ENERGY EFFICIENT ENGINE

LOW PRESSURE TURBINE TEST HARDWARE DETAILED DESIGN REFORT

Ey
D.G. Cherry C.H. Gay
D.T. Lenahan

GENERAL ELECTRIC COMPANY
MRCRAFT EMOHIE UUSNEES CROUP ADVANCED TECHNOLOGY PAOGRAMS DEPT. CMCHMEATI JMMO 45215
$98 ?$
Prepared for
NATIONAL AERONAUTIES AND SPACE ADMINISTRATION
LEWIS RESEA胃CH CEHTER 21000 EPOOKPARK EAD CLEVELAND, DHIO : 135

NASA - LEWIS RESEARCH CENTER Contract NAS3-20643

16 Amber
The low presaure curbine for the Eaergy Efficient Englic it fiveritage configuration vith moderat exrodvanic loeding incorporatiof dvanced features of decmered airfoils and exiended blade overlapa at platfores and ahroude. Mechanical iategrity of is, 000 houre on flowpath compomente and 36,000 hour: on all ocher compoofen is achieved along vith no seromechanical ingtabilitiea within the siady-stace operatint range. Selection o! a large auber (i56) of stage if blades. together with an increased Seage tancrombade gep, aesiate in achieving FAR 36 acouatic goals. Active clearance coartol (acc) of gapa ac blade cips and inceratage seala is achieved by fan air corling judicioualy epplied at responeive locations on che casing. This acc eyatee is a ajor approvement in preventias deterioration of the 0.0381 ce (0.015 in . ' clearances required to eet the integrated-corellow-apool turbine efficiency goal of 91.12 and the il:ght prexulaion syitem efficrency goel of 91.71 .
OF Foun C

17 Kav Words (Suqneted by Activertal)
Enersy Efficient Ensine
Lon Preasure Turbine
Five Stase Turbiae
Active Clestence Control

19 Security Oewit tot inm remert) Unclataified	20 Sevirty Clent fot thespery Uaclestified	(21 No of Pat	22 Price

TABLE OF CONTENTS

Section Page
1.0 I! TRODUCTION AND SUMMARY 1
2.0 AERODYNAMIC UESIGN 4
2.1 Design Requirements 4
.. 2 Number of Stages 4
2.3 Initial Flowpath Selection (Block I) 4
2.4 Block I Air Turbine Design and Test 6
2.5 Final Flowpath Selection (Block II) 10
2.6 Final Vector Diagrams 13
2.7 Airfoil Design Analysis 13
2.8 Block Il Air Turbine Test 28
3.0 HEAT TRANSFER DESIGN 32
3.1 Objective 32
3.2 Design Conditions 32
3.3 Cooling Air Supply System 35
3.4 Design Mission 39
3.5 Cooling Flow Definition 42
3.6 Rotor Temperature Digtribution 49
3.7 Casing Cooling System 50
3.8 Stage 1 Nozzle 58
3.9 Active Clearance Control 64
3. 10 Start Analvsis 74
4.0 MECHANICAL DESIGN 76
4. 1 Overall Design Appruach 76
4.l.l Description 76
4.1.2 Lesign Loads and Limits 78
4.1.3 Design Goals 78
4.2 Rotor 82
4.2.1 Blade Design 82
4.2.2 Dovetail Attachwents 102
4.2.3 Disks 102
4.2.4 Seals 108
4.3 LPT Stator 108
4.3.l Stage 1 Nozzle Subassembly 108
4.3.2 Stages 2 Through 5 Nozzles 123
4.3.3 LPT Casing 128
4.3.4 HPT/LPT Flange Bolt Capability 128
4.4 Active Clearance Control (ACC) 128
4.4.1 Approach 128
4.4.2 Casing Stress/Life 134
4.4.3 Cooling Manifoid 134
4.4.4 Clearance Predictions 137
4.5 Weight Status. 141
Figures
Page 2

1. LPT rlowpath. ICLS Configuration.
2. Sealed Test Vehicle Flowpath, Block I Two-Stage Build.7
3. Block 1 , St age 1 Vane Kinetic Energy Efficiency. 8
4. Block I, St age 1 Total-to-Total Efficiency. 9
5. Block II, Stage. Stator and Transition Duct Compared to Current Block I Design. $1 i$
6. LP Turbine Flowpath Final for Block II. 12
7. Axisymmetric Flow Analysis of Stage 1 Vane (Block IIRedesign) Including Outer Wall Separation Sensitivities.14
8. $\quad E^{3}$ ICLS LP Turbine Axisymetric Calculation Model.9. Block II St age I Vane Shapes and St ream Surface VelocityDistributior18
9. Block It Stage 1 Blade Shapes and Stream Surface Velocity Dist:butions. 19
10. Block II Siage 2 Vane Shapes and St ream Surface Velocity Distributions. 20
11. Block II Stage 2 Blade Shapes and Stream Suriace velucity Distributions. 21
12. Block II Stage 3 Vane Shapes and Stream Surface Velocity Distribations. 22
13. Block II Stage 3 Blade Shapes and Stream Surface Velocity Distributions. 23
14. Block II Stage 4 Vane Shapes and St ream Surface Velocity Distributions. 24
15. Block II Stage 4 Blade Shapes and Stream Eurface VolocityDistribuiions.25
16. Block Ii Stage 5 Vane Shapes and St ream Surface Velocity Distributions.

LISI OF ILLUSTRATIONS (Continued)

Figures
Page
18 Block II Stage 5 Blade Shapes and Stream Surface Velocity
Distributions.
19. Efficieacy Vs. Loading for Two-Stage LPT. 2927
20. Scaled Test Vehicle, Five-Stage Configuration. 30
21. Efficiency Vs. Loading for Five-Stage LPT. 31
22. E^{3} LPT Cooling Air Requirements for the Base Engine. 34
23. LPT Base Engine Stator Relative Gas Temperature Profile. 36
24. LPT Base Engine Blade Relative Gas Temperature Profile. 37
25. LPT Cas Temperature Profiles, $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ Day, Steady-
State Idle Without Bleed. 38
26. Takeoff-Climb-Cruise Flight Mission.40
27. E E^{3} LPT Rocor Speed Over a Typica: Fiight Cycle. 41
28. E ${ }^{3}$ LPT Cooling Air Requirement for the Growth Engine. 43
29. E^{3} LPT Base Engine Maximum Pressures. 4430.
E^{3} LPT Cooling Supply and Nozzle Cooling System. 45
31. E^{3} LPT Cooling Supply System (ICLS). 47
32. E^{3} LPT/HPT Interturbine Seal Blockage. 48
33. E^{3} LPT Roto: Structure Heat Transfer Model. 51
34. E3 LPT Rotor Structure, Growth Engine. 52
35. E^{3} LPT Casing Cooling System. 53
36. E LPT Cooling/ACC Impingement Manifold. 5j
37. E ${ }^{3}$ LPT Casing Detailed Thermal Transient Model. 56
38. LPT Casing Transient Temperature Distribution. 57
39. E3 LPT Casing Transient Temperature Distribution. 59

LIST OF ILLUSTRATIONS (Continued)

Figures Page
40. $\quad E^{3}$ LPT Stage 1 Nozzle Support Structure Detailed Thermal Model. 60
41. LPT Stage 1 Vane/Transition-Duct/Support THT Temperatures at 3450 Seconds (Decel). 62
42. Stage 1 Vane 90% Span Sceady-State Maximum Takeoff Temper- ature Distribution. 63
43. Stage 1 Nozzle Hub Structure Detailed Thermal Transient Model. 65
44. LPT Stage 1 Vane Inner Seal Temperatures at 30 Seconds is o HDTO. 66
45. E^{3} HPT/LPT Active Clearance Control Fan Duct Scoop. 69
46. E^{3} HPT/LPT Active Clearance Control Design Features. 71
47. E^{3} LPT Acive Clearance Control wasing Cooling Objective. 72
48. E^{3} LPT Active こlearance Control Payoff Potential 73
49. E^{3} IP Five-Stage Turbine Features. 77
50. LPT Materials for FPS Major Components. 78
51. Typical Flight Cycle. 79
52. LPT Blade Features of Stages I Through 5. 83
53. Stage 1 Blade Airfoil Configuration. 85
54. LPT Blade Plat form Planform Selection. 86
55. LPT Stage 1 Blade Stress and Temperature Distribution. 87
56. LPT Stage 1 Blade Airfoil Life Characteristics. 89
57. LPT Stage 2 Blade Airfoil Life Characteristics. 90
58. LPT Stage 3 Blade Airfoil Life Characteristics 91
59. LPT Stage 4 Blade Airfoil Life Characteristics. 92
60. LPT Stage 5 Blade Airfoil Life Characteristics. 93
61. LPT Blade Natural Frequencies - Typical Mode Shapes 94

LIST OF ILLUSTRATIONS (Continsed)

Figures Page
62. Stage 1 Blade (Pinned Tip) Resonent Frequency Analysis. 95
63. Stage 1 Coupled Blade Disk Campbell Diagran. 98
64. LPT Tip Shrouds. 99
65. LPT Elade Tip Shroud Features and Configuration. 100
66. LPT Stage 1 Blade Tip Shroud Stress/Life and Frequency. 101
67. LPT Stage 1 Blade Angel Wing Stress/Life and Frequency. 103
68. Blade Retainers for Stages 1, 2, and 3. 104
69. Blade Retainers for Stages 4 and 3 105
70. LPT Stage 1 Dovetail Stress Distribution. 106
71. LPT Rotor Spacer Arm Stresses 60 Seconds into Takeoff Acceleration. 109
72. LPT Stage \mathbf{l} Disk Stress Distribution at Growth Conditions. 111
73. LPT Stage 1 Nozzle Assembly.113
74. LPT Stage 1 Vane/Support Features. 114
75. Support for Outer Transition Duct and LPT Stage 1 Nozzle: Effective Stresses at Takeoff. 116
76. LPT Stage 1 Nozzle Tangential Load Stop. 117
77. LPT Stage 1 Nozzle Hook Forces, Temperatures, and Stresses at Takeoff. 119
78. LPT Stape 1 Vane Inner Seal Support Features. 120
79. LPT Stage 1 Nozzle Inner Seal Supports: Effective Stresses at 1040 Seconds. 122
80. LPT Stator Vane FPS Configuration. 124
81. LPT Stages 2 Through 5 Nozzles: Airfoil Stress/Life at 125 Takeoff

LIST OF ILLUSTRATIONS (Concluded)

Figures Page
82. L2T Stage 2 Nozzle FPS Baseline Stresses, Temperatures, and Life at Takeoff. 126
83. LPT Nozzle and Shroud Tangential Load Stop. 127
84. Schematic of LPT Sealing Locations and Configurations. 129
85. Major Features of the LPT Casing. 130
86. Effective Surface Stregses for LPT Casing Atrachments. 131
87. End-Flange Stress/Life on LPT Casing Under Maximum Stress Condition. 1.32
88. LPT Containment Capability. 133
89. LPT Cooling Manifold (Axial View). 135
90. LPT Cooling Manifold (Unwrapped View). 136
41. Schematic of Sources of Excessive Clearance Between the Turbine Rotor and Shroud. 138
92. LPT Stage 1 Basic Relative Diameters. 139

Table

Page
I. Critical ..PT Operating Point Data. 5
II. LPT Fina\& Block II Vector Diagram Sumary. 16
III. Turbine Blading Solidity and Aspect Ratio Tabulations. 17
IV. E3 LFT Heat Transfer Design Parameters. 33
V. LPT Materials. 75
VI. LPT Design Cycle Performance Parameters. 80
VII. LPT Design FPS Aerodynamic Parameters, Design Point. 80
VIII. Airfoil Stress Sumary - Takeoff Condition. 88
IX. LPT Mission Analysis Used fo: Airfoil Rupture/Creep 88Life Calculations.
X. Blade Airfoil LCF LIfe. 96
XI. LPT Flutter Analysis. 96
XII. Dovetail Life Sumary. 107
XIII. LPT Rotor Bolt Analysis. 110
XIV. Selected Bolts for Rotor flanges. 110
XV. LPT Rotor Disk Minimum Calculated LCF Life. $1: 2$
XVI. LPT Stage : Nozzle Airfoil Operating Conditions and Calcu- lated Design Life. 118
XVII. LPT Stages 2 Through 5 Tangential Load Stop Stresses. 123
XVIII. FPS LPT Stage 1 Clearance Change for Maximum Closure. 140
XIX. Typical LPT Stage 1 Combined Clearance Calculation. 141
XX. Surmary of LPT Clearance Calculations. 142
VXI. LPT Weight Sumary. 142

ACC	Active Clearance Contro:
Accel	Acceleration (from Low- to High-Power Engine Operation)
Amb	Ambient
AP.	Aspect Ratio, $\mathrm{h} / \mathrm{d}_{\mathrm{o}}$ or h / AW
AW	Airfoil Axial Width, cm (in.)
CH	Airfoil Chord
CF6	General Electric Commercial Turbofan Engine
D	Diameter, cm (in.)
${ }^{\text {do }}$	Airfoil Throat Dimension, cm (in.)
DOC	Direct Operating Cost
Decel	Deceleration (trom high- to Low-Power Engine Operation)
DDR	Det ailed Design Review
E^{3}	Energy Efficient Engine
F	Force, N (1 bf)
FAOES	Full Authority Digital Electronic Control
FIDSE	Flight Idle
FPS	Flight Propulsion System - The fully developed configuration of the E^{3} which would be suitable for installation on an airframe.
GIDLE	Ground Tdle
H	Hub
h	Airfoil Height at the Trailin, Edge, c ($\mathrm{m}^{(i n .)}$
HCF	High Cycle Fatigue
HDTO	Hot-Day Takeoff [(50 ${ }^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$]
HLFT	Highly Loaded Fan Turbine

TIG Tungsten Inert Gas
Stainless Steel
Stage 1 Stator
Stage 2 Stator
Stage 3 Stator
Stage 4 Stator
Stage 5 Stator
Sea Level Take-off
Thickness, cm (in.)

Trailing Edge

Total Temperature, Temperature, K, ${ }^{\circ} \mathrm{C}\left({ }^{\bullet} \mathrm{R}\right.$, $\left.{ }^{\bullet} \mathrm{F}\right)$

Rotor Tangential Velocity at the Mean Radius, $\mathrm{m} / \mathrm{sec}$ ($\mathrm{ft} / \mathrm{sec}$)
Absolute Velocity, m/sec (ft/sec)
Flow, kg/sec (1bm/sec)
Absolute Flow Angle, Degrees from Axial
Relative Flow Angle, Degrees from Axial

Differential or Incremental Value (Prefix)
Energy Extraction: J/g (Btu/lbm)
Temperature above Ambient, $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$, on a Standard Day
Blade Tip Shroud Interlock Angle, Degrees

Blade Tip Shroud Angle Denoting Direction of Shroud FirstFlexural Vibration

Coefficient of Friction
Stress
Assembly Pretwist kotation of Biade Tip Shroud, Degrees

1.0 INTRODUCTION AND SUMMARY

This repurt describes the deiailed aerodynamic, heat transfer, and mechanical design of the iow pressure turbine (LPT) for the Energy Efficient Engine (E^{3}). The LPT configuration in Figure l was selected after investigation of alternate designs, tradeoff studies, payoff evaluations, and extensive preliminary design analyses aimec at achieving high aerodynamic efficiency while maintaining maximam mechanical integrity.

The E^{3} LPT is a five-stage, moderately loaded, low-througr-fluw design with a high outer wall slope of 25°. The LPT is close-coupled to the high pressure turbine (HPT) via a $7.62-\mathrm{cm}(3-i n$.) axial length transition duct. The flowpath has been sized to match the fan characteristics and to achieve performance goals for the flight propulsion cycle. Provisions have been made to accomodate a potential growth application. The aerodynamic design point is the maximum-climb power setting at Mach 0.80 and $10.67-\mathrm{km}(35,000-\mathrm{feet})$ altitide.

The design-point gas flow rate through the LPT is $22.7 \mathrm{~kg} / \mathrm{s}-\mathrm{m}^{2}$ ($4.6 \mathrm{lbm} /$ $\sec -\mathrm{ft}^{2}$). The Stage 1 rotor has a tip radius of $0.45 \mathrm{~m}(17,55 \mathrm{in}$) and a tip speed of $168.6 \mathrm{~m} / \mathrm{s}(553 \mathrm{ft} / \mathrm{sec})$. The Stage 5 rotor has a tip radius of 0.59 m (23.28 in.) and a tip speed of $223.7 \mathrm{~m} / \mathrm{s}(734 \mathrm{ft} / \mathrm{sec})$.

An assessment of the performarce of the LPT has been madc tased on a series of scaled airturbine tests divided into two phases: Black I and Block II. The transition duct and the first two stages of the turbine were evaluated during the Block I phase from March ihrough August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporat ing redesigns of Stages 1 and 2 based on Block I data analysis, was tested as Biock II in June through September 1981.

Results from the scaled air-turbine tests, which will be reviewed briefly herein, indicate that the five-stage turbine designed for the ICLS application wili attain an efficiency level of 91.5% at the Mach $0.8 / 10.67-\mathrm{km}(35,000-\mathrm{ft})$, max-climb design point. This is relative to program goals of 91.1% for the ICLE and $91.7 *$ for the flight propulsion sustem (FPS).

In order to improve roundness control and radial clearances, the casing is a full 360° structure, rather than two 180° halves, with nczzle stators attached in multivane segments. The LPT rotor assembly employs high-aspectratio, tip-shrouded blading in disks connected by bo'ted flanges if: iowstress attachment areas. The rotor assembly is supported by a singie bearing cone. The Stage 4 rotor-to-stator spacing employs a wide gap (1.4 blade chord lengths) to minimize turbine noise.

Cooling requirements have been minimized so that only the Stage 1 nozzle employs controlled purge air from the fifth-siage compressor bleed for seal blockage and disk rim purge.
cogmat risu is
or pOOR CJALITY

Figure 1. LPT Flowpath, ICLS configuration.

Activ. clearance control (ACC) is an integral part of the LPT design. The ACC uses fan bleed air routed from pyion scoops to a distribution manifold for impingement on the casing. The ACC system reduces blade-tio and inter-stage-seal radial clearances at selected high-performance operating points.

Mecinanical integrity is assured hy designing airfoils for a service life of 18,000 missions a d 18,000 stress c eles. The casing and rocer are sized for 36,000 missions and 72,000 stress svcles, respectively. Airfoil quantities and characteristics have been selected so that no resonances are predicted in the range of engine steady-state operating speed. All material-property design data are based on average-minus-three standard deviations (-3σ) and inclure section size considerations.

The capatility of the LPT configuration to meet design and operating requirements in each technical area is discussed, and the technical details are presented in depth, in the following pages.

2.0 AERODYNAMIC DESIGN

2.! DESIGN REQUIREMENTS

Historically in prototype engines, turtomachinery compunent fifiencies fall short of design goals by significint amounts. The consequest cycle rebalance causes components to operate off-design, further reducing afficiency. In an attempt to obviate this trend, the ICLS cycle was devised with appropriate derates on component efficiencies. Depending on the accuracy of the efficiency derates, turbomachinery components des gned to the requirements of the resultant cycle will avoid off-design penalties.

Table I presents LPT cycle atatar for LCLS max-climb aerodynamic design point and, for comparison, data for the FPS maximum climb, maximum cruise, and sea level takeoff points. Note the relatively small differences between climb and cruise for the FPS. Note further that the ICLS has been designed to a flow function approximately 4% higher at climb than the FPS. This reflects che derated component efficiencies and estimated instrumentation losses in the ICLS.

Efficiency goals at Yach $0.8 / 10.67 \mathrm{~km}(35,000 \mathrm{ft})$ maximum climb are 0.911 (or 91.1%) for the $(. S$ and $0.917(9.7 \%)$ for the FPS.

2.2 NUMBER OF STAGES

The selection of a five-stage configuration for the E^{3} LPT was based in part on results ohtained during the IRar-funded Highly Loaded fan Turbine (HLFT) technology development program and also on system studies aimed at minimizing direct operating cost (DOC). These system studies evaluated the impact of turbine loading, weight, and cost on DOC and indicated a relative optimum at a loading level at tainable in five stages. Further, significant performance gains at this loading level had been demonstrated in the HLFT program, indicating that the ICLS goal could be met with a five-stage turbine.

2.3 INITIAL FLOWPATH SELECTION (BLOCK I)

Maximum tip diameters for the HPT and LPT were set by mechanical and configuration control requirements at $76 . \because \mathrm{cm}(30 \mathrm{in}$.) and $1 \mathrm{l} 8.1 \mathrm{~cm}(46.5 \mathrm{in}$.) , respectively. In addition, the LPT flowpath outer-wall slupe was limited to 25° through Stage 3 , transitioning to cylindrical by the Stage 5 exit.

The initial (Block I) Eive-stage flowpath was defined through an inerative technique whereby a candidate outer-wall contour was selected (within the limitations on wall slope and exit diameter), and the inner wall contour ard stage energy distriburion were iterated concurrently to yield acceptable levels of loading ($\mathrm{gJ} \Delta_{\mathrm{in}} / 2 \mathrm{u}^{2}$) and flow cuefficient ($\left.V_{z} / \mathrm{L}\right)$ for each stage. The
hest candidate flowparhs were selected based on a tage-by-stage efficiency estimite wirich accounted for the effects of loading, flow cuefficient, tip slope, aspeci ratio, and clearance.

2.4 BLOCK I ALR TURBINE DESIGN AND TEST

The detailed aerodynamic design of Siages : and 2 of the Block I flowpath was executed according to HLFT design philosuphy in a 0.67-scale test rig. The configurations tested, along with the approximate test dates, were as follows:

- Stage 1 nozzle annular cascade (March 1979)
- Stage 1 (April 1979)
- Stage 1 , aith Stage 2 nozzle annular cascade (June 1979)
- Two-stage group (August 1979).

The rig flowpath for the two-stage group is shown in Figure 2. Note .hat the HPT to LPT transition duct is an integral part of the Stage 1 vane as sembly.

Total-to-total efficiency for the block I two-stage build, as tested in the two-stage group, was below the pretest prediction. The following items were identified as possible contributors to the deficiency.

1. An area of secondary flow over the outer 40% of span of the Stage 1 vane was identified during the Configuration l test. This loss core, caused by the combination of a weakened inlet boundary layer (from the diffusing outer wall of the transition duct) and the high vane tip slope, induces deviation from the design-intent efficiency near the stator tip. Figure 3 presents the measured efficiency for Stator 1 . Note that the transition duct loss is included in the cascade efficiency definition.
2. Similar secondary flow effects were noted during Configuration 3 testing over the outer 20% span of the Stage 2 vane.
3. Both rotating tests revealed unexpectedly poor performance in the region of the rotor hubs. Figure 4 presents the Stage lefficiency profile. Note that, in addition to the severe dropoff at the hub, performance in the outer half of the annulus is depressed due, in part, to the Stage l vane tip losses.

A stage-by-stage performanct stackup f - the ICLS turbine, using the trend and the level of the stage efficiency versus loading characteristic established by the Block I test series, indicated a status efficiency of 90.4% versus the ICLS goal of 91.1%, a 0.7% deficiency.

Based on extensive postest data matching ard data analysis, the following were identified as crucial items to be addressed during the Block II redesign:

Figure 2. Scaled Test Vehicle Fiowpath, Block I Two-Stage Build.

0sine:
OF FOGR Q'jajir

Figure 3. Block I, Stage I Vane Kinetic Energy Efficiency.

ORISIM:AL PACF IS OF FOOR QUALITY

Figure 4. Block I, Stage 1 Total-to-Total Efficiency.

- Stage 1 vatue solidity is low, especially at the hub.
- Stage 1 vane aspect rat io is low, especially near the tip.
o The solidity of rotor blade hubs is low, and there is excessive pressure-side diffusion near the leading edges.
- A severe performance penalty is incurred by the increase in outer wall slope from 22° (HLFT) to the current 25°. This is especially true in the vicinity of lowaspect-ratio-vane tips.
o
Inner and outer-wall overlap geometry is degraded relative to HLFT. This refers specifically to the amount (or lack) of axial overlap between the stator bank and the rotor platforms/tip-shroud extensions.

2.5 FINAL FLUWPATH SELECTION (BLOCK II)

In order to address the issue of outer-wall slope and the influence it has on performance, several alternate flowpaths were developed and analyzed by those methods previously described. One ground rule that was enforced in the course of this alternate-flowpath study was that the overall length and diameter remain unchanged. Results of the stujy indicated that configurations which reduce wall slope via an increase in loading or through-flow velocity show a net loss relative to the base Block I flowpath. Consequentiy, the Block II (final aero) flowpath has remained essentially unchanged from the Block I status. However, the following modificarions were incorporated to address the specific problems identified during Block I testing:
o A higher aspect rativ, higher solidity version of the Stage 1 vane has been added, along with a modified transition duct, to accommodate the new vane design. Figure 5 shows a comparison of the Block I duct/vane with that of Block II. Note that the ${ }^{1}$ idity was increased by raising the airfoil count from 56 . , this also increases the airfoil-throat aspect ratio (he chordal aspert ratio was increased by redur the outer wall.

- An effort to improve flowpath overlaps resulted in the Block II five-stage flowsath shown in Figure 6. A comparison of typical inner-wall overlap geometry for Block II with that of Block I (inset, Figure 6) shows that the rotor platforms have been extended to lap under the stator inner bands. Note also that the flow near the outer wall is effectively shielded from the open honeycomb of the tip shrouds; this was not the case in Block I (see Figure 2). The poor performance of the Block I stages near the walls is partly attributable to the overlap geometry, which is more open relative to past General Electeric AEBG (Aircraft Engine Business Group) air turbine rig flowpaths.

OR'GMAI PACE IS
OF POOR QUALITY

Figure 5. Block 11 Stage 1 Stator and Transition Duct Compared

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6. LP Turbine Flow path Final for Block II.

- In an effort to increase blade hub solidity locally without a significant weight increase, rotor hub axial widths were retained at the Block I levels while the numbers of blades for each rotor were 1 ncreased to yield the desired solidity at the hub, and the axial widths from the pitch line to the tip were reduced to get solidities there back to Block I levels.

Figure 7 presents the results, including inner- and outer-wall Mach number distrioutions, from an axisummetric analysis of the final transition duct. Note that two additional lines have been added on the cuter wall in the vicinity of the vane leading edge to show stagnation and midchannel streamline Mach numbers as they approach the leading edge. Also included is a plot of a "separation parame er." This is an indicator of the sensitivity of a turbulent boundary layer (on the outer wall in this case) to separation in the presence of an adverse pessure gradient.

2.6 FINAL VECTOR DIAGRAMS

The gas path through-flow or vector diagram analysis was accomplished by using a calculation procedure that solves the full, threo-dimensional, radialequilibrium equation for axisymmetric flow accounting for (l) streamline slope and curvature, (2) the effects of radial-component blade force due to airfoil sweep and dihedral, and (3) airfoil blockage and radial gradient of flow properties. Caiculations were made with radial gradients of blading losses to simulate end-loss effects. The calculation model for the E3 LPT showing meridional streamlines and intrablade-rcj calculation stations is shown on Figure 8. Table II presents final block II vector diagram data. These data served as boundary conditions for the airfoil design analysis.

2.7 AIRFOIL DESIGN ANALYSIS

Airfoii aerodynamic design analysis was initiated using vector diagram data from the through-flow analysis, Table II, and preliminary solidities determined during design studies. A tabulation of blading aerodynamic geometry is presented in Table III. The design process was initiated by generating approximate airfoil shapes using a numerical procedure which applies a thickness distribution to a mean camber line as a function of flow angles and apnropriate input coefficients. These preliminary airfoil shapes were analyzed by a procedure that calculates the comoressible flow along the stream surfaces determined from the through-flow analysis which accounted for the variation in stream tube thi ikness.

The undesirablt features of the resultant surface-velocity distributions were corrected, and modified surface Mach number distributions were input to the analysis procedure which, in turn, made the necessary modifications to airfoil shapes in order to produce the desired velocity distribution. Final airfoil shapes and velocity distributions are shown in figures 9 through 18 for stieam surface sections at $10 \%, 50 \%$, and 90% from the inner wall. The

(a) Block II Duct Mach Number

3Lock : 0
Biock in 0

(b) Outer Wall Sevaration Parameter Comparison

(c) Block II Flowpath Streamlines

Figure 7. Axisymmetric Flow Analysis of Stage 1 Vare Including Outer wall Separation Sensitivities.

ORCMUS F:GE 13
OF FOOR Q: ATY

ORIGINAL PAGE IS OF POOR QUALITY
Table II. LPT Final! Block Il Vector Diagram Summary.

Table IIl. Tubine Blading Solidity and Aspect Ratio Tabulations.

