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- 1,0 INTRODUCTION

In the construction of laminated composite structures, the fabricator
can select from a wide range of composite material systems. Generic
) materials such as glass, graphite and aramid fibers (such as Kevlar™) are )
available both in the "dry" and "prepreg" forms, to satisfy a diverse set Af
design requirements. Depending on the application, one can fabricate
components by filament or tape winding methods, or by laying up a
configuration Uti]izing commercial prepreg materials which meet relatively
stringent quality control criteria (in terms of resin/fiber content,
volatile content as well as specified physical/mechanical properties). In
the case of prepreg systems, the manufacturer has the option of choosing
between unidirectional and woven fabric formats. However, when one
considers manufacturing and design requirements, it is often more
cost-effective to utilize the woven fabric system.

One major problem area thét continues to plague the design engineer is
the selection of suftab]e strength criteria for composite laminates,
regardless of the material system and manufacturing process being used. In
éerospace construction, one usually encounters relatively thin-walled
structures and thus, to a first approximation, a plane stress state can be
assumed to exist for preliminary design purposes. However, it is becoming
increasingly evident that in many instances, three-dimensional stress
effects must be considered, particularly in the vicinity of free edges
(associated with joints, cutouts, fasteners, etc.). Indeed, such effects
can lead to delamination and/of crack initiation which are of major concern
to the analyst. Regardless of the stress state, the requirements for lamina
and overall structural failure criteria still persist. The most desirable
failure model is one which can provide conservative maximum load estimates

of reliable accuracy. However, the model must not be so conservative that




it jeopardizes the design itself in terms of increasing the weight
needlessly. On the other hand, it should be relatively operationally easy
to employ, and not be dependent on the development of such an extensive data
base using complex and expensive test procedures that the user shuns its
application. One might comment that the presence of local stress
concentrations (due to cracks, free edges, holes, etc.) does not influence
the form of a lamina strength criterion. Rather, such considerations can be
taken into account in the formulation of the Stress analysis and the failure
criterion one adopts for the whole laminate. For example, if one is
performing a finite element analysis, including three-dimensiqna] stress

terms, failure is determined not only by the lamina failure model, but

equally as important, by the laminate failure model one assumes.

Lamina failure models can essentially be grouped into three categories
of increasing operational complexity. The simplest approach is to design to
maximum stress or strain (which are not equivalent criteria).

Unfortunately, these models lead to substantial "over-estimates" of strength
~in the "corner" regions of the failure surface envelope. The next class of
models are those which approximate the failure surface by quadratic
polynomials of different forms. Many variations of quadratic models can bé
found in the 1iterature, including ones which define the surface using
different functions for each quadrant. Again, it has been demonstrated
that, for certain load cases, quadratic formulations can overestimate
strength as well (Ref. 1). In some instances, such as biaxial loading, the
quadratic criterion can under predict strength by as much as 30%-40%

(Ref. 2). The third category of fajilure criteria is termed “higher order
models", the most common one of which is the "cubic" polynomial (Refs. 1, 2,
3). It should be noted that all of the above mentioned fofmu]ations

represent ‘approximations encompassed by the general "tensor po]ynomial“
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criterion advocated in Ref. 3. The one feature that is common to all of
these 1amina failure models is that they represent a phenomenological,
macro-mechanics approach to predicting lamina failure. They all attempt to
describe the real failure surface in stress (or strain) space. Table 1
presents a summary of the test data and interaction strength parameters that
one would require for each classification of failure model. It becomes
quite apparent that the higher order cubic model demands more baseline
strength data. This of course raises the question as to whether or not the
additional complexity (and cost) is warranted. As noted earlier however,
there do exist regions of the failure surface (for a plane stress state)
where indeed such a criterion is required. This has been well documented
elsewhere (see Refs. 1,2).

