703018                 | 13.125302              | 0.002359   | 2.703402    | 13.125450  | 0.050067  |
| 2.714366                 | 13.129676              | -0.011913  | 2.713414    | 13. 129310 | 0.059448  |
| 2.730552                 | 13.135881              | -0.026059  | 2.727224    | 13.134609  | 0.068494  |
| 2.751585                 | 13,143883              | -0.039810  | 2.744829    | 13, 141320 | 0.077134  |
| 2.777482                 | 13.153642              | -0.052830  | 2.766226    | 13.149413  | 0.085330  |
| 2.808266                 | 13.165107              | -0.064734  | 2.791417    | 13.158850  | 0.093110  |
| 2.843956                 | 13.178217              | -0.075092  | 2.820410    | 13 169590  | 0.100619  |
| 2.884575                 | 13.192898              | -0.083455  | 2.853220    | 13.181587  | 0.108169  |
| 2.930147                 | 13.209066              | -0.089362  | 2.897383    | 13.197474  | 0.117819  |
| 2.980693                 | 13.226624              | -0.092366  | 2.944431    | 13 214067  | 0.127954  |
| 3.036236                 | 13.245463              | -0.092053  | 2.991263    | 13.230245  | 0.138285  |
| 3.073814                 | 13 257939              | -0.089972  | 3.037883    | 13.246015  | 0.149255  |
| 3.073814                 | 13.257939              | -0.089972  | 3.037883    | 13.246015  | 0.149255  |
| 3.130784                 | 13.276438              | -0.084117  | 3.084424    | 13.261422  | 0.161003  |
| 3.187758                 | 13.294437              | -0.075142  | 3.131018    | 13.276513  | 0.173634  |
| 3.244626                 | 13.311903              | -0.063115  | 3. 177773   | 13.291319  | 0.187395  |
| 3.301316                 | 13.328817              | -0.048166  | 3. 224764   | 13.305859  | 0.202235  |
| 3.357746                 | 13 345099              | -0.030356  | 3.272073    | 13.320154  | 0.213286  |
| 5.413857                 | 13.360700              | -0.009794  | 3.319756    | 13 334212  | 0.235653  |
| 3 469594                 | 13 375772              | 0 01346C   | 3.367871    | 13 347946  | 0 254404  |
| 3.524908                 | 13.390312              | 0.039347   | 3.416465    | 13.361415  | 0 274397  |
| 3.579780                 | 13 404324              | 0 067763   | 3 165558    | 13.374695  | 0.296331  |
| 3 634 173                | 13.417810              | 0 098679   | 3 515188    | 13.387787  | 0.319647  |
| 3 688089                 | 13 430779              | 0.131991   | 3.565352    | 13 400680  | 0.344633  |
| 3.741512                 | 13.443240              | 0.167661   | 3.516064    | 13.413365  | 0.371337  |
| 3.794449                 | 13.455096              | 0.205622   | 3.667320    | 13.425830  | 0 399821  |
| 3.846904                 | 13.466571              | C.245827   | 3.719114    | 13.438063  | 0.430134  |
| 3 898903                 | 13.477725              | 0.288205   | 3.771422    | 13.449988  | 0.467344  |
| 3 950445                 | 13 488562              | 0.332736   | 3.824244    | 13.461642  | 0 495469  |
| 4 001573                 | *3.499098              | 0.379347   | 3 877536    | 13 473168  | 0 5:12577 |
| 4.052293                 | 13 509339              | 0.428027   | 3.931292    | 13.484560  | 0.570681  |
| 4 102650                 | 13.519299              | 0.478724   | 3.985469    | 13.495803  | 0.610832  |
| 4.1020/8                 | 13 528989              | 0.531400   | 4.040031    | 13.506883  | 0 653068  |
| 4 202398                 | 13.538452              | 0.586041   | 4.094959    | 13.517791  | 0 697403  |
| 4.251390                 | 13.54/836              | 0.542604   | 4 150202    | 13.528514  | 0.743880  |
| 4.301093                 | 13.55/159              | 0.701074   | 4.205728    | 13.539084  | 0 792516  |
| 4 300142                 | 13 566429              | 0 76 14 15 | 4.261496    | 13.549662  | 0 843336  |
| - JYYUJ4<br>A AA7969     | 13.5/5655              | 0.823624   | 4.317459    | 13 560254  | 0 896764  |
| A 406606                 | 13 584844              | 0.887682   | 4 373582    | 13.570853  | 0 951622  |
| 4 545224                 | 13.594004              | 0.953568   | 4 429826    | 13.581451  | 1 009148  |
| 4 594000                 | 13.003142              | 1.021258   | 4.486146    | 13.592040  | 1 068936  |
| 4 642017                 | 13.012388              | 1 090703   | 4 542489    | 13.602610  | 1.130990  |
| 4 69 1973                | 13 631640              | 1 16 1862  | 4.598818    | 13.613312  | 1.195277  |
| 4 741005                 | 13.031042              | 1.234685   | 4 . 6550" 2 | 13.624361  | 1.261774  |
| 4 782528                 | 13.04142/<br>17.640766 | 1.309137   | 4.711:35    | 13.635483  | 1 330465  |
| ₹./G <b>2</b> 3 <b>8</b> | 13,043/26              | 1.373048   | 4.758J18    | 13.644892  | 1.089989  |

LPT Stator 1 Airfoil Coordinates,

. 🕶

1

-

10% From Hub

# CHARLE FROM THE THE

Suction Surface Suction Surface

A DESCRIPTION OF THE OWNER OF THE

• • •

## Pressure Surface

| Z           | R         | RTHETA    | Z         | R          | RTHETA    |
|-------------|-----------|-----------|-----------|------------|-----------|
| 2.695141    | 14.432846 | 0.030556  | 2.695141  | 14.432846  | 0.030555  |
| 2 696609    | 14.433523 | 0.017093  | 2.698338  | 14.434319  | 0.040522  |
| 2.703456    | 14.436673 | 0.003187  | 2.706045  | 14.437863  | 0.050009  |
| 2.715697    | 14.442292 | -0.011030 | 2.718250  | 14.443461  | 0.058872  |
| 2.733349    | 14.450362 | -0.025339 | 2.734937  | 14.451086  | 0.066936  |
| 2.756441    | 14.460863 | -0.039438 | 2.756093  | 14.460705  | 0.074084  |
| 2.785008    | 14.473766 | -0.052949 | 2.781728  | 14.472289  | 0.080389  |
| 2.819094    | 14.489033 | -0.265419 | 2,811879  | 14.485813  | 0.086285  |
| 2.858742    | 14.506616 | -0.075340 | 2.846640  | 14.501269  | 0.092763  |
| 2.904007    | 14.526460 | -0.085142 | 2.851788  | 14.503546  | 0.093786  |
| 2.954944    | 14.548498 | -0.09i216 | 2.899306  | 14.524411  | 0.104099  |
| 3.011612    | 14.572652 | -0.093923 | 2 945928  | 14.544520  | 2 114636  |
| 3.016001    | 14.574507 | -0.093971 | 2.992048  | 14.564357  | 0.125868  |
| 3.016001    | 14.574507 | -0.093971 | 2.992048  | 14 564357  | 0.125868  |
| 3.073725    | 14.598685 | -0.092561 | 3.037780  | 14.583676  | 0.138157  |
| 3. 13 17 57 | 14.622590 | -0.087396 | 3.083273  | 14.602645  | 0.151587  |
| 3.189947    | 14.646156 | -0.078559 | 3 128677  | 14 621331  | 0 166278  |
| 3.248138    | 14.669318 | -0.066073 | 3 174149  | 14 639798  | 0 182296  |
| 3 306200    | 14.692024 | -0.050051 | 3 2 19820 | 14 658097  | 0 199777  |
| 3.364014    | 14.714167 | -0.030547 | 3 265810  | 14 676271  | 0 218820  |
| 3.421471    | 14.735717 | -0.007625 | 3 312226  | 14 694357  | 0 239495  |
| 3 478493    | 14.756759 | 0.018624  | 3 359149  | 14 712327  | 0.251937  |
| 3.533014    | 14 777279 | 0.048121  | 3 406645  | 14 730189  | 0 286777  |
| 3.590980    | 14.797265 | 0.080776  | 3 454766  | 14 748045  | 0 312499  |
| 3.646358    | 14.816717 | 0.116520  | 3 503548  | 14 765897  | 0.340819  |
| 3 701114    | 14.835633 | 0.155286  | 3 553023  | 14 783746  | 0 371263  |
| 3.755255    | 14.854011 | 0.196988  | 3 603186  | 14 801581  | 0 403933  |
| 3.808775    | 14.871592 | 0.241560  | 3 654041  | 14 8 19390 | 438907    |
| 3,861673    | 14.888852 | 0.288954  | 3 705592  | 14 837165  | 0 476731  |
| 3.513972    | 14.905804 | 0.339103  | 3 757813  | 14 854854  | 0 515976  |
| 3.965695    | 14.922459 | 0.391961  | 3 810682  | 14 872216  | 0.558189  |
| 4.016865    | 14.938828 | 0.447482  | 3 864178  | 14 889656  | 0 602918  |
| 4.067528    | 14.954930 | 0.505€12  | 3 918252  | 14 907186  | 0 650219  |
| 4 117719    | 14 970777 | 0.566312  | 3 972871  | 14 924761  | 0.700124  |
| 4.167458    | 14.986380 | 0.629564  | 4 028013  | 14 942380  | 0 752650  |
| 4.216813    | 15.001891 | 0.695310  | 4 083613  | 14 960019  | 0 807845  |
| 4.265810    | 15.017432 | 0.763541  | 4.139641  | 14 977666  | 0.865718  |
| 4.314506    | 15.033017 | 0 834213  | 4 196042  | 14 995346  | 0 926304  |
| 4 362938    | 15.048657 | 0.907299  | 4 252780  | 15 013285  | 0 989608  |
| 4 411159    | 15.064366 | 0.982811  | 4.309801  | 15 031505  | 1.055651  |
| 4.459218    | 15.080158 | 1 060684  | 4.367055  | 15 049993  | 1 124445  |
| 4 507159    | 15.096047 | 1.140902  | 4.424499  | 15.068736  | 1 196053  |
| 4.555017    | 15.112044 | 1 223441  | 4.482097  | 15.087724  | 1.270405  |
| 4.602860    | 15.128425 | 1.308234  | 4.539780  | 15, 106936 | 1, 34749A |
| 4.650716    | 15.145297 | 1.395230  | 4.597517  | 15.126557  | 1.427273  |
| 4.698645    | 15.162444 | 1.484369  | 4.655248  | 15, 146908 | 1.509682  |
| 4.746698    | 15.179887 | 1.575613  | 4.712922  | 15, 167601 | 1.594699  |
| 4.788324    | 15.195200 | 1.656095  | 4.762657  | 15, 185736 | 1.670210  |

LPT Stage 1 Airfoil Coordinates

· 4 /

-

50% From Hub

# ORIGINAL PAUL ...

Suction Surface

.

#### Pressure Surface

 $\overline{\mathbf{A}}$ 

| Z         | R                | RTHETA                 | z        | P          |          |
|-----------|------------------|------------------------|----------|------------|----------|
|           |                  |                        | -        | 7          | RIPCIA   |
|           |                  |                        |          |            |          |
| 2.695176  | 15.657798        | 0.030556               | 2.695176 | 15.657798  | 0.030556 |
| 2.596574  | 15.658738        | 0.018183               | 2.698280 | 15.659886  | 0.039654 |
| 2.703170  | 15.663172        | 0.005333               | 2.705744 | 15.664899  | 0 048271 |
| 2.714975  | 15.671089        | -0.007896              | 2.717558 | 15.672819  | 0.056294 |
| 2.732002  | 15.682474        | -0.021345              | 2.733707 | 15.683611  | 0.063591 |
| 2.754276  | <b>15.697303</b> | -0.034793              | 2.754186 | 15.697244  | 0 070100 |
| 2.781824  | 15.715543        | -0.047959              | 2.779007 | 15.713683  | 0.075941 |
| 2.814679  | 15.737152        | -0.0 <del>6</del> 0497 | 2.808215 | 15.732913  | 0.081573 |
| 2.852882  | 15.762079        | -0.072010              | 2.841908 | 15.754940  | 0.087977 |
| 2 896477  | 15.790265        | -0.082048              | 2.851944 | 15.761469  | 0.090064 |
| 2.945512  | 15.821638        | -0.090106              | 2.900030 | 15.792550  | 0.101185 |
| 3.000044  | 15.856117        | -0.095633              | 2.947201 | 15 822712  | 0 112763 |
| 3.014307  | 15.865064        | -0.096537              | 2.993695 | 15.852125  | 0.125029 |
| 3.014307  | 15.865064        | -0.096537              | 2.993695 | 15.852125  | 0.125029 |
| 3.071924  | 15.900903        | -0.097962              | 3.039509 | 15.880800  | 0.138348 |
| 3.130124  | 15.936614        | -0.095757              | 3.084805 | 15.908849  | 0.152704 |
| 3.188708  | 15.972061        | -0.089890              | 3.129784 | 15.93640?  | 0.168166 |
| 3.24/524  | 16.007145        | -0.080351              | 3.174599 | 15.963570  | 0.184816 |
| 3.306421  | 16.041773        | -0.057124              | 3.219401 | 15.990433  | 0.202714 |
| J. JO3243 | 16.075771        | -0.050206              | 3.264348 | 16.017088  | 0.221967 |
| 3.423842  | 16.109067        | -0.029634              | 3.309592 | 16.043623  | 0.242665 |
| 3.4820/3  | 10,141/10        | -0.005424              | 3.355275 | 1€.070062  | 0.264917 |
| 3.539831  | 10.1/J009        | 0.022349               | 3.401504 | 16.096426  | 0.288853 |
| 3.357011  | 10.2048//        | 0.053534               | 3.446386 | 16.122882  | 0.314578 |
| 3.033540  | 16.235316        | 0.086352               | 3.495992 | 16.149456  | 0.342229 |
| 3.709305  | 10.2049/1        | 0.120417               | 3.544379 | 16.176166  | 0.371929 |
| 3 /04443  | 10.293/99        | 0.16//35               | 3.593581 | 16.203017  | 0.403787 |
| 3 877799  | 16.321773        | 0.212300               | 3.643637 | 16.230013  | 0.437915 |
| 3 925052  | 16 275878        | 0.239982               | 3.694546 | 16 257 138 | 0.474408 |
| 3 977061  | 16.373878        | 0.310/03               | 3.746299 | 16.284371  | 0.513379 |
| 4.028346  | 18 427624        | 0.304409               | 3.798886 | 16.311565  | 0.554896 |
| 4 078947  | 16 457676        | 0.420505               | 3.852273 | 16.338927  | 0.599044 |
| 4 128905  | 16 477219        | 0.480303               | 3.906422 | 16.366457  | 0.645884 |
| 4 178268  | 16.501200        | 0.542778               | 3.961291 | 16.394125  | 0.695479 |
| 4 227097  | 16 575 100       | 0.675500               | 4.016833 | 16.421897  | 0.747873 |
| 4 275458  | 16 548644        | 0.0,3309               | 4.072986 | 16.449735  | 0 803119 |
| 4 323394  | 16 571954        | 0.818801               | 4.129684 | 16.477599  | 0.861249 |
| 4 370996  | 16 595074        | 0.894281               | 4.186883 | 16.505501  | 0.922277 |
| 4.418315  | 16 618031        | 0 972286               | 4.244493 | 16.533572  | 0.986240 |
| 4.465419  | 16.640857        | 1 052759               | 4.3024/3 | 16 561779  | 1 053139 |
| 4 512385  | 16.663590        | 1 135658               | 4.360-23 | 16.590086  | 1.122982 |
| 4.559269  | 16.686257        | 1 220937               | 4.419196 | 16.618438  | 1.195836 |
| 4.606137  | 16 709060        | 1 308521               | 4.477827 | 16.646865  | 1.271632 |
| 4.653073  | 16 732050        | 1 398317               | 4.536546 | 16.675274  | 1 350337 |
| 4.700163  | 16 755 153       | 1 490247               | 4.595268 | 16.703742  | 1.431895 |
| 4.747464  | 16 778398        | 1 584247               | 4.553904 | 16.732457  | 1.516241 |
| 4.788697  | 16 70R692        | 1 667427               | 4.712397 | 16.761161  | 1.603328 |
|           |                  | 1.00/42/               | 4.762961 | 16.786021  | 1.681049 |

#### LPT Stator 1 Airfoil Coordinates

90% From Hub

• .\*

# OTIGINAL PROF. IS OF POOR QUILITY

.

#### Suction Surface

. . .

A

1

-

Ć

#### Pressure Surface

----

| 2             | R          | RTHETA      | Z        | R          | RTHETA     |
|---------------|------------|-------------|----------|------------|------------|
| 5.473056      | 13.800044  | Ο.          | 5.473056 | 13.800044  | 0.         |
| 5.469523      | 13.799177  | 0.005729    | 5.477397 | 13.801107  | -0.002693  |
| 5.468323      | 13, 798883 | 0.013794    | 5.483228 | 13.802534  | -0.003789  |
| 5.469537      | 13.799181  | 0.024116    | 5.490483 | 13.804306  | -0.003225  |
| 5.473290      | 13,800101  | 0.036573    | 5.499083 | 13.806401  | -0.000924  |
| 5.479733      | 13.801679  | 0.051019    | 5.508991 | 13.808809  | 0.003153   |
| 5.489018      | 13.803948  | 0.067308    | 5.520275 | 13.811542  | 0.008937   |
| 5.501269      | 13.806933  | 0.085322    | 5.533204 | 13.314664  | 0.016170   |
| 5 5 1 5 5 3 9 | 13.810638  | 0.105009    | 5.553284 | 13.819489  | 0.027149   |
| 5.534772      | 13.815042  | 0.126428    | 5.585935 | 13.827275  | 0.044108   |
| 5.552902      | 13.819397  | 0.146528    | 5.618165 | 13.834888  | 0.060296   |
| 5.552902      | 13.819397  | 0.146528    | 5.618165 | 13.834888  | 0.060296   |
| 5.579050      | 13.825639  | 0.173780    | 5.649855 | 13.842304  | 0.075893   |
| 5.605876      | 13.831994  | 0.199706    | 5.680865 | 13.849493  | 0.090894   |
| 5.633443      | 13.838472  | 0.224410    | 5.711136 | 13.856427  | 0.105048   |
| 5.561801      | 13.845081  | 0.247888    | 5.740615 | 13.863092  | 0.118078   |
| 5.691013      | 13.851831  | 0.270057    | 5.769240 | 13.869520  | 0. 129731  |
| 5 721131      | 13.858692  | 0 290691    | 5.796959 | 13.875704  | O. 139919  |
| 5.752169      | 13.865692  | 0 309568    | 5.823759 | 13.881645  | 0.148623   |
| 5.784160      | 13.872854  | 0.325481    | 5.849606 | 13.887339  | 0. 155853  |
| 5.817127      | 13.880179  | 0.341202    | 5.874476 | 13.892785  | 0. 161669  |
| 5.851046      | 13 887656  | 0.353480    | 5.898394 | 13.897992  | 0.166160   |
| 5.885841      | 13.895263  | 0.363037    | 5.921436 | 13.902980  | 0. 169464  |
| 5.921364      | 13.902964  | 0.369608    | 5,943750 | 13.907789  | 0. 17 1723 |
| 5.957405      | 13.910728  | 0.372980    | 5.965547 | 13.912479  | 0.173049   |
| 5.993737      | 13,918529  | 0.373016    | 5.987052 | 13.917096  | 0.173470   |
| 6.030085      | 13.926305  | 0.369618    | 6.008541 | 13.921699  | 0.172976   |
| 6.066067      | 13.933975  | 0.362800    | 6.030397 | 13.926371  | 0.171465   |
| 5.101331      | 13.941465  | 0.352703    | 6.052970 | 13.931186  | 0.168781   |
| 6.135642      | 13.348729  | 0.339525    | 6.076496 | 13 936 193 | 0, 164761  |
| 6.168872      | 13.955729  | 0.323515    | 6.101103 | 13.941417  | 0. 159230  |
| 5.201007      | 13,962451  | 0.304905    | 6.126806 | 13.946860  | 0.152027   |
| 3.232074      | 13.968975  | 0.283866    | 6.153576 | 13.952515  | 0,143044   |
| 6.262163      | 13.975316  | 0.260559    | 6.181324 | 13.958331  | 0, 132140  |
| 6.291371      | 13.981493  | 0.235114    | 6.209954 | 13.964328  | 0.119165   |
| 6.319781      | 13.987522  | 0.207668    | 6.239381 | 13,970513  | 0.103952   |
| 6.347477      | 13.993419  | 0.178298    | 6.269522 | 13.976870  | 0.086413   |
| 6.374609      | 13.999215  | 0.147053    | 6.300227 | 13.983370  | 0.066466   |
| 6 401316      | 14.004961  | 0.113909    | 6.331358 | 13.989985  | 0.044005   |
| 6.427758      | 14.010759  | 0.0/8819    | 6.362753 | 13.996680  | 0.018838   |
| 5.454089      | 14.016574  | 0.041/1/    | 5.394259 | 14.003424  | -0.009294  |
| 6.480403      | 14.022424  | 0.002585    | 6.425783 | 14.010325  | -0.040630  |
| 6.506762      | 14.028324  | -().()3853/ | 6.457261 | 14.017277  | -0.075154  |
| 6.533138      | 14.034268  |             | 6.488722 | 14.024282  | -0.112599  |
| 0.009009      | 14.040250  | -0.12030/   | 6,520188 | 14,031344  | -0.152540  |
| 0.383688      | 14.0402/4  | -0.1/2318   | 6.551647 | 14.038462  | -0.194520  |
| 0.012290      | 14.052343  | -0.220030   | 6.583076 | 14.045630  | -0.238211  |
| 8061FG.0      | 14.020835  | °U,⊉5013/   | 6.606412 | 14.050989  | -0.271702  |

#### LPT Rotor 1 Airfoil Coordinates

#### 10% From Hub

.