Blade Row	S1	kl	52	R2	S3	R3	S4	H_{4}	(\%	ks
AW/ 1	1.55	1.33	1.44	1.26	1.47	1.24	1.46	1.23	1.48	1.31)
${ }^{1}$	0.606	1.094	0.924	1.1069	0.884	1.065	0.950	1.074	0.984	1.023
TE Blockage	0.043	0.070	0.058	0.070	0.055	0.065	0.954	0.072	0.045	0.041
AR, h_{1} / d_{0}	5.96	11.14	10.51	13.43	12.13	15.61	14.51	20.82	13.87	12.80
AK, h/AW	1.92	4.02	3.27	5.02	3.64	5.74	4.77	8.62	5.41	6.36

ORIGIN: OF POOR

[^0]```
c"-י.*
Crfoンequary
```



ORIGINAL FAG:
OF POOR QUAL


> CROM: $\because: 3$
> OF POOR C


ORIGINAL PAGE IS
OF POOR QUALITY


## OF FOOR QUAL:






Figure 14. Block II Stage 3 Blade Shapes and Stream Surface Velocity Distributions.

ORIGINAL PAGE IS
OF POOR QUALITY


$$
\begin{aligned}
& \text { cocrin } \\
& \text { of poun ( }
\end{aligned}
$$



ORIGiNAL Q
OF POON quality




Figure $1 /$ Block II Stage 5 Vane Shapes and Stream Surface Velocity Distributions.


## ORIGINAL PANS IS OF POOR QUALITY

data are represented by plots of local surface velocity norma\&ized by downstream exit velocity. The peak Mach number (Mp) is indicated on each velocity distribution. Airfoil coordinates for each of the sections in Figure 9 through 18 are presented in the Appendix.

### 2.8 BLOCK II AIR TURBINE TEST

The performance status of the Block II aerodynamic design wa assessed through scaled rig testing of the following configurations (giver with the approximate test dates):

- Two-=:age group (June 1981)
- Five-stage group (September 198i)

Results of the block II two-stage test are compared to the Block I twostage test results in Figure 19; group efficiency versus group loading is presented at design pressure ratio. Note that the redesign features incorporated into Block II have improved the efficiency at design loading by $0.75 \%$ Note further that the Block II airfoils have improved tolerance to negative incidence, as evidenced by the increasing efficiency imrcuement at the 10 . loadings. Design-point loading for the Block II two-stage group is $89.1 \%$.

The flow path for the Block II five-stage rig is shown in Figure 20. Results of the five-stage test are presented in Figure 21 as group efficiency versus group loading at design pressure ratio. Note that the turbine designpoint efficiency is $92.0 \%$. The following tabulation compares this result with a pretest estimate (based on extrapolation from Block I test results) mace for the 1980 Detail Design Review (DDR):


These are relative to program goals lat the Mach $0.6 / 10.67 \mathrm{~km}(35,000$ ft), max -climb condition] of $91.1 \%$ for the ICLS and $91.7 \%$ for the FPS.

The correction for edge blockage accounts for the fact that all Bock II rotor blades were received from the vendor with trailing edge diameters which were, on the average, $25 \%$ oversized relative to design intent.

The $\Delta n$ for purge air reflects the availability of extra power from the inner-cavity purge as it enters the LPT flowpath in the front stages and expands through downstream stages. This was not simulated in the rig.

The $\Delta n$ for Reynolds number is based on a Reynolds number excursion done on five-stage ria and verifies the $0.7 \%$ pretest prediction. This is the peralt for altitude operation.

The performance status of the $E^{3}$ LPT at the Mach $0.8 / 10.67 \mathrm{~km}(35,000$ ft ), max -climb design point is $91.4 \%$, exceeding the ICLS goal by $0.3 \%$.

Cifoos al


Figure 19. Eficiency Vs. Loading for Two-Stage I.PT

ORiginal pane is of POOR QUALITY


Figure 20 . Scaled test Vehicle, Five-Stage configuration
Crand ay
Or for


### 3.0 HEAT TRANSFER DESIGN

### 3.1 OBJECTIVE

To meet t'ie stringent requirements for high performance in the $E^{3}$ design, th. deve lopme't of a high-effiziency LPT is essential. An important factor in this developnent is limiting the amount of cooling air bled from the highpressure comp essor ( HPC ) so the overall cycle performance is not unduly penalized but re.sonable and acceptable temperatures are maintained for the LPT components. Insiial design effort was directed at defining the cooling airflow requirements to keep the rotor and casing below the temperature limit for Inconel 718. During the detailed analysis, each component was analyzed in an effort to assure that the proper rupture and low cycle fatigue (LCF) lives were obtained. Dther efforts were directed at the ACC and the Stage l nozzle transient temperatures for both rupture and LCF analyses. The seal-blockage flow requirements also had to be defined by first looking at the relative rotor/star or transient growih in order to define the maximum clearance and the potential rub problem.

The rotor and casing cooling airflows were defined by first establishing the limit temperatures and :ea'-blockage airflows required to cool the casing and purge the rotor of any hot sases, thereby preventing ingestion. In order tc ac!ieve this, thermal ransien analyses of both the rotor and stator were requ:red. Also, ACC requirements had to be inciuded in the analyses. The cooling air-delivery system, the impingement manifold, spent-impingement-air rejection system, and engine system performance payoff were alsc considered in the LPT cooling-design aralysis.

### 3.2 DESIGN CONDITIONS

In most commercial engine applications the greatest thrust requirements occur at takeoff power. The large amount of thrust at tak zoff is accomplished througn high flow and high temperatures in the cure engine. The high flow and temperature drive the LPT which in turn drives the fan to generate most of the thrust. It is this high flow rate and high temperature of the gases entering the LPT during takeoff power that cause most observed distress. That is why the heat-transfer design point was established as the hot-day, wax-power-takeoff cycle point.

The LPT heat transfer design for this engine study has been established by the overall engine cycle parameters. The most severe temperature and pressure conditions occur at maximum-power takeoff.

Table $1^{\prime}$ and Figure 22 present the base FPS engine LPi design parameters. The design cycle condition was chosen as $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ day, maximum-power takeoff, sea level, it tach 0.3. This represents the highest gas and coola. ${ }^{\text {a }}$ temperature condition. In order to prevent the LPT from being growta-limited.

## ORICHNAL PAGE IS OF POOR QUELITY


a design was required which ensured that the turbine structure could accommodate higher operating temperatures. This was accomplished by designing the rotor and stator casing for the growth-cycle environment. However, the flowpath components were designed to meet the base engine design objectives. The LPT inlet cycle-average design gas temperature, $T_{4} .2$, for the base engine is $859^{\circ} \mathrm{C}\left(1578^{\circ} \mathrm{F}\right)$, to which $61^{\circ} \mathrm{C}\left(110^{\circ} \mathrm{F}\right)$ of margin is added. The $\mathrm{T}_{4} .2$ margin includes the effects of deterioration, engine-to-engine variation, transient overshoot, open clearances at takeoff, and control-system tolerance. Including margins, redline average $L^{\boldsymbol{T}}$ inlet temperiture is $920^{\circ} \mathrm{C}\left(1688^{\circ} \mathrm{F}\right)$ for the base engine and $966^{\circ} \mathrm{C}\left(1771^{\circ}\right.$ F) for the grow'a engine.

LPT design parameters for the FPS base engine and a growth-engine design are also presented in Table IV for comparison with the ICLS cycle data. The tabulation indicates that, for the assumed component efficiencies, the ICLS engine represents a deteriorated FPS base engine. Thus, the ICLS data will yield a good comparison with the FPS analysis (which was also done for a deteriorated engine).

The maximum peak temperature is defined as the higuest local temperature that might be encountered on a stationary component. Based on CF6 engine experience, the maximum predicted peak radial gas temperature profile at each LPT vane stage inlet at hot-day takeoff power for a deteriorated base engine is presented in Figure 23. The maximum peak gas-temperature radial profile at the inlat to the LPT is defined through analysis and utilization of commercial engine experience. The temperature drop through each stage in the turbine is determined from the normalized work extraction as defined by the detailed aerodynamic design at each stage.

Basad on CFS experience, the radial temperature distribution that the LPT rotor blade stages of the base engine will be subjected to during hot-day takeoff is presented in Figure 24 . These radial temperature profiles are also defined with the use of comercial engine data and the zerodynamic vector diagram at each stage. Since there is no cooling in any of the five rotor stages, and since the relative blade Mach numbers are low, the blade metal temperature is assumed to be identical to the relative gas temperature. Radial conduction within the blades is also neglected.

In order to define the LCF life of the various flowpath components, it is necessary to evaluate the typical thermal transient from idle to maximum power. Ia order to accomplish this, the gas-temperature profile at idle power was defined. The maximum and average temperature profiles at the inlet and exit of the LPT at the idle power setting are presented in Figure 25 . Because there is very little work extraction in the LPT at idle conditions, there is virtually no temperature drop of the gases. The profile is also peaked at the 75\% span, as could be expected, because the combustor is lit on the pilot dome only.

### 3.3 COOLING AIR SUPPLY SYSTEM

The airflow that is used for cooling the LPT internal structure, Stage 1 nozzle, and rotor is extracted at the fifth stage of the compressor. Mechanical restrictions, such as the variable compressor vanes, prevented moving the

## ORIGINAL PAGE is <br> OF POOR GUALITY

- $\begin{aligned} & M=0.3,-18^{\circ} \mathrm{C},\left(65^{\circ} \mathrm{F}\right) \text { Day, } \\ & \mathrm{SiIO}\end{aligned}$
- Cucle
$\mathrm{I}_{41}=1343^{\circ} \mathrm{C},\left(2450^{\circ} \mathrm{F}\right)$
$\mathrm{I}_{\mathrm{H}_{2}}=859^{\circ} \mathrm{C},\left(1578^{\circ} \mathrm{F}\right)$
$\mathrm{II}_{42}$ Margin $=61^{\circ} \mathrm{C},\left(110^{\circ} \mathrm{F}\right)$
(Based on CF6 LPT Inlet Profile Experience)


Figure 23. LPT Base Engine Stator Gas Temperature Profile.

- $\begin{aligned} & \mathrm{M}=0.3,+17^{\circ} \mathrm{C},\left(63^{\circ} \mathrm{F}\right) \text { Day, } \\ & \mathrm{SLTO}\end{aligned}$
- Cycle

$$
\begin{aligned}
& \mathrm{T}_{41}=1343^{\circ} \mathrm{C},\left(2450^{\circ} \mathrm{F}\right) \\
& \mathrm{T}_{42}=859^{\circ} \mathrm{C},\left(1578^{\circ} \mathrm{F}\right)
\end{aligned}
$$

- $\hat{\Delta T}_{42} \operatorname{Margin}=61^{\circ} \mathrm{C},\left(110^{\circ} \mathrm{F}\right)$
(Based on Cr6 LPT Inlet Profile Experience)


Figure 24. LPT Base Engine Blade Relative Gas Temperature Profile.