The issues addressed in this report concern an investigation of woven
fabric 1aminétes and can be summarized as follows:

- deve]op a failure model that best characterizes laminates

‘constructed from woven fabric prepreg materials;

- render the cubic polynomial failure criterion operationally easier

to apply; . |

- develop a laminate stress analysis model for woven fabric

laminates,

The major objective of this work is to develop a data base derived from
woven fabric laminate tests from which a failure criterion can be
formulated. Since it is known that the cubic polynomial models works well
for laminates constructed from undirectional materials, this criterion will
serve as a refefence baéis. At the same time, however, it will be
‘demonstrated how this higher order model can be cast into a set of design
curves suitable for use in pre1iminary strength estimates, without recourse

"to the additional tests described in Table 1 or the solution of a cubic
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equation. This interim report summarizes the results obtéined to-date based
on one woven fabric prepreg system:
Narmco 5208 - K285 (Keviar™ 49, 4 harness satin) with 50% resin
and 2% volatile content (by weight); requiring a 350°F cure

temperature at 90 psi pressure.

2.0 MATERIAL DESCRIPTION

THe woven fabric prepreg used in this first phase of the program was
Narmco 5208 - K285 - a four harness (over 3, under 1) weave of Kevlar™ 49
filaments impregnated with Narmco 5208 epoxy resin. Two major cdncerns that
arise when one examines a woven'fabric prepreg are the're1ative angles
between the warp and fill and the degree of fiber straightness. The 0°, or
warp direction, ffbers are very straight and parallel. However, the 90°, or
fill direction fibers, while parallel to each other, are not straight or
orthogonal to the 0° fibers. The angle between the warp and fill direction
fibers was found to vary by up to 15°. The effect that this fiber
misalignment has on the strength and stiffness of the material will be

discussed later.

3.0 MANUFACTURING AND TEST PROCEDURES

3.1 Manufacture of Specimens

Both tubular and flat samples were manufactured using the Narmco
standard autocla?e cure cycle. One ply of resin bleeder per'ply of prepreg
was used, which yielded a cured thickness of 0.007" per ply. Cure
temperature used was 350°F with 90 psi pressure, although the optional
post-cure was not performed since all testing was conducted at room

temperature.




After fabrication, the speciméns were cut to the proper size by using a
high speed abrasive disk. The apparatus.employed for cutting the flat
specimens is shown in Figure 1. Tubular specimens were cut by mounting them
on a lathe and using an air powered cutting disk as shown in Figure 2.

One of the problems encountered during the testing program resulted
from the fill direction fiber misalignment, as noted earlier. Thus it was
decided to try and straighten the fibers prior to the specimen layup. This
was accomplished by clamping one edge of the material and then pulling the
material until the fill direction fibers were straight. Care must be taken
to ensure that the warp direction fibers remain straight during this
process. This procedure was successful in providing specimens with fibers
straight in both directions and nearly orthogonal to each other. However,
it was found to work well only for small éections of material and is not
suggested for large scale work. It must be emphasized that
pre-straightening and alignment is necessary to obtain optimum properties of
the material in it's correct orientation. Only in this way can one achieve
maximum strength (and stiffness) for various lbad conditions and ply
orientations. |

3.2 Tension Tests

The specimens used in the tension tests were 3 ply, 2" wide by 6" long,
flat coupons. Aluminum end tabs 2" wide x 1 1/2" long x 1/8" thick were
attached to both ends using American Cynamid FM300 adhesive film. The end
tabs were held in place while curing, with the potting grip fixture shown in
Figure 3. The film adhesive was cured at 350°F for one hour.

Strain gauges were then app]fed to the specimen to measure both the
axial and transverse strains. Gauges were used on both sides of the

specimen to measure the amount of bending that was present during testing.




Each specimen_was placed in a set of end grips which were mounted in a
Tinius Olsen, 4 screw, e]ectricaliy driven test machine. A set of gimbalied ‘
end fittings wefe also used td minimize any bending moments from being
applied to the specimenf The specimen grips are shown in the testing
machine in Figure 4. |

Load and strain readings were taken using an Optilog data acquisition
system and stored in an Apple II plus microcomputer. These results were

then employed to calculate the tensile module E11T for the 0° samples, E22T

for the 90° samples and the Poisson ratio's V,, and V,,. These tests also

provided the 0° strength (X), 90° strength (Y) and ultimate strains, €11t
T

and E2u]tT'

3.3 Compression Tests’

The specimens used for compression testing were 20 plies thick, 0.75"
wide by 3.5" long. Aluminum end tables .75" wide by 1.5" long by 1/16"
thick were bonded on with Hysol 9340 adhesive, a room temperature curing
epoxy.