ORIGINAL A

#### Suction Surface

0

Pressure Surface

 $(\cdot)$ 

*•*)

| Z           | R                      | RTHETA           | z         | E C       | DTHETA    |
|-------------|------------------------|------------------|-----------|-----------|-----------|
|             |                        |                  | -         | R R       | RINCIA    |
| _           |                        |                  |           |           |           |
| 5.491467    | 15.465573              | 0.               | 5.491467  | 15 465573 | 2         |
| 5.488070    | 15.464274              | 0.005048         | 5.495138  | 15.466977 | -0.001890 |
| 5.486897    | 15.463826              | 0.012695         | 5.499917  | 15 468802 | -0.001830 |
| 5.488038    | 15.464262              | 0.022865         | 5.505731  | 15.471023 | -0.001403 |
| 5.491634    | 15.465637              | 0.035440         | 5.512487  | 15.473601 | 0.001117  |
| 5 49/852    | 15.468014              | 0.050284         | 5.520125  | 15.476513 | 0.005228  |
| 5.506861    | 15.471454              | 0.067257         | 5.528684  | 15.479774 | 0.010900  |
| 5.518797    | 15.476007              | 0.086248         | 5.538391  | 15.483469 | 0.017945  |
| 5.533721    | 15.481692              | 0.107211         | 5.56746   | 15.494511 | 0.038299  |
| 5.542783    | 15.485139              | 0.119055         | 5.598196  | 15.506147 | 0.057987  |
| 5.542783    | 15.485139              | 0.119055         | 5.598196  | 15,506147 | 0.057987  |
| 5.567559    | 15.494547              | 0.148827         | 5.627972  | 15.517385 | 0.075366  |
| 5.593048    | 15.504201              | 0.176088         | 5.657034  | 15.528318 | 0.091068  |
| 5.619287    | 15.514111              | 0.201197         | 5.685346  | 15.538936 | 0 105379  |
| 5.646559    | 15.524381              | 0.224343         | 5.712626  | 15.549124 | 0 118160  |
| 5.6/5059    | 15.535082              | 0.245552         | 5.738677  | 15.558787 | 0 129012  |
| 5.704991    | 15.546284              | 0.264670         | 5.763297  | 15.567907 | 0 137517  |
| 5./36282    | 15.557899              | 0.281285         | 5.786558  | 15.576514 | 0.143597  |
| 5.768699    | 15.569907              | 0.294924         | 5.808692  | 15.584693 | 0.147563  |
| 5.802051    | 15.582240              | 0.305291         | 5.829891  | 15.592517 | 0 149743  |
| 5.836105    | 15.594809              | 0.312133         | 5.850389  | 15.600075 | 0 150473  |
| 5.8/0606    | 15.607521              | 0.315248         | 5.870440  | 15.607459 | 0.150034  |
| 5.905259    | 15.620264              | 0.314565         | 5.890338  | 15.614780 | 0.148534  |
| 5 9 19 / 59 | 15.632919              | 0.310059         | 5.910389  | 15.622149 | 0.145994  |
| 5.9/3823    | 15.645422              | 0.301793         | 5.930877  | 15.629665 | 0.142308  |
| 6.007263    | 15.657730              | 0 289945         | 5.931988  | 15.637404 | 0.137200  |
| 0.033333    | 15.669786              | 0.274713         | 5.973873  | 15.645440 | 0.130309  |
| 6.400045    | 15.681513              | 0.256395         | 5.996738  | 15.653852 | 0,121216  |
| 6.102215    | 15.692867              | 0.235356         | 6.020690  | 15.662681 | 0.109586  |
| 6 1508EC    | 15.703806              | 0 211966         | 6.045833  | 15.671969 | 0.095295  |
| 6 197100    | 15 714394              | 0.186554         | 6.072152  | 15.681712 | 0.078532  |
| 6 717870    | 15.724729              | 0.159184         | 6.099368  | 15 691809 | 0.059707  |
| 6.213870    |                        | <u>C. 129807</u> | 6.127241  | 15.702.74 | 0.039005  |
| 6 765761    | 15.744828              | 0.098489         | 6.155636  | 15.712802 | 0.016303  |
| 6 201127    | 13./346//              | 0 065306         | 6.184452  | 15.723691 | -0.008554 |
| 6 716161    | 15.764423              | 0.030363         | 6.213638  | 13.734769 | -0.035663 |
| 6 340967    | 15.7/40/9              | -0.006244        | 6.243155  | 15.746023 | -0.064969 |
| 6 365471    | 15.783683              | -0.044496        | 6.272901  | 15.757417 | -0.096361 |
| 6 390418    | 15./93283              | -0.084433        | 6.302748  | 15.768901 | -0.129865 |
| 6 415246    | 15.802927              | -0.126133        | 6.332556  | 15.780423 | -0.165657 |
| 6 440424    | 15.012008              | -0.169715        | 6.362207  | 15.791935 | -0.203975 |
| 6 465777    | 13.822330              | -0.215186        | 6.391640  | 15.803406 | -0.245005 |
| 6 491269    | 13.832316              | -0.262394        | 6.420848  | 15.814838 | -0.288615 |
| 6 5 16720   | 13.842598              | -0.311013        | 5.449908  | 15.826259 | -0.334354 |
| 6 542 162   | 15.852/28              | -0.360531        | 5.478940  | 15.837717 | -0.381497 |
| 6 567264    | 13.002034<br>15.977960 | -0.410480        | b. 508118 | 15.849281 | -0.429216 |
| 6 585714    | 15 990369              | -0.460530        | 0.537567  | 15.861001 | -0.476893 |
|             | ·J.000208              | 0.497669         | 0.223628  | 15.869925 | -0.512080 |

LPT Rotor 1 Airfoil Coordinates

20 1

-

•

50% From Hub

# Suction Surface

#### Pressure Surface

| Z        | R                      | RTHETA     | - Z      | R          | RTHETA    |
|----------|------------------------|------------|----------|------------|-----------|
|          |                        |            |          |            |           |
| 5.483884 | 17.134516              | 0.         | 5.483884 | 17 1745+5  | 0         |
| 5.481210 | 17.133305              | 0.005321   | 5.487163 | 17 136001  | -0.003306 |
| 5.480966 | 17.133194              | 0.012825   | 5.491670 | 17 138042  | -0.002300 |
| 5.483213 | 17.134212              | 0.022443   | 5.497342 | 17 140508  | -0.003292 |
| 5.488047 | 17.136402              | 0.034074   | 5.504098 | 17 143662  | -0.001815 |
| 5.495580 | 17.139811              | 0.047596   | 5.511884 | 17.147179  | 0.001065  |
| 5.505922 | 17.144486              | 0.062889   | 5.520723 | 17.151167  | 0.005325  |
| 5.519159 | 17.150462              | 0.079865   | 5.530785 | 17 155703  | 0.010776  |
| 5.535316 | 17.157743              | 0.098498   | 5.556774 | 17.167392  | 0.024742  |
| 5.539410 | 17.159586              | 0.102988   | 5.587161 | 17.181013  | 0.040235  |
| 5.539410 | 17.159586              | 0.102988   | 5.587161 | 17.181013  | 0.040235  |
| 5.564354 | 17.170794              | 0.128786   | 5.616724 | 17, 194219 | 0.054381  |
| 5.589870 | 17.182225              | 0 152729   | 5.645714 | 17.207123  | 0.067525  |
| 5.616036 | 17.193912              | 175007     | 5.674055 | 17.219694  | 0.079830  |
| 5.643061 | 17.205943              | O. 195786  | 5.701535 | 17.231837  | 0.091036  |
| 5.671102 | 17.218386              | 0.215023   | 5.728001 | 17.243423  | 0.100778  |
| 5.700269 | 17.231282              | 0.232571   | 5.753340 | 17 254502  | 0.108688  |
| 5.730458 | 17.244498              | 0.247990   | 5.777657 | 17.265119  | 0.114806  |
| 5.761434 | 17.258037              | 0.260933   | 5.801187 | 17.275381  | 0 119399  |
| 5.793280 | 17,271934              | 0.271215   | 5.823847 | 17.285251  | 0.122639  |
| 5.826121 | 17.286241              | 0.278620   | 5.845513 | 17.294677  | 0. 124555 |
| 5.859822 | 17.300897              | 0 282837   | 5.866318 | 17.303719  | 0. 125136 |
| 5.894107 | 17.315780              | 0.283631   | 5.886539 | 17.312457  | 0. 124515 |
| 5.928644 | 17.330761              | 0.280843   | 5.906508 | 17.321157  | 0.122482  |
| 5.963036 | 17.345724              | 0.274406   | 5.926622 | 17.329883  | 0 118987  |
| 5.996/80 | 17.360439              | 0 264427   | 5.947385 | 17.338911  | 0.113866  |
| 6.029492 | 17.374705              | 0.251201   | 5.969178 | 17.348400  | 0.106944  |
| 5.001045 | 17.388556              | 0 235021   | 5.992131 | 17.358410  | 0.098163  |
| 6 120974 | 17.401901              | 0.216146   | 6.016233 | 17.368937  | 0.087511  |
| 6 140499 | 17.414839              | 0.194703   | 6.041318 | 17.379912  | 0.075019  |
| 6 177206 | 17.427467              | 0.170791   | 6.067207 | 17.391258  | 0.060563  |
| 6 204684 | 17.439843              | 0.144534   | 6 093804 | 17.402934  | 0.043899  |
| 6 221222 | 17.451990              | 0.116065   | 6.121024 | 17.414906  | 0.024776  |
| 6 257329 | 17.403893<br>17.476866 | 0.085563   | 6.148891 | 17.427202  | 0.003054  |
| 6 787877 | 17 497030              | 0.053230   | 6.177391 | 17.439840  | -0.021160 |
| 6 307920 | 17 402365              | 0.019143   | 6.206405 | 17.452758  | -C.047580 |
| 6 332783 | 17 500520              | -0.016706  | 6.235812 | 17.465904  | -0.076037 |
| 6 357564 | 17 50005               | -0.054345  | 6.265456 | 17.479210  | -0.106569 |
| 6 382372 | 17 520905              | -0.093854  | 6.295181 | 17.492607  | -0.139387 |
| 6 407283 | 17 542705              | -0.135264  | 6.324879 | 17 506046  | -0.174771 |
| 6 432336 | 17 555262              | -0.1/8343  | 6.354474 | 17.519494  | -0.212822 |
| 6.457533 | 17 566933              | -0.2202029 | 6.383927 | 17.532972  | -0.253478 |
| 6.482817 | 17 578691              | -0.318648  | 6.413237 | 17.546448  | -0.296518 |
| 6.508151 | 17 590514              | -0.368094  | 5.442459 | 17.559946  | -0.341601 |
| 6.533508 | 17 602403              | -0 418451  | 6.471631 | 17.573483  | -0.368302 |
| 6.558881 | 17 614343              | -0 469514  | 6.500781 | 17.587072  | -0.436190 |
| 6.577914 | 17.623331              | -0 509160  | 6.529914 | 17.600716  | -0.484956 |
| - · ·    |                        | 0.308109   | 6.551741 | 17.610979  | -0.521977 |

# LPT Rotor 1 Airfoil Coordinates

90 % From Hub

1

.

149

り

#### Suction Surface

.

.

ومربع مراقع مرا

#### Pressure Surface

U

| 2        | R         | RTHETA     | Z        | R          | RTHETA           |
|----------|-----------|------------|----------|------------|------------------|
| 7.356423 | 14.205098 | 0.         | 7.356423 | 14.205098  | 0.               |
| 7.352095 | 14.204351 | -0.007793  | 7.362579 | 14.206161  | 0.003728         |
| 7.351199 | 14.204195 | -0.018871  | 7.371271 | 14.207662  | 0.004962         |
| 7.353842 | 14.204653 | -0.033125  | 7.382500 | 14.209600  | 0 003705         |
| 7.360189 | 14.205743 | -0.050388  | 7.396278 | 14.211977  | -0.000034        |
| 7.370435 | 14.207518 | -0.070463  | 7 412630 | 14 214797  | -0.006229        |
| 7.384775 | 14.209993 | -0.093152  | 7.431617 | 14.218069  | -0.014821        |
| 7.403362 | 14.213199 | -0.118302  | 7.453345 | 14.221811  | -0.025700        |
| 7.426252 | 14.217144 | -0.145859  | 7 477993 | 14.226052  | -0.038689        |
| 7.453344 | 14.221810 | -Ö. 175925 | 7.503339 | 14.230411  | -0.052248        |
| 7.461118 | 14.223149 | -0.184263  | 545494   | 14.237652  | -0.074739        |
| 7.461118 | 14.223149 | -0.184263  | 7.545494 | 14.237652  | 0.074739         |
| 7.495488 | 14.229061 | -0.219789  | 7.586325 | 14.244656  | -0.095955        |
| 7.530938 | 14.235153 | -0.253824  | 7.626074 | 14.251465  | -0.115399        |
| 7.566676 | 14.241286 | -0.285767  | 7.665537 | 14.258155  | <u>•0.133793</u> |
| 7.602673 | 14.247492 | -0.316009  | 7.704540 | 14.264649  | -O. 151358       |
| 7.640136 | 14.253872 | -0.344781  | 7.742478 | 14.271011  | -0.167728        |
| 7.678788 | 14.260356 | -0.371852  | 7.779027 | 14 277183  | -O. 182517       |
| 7.719027 | 14.257073 | -0,396878  | 7.813989 | 14.283125  | -0.195359        |
| 7.760910 | 14.2/4118 | -0.419367  | 7.847306 | 14.288824  | -0.206071        |
| 7.804401 | 14.281492 | -0.438/83  | 7.879015 | 14.294280  | -0.214673        |
| 7 849385 | 14.289181 | -0 45456/  | 7.909231 | 14.299508  | -0.221349        |
| 7.895592 | 14.297 15 | -0.4661/9  | 7.938225 | 14.304552  | -0.226375        |
| 7.9423/0 | 14.305311 | -0.4/322/  | 7.966441 | 14.309566  | -0.230015        |
| 9.026790 | 44 333537 | -0.473348  | 7,994424 | 14.314689  | -0.232425        |
| 9 092152 | 14 322337 | -0.473175  | 8.022629 | 14.319902  | 0.233619         |
| 8 128504 | 14 339901 | -0.455123  | 8.051466 | 14.325251  | -0.233515        |
| 8 172617 | 14 349435 | -0 440173  | 8.081315 | 14.33(903  | -0 231898        |
| 8 215535 | 14.356851 | -0 421703  | 8.112403 | 14.310813  | -0.228518        |
| 8 257374 | 14.365167 | -0.399898  | 0.144080 | 14 343017  | -0.223109        |
| 8.298275 | 14 373415 | -0.374747  | 8.1/8047 | 14.343433  | 0.215054         |
| 8.338293 | 14.381552 | -0.346137  | 8.212347 | 4.350222   | -0.203709        |
| 8.377377 | 14.389561 | -0.314016  | 9 292645 | 14. 303133 | -0.177406        |
| 8 415503 | 14.397433 | -0,278391  | 8 320720 | 4 377971   | -0 157820        |
| 8.452719 | 14.405175 | -0.239454  | 8 358704 | 14 385726  | -0 133809        |
| 8.489179 | 14.412814 | -0.197412  | 8 397445 | 14 393697  | -0.105047        |
| 8.525018 | 14.420375 | -0.152455  | 8 436407 | 14 401858  | -0.071585        |
| 8.560300 | 14.427862 | -0.104773  | 8.476725 | 14 410198  | -0.033854        |
| 8.595099 | 14.435224 | -0.054548  | 8.517126 | 14.418706  | 9.007538         |
| 8.629494 | 14.4425'4 | -0.002019  | 8.557931 | 14 427362  | 0.052047         |
| 8.663604 | 14.449815 | 0.052513   | 8,599022 | 14,436056  | 0.099248         |
| 8.697522 | 14.457087 | 0.108748   | 8.640305 | 14.444838  | 0. 148726        |
| 8.731344 | 14.464369 | 0.166382   | 8.681684 | 14,453687  | 0.200116         |
| 8.765214 | 14.471694 | 0.225079   | 8.723014 | 14.462573  | 0.253118         |
| 8.799324 | 14,479101 | 0.284521   | 8.764105 | 14.471453  | 0.307510         |
| 8.833907 | 14.486645 | 0.344422   | 8.804721 | 14.480276  | 0.363190         |
| 8.861738 | 14.492739 | 0.392176   | 8.836547 | 14 487222  | 0.408206         |

#### LPT Stator 2 Airfoil Coordinates

#### 10 % From Hub

a she was

# ORIGINAL PAGE IS

OF POOR QUALITY

1.

Suction Surface

Pressure Surface

| 7                    | R         | RTHETA    | - 7        | R          | RTHETA     |
|----------------------|-----------|-----------|------------|------------|------------|
| -                    |           |           | -          |            |            |
| 2                    |           | <u> </u>  |            |            |            |
| 7.306841             | 16.162008 | 0.        | 7 306841   | 16.162008  | 0.         |
| 7.300594             | 10.109/20 | -0.008878 | 7.313075   | 10.1042/8  | 0.002983   |
| 7.29/937             | 10.138/32 | -0.021903 | 7.321593   | 10.10/368  | 0.003315   |
| 7.298383             | 10.139130 | -0.038974 | 7.332461   | 16.171290  | 0.001049   |
| 7.303922             | 10.100942 | -0.039939 |            |            | -0.003/30  |
| 1.3123/2             | 10,104241 |           | 7.301/93   | 10.101/2/  |            |
| 7.3203/9             | 10.103030 | -0.112760 | 7.380360   | 16.188300  | -0.020344  |
| 7.344308             | 16 193640 | -0 178937 | 7 436697   | 16 204247  | -0.045299  |
| 7 394629             | 16 193290 | -0.216754 | 7 466516   | 16 217803  | -0.067065  |
| 7 209284             | 16 194947 | -0 222985 | 7 511846   | 16 233749  | -0.090937  |
| 7 399384             | 16 194942 | -0 222985 | 7 511846   | 16 232749  | -0.090937  |
| 7 433767             | 16 206757 | -0 265776 | 7 555245   | 16 246689  | -0 112283  |
| 7 469963             | 16.218953 | -0.306525 | 7.595822   | 16 259705  | -0 130455  |
| 7.507122             | 16.231210 | -0.344484 | 7 637441   | 16 271937  | -0 146198  |
| 7.545344             | 16.243541 | -0.379972 | 7 676994   | 16 283514  | -0 159744  |
| 7.585329             | 16.256140 | -0.413103 | 7.7147.19  | 16.294358  | -0.170943  |
| 7.627317             | 16,268936 | -0.443517 | 7.750578   | 16.304432  | -0.171824  |
| 7.671469             | 16.281910 | -0.470640 | 7.784205   | 16.313723  | -0.156689  |
| 7.718261             | 16.295344 | -0.493959 | 7.815190   | 16.322136  | -0, 191702 |
| 7.768135             | 16.309304 | -0.512781 | 7.843093   | 16.329590  | -0.194987  |
| 7.820794             | 16.323642 | -0.525030 | 7.868213   | 16.336201  | -0.196980  |
| 7 875373             | 16.338068 | -0.532822 | 7.891411   | 16.342223  | -0.198119  |
| 7.930663             | 16.352227 | -0.532603 | 7.913899   | 16.347985  | -0.198689  |
| 7.985291             | 16.365910 | -0.525389 | 7.937048   | 16.353835  | -0.198620  |
| 8.037950             | 16.378940 | -0.511662 | 7.962167   | 16.360139  | -0.197582  |
| 8.087815             | 16.391133 | -0.492329 | 7.990079   | 16.367101  | -0.195067  |
| 8.134877             | 16.402513 | -0.468197 | 8.020795   | 16.374712  | 190717     |
| 8.173413             | 16.413166 | -0.439997 | 8.054037   | 16.382889  | -0.184133  |
| 8.221672             | 11,423171 | ~0.408264 | 8.089555   | 16 391556  | -0.175005  |
| 8.262043             | 13.432703 | -0.373479 | 8.126963   | 16.400608  | -0.163002  |
| 8.301072             | 16.441978 | -0.335809 | 8.165711   | 16.409900  | 0.147885   |
| 8.339145             | 16.451074 | -0.295178 | 8.205416   | 16.419334  | -0 129310  |
| 8.376375             | 16.460015 | -0.251397 | 8 245963   | 16.428897  | -0.106790  |
| 8.412839             | 16.458818 | -0.204299 | 8.287277   | 16.438694  | -0.079701  |
| 8.448514             | 16.477473 | -0.153805 | 8.329380   | 16.448736  | -0.047454  |
| 8.483571             | 16.486019 | -0.099968 | . 8.372100 | 16.458986  | -0.009685  |
| 8.518244             | 16.494512 | -0.042833 | 8.415206   | 16. 169391 | 0.033630   |
| 8.552729             | 16.503053 | 0.017538  | 8.458498   | 16.479902  | 0.082268   |
| 8.587195             | 16.511833 | 0.081023  | 8.501809   | 16.490481  | 0.135853   |
| 8.621694             | 16.520,10 | 0.147454  | _ 8.545088 | 16.501118  | 0.193896   |
| 8.656316             | 16.529 09 | 0.216560  | 8.588244   | 16.512102  | 0.255871   |
| 8.691034             | 16.538822 | 0.288060  | 8.631304   | 16.523199  | 0.321191   |
| 8./25889             | 10.04800L | 0.301304  | 8.674226   | 16.534399  | 0.309310   |
| 8.700955             | 10.55/450 | 0.430023  | 8.716938   | 16.545681  | U.459682   |
| 8./96J2/<br>8.833158 | 10.50/013 | 0.512821  | 8.759343   | 16.557017  | 0.531823   |
| 8 86332108           | 10.3/0/98 | 0.389812  | 8.801280   | 16.568360  | 0.605431   |
| 8.002333             | 801686.01 | 0.034202  | 8.535693   | 16.577766  | 0.667519   |