```
OF foCR Qunity
```



Figure 25. LPT Gas Temperature Profiles $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ Day, SteadyState Idle Without Bleed.
compressor bleed location to the fourth stage of the compressor even though it would have been adequate. The extra pressure associated with Stage 5 bleed enabled this air to be used in the compressor $A C C$ cooling circuit. After the fifth-stage compressor bleed air has been routed through the compressor ACC system and into the low pressure casing manifold, the pressure is $3 \%$ above the gas stream total pressure at the IPT inlet. This pressure is high enough to cool and purge the rotor but is not so high as to cause excessive leakage and degrade engine performance.

During an engine start cycle, he compressor pumping at the fifth stage is nct adequate to yield a satisfact ry cocling/purge-supply pressure for the LPT. For this reason, the compressor exit air is used to augment the LPT cooling/purge air. A check valve is used in the compressor discharge circuit so that backflow into the fifth-stage compressor bleed system will not occur. This compressor discharge bleed augmentation system will be activated at any subidle power setting.

The LPT casing is cooled with fan air extracted from the fan bypass cuct. The air enters a pair of scoops, one on each side of the pylon. After entering the scoops, the air is diffused before entering a $270^{\circ}$ plenum surrounding the LPT. From this plenum, the fan air enters an array of tubes and then impinges on the outside of the LPT casing in order to cool the structure. The spent impingement air discharges through the rear frame struts and out the center vent. Air leaving the center vent mixes with the primary-nozzle gases and yields a small amount of thrust.

The air temperature rise resulting from cooling the LPT casing is adequate to offset the attendant pressure loss; this eliminates any significant loss in thrist when the cooling air reenters the main gas stream.

The LPT ACC system is also combined with the primary casing cooling system. This is done by incorporating a cooling-flowmodulation valve between the fanduct $s$ coop and the $270^{\circ}$ manifold that surrounds the LPT.

### 3.4 DESIGN MISSION

The first step in the detailed thermal analysis of the LPT was to define the flight mission. The mission that was analyzed consisted of a 24 -minute takeoff climb cycle and a 24 -minute descent cycle. The takeoff/climb cycle presented in Figure 26 incorporated a 2 -minute takeoff and a 22 -minute climb. During climb, the aircraft is gradually accelerating to the maximum speed of Mach $=0.8$ at $9.1 \mathrm{~km}(30,000 \mathrm{ft})$.

Because the engine does not reach the high ram Mach numbers until high altitude, the LPT does not achieve maximum rpm until $10.67 \mathrm{~km}(35,000 \mathrm{ft})$ at the maximum-climb power conditions. Figure 27 presents the LPT rpm excursions for a typical fiight cycle. The takeoff mission starts at 1000 seconds and continues until about 2500 seconds at which point the aircraft ras achieved a maximum-cruise condition. The ianding mission starts at 3000 secons and proceeds through flight idle, approach, touchdown, thrust reverse, and back to ground idle at the $4600-s e r o n d$ point.




Wdy 'preds lo70y LdT

### 3.5 COOLING FLOW DEFINITION

The required cooling air is presented in Figure 22 for the oase engine and 1 n Figure 28 for the growth engine. The major portion of the rotor purge air is defined by the estimates of the seal clearances and the required flow to block the seals and prevent the flowpain gases from being injected into the rotor cavity. To accomplish this, $1.40 \%$ of the fifth-stage compressor bleed air is used to purge the outer and inner bands of the Stage 1 nozzle, cnol the vane approximately $56^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$, block the HPT rotor balance seal, and purge the LPT rotor cavity. A small portion of the rotor purge air leaks into the sump purge cavity and eventually exits through the center vent of the primary exhaust nozzle. But the majority of the flow returns to the id fl fowath; work is zecovered as the purge air expands througn the remain_ng stages and it through the exhaust nozzle. The flow through the Stages 1,2 , and 3 rotor spacer arm flanges is defined by the required spacer arm temperatures.

The aft rotor cavity is purged with LPT exhaust gas. This is a significant change from ihe preliminary design where fifth-stage compressor bleed air was used to purge the cavity. The prime reason for purging the cavity with warm air was to improve engine performance and reduce thermal gradients in the rear frame hub and in the rotor disks of stages 4 and 5 . This system allowed a reduction in ifth-stage bleed air by $0.1 \% \mathrm{~W}_{2} 5$ atiz provided better temperature matches in the frame hub and between the bores and rims of the disks.

The outer casing will be kept under the design objective metal temperature of $677^{\circ} \mathrm{C}\left(1250^{\circ} \mathrm{F}\right)$ by impingement cooling with fan air. The ACC and the casing impingement-cooling scheme are combined into one system. The cooling of the casing requizes $0.1 \% W_{25}$; this will be increased to $0.3 \%$ for maximum cooling in order to achieve the greatest clearance reduction.

To incorporate growth capability in the LrT rotor, it was necessary to increase the rotor cavity flows so that the disk spacer arms were kept within temperature limits. For the growth engine, cooling for the LPT was increased from 1.4\% to $1.57 \%$ of the core compressor inlet alrflow.

The LPT gas s'ream and cavity pressures at the $30^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$ ambient temperature, maximum-takeoff, base-engine cycle point are presented in Figure 29. These cavity pressures were used to define the seal-blockage flow rates and various sink pressures for the cooling air.

The prime source of LPT cooling air is fifth-siage compressor b'eed delivered to the turbine through six pipes equall spaced around the Stage 1 LPT nozzle cooling-supply manifold. This manifold, which is integral with the casing and outer transition duct hanger, distributes the cooling air uniformly around the inside of the casing. Next, cooling air is fed into the 72 nozzle vanes and across the fiowpath to the inner nozzle support stucture shown in Figure 30 . The cooling air warms to about $72^{\circ} \mathrm{C}\left(130^{\circ} \mathrm{F}\right)$ while flowing through the vanes. The rotor cavity need not be cool. d significantly below $393^{\circ} \mathrm{C}\left(1100^{\circ} \mathrm{F}\right)$, and this will happen when fifth-stage compressor bleed is used as coolant. Most nozzle cow. ng is done near the leading edge where the


CRGINAL PAGE IS
OF POOR QUALITY


Fipure ? ${ }^{\prime}$. fifl Rase fingine Max Pressur....

ORIGINAL PAGE IS
CF PUOR QJALITY


highest stresses occur. Once the cooling air reaches the nozzle hub it is delivered into the wheel-space supply plenum by 72 spoolies. The total cooling air passing through the nozzle is $1.2 \% W_{2} 5$, of which $0.14 \%$ is used to help purge the nozzle inner-flowpath structure. Of the remaining $1.06 \%$ that enters the $360^{\circ}$ wheel-space supply plerum, $0.56 \%$ is supplied to the forward wheel-space cavity, and $0.5 \%$ is supplied to the aft wheel-space cavity. The plenum supply pressure is 545 kPa abs ( 79 psia ) while the forward wheel space cavity pressure is 488 kPa abs ( $70.8 \mathrm{ps} ; 4$ ) ds shown in Figure 31 . This yields a 1.08 pressure ratio across the wheel-space injertion holes. The holes are angled $60^{\circ}$ from the circumferertial direction atd yield a tangential velocity of $149 \mathrm{~m} / \mathrm{sec}(488 \mathrm{ft} / \mathrm{sec}$ ). This tangencial velocity reduces the amount of boundary layer pumping that the HPT rotor must do. The :heel-space cavity pumping analysis indicates that the velocity of the arr sirould be about $50 \%$ of wheel speed. Since the aft cavity is at a pressure of 410 kPa abs (, 9.5 psia), the cooling-air injection pressure ratio is higher, and a higher tangential velocity is achievable. The LPT rotor is rotating at less than $30 \%$ of the HPT rotor speed; therefore, the tangential velocity leaving the injection holes is better than twice the LPT rotor wheel speed. With this system, a substantial amount of work will be obtained from the injected air as it is pumped up on the rotor disks.

Of the $0.56 \% W_{25}$ that is injected into the forward wheel-space cavity, $0.4 \%$ leaks back through the interturbine seal and into the LPT rocor cavity. Extensive seal-clearance studies have been conducted on the interturbine seal to define the proper quantity of blockage air. Over the engine operating range, it is eyrected that the seal clearance will vary between 0.025 cm ( 10 toils) and $0.068 \mathrm{~cm}(27 \mathrm{mils})$ as shown in Figure 32 . The tightest clearance occurs during cold-start takeoff transients with a new seal; the most open clearance occurs at nominal cruise power with a deteriorated seal. The seal will flow $0.67 \% W_{25}$ when the cleatance has opened up to 0.09 cm ( 36 mils ). This could caly occur as part of an enoine failure, and only then would hot flowpath gases be injected into tine HDT aft rotor cavity. In conclusion, the seal blockage air is satisfactory from an engine safety standpoint and yields the best overall performance. During the ICLS test, important information on the windage temperature rise and vortex pressure gradients will be obtained i. the wheel-space cavities. These data will be very beneficial in developing the seal design for the FPS.

The LPT rotor cooling/putge air supply consists of interturbine seal leakage dir and air that is injected tangentially into the rotor cavity from the wheel-space-cooling-suprly plenum. The total cooling-air supply to the rotor savity will be $0.91 \% W_{25}$ for the base engine and $1.08 \%$ for the growth engine. The extra cooling flow of $0.17 \% \mathrm{~W}_{25}$ for the growth engine is required in oraer to dilite the $36^{\circ} \mathrm{C}\left(64^{\circ} \mathrm{F}\right)$ hotter gas around che zotor spacer arms. The disk spacer arms are exposed to higher gas temperatures; thus, more w.eelspace purge air is required to dilute the gases and keep the metal within acceptable limits. The wheel-space purge air requirements were defined by evaluating the allowable gas temperatures in a detailed thermal mode!. Then dilution airflow requirements were defined in order to bring the gas temperatures down to the allowable level. This cooling scheme will also allow the

$\begin{array}{ll} & \text { ORIGIMAL PANE !s } \\ \ldots & \text { OF FOOR QUALITY }\end{array}$



cool dilution air to circulate through the taps between dovetails and disk posts and keep those components within limits. The wheel-space purge air is metered through slots in the upstream spacer ara bolt flange. This will yield a consistently small flow area needed to meter the flow. The purge airflows (Figure 22) are 0.16, 0.10, and $0.06 \% W_{25}$ for the first, second, and third wheel-space cavities, respectively. An additional $0.03 \%$ is supplied through the main torque-bolt flange. This helps to define the flow under the Stage 3 disk and the through-flow in the cavity bounded by the Stage 3 disk and the main torque cone. Of the $0.91 \% W_{25}$ that dumps into the rotor cavity, $0.16 \%$ leaves through the sump bypass seal. This air then flows around the aft sump and dumps into the centerbody at the back of the engine. From there it flows out through the primary-nozzle center vents, recovering a portion of the thrust. An extensive analysis has been conducted in an effort to keep the sump by pass leakage seal as small in diameter as possible to keep the clearance to a minimum.

The remaining rotor-cooling flow ( $0.4 \% \mathrm{~W}_{25}$ ) is supplied to the seal ahead of the Stage 1 rotor. This flow is more than adequate to cool and purge the Stage 1 forward wheel-space cavity. The quantity of flow must be kept at a high level to compensate for significant variations in seal clearance during normal operation. The flow tolerance of the interturbine seal is 0.16 to $0.41 \%$ $W_{25}$, and the flow colerance of the sump bypass seal is 0.05 to $0.20 \% \mathrm{~W}_{2} 5$. The wheel-space-metering-slot tolerance could shift the flow from 0.25 to $0.45 \%$ $W_{25}$. When the worst tolerance stackup clearance arrangement is evaluated, there will still be a small quantity of wheel-space air flowing through the Stage 1 rotor forward seal.

As mentioned previously, no cooling air is used to purge the aft rotor cavity. The aft cavity, Rotors 4 and 5 , is now purged with LPT exhaust gas at the hub of the fifth-stage rotor exit; $0.147 \% W_{25}$ of this gas is allowed to circulate down around the two disks in the aft cavity before dumping into the aft sump bypass cavity. Not only does this reduce the temperature gradients in the rear frame hub and between the bore and rim of the Stages 4 and 5 disks during transients, it also improves engine performance. The fifth-stage compressor bleed air used to purge this cavity is now allowed to flow through the complete engine before being extracted at the LPT rotor exit. In transient operations, the hot gas is used to heat the forward, inner-hub structure of the turbine rear frame more quickly during engire accelerations; thus, thermally induced stresses in the frawe struts are mitigated. The maximum gas temperature at the hub of the five-stage rotor is $599^{\circ} \mathrm{C}\left(11: 0^{\circ} \mathrm{F}\right)$ for a deteriorated FPS engine. This is not a severely high temperature, and the gas can be used for disk temperature control. Between idle power and maximuan takeoff power, this gas temperature changes by only 111 to $167^{\circ} \mathrm{C}$ ( 200 to $300^{\circ} \mathrm{F}$ ) ; therefore, thermal gradients at high rpm are moderate.

### 3.6 ROTOR TEMPERATURE DISTRIBUTION

A detailed heat-transfer analysis of the total rotor structure has been completed. This analysis included both the FPS and the growth engine. The
transient enaiysis considered a complete mission from steady-state ground idle through takeoff and climb to maximum cruise. Included in the transient was a throttle chop 1 rom maximum at $6.09 \mathrm{~km}(20,000 \mathrm{ft})$ climb to flight idle. After holding to flight idle for 320 seconds the engine was taken back to maximum-climb power. This maximum-climb, hot-rotor reburst was analyzed to determine the relative clearance between the rotor and casing.

The rotor gas temperatures at idle and maximum power were defined by using commercial engine data. At idle power the combustor is burning on the pilot dome only; this generates a spiked profile that persists even into the LPT. The spiked profile does mix out as the gases flow through the five stages of the LPT. But since there is not much work extraction in the LPT at idle power, temperature drop through the five stages is insignificant. The profile effect combined with the low-work-extraction effect causes the hub temperature to increase as the gas flows through the turbine. This is typified by the idle profile at the LPT inlet and exit as presented in Figure 25.

A detailed thermal model of the rotor structure was constructed. It contained 532 nodes, as shown in Figure 33, and extended from the Stage 1 disk forward seal back through the fifth-stage rotor. A generous portion of the torque cone was included so that boundary effects could be evaluated. The heat-transfer model also included 192 separate time-dependent boundary conditions, 173 metal-to-metal contact resistances, and 4 separate temperature-defendent material property tables. Rotor temperatures throughout the mission were defined for both the base and the growth engines. Figure 34 shows rotor temperatures at various locations for the growth engine 120 seconds into a hot-day takenff. The spacer arm reached a temperature of $616^{\circ} \mathrm{C}\left(1141^{\circ} \mathrm{F}\right)$, well within the temperature limits of the Inco 718 material. But the seal reached a temperature of $668^{\circ} \mathrm{C}\left(1235^{\circ} \mathrm{F}\right)$; this made it the temperature-limiting item in the rot or assembly. However, the seal temperature was still within the design limit of $677^{\circ} \mathrm{C}\left(1250^{\circ} \mathrm{F}\right)$.

### 3.7 CASING COOLING SYSTEM

The LPT is cooled with fan air impinging on the outside of the casing from an array of holes located in a manifold surrounding the complete casing. Commercial experience has shown this approach to be reliable and the least costly from a performance standpoint since LPT fan air is used. Thrust is also recovered from the fan air as it is ejected out the primary-nozzle center vent. As shown in Figure 35, the impingement holes are located over the vane/ seal hangers. These areas are the hottest part of the casing and need the most cooling. The objective is to keep the maximum Inco 718 casing temperature be low $677^{\circ} \mathrm{C}\left(1250^{\circ} \mathrm{F}\right)$ and meet the life objectives at the same time. The detailed transient temperature analysis indicates that this is feasible when the contact area between vanes and casing is kept to a minimum. It was also necessary to minimize the length of the hangers and to increase the conduction area between the hanger and casing. Blankets of low-conductivity material were placed between the flowpath components and the rasing. This insulazion helps reduce the radiation and gas circulation betwee? the hot


Figure 33. E ${ }^{3}$ LPT Rotor Structure Heat Transfer Model.

croch arge
cr poca cinuir

Figure $35 . \mathrm{E}^{3}$ LPT Casing Cooling System.
flowpath and the casing. Each insulation blanket is covered with 0.005 to 0.008 cm ( 2 to 3 mil ) thick Inco 600 metal foil to help maintain the integrity of the insulation material between overhauls. Where the foil might be exposed to hot, inigh-velocity flowpath gases, the foil thickness has been increased to 0.015 cm ( 6 mils ).

Casing cooling is accomplished by means of an impingement manifold extending around the complete LPT casing. The coolant is collected by a scoop located in the fan bypass duct. The cooling air is then fed through a circumferential duct to the LPT casing impingement manifold. The impingement manifold consists of four $90^{\circ}$ sectors with one axial distribution plenum per section as shown in Figure 36 ; $1.27-\mathrm{cm}$ ( $0.5-i n$.) diameter tubes distribute the cooling air circumferentially around the casing. The cooling air leaves the tubes through $0.064-\mathrm{cm}(25-\mathrm{mil})$ diamezer impingement holes evenly distributed in each circumferential tube. The $0.064-\mathrm{cm}$ ( $25-\mathrm{mil}$ ) impingement hole is the minimum size that extensive commercial engine experience has shown to have no plugging problems. The hole spacing in each ring has been adjusted to give the desired cooling for each turbine stage. The spacing parameter (distance : diameter) varies from 9 to 16 , and the total number of holes yields a total impingement flow area of $13.97 \mathrm{~cm}^{2}$ (2.165 $\mathrm{in}^{2}$ ). This impingement flow area is the minimum flow area in the cooiing-supply system. All other pipes and ducts have flow areas at least three times larger than the impingement flow area.

In order to complete the detailed heat-transfer analysis of the casing, a thermal model was consiructed. Figure 37 illustrates the detailed thermal model; it consists of 534 nodes, 5 different materials, 121 metal-to-meral contact resistances, and 56 time-dependent boundary conditions of temperature and heat-transfer coefficients. The thermal model extended from ahead of the Stage 1 LPT nozzle flange to beyond the Stage 5 shroud aft-sunnort flange.

The high heat transfer coefficients associated with the LPT gas flow path and the low heat-transfer coefficients associated with the casing external impingement cooling system were input into the detailed thermal model. Radiation from the casing was also factored into the detailed thermal model. The gas temperatures along the casing flowpath, with only the combustor pilot stage burning, were factored into the idle-temperature definition. A complete flight transient analysis was conducted. The most severe temperature distribution occurs at the end of the maximum takeoff segment of the flight mission and last for 2 minutes. After this point, the engine is throttled back to maximum-climb power setting, and the LPT inlet temperature drops by $56^{\circ} \mathrm{C}$ ( $100^{\circ} \mathrm{F}$ ).

Since the LPT ACC is combined with the casing cooling system, two analyses were conducted on the casing. The two analyses consisted of the casing cooling extremes: (1) minimum cooling to keep the casing temperatures within limits and (2) maximum cooling to define the closure capability of the cooling system and worst temperacure gradients. The temperature distribution in the casing at 2 minutes into the takeoff transient is presented in Figure 38 for the minnim cocling of $0.08 \% \mathrm{~W}_{25}$. The temperature distribution at the end of
orcmal fage is
OF PGOR Quality

ORt:min PEGE
of PJOR QuALIT


Figure 37. $\mathrm{E}^{3}$ LPT Casing Detailed Thermal Transient Model.

takeoff with the maximum cooling of $0.3 \%$ is presented in Figure 39. The analyses indicated that $0.08 \% W_{25}$ casing cooling at the second-stage nozzle hangers may not be enough. With the maximum cooling of $0.4 \% \mathrm{~W}_{2} 5$, the stage 2 nozzle hangers are well below the $677^{\circ} \mathrm{C}\left(1250^{\circ} \mathrm{F}\right.$ ) temperature. These areas will be watched closely in the ICLS test in order to find out $i$ f additional flow will be required to keep the casing hanger temperatures at an acceptable level.

### 3.8 STAGE 1 NOZZLE

Extensive analysis on the heat transfer design of the Stage nozzle has been completed. This analysis includes the outer casing and flowpath structure, the Stage 1 vane, and the inner flowpath structure (see figure 30 ). Because of the critical nature of the nozzle support structure, the HPT aft wheel-space purge, the interturbine seal blockage, and the LPT rotor blockage, a detailed temperature analysis has been made of each of these areas.

The analysis of the outer flowpath structure included the casing, the nozzle support ring, the transition flowpath, and the HPT Stage 2 aft shroudsupport ring. Several changes were made in the design of the nozzle support structure during the detail design phase. Most of these changes were directed toward establishing an effective, reliable means of supplying rotor cooling ai: while keeping air leakage to minimum and meeting the hardware life requirements. The final design meets these objectives. A detailed trans.ent heattransfer analysis of the final design has been completed. The thermal model (Figure 40) contains 375 nodes of 4 different materials, 37 contact resistances, and 27 time-dependent boundary conditions of temperature and heattransfe: cjefficients. Also, radiation from the casing was fac-ored into the model. The complete flight mission was analyzed thermally. The analysis included the effects of ACC cooling on the HPT/LPT casing. The point in the engine mission exhibiting the most severe thermal gradients occurred 30 seconds after the 10 -second accel from ground idle to full-power takeoff on hot day.

Cne of the concerns with the design was the rabbet seal between the nozzle support ring and the casing. It is imperative that the rotor cooling supply system seal leakage be kept to a minimum. Extensive investigative analysis was dnne to assure that the seal stayed tight under all transient conditions. The critical takeoff portion of the mission presented no problems. The internal nozzle support structure quickly heated while the casing was somewhat slower to respond. The thermal coefficient of expansion is comparable for both rings and results in a tight fit since the fast-responding inner ring grows outward against the slowresponding casing. Some leakage occurs during the descent transient from maximum cruise to flight idle where the seal has a tendency to open up. The fast-responding inner ring cools faster than the casing, and eventually the inside ring is cooler than the casing. The worse condition occurs at about 450 seconds after the throttle chop from maximum cruise to flight idle. In order to overcome this leak problem, a $360^{\circ}$ heat shield was placed over the rabbet seal ring. Because the heat comes from the rotor purge air, the heat shield reduces the effective heat transfer co?fficient, thus slowing the rate of response. The shield eliminates the tempera-ture-gradient reversal during the desceric transient. The detailed temperature 58

Figure 39. $E^{3}$ i.pr Casting Transient Temperature Distribution.

ORIGYNAL PAGE 'S of POOR QUALITY

distribution was defined and mechanical loads were evaluated at the 450 -second point into the descent transient in an effort to evaluate the seal gap. The temperature distribution at the critical time is given in Figure 41. Although the seal ring is $12^{\circ} \mathrm{C}\left(22^{\circ} \mathrm{F}\right)$ warmer than the adjacent casing, the seal will open to 0.013 cm ( 5 mils ). This results in a $0.22 \% \mathrm{~W}_{25}$ leak through the gap. Inasmuch as this occurs during the filight descent, no service problems will result, but efforts have continued in order to further reduce the gap. The prime thermal mismatch is caused by the other sections of the $360^{\circ}$ plenum cooling, by as much as $83^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$, faster than the casing. The biggest problem was caused by the cooling air impinging on the $360^{\circ}$ manifold at six locations around the casing where the LPT cooling air entered the through-pipes in the casing. To further improve the clearance between the casing and seal ring, a heat/splash shield was placed under each of the six pipes entering the casing. The splash shield is $15.2 \mathrm{~cm}(6 \mathrm{in}$.) wide in the circumferential direction and fastened to the nozzle support ring by two bolts. The improvement produced by che heat/splash shield will cut seal leakage virtually to zero. The end result is a plenum that has a good thermal match with the casing to keep the seal leakage to a minimum over the completemission. The interference fit between the seal ring and the casing during accel will also be reduced. This will diminish the possibility of wear due to transient axial-growth variation when there is a large interference fit at the seal. In addition, the Stage 1 vane was analyzed because it is the prime load-carrying member for the inner flowpath structure and the flowpath for the rotor cooling air. From previous engine experience, the highest stress pcint is the vane leading edge (LE). Early in the detail design, the preliminary heat-transfer calculations indicated that it was reasonable to reduce the LE temperature $28^{\circ}$ $C\left(50^{\circ} \mathrm{F}\right)$ below gas stream. Since the gas-stream temperature at the $90 \%$ vane span was $949^{\circ} \mathrm{C}\left(1740^{\circ} \mathrm{F}\right)$ for a hot streak on a deteriorated engine, the LE had to be cooled below $921^{\circ} \mathrm{C}\left(1690^{\circ} \mathrm{F}\right)$. At the same time, the pressure drop required to maintain sufficient cooling flow through the nozzle had to be kept to a minimum. Temperature reduction and pressure-loss objectives were achieved by adding two ribs in the vane. The ribs were slanted so that the flow was restricted in the forward cavity at the outer band; the flow was diffused by tilting the rib aft and gradually increasing the flow area at the hub. This resulted in LE cavity with the minimum flow area at $90 \%$ span and maximum flow area at the hub. The flow area distribution in the two aft cavities were reversed from the LE cavity. The maximum flow area was at the vane $90 \%$ span, and the minimum flow area was at the hub. This design approach resulted in a high-velocity cooling flow at the vane outer flow path LE cavity and a high heat-transfer coefficient. Turbulence promoters were also added to the inside of the LE radial cavity as a means of further enhancing the coolant heat transfer.