The specimens were then mounted in an IITRI-type compression fixture as
shown in Figure 5. The test fixture wa§ subsequently placed in the Tinius
Olsen testing machine and the load applied through a hardened steel loading
bar. |

Strain gauges were mounted on both sides of the specimen to measure
axial strains. Due to the specimen size, transverse strain measurements
were not taken. It is very important to have gauges on both Sides of the
specimen since they can be used to determine whether failure occurs due to
buckling, and to éalcﬁ]ate the amount of bending stress applied to the
coupon. These considerations are very important in compression testing,

while not as significant in tension tests.




As with the tension tests, the load and strain data were collected
using the Optilog and'Apple IT microcomputer. From this data, the
compressive moduli E),. and E,,. were calculated as well as the strengths

1/no 1% o ' : s
X*'(0°), Y'(90°) and the maximum strains, elultc and eZultc‘

3.4 Torsion Tests

The torsion tests were performed using tubular specimens, 2" in
diameter, 6" long and varying from 3 to 8 plies thick. The tubes were
bonded into circular aluminum end pots using Hysol 6175 resin and 3561
hardener. They were centré]]y mounted and aligned ofthogona] to the base of
both end pots. The tubes were positioned in a torsion fixture attached to
the Tinius Olsen;, which served as aArigid base. Torque loading was applied
by two hydraulic pistons which were connected to a circular plate, fastened
to the top of the tube. The pistons were then pressurized by a hand
operated pump. A view of the test setup is shown in Figure 6.

A pressure transducer was connected to the hydraulic pistons, thus
providing the data necessary to calculate the épp]ied torque. Strain gauges
were bonded on the specimen at * 45° to the tube's longitudinal axis. These
gauges provided the shear strain present in the sample. The pressure and
strain data were collected using the same data acquisition system described
earlier and used to calculate the material shear modulus Gj. The other
data resulting from these tests are fhe shear strength (S) and the maximum
shear strain (y |

u]t)'
3.5 Biaxial Load Tests

In order to calculate the interaction parameters for the failure
theory, it was necessary to perform some biaxial loading tests. For woven

fabric materials, internal pressure tests on 0° or 90° tubes will provide




the proper.stress state. If one considers the cubic form of the failure
equation, then three points are required for solving F,,, F,;, and F;,,.
Three test configurations were selected; 0° and 90° internal pressure, and
0° internal pressure with axial compression.

The specimens fabricated for these tests were 3 ply, 4" diameter by 6"
long tubes. The larger diameter tubes were used to reduce the amount of
wall wrinkling during curing. It was necessary to eliminate the wrinkles
since they caused premature failure where the fibers were bent. The tubes
were made with a continuous wrap of prepreg to obtain all three plies. This
was done because failure occurs predominantly from the failure of the hoop.
direction fibers. It was also necessary to reinforce the area where the
fibers ended, to prevent premature failure from occurring there.

The tubes, once manufactured, were -again potted into aluminum end
fittings using Hysol 6175 and 3561. The end fittings were connected to an
air operated hydraulic pump and the tube filled with oil. In this
procedure, the pump was used only to pressurize a reservoir. Subsequently,
by opening a valve between the reservoir and the tube, the pressure in the
tube was increased slowly until failure occurred. The pressure test setup
'is shown in Figures 7 and 8. Axial and circumferential gauges were employed
to verify the tube stiffness and to record the strains at failure. In
addition, a pressure transducer was placed at the inlet to the specimen,
thus permitting the pressure and strain values to be recorded as before. At
the same time, they were monitored on an x-y plotter to provide control of
the loading rate.

For the combined coﬁpression-pressure test,.the same procedure asvabqve
was used, only the tube was placed in the Tinius Olsen below a loading
platen. The specimen was then subjected to a specific ratio of pressure to

compressive loading so that the net axial stress applied to the tube was
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compressive. This process was also controlled by monitoring the pressure
transducer and the load, all 6n an x-y plotter, and then following a preset
loading curve. Strain values were recorded in the same manner as the
pressure tests.