#### LPT Stator 2 Airfoil Coordinates

50 % From Hub

)

| Suction Surface |            |            | Pressure Surface |            |            |  |
|-----------------|------------|------------|------------------|------------|------------|--|
|                 |            |            |                  |            |            |  |
| 7               | R          | RTHETA     | z                | 2          | RTHETA     |  |
| ۰.              |            |            |                  |            |            |  |
|                 |            |            |                  | 17 055466  | 0          |  |
| 7.263435        | 17.955466  | 0.         | 7.263435         | 17.953400  | 0.003310   |  |
| 7.258673        | 17.953174  | -0.008071  | 7,269163         | 17.936413  | 0.004186   |  |
| 7.257204        | 17.952466  | -0.019374  | 7.277351         | 17.962140  | 0.002637   |  |
| 7.259076        | 17.953368  | -0.033861  | 7.288014         | 17.907244  | -0.001310  |  |
| 7.264367        | 17.955914  | -0.051454  | 7.301179         | 17.973010  | -0.007615  |  |
| 7.273180        | 17.960147  | -0.072050  | 7.316889         | 17.980903  | -0.016209  |  |
| 7.285642        | 17.966111  | -0.095525  | 7.335214         | 17.989007  | -0.026988  |  |
| 7.301894        | 17.973855  | -0.121740  | 7.356257         | 17.999409  | -0.039808  |  |
| 7.322089        | 17.983422  | -0.150545  | 7.380170         | 18,010090  | ÷ 060708   |  |
| 7.345378        | 17.994848  | -0.181792  | 7.418533         | 18.026200  | -0.085139  |  |
| 7.374906        | 18.008154  | -0.215342  | 7.463920         | 18.048680  | -0.107609  |  |
| 7.407795        | 18.023342  | -0.251078  | 7.507762         | 18.008510  | -0 127368  |  |
| 7.440959        | 18.038493  | -0.284726  | 7.550218         | 18.08/238  | -0 127368  |  |
| 7.440959        | 18.038493  | -0.284725  | 7.550218         | 18.08/238  | -0.12/300  |  |
| 7.479079        | 18.055704  | -0.320805  | 7.592136         | 18.105399  | -0. 160646 |  |
| 7.517927        | 18.073019  | -0.354955  | 7.633326         | 18.122921  | -0.177978  |  |
| 7.558188        | 18.090724  | -0.387325  | 7.673104         | 18.139641  | -0 194949  |  |
| 7.600123        | 18.108814  | -0.417536  | 7.711208         | 18.1554/3  | 0.103246   |  |
| 7.643834        | 18.127357  | -0.445097  | 7.747535         | 18.170398  | 0. 193340  |  |
| 7.689537        | 18, 146491 | -0.469479  | 7.781870         | 18, 184354 | 0.103941   |  |
| 7.737375        | 18.166240  | -0.490192  | 7.814071         | 18.197308  | -0.203347  |  |
| 7.787345        | 18 186565  | -0.506462  | 7.844139         | 18.209288  | -0.206560  |  |
| 7.839208        | 18.207331  | -0.517684  | 7.872315         | 18.220412  | 0.207019   |  |
| 7.892520        | 18.228328  | -0.523210  | 7 899041         | 18 230857  | -0.208026  |  |
| 7.946566        | 18.249115  | -0.522560  | 7.925033         | 18.240855  | -0.207390  |  |
| 8 000245        | 18.269620  | -0.515558  | 7.951393         | 18.250964  | -0.203923  |  |
| 8.052541        | 18.289475  | -0.502470  | 7.979136         | 18.2013/1  | 199580     |  |
| 8.102983        | 18.308514  | -0 483704  | e.008732         | 18.272850  | -0 193992  |  |
| 8.151372        | 18.326674  | -0.459766  | 8.040381         | 18.284803  | -0 195100  |  |
| 8.197688        | 18.343961  | -0.431150  | 8.074104         | 18.29/028  | -0 175422  |  |
| 8.241986        | 18.360459  | -0.398247  | 8.109845         | 18.311096  | -0.1/13422 |  |
| 8.284401        | 18.376367  | -0.361482  | 8.147468         | 18.325213  | -0.101337  |  |
| 8.325121        | 18.391747  | -0.321160  | 8.186786         | 18.339900  | -0.121024  |  |
| 8.364343        | 18.406660  | -0.277480  | 8.227603         | 18.355091  | -0.024086  |  |
| 8.402339        | 18,421201  | -0.230595  | 8.269646         | 18.370821  | -0.054080  |  |
| 8.439379        | 18,435463  | -0.180520  | 8.312644         | 18.38/023  | 0.002331   |  |
| 8.475717        | 18 449540  | -C. 127217 | 8.356345         | 18.4036,11 | *0.025008  |  |
| 8.511581        | 18.453516  | -0.070722  | 8.400519         | 18.420502  | 0.010100   |  |
| 8.547142        | 18.477549  | -0.011063  | 8.444996         | 18.43/634  | 0.002500   |  |
| 8.582510        | 18,491835  | 0.051646   | 8.489667         | 18.454967  | 0.114502   |  |
| 8.617738        | 18.506208  | 0.117171   | 8.534477         | 18,472481  | A 120077   |  |
| 8.652872        | 18.520684  | 0.185270   | 8.579382         | 18.490365  | 0.230077   |  |
| 8.688002        | 18.535301  | 0.255652   | 8.624291         | 18.508897  | 0.232334   |  |
| 8.723232        | 18.550103  | 0.328011   | 8.669099         | 18.52/419  | 0.336031   |  |
| 8.758761        | 18.565174  | 0.402002   | 8.713608         | 18.546045  | 0.420000   |  |
| 8.794780        | 18.590601  | 0.47/333   | 8.757628         | 18.564691  | 0.569776   |  |
| 8.831526        | 18.596494  | 0.553750   | 8.800920         | 18.583246  | 0.509730   |  |
| 8.862685        | 1.6 10092  | 0.618012   | 8.836291         | 18.598566  | 0.031340   |  |

#### LPT Stator 2 Airfoil Coordinates

90% From Hub

, že

.

152

AT MALE AN ADDRESS

۰.

ŀ

f

# ORICHARY CONTINUES OF POUR CLOSETY

#### Suction Surface

 $\bigcirc$ 

فلأدينهم

Ŀ

5

Pressura Surface

| Z                    | R         | RTHETA    | Z         | R          | RTHETA     |
|----------------------|-----------|-----------|-----------|------------|------------|
| 9.387539             | 14.614119 | 0.        | 9.387539  | 14.614119  | 0.         |
| 9.383391             | 14.613030 | 0.006358  | 9.392686  | 14.615469  | 0.002894   |
| 9.381896             | 14.612637 | 0.015580  | 9.399520  | 14.617257  | -0.003832  |
| 9.383161             | 14.612969 | 0.027570  | 9.407952  | 14.619458  | -0.002734  |
| 9.387346             | 14.514068 | 0.042185  | 9.417875  | 14.622040  | 0.000497   |
| 9.394645             | 14.615982 | 0.059250  | 9.429230  | 14.624985  | 0.005915   |
| 9 405259             | 14.618755 | 0.078587  | 9.442090  | 14 628306  | 0.013456   |
| 9.419351             | 14.622423 | 0.100051  | 9.456776  | 14.632082  | 0.022831   |
| 9.437001             | 14.626993 | 0.123572  | 9.470537  | 14.635603  | 0.031523   |
| 9.458154             | 14.632435 | 0.149203  | S. 503430 | 14.643953  | 0.051563   |
| 9.464258             | 14.633998 | 0.156299  | 9.535996  | 14.652130  | 0.070350   |
| 9.464258             | 14.633998 | 0.156299  | 9.535996  | 14.652130  | 0.073950   |
| 9.490591             | 14.640705 | 0.185661  | 9.567916  | 14.660056  | 0.039578   |
| 9.517731             | 14.647555 | 0.213769  | 9.599030  | 14.667697  | 0.107223   |
| 9.545644             | 14.654535 | 0.240621  | 9.629370  | 14.675094  | 0. 123526  |
| 9.574293             | 14.661628 | 0.266154  | 9.658974  | 14.682260  | 0.138214   |
| 9.603704             | 14.668838 | 0.290207  | 9.687816  | 14.689153  | 0. 151194  |
| 9.633911             | 14.676199 | 0.312614  | 9.715862  | 14.695773  | 0.162458   |
| 9.664980             | 14.683702 | 0.333159  | 9.743046  | 14.702110  | 0.172102   |
| 9.697034             | 14.691338 | 0.351724  | 9.769246  | 14.708146  | 0.180114   |
| 9.730220             | 14.699130 | 0.368113  | 9.794312  | 14 713853  | 0.185487   |
| 9.704002             | 14.707070 | 0.382037  | 9.818233  | 14.719239  | 0.191277   |
| 9./99900             | 14.715132 | 0.393123  | 9.841073  | 14.724325  | 0. 194672  |
| 9.030200<br>9.873365 | 14.723204 | 0.401035  | 9.863006  | 14. 129132 | 0. 196863  |
| 9 910607             | 14.731351 | 0.405470  | 9.884290  | 14.733725  | C. 198052  |
| 9 948015             | 14.733323 | 0.402243  | 9,905192  | 14,738180  | 0. 198328  |
| 9 985029             | 14 754601 | 0.403233  | 9.926036  | 14.742568  | 0. 197720  |
| 10 07 1225           | 14.751014 | 0.390434  | 9.947275  | 14.746983  | 0.196148   |
| 10.056355            | 14 768767 | 0.386025  | 9.969321  | 14.751506  | 0.193428   |
| 10 090245            | 14 775149 | 0.372243  | 9.992455  | 14.756186  | 0.189368   |
| 10.122952            | 14 780971 | 0.335664  | 10.016819 | 14.761042  | 0.183763   |
| 10.154574            | 14 786558 | 0.333004  | 10.047365 | 14.766053  | 0.1/6424   |
| 10 185244            | 14 791936 | 0.288307  | 10.068995 | 14.771190  | 0.16/153   |
| 10 215076            | 14.797:30 | 0.260894  | 10.096579 | 14.776280  | 0.155696   |
| 244069               | 14.802142 | 0 231231  | 10.12500  | 14.781334  | 0.141707   |
| 272270               | 14.806983 | 0.199501  | 10 184250 | 14.783303  | 0.124810   |
| 10.299792            | 14.811676 | 0 165794  | 10.184313 | 14.79174   | 0.104892   |
| 10.326749            | 14.816358 | 0.130166  | 10.215043 | 14,79,124  | 0.082037   |
| 10.353258            | 14.821142 | 0.092647  | 10.246339 | 14.802333  | 0.036415   |
| 10.379450            | 14.825900 | 0.053281  | 10.2/8084 | 14.80/3//  | -0.003568  |
| 10.405401            | 14.830645 | 0.012085  | 10 342447 | 14.813432  | -0.025807  |
| 10.431200            | 14.835393 | -0.030908 | 10.374901 | 14 825072  | -0.071491  |
| 10.456922            | 14.840156 | -0.075670 | 10.407432 | 14.831018  | -0.109587  |
| 10.482664            | 14.844952 | -0.122161 | 10.439944 | 14.837008  | -0.150075  |
| 10.508544            | 14.849805 | -0.170331 | 10.472316 | 14.843021  | -0. 192954 |
| 10.534629            | 14.854726 | -0.220175 | 10.504485 | 14.849042  | -0.238200  |
| 10.554520            | 14.858501 | -0.258966 | 10.528635 | 14.853593  | -0.273971  |

#### LPT Rotor 2 Airfoil Coordinates

, **2**4

1

4

10% From Hub

Suction Surface

•

4.

.

Ε.

\$

114.

Pressure Surface

 $(\mathbf{x})$ 

り

| Z                    | R         | RTHETA    | - 7       |            |            |
|----------------------|-----------|-----------|-----------|------------|------------|
|                      |           |           | 2         | R          | RTHETA     |
|                      |           |           |           |            |            |
| 9.403337             | 16.759952 | 0.        | 9.403337  | 15 750050  | -          |
| 9.399090<br>0.300357 | 16.758581 | 0.005106  | 9.407841  | 16 761647  | 0.         |
| 9.398257             | 16.758039 | 0.012922  | 9.413717  | 16.761047  | -0.002090  |
| 9.399108             | 16.758360 | 0.023380  | 9 420827  | 16.763860  | -0.002320  |
| 9.402384             | 16.759593 | 0.036370  | 9 428994  | 16.766538  | -0.000581  |
| 9.408256             | 16 761804 | 0.051761  | 9 438061  | 10.709614  | 0.003271   |
| 9.416903             | 16.765060 | 0.069411  | 9 448020  | 10.773032  | 0.009353   |
| 9 428489             | 16.769425 | 0.089193  | 9 450159  | 10.776790  | 0.017672   |
| 9.443129             | 16.774942 | 0.111020  | 9 479801  | 16.780987  | 0.028021   |
| 9.460843             | 16.781623 | 0.134877  | 9 5(999)  | 16.788811  | 0.047241   |
| 9.479573             | 15.788691 | 0. 158304 | 9 520 (80 | 16.800138  | 0.073623   |
| 9.479573             | 16 788691 | 0. 158304 | 9 520 189 | 16.811219  | 0.097416   |
| 9.505755             | 16.798579 | 0. 188368 | 9 567077  | 16.811219  | 0.097416   |
| 9.532647             | 16.808744 | 0.216153  | 9 595856  | 16.822077  | 0.118688   |
| 9.560306             | 16.819211 | 0.241770  | 9.633069  | 15.832678  | 0.137474   |
| 9.598743             | 16.829982 | 0.265034  | 9 649600  | 16.843017  | 0.153518   |
| 9.617919             | 16.841044 | 0.285741  | 9.675405  | 16.853163  | 0.166872   |
| 9.547977             | 16.852579 | 0.303771  | 9.079195  | 16.863004  | 0.177878   |
| 9.679063             | 16.864491 | 0.318945  | 9.700008  | 16.872488  | O 186843   |
| 9.711250             | 16.876778 | 0.330999  | 9.723772  | 16.881552  | 0.193954   |
| 9.744373             | 16.889394 | 0.339673  | 9,746476  | 16 890194  | 0.199348   |
| 9.778255             | 16.902263 | 0 344669  | 9.768223  | 16.898457  | 0 203133   |
| 9.812598             | 16 915270 | 0 345733  | 9 /89211  | 16.906417  | 0 205433   |
| 9 847027             | 16 928227 | 0 342708  | 9.809739  | 15.914189  | 0.206318   |
| 9.881164             | 16.940868 | 0.335609  | 9.830180  | 16.921914  | 0.205750   |
| 9.914728             | 16 953209 | 0.324590  | 9.850913  | 16.929671  | 0.203524   |
| 9.947520             | 16.965180 | 0 309894  | 9.8/2219  | 16.937565  | 0 199262   |
| 9.979405             | 16.976741 | 0 291597  | 9.894298  | 16.945708  | 0.192532   |
| 10.010314            | 16.987883 | 0.270138  | 9.91/284  | 16.954145  | 0.182861   |
| 10.040304            | 16.998601 | 0.245725  | 9.941215  | 16.962885  | 0 169878   |
| 10.069325            | 17.008862 | 0 218663  | 9.966126  | 16.971936  | 0.153400   |
| 10.097452            | 17 018686 | 0 189169  | 9.991975  | 16.981277  | 0.133504   |
| 10.124757            | 17.028200 | 0 157426  | 10.018/18 | 16.990885  | 0.110556   |
| 10. 151518           | 17.037502 | 0 122351  | 10 046284 | 17.000732  | 0.085038   |
| 10.178015            | 17.046691 | 0.086743  | 10.074393 | 17.010634  | 0.057333   |
| 10.204298            | 17 055785 | 0 047755  | 10.102766 | 17.020539  | 0.027214   |
| 10.230270            | 17.064751 | 0.006677  | 10,131354 | 17.030495  | -0.005864  |
| (C. 255929           | 17.073588 | -0.036309 | 10.160253 | 17.040534  | -0.041795  |
| 10.281289            | 17.082322 | -0.081146 | 10.199464 | 17.050655  | -0.080075  |
| 10.306486            | 17.091112 | -0 127797 | 10.218974 | 17.060854  | -0.120364  |
| 10.331709            | 17.099922 | -0 176271 | 10.248647 | 17 07 1082 | -0. 162622 |
| 10.357030            | 17.108777 | -0 226592 | 10.278295 | 17.081279  | -0.207007  |
| 10.382440            | 17.117674 | -0 278665 | 10.30/845 | 17.091537  | -0.253671  |
| 10.407905            | 17.126601 | -0 222222 | 10.337305 | 17.101878  | -0.302555  |
| 10.433405            | 17.135552 | -0 387750 | 10.366710 | 17.112165  | -0.353425  |
| 10.458931            | 17.144523 | -0 443120 | 10.396081 | 17.122455  | -0.405898  |
| 10.484488            | 17.153516 | -0 499700 | 10.425425 | 17.132750  | -0.459549  |
| 10.504130            | 17.160436 | -0 543524 | 10.454739 | 17.143049  | -0.514067  |
|                      |           |           | 10.4//231 | 17.150961  | -0.556396  |

LPT Rotor 2 Airfoil Coordinates

1. S. 1.

•

50% From Hub

## Suction Surface

Pressure surface

|       | Ζ       |      | R       | RTHETA            | Z          | R          | DTHETA            |
|-------|---------|------|---------|-------------------|------------|------------|-------------------|
|       |         |      |         |                   |            |            |                   |
| 9.    | 399739  | 18   | 856664  | <u>O</u>          | 0.000000   |            |                   |
| 3     | 396793  | 18   | 855297  | 0.005102          | a 188/18   | 18 856664  | Ο.                |
| 9.    | 396036  | 18   | 854945  | 0.012361          | 9 403514   | 18 858463  | -0.002426         |
| 9     | 397523  | 18   | 855636  | 0.021720          | 9 408881   | 18 860906  | -0 003370         |
| Э     | 401338  | 18   | 857407  | 0 013097          | 9 415444   | 18 863949  | -0.002737         |
| 9     | 407581  | 18   | 860303  | 0.046391          | 9 423180   | 18 867532  | -0.000403         |
| 9     | 416362  | 18   | 864374  | 0 06 1497         | 9 431993   | 15 8/1612  | 0 003728          |
| 9     | 427775  | 18   | 869660  | 0 078321          | 9 45 2097  | 18 8/6189  | 0.009648          |
| 9.    | 441877  | 18   | 876182  | 0.096808          | 9 474386   |            | 0 017146          |
| 9     | 458669  | 18   | 883937  | 0.116962          | 9 504895   | 10 091102  | 0 031382          |
| 9     | 478056  | 18   | 892873  | 0 138741          | 9 544725   | 19 019213  | 0.050788          |
| 9.    | 478056  | 18   | 892873  | 0 138741          | 9 534725   | 18 018801  | 0 068374          |
| 9.    | 503562  | 18   | 904602  | 0 165349          | 9 564014   | 19 033370  | 0.0683/4          |
| 9     | 529653  | 18   | \$16569 | 0 190360          | 9 5927 18  | 18 945360  | 0.084311          |
| 9     | 556488  | 18   | 928843  | 0 213833          | 9 620677   | 18 958071  | 0 0986/5          |
| 9     | 584168  | 18   | 941468  | 0 235651          | 9 647792   | 18 970385  | 0.111337          |
|       | 612799  | 18   | 954489  | 0 2556 16         | 9 67 39 56 | 18 982228  | 0 121767          |
| 9     | 642524  | 18   | 967997  | 0 273505          | 9 699026   | 18 993536  | 0 131202          |
| 9.    | 0/3488  | 18   | 982016  | 0 289031          | 9.722857   | 19 004251  | 0.138537          |
|       | 705/66  | 18   | 996570  | 0 301879          | 9 745373   | 19 014344  | 0 147971          |
|       | 739354  | 19   | 011648  | 0 311635          | 9 766580   | 9 023822   | 0 50077           |
|       | 800440  | 19.  | 027146  | 0 317876          | 9 7866-17  | 19 032788  | 0 150618          |
|       | 9094 10 | 19   | 042882  | 0 320213          | 9 806114   | 19 041419  | 0.150354          |
| 9.1   | 880154  |      | 038589  | 0 318394          | 9 825353   | 19 049949  | 0 148768          |
|       | 914551  | - 19 | 0/39/5  | 0 312411          | 9 844959   | 19 058585  | 0 146064          |
| ģ     | 947848  | 10   | 102206  | 0 302393          | 9 865357   | 19 067513  | 0 142132          |
| 9     | 979841  | 10   | 117217  | 0 288634          | 9 886855   | 19 076898  | 0.136723          |
| 10.0  | 010480  | 19   | 130405  | 0 251222          | 9 909657   | 19 086826  | 0 19526           |
| 10 0  | 039953  | 19   | 143045  |                   | 9 933812   | 19 097315  | 0 120314          |
| 10.0  | 068507  | 19   | 155181  | 0 202240          | 9 959 35   | 19 108278  | 0 108909          |
| 10 0  | 096472  | 19   | 167015  | 0 177620          | 9.985375   | 19 119603  | 0 095065          |
| 10.1  | 124063  | 19   | 178717  | 0 141976          | 10 012205  | 19 131146  | 0 078392          |
| 10.   | 151227  | 19   | 190265  | 0 107506          | 10.039409  | 19 142812  | 0 058185          |
| 10    | 177943  | 19   | 201650  | 0.070867          | 10 06/040  | 15 154562  | 0 033644          |
| 10    | 204114  | 19.  | 212829  | 0 031983          | 10 095118  | 19 166441  | 0 004762          |
| 10.2  | 229640  | 19   | 223756  | 0.008759          | 10.123742  | 19 1 8581  | -0.027698         |
| 10 2  | 254713  | 19   | 234513  | -0 251324         | 10 193011  | 19 191025  | -0 062767         |
| 10.2  | 279622  | 19.  | 245270  | -0 095969         | 10 212610  | 19 203694  | ·0 0 <b>99709</b> |
| 10.3  | 3045:0  | 19.  | 256212  | -0 142797         | 10 242525  | 19 216467  | -0 138623         |
| 10.3  | 329464  | 19.  | 2672 19 | -0.191707         | 10 272366  | 19 242404  | -0 18008;1        |
| 10 3  | 354467  | 19   | 278373  | -0 242602         | 10 302150  | 19 242101  | -0 224290         |
| 10.3  | 379509  | 19.  | 239582  | -0.295327         | 10 37 910  | 10 2501/5  | -0.27109C         |
| 10 4  | 04597   | 19.  | 300877  | -0.349654         | 10 361618  | 19 200334  | -0 320218         |
| 10.4  | 29765   | 19   | 312275  | -0 405292         | 10.391244  | 19 20100/  | -0.3/13/9         |
| 10 4  | 55028   | 19.  | 323783  | -0 461983         | 10 420776  | 19 308 196 | -0 424238         |
| 10.4  | 80332   | 19.  | 335378  | -0.519572         | 10 450267  | 19 321600  | -13 4/8437        |
| TO, 4 | 23330   | 19.  | 344405  | -0. <b>564669</b> | 10 473058  | 19 332038  | -0 577177         |
|       |         |      |         |                   |            |            |                   |

# LPT Rotor 2 Airfoil Coordinates

. . . . . .

. .....

-

90% From Hub

2

£.