A detailed thermal model was set up to assess the temperature distribution in the vane at the LE and in the rest of the vane, including the trailing edge. The gas-side heat transfer was defined by using the design velocity distribution and heat-transfer design practice for this type of airfoil with no film holes and low Reynolds number. Local metal and steady-state temperatures at maximum takeoff are presented in Figure 42 . The maximum LE temperature was reduced by more than $28^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ below gas stream to $918^{\circ} \mathrm{C}$ ( $1684^{\circ}$ F). Tike bulk metai temperature dropped to $871^{\circ} \mathrm{C}\left(1599^{\circ} \mathrm{F}\right)$; this kept the

- 450 seconds into Descent

Figure 41. IIPT Stage I Vanc/Transition Duct/Support THT Temperatures


maximum LE-to-bulk-temperature difference to $47^{\circ} \mathrm{C}\left(85^{\circ} \mathrm{F}\right)$. Due to the low cooling at the trailing edge, that section of the airfoil will be effectively the same as the gas temperature. Even with the worst possible temperature profile, at the 60 to $70 \%$ span, the gas temperature will not get much above $982^{\circ} \mathrm{C}\left(1800^{\circ} \mathrm{F}\right)$ and therefore will not cause any significant life problem with the Rene 125 material in the FPS nozzles or Rene 77 in the ICLS nozzles.

Because of the critical nature of the load-carrying capability of the Stage 1 vane LE, investigation was extended to the fillet region of the vane and outer band. The vane wall thickness was kept the same as the maximum thickness at the $90 \%$ span. But, because the curvature of the LE was greater, the gas-side heat transfer was reduced, and the area ratio (Agas/Acoolant) went down. Although the coolant heat-transfer coefficients went down due to the reduced flow velocity, net cooling was improved because the cooling surface area increase had the dominating effect. This resulted in a lower metal temperature at the LE.

The next item in the rotor cooling-air-supply system is the inner nozzle support structure and the inner HPT/LPT transition-duct flowpath and rotor cavity air-supply plenum. Of the air that is supplied through the vanes, $1.06 \%$ ie fed through the spoolies into the rotor supply plenum, and $0.14 \%$ is used for structure purge and spoolie leakage in the inner nozzle cavity, as shown in Figures 30 and 31. The purge air will help prevent any hot-gas leakage from circulating into the cavities around the nozzle inner flowpath cavity. This will help the nozzle aerodynamic performance by keeping the high-momentum gases in the flowpath and will improve the hardware life by preventing high thermal stresses associated with high temperature gradients around the structure delivering the rotor cooling air.

In order to define the temperature distribution in the nozzle inner flowpath structure, a detailed thermal model was constructed. This model (figure 43) included the $10 \%$ vane span, the transition structure, the vane and seal support structure, and the rot or air-supply plenum. The thermal model contained 238 nodes of 4 materials and 32 contact resistances. There were 25 different time-dependent boundary conditions of temperature and heat-transfer coefficients included in the model. The most severe temperatures occurred 36 seconds after takeof from ground idle power. Selected temperatures at this particular time are presented in Figure 44. A transient analysis was carried out from takeoff chrough cruise in an effort to define the interturbine seal growth for clearance definition in order to assure proper rotor cavity purge at all cycle conditions.

### 3.9 ACTIVE CLEARANCE CONTROL

In the design of a high-performance engine like the $E^{3}$, component efficiencies must be maintained at a high level. Each component was examined to define which factors contributed to potential deterioration of engine performance. It was found that blade tip clearances had a significant impact on compressor and HPT/LPT performance. No matter how close the clearances are

Figure 43. Stage 1 Nozzle Hub Structure Detailed Thermal Transient Model.


Figure 44. LPT Stage 1 Vane Inner Seal Temperatures at 30 Seconds into HDTO.
set at engine assembly, they cannot be kept to a minimum at all engine operating conditions without an independant means of control. Various factors contribute to icreased blade tip clearance, thereby reducing component/engine performance. In the LPT, the items that contribute to tip clearance deterioration are:

1. Transient Thermal/Mechanical Growth - Mectanical growth of the rotor structure and mechanical-plus-thermal growth of the airfoils occur within 10 to 20 seconds after start of a typical accel from ground idle to maximum-power takeoff. Thermal growth of the casing is significantly slower. Such growth will cause the blade tip clearance to ransiently close, possibly causing a tip rub. In the LPT the stationary shrouds are constructed of metal honeycomb which can be rubbed out very easily by the blade tip-seal teeth. However, as the casing heats up, it moves rapidly out and away from the rotor and leaves a gap between the stationary shroud and the blade seal teeth.
2. Engine Bending - Engine bending occurs because thrust reaction must be carried out of the engine to the airframe through the engine mounts. Thrust at sea level static, maximum-power takeoff is six times higher than cruise thrust. The high takeoff thrust reaction causes the casing to distort and go out of round. Sections of the stationary shrouds will rub while other sections will have larger than normal clearance and will not rub. When the thrust loads are reduced, the casing returns to a normal, round configuation. The sections of the shrouds that were subjected to a rub now have a larger clearance between the honeycomb seal and the tlade seal teeth. Flight maneuver loads can also cause a rub. Because of the mass and inertia of the rotor, a rub can occur when a sudden flight maneuver is transmittea to the rotor through the roller and thrust bearings. There will be bending in the rotor structure between bearings; this will result in a rub between the blades and stationary shrouds. The magnitude and iocation of the rub will depend on the severity and direction of the manewer. Once the rub has occurred and the flight maneuver ceases, the rotor will return to the noral position relative to the casing, and locally the clearances will be larger. Larger clearances will also be available during takeoff and climb, when the maximum distortions are expected.
3. Rotor and Stator Vibrations - The rotor will be subjected to various levels of vibration deperding on the natural frequencies and excitations that might exist in the engine. The vibration will increase when the frequency of the stimulus approaches the natural frequency of the rotor of a component in the rotor structure. Similarly, the casing or stationary components also can vibrate and can enhance the possibility of a blade rub.
If the performarce of an engine is to be improved by reducing the LPT blade tip clearance, the abovementioned distortions must be reduced, or the configuration mus: be designed to accommodate them. Both methods of improvement are being incorporated in the $E^{3}$. Distortions are being reduced by
evaluating better methods of transmitting engine loads. Vibrations are being kept to a minimum through the judicious location of the bearings designed to transmit loads with a minimum of structural distortion. At cruise, once the distortion loads and vibration have diminished, the clearances are closed down by the ACC system.

ACC in the $E^{3}$ LPT is accomplished by shrinking the casing that supports the stationary seals. During steady-state cruise conditions, the casing skrinkage is accomplished by cooling che metal - taking advantage of the high coefficient of thermal expansion of Inco 718. By cooling the casing $167^{\circ} \mathrm{C}$ $\left(300^{\circ} \mathrm{F}\right)$ it is quite possible to reduce the casing diameter by 0.304 cm ( 120 mils). This temperature reduction will reduce the clearance by 0.152 cm ( 60 mils) and is more than adequate to accomplish the objective of active clearance control. The casing-cooling system relies heavily on experience with the CF6-50 LPT casing impingement-cooling system. In this system the low pressure, low-temperature fan air is used as coolant and is impinged on the outside of the LPT casing by means of an array of manifolds. In the $E^{3}$ system, fan air is extracted from the fan duct by means of a scoop. The air is routed to the impingement manifold through a control valve and $270^{\circ}$ core-cowl manifold. Clearance control is accomplished by adjustment of the impingement cooling flow by means of an air valve. By judiciously setting the valve, by means of the engine control system, the quantity of impingement-cooling flow to the LPT casing can be controlled. The controlled flow rate, in turn, controls the amount of casing temperature reduction; this defines the casing shrinkage and thus biade-tip clearance. As the control-valve flow area is increased, reducing the flow restrictions, more air will flow from the fan stream to the impingement manifold, cooling the casing to a lower temperature. As the casing temperature is reduced, the diameter shrinks, and the blade tip clearance beccaes smaller.

The ACC valve in the FPS will be controlled by the full-authority, digital electronic control (FADEC). Fan speed, fuel flow, and compressor exit temperature and pressure will be the FADEC input used to control the LPT ACC system. The FADEC will define the best clearances for a particular flight condition. The thermal ristory of the rotor and casing will be factored into the control so that the required cooling for the casing can be defined. The valve setting required to achieve the desired cooling flow will then be met.

The ACC fan scoop (Figure 45) is a split design combining the HPT and LPT ACC air supplies. This design was chosen over the separate-scoop design as a means of keeping the amount of fan-duct blockage and scoop drag to a minimum. The fan-duct scoop is split down the middle ints the HPT and LPT sections by a sheet metal divider. This divider segregates the HPT and LPT cooling air from the inlet of the scoop unit after impingement. Separate valves are provided to control the amount of cooling air delivered to the HPT and the LPT.

The scoop is mounted away from the wall to avoid ingestion of the boundary layer flow. After the air enters the scoop it is diffused in an effort to :ecover as much of the fan-duct dynamic pressure as possible. After the air

oriown page is of póa guaity


Figure 45. E HPT/LPT Turbine Active Clearance Control Fan Duct Scoop.
diffuses to a $2: 1$ area ratio, it dumps into a rectangular duct that directs the air to the control valve (Figure 46). After flowing through the valve the air dumps into a $270^{\circ}$ sector manifold inside the core engine cowl. The flow splits and flows circumferentially around the LPT in the rectangular duct. The 1 low divides and flows circumferentialiy around the LPT in the rectangular duct. The flow is bled off the rectangular core-cowl plenum at four locations (two on each side of the engine) and into the LPT casing impingement manifold. After the air impinges on the casing, it diacharges through the rear frame and out the $p$ =imary-nozzle center vent. A bulkhead is required to segregate the core-cowl purge air from both the HPT and the LPT ACC air. This is located ahead of the HPT casing and extends from the casing to the core cowl. An oxtensive effort has been made to seal all possible leaks into the core cowl in order to maintain the performance of the ACC cooling system.

To evaluate the ACC, it was first necossary to look at the required casing cooling at various engine cycle conditions. Shown in Figure 47 are several engine cycle conditions that were evaluated. At ground idle, the casing cooling will be reduced to a minimum value. This will allow the casing to be at a higher temperature during takeoff transients but still keep it within the material limiting emperature of $677^{\circ} \mathrm{C}\left(1250^{\circ} \mathrm{F}\right)$. Maximum rotational loads occur after the engine has undergone acceleration to full takeoff power and after !iftoff has occurred; then casing cooling can be initiated. The ACC will open the valve and admit $0.15 \% \mathrm{~W}_{25}$ of fan airflow to the impingement ranifold where it cools the casing and closes the clearances to the requi: sd range. Since the rotor rpm and blade metal temperatures are at the highes, level, very little clearance closure is required. As the engine is throttled back to maximum-climb power, the metal temperatures drop. When this occurs, more casing clearance closure, and thus more cooling, is required. At maximum cruise, $66 \%$ of the maximum =learance closure is required; it $60 \%$ maximum cruise, all of the ACC cooling is required. Of course, there a:e few cycle points in the engine mission below $60 \%$ maximum cruise where tis ACC will be needed. During approach and flight idle the ACC cooling will bo siut off in anticipation of a throttle durst to a higher power setting.

The performance payoff of the ACC system was defined at tne LPT design point: maximum-climb power at an altitude of $10.67 \mathrm{~km}(35,000 \mathrm{ft})$. The clearances with minimum casing cooling ranged between 0.112 cm ( 44 mils ) on the last stage to $0.022 \mathrm{~cm}(48 \mathrm{mils})$ on the first three stages. Since these clearances can be reduced io $0.041 \mathrm{~cm}(16 \mathrm{mils})$ at this power setting, the potential clearance reduction is between $0.07 \mathrm{~cm}(28 \mathrm{mils})$ on the last stage to $0.08 \mathrm{~cm}(32 \mathrm{mils})$ on the first three stages, as shown in Figure 48 . This can be accomplished with the use of about two-thirds of the cooling capability of the system. The performance payoff for each stage was evaluated, and the overall LPT efficiency increase was $0.5 \%$. When the cost of the fan air is factored in, the net payoff is a $0.33 \%$ reduction in specific fuel consumption ( $s f c$ ). It should be noted that this improvement in performance is not only due to the reduction in blade tip clearance but also to the hub interstage seal ciearances. In cooling the casing, the nozzle diaphragm moved radially inward and closed down the interstage seal clearances as well. The interstage seal clearances represent about one-third of the overall system payoff.



ORIGINAL PAGE IS OF POOR QUALITY

Temperature, ${ }^{\circ} \mathrm{F}$


## CRIOMAL PACE IS <br> CF POOR QUALITY

| STAGE | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $A \eta_{\mathrm{T}} / 10$ MILS | .033 | .043 | .038 | .030 | .016 |
| CLOSURE MILS | .032 | .$C$ | .032 | .030 | .028 |
| $\Delta \eta_{\mathrm{T}} /$ STAGE | .105 | .130 | .121 | .090 | $.045 \rightarrow .5 \% \Delta \eta_{\mathrm{T}}$ - TOTAL |



SYSTEM PAYOFF

$$
\begin{array}{ccc}
\text { CLEARANCE REDUCTION TOTAL PAYOFF } \\
-.35 \% & \text { FAN AIR COST } \\
& +.02 \% & -.337 \triangle S F C \\
\hline
\end{array}
$$

Max. Cruise $10.67 \mathrm{~km}(35 \mathrm{KFt}$.

[^1]
### 3.10 START ANALYSIS

In the development of the $E^{3}$, the compressor has continued to be a critital item. The 23:1 pressure ratio, single-spool compressor is truly an advancement in the state of the art for axial-flow compressors. However, the high pressure ratio of the compressor necessitated several features The vari able stators in the first five stages had to have more control during startup and low -power conditions. The compressor also was designed to provide stall margin in the front stages during starting conditions. Without bleed, the aft end of the compressor cannot pass the flow that the front stages are delivering. The compressor bleed is extracted at the seventh stage where it has the greatest payoff in terms of flow stability during start. The seventhstage bleed air is dumped overboard.

During the early $E^{3}$ program start analysis, the required bleed flow was defined at a maximum of $30 \%$ of the compressor inlet flow. This flow required the turbine inlet temperature to be set at $1149^{\circ} \mathrm{C}\left(2100^{\circ} \mathrm{F}\right)$ if the engine alas to be started and accelerated to idle speed within the designated start time. Several assumptions had to be made in conducting the early start analysis. These assumptions addressed

- Compressor efficiency at subidle
- Turbine efficiency at subidle
- Compressor stall margin at subidle

All these factors have a significant impact on the required turbine inlet femperature and on compressor-bleed requirements.

During 1980-1781, both the 2-stage HP air turbine test and the $10-s t a g e$ compressor test were completed. The results from these two tests had a significant impact on the engine start analysis. The factors that affected the engine start analysis are:

- Ten-point compressor efficiency improvement during start
- Five-point HPT efficiency improvement during start
- Stall margin achieved with reduced seventh-stage bleed
- HPT flow function decrease during start

These improvements during start conditions allow the engine to be accelerated to idle speed within the required time at a reduced turbine inlet temperature. The HPT inlet temperature reduction amounts to a $200^{\circ} \mathrm{C}\left(360^{\circ} \mathrm{F}\right)$ drop to $949^{\circ} \mathrm{C}$ ( $1740^{\circ} \mathrm{F}$ ). The LPT inlet temperature reduction amounts to a more impressive $289^{\circ} \mathrm{C}\left(520^{\circ} \mathrm{F}\right)$ drop to $627^{\circ} \mathrm{C}\left(1160^{\circ} \mathrm{F}\right)$. This was attributable to the improvement in turbine efficiency and a reduction in the turbine flow function.

With the substantial reduction in cycle average temperature entering both the HPT and the LPT, the engine could be started and accelerated to ide
speed with only the pilot combustor burning. This causes a substantial outward skewing of the combustor exit profile. Tue maximum (peak) pattern factor at the HPT vane inlet is 1.26 , and the circumferential-average pattern factor is 0.63. Although this results in local gas-stream temperatures above the maximum design value, the steady-state metal temperature does not become excessive. This is due to the reduced cooling-air temperature and the heat-flux environment (low pressure) during engine start conditions. By the time the hot st:eak has reached the LPT, the eemperature has attenuated by mixing and work extraction; the maximum peak pattern factor at the LFT is duwn to 0.27 , and the circumferential pattern factor is down to 0.21 . The at tenuation factors for the double-annular combustor, burning on the pilot stage only, were defined in the CF6-50 double-annular combustor program. After the $49^{\circ} \mathrm{C}$ ( $88^{\circ} \mathrm{F}$ ) $\mathrm{T}_{4} .9$ design margin is added to the $627^{\circ} \mathrm{C}\left(160^{\circ} \mathrm{F}\right) \mathrm{T}_{4} .9$ cycle temperature, the peak pattern factor yields a hot-streak temperature of $801^{\circ} \mathrm{C}$ ( $1474^{\circ} \mathrm{F}$ ). This is the highest temperature that the LPT Stage ! vane will be exposed to during start. Secause the trailing edge (TE) of this vane is uncooled, a temperature gradient is set up between the bulk metal and the TE. The maximum temperature gradient on the vane will not exceed $779^{\circ} \mathrm{C}\left(138^{\circ} \mathrm{F}\right)$ under steady-state conditions. The maximum transient temperature gradient has been estimated to be $203^{\circ} \mathrm{C}\left(365^{\circ} \mathrm{F}\right)$. This is within acceptable limits.

With an average circumferential pattern factor of 0.21 , the LPT vane inlet yields a $777^{\circ} \mathrm{C}\left(1431^{\circ} \mathrm{F}\right)$ temperature. This is the highest temperature that the first-stage blade might te exposed to during engine start. There is no cooling in the blade, so the oniy temperature gradients are set up during the transient. The highest gradient between the. TE and the bulk metal temperature during the start transient is $172^{\circ} \mathrm{C}\left(-310^{\circ} \mathrm{F}\right)$ and occurs 40 seconds after start. Beause the LPT rotor spool is at a very low speed at this point, no sigrificant mechanical-ioac stresses occur. Therefore, the combined thermal and mechanical stresses are ot excessive.

A review of component life, based on updated start tempera' ires and thermal gradients, showed that fuili-iife goals can be expected. The start-transient thermal gradients in the LPT vanes are less severe than the steady-state, hot-day-takeoff gradients in the highly cooled HPT Stage 1 vane and occur at a substantially lower temperature. The blade transient metal temperature gradients have been found to be less severe than an earlier analysis indicated. In the early analysis, whish was based on the original dynamic start model, the full blade life for the required flight missions was achieved. Oniy a small percentage of the 'lade life was used up during the start cycle. These facions lead to rac conclusion that the LPT life objectives can be achieved with the current :tait rycle.

The effects of engine starting on HPT and LPT temperatures will be monitored cioseiy during the $\mathrm{F}^{3}$ program. As information is obtained from tests of the compressor, the HPTiLPT air turbines, and the core engine, it will be factored into the engine-start dynawic model to assure the reliability of both the ICLS and the FPS.

### 4.0 MECH.NICAL DESIGN

### 4.1 OVERALL DESIGN APPRUACH

### 4.1.1 Description

The LPT to be used in the ICLS test is a moderately loaded, closecoupled, five-stage turbine with uncooled airfoils. Mechanical features are shown in the figure $\dagger 9$ cross section.

The LPT casing is a continuous, no-split-flange design with wall insulation and local impingement cooling for improved clearance control. The Stage l nozzle is a conventionally cast, four-vane segment attached by a hooked tang at the outer flowpath. Stages 2 through 5 nozzle vanes are cast, multivane segments attached by hook tangs to the outer-case supports. Outer honeycomb seals are brazed to sheet metal backing strips that hook into the outer casing and assist in the radial retention of the Stages 2 through 5 nozzles. The inner diameters of these vanes have integral seals which consist of honeycomb brazed to the cast vane seal support. A full-ring inner seal is bolted to the Stage l vane and consists of three sections of honeycomb brazed to a sheet metal structure.

Material selections for the LPT static parts are shown in Figure 50 and listed in Table V.

Table V. LPT Materials.

| Component | ICLS |  |
| :---: | :--- | :--- |
| Stator |  | FPS |
| Vane l |  |  |
| Vanes 2-5 | René 77 | René 125 |
| Casing | René 77 | René 77 |
| Manifold | Inco 718 | Inco 718 |
| Seals | 321 SS | 321 SS |
| Bolts | Haste110y X | Haste1loy X |
| Nuts | Inco 718 | Inco 718 |
|  | Waspaloy | Waspaloy |
| Rotor |  |  |
| Blades 1-5 |  |  |
| Disks l-5 | René 77 | René 77 |
| Blade Retainers | Inco 718 | Inco 718 |
| Bolts | Inco 718 | Inco 718 |
| Nuts | Inco 718 | Inco 718 |
|  | Waspaloy | Waspaloy |


Figure 49. $E^{3}$ LP Five-Stage Turbine Features.

The LPT rotor is an uncooled design comprising disks with integral spacer arms and bolted joints between each stage. The main support cone extends from the sump between the HPT and LPT rotors and attaches at the LPT spool between the Stage 3 and Stage 4 disks. LPT blading is a proven, cast design with tip shruds and multitang doverails. Inner stage seals of the LPT spool are repairable, two-tooth designs and are attached at tine bolted flange joints between the disk spacer connections. They provide good performance (low leakage) and easy replacement. The rotor materials are shown in Figure 50 and listed in Table $V$.

Overall, the selected LPT configuration is a balanced design with a strong emphasis on high efficiency and performance while rataining good maintenance features and low cost.

### 4.1.2 Design Loads and Limits

The LPT is designed to meet the mechanical loads and limits that are defined in the $E^{3}$ technical requirements and according to GE design practices. Basic engine cycle performance parameters defining the aerodynamic design point and the maximum rotor speeds are given in Table VI. The ICLS engine hardmare is designed to meet two levels of requirements. The blades are designed for $F P S$ conditions, and the rotor spool and support structures are designed for growth conditions. Basic aerodynamic design parameters for Stages 1 and 5 rotors are shown in Table VII and indicate the range between LPT inlet and exit characteristics.

Design limit stresses are set by the -30 material properties. For highcycle fatigue (HCF) Life evaluation, a Goodman diagram is used to predict the maximum allowable vibratory stress where infinite life can be achieved. Lowcycle fatigue (LCF) stress levels are based on limits as set by parts usage on 36,000 aircraft missions with two stress cycles per mission for rotor parts. This results in requirements of 72,000 stress cycles for rotor parts and 36,000 stress cycles for all other components. In addition, the disks must be designed to provide a residual life of 6,000 cycles when the disk has a defect of the size: $0.025 \times 0.076 \mathrm{~cm}(0.01 \times 0.03 \mathrm{in}$.$) .$

Acoustic considerations imposed separate requirements on the Stage 4 rotor where a 1.4 -chord, axial, blade-to-vane gap and a rotor with 156 blades were needed.

The typical mission with the major time-lapse increments denoted is shown in Figure 51 .

### 4.1.3 Design Goals

The LPT mechánical configuration is based on meeting the overall engine requirements of $s f c$ and $D O C$ within the following goals:

ORIGINAL page is of POOR QUALITY

Figure 50. LPT Materials for FPS Major Components.

## ORIGINAL PAGE ' OF POOR QUALITY

Table VI. LPT Design Cycle Ferformance Parameters.
I. Flowpath and Clearance Calculation

FPS
Growth

Cycle Case No. 41
Altitude
Mach No.
$\Delta \mathrm{T}_{\mathrm{amb}}$
Rating
Fan Physical Speed
II. Maximum Stress

Calculations

Cycle Case No. 72
Altitude
Mach No.
$\Delta \mathrm{T}_{\mathrm{amb}}$
Rating
Rotor Physical Speed
(at 2.6\% Overspeed)
Cycle Case No. 27

| Altitude | Sea Level Static | Sea Level Static |
| :--- | :--- | :--- |
| Mach No. | 0.30 | 0.30 C |
| $\Delta \mathrm{Tamb}$ | $+35^{\circ} \mathrm{C}\left(+63^{\circ} \mathrm{F}\right)$ | $+35^{\circ} \mathrm{C}\left(+63^{\circ} \mathrm{F}\right)$ |
| Rating | Takeoff | Takeoff |
| Rotor Physical Speed | 3289 rpm | 3679 rpm |
| (at 2.6\% Overspeed) | $(3376 \mathrm{rpm})$ | $(3777 \mathrm{rpm})$ |


| $5791 \mathrm{~m}(19,000 \mathrm{ft})$ | $5791 \mathrm{~m}(19,000 \mathrm{ft})$ |
| :--- | :--- |
| 0.30 F | 0.30 C |
| $+35^{\circ} \mathrm{C}\left(+63^{\circ} \mathrm{F}\right)$ | $+35^{\circ} \mathrm{C}\left(+63^{\circ} \mathrm{F}\right)$ |
| Takeoff | Takeoff |
| 3611 rpm | 4079 rpm |
| $(3707 \mathrm{rpm})$ | $(4160 \mathrm{rpm})$ |

Sea Level Static
0.30
$+35^{\circ} \mathrm{C}\left(+63^{\circ} \mathrm{F}\right)$

3679 rpm
( 3777 rpm )

Table VII. LPT Design FPS Aerodynamic Parameters, Design Point.

| Parameter | Stage 1 Rotor | Stage 5 Rotor |
| :--- | :--- | :--- |
| Tip Diameter | $89.1 \mathrm{~cm}(35.1 \mathrm{in})$. | $118.3 \mathrm{~cm}(46.56 \mathrm{in})$. |