The results from these tests yielded ultimate failure pressures which
defined the stress state at failure O1yit® %241t and the strain state at
.failure €101t E241t°

To determine the shear interaction terms F,g55 and Fy66, @ combined
tension-torsion test was performed. The method of torsion loading was
identical to that described previously, with the addition of a tensile load
applied simﬁitaneous]y. As with the pressure-compression test, the loading
followed a prescribed ratio of tensile load to torque. The test facility is
shown 1in Figure.9; Both 0° and 90° tubes were investigated to calculate the
two interaction terms. The specimens used were 2" diameter tubes, 5" long

and were mounted in the same manner as the torsion test samples.

4,0 DISCUSSION OF TEST RESULTS

4.1 .Tension
The results of the tension tests are presented in Table 2 for the 0°
specimens and Table 3 for the 90° specimens. Sample stress-strain curves
are also shown in Figures 10 and 11 for the 0° and 90° tests, respectively.
. Examining first the 0° test results, the average ultimate strength X is
86.1 ksi, the modulus of elasticity Eyip is 5.72 x 106 psi, the Poisson

ratio V;, is 0.072 and the strain to failure e is 1.50%. The results

i u]tT
are very repeatable, with the variance in*strength, modulus and ultimate’

EURCERY
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strain all being less than 6% of their average values. However, the Poisson
ratio varies more than the other values, due to the small magnitude of the:
strains being measured.

As can be seen in Figures 10 and 11, this material is linear to failure
in tension. The amount of bending in the sample, as shown by the difference
in the two curves, is very small, so corrections to the ultimate stress due
to bending stresses are not required. |

The results of the 90° tension tests are more difficult to explain.
From Table 3a, it can be seen that there is a large variance in both the
strength and modulus results, with strength varying from 25 ksi to 65 ksi
and modulus varing from (2.6 to 6.) x 108 psi. After further examination of
the specimens, the misalignment angle relative to the 90° fibers was
measured and the strength and modulus p]oﬁted as a function of this angle.
Figure 12 shows the ultimate strength vs. angle and Figure 13 shows E22T VS,
éng]e. As can be seen in both Figures 12 and 13, the misalignment angle
greaf]y affects the strength and modulus of the material. The theoretical
curves shown were calculated using two different models. The off-axis
1aminaté analysis retained orthogonality of fibers but simply rotated the
laminae by the amount of the misalignment angle. The second form of
analysis considered rotation of only the 90° fibers while maintaining a
constant alignmeht of the 0° fibers. In this case, the ratio of fiber to
matrix modulus of the material must be known, as described in the Appendix.
Various ratios were assumed and the resulting curves derived.

Due to the large effect that the fiber misalignment has on the modulus
and strength, it was decided to manufacture more specimens, incorporating
pfe-straightening of the fibers prior to curing. The results of these tests

are presented in Table 3b. One can immediately see that the strength

obtained in these tests is significantly higher than the previous 90° data,
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while the modulus varies only slightly. This is probably due to premature
failure in the first test series from the 90° fibers being curved, even.
though the average direction is nominally perpendicular to the 0° fibers.
The average va1ues taken for the 90° direction are for the strength Y = 80,2
ksi, the modulus E,,r = 5.76 x 106 psi, and Poisson's ratio, V,; = 0.071.

Ideally the strength and modulus in the two directions should be the
same. In fact, only the modulus and Poisson ratios are very close for the
two directions and'thus average values of ET = 5,74 x 10% psi and V = 0,072
will be used in further calculations. However, the strengths differ due to
the way in which the material is woven, and consequently they will be used
separately in calculating the failure solutions. |
4.2 Compression

The compression test results are presented in Tables 4 and 5 for the 0°
and 90° tests, respectively. Stress-strain curves are also given for the 0°
and 90° samples in Figures 14 and 15, respectively.

For the 0° samples, the average results give an ultimate strength X' =
26.9 ksi and an initial linear modulus E)). = 4.12 x 106 psi with an

ultimate strain, elu]t = 2.86%. The variance in the ultimate stress is
C

about 3% of the average value, while the modulus varies by up to 9%.