(÷)

| Suction Surface |           |                              |             | Pressure Surface |                                       |  |
|-----------------|-----------|------------------------------|-------------|------------------|---------------------------------------|--|
| Ž               | 2         | RTHETA                       | •           | 2                | RTHETA                                |  |
| 1 161983        | 14_973300 | 0                            | 11 15 1983  | ·4 973300        | · · · · · · · · · · · · · · · · · · · |  |
| 11 156902       | 14 972407 | 0.008415                     | 11 169746   | 14 974567        | 0.004550                              |  |
| 11 155286       | 14 972123 | -0 020356                    | 11 180655   | 14 976591        | 0.005895                              |  |
| 11 157240       | 14 972466 | -0.035540                    | 194664      | 14 979068        | 0 003989                              |  |
| 62922           | 14 973465 | -0 053869                    | 211726      | 4 982094         | -0.001215                             |  |
| 11 1 2536       | 14 975159 | 0 015142                     | 1 231826    | 14 985671        | -0.009737                             |  |
| 11 186306       | 14 977590 | -0 )99137                    | 11.55026    | 14 989816        | -0 021513                             |  |
| 11 204452       | 14 980803 | -0 125638                    | 11 221541   | 14 994575        | 0 036334                              |  |
| 1 22 53         | 14 984838 | -0 154472                    | 11.31 508   | 15 000036        | -0.053767                             |  |
| 11 254508       | 14 989723 | 0 185540                     | 11.316367   | 15 002619        | -0 061863                             |  |
| 1 286492        | 14 995466 | -0 218871                    | 11 37 15 12 | 15 010898        | -0 086752                             |  |
| 11 316976       | 15 000971 | 0.248803                     | 11 416128   | 15 019092        | -0 109801                             |  |
| 11 316916       | 15 000971 | -0 248803                    | 1.116128    | 15 019092        | -0 109801                             |  |
| 11 303365       | 15 008211 | ·O 285654                    | 11.459926   | 15 027200        | -0 130712                             |  |
| 11 439437       | 15 015619 | 0 320672                     | 1 503092    | 15 035275        | 0 149501                              |  |
| 11 480553       | 15 023214 | 0 353889                     | 1 340545    | 15 043326        | -0 166164                             |  |
| 11 522929       | 15 031041 | 0 385220                     | 11 587055   | 15 051235        | -0 180673                             |  |
| * 543538        | 15 039205 | -0 414397                    | 11.627396   | 15.058956        | -0 193079                             |  |
| 11 614766       |           | 0 441022                     | 11 666339   | 15.056441        | -0 203526                             |  |
| 11 661677       | 10 000000 | 0 464737                     | 11.703722   | 15 073656        | -0 212073                             |  |
| 7.2297          | 15 075215 | 1 485183                     | 11 739435   | 15 080577        | 0 218751                              |  |
| 11 761577       | 15 085366 | 01920                        | 11 773445   | 15 087 192       | -0 <b>223633</b>                      |  |
| 1 9 6 3 3 9     | 15 095569 | 1 1 1 4 3 1 3<br>1 0 1 9 6 7 | 11 805791   | 15 093506        | 0 226921                              |  |
| 11 870106       | 15 106052 |                              | 11 936652   | 15 099536        | -0 228895                             |  |
| 11 923778       | 15 116515 | 0 519896                     | 1 866510    | 15 105351        | -0 229708                             |  |
| 11 976262       | 15 126759 | -0.510311                    | 1 222606    | 15 111189        | 0 229618                              |  |
| 12 027102       | 15 136694 | -0 495672                    | 11 960303   | 15 11/262        | -0 228414                             |  |
| 12 076141       | 15 146287 | -0 476629                    | 1 994979    | 15 123661        | -0 225843                             |  |
| 2 23342         | 15 155531 | -0 453768                    | 17 031404   | 15 130416        | -0 221564                             |  |
| 17 168856       | 15 164401 | ·0 427607                    | 12 069516   | 15 144901        | -0 215268                             |  |
| 12 213 OC       | 15 172824 | ·C 398353                    | 12 108897   | 15 151701        | 0 105050                              |  |
| 12 256447       | 5 181145  | -O 365965                    | 12 149177   | 15 160594        | -0 193908                             |  |
| 12 239 67       | 15 189412 | 0 330 180                    | 12 190088   | 15 168434        | -0 166769                             |  |
| 12 34 303       | 15 197632 | -0 <b>290685</b>             | 12 231573   | 15 176362        | -0 146417                             |  |
| 382609          | 15 205752 | ·O 247455                    | '2 273893   | 15.184514        | 0 121786                              |  |
| 12 423011       | 15 213754 | · 2 200688                   | 12 317116   | 15 192906        | -0.091744                             |  |
| 12 454457       | 15 221624 | -0 -50737                    | 12 361297   | 15 201555        | -0.056201                             |  |
| 12 539975       | 15 229398 | 0.098058                     | 12 406402   | 15 210458        | -0 015891                             |  |
| 17 576764       | 10 23/319 | 10 042750                    | 12 452176   | 15.219568        | 0 028 103                             |  |
| 12 613459       | 15 263235 | 0 015210                     | 12 498368   | 15 228855        | 0 075368                              |  |
| 12 650632       | 15 253241 | 0.0/5/53                     | 12.544799   | 15 238578        | 0 126022                              |  |
| 12 588042       | 15 269567 | 0 202200                     | 12 591251   | 15 248461        | 0 180063                              |  |
| 12 725825       | 15 277977 | 0 269300                     | 12 537467   | 15 258449        | 0 237316                              |  |
| 12 754100       | 15 286612 | 0 117 165                    | 12 653310   | 15 268510        | 0 297339                              |  |
| 12 802928       | 15 295480 | 0 405530                     | 12.728661   | 15 278613        | 0 359637                              |  |
| 12 835123       | 15 302316 | 0 462001                     | 12 7/3459   | 288739           | 0 423832                              |  |
|                 |           |                              | 14 903028   | 15.297028        | 0 477580                              |  |

LPT Stator 3 Airfoil Coordinates

- -

10% From Hub

1.55

.

Suction Surface

AND IN CONTRACTOR OF A DAMAGE

3

Fressure Surface

Ŷ

.0

| Ζ           | R         | RTHETA    | Z         | R         | RTHETA    |
|-------------|-----------|-----------|-----------|-----------|-----------|
|             |           |           |           |           |           |
| 11 120002   | 17 247064 | <u>^</u>  |           | 17 397064 |           |
| 11 122228   | 17 38/004 | 0 000043  | 11 129683 | 17 30/004 | 0 003774  |
| 1 122328    | 17 384333 | -0.009847 | 11 138199 | 17 390052 | 0.003774  |
| 3 3 8 4 8 3 | 17.382939 | -0 0241/9 | 11,149389 | 17 394079 | 0 001975  |
| 11 18478    | 17 382937 | -0 042889 | 11.163446 | 17 399101 | 0.000594  |
| 122517      | 17 384401 | -0 065811 | 11 180382 | 17 405113 | -0.006361 |
| 11 1305/1   | 17 387421 | -0 092729 | 11 200267 | 17 412119 | -0 016837 |
| 11 133849   | 17 392092 | -0 123396 | 11 223280 | 17.420157 | -0 030690 |
| 1 161//6    | 17 198505 | -0 15/55* | 11 249/79 | 17.429318 | -0 04/638 |
| 11 184961   | 17.406/31 | -0.19496  | 11 280384 | 1/ 439//4 | -0.06/184 |
| 11 213039   | 17 410800 | -0 235417 | 11.305234 | 17.448300 | -0.082951 |
| 1 248026    | 1/ 448/13 | -0 2/8802 | 11.354097 | 17 404104 | -0.109978 |
| 11 267990   | 17 433330 | -0.302298 | 11 400635 | 17 479332 | -0.133539 |
| 26/990      | 17.433336 | -0 302298 | 11.400035 | 17 4/9002 | -0.133339 |
| 11 308188   | 1/ 449100 | -0 346426 | 11 445829 | 17 493900 | -0.133387 |
| 11 349394   | 17 402923 | -0 38/844 | 11.489815 | 17.507635 | -0.170367 |
| 11 392411   | 17 4/689/ | -0 426543 | 11 532391 | 17 520584 | -0 184119 |
|             | 17 505555 |           |           | 17 532/90 | 0 193022  |
| 1 5357      | 17 503035 | - 494932  | 11 612213 | 17 554067 | 0.2034/3  |
| 11 59761    | 17 525565 | -0 549971 | 11.049293 | 17 554775 | -0.209868 |
| 1 627041    | 17 551444 | -0.569267 | 1 333/80  | 17 577450 | -0 214238 |
| 11 694911   | 17 567017 | 0 58333   | 11 740044 | 17 591077 | -0 210024 |
| 11 75544    | 17 584696 | 0 591341  | 1 757107  | 17 587077 | -0 217543 |
| 11 81774    | 17 601317 | 0 590528  | 11 790508 | 17 594220 |           |
| 1 878758    | 17 617259 | 10 530983 | 1 914575  | 17 600594 | -0 216614 |
| 11 937175   | 17 632210 | 0 567483  | 11 841550 | 17 607628 | -0.215246 |
| 11 991112   | 17 645829 | -0 539581 | 11 873005 | 17 615776 | -0 212340 |
| 12 041445   | 17 658380 | 0 510530  | 11 308064 | 17 624785 | -0 207521 |
| 12 089194   | 17 670144 | 0 477009  | 11 945708 | 17 634376 | -0.200408 |
| 2 34492     | 17 681175 | 0 439629  | 11 985802 | 17 644496 | -0 190412 |
| 12 177623   | 17 591810 | -0 399114 | 12 028064 | 17 655058 | -0 176914 |
| 12 219079   | 17 702090 | -0 355722 | 12 072000 | 17 565923 | -0 159701 |
| 12 259294   | 17 712052 | -0 309389 | 12 117177 | 17 676973 | -0.138625 |
| 12 298728   | 17.721911 | -0 259740 | 12 163135 | 17 688215 | -0 113362 |
| 12 337714   | 17 731451 | -0 206264 | 12 209542 | 17 699726 | -0 083044 |
| 12 376528   | 17 741639 | -0 148484 | 12 256120 | 17 711256 | -0 046271 |
| 12 415435   | 17.750640 | -0.085946 | 12 302606 | 17 722771 | -0.001484 |
| 12 454307   | 17 160224 | 0 019030  | 12 349126 | 17 734271 | 0 052055  |
| 12 492915   | 17.769742 | 0 051218  | 12.395910 | 17.745823 | 0.112616  |
| 12 531108   | 17.779197 | 0 124375  | 12 443110 | 17 757464 | 0 177476  |
| 12 569041   | 17.788590 | 0.200573  | 12.490569 | 17.769161 | 0 245731  |
| 12.607035   | 17 798000 | 0 279816  | 12.537967 | 17.780895 | 0.317744  |
| 12 645352   | 17 807492 | 0 361892  | 12.585043 | 17.792553 | 0 393624  |
| 12 684013   | 17 817072 | 0 446481  | 12.631774 | 17 804128 | 0 473009  |
| 12.722886   | 17.826707 | 0.533100  | 12.678293 | 17.815655 | 0 555 155 |
| 12 762043   | 17 836415 | 0 621143  | 12.724528 | 17.827114 | 0.639343  |
| 12 801651   | 17 846236 | 0 710114  | 12.770313 | 17 638465 | 0.725095  |
| 12 835800   | 17 854706 | 0.786335  | 12 808836 | 17 848018 | 0.799092  |

#### LPT Stator 3 Airfoil Coordinates

50% From Hub

\*

-

157

() || ||

#### Suction Surface

()

Pressure Surface

| Ζ          | R                               | RTHETA     | Ζ         | <b>R</b>  | RTHETA    |
|------------|---------------------------------|------------|-----------|-----------|-----------|
| 11.099155  | 19 634012                       | 0          | 11 099155 | 19 634043 |           |
| 11 093014  | 19 630962                       | 0 000700   | 11 106404 | 19 634012 | 0         |
| 11 090810  | 19 529866                       | -0 022519  | 11 116581 | 19 63/603 | 0 003912  |
| 11 092624  | 19 630768                       | -0.041350  | 11 129689 | 19 642021 | 0 004723  |
| 11.098593  | 19.633733                       | -0.063077  | 11 145747 | 19 0490/1 | 0.002431  |
| 11 108895  | 19 638834                       | -0 089577  | 11 164806 | 10 666170 | -0 002947 |
| 11 123746  | 19 546154                       | -0 117514  | 11 186974 | 19.0001/8 | -0.011368 |
| 11 143388  | 19 655771                       | -0 149802  | 11 212450 | 19 589021 |           |
| 11.168070  | 19.667756                       | -0 185166  | 11 241563 | 19 702272 | -0.030630 |
| 11 198038  | 19.682155                       | -0 223380  | 11 269928 | 19 716020 | -0 053425 |
| 11 233511  | 19.698985                       | -0 264247  | 11 318711 | 19 778454 | -0.0053/4 |
| 11 274663  | 19 718217                       | -0.307611  | 11 366053 | 19 759804 | -0.095/16 |
| 11 288110  | 19.724433                       | -0.321066  | 11.412038 | 19 780145 | -0 129764 |
| 11 288110  | 19 724433                       | -0.321066  | 11 412038 | 19 780145 | -0 139763 |
| 11 329916  | 19.743545                       | -0 360880  | 11.457245 | 19 799614 | -0.157099 |
| 11 372582  | 19 762716                       | -0.398476  | 11.501592 | 19 818232 | -0 171760 |
| 11 416522  | 19.782108                       | -0. 433815 | 11 544665 | 19 836048 | -0 10:00  |
| 11 462046  | 19 801643                       | -0.466672  | 11.586155 | 19 852962 | -0 103536 |
| 11 503570  | 19 821551                       | -0.496571  | 11.625644 | 19 868834 | -0.201009 |
| 11 559719  | 19.842213                       | -0 523021  | 11.662508 | 19 883452 | -0.206347 |
| 11.513142  | 19.863833                       | -0.545119  | 11.696099 | 19 896605 | -0 209774 |
| 11 669698  | 19 986281                       | -0 561665  | 11.726556 | 19 908394 | -0 211710 |
| 11 728662  | 19 909204                       | -0.571781  | 11.754605 | 19 919134 | -0 212468 |
| 11 788964  | 19 932129                       | -0.574831  | 11 781316 | 19 929259 | -0 212286 |
| 1 849322   | 19 954614                       | -0 570662  | 11 807971 | 19 939224 | -0 211154 |
| 11 908403  | 19 976492                       | 0 559447   | 11 835900 | 19 949627 | 0 208929  |
| 965283     | 19.997433                       | ·0 541959  | 11 966037 | 19 960817 | -0 205117 |
| 12 019877  | 20.017420                       | -0 518747  | 11 998456 | 19 972818 | -0 199451 |
| 12.072233  | 20.036484                       | -0 490144  | 11 933114 | 19.985605 | -0 191665 |
| 12 122175  | 20 054574                       | -0 456451  | 11 970185 | 19 999252 | -C 181404 |
| 12 169637  | 20.071890                       | -0 418038  | 12 009705 | 20 013716 | -0 158226 |
| 12.214754  | 20 088514                       | -0.375242  | 12 051633 | 20 028995 | -0 151665 |
| 12 25/ 18/ | 20.104485                       | -0 328385  | 12 095613 | 20 044964 | -0 131171 |
| 2 239154   | 20 119942                       | -0 277834  | 12 141250 | 20 061498 | -0 106062 |
| 12 339247  | 20.135024                       | -0 223768  | 12 188179 | 20 078707 | -0 075774 |
| 12.3/837   | 20 149843                       | -0 166273  | 12 236042 | 20 096401 | -0 039865 |
| 17 454942  | 20 164490                       | 0 105302   | 12 284601 | 20 114493 | 0.001972  |
| 10 407617  | 20 379048                       | ·O 040849  | 12 333624 | 20.132903 | 0 049489  |
| 17 570756  | 20 193683                       | 0 02 7063  | 12 382867 | 20 151541 | 0 102863  |
| 12 564076  | 20 208606                       | 0 098493   | 12 432136 | 20 170336 | 0 161745  |
| 12 605977  | 20 223659                       | 0 173573   | 12 481431 | 20 189289 | 0 225845  |
| 17 643963  | 20 235853<br>20 2 <b>6</b> 4364 | 0 252213   | 12 530642 | 20 208720 | 0 2950:9  |
| 12 682564  | 20 270100                       | 0.334092   | 12.579569 | 20 228273 | 0.368914  |
| 12 721714  | 20.2/0195                       | 0 418687   | 12 627982 | 20 247851 | 0 447006  |
| 12 781797  | 20 2000                         | 0 505407   | 12 675845 | 20.267432 | 0 528469  |
| 12 301609  | 20 302387                       | 0 293693   | 12 723179 | 20.287016 | 0 512451  |
| 12.836328  | 20 374770                       | 0 053122   | 12.759976 | 20.306594 | 0 698352  |
|            | 40.334/ <b>4</b> 0              | 0.100084   | 12 809453 | 20.323276 | 0.772843  |

LPT Stator 3 Airfoil Coordinates

90% From Hub

· . . . .

-

 $(\diamond)$ 

Suction Surface

1

.

Pressure Surface

| 2           | R          | RTHETA            |            |           |           |
|-------------|------------|-------------------|------------|-----------|-----------|
|             |            |                   | 2          | R         | RTHETA    |
| 13.364055   | 15 435070  | _                 |            |           |           |
| 13.360089   | 15 425972  | 0.                | 13.364055  | 15 426070 | -         |
| 13.358675   | 15.424932  | 0.006079          | 13.368981  | 15 417764 | 0.        |
| 13.359914   | 15 434902  | 0.014924          | 13.375526  | 15 419170 | -0.002741 |
| 13.363959   | 15 415047  | 0.026445          | 13.383601  | 15 424025 | 0.003592  |
| 13.370992   | 15 427700  | 0.040505          | 13.393096  | 15 437072 | 0.002471  |
| 13.381195   |            | 0.056941          | 13.403946  |           | G.000721  |
| 13 394706   | 15.430446  | 0.075593          | 13.416217  | 15 430339 | 0.006042  |
| 13.411571   | 15 4383852 | 0.096337          | 13 430218  | 15 442020 | 0.013435  |
| 13 431687   | 15.438302  | 0.119135          | 13,451127  | 15.4430/9 | 0.022623  |
| 13.449066   | 15.443453  | 0.144082          | 13.486479  | 15.448393 | 0.036090  |
| 13 449066   | 13.44/871  | 0.164645          | 13.521515  | 13.45/2/7 | 0.057873  |
| 13.477386   | 13 44/871  | 0.164645          | 13.521515  | 15.405957 | 0.078905  |
| 13.506625   | 15.455004  | 0.196390          | 13.555706  | 15.403937 | 0.078905  |
| 13.536553   | 13.462283  | 0.226694          | 13.588977  | 15.4/4308 | 0.098750  |
| 13.567202   | 13.409044  | 0.255380          | 13.621559  | 15.45/320 | 0.117080  |
| 13.598751   | 15.477089  | 0.282519          | 13 653419  | 13.490157 | 0.133820  |
| 13 631227   | 15.484653  | 0.308065          | 13 684380  | 15.49/846 | 0.148822  |
| 13 664606   | 15.492508  | 0.331782          | 13 714414  | 15.505149 | 0.161895  |
| 13 699027   | 13.500504  | 0.353421          | 13 742545  | 15.512074 | 0.173028  |
| 13.734661   | 15.508546  | 0.372814          | 13 771674  | 15.518642 | 0.182376  |
| 13.771513   | 15.516654  | 0.389727          | 13 795510  | 15.524835 | 0.190039  |
| 13 809498   | 15.524809  | 0 403875          | 13 834167  | 15.530632 | 0.196086  |
| 13 R4R479   | 15.532966  | 0.414922          | 13 849602  | 15.536050 | 0.200588  |
| 13 888058   | 15 54 1070 | 0.422528          | 13 873263  | 15.541122 | 0.203691  |
| 13 927996   | 15.548738  | 0 426390          | 13 805413  | 15 545772 | 0.205573  |
| 13 967847   | 15.555972  | 0 426306          | 13 017776  | 15.550050 | 0.206401  |
| 14 007244   | 15.562815  | 0 422176          | 13 940384  | 15.554148 | 0.206269  |
| 14 045869   | 15 569209  | 0 414061          | 13 962497  | 15 558.40 | 0.205204  |
| 14 083483   | 15.5/5120  | 0.402101          | 17 997391  | 15.562086 | 0 203084  |
| 14 119917   | 15 580537  | 0 386514          | 14 013377  | 15 566031 | 0.199711  |
| 14 155012   | 15.585427  | 0 367587          | 14 029254  | 15 569999 | 0.194814  |
| 14 188731   | 13 - 99777 | 0 345677          | 14 065768  | 15.573998 | 0.188060  |
| 14 22:274   | 15.593741  | 0 321081          | 14 094550  | 15 578028 | 0 179117  |
| 14.252818   | 15 59736R  | 0 293981          | 14 124527  | 15 582069 | 0.167832  |
| 14 283509   | 15 600695  | 0 264445          | 14 155400  | 15 586011 | 0.154162  |
| 14.313454   | 10 603756  | 0 232604          | 14 187311  | 15.589835 | 0.138054  |
| 14 342728   | 15.606575  | 0 198551          | 14 210976  | 15.593578 | 0.119320  |
| 14 37 14 14 | 15 609169  | 0 162411          | 14 252110  | 15.597216 | 0.097813  |
| 14 399658   | 10.611619  | 0 124288          | 14 295025  | 15.600726 | 0.073431  |
| 14 427612   | 15.614002  | 0 084178          | 14 20100   | 15.604087 | 0.046235  |
| 14 455387   | 15 616249  | 0 042053          | 14 355760  | 15.607277 | 0.016360  |
| 14.483/141  | 10 618372  | -0.002083         | 14 300400  | 15.610273 | -0.016209 |
| 14 510722   | 15.620377  | -0.048216         | 14 425220  | 15.613241 | -0.051587 |
| 14 538450   | 15 622272  | -0.0 <b>96298</b> | 14 450178  | 15.616070 | -0.089806 |
| 14 566221   | 15 524062  | 0 146260          | 14 404045  | 15.618727 | -0.130836 |
| 14 594409   | 15.625751  | 0 198036          | 14 530500  | 15.621205 | -0.174581 |
| 14 616209   | 15 627341  | -0 251579         | 14 56 1000 | 15.623503 | -0.220912 |
| - 0 0308    | 15.628503  | -0.294168         |            | 15.625616 | -0.269741 |
|             |            |                   | 14.390447  | 15.627124 | -0.309168 |

LPT Rotor 3 Airfoil Coordinates

10% From Hub

## OREGEVEL PAGE IS OF POOR QUALITY

Suction Surface

.