| Tip Speed | $168.6 \mathrm{~m} / \mathrm{sec}(553 \mathrm{ft} / \mathrm{sec})$ | $23.7 \mathrm{~m} / \mathrm{sec}(734 \mathrm{ft} / \mathrm{sec})$ |
| Airflow | $67.8 \mathrm{~kg} / \mathrm{sec}(149.5 \mathrm{lb} / \mathrm{sec})$ | $67.0 \mathrm{~kg} / \mathrm{sec}(149.5 \mathrm{lb} / \mathrm{sec})$ |
| Inlet Radius Ratio | 0.76 | 0.64 |
| Aspect Ratio | 3.54 | 5.72 |
| $\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{T}}$ | 1.30 | 1.26 |
| Numbers of Bladts | 122 | 110 |

$$
\begin{gathered}
C \text { rus : } \\
\text { Cr } \\
\text { is }
\end{gathered}
$$



## 1. Performance

- Provide a loading parameter of 1.29 at a physical speed of 3457 rpm at a fully developed efficiency of $91.7 \%$ at the Mach $0.8 / 10.7 \mathrm{~km}$ ( $35,000 \mathrm{ft}$ ) cruise match point.

2. Life

- 18,000 hours/18,000 flight cycles for cold (nonflowpath) parts
- 9,000 hours $/ 9,000$ flight cycles for hot (flowpath) parts
- Minimize potentially damaging airfoil vibrations
- Rotor structures unaffected by blade-out-induced vibrations
- Rotor structure designed to $122 \%$ of maximum-rated growth physical speed

3. Reliability

- Elimination of bolt holes in live disk
- Proven blade design

4. Turbine Development

- Develop the aerodynamic efficiencies of the blading by a systematic building-block-approach, air-turbine test orogram.
- Design the rotor and blading systems to achieve cost, aerodynamic, and aeromechanical requirements as well as initial reliability equal to or better thar current high-bypass turbofans.
4.2 Rotor


### 4.2.1 Blade Design

The Block IIB air turbine blade features shown in Figure 52 reflect successful commercial engine experience. All five stages of the blades are solid and uncooled and nave two-tang dovetails. The tip shrouds are cast integrally with the airfoils and have two-tooth seals to prevent leakage past the blade.

The blade airfoils were designed (quantity, chord, shape, size) initially to meet aerodynamic requirements and then modified (quantity or shape) as needed to meet additional mechanical-stress or frequency requirements. Figure 52 shows the major airfoil geometry features. The blade airfoils range in length from $10.90 \mathrm{~cm}(4.29 \mathrm{in}$.) on Stage 1 to $22.58 \mathrm{~cm}(8.89 \mathrm{in}$.) on Stage 5.

CRICTIA FRAE !5
OF POOR QUisity



Figure 52. LPT Blade Features of Stages 1 Threugh 5.

The aspect ratios range from 3.54 on Stage 1 to 7.47 on Stage 4. The large aspect ratio on Siage 4 is due to the aerodynamic "flask" design of the airfoil. The chord dimension decreases from the root to the pitch and then increases from the pitch to the tip. The smaller chord at midspan produces a larger aspect ratio. Also, there are more blades in Stage 4 than in any other stage. The larger number of blades (1.56) was selected to improve acoustic emissions by increasing blade-passing frequency and by providing a larger nozzle-to-blade gap due to the shorter blade chord.

Additional typical airfoil geometry features are shown in Figure 53. Leading-edge and trailing-edge diameters are shown for the root, pitch, and tip sections. They range from $0.079 \mathrm{~cm}(0.031 \mathrm{in}$.) ou Stage 1 to 0.048 cm ( 0.019 in .) on Stage 4. In addition, area and maximum thickness are rlotted versus percent span. In all stages, the mayimum thickness and area through the blade shani are larger than those through the airfoil in order to provide added strength adjacent to the dovetail attachment. An angled platform ( $5^{\circ}$ from axial) was used on the Stage 4 blade to provide an adequate flat form for the highly staggered airfoil shape (Figure 54).

Each blade airfcil was analyzed for combined spanwise stresses. Figure 55 shows these stresses for significant Stage 1 airfoil locations. The airfoil was tilted tangentially to balance the leading-edge and maximum-convex stresses. Axial and tangential offsets were provided at the blade root to zeduce the peak stresses in the dovetail. A sumary of airfoil stresses is presented in Table VIII.

Blade airfoil rupture life was calculatec by using a mission-mix analysis. Seven operating points were chosen to represent the full range of engine/aircraft mission points (Table IX). The resulting rupture lives and HCF allowable stresses for the airfoils are shown in Figures 56 through 60 . The minimum allowable vibratory stress value is based on $G E$ engine experience. All blades were found to have adequate rupture lives and HCF vibratory capabilities.

LCF lives were calculated at maximum hot-day takeoff stresses. For each mission, it was $c$ iservatively assumed that there were two LCF cycles: one for takeoff and .e for thrust reverse. Therefcre, $36,0,0$ cycles would result from 18,000 missions. All blades were found to have LCF life in excess of 100,000 cycles, versus 36,000 cycles required, as shown in Table X.

Vibration analyses were performed to ensure that there were no resonances of blade natural frequencies with major engine stimulation forces in the steady-state operaring range. Typical mode shapes investigated were first flex, first torsion, first axial, and two-stripe (Figure 61).

Results of the resonance stady for the Stage 1 blade are shown in Figure 62. The only cross points (intersections of forcing functions with blade natura: frequencies) near the steady-state operating range are for the second torsional mode with both the Stage 1 vane line ( $72 / \mathrm{rev}$ ) and the stage 2 vane line ( $102 / \mathrm{rev}$ ). (There are no known problems in the second torsional mode for previous engine designs; therefore, no problems are expected with this blade.)
original prage is OF PCOR QUALITY
30いうい！＇oves

$x$ © $5 \rightarrow=$
$=0.0$
m－ajed



Figure 53．Stage 1 Blade Airfoll Configuration．
$<-\alpha$


High Airfoil Stagger would Exceed tuailable Planform if ixial Design ivere Used.

Figure 54. Blade Platform Planform Selection.

## ORIE!NAL PAGE is OF POOR QUALITY



Stress, Hot Dey Takeoff, 3?07 rpm

Figure 55. LPT Stage 1 Blade Stress and Temperature Distribution.

Table VIII. Airfoil Stress Summary - Takeoff Condition.

| Stage | 1 | 2 | 3 | 4 | ; |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Centrifugal 5trean |  |  |  |  |  |
| Pitch, MPa (kai) | $\begin{aligned} & 41.3 \\ & (6.0) \end{aligned}$ | $\begin{aligned} & 57.9 \\ & (8.4) \end{aligned}$ | $\begin{aligned} & 62.7 \\ & (9.1) \end{aligned}$ | $\begin{gathered} 24.8 \\ (12.3) \end{gathered}$ | $\begin{gathered} 93.1 \\ (13.5) \end{gathered}$ |
| Rocte, MPs (ksi) | $\begin{aligned} & 53.1 \\ & (7.7) \end{aligned}$ | $\begin{aligned} & 66.7 \\ & (9.7) \end{aligned}$ | $\begin{gathered} 87.5 \\ (12.7) \end{gathered}$ | $\begin{gathered} 88.2 \\ (12.8) \end{gathered}$ | $\begin{aligned} & 136.5 \\ & (19.8) \end{aligned}$ |
| Leading Edge Rasultanc itrees |  |  |  |  |  |
| Pitch, MPa (ksi) | $\begin{gathered} 73.8 \\ (10.7) \end{gathered}$ | $\begin{aligned} & 101.3 \\ & (14.7) \end{aligned}$ | $\begin{aligned} & 104.1 \\ & (15.1) \end{aligned}$ | $\begin{aligned} & 124.1 \\ & (18.0) \end{aligned}$ | $\begin{aligned} & 106.9 \\ & (15.5) \end{aligned}$ |
| Root, MPa (ksi) | $\begin{aligned} & 62.7 \\ & (9.1) \end{aligned}$ | $\begin{aligned} & 59.3 \\ & (8.6) \end{aligned}$ | $\begin{gathered} 96.5 \\ (14.0) \end{gathered}$ | $\begin{gathered} 88.9 \\ (12.9) \end{gathered}$ | $\begin{aligned} & 134.4 \\ & (19.5) \end{aligned}$ |
| Uncorrected Gas Bendiag Stress |  |  |  |  |  |
| loot, Mea (kei) | $\begin{aligned} & 133.1 \\ & (19.3) \end{aligned}$ | $\begin{aligned} & 150.3 \\ & (21.8) \end{aligned}$ | $\begin{aligned} & 157.9 \\ & (22.9) \end{aligned}$ | $\begin{aligned} & 207.5 \\ & (30.1) \end{aligned}$ | $\begin{aligned} & 248.2 \\ & (36.0) \end{aligned}$ |

Table IX. LPT Mission Analysis Used for Airfoil qupture Creep Life Calculations.

| Power sectins | Time at Condition (hr) | $\begin{gathered} \text { Altitude, } \\ \text { (ft) } \end{gathered}$ | $\begin{aligned} & \operatorname{mach} \\ & \text { mo. } \end{aligned}$ | $\begin{array}{cc} A T \rightarrow b \\ C(F) \end{array}$ | rpm | $\cdot C^{1-F)}$ | $\begin{aligned} & \mathrm{P}_{49} \text { Tot } \\ & \alpha \mathrm{Pa} \text { (psi) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. Takeo:f | 159.5 | 0 | 0.3 | $\begin{gathered} +18 \\ (+33) \end{gathered}$ | 3707 | $\begin{gathered} 9 ? 0 \\ \text { (. } 588 \text { ) } \end{gathered}$ | $\begin{aligned} & 586 \\ & (85) \end{aligned}$ |
| Max. Takeoff | 159.5 | 0 | 0.3 | $\begin{gathered} +3 \\ (+6) \end{gathered}$ | 3707 | $\begin{gathered} 8: 3 \\ (1604) \end{gathered}$ | $\begin{aligned} & 586 \\ & (85) \end{aligned}$ |
| Yax. Cl 12ab | 1.685 | $\begin{gathered} 3,048 \\ (10,000) \end{gathered}$ | 0.453 | $\begin{gathered} +10 \\ (+18) \end{gathered}$ | 3653 | $\begin{gathered} 871 \\ (1601) \end{gathered}$ | $\begin{aligned} & 462 \\ & (61) \end{aligned}$ |
| Yax. Cl ¢ ab | 1,685 | $\begin{gathered} 10.668 \\ (35.000) \end{gathered}$ | 0.8 | $\begin{gathered} +10 \\ (+18) \end{gathered}$ | 3633 | $\begin{gathered} 870 \\ (1599) \end{gathered}$ | $\begin{aligned} & 262 \\ & (38) \end{aligned}$ |
| Max . Crulse | 5.515 | $\begin{gathered} 10,668 \\ (35,000) \end{gathered}$ | 0.8 | $\begin{gathered} +10 \\ (+18) \end{gathered}$ | 3526 | $\begin{gathered} 843 \\ (1549) \end{gathered}$ | $\begin{aligned} & 248 \\ & (36) \end{aligned}$ |
| Max. Cruise | 1,838 | $\begin{gathered} 15,240 \\ (50,000) \end{gathered}$ | 0.8 | $\begin{gathered} +10 \\ (+18) \end{gathered}$ | 3477 | $\begin{gathered} 844 \\ (1552) \end{gathered}$ | $\begin{gathered} 120 \\ (17.4) \end{gathered}$ |
| Approach Idle | 6,958 | 0 | 0 | $\begin{gathered} +10 \\ (+18) \end{gathered}$ | 2800 | $\begin{gathered} 677 \\ (1250) \end{gathered}$ | $\begin{aligned} & 207 \\ & (30) \end{aligned}$ |




Ofiginal page ri: 'JF POOR QUALITY


ORICINAL
OF POOR Qu: ity

Rupture Life
$>100,000$ Hours Versus
18,000 Hours Required
Figure 58. LPT Stage 3 Blade Airfoil Life Characteristics.


ORIGINAL PAGE IS OF POOR QUALITY


Figure 59. LPT Stage 4 Blade Airfotl Life Characteristics.

CRIGINAL PAEE IS OF POOR QUALITY

Figure 60. LPT Stage 5 Blade Airfoil Life Characteristics.

ORICUAL FRGE IS
OF POOR OUALITY OF POOR QUALTTY



Figure 62. Stage 1 Blade (Pinned Tip) Resonant Frecuency Analysis.

## ORIGINAL PAGE IS OF POOR QUALITY

Table X. Blade Airfoil LCF Life.

| Stage | ${ }^{\circ}$ Max, ${ }^{\text {a }}$ | MPa (ksi) | \% Span | Temperature, = C( $F$ ) | LCF Life Cycles* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 75.85 | (11.0) | 30 | 882 (1620) | $>105$ |
| 2 | 101.36 | (14.7) | 50 | 838 (1540) | $>105$ |
| 3 | 107.56 | (15.6) | 30 | 746 (1375) | $>105$ |
| 4 5 | 129.63 148.24 | (18.8) | 40 | 693 (1280) | $>105$ |
| 5 | 148.24 | (21.5) | 20 | 624 (1155) | $>105$ |
| *Required Life $=36,000$ Cycles |  |  |  |  |  |

Thus, the vibration characteristics of the Stage 1 blade are completely satisfactory.

Similar analyses were performed on blade designs for Stages 2 through 5 blades; no indications of vibration problems were found.

The blades were also analyzed for sensitivity to flow-induced vibration (flutter). A flutter index was calculated for the torsional and flexural modes of vibration, and this index was compared with values obtained from prior GE engine evaluations. All blade designs met the flutter-vibration requirements as shown in Table XI.

Table XI. LPT Flutter Analysis.

## Calculation

- Flutter Index $=v=\frac{\text { Relative Flow Velocity }}{1 / 2 \text { Blade }} \frac{\text { Chord Blade Natural Frequency }}{}$
- Check Both Flexural and Torsional flutter
- Safety Factor = VMax. Allowablefralculated

Results

|  | Stage |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Safety Fact or | 1 | 2 | 3 | 4 | 5 |  |
| $\bullet$ Torsion | 2.3 | 1.8 | 1.6 | 1.0 | 1.3 |  |
| $\bullet$ Flex | 4.9 | 4.0 | 3.4 | 1.8 | 2.2 |  |

Conclusion
All Blades Meet Flutter Vibration Requirements (Factor $\geq 1$ )

Analyses were performed to determine combined blade/disk vibration frequencies in the operating range and to establish that there were no resulting detrimental ex:itations. The modes investigated were the 2,4 , and 6 diameter types. The combincd blade/disk natural irequencies for each disk stage are plotted against existing engine excitations in Figure 63 for Stage l. A review of this plot (Campbell diagram) showed that even the potentially limiting mode, the 2 -diameter on Stage 1 , has greater than the desired frequency
 Thus, no vibration problems are indicated at any frequency.

The blade tip shrouds provide rotational fixity for resistance to viblation and also serve as tip seals against gas leakage. The tip shroud sizing and design considerations are listed in $F$ gigure 64. The tip shroud geometries were based on comercial engine experience with thicknesses set by stress and frequency requirements. Temperatures considered in the analyses were for the hot-day takeoff condition.

Figure 65 shows a typical view of two adjacent tip shrouds after assembly. Saw teeth are used on the seals so that they will cut into the stationary honeycomb seals rather than crushing into them. A hard coating, applied by flame-spraying, is used on the tip-shroud interlock surfaces to prevent excessive wear. CM64 hard coat will be used on Stages 1 and 2 because it has good high-temperature wear characteristics, and Triballoy T800 will be used on Stages 3, 4, and 5 because it has excellent wear characteristics at lower temperatures.

An LPT flowpath improvement in the Block IIB design provided axial lengthening in the upstream portion of the tip shrouds on Stages 1,2 , and 3 in order to achieve larger overlaps at the outer florpath. This tip shroud extension, although improving performance, had adverse effects with respect to stresses and vibrations. Consequently, the first three stages of tip shrouds were thickened to ensure that they would ineet the life requirements and that the lowest natural frequencies would be higher than vane-passing frequencies by sufficient margins.

Figure 66 shows the results of the Stage 1 blade tip-shroud analysis. The tip shrouds were analyzed for stress and frequency. A creep limit stress was calculated based on reaching plastic creep curing the 18,000 -hour mission shown in Table IX. The frequencies of the overhangs were calculated and cour pared to the vane-passing frequencies of the adjacent stages. As indicated in Figure 66, the Stage 1 tip shroud meets the creep limit stress criteria and has sufficient frequency margins over vane-passing frequencies. Similar analyses were made for the shrouds of Stages 2 through 5; again, no problems were found with vibration stresses.

One additional region, the blade platform angel wings, was checked for potential vibration problems. Short overlaps are used in current GE engines, and these angel wings have natural frequencies much higher than any stator vane-passing-frequency excitation. The E ${ }^{3}$ LPT angel wings are much longer, for improved performance, 30 they have lower frequencies and, thus, greater potential for coincidence with stator excitation. Thr analyses performed on

GRCIN.' PRGE IS of POOR Digity


Figure 63. Stage 1 Coupled Blace Disk Cambell Diagram.

## i. - OAX CuALTTY



Figure 64. LPT Tip Shrouds

Figure 65. LPT Blade Tip Shroud Features and Configuration.


- Other Shrouds Also Meet Stress and Frequency Requirements

|  | Stress MPa (ksi) |  | Frequency |  |
| :---: | :---: | :---: | :---: | :---: |
| Section | Actual | Creep <br> Limit | Actual ( Hz ) | \% Margin Over 102 S2* |
| 1-1 | 82.7 (12.0) | 37.6 (12.7) | 10, 490 | 4. |
| 2-2 | 78.6 (11.4) | 87.6 (12.7) | 14,620 | 57 |
| 3-3 | 51.0 (7.4) | 87.6 (12.7) | 15,800 | 60 |
| 4-4 | 75.8 (11.0) | 87.6 (12.7) | 15,310 | 59 |

*Stage 2 Vane Fo..ced :'ibration, 102 per Revolution

Figure 66. LPT Stage 1 Blade Tip Shroud Stress/Life and Frequency.
the blade angel wings were comparable to chose for the tip shrouds described above. The angel wings were analyzed as cantilevered beams. Figure 67 shows that the Stage 1 argel wings met the creep limit stress criteria and that they had sufficient frequency margins over vane-passing frequencies. Similar analyses were made for Stages 2 through 5 angel wings. Again, no problems were indicated.

The LPT blades are retained in dovetail slots by two different methods. On Stages 1, 2, and 3; they are retained from aft movement by integrally cast retainers on the ends of the dovetails, as shown in figure 68 , and are retained against forward movement by the rotor seals. On Stages 4 and 5 the blades are retained against forward and aft movement by formed tab retainers as shown in Figure 69.

Stages 1, 2, and 3 blade retainers were designed so that they would not exceed material limits when a maximum design force (larger than the expected steady-state force) was applied at the end of the retainer. Figure 68 shows that all these retainers either meet or exceed the required strength.

The designs of the Stage 4 and 5 blade retainers were based on correlations with CF6 load tests. Thickening of the retainers was necessary for resisting axial transition (push-out) to meet requirements. The depths of the disk dovetail slots were increased slightly to allow room for the thickened retainers. The blade retainers are designed to withstand push-out force greater than the calculated applied laads.

As a result of these stress/life and frequency studies; the blade designs for all five stages are judged mechanically acceptable.

### 4.2.2 Dovetail Attachments

The dovetail design has been specifically tailored to the load onditions and design requirements of the $E^{3}$. Commonality in dovetail size was achieved by using the same size for Stages 1,2 , and 3 ; this provides a substantial saving in the cost of cutting tools. Stage 5 uses the sawe doverail configuration except that the slot bottom was altered to permit a larger blade retainer. The Stage 4 dovetail is smaller due to the larger number of Stage 4 blades (required for acoustic considerations) which must fit into the same disk-rim circumference.

Detail stress distributions for the Stage 1 dovetail are shown in figure 70. The peak stresses for the blade and disk are indicated by the "boxed" values and are the LCY life-limiting locations. A sumary of peak stresses and life values is shown in Table XII for all five stages of blades and disks. Life requirements are met for all stages.

### 4.2.3 Disks

Each disk is sized in proportion to the centrifugal loading of the blade row. The spacer arms are forged integrally with the disks and are tapered to


- Other Stage Angel Wings Also Neet Stress and Frequency Requirements

| Section | Stress, MPa (ksi) |  | Frequency |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Actual | Creep Limit | $\begin{gathered} \text { Actual, } \\ \text { (Hz) } \end{gathered}$ | \% Margin Over 102 S2* |
| Forward Angel Wing | 40.7 (5.9) | 162 (23.5) | 12,725 | 50\% |
| Aft Angel Wing | 67.6 (9.8) | 162 (23.5) | 8,170 | 23\% |

*Stage 2 Vane Forced Vibration, 102 per Revolution

Figure 67. LPT Stage 1 Blade Angel Wing Stress/Life and Frequency.

## ORIGINAL PAGE IS OF POOR QUALITY



Figure 68. Blade Retainers f.r Stages 1,2 , and 3.
Configuration - Sheet Metal
Material - Inco 718

- Analysis/Design - Utilize CF6



## ORIGINAL PAGR fin OF POOR QUALITY

Conditions


Stresses MFa
(ks)

## Position



Crichi rage is
cór quality

become thinner in the region away from the disk web attachment. Spacer arm stresses in the LPT rotor were calculated at the limiting time steps and are shown in figure 71 . There are no bolt hole stress concentrations in the main load-carrying disk webs. Instead, the bolt holes are located in the lowstressed spacer arms. A bolt analysis was conducted, and the results are shown in Table XIII. The ava:lable clamping load of the bolting was shown to excetd the requirements, even after the relaxation effects of 9000 hours of engine operation. Table XIV describes the bolts and nuts selected for each disk stage and also lists the !imiting mode of "failure."

Analyses of transient engine operation were run to identify the critical operating point (combined speed and temperature gradient) for each disk. As a typical example, Figure 72 shows the stress distributions for the Stage l disk at the critical operatirg point. A summary of disk LCF life limits is given in Table XV. All aisk designs meet or exceed the minimum life requirement: ;2,000 cycles. An overspeed analysis was conducted to determine whether the disks met the $120 \%$ redline speed requirement. All disks meet burst-speed requirements with margin to spare.

### 4.2.4 Seals

LPT rotor seals have several functions. The primary function is to prevent leakage past the vanes. Stages 1,2 , and 3 seals have two other important functions: to prevent forward movement of the blades and to direct cooling flow to the blade/disk dovetails. All seals meet life requirements.

### 4.3 LPT STATOR

### 4.3.1 Stage 1 Nozzle Subassembly

The Stage 1 LPT nozzle assembly comprises the inner and outer transition ducts, Stage 1 LPT nozzle, nozzle support, forward inner seal support, aft inner seal support, and miscellaneous parts such as spoolies, windage shields, heat shield, splash shield, nuts, and bolts. A schematic of this assembly is shown in Figure 73.

One unique fature of this assembly is to direct fifth-stage compressor air down through the nozzle airfoils to purge the Stage 2 HPT disk aft cavity and to pressurize and purge the Stages 1 through 3 LPT rotor cavity.

## Outer Duct

The outer HPT/LPT cransition duct is assembled from 18 René 80 cast and machined segments. The segments are supported in the front by the nozzle support and at the rear by a bolted joint as shown in Figure 74 . A transient heat-transfer analysis was completed for the HPT aft case and adjacent hardware including the outer ducts. The forward attachment hook of each duct

Stress, ksi

## ORIGINAL PAGE IS <br> OF POOR QUALITY

Table XIII. LPT Rotor Bolt Analysis.

| Stages | Required Clamp Load, N ( $1 \mathrm{~b}_{\mathrm{f}}$ ) |  |  | Available Clamping Load, $N\left(1 \mathrm{~b}_{\mathrm{f}}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Torque sind Kadial Shear $1=0.15$ | $\begin{aligned} & \text { Torque } \\ & \mu=0.10 \end{aligned}$ | Separation | $\begin{gathered} \text { Cold } \\ \text { Assy. Clamp } \\ \text { Load } \end{gathered}$ | Residual Cold Clamp Load After 9000 Hr |
| 1-2 | $\begin{aligned} & 1,525 \\ & (2,591) \end{aligned}$ | $\begin{aligned} & 13,745 \\ & (3,090) \end{aligned}$ | $\begin{gathered} 7,184 \\ (1,615) \end{gathered}$ | $\begin{aligned} & 34,430 \\ & (7,740) \end{aligned}$ | $\begin{aligned} & 21,996 \\ & (4,900) \end{aligned}$ |
| 2-3 | $\begin{aligned} & 13,736 \\ & (3,088) \end{aligned}$ | $\begin{aligned} & 20,017 \\ & (4,500) \end{aligned}$ | $\begin{gathered} 8,229 \\ (1,850) \end{gathered}$ | $\begin{aligned} & 34,430 \\ & (7,740) \end{aligned}$ | $\begin{aligned} & 21,796 \\ & (4,900) \end{aligned}$ |
| 3-4 | $\begin{aligned} & 29,625 \\ & (0,660) \end{aligned}$ | $\begin{aligned} & 27,525 \\ & (6,188) \end{aligned}$ | $\begin{aligned} & 15,680 \\ & (3,525) \end{aligned}$ | $\begin{gathered} 53,379 \\ (12,000) \end{gathered}$ | $\begin{aligned} & 33,139 \\ & (7,400) \end{aligned}$ |
| 4-5 | $\begin{aligned} & 10,253 \\ & (2,305) \\ & \hline \end{aligned}$ | $\begin{gathered} 8,398 \\ (1,888) \end{gathered}$ | $\begin{aligned} & 12,588 \\ & (2,830) \end{aligned}$ | $\begin{array}{r} 34,429 \\ (7,740) \end{array}$ | $\begin{array}{r} 21,796 \\ (4,900) \end{array}$ |

Table XIV. Selected Bolts for Rotor Flanges.

| Stages | Bolt Size <br> co (in.) | Quantity | Bolt Material | Nut Material | Liniting : ${ }_{\text {ade }}{ }^{\text {* }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Stage 1 Fud Flange | $\begin{gathered} 0.635 \\ (1 / 4 \mathrm{D}-28) \end{gathered}$ | 40 | Inco 718 | Kaspaloy | Maximum <br> Bolt Spacing |
| 1-2 | $\begin{gathered} 0.794 \\ : 5 / 16 \mathrm{D}-24) \end{gathered}$ | 40 | Inco 718 | taspaloy | Torque |
| 2-3 | $\begin{gathered} 0.794 \\ (5 / 16 \quad D-24) \end{gathered}$ | 52 | Inco 718 | Kaspaloy | Torque |
| 3-4 | $\begin{gathered} 0.953 \\ (3 / 8 \quad 0-24) \end{gathered}$ | 76 | Inco 718 | Waspaloy | Torque |
| 4-5 | $\begin{gathered} 0.794 \\ (5 / 16 \mathrm{D} / 24) \end{gathered}$ | 40 | Inco 718 | Kaspaloy | Flange Separation |
| *Design requirement which deternines bolt selection. |  |  |  |  |  |

$$
\text { ** ( } \frac{1}{4} \text { Diameter }-28 \text { Threads per inch) }
$$



## ORIGINAL PAC IS OF POOR $\mathrm{C}^{\prime \prime}$

Table XV. LPT Rotor Disk Minimum Calculated LCF Life.


$$
\begin{aligned}
& \text { C' FCOR CUALITY }
\end{aligned}
$$

Stage 1 Nozzle Outer
-See Figure 74


Figure 73. LPT Stage 1 Nozzle Assembly.

ORIGINAL PAGE IS
Of POOR QUALITY


Figure 74. LPT Stage 1 Vane/Support Features.
segment is scalloped to reduce the conduction reat-transfer path into the support. Both the forward attachment heuk and the aft attacument flange are saw-cut to reduce thermal stresses. The forward hook is also coated with Triballoy 800 to reduce wear.

All 18 ducts are identical for both the ICLS and the FPS. However, for ICLS testing, provisicns were made in the ducts for accepting 1 ' $T_{42}$ and $\mathrm{P}_{42}$ probes spaced circumferentially around the HPT aft casing.

## Outer Transition-Duct/Nozzle Support

The final configuration of the outer transition-duct/nozzle support is shown in Figure 74. This support is a $360^{\circ}$ ring machined from an Inco 718 forging and forms a plenum for the fifth-stage cooling air. The design features a cylindrical support "arm" that has an interference fit with the HPT casing and allows the support bolted flange to grow radially during accel, thereby maintairing a positive seai with the casing. Figure 75 shows effective stresses at takeoff, as calculaied by the GE CLASS/MASS computer program.

The deflection analysis of the support showed that the cylindrical "arm" would not remain in contact with the HPT casing during a portion of the engine decel; fifth-stage air leakage would occur at that point. It was determined that this would occur because of the faster cooling rate of the support compared to the casing, and a thermal shield was added to minimize the probability of this leakage occurring.

To reduce wear, all support surfaces which mate with the HPT casing will be thermal sprayed with Triballoy 800.

The only difference between the FPS and the ICLS designs is the addition of 14 bosses (spaced circumferentially) on the ICLS support. These bosses will provide seating surfaces for the temperature and pressure probes which will be mounted on the HPT casing.

## Stage 1 LPT Nozzle

The LPT Stage 1 nozzle design has been modified siguificartiy since the preliminary design phase. The final design (Figure 73) is a high-aspectratio, 72 -vane design with constant projecied axial chord and radial trailing edges. A total of 18 nozzle segments per engine set with 4 vanes per segment will be cast from Rene 125. The front hook of each segment will be bolted to the outer-duct/nozzle support. The nozzle aft hook radial loads will be carried by the HPT casing. Axial airfoil gas loads and inner seal loads will be resisted by the LPT casing forward flange. The tangential gas load on the airfuils is tranmaitted through the nozzle outer band, the aft hook, and iato the HPT casing via lugs brazed to the aft nozzle hook as shown in figure 76. The operating conditions and calculater design life for the

## ORIGIINAL PAGE IS




Figure 76. LPT Stage 1 Nozzle Tangential Load Stop.

## ORIGINAL PAGE is <br> OF POOR QUALITY

Stage 1 nozzle airfoil are displayed in Table XVI and meet all design requirements. The results of a similar analysis of the attachment hooks of the Stage 1 nozzle are given in Figure 77 and are satisfactory.

Table XVI. LPT Stage 1 Nozzle Airfoil Operating Conditions and Calculated Design Life.

- Takeoff, FPS Baseline