From Figure 14, it can be seen that the stress-strain curve is not
linear to failure, and in fact appears to be bilinear. The average modulus
of the second section is 0.45 x 10% psi, with the point of inflection
occuring at an average stresé of_14.8 ksi, which is 55% of the ultimate
compressive stress..

The 90° compression results are very similar to those found in the 0°
tests. The ultimate stress Y' = 26.5 ksi, the initial modulus E,, = 4.50 x

c
106 psi, and the ultimate strain €41t = 2-91%. The ultimate stresses and
C
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moduli vary by 4% and 6%, respectively.

As seen in Figdre 15, the stress-strain curve is also bilinear in the
90° direction, similar to the 0° compression tests. The "knee" stress
occurrs at 15.0 ksi (57% of ultimate) and the modulus of the final section
is 0.45 x 106 psi.

Since the 0° and 90° strength and modulus are nearly the same, an
average value can be used: Ej)o = Eppe = 4.31 x 106 psi, X' = Y' = 26,7 ksi,

Oxnee - 14+9 ksi and E = 0,45 x 108 psi.

finalg

Due to the nonlinearity of the material in compression, no correction
in the compressive strength due to bending was made. Compressive failure
was ensured by making the samples sufficiently thick to prevent buckling.
prior to failure.

4.3 Torsion

The results of the torsion tests for determining the shear properties
of the material are given in Tables 6 and 7 for the 0° and 90° tubes, and
Figures 16 and 17 present typical stress-strain plots.

‘Since the shear properties of the material should be the same in the 0°
and 90° directions, one should examine both Tables 6 and 7 together. It can
be seen that the shear strength increases with increasing number of plies.
This is due to the thin specimens failing initially from torsional buckling.
The 8 ply 90° samples did not buckle at failure and thus their strength is
representative of the matéria] shear strength. It can be seen that the
shear moduli for both types of specimens fai] into the same range so an
average value will be used. The ultimate shear strains differ approximately
in proportion to the ratio of ultimate stresses. Hence the 90° ultimate
strain is taken as the strain to failure. In summary, the shear'properties

are given by: the shear strength S = 13,51 ksi, the shear modulus G;, =
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0.380 x 10% psi, and the ultimate shear strain Yyt = 5-38%.

The shear stress-strain curves shown in Figures 16 and 17 demonstrate
that this material is non-linear in shear. The shear modulus calculated is
based on the initial 1inear section which approximates the response up to
about 50% of the ultimate stress. The larger variance in shear modulus from
one test to another was partially a result of the differing degrees of

non-linearity observed between tests.

5.0 BIAXIAL LOAD TESTS

5.1 Internal Pressure Tests

In order to determine the interaction strength parameters, it was
necessary to perform a series of biaxial load tests. The simplest of these
is an internal pressure test. This test gives a stress ratio ck/?y of 1/2.
For the weave material, since the strength in both directions is
approximately equal, then one can employ either a 0° or 90° tube. The
results of these tests are presented in Tables 8 and 9 for both 0° and 90°_
tubes, respectively.

Because the Kevlar™ fibers are quite flexible, great care was needed to
prevent the fibers from wrinkling while curing. Of the results given in
Tables 8 and 9, only half of them are acceptable since failure occurred in
an area weakened by wrinkling in the other tests.

Figures 18 and 19 provide typical pressure-strain curves for the 0° and
90° tests, respectively. As expected, the material is linear to failure
under these conditions. Furthermore, the biaxial tension testing gives

strength values which exceed the unidirectional tension strengths.
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5.2 Pressure-Compression Test

The purpose of this test was to obtain a failure with o, positive and
o) negative, in order to complete the testing necessary to define F,,, Fii2
and F,,,. The result of this test is given in Tab]é 10 where the
resultant principal stresses at failure are o; = -28.5 ksi and o, = 57.2
ksi. As predicted by the theory, the internal pressure prevents failure
from occurring until the axial stress is greater than the compressive
ultimate stress. This particular test result together with those obtained
for pressure loading are p]otted in the o, - o, plane as shown in Fig. 20.
The analytical mbde]s also presented in Fig. 20 will be discussed later.