Pressure Surface

**.** 

| ······································ |            |           |            |            |           |
|----------------------------------------|------------|-----------|------------|------------|-----------|
| 2                                      | R          | RTHETA    |            |            |           |
|                                        |            |           | 2          | R          |           |
|                                        |            |           |            |            | PIHETA    |
| 13.398751                              | 18 022804  | ~         |            |            |           |
| 13 394760                              | 18 021491  |           | 13.398751  | 19 02200.  |           |
| 13.393111                              | 19 0200491 | J 005699  | 13 403529  | 18.022804  | 0         |
| 13 393897                              | 18 020949  | 0.014104  | 13 400799  | 19 024378  | -0 002476 |
| 13 397260                              | 18 021208  | 0.025137  | 12 417 424 | 18 026442  | -0.003106 |
| 13 402277                              | 18 022314  | 0 039676  |            | 18 028967  | -0.001809 |
|                                        | 18 024328  | 0 054575  | 13.426349  | 18 031916  | 0.001514  |
| 13,412436                              | 18.027316  | 0 077675  | 13 436460  | 18.035268  | 0.001314  |
| 13 424606                              | 18.031339  | 0.092679  | 13.447826  | 18 039044  | 0 006926  |
| 13 439999                              | 18.036442  | 0 092838  | 13.460750  | 18 043348  | 0.014378  |
| 13 458628                              | 18 042541  | 0.1149/1  | 13.481237  | 18 050100  | 0 023615  |
| 13.476381                              | 18 048570  | 0.139065  | 13.513915  | 18 001196  | 0 037960  |
| 13.476381                              |            | 0.160408  | 13.545831  | 18 061180  | 0 059528  |
| 13.503494                              |            | 0.160408  | 13 545831  | 18 07 1979 | U. 079279 |
| 13 531684                              | 12.05/669  | 0.190328  | 17 576747  | 18.07 1979 | 0.079279  |
| 13 550967                              | 18 067183  | 0.218126  | 13.576743  | 18.082508  | 0 097053  |
|                                        | 18.077092  | 0.243702  | 13.606578  | 18 092732  | 0 112730  |
| 13.391084                              | 18.087415  | 0 266982  | 13.635419  | 18.102758  | 0 12539   |
| 13.622465                              | 18.098203  | 0 287802  | 13.663228  | 18, 112635 | 0 120311  |
| 13 655179                              | 18.109778  | 0.287802  | 13 689872  | 18 122084  | 0 137798  |
| 13.689391                              | 18.121913  | 0.303952  | 13.715182  | 18 131047  | 0.147279  |
| 13 725108                              | 18 134550  | 0.321122  | 13.738996  | 18 13040   | 0 154781  |
| 13.762185                              | 18 147660  | 0.332914  | 13.761304  | 18 1139469 | 0 160336  |
| 13 800240                              | 18 16 160  | 0.340897  | 13 787751  | 16.147349  | 0. 163990 |
| 13.938716                              | 18 161079  | 0.344634  | 13 902224  | 18 154739  | 0 165847  |
| 13 8: 5087                             | 18 1/4618  | 0.343841  | 12 804224  | 18.161776  | 0 166058  |
| 12 91 462                              | 18.187890  | 0.338469  | 13.8217/1  | 18.168659  | 0 164720  |
|                                        | 18.200559  | 0.328666  | 13.841524  | 18 175605  | 0 161702  |
| 3 95(666                               | 18.212632  | 0 314805  | 13 862073  | 18,182799  | 0 157145  |
| 13.985342                              | 18.224042  | 0 297278  | 13.883895  | 18 190238  | 0 4505 45 |
| 14 018467                              | 18 234802  | 0 276305  | 13 907245  | 18.198173  | 0 150545  |
| 14.050169                              | 18 244972  | 0.276795  | 13 932144  | 18 206476  | 0.141770  |
| 14 080830                              | 18 254699  | 0.253357  | 13 958467  | 18 215240  | 0 130759  |
| 14.110728                              | 18 262883  | 0.227158  | 13.985831  | 19 27 272  | 0 117557  |
| 14.139927                              | 18 272500  | 0.198163  | 14.013958  | 18 224202  | 0 102210  |
| 14.168466                              | 18 204054  | 0.166568  | 14.042783  | 18.233346  | 0.084520  |
| 14 196446                              | 18.281251  | 0.132532  | 14 072260  | 18.242614  | 0 063972  |
| 14 222922                              | 18 289574  | 0 096158  | 14 102249  | 18 25 1987 | 0 040281  |
| 14 75+07+                              | 18 297689  | 0 057487  | 14 12200   | 18 26 13 0 | 0 013385  |
| 14 272064                              | 18.305644  | 0 016582  |            | 18.270570  | -0 016619 |
| 14.20/964                              | 18.313469  | -0.026528 | 14.163740  | 18 279840  | -0 049633 |
| 14 JU4641                              | 18 321176  | -0.071753 | 14.194871  | 15 289107  | \L05540 0 |
| 14.331122                              | 18.328827  | 0 0/1/53  | 14 226219  | 18 298767  | 0 085587  |
| 14.357459                              | 18 336549  | 0.118940  | 14 257763  | 18 307596  | -0.124368 |
| 14.383697                              | 18.344222  | U. 10/981 | 14.289451  | 18 316706  | -0.165758 |
| 14 409878                              | 18 35 1995 | -0.218818 | 14.321238  | 18 2050 10 | -0 209485 |
| 14 436071                              | 18 250522  | -0.271377 | 14.353082  | 0 323942   | -9.255385 |
| 14 462306                              | 0 323233   | -0 325525 | 14 3849+4  | 18 335267  | -0.303385 |
| 14 488522                              | 10.36/180  | -0 081109 | 14 416702  | 18 344588  | -0.353379 |
| 14 515000                              | 18.374843  | -0.437939 |            | 18.353879  | -9 405202 |
| 14 641707                              | 18.382533  | -0.495839 | 14 47000   | 18.363129  | -0 45865+ |
| ·= 341/0/                              | 18 390257  | -0.554689 |            | 18.372323  | -0 512646 |
| 14.562573                              | 18 396304  | -0.601107 | 14.511378  | 18.381455  |           |
|                                        |            |           | 14.535757  | 18 388571  | 0.369649  |
|                                        |            |           |            |            | -0.614221 |

LPT Rotor 3 Airfoil Coordinates

50% From Hub

Carrier Carrier Carrier

Suction Surface

#### Pressure Surface

| Z         | R         | RTHETA     | - 2       | R                 | RTHETA     |
|-----------|-----------|------------|-----------|-------------------|------------|
| 13 379752 | 20.568110 | 0.         | 13.379752 | 20.568110         | 0.         |
| 13 376703 | 20 566803 | 0.006110   | 13.384064 | 20.569957         | -0.003096  |
| 13.376333 | 20 566644 | 0.014544   | 13.390086 | 20.572536         | -0.004587  |
| 13.378703 | 20.567660 | 0 025231   | 13 397720 | 20.575805         | -0.004360  |
| 13.383912 | 20.569892 | 0.038060   | 13.406835 | 20.579705         | -0.002268  |
| 13 392080 | 20 573390 | 0.052898   | 13.417331 | 20.584194         | 0.001803   |
| 13.403337 | 20.578209 | 0.069599   | 13.429209 | 20.589271         | 0.007851   |
| 13 417800 | 20.584395 | 0 088031   | 13.442682 | 20 595024         | 0.015639   |
| 13.435554 | 20.591981 | 0.108105   | 13.457956 | 20.601541         | 0.024603   |
| 13.456616 | 20.600970 | 0.129801   | 13.489823 | 20.615119         | 0.043032   |
| 13.463873 | 20.604064 | 0.136925   | 13.520991 | 20.628372         | 0.060591   |
| 13.463873 | 20.604064 | 0.136925   | 13.520991 | 20.628372         | 060591     |
| 13.491464 | 20.615817 | 0.162562   | 13.551328 | 20.641248         | 0.076986   |
| 13.519865 | 20.627894 | 0.186517   | 13.580855 | 20.653757         | 0.092093   |
| 13.548967 | 20.540247 | 0.208619   | 13.609681 | 20 665948         | 0.105938   |
| 13.578866 | 20.652915 | 0.228825   | 13.637710 | 20.677801         | 0.118457   |
| 13.609774 | 20.665987 | 0.246977   | 13 664730 | 20.689203         | 0.129493   |
| 13.641570 | 20.679558 | 0.262854   | 13.690561 | 20.700079         | 0.138763   |
| 13.675282 | 20.693649 | 0.276131   | 13.715077 | 20.710382         | 0.145962   |
| 13.709853 | 20.708188 | 0.286400   | 13.738434 | 20.720178         | 0.150917   |
| 13.745282 | 20.723047 | 0.293308   | 13.760932 | 20.72 <b>9596</b> | 0.153626   |
| 13.781294 | 20.738106 | 0.296520   | 13.782849 | 20.738755         | 0.154242   |
| 13.817528 | 20.753214 | 0.295820   | 13.804542 | 20.747805         | 0.152888   |
| 13.853566 | 20.768199 | 0.291109   | 13 826432 | 20.756920         | 0.149653   |
| 13.389006 | 20.782881 | 0.282444   | 13.848920 | 20.766269         | 0.144562   |
| 13.923603 | 20.797151 | 0.270064   | 13.872251 | 20.775948         | 0.137498   |
| 13 957211 | 20.810954 | 0 254180   | 13.896571 | 20.786006         | 0.128370   |
| 13.989793 | 20 824279 | 0.234963   | 13.92191/ | 20.796457         | 0.117092   |
| 14.021439 | 20.837170 | 0.212575   | 13.948198 | 20.807258         | 0.103485   |
| 14.052406 | 20.849733 | 0.186988   | 13.9/5160 | 20.818301         | 0.087311   |
| 14.082904 | 20.861998 | 0 158152   | 14.002589 | 20.829498         | 0.067986   |
| 14.112836 | 20.873904 | 0 126261   | 14.030585 | 20.840885         | 0.044820   |
| 14,142187 | 20.885556 | 0.091613   | 14.059162 | 20 852468         | 0.017648   |
| 14.1/0945 | 20.896953 | 0.054299   | 14.088332 | 20.864159         | -0.013110  |
| 14.199151 | 20.908111 | 0.014449   |           | 20.875976         | -0.047009  |
| 14.226938 | 20.919083 | -0.027862  | 14 179610 | 20.88/938         | -0.083715  |
| 14.254450 | 20.929923 | -0.072630  | 14.178610 | 20.899987         | -0.123157  |
| 14.281/19 | 20.940660 | -0.119755  | 14.209289 | 20 912108         | -0.165360  |
| 34.308/30 | 20.951294 | -0.169039  | 14 271216 | 20.924308         | -0.210130  |
| 14.330528 | 20.961938 | -0.220319  | 14 201613 | 20.936568         | -0.257182  |
| 14 302133 | 20.9/2525 | -0.273509  | 14 334016 | 20.948869         | -0 357643  |
| 14 A15156 | 20.983078 | -U. J28509 | 14 365474 | 20.90133/         | -0.33/33/  |
| 14.410100 | 20.933019 | -U. 385190 | 14 396936 | 20.9/3842         | -0.410/10  |
| 14 469400 | 21.004105 | -0.443391  | 14 479374 | 10.900J0J         | -U.4030/J  |
| 14 494694 | 21.014.30 | -0.502927  | 14 459777 | XU. 338883        | -0.522235  |
| 14 571287 | 21.025004 | -0.503014  | 14 490957 | 21 012950         | -U. 38U210 |
| 14 547514 | 21.030004 | -0 674611  | 14 515455 | 21 022625         | -0.0394/8  |
| 14.342314 | 21.V444JZ | 0 0/4011   |           | × 1. (JJ030       |            |

# LPT Rotor 3 Airfoil Coordinates

90% From Hub

. \*\*

-----

٠

161

•

Suction Surface

-----

(+

ł.

ł

**έ**τ.,

1

Pressure Surface

 $\overline{(\mathbf{v})}$ 

| ٤.         | ĸ          | RTHETA            | -           |           |                                       |
|------------|------------|-------------------|-------------|-----------|---------------------------------------|
|            |            |                   | 2           | R         | RTHETA                                |
|            |            |                   |             |           |                                       |
| 15.435551  | 15.657863  | O.                | +5 ADEEEA   |           |                                       |
| 15 433051  | 15.657811  | -0.005376         | 15 430074   | 15.657863 | Ο.                                    |
| 13.433642  | 15.657823  | -0.014111         | 15 444646   | 15.657941 | 0.001702                              |
| 10.43/351  | 15 657901  | -0.026181         | 15 451505   | 15.658054 | 0.001520                              |
| 15.444227  | 15.658045  | -0.041540         | 15 4500 14  | 15 658201 | -0.000621                             |
| 15 454343  | 15.658260  | -0.060122         | 15 469922   | 15.658382 | -0.004813                             |
| 15 46/802  | 15.658551  | -0.081833         | 15 48 1084  | 15.658595 | -0.011123                             |
| 15.484/42  | 15.658925  | -0.106548         | 15 49 2997  | 15.658843 | -0.019521                             |
| 15.505342  | 15.659392  | -0.134102         | 15 5255 10  | 15.659133 | -0.029796                             |
| 15 559540  | 15.659964  | -0.164284         | 15 565745   | 12.029862 | -0.054264                             |
| 15 591776  | 15 660658  | -0.1 <b>96827</b> | 15 605312   | 15.660827 | -0.083902                             |
| 15 612044  | 15.661494  | -0.231399         | 15 644174   | 15.001840 | -0.113200                             |
| 15 612044  | 15.6.2072  | -0 252837         | 15 68 18 15 | 10 002884 | -0.141267                             |
| 15 650540  | 15 662072  | -0.252837         | 15 68 18 15 | 15 662035 | -0.166744                             |
| 15 6990340 | 15.663059  | -0.285299         | 15 718461   | 15 555000 | -0.166744                             |
| 15 706070  | 15.664112  | -0.314898         | 15 754217   | 15.665070 | -0.189045                             |
| 15 765568  | 15.665216  | -0.341375         | 15.789115   | 15 666070 | -0.207986                             |
| 15 805581  | 15.666291  | -0.364529         | 15 823163   | 15 668007 | -0.223721                             |
| 15 846292  | 15 667477  | -0.384157         | 15.856393   | 15 660114 | -0.236591                             |
| 15 887950  | 15.668780  | -0.400173         | 15 888824   | 15 670776 | -0.247036                             |
| 15 930 106 | 15.670205  | -0.412529         | 15 920508   | 15 671290 | -0.255355                             |
| 15 972629  | 15.6/1/50  | -0.421100         | 15.951597   | 15 673576 | -0.261680                             |
| 15 015308  | 15 6/3411  | 0 425806          | 15 982307   | 15 673902 | -0.266148                             |
| 16 057826  | 15 6/5189  | -0 426508         | 16 012881   | 15 675077 | -0.268841                             |
| 16 099859  | 15.67/387  | -0.423180         | 16 043606   | 15 676641 | -0.269897                             |
| 16 141166  | 15 60 0077 | -0.415887         | 16 074816   | 15 678292 | -0.269347                             |
| 16.181703  | 15 68434C  | -0.404905         | 16.106752   | 15.680036 | -0.267138                             |
| 16.221533  | 15 696760  | -0 390494         | 16 139458   | 15.681879 | 0 263157                              |
| 16 260858  | 15 680700  | -0.372834         | 16.172871   | 15 683822 | 0 249000                              |
| 16 299793  | 15 591754  | -0 351956         | 16 206789   | 15 685857 | · · · · · · · · · · · · · · · · · · · |
| 16 338273  | 15 694297  | -0.327716         | 16.241097   | 15.687978 | -0 274226                             |
| 16 376267  | 15 696799  | -0.300062         | 15 275860   | 15 690192 | -0.206780                             |
| 16 413637  | 15 699251  | -0.269045         | 16 311109   | 15.692501 | -0 184952                             |
| 16.450302  | 15 701671  | -0 234890         | 16.346982   | 15.694860 | -0 158656                             |
| 16 4864 19 | 15 704057  | -0 19/952         | 16.383560   | 15.697269 | -0 128373                             |
| 16.522159  | 15 706420  | -0 158343         | 16 420686   | 15.699716 | -0 094896                             |
| 16 557649  | 15 708770  | 0 071110          | 16 458 190  | 15.702191 | 0.058528                              |
| 16.592947  | 15 711110  | -0.071112         | 16 495942   | 15.704686 | -0 014157                             |
| 16 628070  | 15.713333  | 0.0253824         | 16.533887   | 15.707197 | 0.023140                              |
| 16.662985  | 15.715492  | 0.025705          | 16.572007   | 15.709722 | 0.068109                              |
| 16 697729  | 15 717614  | 0.121002          | 16 610336   | 15.712226 | 0.115475                              |
| 16.732348  | 15 719702  | 0.196203          | 16.648835   | 15.714620 | 0.165045                              |
| 16.766896  | 15.721760  | 0.100392          | 16 687458   | 15.716990 | 0.216619                              |
| 16.801427  | 15.723791  | 0.201544          | 16.726154   | 15.719331 | 0 269985                              |
| 16 835994  | 15 725797  | 0.360947          | 16.764866   | 15.721640 | 0.324917                              |
| 16.870654  | 15.727783  | 0 421132          | 16.803541   | 15.723914 | 0 381204                              |
| 16.898251  | 15.729346  | 0.469581          | 10.842125   | 15.726151 | 0.438698                              |
|            | ·          | 0.403001          | 16.872671   | 15 727898 | 0.485130                              |
|            |            |                   |             |           |                                       |

LPT Stator 4 Airfoil Coordinates

100

-

10% From Hub

# OT THE FLORE OF OF THE QUALITY

٠

#### Suction Surface

20 Maria 20 Maria

a z

,

#### Pressure Surface

3

| Z          | R          | RTHETA              | Z                                             | R          | RTHETA    |
|------------|------------|---------------------|-----------------------------------------------|------------|-----------|
|            |            |                     | · <u>··</u> ································· |            |           |
| 15 311727  | 18.597028  | 0.                  | 15.311727                                     | 18.597028  | Ο.        |
| 15 308790  | 18.596312  | -0.006098           | 15.316607                                     | 18.598219  | 0.002267  |
| 15 309 153 | 18.596400  | -0.015595           | 15.323822                                     | 18.599977  | 0.001948  |
| 15 312868  | 18.597307  | 0.028441            | 15.333203                                     | 18.602258  | -0.001120 |
| 15.320028  | 18.599053  | -0.044548           | 15.344525                                     | 18.605005  | -0.007154 |
| 15 330765  | 18.601665  | -0 063791           | 15.357607                                     | 18.608170  | -0 016328 |
| 15.345257  | 18,605182  | - 0. 0 <b>86000</b> | 15.372434                                     | 18.611746  | -0.028657 |
| 15.363733  | 18.609649  | -0.110957           | 15.389330                                     | 18.615807  | -0.043830 |
| 15.386483  | 18.615124  | -0.138390           | 15.408887                                     | 18.620488  | -0.061145 |
| 15.413861  | 18.621676  | -0.16796C           | 15.449583                                     | 18.630164  | -0.094751 |
| 15.446299  | 18 629387  | -0.199258           | 15.490017                                     | 18.639689  | -0.124274 |
| 15.484317  | ia 638352  | -0.231791           | 15.530018                                     | 18.649026  | -0.150167 |
| 15.516309  | 18.645836  | -0.256185           | 15.569224                                     | 18.658095  | -0.172974 |
| 15.516309  | 18.645836  | -0.256185           | 15.569224                                     | 18.658095  | -0.172974 |
| 15 557442  | 18.355378  | -0.283661           | 15.607465                                     | 18.666860  | -0.192730 |
| 15.599505  | 18.665042  | -0.307386           | 15.644774                                     | 18.675364  | -0.209347 |
| 15.642352  | 18.674813  | -0.327326           | 15.681301                                     | 18.683626  | -0.222722 |
| 15 685933  | 18.684667  | -0.343399           | 15.717093                                     | 18.691641  | -0.232855 |
| 15.730214  | 18.694560  | -0.355425           | 15.752184                                     | 18.699422  | -0.239819 |
| 15 775082  | 18,704459  | -0.363188           | 15.786689                                     | 18.706999  | -0.243732 |
| 15.820345  | 18,714319  | -0.366506           | 15.820798                                     | 18.714417  | 0.244693  |
| 15 865776  | 18.724087  | -0.365331           | 15.854740                                     | 18.721726  | -0.242718 |
| 15.911140  | 18.733714  | -0.359645           | 15.888749                                     | 18.728979  | -0.237802 |
| 15.956220  | 18.743141  | -0 349517           | 15.923042                                     | 18.736219  | -0.229870 |
| 16 000843  | 18.752310  | -0.335062           | 15.957792                                     | 18.743467  | -0.218833 |
| 16 044888  | 18.761215  | -0.316411           | 15 993120                                     | 18 750734  | -0.204592 |
| 15 088287  | 18.769848  | -0.293721           | 16.029093                                     | 18.758038  | -0.187035 |
| 15 131010  | 18,778211  | -0.267143           | 16.065743                                     | 18.765381  | -0.166074 |
| 15 173062  | 18.786309  | -0.236831           | 16 103064                                     | 18.772756  | -0.141647 |
| 15 214474  | 18 794 156 | -0 202909           | 16 141025                                     | 18.780151  | -0.113/3/ |
| 6.255302   | 18.801768  | -0.165309           | 15 179570                                     | 18.787551  | -0.082329 |
| 16 295582  | 18.809001  | -0.124734           | 16 218653                                     | 18 794943  | -0.047460 |
| 16.335374  | 18.816052  | -0.080712           | 15.258244                                     | 18.302306  | 0.003172  |
| 15 374734  | 18 822942  | -0.033552           | 1298257                                       | 18.8/19477 | 0.032454  |
| 16.413713  | 18 829681  | 0.016647            | <u>•6.338650</u>                              | 18.5.6628  | 0.077331  |
| 16 452359  | 18.836282  | 0.069780            | 6.379377                                      | 18.823/49  | 0.125370  |
| 15 490721  | 18.842754  | 0.125730            | 6 420388                                      | 18 330827  | 0 1/84/2  |
| 16 528835  | 18.849104  | 0 184381            | 16.461647                                     | 18 837856  | 0.230514  |
| 16 566745  | 18.855342  | 0.245596            | 16.503110                                     | 18 844827  | 0.287368  |
| 16.604493  | 18.861599  | 0.309251            | 16.544734                                     | 18 851/30  | 0.346894  |
| 16.642120  | 18.867822  | 0.375220            | 16.586480                                     | 18.858605  | 0.408968  |
| 16.679654  | 18.873986  | 0.4433/4            | 16.628319                                     | 18.800040  | 0.4/3438  |
| 16.717139  | 18.880098  | 0.513541            | 16.670207                                     | 18.8/2438  | 0.540209  |
| 16.754606  | 19.586165  | 0 585528            | 16,712113                                     | 18.8/9281  | 0.009029  |
| 16.792094  | 18.892192  | 0.033115            | 18,753998                                     | 18.88606/  | 0.0/9090  |
| 16.829649  | 18.898186  | 0./34098            | 16.795816                                     | 18.892/88  | 0./32003  |
| 16.867300  | 18.904154  | 0.810331            | 16.83/529                                     | 18.899438  | 0.825/9/  |
| 16 898673  | 18.909090  | 0 8/4525            | 16.872080                                     | 18.904907  | 0.88813/  |