```
Material: René l25
TGas Max. = 957* C (1755* F) at 95% Span
TMetal = 931* C (1708* F), 8* C (47* F) Cooling
TCooli,:g(Fifth-Stage Purge) = 404* C (760' F)
1.2% Fifth-Stage Purge Air Maximum Cooling Capability = 22* C (72* F)
Axial Gas Load/Vane = 291 N(55.4 lbf)
Tangential Gas Lcad/Vane = 348 N(78.2 lbf)
\DeltaP Load/Vane = 263.5 N (59.25 lbf)
Bending Stress at Limiting Section (Tip, Leading Edge)
\sigma = 118.6 MPa (17.2 ksi)
Rupture Life
0.5% Creep Life}=4.
LCF Life
Leading Edge to Airfoil Radius Kt = 2.02
```

The inner seal support region is made up of three major components (the aft inner seal support, the forward inrer seal support, and the mixer transition duct); features are illustrated in Figure 78.

ORIGINAL PAGE IS
CF POOR QUAIITY
Figure 77. LPT Stage 1 Nozzle Hook Forces, Temperatures, and Stresse

## ORIGINAL PAGE IS OF POOR QUALITY


Figure 78. LPT Stage 1 Vane Inner Seal Supports-Features.

One difference between the FPS and ICLS nozzle designs is that the ICLS nozzle will be cast René 77 , rather than kané 125 , in order to reduce cost. The lower creap and rupture life of Rene 77 will be satisfactory for the flanned ICLS testing. Another difference between the two designs is that an integrally cast $T_{4} 2$ probe pad on the nozzle outer band was eliminated from the ICLS design in order to simplify tooling for the castings. The FPS nozzles will also be Codep coated; the ICLS parts will not.

## Inner HPT/LPT Iransition Duct

The inner transition duct is sinilar to the outer in that it is assembled from 18 cast René 80 segments (Figure 78 ). The duct segments are supported radially in the front by the forward inner seal support and at the rear by slots in the Stage 1 nozzle inner band. The ducts are clamped axially between a flange on the forward inner seal support and the Stage 1 nozzle inner band and are positioned tangentially by pins in the seal-support flange. The duct forward attachment surfaces are coated with Triballoy 800 to reduce wear. The FPS and ICLS designs are identical.

## Forward Inner Seal Support

The forward inner seal sipport configuration (Figure 78) is a $360^{\circ}$ ring machined from an Inco 718 forging. This structure provides support for a honeycomb seal located above the Stage 2 HPT blade retainer. Stressea calculated by CLASS/MASS for the maximum stress condition (takeoff) are shown in Figure 79.

## Aft Inner Seal Support

The LPT aft inner seal support is shown in Figure 78. This support is fabricated from an Inco 718 ring forging with Inco 718 sheet metal joined to it by tungsten inert gas (TIG) welds. A flash-welded Inco 718 ring that forms the backing for the honeycomb seal is then TIG welded to the sheet metal.

The aft inner seal support has several functions: (1) it provides support for the honeycomb seal over the HPT rotating seals, (2) it ducts fifthstage cooling air forward to purge the Stage 2 HPT disk cavity, (3) it directs cooling air back to purge the LPT Stage $1-3$ rotor cavity, (4) it provides support for a honeycomb seal over the Stage 1 LPT rotating seal, (5) it is a pressure-balance seal between the HPT and LPT, and (6) together with the forward inner seal support, it positions and clamps the inner ducts in place. The calculated temperatures at takeof $f$ along with the predicted pressure loasis were used in a CLASS/MASS stress and deflection analysis. Analytical scress values at takeoff are shown in Figure 79.

## Miscellaneous Hardware

Other miscellaneous hardware associated with the Stage 1 LPT nozzle subassembly are: (1) air-transfer tubes or "spoolies" which help to seal anc

## ORIGINAL PAGE IS OF POOR QUALITY

(30 Seconds into HDTO)
Stress at A
$\sigma$ Nom $=386 \mathrm{MPa}(56 \mathrm{ksi})$
$K_{t}=1.83$
$\sigma$ Max. $=703.3 \mathrm{MPa}(102 \mathrm{ksi})$


Maximum Elastic-stress
Limit at $538^{\circ} \mathrm{C}\left(1000^{\circ} \mathrm{F}\right)$ for 72,000 Cycle Life:

(7)

Figure 79. LPT Stage 1 Nozzle Inner Seal Supports: Effective Stresses at 1040 Seconds.

## ORICHAL PAGE IS OF POOR QUMLITY

direct the fifti-stage compressor cooling air from the nozzles into the aft inner seal support, (2) a gang channel nut plate that also serves as a windage shield over the nuts, (3) a windage shield over the heads of the 36 bolts that clamp the forward and aft seal supports together, (4) a heat shield over the flexible arm of the outer-duct support as described earlier, and (5) a splash shield at the fifth-stage purge iir inlets to minimize circumferential tem perature variations around the outer duct support. Items 1,2 , and 3 are shown in Figure 78, and Items 4 and 5 are shown in Figure 74.

### 4.3.2 Stages 2 Through 5 Nozzles

Each of the $E^{3}$ LPT Stages 2, 3, 4, and 5 stators is cast from René 77. There are six vanes per segment. The quantity of vanes and segments is shown in Figure 80. Stages 2 and 3 nozzle segments have hollow airfoils for reduced weight, but Stages 4 and 5 nozzles are solid. (However, for the ICLS engine, Stages 2 and 3 airfoils will be solid for reduced tooling costs.) All four stages will have uncoated nozzle segments.

Each stage airfoil was analyzed for gas bending stress and liEe, assuming the airfoil was cantilevered in the axial and tangential directions. The results are shown in Figure 81. Bending stress', LCF, creep, and rupture lives due to reaction loads at the hocks were also calculated for each stage. Figure 82 tabulates the results of the hook calculations for Stage 2. Stresses for Stages 3 through 5 are equal to or less than those shown for Stage 2.

The tangential gas load is transmitted from the nozzle, by means of a slot in the aft rail of each nozzle segment, through a lug brazed into the adjacent shroud. This lug fits into a slot in the LPT casing (Figure 83), thereby transferring the load into the casing. Table XVII shows the tangential gas load for each of the four stages and the resulting shear and bearing stresses.

Table XVII. LPT Stages 2 Through 5 Tangential Load Stop Stresses.

- Hot-Day Takeoff, FPS Baseline

| Scages | Tangential <br> Gas Load, <br> N(lbf)/Segment | Load Stop Slug <br> Shear Stress, <br> MPa (ksi) | Nozzle Hook <br> Bearing Stress <br> MPa (ksi) | Casing Hook <br> Bearing Stress, <br> MPa (ksi) |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $2173(488.5)$ | $63.4(9.2)$ | $382.6(55.5)$ | $80.0(11.6)$ |
| 3 | $2288(514.4)$ | $64.8(9.4)$ | $443.3(64.3)$ | $78.6(11.4)$ |
| 4 | $1733(389.6)$ | $37.2(5.4)$ | $182.7(26.5)$ | $55.8(8.1)$ |
| 5 | $1266(284.7)$ | $33.3(4.4)$ | $153.3(22.2)$ | $43.4(6.3)$ |
| Stress |  |  |  |  |
| Limit |  | $372.3(54)$ | $517.1(75)$ | $289.6(42)$ |

ORICANAL PAGE IS
OF POOR QUALITY

Figure 50. LPT Stator Vane FPS Configuration.
OPICINAL PREE IS
OF POOR CGALITY


Figure 81. LPT Stages 2 Through 5 Nozzles: Airfoil stress/Iife at Takeoff.

ORIGINAL PAGE IS OF POOR QUALITY



The circumferential gaps between nozzle segment; for all five LPT stages were set to minimize leakage between nozzle segments but still prevent arch bind The overall sealing scheme throughout the LPT stator is shown in figure 84.

### 4.3.3 LPT Casing

The $E^{3}$ LPT casing is a $360^{\circ}$ case fabricated from two Inco 718 cylindrical forgings connected by one circumferential, electron-beam (EB) weld near the axial center. There are no horizontal flanges as on current, coumercial turbofan engines. Pads for borescope ports (one for each stage) are EB welded in place. Four locs? bolt flanges, for attachment of the cooling manifold, are integrally machined into the outer skin. A total of 132 bolts attach the LPT casing flange to the HPT casing flange, and 120 bolts are used to attach the aft frame flange to the aft casing flange. The LPT nozzles attach to the casing by first engaging the front hook with the nozzle segment tilted forward. The nozzle segment is moved forward and tilted back to engage the aft hook. The shroud set is then installed, and this locks the nozzle segments into the casing (Figure 85).

An analysis of the combined effects of thermal and mechanical loads during transient operation was wade using the computer model CLASS/MASS. The results were used to calculate stress for "worst case" conditions and to calculate casing deflections. These calculations allowed predictions to be made of cooling effectiveness for the ACC system. Calculated stresses are shown in Figures 86 and $8^{\circ}$; LPT clearances jased on deflections are addressed later in this report.

Figure 88 indicates that the containment capability of the LPT casing and shrouds is satisfactory for the calculated impact energy of a given E 3 LPT blade, based on the minimum combined thickness for this design.

### 4.3.4 HPT/LPT Flange Bolt Capability

Tre HPT/LPT connecting-flange bolts are designed to provide axial containment of the LPT rotor in the event the LPT shaft fails. The bolts selected are $0.79 \mathrm{~cm}(5 / 16 \mathrm{in}$.$) in diameter, and in the event of a failure the bolts must$ absorb the energy generated by the aft motion of the free LPT rotor. This bolt diameter provides more than enough energy aborption capability in the event of failure.

### 4.4 ACTIVE CLEARANCE CONTROL (ACC)

### 4.4.1 Approach

The mechanical design of the ACC for the LPT is discussed in Section 3.5 with respect to both purpose and operational characteristics. The basic intent of the design is to allow engine operation with small shroud and seal

$$
\begin{aligned}
& \text { CORE PAGE IS } \\
& \text { ODOR QUALITY }
\end{aligned}
$$

Hourglass Seal (curved into
2. Spline Seals (flat)

Figure 84. Schematic of LPT Sealing Locations and Configurations.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 85. Major Features of the LPT Casing. (see Figure 80)
Analysis Assumptions:


* Includer Respective $\mathrm{K}_{\mathrm{t}}$ Applied to hoop Streas at Sloti for tanbont lal Load Stope
Figure 86. Effective Surface Stresses for LPT Casing Attachments.


| Location |  | (No $\mathrm{K}_{t}$ ) MPa | (ksi) | $\mathrm{K}_{\boldsymbol{t}}$ | LCF Predicted Life, Cycles |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Forward: | A | 241 | (35) | 1.4 | ) |
|  | B | 228 | (33) | 2.32 |  |
|  | C* | 262 | (38) | 1.0 | $10^{5}$ or |
| Aft: | A | 103 | (15) | 1.0 | Greater |
|  | B | 110 | (16) | 3.02 |  |
|  | C | 75.8 | (11) | 1 |  |
|  | D | 207 | (30) | 1.4 | $\bigcirc$ |

- 120 Seconds intc HDTO, Minimum Cooling (Except as Denoted by *)
(* 30 Seconds into HDTO, Minimum Cooling)
- Conclusion: End Flanges Meet 36,000 Cycle Requirements

Figure 87. End- $\mathbf{F l}$ lange Stress/Life on LPT Casing Under Maximum Stress Condition.


Figure 88. LPT Casing Containment Capability
clearances, compared to current designs, in order to prevent significant deterioration in LPT efficiency. The design provides for the directed distribut ion of cooling air at appropriate times on the points of shroud and seal attachments, yet the casing configuration will provide adequate life when subjected to the resiltant thermal cycling.

The description of the ACC configuration, the LPT clearance improvements it provides, and the stress/life of the components are discussed in the follow ing paragraphs.

### 4.4.2 Casing Stress/Life

As discussed in Section 4.3.3, the casing, which is the only component significantly stressed by ACC cycling, is fully capable of completing more than the required 36,000 mission cycles.

### 4.4.3 Cooling Manifold

The air-distribution system for the LPT ACC employs a cooling manifold to deliver air from the fan airflow to be impinged on the LPT case at the outer diameter of the 10 nozzle and shroud support looks. By controlling the temperatures of these support hooks, the casing size is controlled. This, in turn, controls the shroud seal clearance at the blade tip of all five stages. Thus, the efficiency of the LPT is improved.

The complete LPT cooling manifold is composed of four sectors, each covering a $90^{\circ}$ arc (as in Figure 89). Each sector is a backbone/rib-type configuration - ie., an axial distribution manifold with 10 circumferential tubes extending from each side of the manifold (Figure 90). The axial manifold is further divided into aft and forward parts. The forward part of the mani fold contains the seven distribution tubes impinging on the casing over the first four stages of the LPT; the aft portion contains the three distributon tubes impinging on the casing over Stage 5 of the LPT. The forward and aft portions of the manifold are connected by a bolted flange. An orifice plate, installed at engine assembly, allows impingement cooling to be adjusted or eliminated for Stage 5. By testing with various orifice plates, the effedtiveness of the ACC cooling and tip clearance control on Stage 5 of the LPT can be assessed accurately.

The cooling manifold, including the tubes and support brackets, is made of 321 stainless steel. The welded and brazed assembly is fabricated of tubing and sheet stock.

The cooling manifold is secured by a forward, middle, and aft mount at the axial manifold backbone and the tube support on each side of the axial manifold. The forward mount is a hard-mounted, bolted joint. The middle mount is a bolted joint spring-mounted to allow axial slip. The aft mount is composed of two pins captured in and protruding from the LPT aft flange.



ORIGINAL PAGE IS OF POOR QUALITY

Figure $90 . \quad$ LPT Cooling Manifold (Unwrapped View).

These pins engage the aft end of the manifold and the tube supports, allowing axial slip. By allowing axial slip at the middle and aft supports, differential thermal expansion between the LPT case and the cooling menifold is accommodated.

Another feature of the cooling manifold mounting is the capabiiity of separating the HPT/LPT casing interface flange without requiring the removal of the cooling manifold. This is accomplished by positioning the forward mount brackets on the aft side of the bolted flange and designing the HPT/ LPT flange bolts to be inserted from the aft side of the flange. Another important benefit of this bolting arrangement is the small envelope required by the bolt head versus the large envelope required by a nut and protruding bolt threads with the large associated tolerance buildup. The smaller head enve lope allows the front tube of the cooling manifold to be positioned over the front shroud support hook without compromising the impingement distance of the cooling air.

### 4.4.4 Clearance Predictions

Small rotor-to-shroud radial clearances are extremely difficult to achieve and maintain because of the varying dimensional changes of the rotor and shroud that are brought about by operational changes (Figure 91).

With this background, the approach for setting cluse clearances in the E ${ }^{3}$ LPT is as follows:

- For the full aircraft mission, determine radial dimension changes for the rotor ard shrouds, separately. These assume "round engine" conditions.
- Determine clearance deviation values from "round engine" values (e.g., maneuvering, concentricity, etc.).
- Evaluate closure capability of ACC system.
- Include abradable characteristics of biade and shrout (e.g., wear ratio).

Using this approach, the results of "round engine" clearances for the Stage 1 rotor and shroud (casing) are illustrated in Figure 92 . The presented data cover the range of aircraft operating points fron ground idle (GIDLE) through takeoff (T.0.), maximum climb (MXCL), a transient chop to flight idie (FIDLE), then reaccelerat ion (REBURST), out to maximum cruise (MXCR), and cruise (CR). Superimposed on a normal casing-clearance trace are the reduced casing clearances at MXCR and CR with full ACC cooling air on.

Continuing : his apprcach, with Stage 1 as an example, Table XVIII shows the calculated out-of-round deflections. Clearance changes are presented for various sources such as beam bending, vibration, and ovalization and are shown



OF POOR QUALITY
Table XVIII. FPS LPT Stage 1 Clearance Change for Maximum Closure.

| Out-of-Round Factors | Clearance Change $=\operatorname{mm}($ mils $)$, Closure $=-$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Clock Position |  |  |  |
|  | 3 | 9 | 12 | 6 |
| Takcoff Rotation |  |  |  |  |
| Beam Bending | -0.244 (-9.62) | -0.244 (-9.62) | -0.114 (-4.74) | -0.066 (-2.59) |
| Vibration | -0.076 (-3.00) | -0.076 (-3.00) | -0.076 (-3.00) | -0.076 (-3.00) |
| Ovalization | -0.028 (-1.12) | -0.037 (-1.47) | +0.027 (+1.05) | $\underline{+0.041(+1.60)}$ |
| Sum | -0.348(-13.74) | -0.357(-14.09) | -0.193 (-6.69) | $0.031(-3.99)$ |
| 2nd Segment Climb |  |  |  |  |
| Beam Bending | -0.330(-12.99) | -0.330(-12.99) | -0.390(-15.36) | -0.460 (-13.12) |
| Vibration | -0.076 (-3.00) | -0.076 (-3.00) | -0.076 (-3.00) | -0.076 (-3.00) |
| Ovalization | $\frac{-0.024(-0.96)}{-0.430(-16.95)}$ | $\frac{-0.036}{-0.442} \frac{(-1.41)}{(-17.40)}$ |  | $\frac{+0.034(+1.34)}{-0.502(-19} \cdot \frac{78)}{78}$ |
| Sum | -0.430(-16.95) | -0.442 $(-17.40)$ | -0.437(-17.22) | $-0.502(-19.78)$ |
| Low Mach Cruise |  |  |  |  |
| Beam Bending | -0.104 (-4.09) | -0.104 (-4.09) | -0.139 (-5.49) | -0.182 (-7.15) |
| Vibration | -0.076 (-3.00) | -0.076 (-3.00) | -0.076 (-3.00) | -0.076 (-3.00) |
| Ovalization | -0.018 (-0.71) | -0.025 (-1.00) | $\pm 0.021(+0.81)$ | $\underline{+0.024(+0.94)}$ |
| Sum | -0.198(-7.80) | -0.205 (-8.09) | -0.194 (-7.68) | -0.234 (-9.21) |
| Rotor (Root Mean ©quares) |  |  |  |  |
| No Assy. Tip Grind | $0.0003( \pm 0.010)$ | $0.0003( \pm 0.010)$ | $0.0003( \pm 0.010)$ | $0.0003( \pm 0.010)$ |
| With Assy. Tip Grind | $0.00005( \pm 0.002)$ | $0.00005( \pm 0.002)$ | $0.00005( \pm 0.002)$ | $0.00005( \pm 0.002)$ |

## 

for engine operation at three major points: takeoff rotation, climb, and cruise. Deflection values are given at each quadrant (3, 6, 9, 12 o'clock); these are the expected peak-deflection locations. Also listed is the cummulative stackup tolerance of the rocor assembly.

The combination of round-engine deflections wich out-of-round imposed deflections is shown in Table XIX. The shroud/seal diameters are selected such that round-engine clearance is zero initially (rotor/shroud touching) at the minimum closure point (takeoff), and operating gaps are larger at all other operating conditions. Kith calculated out-of-round values added, a maximum rub of $0.036 \mathrm{~cm}(0.014 \mathrm{in}$.) occurs during takeoff and opens up all clearances to the "resultant gaf" values. Reduction of the large resultant gaps (Table XIX) to the desired $0.038 \mathrm{~cm}(0.015 \mathrm{in}$.) gap requires aCC ciosures, as shown, which are well within the capability of the sysier.

A sumary of LPT clearance values is shown in Table XX. This indicates that new engine clearances will be exceptionally good and much better than the 0.038 cm ( $0.0!5 \mathrm{in}$.$) goal. With extended operating time and assuming maximum$ service conditions (imposed out-of-rould condicions), clearances would progressively open to slightly greater than the goal value.

### 4.5 WEIGHT STATUS

A sumary of weights for the LPT components in the FPS design is presenced in Table XXI. All major compunents are represented for the rotor and stator assemblies. As indicated, the rotor and stator assemblies are approximately equal in weight ( 254.4 versus 250.4 kg ). Although rot indicated, the airfoils account for more than half of the total weight.

Table XIX. Typical LPT Stage 1 Combined Clearance Calculation,

| Flisht Condition | Iip <br> Clearance Tound Eacige Ce (in.) | Out-af-ilound Itposed C (in.) | $\begin{gathered} \text { Single Point } \\ \text { (ing.) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Wecultant } \\ \text { Gap } \\ \text { ca (in.) } \end{gathered}$ | ACC Clonure |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { heed for } \\ 0.038 \text { co Gap } \\ (0.015 \mathrm{ia.}) \\ \text { cen (in.) } \end{gathered}$ | $\begin{gathered} \text { Capability } \\ \text { ce (in.) } \\ \hline \end{gathered}$ |
| Cold Assent ly | 1.050 (0.023) | $\cdots$ | -- | 0.094 (0.037) | - | - |
| Takeoff | (0) | 0.036 (0.014) | -0.036 (-0.014)* | 0.036 (0.014) | -- | -- |
| nax. Climb | 0.066 (0.026) | $0.051(0.020)$ | -0.015 ( +0.006 ) | 0.102 (0.040) | $0.064(0.025)=0$ | $0.163 \quad(0.064)$ |
| Cruige | 0.091 (0.036) | $0.023(0.009)$ | *0.069 ( +0.027 ) | 0.127 (0.050) | $0.089(0.035)$ | 0.163 (0.064) |
| Liaicina Eut roint |  |  |  |  |  |  |

##  OF. POOR QUALITY

Table XX. Summary of LPT Clearance Calculations.

| Stages | Critacal Operating Poine | AcC Closure co (in.) |  | Operating Clearance wich 0.004 Rotor Tolerance ca |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Needed | Capabilicy | New | After Max | Servi |
| 1 | Tskeoft | $0.064(0.025)$ | 0.163 (0.064) | 0.010 (0.004) | 0.06110 | .024) |
| 3 | Takeof f | $0.069(0.027)$ | 0.163 (0.064) | 0.010 (0.004) | 0.03810 | .015) |
| 5 | Takeof | 0.114 (0.045) | $0.142(0.056)$ | 0.010 (0.004) | 0.03510 | .037) |
| Coal of 0.038 ce (0.015 in . ) Operating Clearance: |  |  |  |  |  |  |
| - Achieved on All Stages on Nev Engrine |  |  |  |  |  |  |
| - Over Coal if Subjected to Max. Survice Environment |  |  |  |  |  |  |

Table XXI. LPT Weight Sumary.

| Rotor |  | Stator |  |
| :---: | :---: | :---: | :---: |
| Blade Stage | Weight kg (1b) | Vane Stage | Weight kg (1b) |
| 1 | 21.3 (47) | 1 | 26.8 (59) |
| 2 | 24.9 (55) | 2 | 22.7 (50) |
| 3 | 31.7 (70) | 3 | 27.6 (61) |
| 4 | 29.3 (64) | 4 | 31.3 (69) |
| 5 | 28.1 (62) | 5 | 33.1 (73) |

## Disk Stage

| 1 | $14.1(31)$ | Casing, ACC Manifold | $590(130)$ |
| :--- | :--- | :--- | :--- |
| 2 | $17.7(39)$ | Seals, Ring, Fasteners$+9.9(110)$ <br> 3$\quad 22.2(49 ;$ |  |
| 4 | $23.6(52)$ |  |  |
| 5 | $20.0(44)$ |  |  |

Seals, Retain-
ers, Fasteners 21.8 (48)

$$
254.4(561)
$$

Total weight $=504.8 \mathrm{~kg}(1113 \mathrm{lb})$

ORIGINAL PASE IS
OF POOR QUALITY

Suction Surface

| 2 | $R$ | RTHETA |
| :---: | :---: | :---: |
| 2.694786 | 13.122117 | 0.030561 |
| 2.696492 | 13.122778 | 0.016558 |
| 2. 703018 | 13. 125302 | 0.002359 |
| 2.714366 | 13. 129676 | -0.011913 |
| 2730552 | 13. 135881 | -0.026059 |
| 2.751585 | 13.143883 | -0.039810 |
| 2.777482 | 13. 153642 | -0.052830 |
| 2. 808266 | 13. 165107 | -0 064734 |
| 2.843956 | 13.178217 | -0.075092 |
| 2.884575 | 13.992898 | -0.083455 |
| 2.930147 | 13.209066 | -0.089362 |
| 2. 980693 | 13.226624 | -0.092366 |
| 3.036236 | 13.245453 | -0.092053 |
| 3.073814 | 13.257939 | -0.089972 |
| 3.073814 | 13.257939 | -0.089972 |
| 3. 130784 | 13.276438 | -0.084117 |
| 3. 187758 | 13.294437 | -0.075142 |
| 3. 244626 | 13.371903 | -0.063115 |
| 3. $30: 316$ | 13.328817 | -0.048166 |
| 3. 357746 | 13345099 | -0.030356 |
| \%. 413857 | 13.360700 | -0.009794 |
| 3469594 | 13.375772 | 0.01346 C |
| 3.524908 | 13.390312 | 0.03934 , |
| 3.579780 | 13 404324 | 0067763 |
| 3634173 | 13.4178:0 | 0.098679 |
| 688089 | 73.30779 | 0.131951 |
| 3.741512 | 13.443240 | 0.167661 |
| 3.794449 | 13.455096 | 0.205622 |
| 3. 846904 | 13.466579 | C. 245827 |
| 3898903 | 13.477725 | 0.288205 |
| 3950445 | 13488562 | 0.332736 |
| 4001573 | -3.499098 | 0.379347 |
| 4.052293 | 13.509339 | 0.428027 |
| -102650 | 92.519299 | 0.478724 |
| 4. 152678 | 13528989 | 0.531400 |
| 4. 202398 | 13.538452 | 0.586041 |
| 4. 251360 | 13.547836 | 0.542604 |
| 4.301093 | 13.557159 | 0.701074 |
| 4 350142 | 13566429 | 0761415 |
| 4399054 | 13.575655 | 0.823624 |
| 4.447862 | 13584844 | 0.887682 |
| 4496606 | 13594084 | 0.953568 |
| 4545331 | 13.603142 | 1.021258 |
| 4594090 | +3.612388 | 1.090703 |
| 4.642917 | 13621965 | 1.161862 |
| 4.691873 | 13.631642 | 1. 234685 |
| 4 741005 | 13.641427 | 1. 309137 |
| 4. 782538 | 13.649756 | 1. 373048 |

Pressure Su: ace

| Pressure Su: 'ace |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 2 | Q | RTHETA |
| 2 | 694786 | 13.122117 | 0.030561 |
| 2 | 697191 | 13. 123049 | 0.040420 |
| 2 | 703402 | 13. 125450 | 0.050067 |
| 2 | 713414 | 13.129310 | 0.059448 |
| 2 | 727224 | 13.134609 | 0.068494 |
| 2 | 744829 | 13. 141320 | 0.077134 |
| 2 | . 766226 | 13.149413 | 0.085330 |
| 2 | . 791417 | 13.158850 | 0.09319 |
| 2 | . 820410 | 13.169590 | O. 100619 |
| 2 | 853220 | 13.181587 | O. 100169 |
| 2. | 897383 | 13.197474 | O. 117819 |
| 2. | 944431 | 13214067 | 0.127954 |
|  | . 991263 | 13.230245 | 0.138285 |
|  | . 037883 | 13.246015 | 0.149255 |
|  | . 037883 | 13.246C15 | O. 149255 |
| 3. | 084424 | 13.261422 | 0.161003 |
| 3. | 131018 | 13.276513 | 0.1736 4 |
| 3. | 177773 | 13.291319 | O.187395 |
| 3. | 224764 | 13.305859 | 0.202235 |
| 3 | . 272073 | 13 320154 | 0.213286 |
| 3. | 319756 | 13334212 | 0.235653 |
| 3. | 367879 | 13347946 | 0.254404 |
| 3. | 416465 | 13.361415 | 0.274397 |
| 3 | ${ }^{4} 65558$ | 13.374695 | 0.296531 |
| 3 | 515188 | 13.387787 | 0.319647 |
| 3 | $565352$ | 13400680 | 0.344633 |
|  | 616064 | 13.13365 | 0.3713:7 |
|  | 667320 | 13.425830 | 0.399821 |
|  | 719114 | 13.438063 | 0.430134 |
|  | 771422 | 13.449988 | 0.462344 |
| 3 | 824244 | 13.461642 | 0.496469 |
| 3 | 877536 | 13.473168 | 0.512577 |
|  | 931292 | 13.484560 | $0.570684$ |
|  | $985269$ | $13.495803$ | $0.610832$ |
|  | 040031 | 13.506882 | $0.653068$ |
| 4. | 094959 | 13.517791 | 0.697403 |
| 4 | 1502\%2 | 13.528514 | $0.743880$ |
| 4. | 205728 | 13.539084 | $0.792516$ |
|  | $26: 496$ | 13.549662 | $0.843335$ |
| 4 | 317459 | 13560254 | $0.895364$ |
| 4 | 373582 | 13.570853 | $0.951622$ |
| 4 | 429826 | $13.581451$ | $1009148$ |
|  | 486146 | 13.592040 | 1009148 1068936 |
| 4 | 542489 | 13.602610 | $\frac{1}{1} \frac{068936}{130990}$ |
|  | 598848 | 13.613342 | $1.130990$ |
|  | $6550^{-2}$ | 13.624361 | $1.195277$ |
|  | 719 | 13.635483 | $1.261774$ |
|  | 758,78 | 13.644892 | $\frac{1.330465}{1.389989}$ |

LPT Stator 1 Airfoll Coordinates,
10\% From Hub

$$
\begin{gathered}
C \\
C- \\
C
\end{gathered}
$$

Suction Surface
Suction Surface

|  | 2 | R | Qtheta |
| :---: | :---: | :---: | :---: |
| 2 | 695141 | 14.432846 | 0.030556 |
| 2 | 696609 | 14.433523 | 0.017093 |
| 2 | 703456 | 14.436673 | 0.003187 |
| 2 | 715697 | 14.442292 | -0.011030 |
| 2 | 733349 | 14.450362 | -0.025339 |
| 2 | 756441 | 14.460863 | -0.039438 |
| 2. | 785008 | 14.473766 | -0.052949 |
| 2. | 819094 | 14.489033 | -0.265419 |
| 2 | 858742 | 14.506616 | -0.075340 |
| 2 | 904007 | 14.526460 | -0.085142 |
| 2. | 954944 | 14.548498 | -0.091218 |
| 3 | 011612 | 14.572652 | -0.093923 |
| 3. | 016001 | 14.574507 | -0.093971 |
| 3. | 016001 | 14.574507 | -0.093971 |
| 3 | 073725 | 14.598685 | -0.092561 |
| 3 | 131757 | 14.622590 | -0.087396 |
| 3. | 189947 | 14.646156 | -0.078559 |
| 3 | 248138 | 14.669318 | -0.086073 |
| 3 | 306200 | 14.692024 | -0.05005 1 |
| 3 | 364014 | 14.714167 | -0.030547 |
| 3. | 421471 | 14.735717 | -0.007625 |
| 3 | 478493 | 14.756759 | 0.018624 |
| 3 | 533014 | 14.777273 | 0048121 |
| 3. | 590980 | 14.797265 | 0.080776 |
| 3 | 646358 | 14.816717 | 0.116520 |
| 3 | 701114 | 14.835633 | 0.155286 |
| 3. | 755255 | 14.8540:1 | 0. 196988 |
| 3. | 808775 | 14.871592 | 0241560 |
| 3. | 861673 | 14.888852 | 0.288954 |
| 3. | ¢ 13972 | 14.905804 | 0.339103 |
| 3 | 965695 | 14. 322459 | 0.391961 |
| 4 | 016865 | 14.938828 | 0.447482 |
| 4 | 067528 | 14.954930 | 0.50512 |
| 4 | 117799 | 14.970777 | 0.566312 |
| 4 | 167458 | 14.986380 | 0.629564 |
| 4 | 216813 | 15.001891 | 0.695310 |
| 4 | 265810 | 15.017432 | 0.763541 |
| 4 | 314506 | 15.033017 | 0834273 |
| 4 | 362938 | 15.048657 | 0.907299 |
| 4 | 411159 | 15.064366 | 0.982811 |
| 4 | 459218 | 15.080158 | 1060684 |
| 4 | 507159 | 15.096047 | 1.140902 |
| 4 | 555017 | 15.:12044 | 1 223441 |
| 4 | 602860 | 15.128425 | 1. 308234 |
| 4. | 650716 | 15.145297 | 1.395230 |
| 4. | 698645 | 15.162444 | 1.484369 |
| 4 | 746698 | 15.179887 | 1. 575613 |
| 4 | 788324 | 15.195200 | 1.656095 |

Pressure Surface

| 2 | R | RTHETA |
| :---: | :---: | :---: |
| 2.695141 | 14.432846 | 0.030555 |
| 2.698338 | 14.434319 | 0.040522 |
| 2.706045 | 14.437863 | 0.050009 |
| 2.718250 | 14.443461 | 0.058872 |
| 2.734937 | 14.4E4086 | 0.066936 |
| 2.756093 | 14.460705 | 0.074084 |
| 2.781728 | 14.472289 | 0.080389 |
| 2.811879 | 14.485813 | 0.086285 |
| 2.846640 | 14.501269 | 0.092763 |