5.3 Tension - Torsion Tests

One cah again refer to Table 10 for a summary of these test results.
Considerable difficulty in achieving "good" failures was experienced due to
torsional buckling, and specimen fai]ure-in an area where the fibers
wrinkled during the curing stage. Although the data presented represent the
“best" of the tests performed, thére was still some minor fiber wrinkling in
the tubes. Consequently, these specimens may have failed somewhat
prematurely. However, it is felt that since failure was not localized about
the "wrinkled" region, the loads are reasonably accurate.

The test results are plotted in Figs. 21 and 22 for the o, - o, and
g, - 0¢ planes, respectively. Based on these data, one can then calculate

the two interaction parameters F g,z and F,gc.

6.0 FAILURE MODEL FOR WOVEN FABRIC LAMINATES

Although it is premature to generalize at this time, based on the test
results for the particular Narmco 5208 - K285 Kevlar™ prepreg investigated, -

some interesting observations can be made.
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First, the reader is referred to Table 11 which summarizes the data and
properties measured to-date. From these results, one can readily calculate
the strength pafameters associated with the quadratic and cubic tensor
polynomial failure criteria. For reference purposes, the general form of

this criterion is (Ref. 3),

A

1 no failure

F.o, +F

i % ijdicj 1 failure (1)

+ F'ijkoiojok + ... = f(0)

\'4

1 exceeded failure

for i, j, k = 1...6. Fi’ Fij and Fijk are strength tensors of the 2nd, 4th

and 6th rank, respectively. For the case of a plane stress state, Eq. (1)

reduces to (see Refs. 1, 2,_3),
2 +
Frop + Fpop + F 11012 4 Fpp0)® + Fegac? ¥ 2 Fy, 010, + 3 Fp),0,20, +
3 F1220109% + 3 F 16601062 + 3 F 26692062 = 1 (2)

if one retains cubic terms. The principal strength parameters are defined

by,

, 1 1 1 =1
F1='X- X' FZ:T Vak F11=‘—X‘u F22=Y—Y‘l, Fss"s_z (3)

><

where X, Y define tensile strengthsvin the fiber (or warp) and matrix (or
fill) directions, respectively; X', Y' define the corresponding compressive

strengths and S is the shear strength measured in the principal material
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axes plane. The interaction terms include Fi2s Fi12s Frogs Figg and Focee

The corresponding quadratic fomm of Eq. (2) is,
F10) + F203 + 2 F12010; + F110)2 + F5,052 + Fggag? = 1 (4)

In many cases, F,, is taken equal to zero, although many authors select

Fi2 = - %-(F11F22)1/2 to ensure a "closed" failure surface in stress space.
The consequences of this assumption will be made clear later as it relates
to the analysis of fabric laminates.

Based on Eq. (3), one can calculate the principal strength parameters
from the data 1isted in Table 11. Furthermore, using the biaxial failure
data presented in Tables 8, 9, 10 and using Eq. (2), one can then solve for
the interaction parameters noted above. Table 12 provides a summary of the
full set of strength barameters required for a cubic model representation of
the failure surface. Plots of the three planes o, - Oy 0} = Og and o, = og
have been mentioned earlier, and one can again refer to Figs. 20-22 to see
the cubic solutions. However, of more interest is the fact that if one
employs only the quadratic model [Eq. (4)] with F;, = 0, equally as good a
fit to the test data occurs. In other words, a cubic model, and all the
complexity anq additional tests required to evaluate the interaction terms,
is not necessary to predict strength for fabric laminates. The same degree
of accuracy can be obtained using the quadratic model with F,, = 0. This
latter point should be emphasized because if one plots the quadratic
solution assuming F;, = - %-(F11F22)1/2, one obtains a failure curve in the
o; = o, Plane that grossly overestimates strength; as evident in Fig. 20,