#### LPT Stator 4 Airfoil Coordinates

The spectrum

-

#### 50% From Hub

# ORIGINAL PACE 13 OF POOR QUELTY

# Suction Surface

\_\_\_\_\_

 $(\bullet)$ 

# Pressure Surface

3

۲)

| The second se |           |            |           |           |                      |
|-----------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-----------|----------------------|
| Z                                                                                                               | R         | RTHETA     |           |           |                      |
|                                                                                                                 |           |            | Z         | R         | RTHETA               |
| 15 104070                                                                                                       |           |            |           |           |                      |
| 15 1948/3                                                                                                       | 21.296166 | <u>Q.</u>  | 15 104070 | _         |                      |
| 15 192070                                                                                                       | 21.295379 | 0.005925   | 15.1948/3 | 21.296166 | 0                    |
| 15 108670                                                                                                       | 21.295827 | -0.014903  | 15.200546 | 21.298191 | 0 003552             |
| 15 1980/8                                                                                                       | 21.297525 | -0.026884  | 15.208933 | 21.301182 | 0.004545             |
| 15 212010                                                                                                       | 21.300496 | -0.04 1784 | 15,219877 | 21.305080 | 0.002803             |
| 15.219018                                                                                                       | 21 304774 | 0.059492   | 15.233164 | 21.309803 | 0.001915             |
| 15 254635                                                                                                       | 21.310397 | -0.079864  | 15.248590 | 21.315277 | ·O. 009836           |
| 15 234014                                                                                                       | 21.317411 | -0.102732  | 15.266058 | 21.321460 | 0.021073             |
| 15.278528                                                                                                       | 21.325865 | -0. 127904 | 15.285701 | 21 328395 | -0.035476            |
| 15.306773                                                                                                       | 21.335814 | -0.155164  | 15.308032 | 21.336256 | -0.052474            |
| 15 333357                                                                                                       | 21.347311 | -0.184287  | 15.345593 | 21.349422 | -0.079134            |
| 15.377339                                                                                                       | 21.360494 | -0.215096  | 15.389259 | 21.364638 | -0.106968            |
| 15.377339                                                                                                       | 21.360494 | -0.215096  | 15.432490 | 21 379609 | -0.131898            |
| 15 419928                                                                                                       | 21.375268 | 0 246325   | 15.432490 | 21.379609 | -0.131898            |
| 15.403455                                                                                                       | 21.390275 | -0.274404  | 15.474900 | 21.394205 | -0.154441            |
| 15.507838                                                                                                       | 21.405479 | -0.299233  | 15.516372 | 21.408391 | -0.174530            |
| 15.552941                                                                                                       | 21.420885 | -0.320820  | 15.556988 | 21.422267 | -0.191945            |
| 15.598/62                                                                                                       | : 436474  | -0.339037  | 15 596885 | 21.435838 | -0.206452            |
| 15 645318                                                                                                       | 2 452169  | -0.353654  | 15.636063 | 21.449060 | -0.217994            |
| 15 092554                                                                                                       | 21 57944  | -0.364414  | 15.674506 | 21.461934 | -0.226597            |
| 15.740343                                                                                                       | 21.013751 | -0.371071  | 15 712269 | 21 474483 | -0 232331            |
| 15.788514                                                                                                       | 21.499529 | -0.373507  | 15.749479 | 21.486755 | -0.235269            |
| 15.836866                                                                                                       | 21.515209 | -0.371598  | 15 786308 | 21.498810 | -0.235416            |
| 15 885186                                                                                                       | 21.530682 | -0.365301  | 15.822955 | 21.510714 | -0 232782            |
| 15.933267                                                                                                       | 21.545786 | -2.354625  | 15 859634 | 21 522538 | -0 227321            |
| 15 980930                                                                                                       | 21 560569 | -0.339622  | 15.896552 | 21.534270 | -0 218971            |
| 16 028031                                                                                                       | 21.574990 | -0.320392  | 15.933888 | 21 545980 | -0 207631            |
| 15.074480                                                                                                       | 21.589031 | -0.297067  | 15.971786 | 21.557747 | -0 193187            |
| 16 120223                                                                                                       | 21.602682 | -0.269781  | 16 010337 | 21 569594 | -0 175513            |
| 16 165246                                                                                                       | 21.515947 | -0 238662  | 16.049593 | 21.581530 | -0 154503            |
| 16.209571                                                                                                       | 21.628841 | -0.203849  | 16.089569 | 21.593553 | -0 130084            |
| 16 253234                                                                                                       | 21.641104 | -0.165454  | 16.130243 | 21.605649 | -0 102189            |
| 16.296287                                                                                                       | 21.653106 | -0.123588  | 16.171579 | 21 617799 | -0.070798            |
| 15 338779                                                                                                       | 21 554886 | 0 078352   | 16.213525 | 21 629975 | -0 035899            |
| 16 380761                                                                                                       | 21 676461 | -0.029845  | 16 256032 | 21 641886 | 0.002488             |
| 16 422300                                                                                                       | 21 687851 | 0 021825   | 16.299050 | 21.653874 | 0.044320             |
| 16 463439                                                                                                       | 21.699070 | 0.076568   | 16 342510 | 21.665917 | 0.089548             |
| 16.504244                                                                                                       | 21 710138 | 0,134266   | 16.386369 | 21.678002 | 0 139099             |
| 16 544767                                                                                                       | 21.721069 | 0. 194793  | 16.430564 | 21,690110 | 0 199969             |
| 16 585056                                                                                                       | 21.732163 | 0 258048   | 16.475041 | 21.702223 | 0.703208             |
| 16 625172                                                                                                       | 21.743285 | 0.323908   | 16 519750 | 21.714328 | 0 302700             |
| 16 665137                                                                                                       | 21.754388 | 0 392248   | 16.564633 | 21.726507 | 0 363510             |
| 16.705057                                                                                                       | 21.765484 | 0.462948   | 16.609647 | 21.738979 | 0.303528             |
| 16.744925                                                                                                       | 21.776588 | 0 5357 29  | 18.654746 | 21 751496 | 0.447133<br>C 493434 |
| 16.784818                                                                                                       | 21.797716 | 0.610468   | 16.699878 | 21.764043 | 0 563467             |
| 16 824798                                                                                                       | 21.798886 | 0.6869.39  | 16.744984 | 21 776605 | 0 673400             |
| 16.864915                                                                                                       | 21.810110 | 0 765003   | 16.790004 | 21 789164 | 0 706766             |
| 16 898620                                                                                                       | 21 819553 | 0 83 15 10 | 16.834885 | 21 801706 | 0.700203             |
|                                                                                                                 |           |            | 16.872331 | 21 812187 | 0. /01282            |
|                                                                                                                 |           |            |           |           | 0.843488             |

# LPT Stator 4 Airfoil Coordinates

, the

.

1

-

.

90% From Hub

164

~

# Suction Surface

 $\left( \right. \right)$ 

ŀ

فتنقيب والمحادث

## Pressure Surface

| Z          | R                      | RIHETA    | •          | R          | RTHETA            |
|------------|------------------------|-----------|------------|------------|-------------------|
|            |                        |           |            |            |                   |
| 17 618050  | 15 750000              |           | 17.618050  | 15 758062  | 2                 |
| 17 615121  | 15.758063              | 0.        | 17.522063  | 15 759295  | 0.                |
| 17 614500  | 15.757850              | 0.005103  | 17 627529  | 15 758609  | -9.00237*         |
| 17 616270  | 15.757664              | 0.012528  | 17 634338  | 15 759000  | 0.003139          |
| 17 620557  | 15 759309              | 0.022193  | 17.642342  | 15 756459  | -0 002194         |
| 17 627515  | 15 758608              | 0.033976  | 17 651428  | 15 750077  | 0 000505          |
| 17 637299  | 15 750170              | 0.047728  | 17.661597  | 15 760555  | 0.005369          |
| 17 650032  | 15 759907              | 0.063302  | 17.673085  | 15 761206  | 0.012094          |
| 17 665767  | 15 760700              | 0.080578  | 17.691641  | 15 767253  | 0.020554          |
| 17 684443  | 15 761947              | 0.099505  | 17,721618  | 15 763937  | 0.034137          |
| 17 700133  | 15 767770              | 0 120142  | 17.751259  | 15 765565  | 0.055112          |
| 17 700133  | 15 762725              | 0.136667  | 17.751259  | 15 765565  | 0.074734          |
| 17 726716  | 15.702128              | 0 136667  | 17.780488  | 15 767 (63 | 0.074734          |
| 17 752928  | 15.704.88              | 0. 162837 | 17.809288  | 15 760734  | 0.092922          |
| 17 779940  | 30,700007<br>15 767400 | 0.187617  | 17.837688  | 15 770244  | 0.109650          |
| 17 807387  | 15 768610              | 0.210961  | 17.865653  | 15 771017  | 0.124950          |
| 17 835361  | 15 770446              | 0.232912  | 17.893091  | 15 773340  | 0.138780          |
| 17 863931  | 15 771704              | 0.253451  | 17 9 19933 | 15 774747  | 0.151047          |
| 17 893145  | 15.771721              | 0.272435  | 17 946130  | 15.775100  | 0 161737          |
| 17 923017  | 15 774000              | 0.289699  | 17 971670  | 15 777000  | 0.170886          |
| 17 953562  | 15 776404              | 0.305123  | 17 996537  | 15.777807  | 0 78506           |
| 17 984775  | 15.778026              | 0.318537  | 18 020736  | 15.778807  | 0 184678          |
| 18.016620  | 15 770567              | 0.329766  | 18 044303  | 15.77976*  | 0.189494          |
| 18 049015  | 15 791069              | 0.338603  | 18 067320  | 15.780853  | 0.193078          |
| 18 081825  | 15 781476              | 0.344832  | 18 089921  | 15.781857  | 0.195564          |
| 18, 114912 | 15 782436              | 0.348304  | 18.112247  | 15 783580  | 0 197019          |
| 18, 148094 | 15 794979              | 0 348910  | 18.134476  | 15 784077  | 0.197455          |
| 18, 181110 | 15 785804              | 0 340357  | 18 156872  | 15 705106  | 0.196843          |
| 18.213694  | 15 796810              | 0 341238  | 18 179700  | 15 705044  | 0.195082          |
| 18 245628  | 15 797640              | 0.333006  | 18 203 177 | 15 705610  | 0.192062          |
| 18.276771  | 15 799254              | 0.322022  | 18 227447  | 15 797404  | 0.187630          |
| 18.307099  | 15 78880               | 0 308456  | 18 252530  | 15.787184  | 0.181675          |
| 18 336641  | 15 7803002             | 0.292484  | 18 278400  |            | 0.174107          |
| 18.365479  | 15 789705              | 0.2/4:3/  | 18 304974  | 15 700040  | 0.164843          |
| 18.393701  | 15 790020              | 0 233410  | 18 332164  | 15.780048  | 0.153777          |
| 18.421375  | 15 790274              | 0.231.78  | 18 359902  | 15.789265  | 0.140736          |
| 18 448545  | 15 790471              | 0 206757  | 18 388143  | 15.789638  | 0.125482          |
| 18.475296  | 15 790616              | 0.180301  | 18 416805  | 15.789962  | 0 107879          |
| 18.501704  | 15 790710              | 0.131979  | 18 445808  | 15.790235  | 0 087830          |
| 18.527883  | 15 790939              | 0.121826  | 18 475041  | 15.790454  | 0.065315          |
| 18.553925  | 15 700036              | 0 015046  | 18 504411  | 15 790815  | 0.040330          |
| 18 579861  | 15 791000              | 0.050016  | 18 533896  | 15.790725  | 0.012833          |
| 18 605748  | 15 791040              | 0.020324  | 18 563412  | 15.790863  | -0.017200         |
| 18.631621  | 15 791040              | 0 01/145  | 18 592950  | 15.790963  | -0.049715         |
| 18.657516  | 15 701048              | 0 056258  | 18 623467  | 15. /91025 | 0 084539          |
| 18 683430  | 15 700076              | 0.090815  | 18 65 1065 | 15.791048  | -0.121402         |
| 18,709312  | 15 700000              | 0.138658  | 18 69 1405 | 15./91033  | -0.1 <b>59976</b> |
| 18 727962  | 15 7000 10             | 0 781/04  | 18 701010  | 15 /90980  | -0.199990         |
|            | 10./90818              | 10.213468 | 10. /VZ822 | 15./90918  | - C. 229672       |

# LPT Rotor 4 Airfoil Coordinates

, **F**e

1

-

٠

10% From Hub

# ORIGINAL OF POOR QUALI

Suction Surface

-

Pressure Surface

**(**\$**)** 

| ζ          | R          | RTHETA    | z         | R          | RTHETA            |
|------------|------------|-----------|-----------|------------|-------------------|
| 17.677414  | 19 046764  |           |           |            |                   |
| 17 675326  | 19.046784  | 0         | 17.677414 | 19.046764  | 0                 |
| 17.675086  | 19 045326  | 0.004258  | 17.680359 | 19.047306  | -0.002177         |
| 17.676739  | 19 046536  | 0 010086  | 17.684485 | 19.048067  | -9.003257         |
| 17.680351  | 19.040040  | 0.017435  | 17.689720 | 19.049034  | -0.003173         |
| 17.686013  | 19 049340  | 0.026227  | 17.695974 | 19.050194  | -0.001815         |
| 17 693830  | 19 040349  | 0.036357  | 17.703175 | 19.051533  | 0.000899          |
| 17.703914  | 19 051571  | 0.047706  | 17.711328 | 19.053056  | 0.004964          |
| 17.716379  | 19.054002  | 0.060143  | 17.720588 | 19.054792  | 0.010202          |
| 17 731327  | 19 056817  | 0.0/3539  | 17.738261 | 19.058130  | 0.020184          |
| 17.749822  | 19 060330  | 0.087777  | 17.762926 | 19.062838  | 0.033287          |
| 17 749822  | 19 060330  | 0 103515  | 17.786681 | 19.067428  | 0.044662          |
| 17.772899  | 19 064759  | 0.103515  | 17.786681 | 19.067428  | 0.044662          |
| 17 796268  | 19 069295  | 0.1208/1  | 17.810096 | 19.072004  | 0.054923          |
| 17.820202  | 19 673995  | 0.136380  | 17.333219 | 19.076575  | 0.064486          |
| 17.844929  | 19 078909  | 0.150288  | 17.855776 | 19.081083  | 0.073333          |
| 17.870563  | 19 084110  | 0.102536  | 17.877542 | 19 085555  | 0 081227          |
| 17 896968  | 19 089588  | 0.173108  | 17.898399 | 19.089886  | 0.087673          |
| 17 923908  | 19 095207  | 0.183662  | 17.918486 | 19.094074  | 0.092380          |
| 17 951183  | 19 100925  | 0.18/953  | 17.938037 | 13.098166  | 0.095310          |
| 17.978578  | 19.106699  | 0.131805  | 17.957255 | 19.102203  | 0 096552          |
| 18.005948  | 19 112498  | 0.193139  | 17.976351 | 19 106229  | 0 096234          |
| 18.033157  | 19 118293  | 0.191908  | 17.995473 | 19.110275  | 0.094493          |
| 18.060085  | 19 124009  | 0.188102  | 18_014756 | 19.114371  | 0.091439          |
| 18.086618  | 19,129579  | 0.173090  | 18.034320 | 19.118541  | 0 087049          |
| 18 112640  | 19, 135017 | 0 162047  | 18.054279 | 19.122787  | 0.081311          |
| 18 / 38117 | 19.140318  | 0 148817  | 18.074749 | 19.127090  | 0 074182          |
| 18 163174  | 19.145510  | 0 133387  | 18.095763 | 19. 131492 | 0.065602          |
| 18.187953  | 19.150622  | 0 115747  | 18.117198 | 19.135967  | 0 055534          |
| 18 2:2445  | 19.155654  | 0.095967  | 18.138910 | 19, 140483 | 0 043682          |
| 18.236657  | 19.160593  | 0.074167  | 18 160910 | 19.145042  | 0 029618          |
| 18 260482  | 19.165345  | 0.050466  | 18.183190 | 19.149641  | 0.013031          |
| 18.283870  | 19.169995  | 0.025067  |           | 19 154303  | 0.006090          |
| 18.306908  | 19.174560  | -2 002005 | 18.228960 | 19.159035  | -0 027477         |
| 18.329710  | 19 179063  | 0 030826  |           | 19 163738  | -0 0 <b>50707</b> |
| 18 352368  | 19.183523  | -0 061341 | 18 200020 | 19.168453  | -0.075667         |
| 18.374897  | 19.187943  | 0.093481  | 18 232938 | 19.173181  | -0 102523         |
| 18 397297  | 19 192323  | -0 127157 | 18 343900 | 19 177917  | -0 131302         |
| 18.419571  | 19.196665  | -0.162250 | 18 373340 | 19 182663  | -0 161913         |
| 18.441739  | 19.201034  | -0.198674 | 18 396534 | 19.18/416  | -0 194196         |
| 18.463842  | 19.205389  | -0.236368 | 18 420922 | 9.192174   | -0 227981         |
| 18 485893  | 19.209733  | -0.275264 | 18 445767 | 19.196932  | 0.263188          |
| 18.507916  | 19 214070  | -0.315236 | 18 460000 | 19 201748  | ·0.299760         |
| 18 529924  | 19.218404  | -0.356110 | 18 404216 | 19.206569  | -0.337600         |
| 18.551931  | 19.222736  | -0.397671 | 18 510000 | 19.211392  | -0 376541         |
| 18.573926  | 19 227066  | -0.439738 | 18 543397 | 19 216213  | -0.416360         |
| 18.595882  | 19.231386  | -0.482193 | 18 567933 | 19.221037  | -0.456805         |
| 10.011173  | 19.234395  | -0.512013 | 18 584090 | 19.225866  | -0.497680         |
|            |            |           | .0.004308 | 19.229243  | -0.528395         |

LPT Rotor 4 Airfoil Coordinates

50% From Hub

. <del>••</del>

---

Suction Surface

A HAVE A

Pressure Surface

|           |            |                   | LIGS         | riessule Sullace |                   |  |  |
|-----------|------------|-------------------|--------------|------------------|-------------------|--|--|
| Z         | ß          | RTHETA            | ~ Z          | R                | RTHETA            |  |  |
| 17 664443 | 22 030995  | 0                 | 17.664443    | 22.030995        | Э.                |  |  |
| 17 663537 | 22.030355  | 0.004941          | 17.666973    | 22.031648        | -0.003348         |  |  |
| 17 664742 | 22.030702  | 0.004841          | 17.671(93    | 22.032736        | -0.005869         |  |  |
| 17 668080 | 22.03.073  | 0.017343          | 17.677044    | 22.034245        | -0.007431         |  |  |
| 17 673585 | 22.03 933  | 0.01/243          | 17.684447    | 22.036155        | -0.007857         |  |  |
| 17 681305 | 22.035332  | 0.024077          | 17.693337    | 22.038451        | -0.007000         |  |  |
| 17 691295 | 22.033344  | 0.032804          | 17.703704    | 22.041131        | -0.004840         |  |  |
| 17 703614 | 22.03/324  | 0.050624          | 17.715654    | 22.044223        | -0.001612         |  |  |
| 17 718326 | 22.044914  | 0.050631          | 17.720024    | 22.045354        | -0.000391         |  |  |
| 17 735487 | 22.049361  | 0.060655          | - 17.743822  | 22.051523        | 0.006068          |  |  |
| 17.755148 | 22 054463  | 0.079309          | 17.766976    | 22.057537        | 0.011781          |  |  |
| 17.768036 | 22 057812  | 0.085030          | 17.789687    | 22.053447        | 0.016702          |  |  |
| 17.768036 | 22 057812  | 0.085030          | 17.789687    | 22.063447        | 0.016702          |  |  |
| 17.792032 | 22 064058  | 0.094531          | 17.312086    | 22.069288        | 0.020884          |  |  |
| 17.816258 | 22.070377  | 0 102680          | 17.834255    | 22.075075        | 0.024413          |  |  |
| 17.840813 | 22 076794  | 0 109468          | 17.856094    | 22.080838        | 0.027323          |  |  |
| 17.865844 | 22.083443  | 0 114779          | 17.877459    | 22.086541        | 0.029551          |  |  |
| 17.891374 | 22.090245  | 0 118471          | 17.898324    | 22.092092        | 0.030930          |  |  |
| 17.917372 | 22.097144  | 0.120384          | 17.918720    | 22.097501        | 0.031275          |  |  |
| 17 943718 | 22 104107  | 0.120390          | 17.938770    | 22.102802        | 0.030405          |  |  |
| 17.970259 | 22.111093  | 0 118354          | 17.958624    | 22.108034        | 0.028221          |  |  |
| 17.996848 | 22, 118063 | 0 114244          | - 17.978450  | 22.113238        | 0.024613          |  |  |
| 18.023326 | 22.124974  | 0.107986          | 17.99° J47   | 22.118455        | 0.019581          |  |  |
| 18.049541 | 22.131690  | 0.099588          | 18.C 8528    | 22.123724        | 0.013124          |  |  |
| 18.075381 | 22.138182  | 0.089123          | 18.039082    | 22.129043        | 0.005244          |  |  |
| 18.100831 | 22.144508  | 0.076638          | 18 060027    | 22 134333        | -0.0 <b>04029</b> |  |  |
| 19.125905 | 22.150577  | 0.062141          | 18.081349    | 22.139671        | -0.014700         |  |  |
| 18.150692 | 22.156711  | 0.045638          | 18.102957    | 22.145034        | -0.026888         |  |  |
| 18.175239 | 22.152624  | 0.027079          | 18.124804    | 22.150407        | -0.040812         |  |  |
| 18.199505 | 22.168409  | 0.006587          |              | 22.155800        | -0.056802         |  |  |
| 18.223426 | 22.174037  | -0.015730         | 18, 169408   | 22.161225        | -0.074914         |  |  |
| 18 247050 | 22.179456  | -0.039841         | 18.192:/9    | 22.166669        | -0.095041         |  |  |
| 18.270412 | 22.184788  | -0.065775         | 18.215212    | 22.1/2121        | -0.11/108         |  |  |
| 18.293561 | 22.190047  | -0 093491         | 18.238438    | 22.1//488        | -0.141151         |  |  |
| 18.316530 | 22.195239  | -0.122927         | 18.201884    | 22.182845        | -0.16/1/0         |  |  |
| 18.339321 | 22.200366  | ~0.1 <b>54001</b> | 10,200204    | 22.188213        | -0.195105         |  |  |
| 18.361913 | 22.205424  | -0.186603         | - +9 233789  | 22.193605        | -0.224798         |  |  |
| 18.384311 | 22.210414  | -0.220506         |              | 22.199011        | -0.255059         |  |  |
| 18.406527 | 22.215347  | -0.255900         |              | 22.204430        | -0.288/11         |  |  |
| 18.428602 | 22.220345  | -0.292425         | 19 406214    | 22.209033        | -0.322030         |  |  |
| 18.450570 | 22.225323  | -0.330191         | - 18 4307 (P | 22 210270        | -0.33/023         |  |  |
| 18.472462 | 22.230286  | -0.369159         | 18 455252    | 12 226284        | 0.334313          |  |  |
| 18.494323 | 22.235246  | -0.409204         | 18 479764    | 22 221941        | -0.470060         |  |  |
| 18.516205 | 22.240214  | -0.450122         | 18 504265    | 22 237502        | -0 510729         |  |  |
| 18.538100 | 22.245188  | -0.491676         | - 18 528799  | 22 243075        | -0.5510729        |  |  |
| 18,559961 | 22.250158  | -0.533663         | 18.553436    | 22.248674        | -0 591634         |  |  |
| 10.001/19 | 22.255108  | -0.575964         | 18.570689    | 22 252598        | -0 620034         |  |  |
| 618062.01 | 22.258545  | -0.605602         |              |                  | 0.01000           |  |  |

# LPT Rotor 4 Airfoil Coordinates

90% From Hub

り

Þ
### ORIGINAL PAGE IS OF POOR QUALITY

### Suction Surface

(ب

. .