| 2.851788 | 14.503546 | 0.093786 |
| 2.899306 | 14.524411 | 0.104099 |
| -945928 | 14.544620 | 0.114836 |
| 2.992048 | 14.564357 | 0.125868 |
| 2.592048 | 14564357 | 0.125868 |
| 3.037780 | 14.583676 | 0. 138157 |
| 3.083273 | 14.602645 | 0.151587 |
| 3.128677 | 14.621331 | 0.168278 |
| 3.174149 | 14.639798 | 0.182296 |
| 3.219820 | 14.658097 | 0. 199777 |
| 3.265810 | 14.676271 | 0.218820 |
| 3.312226 | 14.694357 | 0.239495 |
| 3.359149 | 14.712327 | 0.261937 |
| 3.406645 | 14.730189 | 0.286237 |
| 3.454766 | 14.748045 | 0.312499 |
| 3.503548 | 14.765897 | 0.340819 |
| 3.553023 | 14.783746 | 0.371263 |
| 3.603186 | 14.801581 | 0.403933 |
| 3.654041 | 14.819390 | v. 438907 |
| 3.705592 | 14.837165 | 0.478231 |
| 3.757813 | 14.854854 | 0.515976 |
| 3.810682 | 14.872216 | 0.558989 |
| 3.864178 | 14.889666 | $0 . 6 \longdiv { 2 9 1 8 }$ |
| 3.918252 | 14.907486 | 0.650219 |
| 3.972871 | 14.924761 | 0.700124 |
| 4.028013 | 14.942380 | 0.752650 |
| 4.083613 | 14.960019 | 0.807845 |
| 4. 139641 | 14.977686 | 0.865718 |
| 4.196042 | 14.995346 | 0.926304 |
| 4.252780 | 15.013285 | 0.989608 |
| 4.309801 | 15.031505 | 1.055651 |
| 4.367055 | 15.049943 | 1. 124445 |
| 4.424499 | 15.068736 | 1. 986053 |
| 4.482097 | 15.087724 | 1. 270405 |
| 4.539780 | 15.106936 | 1.347498 |
| 4.597517 | !5. 128557 | 1.427273 |
| 4.655248 | 15.148908 | 1. 509682 |
| 4.712922 | 15.167601 | 1.594699 |
| 4.762857 | 15.185736 | 1.670210 |

LPT Stage 1 Airfoil Cocisinates
50\% From Hub
origliati Paj: :OF POOR QUALITY

Suction Surface Pressure Surface

| 2 | $R$ | RTHETA | 2 | R | RTHETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.695176 | 15.657798 | 0.030556 | 2.695176 | 15.657798 |  |
| 2.596574 | 15.658738 | 0.048183 | 2.698280 | 15.659886 | 0.030556 0.039654 |
| 2.703170 | 15.663172 | 0.005333 | 2.705744 | 15.664899 | O. 048271 |
| 2.714975 | 15.671089 | -0.007896 | 2.717558 | 15.672819 | $\frac{0}{0} 056294$ |
| 2.732002 | 15.682474 | -0.021345 | 2.733707 | 15.683611 | $0053591$ |
| 2.754276 | 15.697303 | -0.034793 | 2.754186 | 15.697244 | $0.070100$ |
| 2.781824 | 15.715543 | -0.047999 | 2.779007 | 15.713683 | $0.075941$ |
| 2.814679 | 15.737452 | -0.060497 | 2.808215 |  |  |
| 2.852882 | 15.762079 | -0.072010 | 2.841908 | 15.732913 15.754940 | $\begin{aligned} & 0.081573 \\ & 0.087977 \end{aligned}$ |
| 2896477 | 15.790265 | -0.082048 | 2.851944 | 15.761469 | 0.09006 |
| 2.945512 | 15.821638 | -0.090106 | 2.900030 | 15.792550 | $0.101185$ |
| 3.000044 | 15.856117 | -0.095633 | 2.947201 | $45.8 \frac{2250}{22712}$ | $0.112763$ |
| 3.014307 | 15.865064 | -0.098537 | 2.993695 | 15.852125 | $0.125029$ |
| 3.044307 | 15.865064 | -0.096537 | 2.993695 | $15.852125$ | $\begin{aligned} & 0.125029 \\ & 0.125029 \end{aligned}$ |
| 3. 071924 | 15.900903 | -0.097962 | 3.039509 | $15.880800$ | $\begin{aligned} & 0.125029 \\ & 0.138348 \end{aligned}$ |
| 3. 130124 | 15.936614 | -0.095757 | 3.084805 | 15.908849 | $0.152704$ |
| 3. 188708 | 15.972081 | -0.089890 | 3.129784 | $15.93640^{\circ}$ |  |
| 3. 247524 | 16.007145 | -0.080351 | 3.174599 | $15.963570$ | $0.184816$ |
| 3. 306421 | 18.041773 | -0.067124 | 3.219401 | 15.990433 | $0.202714$ |
| 3. 365245 | 16.075771 | -0.050206 | 3.264348 |  | $\frac{0.202714}{0.221967}$ |
| 3. 423842 | 16. 109067 | -0.029634 | 3.309592 | 16.017088 16.043623 | $0.221967$ $0.242665$ |
| 3.482073 | 16. 141716 | -0.005424 | 3.355275 | $\text { tE. } 070062$ | O. 242665 <br> O. 264917 |
| 3.539831 | 16. 173669 | 0.022349 | $3.401504$ | $16.096426$ | $\begin{aligned} & 0.264917 \\ & 0.288853 \end{aligned}$ |
| 3.597011 | 16. 204871 | 0.053634 | 3.448386 | 16.122882 | O. 0.314578 |
| 3. 653540 | 16.235316 | 0.086352 | 3.495992 | 16.122882 16.149456 | 0.314578 0.342229 |
| 3.709365 | 16.264971 | 0. 26417 | 3.544379 | $16.178+66$ | 0.342229 0.371929 |
| 3764449 | 16. 293799 | O. 167755 | 3.593581 | $16.203017$ | 0.371929 0.403787 |
| 3818758 | 16. 321775 | 0242306 | 3.643637 | $\frac{16.203017}{162300+3}$ | 0.403787 |
| 3.872289 | 16. -3129 | 0.259982 | 3.643637 | 16.230013 | O. 437915 |
| 3.925053 | 16.375878 | 0.310703 | 3.694546 3.746299 | 16257138 16 | O. 474408 |
| 3.977061 | 16.402034 | 0.364409 | 3.746299 3.798886 | $\begin{aligned} & 16.284371 \\ & 16.311565 \end{aligned}$ | O. 513379 |
| 4.028346 | 16427624 | 0.421029 | 3.852273 | $\frac{16.311565}{16.33927}$ | O. 554896 |
| 4.078947 | 16.452676 | 0.480505 | 3. 906422 |  | O. 599044 |
| 4. 128905 | 16.477218 | $0.5 凶 2778$ | 3. 961291 | 16.366457 | 0.645884 |
| 4178268 | 16.501300 | 0.607801 | 4.016933 | 16.394125 | 0.695479 |
| 4. 227097 | 16.525100 | 0.675509 | 4.016833 | 16.421897 | O. 747873 |
| 4. 275458 | 16.548644 | $0.74585^{\circ}$ | +.072986 | 16.449735 | 0803119 |
| 4.323394 | 16.571954 | 0.818804 | 4. 129684 | 16.477599 | 0.864249 |
| 4.370996 | 16.595074 | 089428. | 4. 186883 | 16.505501 | 0.922277 |
| 4.418315 | 16.618031 | 0.972286 | 244 | 16. 533572 | O. 986240 |
| 4. 465419 | 16.640857 | 1.052759 | 4.3024 | 16561779 | 1.053139 |
| 4512385 | 16.663590 | 1.135658 | 4.360-23 | 16.590086 | 1.122982 |
| 4.559269 | 16.686257 | 1. 220937 | 4.419196 | 16.618458 | 1. 195836 |
| 4. 606137 | 16.709060 | 1.30852 1 | 4. 4.7827 | 16.646865 | 1.271632 |
| 4.653073 | 16.732050 | 1.398317 | 4.536546 | 16.675274 | 1.350337 |
| 4.700163 | 16.755153 | 1.450242 | 4. 595268 | 16.703742 | 1.431895 |
| 4.747464 | 16.778392 | 1. 584247 | 4.653904 | 16.732457 | 1.51624: |
| 4.788697 | 16.798692 | 1. 667427 | 4.712397 | 16.761161 | 1.603228 |
|  |  |  | 4.762961 | 16.786021 | 1.684049 |

LPT Stator 1 Airfoil Coordinates
90\% From Hub

Suction Surface

|  | 2 | $\bar{\square}$ | RTHETA |
| :---: | :---: | :---: | :---: |
|  | 473056 | 13.850044 | 0 |
|  | 469523 | 13.799177 | 0.005729 |
|  | 468323 | 13.798883 | 0.013794 |
|  | . 469537 | 13.799181 | 0.024116 |
| 5. | 473290 | 13.800101 | 0.035573 |
| 5 | . 479733 | 13. 901679 | 0.051019 |
|  | . 489018 | 13.803948 | 0.067308 |
| 5 | . 501269 | 13.808933 | 0.085322 |
| 5. | . 515539 | 13.810638 | 0.105009 |
| 5 | 534772 | 13.815042 | 0.126428 |
| 5 | 552902 | 13.8:9397 | 0.146528 |
| 5 | . 552902 | 13.819397 | 0.146528 |
| 5 | . 579050 | 13.825639 | 0.173780 |
| 5 | . 605876 | 13.831994 | 0.199706 |
| 5 | . 633443 | 13.838472 | 0.224410 |
| 5 | . 661801 | 13.845081 | 0.247888 |
| 5 | .69:013 | 13.851831 | 0.270057 |
| 5 | 721131 | 13.858692 | 0290691 |
| 5 | . 752169 | 43.865692 | 0309568 |
| 5 | 784160 | 13.872854 | 0.325481 |
|  | . $817+27$ | 13.880179 | 0.341202 |
| 5 | 851046 | 13.887656 | 0.353480 |
| 5 | . 885841 | 13.895263 | 0.363037 |
| 5 | . 921364 | 13.902964 | 0.369608 |
|  | . 957405 | 13.910728 | 0.372980 |
| 5 | . 993737 | 13.918529 | 0.373016 |
| 6 | 030085 | 13.926305 | 0.369618 |
| 6 | O86067 | 13.933975 | 0.362800 |
| C | :01331 | 13.941465 | 0.352703 |
| 6 | . 135642 | 13.548729 | 0.339525 |
| 6 | . 168872 | 13.955729 | 0.323515 |
| 5 | 201007 | 13.962451 | 0.304905 |
| 3 | 232074 | 13.968975 | 0.283866 |
| 6 | 262163 | 13.975316 | 0.260559 |
| 6 | 291371 | 13.981493 | 0.235114 |
| 6 | 319781 | 13.987522 | 0.207668 |
| 6 | 347477 | 13.993419 | 0.178298 |
| 6 | 374609 | 13.999215 | 0.147053 |
| 6 | 401316 | 14.004961 | 0.113909 |
| 6 | 427758 | 44.010759 | 0.078819 |
| 6 | 454089 | 14.016574 | 0.041717 |
| 6 | 480103 | 14.022424 | 0.002585 |
| 6 | 506762 | 14.028324 | -0.038537 |
| 6 | 533138 | 14.034268 | -0.081571 |
| 6 | 559509 | 14.040250 | -0.126307 |
| 6 | 585888 | 14.046274 | -0.172518 |
| 6 | . 612296 | 14.052345 | -0.220030 |
| 6 | . 631968 | 14.056892 | -0.256137 |

Pressure Surface

2 R RTHETA

| 5.473056 | 13.800044 | 0. |
| :---: | :---: | :---: |
| 5.477397 | 13.801107 | -0.002693 |
| 5.483228 | 13.802534 | -0.003789 |
| 5.490483 | 13.804306 | -0.003225 |
| 5.499083 | 13.806401 | -0.000924 |
| 5.508991 | 13.808809 | 0.003153 |
| 5.520275 | 13.811542 | 0.008937 |
| 5.533204 | 13.514664 | 0.016170 |
| 5.553284 | 13.819489 | 0.027149 |
| 5.585935 | 13.827275 | 0.044108 |
| 5.618165 | 13.834888 | 0.060296 |
| 5.818165 | 43.834888 | 0.060296 |
| 5.649855 | 13.842304 | 0.075893 |
| 5.880865 | 13.849493 | 0.090894 |
| 5.711136 | 13.856427 | O. 105048 |
| 5.740615 | 13.863092 | 0.118078 |
| 5. 769240 | 13.869520 | O. 129731 |
| 5. 796959 | 13.875704 | O. 139919 |
| 5.323759 | 13.88:645 | O. 148623 |
| 5.849606 | 13.887339 | 0.155853 |
| 5. 874476 | 13.892785 | O. 161669 |
| 5.898394 | 13.897992 | O. 166160 |
| 5.921436 | 13.902980 | 0.169464 |
| 5.943750 | 13.907789 | 0.171723 |
| 5.965547 | 13.912479 | 0. 173049 |
| 5.987052 | 13.917096 | 0.173470 |
| $6.00854:$ | 13.921699 | 0. 172976 |
| 6.030397 | 13.926371 | 0.171455 |
| 6.052970 | 13.931186 | O. 168781 |
| 6.076496 | 13936193 | O. 164781 |
| 6.101103 | 13.941417 | O. 159230 |
| 6. 126806 | 13.946860 | 0. 152027 |
| 6. 153576 | 13.952515 | 0. 143044 |
| 6. 131324 | 13.958331 | O. 132140 |
| 6.209954 | 13.964328 | 0. i19165 |
| 6.239381 | 13.970513 | 0.103952 |
| 6. 269522 | 13.976870 | 0.086413 |
| 6. 300227 | 13.983370 | 0.066466 |
| 6.331358 | 13.989985 | 0.044005 |
| 6.362753 | 13.996680 | 0.018838 |
| 8.394259 | 14.003424 | -0.009294 |
| 6.425783 | 14.010325 | -0.040630 |
| 6.457261 | 14.017277 | -0.075154 |
| 6.488722 | 14.024282 | -0.112599 |
| 6. 520188 | 14.031344 | -0. 152540 |
| 6.551647 | 14.038462 | -0.194520 |
| 6. 583078 | 14.045630 | -0.238211 |
| 6.606412 | 14.050989 | -0.271702 |

LPT Rotor 1 Airfoil Coordinates
10\% From Hub
onncis:
OF POOR QUAZ i

Suction Surface
Pressure Surface

| $\bar{z}$ | 2 | RTHETA |
| :---: | :---: | :---: |
| 5. 491467 | 15.465573 | 0. |
| 5.488070 | 15.464274 | 0.005048 |
| 5. 486897 | 15.463826 | 0.012695 |
| 5. 488038 | 15.464262 | 0.022865 |
| 5. 491634 | 15.465637 | 0.035440 |
| 5497852 | 15.468014 | 0.050284 |
| 5. 506861 | 15.471454 | 0.067257 |
| 5. 518797 | 15.476007 | 0.086248 |
| 5. 533721 | 15.481692 | 0. 107211 |
| 5. 542783 | 15.485139 | 0.199055 |
| 5. 542783 | 15.485139 | O. 119055 |
| 5. 567559 | 15.494547 | 0.148827 |
| 5. 593048 | 15.504201 | 0.176088 |
| 5.619287 | 15.514111 | 0.201197 |
| 5.646559 | 15.524381 | 0.224343 |
| 5. 675059 | 15.535082 | O. 245552 |
| 5.704991 | 15.546284 | 0.264670 |
| 5.736282 | 15.557899 | 0.281286 |
| 5. 768699 | 15.569907 | O. 294924 |
| 5. 802051 | 15.582240 | 0.305291 |
| 5.836105 | 15.594809 | 0.312133 |
| 5.870606 | 15.607521 | 0.315248 |
| 5905253 | 15.620264 | 0.314565 |
| 5939759 | 15.632919 | O. 310059 |
| 5.973823 | 15.645422 | O. 301793 |
| 6.607263 | 15.657730 | 0289945 |
| 6.039929 | 15.669786 | O.274713 |
| 6.071616 | 15.681513 | O. 256395 |
| 6. 102215 | 15.692867 | 0. 235356 |
| 6. 131624 | 15.703806 | 0211965 |
| 6. 159856 | 15714394 | O. 186554 |
| 6.187192 | 15.724729 | - 159184 |
| 6.213870 | 15.734857 | C. 129807 |
| 6.240027 | 15.744828 | 0.098489 |
| 6.265762 | 15.754677 | - 065306 |
| 6. 291127 | 15.764423 | 0.030363 |
| 6. 316161 | 15.774079 | -0.006244 |
| 6340967 | 15.783683 | -0.044496 |
| 6. $3650{ }^{\circ} 7$ | 15.793283 | -0.084433 |
| 6.390415 | 15.802927 | -0.126133 |
| 6.415315 | 15.812668 | -0.169715 |
| 6.440434 | 15.822530 | -0.215186 |
| 6.465777 | 15.832516 | -0.262394 |
| 6.491269 | 15.842598 | -0.311013 |
| 6.516788 | 15.852726 | -0.360531 |
| 6.542162 | 15.862834 | -0.410480 |
| 6. 567264 | 15.872869 | -0. 460530 |
| 6.585714 | 15.880268 | 0.497669 |


| 2 | $k$ | RTHETA |
| :---: | :---: | :---: |
| 5.491467 | 15.465573 | 0 |
| 5.495138 | 15.466977 | -0.001890 |
| 5. 499917 | 15.468802 | -0.002379 |
| 5.505731 | 15.471023 | -0.00:402 |
| 5.512487 | 15.473601 | 0.001117 |
| 5.520125 | 15.476513 | 0.005228 |
| 5.528684 | 15.479774 | 0.010900 |
| 5.538391 | 15.483469 | 0.017945 |
| 5.56746 | 15.494511 | 0.038299 |
| 5.598196 | 15.506:47 | 0.057987 |
| 5.598196 | 15.506147 | 0.057987 |
| 5.627972 | 15.517385 | 0.075366 |
| 5.657034 | 15.528318 | 0.091068 |
| 5. 685346 | 15.538936 | O. 105379 |
| 5.712626 | 15.549124 | 0.118160 |
| 5.738677 | 15.558787 | 0. 129012 |
| 5.763297 | 15.567907 | O. 137517 |
| 5.786558 | 15.576514 | O. 143597 |
| 5.808692 | 15.584693 | 0.147563 |
| 5.829891 | 15.592517 | 0.149743 |
| 5.850389 | 15.600075 | O. 150473 |
| 5.870440 | 15.607459 | 0. 150034 |
| 5.890338 | 15.614780 | O. 148534 |
| 5.910389 | 15.622149 | 0.145994 |
| 5.930877 | 15.629665 | 0.142308 |
| 5. 951988 | 15.637404 | 0.137200 |
| 5.973873 | 15.645440 | 0.130309 |
| 5.996738 | 15.653852 | 0.121216 |
| 6.020690 | 15.662681 | 0. 109586 |
| 6.045833 | 15.671969 | 0.095295 |
| 6.072152 | 15.681712 | 0.078532 |
| 6. 099368 | 15.591809 | 0.059707 |
| 6. 127241 | $15.702: 74$ | 0.039005 |
| 6. 155636 | 15.712802 | 0.016303 |
| 6. 184452 | 15.723691 | -0.008554 |
| 6. 213638 | 15.734769 | -0.035663 |
| 6. 243155 | 15.745023 | -0.064969 |
| 6. 272901 | 15.757417 | -0.096361 |
| 6. 302748 | 15.76890 | -0. 129865 |
| 6. 332556 | 15.780423 | -0.165657 |
| 6. 362207 | 15.791935 | -0. 203975 |
| 6. 391640 | 15.803406 | -0.245005 |
| 6. 420848 | 15.814838 | -0.288615 |
| 6.449908 | 15.826259 | -0.334354 |
| 6. 478940 | 15.837717 | -0.381497 |
| 6. 508118 | 15.849281 | -0.429216 |
| 6. 537567 | 15.861001 | -0.476893 |
| 6. 559658 | 15.869925 | -0.512080 |

LPT Rotor 1 Airfoil Coordinates
50\% From Hub

Suction Surface
Pressure Surface

| 2 | R | RTHETA | $z$ | $R$ | QTHETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.483884 | 17.134516 | 0 | 5. 483884 | 17.134516 | 0 |
| 5.481210 | 17.133305 | 0.005321 | 5.487163 | 17.136001 | 0.002306 |
| 5. 480966 | 17.133194 | 0.012825 | 5.491670 | 17.136001 17.138042 | 0.002306 0.003427 |
| 5.483213 | 17.134212 | 0.022443 | $\frac{5.49161342}{5.4973}$ | $\frac{17.138042}{17.40608}$ | -0.003427 |
| 5.488047 | 17. 436402 |  | 5.504098 | 17. 17 40608 | -0.003292 |
| 5.495580 | 17.139811 | 0.047596 | 5.511884 | 17.143662 | -0.001815 |
| 5. 505922 | 17.144486 | 0.062889 | 5.511884 5.520723 | 17.147179 17.151167 | 0.001065 |
| 5.519159 | 17.150462 | 0.079865 | 5.53078 \% | 17.151167 | 0.005325 |
| 5.535316 | 17.157743 | O. 098498 | 5. 556774 | 7. 155703 | 0.010776 |
| 5.539410 | 17.159586 | 0.102988 | 5. 587161 | 17.167392 | 0.024742 |
| 5. 539410 | 17.159586 | O. 11,2988 | 5.58716t | 17. 181013 | 0.040235 |
| 5. 564354 | 17.170794 | 0.128786 | $\frac{5.587164}{5.516724}$ | 17.181013 | 0.040235 |
| 5.589870 | 17.182225 | 0 i52729 | 645714 | 17.194219 | 0.054381 |
| 5.616036 | 17.193912 | $\div .175007$ | 67 | 17.207123 | 0. J67525 |
| 5. 643061 | 17.205943 | 0.195786 | 5. 701535 | 17.219694 | 0.079830 |
| 5.671102 | 17.218386 | 0.215023 | 5.728004 | 17.231837 | 0.091036 |
| 5.700269 | 17.231282 | 0.232571 | 5.753340 | 17.243423 | 0. 100773 |
| 5.730458 | 17.244498 | 0.247990 | 5.777657 | 17.254502 | O. 108688 |
| 5.761434 | 17.258037 | 0.260933 | 5.777657 5.801187 | 17.265119 | 0.114806 |
| 5.793280 | 17.271934 | 0.271215 | $\frac{5.801187}{5.823847}$ | 17.275381 | 0.119399 |
| 5.826121 | 17.286241 | 0.278620 | 5.845513 | 17.285251 | 0. 122639 |
| 5.859822 | 17.300897 | 02782837 | 5.866318 | 17.294677 | O. 12455 s |
| 5.894107 | 17.315780 | 0.283631 | 5.866318 5.886539 | 17.303719 | O. 125136 |
| 5. 928644 | 17.330761 | 0.2808 .3 | $\frac{5.886539}{5.406508}$ | 17.312457 | O. 124315 |
| 5. 963036 | 17.345724 | 0.274406 | 5.906508 5.926622 | 17.321157 | O. 122482 |
| 5.996780 | 17.360439 | $0 \cdot \frac{264427}{264}$ | 5.926622 5.947385 | 17.329883 | O 118987 |
| 6.029492 | 17.3747 .3 | 0.251201 | 5.947385 | 17.338911 | O. 113866 |
| 6.061046 | 17.388556 | 0235021 | 5.969 | 17.348400 | O. 106944 |
| 6.09145: | 17.401901 | 0.216146 | 5.9921 | 17.358410 | O. 098163 |
| 6.120871 | 17414839 | O. 494703 | 6.01623 | 17.368937 | 0.087511 |
| 6. 149488 | 17.427467 | O. 170791 | 6.041518 | 17.379912 | 0.075019 |
| 6. 177398 | 17.439843 | 0.144534 | 6.067207 | 17.391258 | 0.060563 |
| 6. 204684 | 17.451990 | O. 116065 | 6093804 | 17.402934 | 0.043899 |
| 6.231323 | 17.463893 | 0.085563 | 6.121024 | 17.44906 | 0.024776 |
| 6. 257329 | 17.475556 | 0.053230 | 6. 148891 | 17.4272 C 2 | 0.003054 |
| 6. 282822 | 17.487030 | 0.019143 | 6.177391 | 17.439840 | -0.021160 |
| 6. 307920 | 17.493365 | -0.016706 | 6.206405 | 17.452758 | -C.047580 |
| 6. 332783 | 17.509632 | -0.054345 | 6. 235812 | 17.467,904 | -0.076037 |
| 6. 357564 | 17.520905 | -0.093854 | 6. 265456 | 17.479210 | -0.106569 |
| 6. 382372 | 17.532259 | -0.135264 | 6. 295181 | 17.432607 | -0. 139387 |
| 6.407283 | 17.543705 | -0.178543 | 6. 324879 | 17506046 | -0.174771 |
| 6.432336 | 17.555263 | -0.223629 | 6.354474 | 17.519494 | -0.212822 |
| 6.457533 | 17.566933 | -0.270395 | 6.383927 | 17.532972 | -0.25.3478 |
| 6. 482817 | 17.578691 | -0.318648 | 6.413237 | 17.546448 | -0.296518 |
| 6. 508151 | 17.590518 | -0.368094 | 6.442459 | 17.559946 | -0.341601 |
| 6.533508 | 17.602403 | -0.419451 | 6.471631 | 17573483 | -0.388302 |
| 6.558881 | 17.614343 | -0.469511 | 6.500781 | 17.587072 | -0.436190 |
| 6. 577914 | 17.623331 | -0.508169 | $\frac{6.529914}{6.551741}$ | 17.600716 | -0.484956 |
|  |  |  | 6.551741 | 17610979 | -0.521977 |

LPT Rotor 1 dirfoil Coordinates
$90 \%$ From Hub

# OR:GINAL PACE IS OF rOOR QL'ALITY 

Suction Surface

| $\geq$ | R | RTHETA | 2 | R | RTHETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7. 356423 | 14.205099 | 0. | 7. 356423 | 14.205098 | 0. |
| 7.352095 | 14.204351 | -0.007793 | 7. 362579 | 14. 206161 | 0.003728 |
| 7.351199 | 14. 204195 | -0.018871 | 7.371271 | 14.207662 | 0.004962 |
| 7. 353842 | 14. 204653 | -0.033125 | 7.382500 | 14.209600 | 0003705 |
| 7.360189 | 14.205743 | -0.050388 | 7.396278 | 14.211977 | -0.000034 |
| 7.370435 | 14.207548 | -0.070463 | 7412630 | 14214797 | -0.006229 |
| 7.384775 | 14.209993 | -0.093152 | 7. 431617 | 14.218069 | -0.014821 |
| 7.403362 | 14.213199 | -0.118302 | 7.453345 | $14.22 \overline{811}$ | -0.025700 |
| 7.426252 | 14.217144 | -0.145859 | 7477993 | 14.226052 | -0.038689 |
| 7.453344 | 14.221810 | -0.175925 | -. 503339 | 14.230411 | -0.052248 |
| 7.461118 | 14.223149 | -0.184263 | -. 545494 | 14.237652 | -0.074739 |
| 7.451118 | 14.223449 | -0.184263 | 7.545494 | 14.237652 | 0.074739 |
| 7.495488 | 14. 229061 | -0.2i9789 | 7. 586325 | 14. 244656 | -0.095955 |
| 7.530938 | 14.235153 | -0.253824 | 7. 626074 | 14.251465 | -0.115399 |
| 7. 566676 | 14.241286 | -0.295767 | 7.665537 | 14.258155 | -0. 133793 |
| 7.602873 | 14. 247492 | -0.316009 | 7.704540 | 14.264649 | -0.151358 |
| 7.640136 | 14.253872 | -0.344781 | 7. 742478 | 14.271011 | -0. 167728 |
| 7678788 | 14. 260356 | -0.371852 | 7.779027 | 14277183 | -0. 182517 |
| 7.19027 | 14. 257073 | -0.396878 | 7.813989 | 14.283125 | -0.195359 |
| 7.760910 | 14.274118 | -0.419367 | 7.847306 | 14.288824 | -0.206071 |
| 7.804401 | 14.281492 | -0.438783 | 7.879015 | 14.294280 | -0. 214673 |
| 7849385 | 14.2894星 | -0 454567 | 7.909271 | 14. 299508 | -0. 221349 |
| 7.895592 | 4. 29745 | -0.466479 | 7.938225 | 14.304552 | -0. 226375 |
| 7.942576 | 14.305311 | -0.473227 | 7.966441 | 14.309566 | -0.230015 |
| 7.989794 | 14.313838 | -0.475548 | 7.994424 | 14.314689 | -0.232425 |
| 8036790 | 14322537 | -0.473175 | 8.022629 | 14.319902 | -0.233619 |
| 8.083153 | 14.331251 | -0.466266 | 8.051466 | 14.325251 | -0.233515 |
| 8. 128504 | 14.339901 | -0.455133 | 8.081315 | 14.336 903 | -0 231898 |
| 8. 172617 | 14,348435 | -0.440173 | 8. 112403 | 14.3-6815 | -0.228518 |
| $8.215535$ | 14.356851 | -0.421703 | 8. 144685 | 14143017 | -0.223169 |
| 8.257374 | 14.365167 | -0.399898 | 8. 178047 | $1 * .349493$ | -0.215654 |
| 8. 238275 | 14.373415 | -0.374747 | 8. 212347 | 4.356222 | -0.205769 |
| 8.338293 | 14.381552 | -0.346137 | 8.247529 | 14.363199 | -0.193192 |
| 8.377377 | 14.389561 | -0.314016 | 8.283645 | 14.370457 | -0.177406 |
| 8445503 | 14.397433 | -0.278391 | 8. 320720 | 14.377971 | -0. 157820 |
| $8.452719$ | 14.405175 | $-0.239454$ | 8.358704 | 14385726 | -0. 133809 |
| B. 489179 | 14.412814 | -0.197412 | 8. 397445 | 14.393697 | -0. 105047 |
| 8.525018 | 14.420375 | -0.152455 | 8. 436807 | 14.404858 | -0.071585 |
| 8. 560300 | 14.427852 | -0.104773 | 8.476725 | 14.410198 | -0.033854 |
| 8.595099 | 14.435224 | -0.054548 | 8.517126 | 14.418706 | 0.007538 |
| 8.629494 | 14.4425.4 | -0.002019 | 8.557931 | 14.427362 | 0.052047 |
| 8.663604 | 14.449815 | 0.452513 | 8. 599022 | 14.436056 | 0.099248 |
| $8.697522$ | 14.457087 | 0.108748 | 8. 640305 | 14.444838 | O. 148726 |
| 8.731344 | 14.464369 | 0.166382 | 8.681684 | 14.453687 | 0. 200116 |
| 8.765214 | 14.471694 | 0.225079 | 8.123014 | 14.462573 | C. 253118 |
| 8.799324 | 14.479101 | 0.284521 | B. 764105 | 14.471453 | O. 307510 |
| 8.833907 | 14.486645 | 0.344422 | 8.804721 | 14.480276 | 0.363190 |
| 8.861738 | 14.492739 | 0.392176 | 8.836547 | 14.487222 | 0.608206 |

LPT Stator 2 Airfoil Coordinaras

ORTENAL PAGE IS<br>OF POOR QUALIT:

Suction Surface Pressure Surface

| $Z$ | R | RTHETA | 2 | R | RTHETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.306844 | 16. 162008 | 0. | 7.306841 | 16.162008 | 0 |
| 7.300594 | 16. 159725 | -0.008878 | 7.313075 | 16.164278 | 0.002983 |
| 7.297937 | 16. 158752 | -0.021903 | 7.321593 | 16. 167368 | 0.003315 |
| 7.298385 | 16. 159136 | -0.038974 | 7.332461 | 46.171290 | 0.001049 |
| 7.303922 | 16. 160942 | -0.059939 | 7.345782 | 16.176067 | -0.003730 |
| 7.312972 | 16.16424i | -0.08460\% | 7.361593 | 16.181727 | -0.010906 |
| 7.326379 | 16. 169098 | -0.112780 | 7.380360 | 16.188306 | -0.020344 |
| 7.34436\% | 16.175561 | -0.144266 | 7.401965 | 16.195837 | -0.031889 |
| 7.367101 | 16. 183640 | -0.178937 | 7.426697 | 16.204347 | -0.045388 |
| 7.394629 | 16.193290 | -0.216754 | 7.466516 | 16.217803 | -0.067065 |
| 7. 399384 | 16.194942 | -0.222985 | 7.511846 | $16=32749$ | -0.090937 |
| 7. 399384 | 16. 194942 | -0.222985 | 7.511846 | 16.232749 | -0.090937 |
| 7.433762 | 16.206757 | -0.265776 | 7.555245 | 16.246689 | -0.112283 |
| 7.469963 | 16.218953 | -0.306525 | 7.595822 | 16.259705 | -0.130455 |
| 7.507122 | 16.231210 | -0.344484 | 7.637441 | 16.271937 | -0.146198 |
| 7.545344 | 16.243541 | -0.379972 | 7.67699 , | 16.283514 | -0.159744 |
| 7.585329 | 16.256140 | -0.413103 | 7.7147 49 | 16.294358 | -0.170943 |
| 7.627317 | 16.268936 | -0.443517 | 7.750578 | 16.304432 | -0.170.824 |
| 7.671469 | 16.281910 | -0.470640 | 7.784205 | 16.313723 | -0.166689 |
| 7.718261 | 16.295344 | -0.493959 | 7.815190 | 16.322136 | -0.191702 |
| 7.768135 | 16.309304 | -0.512781 | 7.843093 | 16.329590 | -0.194987 |
| 7.820794 | 16.323642 | -0.526030 | 7.868213 | 16.336201 | -0. 196980 |
| 7.875373 | 16.338068 | -0.532822 | 7.891411 | 16.342223 | -0. 198119 |
| 7.930663 | 16.352227 | -0.532603 | 7.913899 | 16.347985 | -0.198689 |
| 7.985291 | 16. 365910 | -0.525339 | 7.937048 | 16.353835 | -0. 198620 |
| 8.037950 | 16.378940 | -0.511662 | 7.962167 | 16.360139 | -0. 197582 |
| 8.087815 | 16.391133 | -0.492329 | 7.990079 | 16.367101 | -0. 195067 |
| 8. 134877 | 16.402513 | -0.468197 | 8.020795 | 16.374712 | -. 190717 |
| 8. 173913 | 16. 413166 | -0.439997 | 8.054037 | 16.382889 | -0.184133 |
| a. 221672 | 11.423171 | -0.408264 | 8.089555 | 16391556 | -0.175005 |
| 8. 262043 | 13.432703 | -0.373479 | 8.126963 | 16.400608 | -0. 163002 |
| 8. 301072 | 16.441978 | -0.335809 | 8. 165711 | 16.409900 | 0.147885 |
| 8. 339145 | 16.451074 | -0.295178 | 8.205416 | 16.419334 | -0 129310 |
| 8.376375 | 16.460015 | -0.251397 | 8. 245963 | 16.428897 | -0.106790 |
| 8.412839 | 16.459818 | -0. 204299 | 8.287277 | 16.438694 | -0.079701 |
| 8.448514 | 16.477473 | -0.153805 | 8. 329380 | 16.448736 | -0.047454 |
| 8. 483571 | 16. 486019 | -0.099968 | 8.372100 | 16.458986 | -0.009685 |
| 8.518244 | 16.494512 | -0.042833 | 8. 415206 | 16. 169391 | 0.033630 |
| 8. 552729 | 16.503053 | 0.017538 | 3.458498 | 16.479902 | 0.082268 |
| 8.587195 | 16.511333 | 0.081023 | 8.501809 | 16.490481 | 0.135853 |
| 8. 621694 | 16.520:10 | 0. 147454 | 8.545088 | 16.501118 | 0.193896 |
| 8.656316 | $16.529^{\circ} 09$ | O. 216560 | 8.588244 | 16.512102 | 0.255871 |
| 8.691034 | 16.5388 .22 | 0.288060 | 8.631304 | 16.523199 | 0.328191 |
| 8.725889 | 16.54806: | -. 361564 | 8.674226 | 16.534399 | 0.369310 |
| 8.760955 | 15.557450 | O. 436623 | 8. 716938 | 18. 545681 | U. 59682 |
| 8.796327 | 16.567013 | 0.512821 | 8.759343 | 16.557017 | 0.53:823 |
| 8.832168 | $16.576 / 98$ | 0.589812 | 8.80:280 | 16.568360 | 0.605431 |
| 8.862335 | 16585108 | 0.654202 | 8.835693 | 16.577766 | 0.667519 |

LPT Stator 2 Airfoil Coordinates


Suction Surface
Pressure Surface

|  | $\bar{Z}$ | R | RTHETA |
| :---: | :---: | :---: | :---: |
|  | 263435 | 17.955466 | 0. |
|  | 258673 | 17.953174 | -0.008071 |
|  | . 257204 | 17.952466 | -0.019374 |
|  | . 259076 | 17.953368 | -0.033861 |
|  | . 264367 | 17.955914 | -0.051454 |
|  | . 273180 | 17.960147 | -0.072050 |
|  | . 285642 | 17.966141 | -0.095525 |
|  | . 301894 | 17.973855 | -0.121740 |
|  | 322089 | 17.983422 | -0.150545 |
|  | 345378 | 17.994848 | -0.181792 |
|  | . 374906 | 18.008154 | -0.215342 |
|  | . 407795 | 18.023342 | -0.251078 |
| 7. | . 440959 | 18.038493 | -0.284726= |
| 7. | 440959 | 18.038493 | -0.284725 |
| 7 | 479079 | 18.055704 | -0.320805 |
| 7 | 517927 | 18.073019 | -0.35:955 |
| 7. | 558188 | 18.090724 | -0.387325 |
| 7 | 600123 | 18. 108814 | -0.417536 |
| 7. | . 643834 | 18. 127357 | -0.443097 |
| 7 | 689537 | 18. 145491 | -0.469479 |
|  | . 737375 | 18. 166240 | -0.490192 |
| 7 | . 787345 | $18 \quad 186565$ | -0.506462 |
| 7 | 839208 | 18.207331 | -0.517684 |
| 7 | 892520 | 48.228328 | -0.523210 |
| 7 | . 946566 | 18.249115 | -0. 522560 |
| 8 | \% 000245 | 18.269620 | -0.515558 |
|  | . 052541 | 18. 289475 | -0. 502470 |
|  | . 102983 | 18.308514 | -0 483704 |
|  | 3. 151372 | 18. 326674 | -0.459766 |
|  | 3. 197688 | 18.343961 | -0.431150 |
|  | 8. 241986 | 18. 360459 | -0.398247 |
|  | 8. 284401 | 18. 376367 | -0.361482 |
|  | 8. 325121 | 18.391747 | -0.321160 |
|  | 8.364343 | 18.406660 | -0.277480 |
| 8 | 8. 402339 | 18.421201 | -0. 230595 |
|  | 8.439379 | :3.435463 | -0. 180520 |
|  | 8.475717 | 18.44950 | -C. 127217 |
|  | 8.511581 | 18.453516 | -0.070722 |
|  | 8. 547142 | 18.477549 | -0.011063 |
|  | 8.582510 | 18.491835 | 0.051646 |
|  | 8. 617738 | 18.506208 | O. 117171 |
|  | 8.652872 | 18.520684 | 0.185270 |
|  | 8.688002 | 18.535301 | 0.255652 |
|  | 8. 723232 | 18.550103 | 0.328011 |
|  | 8.758761 | 18.565174 | 0.402002 |
|  | 8.794780 | 18.590601 | 0.477333 |
|  | 8.831526 | 18.596494 | 0.553750 |
|  | 8.862625 | $\cdot 3.610092$ | 0.618012 |

2
2
RTHETA

| 7. 263435 | 17.955466 | 0 |
| :---: | :---: | :---: |
| 7. 269463 | 17.958219 | 0.003310 |
| 7.277351 | 17.962146 | 0.004186 |
| 7.288014 | 17.967244 | 0.002637 |
| 7.301179 | 17.973515 | -0.001310 |
| 7.316889 | 17.980965 | -0.007615 |
| 7. 335214 | 17.989607 | -0.016209 |
| 7.356257 | 17.999469 | -0.026988 |
| 7.380170 | 18.010596 | - 0.039808 |
| 7.418533 | 18.028266 | -060708 |
| 7.463920 | 18.048886 | -0.085139 |
| 7.507762 | 18.068510 | -0.107609 |
| 7.550218 | 18.087238 | -0.127368 |
| 7.550218 | 18.087238 | -0. 127368 |
| 7.592136 | 18.105399 | -0.144992 |
| 7.633326 | 48.122921 | -0.160646 |
| 7.673104 | 18. 139644 | -0 173978 |
| 7.711208 | 18. 155473 | -0.184848 |
| 7.747535 | 18.170398 | -0.193346 |
| 7.781870 | 18.184354 | -0.199657 |
| 7.814071 | 18.197308 | -0. 203944 |
| 7.844139 | 48.209288 | -0. 206560 |
| 7.872315 | 18.220412 | -0.207819 |
| 7899041 | 18230857 | -0. 208026 |
| 7.925033 | 18.240855 | -0.207396 |
| 7.954393 | 18.250964 | -0.205925 |
| 7.979136 | 18.261571 | -0.203413 |
| 9.008732 | 18.272850 | -0.199580 |
| 8.040381 | 18.284869 | -0.193982 |
| 8.074104 | 18.297628 | -0 186100 |
| 8. 109845 | 18.311096 | -0.175422 |
| 8.147468 | 18.325243 | -0.161337 |
| B. 186786 | 18.339900 | -0. 143337 |
| 8. 227603 | 18.355091 | -0. 121024 |
| 8. 269646 | 18.370821 | -0.094086 |
| 8.312644 | 18.387023 | -0.062351 |
| 8.356345 | 18.4036 .11 | -0.025668 |
| 8.4005 19 | 18.420502 | 0.016100 |
| 8. 444996 | 18.437634 | 0.062900 |
| 8.489667 | 18.454967 | 0.114502 |
| 8. 534477 | 18.472481 | 0.170418 |
| 8.579382 | 18.490566 | 0.230077 |
| 8.624291 | 18. 508897 | 0.292954 |
| 8.669099 | 16.527419 | 5.35S63i |
| 8. 713608 | 18.546045 | 0.426800 |
| 8.757628 | 18.564691 | 0.497211 |
| 8.800920 | 18.583246 | 0.569736 |
| $8 \cdot \frac{836}{8391}$ | 18.598566 | 0.631540 |

LPT Stator 2 Airfoil Coordinates

90\% From Hub