### Pressure Surface

÷

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z         | R          | RTHETA    | Z          | R                      | RTHETA     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|------------|------------------------|------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |            |           |            |                        |            |
| 9.6.177.19 15.756645 0.005925 19.61719 19.578643 0.002389   19.614371 15.756646 0.0023925 19.627333 15.755920 0.003050   19.615479 15.756588 0.02387 19.627333 15.755920 0.003050   19.615479 15.755333 0.0236740 19.644775 15.754333 -0.001186   19.62660 15.755320 0.05056 19.64620 15.75380 -0.012400   19.67667 15.754582 0.085056 19.666400 15.752745 -0.022372   19.575350 15.754582 -0.04761 19.733664 15.748115 -0.04761   19.733681 15.745920 0.139449 19.753664 15.748115 -0.04761   19.733681 15.745920 0.139449 19.753664 15.748115 -0.0194560   19.733681 15.742921 -0.263561 19.973264 15.7484115 -0.1189   19.804501 15.742627 -0.207195 19.80253 15.727841 -0.188504   19.80421 15.748262 -0.095403 15.72841 -0.188307 19.73273 15.725142 -0.                                                                                                                          |           |            | _         | 10 217710  | 15 755460              | <u>^</u>   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.617719 | 15.756459  | 0.        | 19 617719  | 15 / 56459             | 0.000389   |
| 19.613723 15.756690 -0.014075 19.613713 19.53200 0.002025   19.613723 15.756326 0.02481 19.634749 15.755466 0.001895   19.61660 15.755320 0.036740 19.644775 15.754330 -0.00186   19.62660 15.755320 0.051034 19.644275 15.754306 -0.004062   19.676671 15.75452 0.085056 19.66400 15.75380 -0.012302   19.6766715 15.75452 0.023724 -0.022372 19.65559 15.75452 -0.024364 19.733664 15.748115 -0.04761   19.676671 15.74552 -0.139449 19.733664 15.748115 -0.071149   19.7306651 15.742521 -0.263561 19.902136 15.742994 -0.118161   19.80417 15.748221 -0.263561 19.902136 15.73241 -0.188307   19.80417 15.73644 -0.308699 19.972373 15.73247 -0.20052   19.93917 15.73644 -0.308692 20.039383 15.77649 -0.21673   20.000525 15.736600 -0.46669 20.072034<                                                                                                                          | 19.614491 | 15.756645  | -0.005925 | 19.021030  | 15.756232<br>15.755232 | 0.002369   |
| 19.615479 15.756335 -0.024381 19.64745 15.754335 -0.006740   19.619855 15.755322 -0.051034 19.654326 15.754336 -0.006283   19.626960 15.755340 -0.085056 19.66400 15.753540 -0.022372   19.5753530 15.753644 -0.04761 19.753664 15.750688 -0.044566   19.63559 15.751795 -0.139449 19.753664 15.748115 -0.011149   19.3736651 15.749522 -0.175114 19.753664 15.742994 -0.118161   19.66253 15.742952 -0.175114 19.792408 15.742994 -0.1138161   19.863423 15.742952 -0.226528 19.867322 5.742994 -0.1138161   19.863423 15.742952 -0.226528 19.867322 15.742994 -0.1138161   19.863423 15.742952 -0.226528 19.937399 15.73841 -0.158387   19.863423 15.742952 -0.226521 19.733738 -0.228172 -0.88504   19.99917 15.733738 -0.326642 -0.302973 15.732647 -0.220673                                                                                                                      | 19.613723 | 15.756690  | -0.014075 | 19.02/333  | 15.755500              | 0.003030   |
| 19.519855 15.755922 -0.038/40 19.643/13 15.754333 0.036/163   19.526696 15.755922 -0.051034 19.65426 15.75330 -0.013400   19.52669 15.754582 -0.085056 19.66400 15.755088 -0.0242572   19.575350 15.754582 -0.036056 19.753664 15.75088 -0.0242572   19.63659 15.751795 -0.13449 19.753664 15.748115 -0.071149   19.730665 15.749592 -0.17514 19.753664 15.748115 -0.0118161   19.730665 15.749592 -0.17514 19.753664 15.744914 -0.138161   19.803423 15.744823 -0.237628 19.80253 15.744924 -0.138161   19.841450 15.744823 -0.236628 19.903136 15.737841 -0.158387   19.841450 15.73680 -0.326302 20.006160 15.732812 -0.174681   19.99373 15.732812 -0.17465 -0.200512 -0.200512 -0.200512   20.0032451 15.74650 -0.351871 20.072341 15.72649 -0.210673 <t< td=""><td>19.615479</td><td>15.756588</td><td>-0.024381</td><td>19,034/49</td><td>15.753400</td><td>-0.001893</td></t<> | 19.615479 | 15.756588  | -0.024381 | 19,034/49  | 15.753400              | -0.001893  |
| 19 525960 15 753242 -0 051034 19 564600 15 753350 0 0.022372   19 6676697 15 754582 -0 0.085056 19 680150 15 750648 0 0.022372   19 675359 15 751795 -0 139449 19 753664 15 748115 -0 0.021149   19 730685 15 749592 -0 175114 19 792408 15 748115 -0 0.18181   19 730685 15 749592 -0 175114 19 792408 15 74529 -0 18181   19 803423 15 74267 -0 20561 19 903136 15 73342 -0 183370   19 880417 15 734423 -0 265628 19 907373 15 732842 -0 176671 0 173340 -0 176671 0 177364 -0 270673 0 210673 0 2106                                                                                                                                                                                                                                                                                                                                                                               | 19.619855 | 15.756335  | -0.036/40 | 19.043775  | 15.754533              | -0.001180  |
| 19 6.368893 15.754582 -0.085056 19 680150 15 752745 -0.02272   19 6.753350 15.753644 -0.104761 19 /13356 15.750688 -0.044565   19 6.85599 15.751795 -0.139449 19.753664 15.748115 -0.071149   19 6.95599 15.742522 -0.175114 19.723664 15.748115 -0.071149   19.730685 15.742522 -0.175114 19.733664 15.742502 -0.139470 -0.139470 -0.139370   19.804423 15.742221 -0.263561 19.903136 15.74241 -0.158387   19.880417 15.73241 -0.263561 19.903136 15.73241 -0.188504   19.959917 15.733738 -0.326302 20.006160 15.73241 -0.20673   20.00252 15.72465 -0.351871 20.0720383 15.719845 -0.22872   20.0125597 15.72465 -0.351871 20.0720383 15.719685 -0.22872   20.167850 15.724681 -0.351871 20.072034 15.7192645 -0.22872   20.                                                                                                                                                        | 19.626960 | 15.755922  | -0.051034 | 19.034320  | 15.754300              | -0.000283  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.636889 | 15. /55340 | -0.06/158 | 19.666400  | 15 753380              | -0.022372  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.669697 | 15.754582  | -0.085056 | 19 212256  | 15 750699              | -0.044566  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.505350 | 15./53644  | -0.104/61 | 10 752664  | 15 748115              | -0 071149  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 695599 | 15. /51/95 | -0.139449 | 19.753664  | 15 748115              | ) 071149   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.695599 | 15.751795  | -0.139449 | 19.723004  | 15 745762              | -0.095403  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.730685 | 15.749592  | -0.1/5114 | 19 920052  | 15 742994              | -0 118161  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.766671 | 15.747267  | -0.207195 | 19.830233  | 15 740407              | -0 139370  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.803423 | 15.744823  | -0.236628 | 19.007332  | 15 737941              | -0 158387  |
| 19. 919473 15. 73947 10. 207080 19. 972373 15. 732812 -0. 188504   19. 919373 15. 733738 -0. 326302 20. 006160 15. 730247 -0. 200512   20. 000525 15. 730680 -0. 340669 20. 039383 15. 727649 -0. 210673   20. 041705 15. 72465 -0. 351871 20. 04106 15. 722033 -0. 218850   20. 041705 15. 724687 -0. 359800 20. 04106 15. 722373 -0. 224907   20. 125597 15. 716899 -0. 365382 20. 167381 15. 71694C -0. 230179   20. 209958 15. 713101 -0. 362949 20. 199104 15. 711038 -0. 221037   20. 299241 15. 704881 -0. 335773 20. 263782 15. 704819 -0. 210670   20. 33629 15. 794881 -0. 320077 20. 360925 15. 704476 -0. 213670   20. 412797 15. 692244 -0. 302077 20. 360939 15. 70488 -0. 192589   20. 412797 15. 692244 -0. 302077 20. 36093 15. 68148 -0. 913670   20. 412797 15. 692244 -0. 302077 20. 36093                                                                         | 19.841450 | 15.742221  | -0.203001 | 19 937999  | 15 735342              | -0 174681  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.880417 | 15,/394//  | -0.28/880 | 19 972373  | 15 732812              | -0 188504  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.9198/3 | 15.730044  | -0.308899 | 20.006160  | 15 730247              | -0.200512  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.909917 | 15,733738  | -0.326302 | 20.039383  | 15 727649              | -0 210673  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.000525 | 15.730080  | -0.340669 | 20.033333  | 15 725023              | -0.218850  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.041705 | 15,727405  | -0.351871 | 20.104105  | 15 723273              | -0 224907  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.083461 | 15.724087  | -0.355800 | 20.135902  | 15 719695              | -0 2287/2  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.123397 | 15.720556  | -0.365393 | 20.167381  | 15 7 16940             | -0 230179  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.107850 | 15,710899  | -0.363362 | 20 199104  | 15 7 14 1 14           | -0 229349  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.209938 | 15 709021  | -0.362343 | 20 23 1204 | 15 711038              | -0.226271  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.201088 | 15 704991  | -0.347942 | 20 263782  | 15 707819              | -0 221035  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.232347 | 15 700693  | -0.335573 | 20 296925  | 15.704476              | -0 213670  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.373586 | 15 696478  | -0.320186 | 20 330799  | 15 700987              | -0 204 182 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 412797 | 15 692244  | -0.302077 | 20 365418  | 15.697348              | -0 192589  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 451634 | 15 687955  | -0.281298 | 20 400412  | 15.693592              | -0.178885  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 490363 | 15 683584  | -0 257694 | 20,435513  | 15.689747              | -0.162684  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 528742 | 15 679113  | -0 231255 | 20.470966  | 15,685785              | 0 143442   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 566576 | 15 674675  | -0.202197 | 20 506963  | 15.681666              | -0.121040  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.603861 | 15 670296  | -0.170414 | 20.543508  | 15 677382              | -0.095809  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.640597 | 15.665976  | -0.135787 | 20.580602  | 15,673028              | -0.067924  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.677002 | 15 66 1690 | -0.098578 | 20.618028  | 15.668631              | -0 037084  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.713283 | 15 657414  | -0.059032 | 20.655578  | 15.664213              | -0.003112  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.749349 | 15 653158  | -0.017170 | 20.693342  | 15.659765              | 0 033758   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.785040 | 15.648942  | 0.026941  | 20.731482  | 15.655267              | 0.073115   |
| 20.85593315.6409620.12066820.80825115.6462740.15847120.89117115.6370870.16997420.84684315.6419690.20396220.92635915.632590.22063320.88548615.6377090.25109620.96140515.6294880.27255120.92427015.6334850.29957820.99639615.6257650.32549320.96311115.6293060.34925121.03146915.6220760.37922021.00186815.6251870.40000921.06689315.6155380.47585921.06985215.6180860.492838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.820542 | 15.644897  | 0 072953  | 20.769811  | 15.650741              | 0 114765   |
| 20.891171   15.637087   0.169974   20.846843   15.641969   0.203962     20.926359   15.633259   0.220633   20.885486   15.63709   0.251096     20.961405   15.629488   0.272551   20.924270   15.633485   0.299578     20.996396   15.625765   0.325493   20.963111   15.629306   0.349251     21.031469   75.622076   0.379220   21.001868   15.625187   0.400009     21.066893   15.615538   0.475859   21.069852   15.618086   0.451885                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.855933 | 15.640962  | 0.120668  | 20.808251  | 15.646274              | 0.158471   |
| 20   926359   15.633259   0.220633   20.885486   15.637709   0.251096     20.961405   15.629488   0.272551   20.924270   15.633485   0.299578     20.996396   15.625765   0.325493   20.963111   15.629306   0.349251     21.031469   15.618391   0.433451   21.001868   15.625187   0.400009     21.066893   15.618391   0.433451   21.040274   15.621156   0.451885     21.094615   15.615538   0.475859   21.069852   15.618086   0.492838                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.891171 | 15 637087  | 0. 169974 | 20.846843  | 15.641969              | 0.203962   |
| 20.961405   15.629488   0.272551   20.924270   15.633485   0.299578     20.996396   15.625765   0.325493   20.963111   15.629306   0.349251     21.031469   15.622076   0.379220   21.001868   15.625187   0.400009     21.066893   15.618391   0.433451   21.040274   15.621156   0.451885     21.094615   15.615538   0.475859   21.069852   15.618086   0.492838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 926359 | 15.633259  | 0.220633  | 20.885486  | 15.637709              | 0.251096   |
| 20.996396   15.625765   0.325493   20.963111   15.629306   0.349251     21.031469   15.622076   0.379220   21.001868   15.625187   0.400009     21.066893   15.618391   0.433451   21.040274   15.621156   0.451885     21.094615   15.615538   0.475859   21.069852   15.618086   0.492838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.961405 | 15.629488  | 0.272551  | 20.924270  | 15.633485              | 0 299578   |
| 21.031469   15.622076   0.379220   21.001868   15.625187   0.400009     21.066893   15.618391   0.433451   21.040274   15.621156   0.451885     21.094615   15.615538   0.475859   21.069852   15.618086   0.492838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.996396 | 15.625765  | 0.325493  | 20.963111  | 15.629306              | 0.349251   |
| 21.066893   15.618391   0.433451   21.040274   15.621156   0.451885     21.094615   15.615538   0.475859   21.069852   15.618086   0.492838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.031469 | 15 622076  | 0.379220  | 21.001868  | 15.625187              | 0.400009   |
| 21.094615 15.615538 0.475859 21.069852 15.618086 0.492838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.066893 | 15.618391  | 0.433451  | 21.040274  | 15.621156              | 0.451885   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.094615 | 15.615538  | 0.475859  | 21 069852  | 15.618086              | 0.492838   |

### LPT Stator 5 Airfoil Coordinates

.

10% From Hub

### ORIGINAL FACT IS OF POOR QUALITY

Suction Surface

Pressure Surface

14

 $\bigcirc$ 

| Z         | R         | RTHETA    | Z           | R         | RTHETA            |
|-----------|-----------|-----------|-------------|-----------|-------------------|
| 19.472147 | 19.378800 | 0.        | 19.472147   | 19.378800 | 0.                |
| 19 469239 | 19.378395 | -0.007904 | 19.475609   | 19.379282 | 0.002544          |
| 19.469927 | 19.378491 | -0.018263 | 19.481257   | 19.380065 | 0.003450          |
| 19.474305 | 19.379101 | -0.030341 | 19.488982   | 19.381131 | 0.002566          |
| 19.482519 | 19.380239 | -0.045735 | 19.498644   | 19.382456 | -0.000308         |
| 19.494749 | 19.381923 | -0.062386 | 19.510123   | 19.384019 | -0.005343         |
| 19.511189 | 19.384163 | -0.080621 | 19.523398   | 19.385809 | -0.012569         |
| 19.53201E | 19,386963 | -0.100191 | 19.538646   | 19.387845 | -0.021735         |
| 19.557353 | 19.390312 | -0.120922 | 19.565605   | 19.391389 | -0.037817         |
| 19.587229 | 19.394180 | -0.142773 | 19.607012   | 19.396693 | -0.0 <b>60975</b> |
| 19.605781 | 19.396538 | -0.155435 | 19.648063   | 19.401785 | -0.081496         |
| 19.603781 | 19.396538 | -0.155435 | 19.648063   | 19.401785 | -0.081496         |
| 19.646496 | 19.401594 | -0.181218 | 19.685676   | 19.406661 | -0.100138         |
| 19.687694 | 19.406545 | -0.204733 | 19.728805   | 19.411320 | -0.1 <b>16896</b> |
| 19.729575 | 19.411408 | -0.226002 | 19.768251   | 19.415746 | -0.131395         |
| 19.772124 | 19.416173 | -0.244708 | 19.807030   | 19.419981 | -0.143416         |
| 19.815261 | 19.420867 | -0.260474 | 19.845221   | 19.424032 | -0.153090         |
| 19.858898 | 19.425444 | -0.273233 | 19.882910   | 19.427873 | -0.1 <b>60417</b> |
| 19.902966 | 19.429853 | -0.282989 | 19.920171   | 19.431517 | -0.165350         |
| 19.947433 | 19.434087 | -0.289636 | 19.957030   | 19.434973 | -0.1 <b>67950</b> |
| 19.992255 | 19.438136 | -0.293039 | 19.993536   | 19,438248 | -0.168263         |
| 20.037348 | 19.441987 | -0.293101 | 20.029771   | 19.441355 | -0.166278         |
| 20.082608 | 19.445628 | -0.289682 | 20.065838   | 19.444305 | -0.162011         |
| 20.127905 | 19.448988 | -0.282644 | 20. 101868  | 19.447109 | -0.155458         |
| 20.173066 | 19.451975 | -0.271875 | 20. 138035  | 19.449675 | -0.146594         |
| 20.217838 | 19.454726 | -0.257390 | 20. 174590  | 19.452072 | -0.135337         |
| 20.262020 | 19.457234 | -0.239335 | 20.211735   | 19.454363 | -0.121633         |
| 20.305603 | 19.459507 | -0.217963 | 20.249480   | 19.456542 | -0.105382         |
| 20.348601 | 19.461556 | -0.193485 | 20. 287810  | 19.458603 | -0.086488         |
| 20.390946 | 19.463783 | -0.166198 | 20.326792   | 19.460541 | -0.064892         |
| 20.432653 | 19.465000 | -0.136451 | 20. 3664 12 | 19.462348 | -0.040725         |
| 20.474064 | 19,466388 | -0.4484   | 20.406328   | 19.464001 | -0.014099         |
| 20.515402 | 19.467654 | -0.070189 | 20.446318   | 19.465479 | 0.015020          |
| 20.556339 | 19.468807 | -0.033140 | 20.486708   | 19.466786 | 0.046491          |
| 20.596786 | 19.469844 | 0.006611  | 20. 527589  | 19.468008 | 0.080426          |
| 20.636772 | 19.470773 | 0.048916  | 20. 568931  | 19.469140 | 0.116861          |
| 20.676352 | 19.471596 | 0.093603  | 20.610678   | 19.470178 | 0.155761          |
| 20.715557 | 19.472317 | 0.140524  | 20.652800   | 19.471117 | 0.197008          |
| 20.754481 | 19.472941 | 0.189467  | 20.695204   | 19.471954 | <u>^.240499</u>   |
| 20.793205 | 19.473605 | 0.240264  | 20.737807   | 19.472685 | G.286097          |
| 20.831786 | 19.474264 | 0.292798  | 20.790554   | 19.473378 | 0.333680          |
| 20.870274 | 19.474873 | 0.346934  | 20.823393   | 19.474125 | 0.383151          |
| 20.908736 | 19.475432 | 0.402500  | 20.866258   | 19.474812 | 0.434394          |
| 20.947219 | 19.475942 | 0.459311  | 20.909102   | 19.475437 | 0.487244          |
| 20.985783 | 19.476403 | 0.517152  | 20.951866   | 19.476000 | 0.541513          |
| 21.024504 | 19.476817 | 0.575815  | 20 994472   | 19.476501 | 0.597027          |
| 21.063534 | 19.477184 | 0.635092  | 21.036770   | 19.476938 | 0.653721          |
| 21.094832 | 19.477441 | 0.682612  | 21.070159   | 19,477241 | 0.633602          |

### LPT Stator 5 Airfoil Coordinates

يغر •

-----

50% From Hub

169

CROME RELEASE DE POGR QUEETY

Suction Surface

Pressure Surface

(n.