```
C下ロッツ: :
OF rex: \(\because \quad\) :ry
```

| 2 | R | RTHETA | $z$ | R | RThETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9.387539 | 14.614119 | 0 | 9.387539 | 14．614119 | 0. |
| 9.383391 | 14.613030 | 0.006358 | 9.392686 | 14．615469 | 7.002894 |
| 9.381896 | 14.612637 | 0.015580 | 9.399520 | 14.617257 | －0．003832 |
| 9． 383161 | 14.612969 | 0.027570 | 9.407952 | 14.619458 | －0．002734 |
| 9.387346 | 14.514068 | 0.042185 | 9.417875 | 14.622040 | 0.000497 |
| 9.394645 | 14.615982 | 0.059250 | 9.429230 | 14.624985 | 0.005915 |
| 9405259 | 14.619755 | 0.078587 | 9.442090 | 14.628306 | 0.013456 |
| 9．449354 | 14.622423 | 0.100051 | 9.456776 | 14.632082 | 0.022831 |
| 9.437001 | 14.626993 | 0． 123572 | 9.470537 | 14.635603 | 0.031523 |
| 9.458154 | 14.632435 | 0.149203 | 9． 503430 | 14.643953 | 0.051565 |
| 9.464258 | 14.633998 | 0． 156299 | 9.535096 | 14.652130 | 0.075350 |
| 9.464258 | 14.633998 | 0.156299 | 9.535996 | 14.652130 | 0.075950 |
| 9.490591 | 14.640705 | 0． 185661 | 9.567916 | 14.660056 | $0.0: 9578$ |
| 9． 547731 | 14.647555 | 0.213769 | 9.599030 | 14.667697 | 0． 107223 |
| 9． 545644 | 14.654535 | 0.240621 | 9.629370 | 14.675094 | O． 23526 |
| 9.574293 | 14.661628 | 0.266154 | 9.658974 | 14.682260 | 0． 138214 |
| 9.603704 | 14.668838 | 0.290207 | 9.687816 | 14.689153 | C． 551194 |
| 9.633914 | 14.676199 | 0.312614 | 9.715862 | 14.695773 | 0． 162458 |
| 9.664980 | 14．683702 | 0.333159 | 9.743046 | 14.702110 | 0． 172102 |
| 9.697034 | 14.691335 | 0.351124 | 9.769246 | 14.708146 | 0．180114 |
| 9．730220 | 14.699130 | 0.368113 | 9.794312 | 14713853 | 0． 185487 |
| 9.764552 | 14.707070 | 0.382037 | 9.818233 | 14.719239 | 0． 191277 |
| 9.799966 | 14.715132 | 0.393123 | 9.841073 | 14.724325 | 0． 198672 |
| 9.836286 | 14.723264 | 0.401035 | 9.863006 | 14． 29132 | 0． 196863 |
| 9.873255 | 14.731351 | 0.405470 | 9.884290 | 14．733725 | C． 198052 |
| 9.910607 | 14.739325 | 0.406245 | 9.905192 | 14．738180 | O． 198328 |
| 9.948015 | 14.747136 | 0.403233 | 9.926036 | 14.742568 | 0． 197720 |
| 9.985029 | 14.754691 | 0.396434 | 9.947275 | 14.746983 | 0.196148 |
| 10.02172 E | 14．751914 | 0.386025 | 9.969321 | 14．751506 | 0． 193428 |
| 10.056355 | 14.768763 | 0.372245 | 9.992455 | 14.756186 | ）． 189368 |
| 10.090245 | 14.775149 | 0.355378 | 10.016819 | 14.761042 | 0.183763 |
| 10． 122952 | 14.780971 | 0.335664 | $10.0<7365$ | 14.766053 | 0.176424 |
| 10． 154574 | 14.786558 | 0． 313267 | 10.068995 | 14.771190 | 0．167153 |
| 10185244 | 14.791936 | 0.288307 | 10.096579 | 14.776280 | 0． 155596 |
| 10215076 | 14．797：30 | 0.260894 | 10.125100 | 14.781334 | 0.141707 |
| ＋ 244069 | 14.802142 | 0.231231 | 10.154260 | 14.786503 | 0.124816 |
| $10 \frac{272270}{29979}$ | 14.806983 | 0． 199501 | 10．184313 | 14.791774 | 0． 104892 |
| 10.299792 | 14.811676 | 0.165794 | 10.215043 | $14.79 ? 124$ | 0.082037 |
| 10.326749 | 14.816358 | 0． 30466 | 10.246339 | 14.902533 | 0.056415 |
| 10．353258 | 14.821142 | 0.092647 | 10.278084 | $14.807 \frac{5177}{37}$ | 0.028188 |
| 10.379450 | 14． 825900 | 0.053281 | 10.310145 | 14.813432 | －0．002568 |
| 10.405401 10.431200 | 14.830645 | 0.012085 | 10.342447 | 14.819187 | －0．035807 |
| 10．431200 | 14.835393 | －0．030908 | 10.374901 | 14.825072 | －0．071491 |
| 10.456922 | 14.840156 | －0．075670 | 10.407432 | 14.831018 | －0．109587 |
| 10．482664 | 14.844952 | －0． 122161 | 10.439944 | 14.837008 | －0． 150075 |
| 10．508544 | 14.849805 | －0．170331 | 10.472316 | 14.843021 | －0．192954 |
| 10.534629 | 14.854726 | －0．220175 | 10． 504485 | 14.849042 | －0． 238200 |
| 10.554520 | 14.858501 | －0．258966 | 10.528635 | 14.853593 | －0．273971 |

LPT Rotor 2 Airfoil Coordinates
10\％Fron Hub

ORIGINAL PAGE IS
OF POOR QUA'ITY

Suction Surface
Pressure Surface


LPT Rotor 2 Airfoil Coordinates
50. From Hub

COR：AL PAGE IS<br>or rojor quality

ジくビミn 5ur：ace
？ressione＝ur：aze


LPT Rotor 2 Airfoil Coordinates
90\％From Hub

ORIGINAL PAGE is
of PDOR Q：JALITY

がこここと こっこ：コこと
：Eessute シュー：ace


LPT Stator 3 Arroil rocrdinates
10\% Erom :uut

シュニ：iun SurEace
Eressure Sur：ace


ZPT Stator j Airioil Coordinates
50\％Erom Hub

ORICINAI PACE IS<br>OF PCOR QUALITY

Suction Suriace Presoure sur:ace


LPT Stator 3 Airfoil Coordinates
$90 \%$ From Hub


LPT Rotor 3 Airfoil Coordinates
10\% From Hub

## ORG:CR PAGE IS <br> OF FOOR QUALITY

Suction Suriace


LPT Rotor 3 Airfoil Coo=dinates
$50 \%$ From Hub

Suction Surface
Pressure Sur:ace


LPT Rotor 3 Airfoil Coordinates
90\% From Hub

# CRICINAL PAOE IG <br> GF POOR QUALITY 

Suction Suriace
Pressure Surface


LPT Stator $\dot{4}$ Airfoil Coordinates
10\% From Hub

Suction Surface

|  | 7 |  | $\stackrel{R}{R}$ | Q THETA |
| :---: | :---: | :---: | :---: | :---: |
| 15 | 311727 | 18. | 597028 | 0 |
| 15 | 308790 | 18 | 596312 | -0.006098 |
| 15 | 309153 | 18 | 596400 | -0.015595 |
| 15 | 312868 | 18 | 597307 | 0.028441 |
| 15 | 320028 | 18 | 595053 | -0.044548 |
| 15 | 330765 | 18 | 601665 | -0 063791 |
| 45 | 345257 | 18 | 605182 | -0.086000 |
| 45 | 363733 | 18 | 609649 | -0.110957 |
| 15 | 386483 | 18 | 615124 | -0.138390 |
| 15 | 413861 | 18 | 621676 | -0.167960 |
| 15 | 446299 | 18 | 629387 | -0.199258 |
| 15 | 484317 | id | 638352 | -0.231791 |
| 15 | 516309 | 18 | . 645836 | -0.256185 |
| 15 | 516309 | 18 | . 645836 | -0.256185 |
| 15 | 557442 | 18. | . 555378 | -0.283661 |
| 15 | 599505 | 18 | 665042 | -0.307386 |
| 15 | 642352 | 18 | . 674813 | -0.327326 |
| 15 | 685933 | 48 | 684667 | -0.343399 |
| 15 | 730214 | 18 | 694560 | -0.355425 |
| 15 | 775082 | 48 | 704459 | -0.363188 |
| 15 | 820345 | 18 | 714319 | -0.366506 |
| 15 | 965776 | 18 | 724087 | -0.365334 |
| 15 | 911140 | 18 | 733714 | -0.359645 |
| 15. | 956220 | 18 | 743941 | - 0349517 |
| 16 | 000843 | 18 | 752310 | -0.335062 |
| 16 | 044888 | 18 | 751215 | -0.316411 |
| 16 | 088287 | 18. | 769848 | -0.293721 |
| 16 | 131010 | 18 | 778219 | -0.267143 |
| + 6 | 173062 | 13 | 786309 | -0. 236831 |
| 15 | 214474 | 18 | 794156 | -0 202909 |
| . 6 | 255302 | 18 | 801768 | -0. 165309 |
| 16 | 295582 | 18 | 80900: | -0.124734 |
| 16 | 335374 | 18 | 816052 | -0.080712 |
| 16 | 374734 | 18 | 822942 | -0.033552 |
| 16 | 413713 | 18 | 829681 | 0.016647 |
| 16 | 452359 | 18 | 836282 | 0.069780 |
| : 5 | 490721 | 18 | 842754 | 0.125730 |
| 15 | 528835 | 18 | 849104 | 0 184381 |
| 16 | 566745 | 18 | 855342 | 0. 245596 |
| 16 | 604493 | 18 | 861599 | 0. 309251 |
| 16 | 642120 | 18 | 867822 | 0.375220 |
| 16 | 679654 | 18 | 873986 | 0.443374 |
| 16 | 717139 | 18 | . 880098 | 0.513541 |
| 16 | 754606 | 18 | . 586165 | - 585528 |
| 16 | 792094 | 18 | . 892192 | 0.659115 |
| 16 | 829649 | 18 | 898186 | 0.734098 |
| 16 | 867300 | 18 | . 904154 | 0.810331 |
| 16 | 898673 | 18 | 909090 | 0876525 |

Pressure Surface


LPT Stator 4 Airfoil Coordinates
50\% From Hub

ORIGINAL PAOE :S
OF POCR CuFint

Suction Surface
Pressure Surface


LPT Stator 4 Airfoil Coordinates
90\% From Hub

Suction Surface
Pressire Surface

| 2 | $R$ | रimèta | $\therefore$ | R | RTHETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17.618050 | 15.758063 | 0 | 17.618050 | 15.758063 | 0 |
| 17.615121 | 15.757894 | 0.005103 | 17522083 | 15.758295 | - 0 0237. |
| 17616500 | 15.757859 | 0.012528 | 17627529 | 15.758609 | -0.003139 |
| 17.616270 | 1575796 , | 0.022193 | 17634338 | 15.759000 | -O 002194 |
| 17.620557 | 15.758208 | 0.033976 | 17.642342 | 15.755458 | -000505 |
| 17.627515 | 15758608 | C. 047729 | 17651428 | 15.759977 | 0.005369 |
| 17.537299 | 15.759170 | 0.063302 | 17.661597 | 15.760555 | 0.012094 |
| 17.650032 | 15.759897 | -. 030578 | 17.673085 | 15.761203 | 5.020554 |
| 17.665767 | 15.760792 | 3. 099505 | 17.691641 | 15.762252 | 0.034137 |
| 97.684443 | 15.761847 | $\bigcirc-\frac{120142}{12014}$ | 17.721518 | 15.763927 | 0.055112 |
| 17.700133 | 15.762728 | - 126667 | 17.751259 | 15.755565 | 0.074734 |
| 17. 700133 | 15.762728 | - 136667 | 17.751259 | 15.765565 | 0.074734 |
| 17.726316 | 15.764:88 | - 162837 | $17.78 \mathrm{C4} 88$ | 15.767163 | 0.092922 |
| 17.752928 | 15.765657 | 0. 187617 | 17.809288 | 15.768721 | 0. 109650 |
| 17.779920 | 15.767133 | - 210961 | 17.837688 | 15.770244 | 0.124950 |
| 17.807387 | 15.768618 | O. 232912 | 17.865653 | 15.771817 | 0.138780 |
| 17.835361 | 15.770116 | O. 253451 | 17.893091 | 15.773318 | 0. 151047 |
| 17.863931 | 15.771721 | 0.272435 | 17.919933 | 15.774747 | 0.161737 |
| ! 7.893145 | 15.773321 | O. 289699 | 17.946130 | 15.776103 | 0.170886 |
| 17.923017 | 15.774908 | C. 305123 | 17.971670 | 15.777389 | - .78506 |
| 17.953562 | 15.776491 | O. 318537 | 17.996537 | 15.778607 | O 184678 |
| 17.984775 | 15.778036 | 0.329766 | 18.020736 | 15.77976 - | 0.189494 |
| 18.016620 | 15.779567 | O. 338603 | 18.044303 | 15.780853 | 0. 193078 |
| 18.049015 | 15.781068 | -. 344832 | 18.067320 | 15.78185 | - 0.95564 |
| 18. 381825 | 15.782436 | O. 348304 | 18.089921 | 15.782751 | 0197019 |
| 18.114912 | 15.783685 | $\bigcirc \frac{348910}{}$ | 18. 112247 | 15.783589 | 0. 197455 |
| 18.148094 | 15.784838 | - 346557 | 98. 134476 | 15.784377 | 0.196843 |
| 18. 181110 | 15.785884 | O 341238 | 18.156872 | 15.785126 | 0.195082 |
| 18. 213694 | 15.786819 | O. 333006 | 18.79700 | !5.78584 | 0. 192062 |
| 18.245628 | 15.787640 | 0.322022 | 18.203177 | 15.786529 | - 187630 |
| 18.276771 | 15.78835 | - 308456 | 18.227447 | 15.787184 | O.:191675 |
| 18.307099 | 15.788882 | 0.292484 | 18.252530 | 15.787805 | 0. 174107 |
| 18. 336641 | 15.789329 | O. 274:37 | 18.278400 | 15.788386 | O. 164843 |
| 18.365479 | 15789706 | - $\frac{2}{253}+\frac{10}{10}$ | 18.304974 | 15.788848 | O. 153777 |
| 18. 393701 | 15.790020 | 0.23.-78 | 18.332164 | 15.789265 | 0. 140736 |
| 18. 421375 | 15.790274 | - 206757 | 18.359902 | 15.789638 | 0. $125 \frac{18}{482}$ |
| 18448545 | 15.790471 | O. 180301 | 18.388143 | 15.789962 | - 1078879 |
| 18.475296 | 15.790616 | 0. 151979 | 18.416805 | 15.790235 | 0.107879 0.087830 |
| 18.501704 | +5.790710 | O. 121826 | 18.445808 | 15.790454 |  |
| 18.527883 | 15790838 | $\bigcirc 089848$ | 18.475061 | 15.7906 - 15 | 0. 0655315 |
| :8. 553925 | 15.790935 | 0.056016 | 18.504411 | 15.790725 | 0. 312833 |
| 18579861 | 15.791002 | 502032 | 18.533886 | 15.790863 | 0.017200 |
| :8605748 | 15.791040 | -0 017145 | 18. 563412 | 15.790963 | -0.049715 |
| 18.63162: | 15.791048 | 0056258 | 18.592950 | 15.791025 | 0084539 |
| 19.657516 | 15.791026 | -0.096815 | 18.622467 | 15.791048 | -0.121402 |
| 18.683430 | 15.790975 | $\bigcirc 158658$ | 18.651965 | 15.791033 | -0.159976 |
| 18.709312 | 15. 790895 | O 181704 | 18.681495 | 15790980 | -0.159990 |
| 18.727962 | 15.790818 | O. 213468 | 18.702822 | 15.790918 | -C. 229672 |

LPT Rotor 4 Airfoil Coordinates
$10 \%$ From Hub

# OR:GHix: <br> OF POOR QuALi. . 

Suction Surface
Pressure Surface


LFT Rotor 4 Airfoil Cuordinates
50\% From hub

Sucticn Surface

|  | $Z$ | $F$ | RTHETA |
| :---: | :---: | :---: | :---: |
| 17 | 664443 | 22.030995 | 0 |
| 17 | 663537 | 22.030762 | 0.004841 |
| 47 | . 664742 | 22.031073 | 0.010605 |
| 17 | . 668080 | 22.031933 | 0.017243 |
| 17 | . 673585 | 22.033352 | 0.024677 |
| 17 | 621305 | 22.035314 | 0.032804 |
| 17 | . 691295 | 22.037924 | 0.041500 |
| 17 | . 703614 | 22.041108 | 0.050631 |
| 17 | 718326 | 22.0449:4 | 0.060059 |
| 17 | 735487 | 22.049361 | 0.069655 |
| 17 | . 755148 | 22.054463 | 0.079308 |
| 17 | 768036 | 22.057812 | 0.085030 |
| 17 | 768036 | 22.057812 | 0.085030 |
| 17 | 792032 | 22.064058 | 0.094531 |
| 17 | 816258 | 22.070377 | 0.102680 |
| 17 | 840813 | 22.076794 | 0.109468 |
| 17 | 865844 | 22.083443 | 0.114779 |
| 17 | $89+374$ | 22.090245 | 0.118471 |
| 17 | 917372 | 22.097144 | 0.120384 |
| 17 | 943718 | 22.104107 | 0. 120390 |
| 17 | 970259 | 22.111093 | 0.118354 |
| !? | 996848 | 22.118063 | 0.14244 |
| 18 | 023326 | 22.124974 | 0.107986 |
| 18 | 049541 | 22. 131690 | 0.099588 |
| 18 | 075381 | 22.138:82 | 0.089123 |
| 18 | 100831 | 22.144508 | O. 076638 |
| 19 | 125905 | 22.150677 | 0.062141 |
| 18 | 150692 | 22.156711 | 0.045638 |
| 18. | 175239 | 22. 162624 | 0.027079 |
| 18 | 199505 | 22.168409 | 0.006587 |
| 18 | 223426 | 22.174037 | -0.015730 |
| 18 | 247050 | 22.179456 | - 0039841 |
| 18. | $27 \mathrm{C4} 12$ | 22. 184.88 | -0.065775 |
| 18 | 293561 | 22.190047 | -0 093491 |
| 18 | 316530 | 22.1952 99 | -0.122927 |
| 18 | 339321 | 22. 200366 | - 0.154001 |
| 18 | 361913 | 22.205424 | -0.186603 |
| 18 | 384211 | 22.210414 | -0.220606 |
| 18 | 406527 | 22.215347 | -0.255900 |
| 18. | 428602 | 22. 220345 | -0.292425 |
| 18. | 450570 | 22. 225323 | -0.330191 |
| 18. | 472462 | 22.230286 | -0.369159 |
| 18. | 494323 | 22.235246 | -0.409204 |
| 18 | 516205 | 22.240214 | -0.450122 |
| 18. | 538100 | 22.245188 | -0.4き1676 |
| 18 | 559961 | 22.250158 | -0.533663 |
| 18. | 581719 | 22.255108 | -0.575964 |
| 18. | 596818 | 22.258545 | -0.605602 |

Pressure Surface

| 17.654443 | 22.030995 | 0 |
| :---: | :---: | :---: |
| 17.666973 | 22.031648 | -0.003348 |
| $17.671: 93$ | 22.032736 | -0.005869 |
| 17.677044 | 22.034245 | -0.007431 |
| 17.684447 | 22.036155 | -0.007857 |
| 17.693337 | 22.038454 | -0.007000 |
| 17.703704 | 22.041131 | -0.004840 |
| 17.715654 | 22.044223 | -0.001612 |
| 17.720024 | 22.045354 | -0.000391 |
| 17.743822 | 22.051523 | 0.006068 |
| 17.766976 | 22.057537 | 0.011781 |
| 17.789687 | 22.053447 | 0.016702 |
| 17.789687 | 22.063447 | 0.016702 |
| 17.312086 | 22.069288 | 0.020884 |
| 17.834255 | 22.075075 | 0.024413 |
| 17.856094 | 22.080838 | 0.027323 |
| 17.877459 | 22.086541 | 0.029551 |
| 17.898324 | 22.092092 | 0.030930 |
| 17.918720 | 22.097501 | 0.031275 |
| 17.938770 | 22.102802 | 0.030405 |
| 17.958624 | 22.108034 | 0.028221 |
| $17.9784 \%$ | 22.113238 | 0.024613 |
| $17.99^{\prime} 147$ | 22.118455 | 0.019581 |
| 18.68528 | 22.123724 | 0.013124 |
| 18.439082 | 22. 129043 | 0.005244 |
| : 8060027 | 22.134333 | -0.004029 |
| 18.081349 | 22. 139671 | -0.014700 |
| 18.102957 | 22.145034 | -0.026888 |
| 18. 124804 | 22.150407 | -0.040812 |
| 18. 146934 | 22.155800 | -0.056802 |
| 18. 169408 | 22. 161225 | -0.074914 |
| 18.192:79 | 22.166669 | J. 095041 |
| 18.215212 | 22.172121 | - 0.147108 |
| 18.238458 | 22. 177488 | -0.141151 |
| 18. 261884 | 22.182845 | -0. 167170 |
| 9.9.285488 | 22.188215 | 0.195105 |
| 18.309291 | 22. 193505 | -0.224798 |
| 18. 333788 | 22. 199011 | -0.25scsu |
| -8. 357467 | 22. 204430 | -0.288711 |
| 18.381787 | 22.209853 | - 0.322636 |
| 18.406214 | 22.215276 | -0.357823 |
| 18.430718 | 22. 220824 | -0. 39.1315 |
| 18.455252 | 22. 226384 | -0.432075 |
| 18.479764 | 22.231942 | -0.470969 |
| 18.504265 | 22.237503 | -0.510729 |
| 18.528799 | 22.243075 | -0.551037 |
| 18.553436 | 22. 248674 | -0.591634 |
| 18.570689 | 22252598 | -0.62003.4 |

LPT Rotor 4 Airfoil Coordinates
$90 \%$ From Hub

ORIGINAL FAGE IS
OF POOR OUAUITY

Suction S: =Eace

| $z$ | $\overline{2}$ | रthett |
| :---: | :---: | :---: |
| 19.61779 | 13.756459 | 0. |
| 19.514491 | 15.756645 | -0.005925 |
| 19.613723 | 15. 756690 | -0.014075 |
| 19.615479 | 15.756588 | -0.024381 |
| 19.619855 | 15.756335 | -0.036740 |
| 19.626960 | 15.755922 | -0.051034 |
| 19.636889 | 15.755340 | -0.067158 |
| 19.649697 | 15.754582 | -0.085056 |
| 19.655350 | 15.753644 | -0. 104761 |
| 19655599 | 15.751795 | -0.139449 |
| 19.695599 | 15.751795 | -0.139449 |
| 19.730685 | 15.749592 | -0.175114 |
| 19.766671 | 15.747267 | -0. 207195 |
| 19.863423 | 15.744823 | -0.236628 |
| 19.841450 | 15.742221 | -0. 263564 |
| 19.880417 | 15.739477 | -C. 287680 |
| 19.919873 | 15.736644 | -0.308699 |
| 19.959917 | 15.733738 | -0.326302 |
| 20.000525 | 15.730680 | -0.340669 |
| 20.049705 | 15.727465 | -0.351871 |
| 20.083461 | 15.724087 | -0.359800 |
| 20. 125597 | 15.720558 | -0.364311 |
| 20.167850 | 15.716899 | -0. 365382 |
| 20.209958 | 15.713101 | -0. 362949 |
| 20. 251688 | 15.709021 | -0. 357103 |
| 20.292941 | 15.704881 | -0.347942 |
| 20.333629 | 15.700693 | -0.335573 |
| $20 \quad 373586$ | 15.696478 | -0.320196 |
| 20.412797 | 15.692244 | -0. 302077 |
| 20.451634 | 15.587955 | -0 281298 |
| 20.490363 | 15683584 | - 2257694 |
| 20.528742 | 15.679113 | -0. 231258 |
| 20.555576 | 5.674675 | - C. 202197 |
| 20.603861 | 15.670296 | -0.1704 ${ }^{14}$ |
| 20.640597 | 15655976 | -0.135787 |
| 20.677002 | 15 E5 1690 | -0.098578 |
| 20.713283 | 15657414 | -0.059032 |
| 20.749349 | 15.653158 | - 0.017170 |
| 20.785040 | 15.648942 | 0.026941 |
| 2C. 820542 | 15.644897 | - 072953 |
| 20.855933 | 15.640962 | O. 120668 |
| 20.891171 | 15.637087 | 0. 169974 |
| 20326359 | 15.633259 | 0.220633 |
| 20.961405 | 15.629488 | 0.272554 |
| 20.996396 | :5.625765 | 0. 325493 |
| 21.031469 | 75622076 | 0.379220 |
| 21.066893 | 15618391 | 0.4334E1 |
| 21.034615 | 15.615538 | 0.475859 |

Pressure Surface

| 2 | R | RTHETA |
| :---: | :---: | :---: |
| $19 \quad 517719$ | 15756459 | 0 |
| ¢9. 621630 | :5.756232 | 0002389 |
| 19.627333 | +5.755900 | 0.003050 |
| 19.634749 | 15.755466 | 0.001895 |
| 19.643775 | 15.754933 | -0.001186 |
| 19.654326 | 15.754306 | -0.006283 |
| 19.666400 | 15.753580 | -0.C13400 |
| 19.680150 | 15.752745 | -0.022372 |
| 19713356 | 15.750688 | -0.044566 |
| 19.753664 | 15.748115 | -0.071149 |
| 19.753664 | 15.748115 | - 0.071149 |
| 19.792408 | 15.745562 | -0.095403 |
| 19.830253 | 15.742994 | -0.118161 |
| 19.867332 | 15.740407 | -0.139370 |
| 19.903136 | 15.737841 | -0.158387 |
| 19.937999 | 15.735342 | -0.174681 |
| 19.972373 | 15.732812 | -0 188504 |
| 20.006160 | 15.730247 | -0 2C05 12 |
| 20.039383 | 15.727649 | -0.210673 |
| 20.072034 | 15725023 | -0.218850 |
| 20.104108 | 15.722373 | -0.224907 |
| 20. 135803 | 15.719685 | -0.228722 |
| 20.167381 | 15.71694 C | -0.230179 |
| 20.199104 | 15.714114 | -0 229349 |
| 20. 231204 | 15.711038 | -0.226271 |
| 20. 263782 | 15.707819 | -0 221035 |
| 20. 296925 | 15.704476 | -02:3670 |
| 20.330799 | 15.700987 | -0 204182 |
| 20365418 | 15.697348 | - 0192589 |
| 20.400412 | 15.693592 | -0.178885 |
| 20.435513 | 15. 689747 | -0. 162684 |
| 20.470966 | 15.685785 | 0.143442 |
| 20.506963 | 15.681666 | -0.121040 |
| 20. 543508 | 15677382 | -0.095809 |
| 20.580602 | 15.673028 | -0.067924 |
| 20.618028 | 15.668631 | -0 037084 |
| 20.655578 | 15.664213 | -0.003112 |
| 20.693342 | 15.659765 | C 033758 |
| 20.731482 | 15.655267 | 0.073115 |
| 20.769811 | 15.650741 | O 114765 |
| 20.808251 | 15.646274 | 0. +58471 |
| 20.846843 | 15.641969 | O. 203952 |
| 20.885486 | 15.637709 | 0.251096 |
| 20.924270 | 15.633485 | 0299578 |
| 20.963111 | 15.629306 | 0.349251 |
| 21.001868 | 15.625187 | 0. 400009 |
| 21.040274 | 15.621156 | 0.451885 |
| 21069852 | 15.618086 | 0.492838 |

LPT Stator 5 Airfoil Coordinates
10\% From Hub

ORICIMA FAT IS
OF POOR Qutitir
Suction Surface
Pressure Surface


LPT Stator 5 Airfoil Coordinates
$50 \%$ From Hub



LPT Stator 5 Airfoil Coordinates
90\% From Hub


LPT Rotor 5 Airfoil Coordinates
10\% From Hus

-nvivit pac is<br>of POCR Qublity

suction Surtace pressure suriace


LPT Rotor 5 Airfuil Coordinates
$30 \%$ From :un

ンuction Surfacz
Eressure Suriace

| 2 | 2 | RTHETA | 2 | $R$ | RTHETA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21.702999 | 22.562210 | 0 | 21.702999 | 22.563210 | 0. |
| 24.703526 | $22.5632 \cdot 8$ | 0.005956 | 21.705121 | 22.563243 | -0.005409 |
| 21706883 | 22.563.70 | C. 012331 | 21.709750 | 27.563314 | -0.210390 |
| 24.7.3078 | 22.563365 | 0.019074 | 21.716872 | 22.563424 | -0.094852 |
| 21 722123 | 22.563505 | 0.026104 | 21.726466 | 22 563572 | -0.018667 |
| 21734036 | 22.563689 | 0.033305 | 21.738516 | 22.563758 | -0.021718 |
| 21.748841 | 22.563917 | 0.040524 | 21.753012 | 22.563981 | -0.02.954 |
| 21.766567 | 22.564189 | 0.047572 | 21.769970 | 22.564242 | -0.025456 |
| 2!.787249 | 22.564507 | 0.054219 | 21.789440 | 22.564541 | -0.026582 |
| 21.803407 | 22.564756 | 0.058454 | 21.911915 | 22.564897 | -0.027852 |
| 21.803407 | 22.564756 | 0.058454 | 21.811915 | 22.564887 | -0.027852 |
| 21.840916 | 22.565331 | 0.065345 | 24.844181 | 22.565382 | -0.030079 |
| $218^{78947}$ | 22.555913 | 0.068462 | 21.876025 | 22.565870 | -0.033005 |
| 21.910780 | 22.566493 | 0.068545 | 21.907866 | 22.566357 | -0.037032 |
| 2495.608 | 22.567071 | 0.065976 | 21.339813 | 22.566815 | -0.042199 |
| 21.992308 | 22.567656 | 0.060989 | 21.971889 | 22.76:334 | -0.048500 |
| 22.029883 | 22.568260 | 0.053782 | 22.004 .088 | 22.567847 | -0.056004 |
| 22.067258 | 22.5688 .49 | 0.044479 | 22.036488 | 22.568365 | -0.064738 |
| 22.104389 | 22.569423 | 0.033286 | 22.069132 | 22.568878 | -0.074770 |
| 22.141315 | 22.569982 | 0.020366 | 22.101981 | 22.569386 | -0.086126 |
| 22.178059 | 22.570527 | 0.005756 | 22.1350.1 | 22.569887 | -0.098774 |
| 22.214628 | 22.571059 | -0.010484 | 22.158217 | 32.570382 | -0.112740 |
| 22. 251027 | 22.571577 | -0.028293 | 22.201593 | 22.570871 | -0. 128058 |
| 22.287748 | 22.572056 | -0.047648 | 22.235147 | 22.571352 | -0.144719 |
| 22. 223285 | 22.572502 | -0.068529 | 22.268885 | 22.571820 | O. 162712 |
| 22.359142 | 22.572923 | -0.090899 | 22.302803 | 22.572251 | - 182063 |
| 22.394915 | 22.572320 | -0. 114742 | 22.336904 | 22.572664 | -0.202745 |
| 22.430297 | 22.573693 | -0.140031 | $22 \cdot 371197$ | 22.573060 | - -. 224756 |
| 22.465590 | 22. 574042 | -0.166729 | 22.4056:9 | 22.573136 | -0.248090 |
| 22.50369 | 22.514368 | -0.1948 14 | 22.449347 | 22.573794 | -0.272724 |
| 22535623 | 22. 574671 | -0.224266 | 22.475195 | 22.574133 | -0.298646 |
| 22.570359 | 22.574899 | -0.255053 | 22.10235 | 22.574453 | -0.325842 |
| 22.604903 | 22.575110 | -0.287117 | 22.545465 | 22.574743 | -0.354290 |
| 22.639269 | 22.575311 | -0.320396 | $22.5808 / 4$ | 22.574964 | -0.383948 |
| 22.673476 22.707527 | 22.575504 22.575689 | -0.3548.22 | 22.616 .42 | 22.575176 | -0.414776 |
| 22. 07527 | 22.575689 | -0.390346 | 22.652106 | 22.575385 | 0.446714 |
| 22.741453 | 22.575865 | -0.426887 | 22.68801\% | 22.575584 | -0.479729 |
| 22.775263 | 22576032 | -0.464374 | 22.725980 | 22.575775 | -0.513762 |
| 22.808955 | 22.576192 | -0.502733 | 22.760062 | 22.575959 | -0.548728 |
| 22.842569 | 22.576386 | -0.541870 | 22.796223 | 22.576133 | -0.544561 |
| 22.876122 | 22.576604 | -0.581718 | 22.832445 | 22.576322 | -0.621195 |
| 22.909614 | 22.576827 | -0.622247 | 22.868728 | 22.576555 | -0.658557 |
| 22.943053 | 22.577056 | -0.663288 | 22.905064 | 22.576796 | -0.696574 |
| 22.976447 | 22.577290 | -0.704849 | 22.941449 | 22.577044 | -0.735141 |
| 23.009744 | $\frac{22.577530}{22.577776}$ | -0.746813 | 22.977921 | 22.577301 | -0.774122 |
| 23.042982 | 22.577776 | -0.789107 | 23.014459 | 22.577565 | -0.813418 |
| 23.075233 | 22.578028 | -0.831603 | 23.050983 | 22.577836 | -0.853008 |
| 23.100651 | 22.578217 | -0.862941 | 23.0778 .8 | 22.578040 | -0.882231 |

LPT Rotor 5 Airioil Coordirates
90\% From Hub



[^0]:    Figure 9. Block II Stage 1 Vane Shapes and Stream Jurface Velocity Distributions.

[^1]:    Figure 48. $\mathrm{E}^{3}$ Low Pressure Turbine Active Clearance Control Payoff Potential