| Z           | R                      | RTHETA           | 2          | R          | RTHETA                                 |
|-------------|------------------------|------------------|------------|------------|----------------------------------------|
| 13.343713   | 22 402337              | 0                |            |            | ······································ |
| 19 343104   | 22 402275              |                  | 19 343773  | 22.402337  | 0                                      |
| 19 345849   | 22 402652              | 0005493          | 19 347963  | 22 402975  | 0 004074                               |
| 19 35 1950  | 22 403583              | 0.012819         | 19.355377  | 22.404102  |                                        |
| 19.361323   | 22 405002              | -0 022092        | 19 365915  | 22 405696  | 0.006367                               |
| 19 37 38 79 | 22 406806              | -0 033473        | 19 379448  | 22, 407772 | 0.006687                               |
| 19 389555   |                        | -0 047133        | 19.395873  | 22 410184  | 0.004783                               |
| 19.408352   | 22 412024              | -0 063193        | 19.415189  | 22 413042  | 0.000456                               |
| 19.430378   | 22 4150 10             | -0 081655        | 19 437603  | 22 416224  |                                        |
| 19 455907   | 22.415270              | -0.102308        | 19 446408  | 22 417602  | -0.015068                              |
| 19.489064   | 22 418977              | -0.124627        | 19.493841  | 22 424204  | -0.018520                              |
| 19 489064   | 27.423718              | -0.150411        | 19.541240  |            | -3.036148                              |
| 19 532609   | 2 423718               | -0.150471        | 19.541240  | 22.431014  | -0.051675                              |
| 19 578247   | 2. 429821              | -0.179306        | 9 585304   | 22.431014  | -0.051675                              |
| 19 674467   | 22 436080              | -0.204034        | 627181     | 22.43/018  | °O.066785                              |
| 19 670843   | 22 442232              | -0 224388        | 19 668690  | 22 442591  | -0 079822                              |
| 19 719040   | 22.448263              | -0.24134         | 19 709907  | 22.447985  | -2.091188                              |
| 19.765001   | 22.454312              | -0.255411        | 19.7503307 | 22.453273  | -2.101043                              |
| 19 00000    | 22 460300              | -0.266115        | 19 700000  | 22 458374  | -0.108947                              |
| 19.813948   | 22 466 103             | 0 273320         | 19.790082  | 22.463248  | -0.114990                              |
| 19.862097   | 22.471705              | -0.277162        | 19 829639  | 22.467952  | -0.119328                              |
| 19 910319   | 22.477103              | 0 277780         | 19 869100  | 22.472502  | -0.122011                              |
| 19 958467   | 22.482281              | -0 275272        | 19 908490  | 22.476902  | -0 122939                              |
| 20 006389   | 22.487224              | -0 269779        | 19.947953  | 22.481169  | -0 122002                              |
| 20 053954   | 22.491861              | -0 261426        | 19.987643  | 22.485315  | -0 119107                              |
| 20.101077   | 22.496082              | -0.250402        | 20.027689  | 22 489353  | -0 114245                              |
| 20 147748   | 22 500043              | -0 236930        | 20.068177  | 22.493159  | -0 107414                              |
| 20.194061   | 22 503758              | -0 221293        | 20.109118  | 22.496780  | -0.098608                              |
| 20.240282   | 22.507251              | -0 207617        | 20.150417  | 22.500263  |                                        |
| 20.286570   | 22.510535              | -0 193700        | 20.191808  | 22.503582  | -0.034699                              |
| 20.332762   | 22.513599              | -0.151208        | 20.233131  | 22.506725  | 0.074693                               |
| 30 378612   | 22.516428              | 0 10 100         | 20.274550  | 22.509703  | 0.039366                               |
| 20.423881   | 22 518830              |                  | 20.316312  | 22 512532  | -0.041664                              |
| 20.468503   | 22 57 1039             | 0.108116         | 20 358654  | 22 515222  | -0.021657                              |
| 20.512590   | 22 523120              | -5.077208        | 20.401644  | 22 517708  | 0.000430                               |
| 20 556276   | 22 525002              | -0.043738        | 20 445 168 | 22 519900  | 0 024615                               |
| 20 599534   | 22 525053              | -0.007943        | 20.489095  | 22 522022  | 0.051069                               |
| 20.642312   | 22.520938              | 0.030141         | 20 533448  | 22 524072  | 0.079929                               |
| 20.684753   | 22.520716              | 0.070481         | 20.578281  | 22 524073  | 0 111109                               |
| 20 726956   | 22.530375              | 0.112814         | 20 623452  | 22 526052  | 0 1/4460                               |
| 20 768928   | 22 532645              | 0.156956         | 20.668860  | 24.02/951  | 0.180023                               |
| 20.810725   | 12 533045              | 0.202879         | 20 714500  | 22.529/64  | 0.217732                               |
| 20.852444   | 22 53724/              | 0.250522         | 20.750314  | 44.JJ1488  | 0.257412                               |
| 20.894140   | 44.33/241<br>23 Bannes | 0.299736         | 20.806207  | 44 5J3273  | 0.299025                               |
| 20.935847   | 44.339030              | 0.3 <b>50353</b> | 20.852123  | 44.535252  | 0.342603                               |
| 20.977434   | 42.340816              | 0.402169         | 20.898027  | 22.537227  | 0.388064                               |
| 21.019026   | 22.542592              | 0.455067         | 20 944089  | 22.539197  | 0.435215                               |
| 21.060947   | 22.544364              | 0.508734         | 20 990072  | 42.541167  | 0.413643                               |
| 21 094363   | 22.546146              | 0.562757         | 21 035762  | 22 543131  | 0.533133                               |
|             | 22.547564              | 0.605333         | 21 071217  | 22.545076  | 0.583715                               |
|             |                        |                  | 21.0/131/  | 2.546586   | 0.624350                               |

LPT Stator 5 Airfoil Coordinates

· 20 - - - -

90% From Hub

170

ł

Discolar Dispecta quillery

### Suction Surface

(+)

ļ

2.

### Pressure Surface

| Z R                | RTHETA         | Z          | R          | RTHETA    |
|--------------------|----------------|------------|------------|-----------|
|                    |                |            |            |           |
| 21 710133 15 57    | 5004 0         | 21 710133  | 15 575004  | 0         |
| 21 707451 15 57    | 5C44 0 006885  | 21 713532  | 15 574953  | -0 002593 |
| 21 707984 15 57    | 5037 0 016019  | 21 718845  | 15 574875  | -0.003738 |
| 21 711491 15 57    | 4984 0.027324  | 21 726028  | 15 574770  | -0.003377 |
| 21.718365 15.57    | 4882 0.040673  | 2 • 735033 | 15 574640  | -0 001443 |
| 21 728637 15.57    | 4732 0 055888  | 21,745835  | 15 574485  | 0 002098  |
| 21 742473 15 57    | 4533 0 072743  | 21.758475  | 15.574307  | 0 007189  |
| 21 760077 15.57    | 4284 0.090962  | 21,773121  | 15.574104  | 0.013603  |
| 21.781686 15.57    | 3987 0.110222  | 21,793224  | 15.573831  | 0.022335  |
| 21 807571 15.57    | 3640 0.130155  | 21 829692  | 15.573354  | 0.037653  |
| 21 838035 15.57    | 3248 0.150349  | 21,865399  | 15.572909  | 0.052238  |
| 21 873412 15.57    | 2812 0.170352  | 21.899509  | 15.572505  | 0.065361  |
| 21 891989 15.57    | 2592 0.179618  | 21,932669  | 15.572131  | 0 076173  |
| 21 891989 15.57    | 2592 0.179618  | 21.932669  | 15.572131  | 0.076173  |
| 21 928785 15.57    | 2174 0.195805  | 21.965648  | 15.571779  | 0.085272  |
| 21.963821 15.57    | 1777 0.209545  | 21.998387  | 15.571435  | 0.092902  |
| 22.003443 15.57    | 1381 0.221019  | 22.030540  | 15.571107  | 0.098923  |
| 22.041506 15.57    | 1000 0.230110  | 22.062252  | 15.57080   | 0.103269  |
| 22.079750 15.57    | 0651 0.236719  | 22,093784  | 15. 570532 | 0.106094  |
| 22.118131 15.57    | 0335 0.240864  | 22.125177  | 15.570281  | 0.107530  |
| 22.156655 15.57    | 0053 0.242567  | 22.156428  | 15.570054  | 0 107609  |
| 22 195252 15.56    | 9804 0.241795  | 22.187607  | 15 569851  | 0.106348  |
| 22 233829 15 56    | 9591 0 238549  | 22.218804  | 15.569670  | 0.103735  |
| 22.272301 15.56    | 9421 0.232849  | 22.250108  | 15.569511  | 0 099729  |
| 22 310584 15 56    | 9316 0.224742  | 22.281600  | 15.569392  | 0 094268  |
| 22 348589 15 56    | 9254 0 214307  | 22.313370  | 15.569310  | 0 087275  |
| 22.386266 15.56    | 9234 0.201619  | 22.345467  | 15.569257  | 0.078711  |
| 22.423680 15.56    | 9257 0.186688  | 22.377829  | 15.569235  | 0.068539  |
| 22.460902 15.56    | 9319 0.169502  | 22.410381  | 15.569244  | 0.056594  |
| 22,49/952 15.56    | 9423 3,150145  | 22.443106  | 15.569284  | 0.042569  |
| 22.534775 35.56    | 3262 0.128633  | 22.476058  | 15.569357  | 0.026224  |
| 22 5/1092 15.56    | a) 33 0 1053a) | 22.509516  | 15.569463  | 0.007521  |
|                    | 9938 0.080532  | 22.543717  | 15.569604  | -0.013083 |
| 22.041083 10.07    |                | 22.578475  | 15.569772  | 0.034968  |
| 22.0/0493 13.3/    | 0778 -0.023505 | 22.613440  | 15.569981  | -0.05/815 |
| 12 745194 15 57    | 1132 -0.034569 | 22.648637  | 15.570233  | -0.082205 |
| 22.743234 73.37    | 1320 -0.056851 | 22,584190  | 15.5/0528  | -0.108007 |
| 22.003.03          | 1943 -0 100353 | 22.720080  | 15.5/0808  | -0.133011 |
| 22.072846318 15.57 | 2414 -0 135076 | 22.756174  | 15.5/1252  | -0.103218 |
| 22 879560 15 57    | 2925 -0 170948 | 22.792490  | 10.0/1083  | -0.192005 |
| 22 912605 15 57    | 3473 -0 207851 | 22.829024  | 13.3/2104  | -0.223:35 |
| 22 945481 15 57    | 4057 -0.245627 | 22.800/04  | 15.5/2/08  | -0 287532 |
| 22.978207 15.57    | 4677 -0,284091 | 22.902653  | 15.573304  | -0 321078 |
| 23.010792 15.57    | 5333 -0.323047 | 22.939/02  | 15.373531  | -0 355228 |
| 23.043319 15.57    | 6026 -C 362266 | 22.9/0892  | 15.5754031 | -0 389781 |
| 23.075954 15.57    | 6760 -0 401491 | 23.014140  | 15 576202  | -0.424683 |
| 23.099690 15.57    | 7318 -0.429778 | 23.078015  | 15,576808  | -0.450128 |

# LPT Rotor 5 Airfoil Coordinates

10% From Hub

\$

# OF POOR QUALITY

### Suction Surface

[+]

And the second second

وأستعده فالمتحمل

and the second second

. مراجع الماني

Ł

# Pressure Surface

| Ζ         | R         | RTHETA    | Z          | R         | RTHETA     |
|-----------|-----------|-----------|------------|-----------|------------|
|           |           |           |            |           |            |
| 21 702990 | 19 485240 | 0         | 21.702990  | 19 485240 | 0          |
| 21 701674 | 19 485213 | 0.006602  | 21.707036  | 19.485322 | -0.005137  |
| 21.703330 | 19 485247 | 0.014585  | 21,713691  | 19.485458 | -0.008978  |
| 21.707989 | 19 485342 | 0.023884  | 21.722902  | 19.485649 | -0 011411  |
| 21.715701 | 19.485500 | 0.034390  | 21.734597  | 19.485894 | -0.012784  |
| 21.726548 | 19.485725 | 0.045936  | 21.748713  | 19.486195 | -0.011 85  |
| 21 740638 | 19.486022 | 0.058285  | 21 765233  | 19.486554 | -0.008915  |
| 21 758128 | 19 486399 | 0.071113  | 21.784230  | 19.486976 | -0.004792  |
| 21.779220 | 19.486864 | 0.083993  | 21.805931  | 19.487471 | 0.000427   |
| 21,791797 | 19.487147 | 0.090581  | 21.823510  | 19.487880 | 0.004433   |
| 21,791797 | 13.487147 | 0.090581  | 21.823510  | 19.487880 | 0.004433   |
| 21.829715 | 19.488027 | 0.105474  | 21.855368  | 19.488645 | 0.010678   |
| 21.867672 | 19.488948 | 0.117705  | 21.887187  | 19.489436 | 0.015294   |
| 21.905394 | 19.489901 | 0.125598  | 21.919240  | 19 490261 | 0.018540   |
| 21 943396 | 19.490901 | 0.130861  | 21.951014  | 19.491107 | 0.020196   |
| 21.981648 | 19.491948 | 0.133517  | 21.982537  | 19.491973 | 0 020220   |
| 22.019953 | 19.493079 | 0.133640  | 22 0 4008  | 19.492902 | 0 018565   |
| 22.058222 | 19.494236 | 0.131361  | 22.045515  | 19.493849 | 0.015223   |
| 22 096405 | 19.495416 | 0.126755  | 22.077107  | 19.494816 | 0.010234   |
| 22.134474 | 19.496619 | 0.119906  | 22.108314  | 19.495806 | 0.003608   |
| 22.172409 | 19.497844 | 0.110888  | 22.140655  | 19.496817 | -0.00465   |
| 22.210158 | 19.499088 | 0.099752  | 22 172671  | 19 497852 | -0.014555  |
| 22 247710 | 19.500350 | 0.086547  | 21. 204905 | 19.498913 | -0.026060  |
| 22.285006 | 19.501620 | 0.071349  | 22.23/385  | 19 500001 | -0.039163  |
| 22.322039 | 19 502879 | 0.054234  | 22.270127  | 19 501114 | -0.053846  |
| 22 358816 | 19 504131 | 0.035275  | 22.303126  | 19 502236 | -0.070090  |
| 22 392334 | 19.5053/5 | 0 014513  | 22.336383  | 19.303387 | -0.08/866  |
| 22.4313/1 | 19.506610 | -0.007991 | 22.309922  | 19.304309 | -0 10/154  |
| 22.40/01/ | 19.50/836 | -0.032136 | 22.403/32  | 19.303662 | -0. (2/921 |
| 22 503200 | 19 510254 | -0.057930 | 22:43/033  | 19.300824 | -0.130123  |
| 22.533052 | 19 511404 | -0 114272 | 22 506779  | 19.507934 | -0.199704  |
| 22 608681 | 19 517579 | -0.144766 | 22.541690  | 19.509175 | -0.130/04  |
| 22 643254 | 19 512540 | 0 176683  | 22 576893  | 19 511503 | -0.25.12   |
| 22 677548 | 19 514740 | -0.209916 | 22 6:2375  | 19 517647 | -0.281548  |
| 22 711615 | 19 515831 | -0 244350 | 22 648084  | 19 512796 | -0 311792  |
| 22.745482 | 19 016011 | -0.279913 | 22 683992  | 19.514947 | -0 343072  |
| 22 779163 | 19.517983 | -0.316537 | 22.720086  | 19 516101 | -0 375426  |
| 22.812672 | 19.519047 | -0.354150 | 22.756353  | 19.517257 | -0.408784  |
| 22.846041 | 19.520123 | -0.392699 | 22 792760  | 19.518415 | -0.443088  |
| 22.879286 | 19.521202 | -0.432164 | 22.829291  | 19.519580 | -0.478309  |
| 22.912400 | 19.522279 | -0.472501 | 22.865953  | 19.520769 | -0.514425  |
| 22.945395 | 19.523355 | -0.510006 | 22.902733  | 13.521964 | -0.551381  |
| 22.978272 | 19 524429 | -0.555345 | 22.939632  | 19.523167 | -0.589050  |
| 23.010902 | 19.525498 | 0.597665  | 22.976778  | 19.524380 | -0.627133  |
| 23.043477 | 19.526568 | 0. 540262 | 23.013978  | 19 525599 | -0.665581  |
| 23.076352 | 19.527650 | -0 682743 | 23.050879  | 19.526811 | -0.704528  |
| 23.100588 | 19.528449 | -0.713929 | 23.077893  | 19.527700 | -0.733305  |

### LPT Rotor 5 Airfoil Coordinates

, **2**4

1

-

•

50% From Hub

ORIGINAL PACE 13 OF POCR COMMY

### Suction Surface

 $\rightarrow$ 

**,** 

\$

### Fressure Surface

| Z          | R         | RTHETA    | Z         | R                      | RTHETA            |
|------------|-----------|-----------|-----------|------------------------|-------------------|
|            |           |           |           |                        |                   |
| 21 702999  | 22 563210 | 0         | 21 702999 | 22 562210              |                   |
| 21 703526  | 22 563218 | 0.005956  | 21.702333 | 22.303210              | -0.005409         |
| 21 706883  | 22 563.70 | 0.012331  | 21.703121 | 22.303243              | -0.003409         |
| 21.713078  | 22.563365 | 0.019074  | 21.703750 | 22.503314              | -0.010350         |
| 21 722123  | 22 563505 | 0.026104  | 21.7:08/2 | 22.303424              | -0.014652         |
| 21 734036  | 22 563689 | 0.033305  | 21.720400 | 22.3033/2              | -0.018067         |
| 21 748841  | 22 563917 | 0.040524  | 21.738516 | 22.303/30              | -0.021718         |
| 21.766567  | 22.564189 | 0.047572  | 21.753012 | 22.303761              | -0.023954         |
| 21.787249  | 22.564507 | 0.054219  | 21.709970 | 22.304242<br>33.664644 | -0.025458         |
| 21,803407  | 22.564756 | 0.058454  | 21.763440 | 12.30434;<br>13 564987 | -0.020382         |
| 21 803407  | 22.564756 | 0.058454  | 21.911910 | 22.304007              | -0.027852         |
| 21.840916  | 22.565331 | 0.065345  | 21.011313 | 22.304887              | -0.02/032         |
| 21 578847  | 22.565913 | 0.068462  | 21.044/01 | 22.303302              | -0.033005         |
| 21.910780  | 22.566493 | 0.068545  | 21.07025  | 22.3038/0              | -0.037037         |
| 21 954608  | 22.567071 | 0.065976  | 21.309813 | 22.500337              | -0.042199         |
| 21.992308  | 22.567656 | 0.060989  | 21 971889 | 22.567334              | -0.048500         |
| 22.029883  | 22.568260 | 0.053782  | 22 004088 | 22 567847              | -0.056004         |
| 22.067258  | 22.568849 | 0.044479  | 22 036488 | 22 568365              | -0.064738         |
| 22.104389  | 22.569423 | 0.033286  | 22 069132 | 22 568878              | -0.074770         |
| 22.141315  | 22.569982 | 0.020366  | 22 101981 | 22 569386              | -0 086126         |
| 22.178059  | 22.570527 | 0.005756  | 22 135011 | 22.569887              | -0.098774         |
| 22.214628  | 22.571059 | -0.010484 | 22.168217 | 22.570382              | -0.112740         |
| 22.251027  | 22.571577 | -0.028293 | 22.201593 | 22.570871              | -0.128058         |
| 22.287248  | 22.572056 | -0.047648 | 22.235147 | 22.571352              | -0.144719         |
| 22 223285  | 22.572502 | -0.068529 | 22.268885 | 22.571820              | 0. 1627 18        |
| 22.359142  | 22.572923 | -0.090899 | 22.302803 | 22.572251              | -0 182063         |
| 22.394515  | 22.572320 | -0.114742 | 22.336904 | 22.572664              | -0.202745         |
| 22.430297  | 22.573693 | -0.140031 | 22.371197 | 22.573060              | - J. 224756       |
| 22.465590  | 22.574042 | -0.166729 | 22.405679 | 22.573136              | -0.248090         |
| 22.500697  | 22.574368 | -0.194814 | 22.440347 | 22.573794              | -0.272724         |
| 22.535623  | 22.574671 | -0.224266 | 22.475195 | 22.574133              | -0.298646         |
| 22.570359  | 22.574899 | -0.255053 | 22 310235 | 22.574453              | -0.325842         |
| 22.604903  | 22.575110 | -0.287117 | 22.545465 | 22.574743              | -0.354290         |
| 22.639269  | 22.5/5311 | -0.320396 | 22.580874 | 22.574964              | -0.383948         |
| 22.6(34/6  | 22.5/5504 | -0.354832 | 22.616-42 | 22.575178              | -0.414776         |
| 22. (0/52/ | 22.3/3089 | -0.390340 | 22.652166 | 22.575385              | 0.446714          |
| 22.741433  | 22.5/5805 | -0.420887 | 22.688014 | 22.575584              | -0.479729         |
| 22.7/0203  | 22 3/0032 | -0.4043/4 | 22.723980 | 22.575775              | -0.513762         |
| 22.000933  | 22.0/0192 | -0.502/33 | 22.760062 | 22.575959              | -0.548728         |
| 22.072303  | 22.576360 | -0.5418/0 | 22.796223 | 22.576133              | -0.594 <b>561</b> |
| 22.070122  | 22.570004 | -0.581718 | 22.832445 | 22.576322              | -0.621195         |
| 22.303014  | 22.570827 | -0.662289 | 22.868728 | 22.576555              | -0.658557         |
| 22.976442  | 22 577200 | -0.704840 | 22.905064 | 22.576796              | -0.696571         |
| 23 009744  | 22 577520 | -0 746213 | 22.941449 | 22.577044              | -0.735141         |
| 23 042982  | 22 577776 | -0.789107 | 22.977921 | 22.577301              | -0.774122         |
| 23 076233  | 22 578028 | -0.831603 | 23.014459 | 22.577565              | -0.813418         |
| 23.100651  | 22 578217 | -0.862941 | 23.050983 | 22.577836              | -0.853008         |
|            | 22.0/021/ | 0.002341  | 23.0778*8 | 22.578040              | -0.882231         |

# LPT Rotor 5 Airfoil Coordinates

.

90% From Hub

) \_\_\_\_\_

 $\overline{\textcircled{}}$ 



# JAN 8 1985