A note of caution should be issued at this point because it is not

known to what extent the orthotropic fabric strengths must differ before one
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is faced with the requirement of using a higher order failure model. One
does know that, for example, laminae formed from unidirectional prepregs,
where the tensile strength ratios (é) are of the order of 20, the cubic

model works best. Clearly a transition must take place as X/Y » 1,0,

7.0 REDUCTION OF CUBIC MODEL FOR DESIGN PURPOSES

One of the major problems in the utilization of a higher order failure
criterion such as the cubic model, is the difficulty involved in evaluating
the additional strength parameters (see Ref. 2 for example). For the
design engineer and analyst, if the data are not available, one simply
cannot apply the criterion and recourse to simpler models is necessary. In
this section, an attempt has been made to reduce the known cdbic model
strength data to an "operationa]Ty easier" form. As a reference basis it
will be assumed that the minimum strength data available to the engineer
include unidirectional measurements of the fiber and matrix dominated
tensile and compressive strengths (i.e.: X, X', Y, Y') together with the
shear strength (S) in the principal material axes plane. Thus, for a plane
stress state, one can employ the quadratic model [Eq. (4)] with Fi, = 0.

If one now considers the difference in so]utions‘between the cubic and
quadratic models for given values of the load vector (defined by the
co-ordinates R, 0, P in o) - o, - o, stress space - see Fig. 23), "design
factors" can then be calculated for "correcting" the quadratic strength
predictions. The curves shown in Fig. 24 were generated for the
unidirectional 3M, graphite/epoxy prepreg SP288-T300 material reported in
Ref. 2. An expanded view of the range 0 < © < 40° is shown in Fig. 25. The

application of these curves requires knowledge of the ply stresses
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throughout the laminate. One can then calculate R, 0, P as given by

R = (0,2 + 0,2 + gg2)1/2

(o]
n

tan-1 (02/61) (5)

tan-! (0g/p)

=
n

for each ply. Note that the restricted range of P angles shown is due to
the very small strength values associated with o, and o (i.e.: Y, Y' and
S) relative to the fiber strengths (X, X'). For such unidirectional
prepregs, the failure surface is highly elongated along the o, axis which is
typical of the materials Tnvestigated to-date. These curves can be regarded
as providing non-dimensional "correction factors" and thus one does not need
to evaluate the interaction terms. Again, a note of caution is in order
since only graphite/epoxy and glass/epoxy have been investigated and clearly
more data on other unidirectional prepregs would be valuable before
genera]izatiqns about the application of these curves can be made.

| The main advantage of this form of solution presentation is that the
design engineer can determine if indeed his stress state puts him into a
conservative zone (+'ve ordinate) or in a region where the cubic model
indicates that the quadratic solution "overestimates" the lamina strength
(-'ve ordinate). In this latter case, appropriate safety factors could then
be applied to the stress analysis.

As a final comparison, the previous results for the Narmco 5208-K285

woven fabric prepreg have been presented in this form in Fig. 26. One can
readily see, as expected, that the correttion factors needed for the

quadratic model are quite small and in fact are insignificant.
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8.0 CONCLUDING REMARKS

(a)

(b)

The quadratic failure criterion with Fi12 = 0 provides accurate
estimates of failure stresses for the woven fabric prepreg
investigated in this report. It is anticiated that present work
on a graphite/epoxy woven fabric prepreg will also yield a similar

conclusion.

The cubic’ failure criterion has been re-cast into an operationally
easier form, providing the engineer with design curves that can be
applied to laminates fabricated from unidirectional prepregs. In
the form presented, no interaction strength tests are required,
although recourse to the quadratic model and the principal
strength parameters is necessary. However, insufficient test data
exists at present to generalize this approach for all
unidirectional prepregs and its use must be restricted to the

generic materials investigated to-date.
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Table 1

Plane Stress Failure Model Test Requirements*

Failure Model

Test Requirements

Max. Stress or

0° tension, compression

Strain 90° tension, compression
(1) 0° or 90° shear
Quadratic Same as (1), with option to evaluate interaction
(2) term F,, analytically (using "closure" condition)
or with biaxial tension test
Cubic Same as (1) with requirement to evaluate: F,,,
(3) Fi12o F1225 Fiees Faee

“Minimum requirements: Biaxial tenstion test

+ 4 constraint eq.
Preferable: Biaxial tension, biaxial compression
+ 2 constraint eq. (see Refs.1,2 )

* ~ These hold for an orthotropic material, such as unidirectional
prepreg or woven (orthotropic) fabric. In the latter case 0°
and 90° refer to warp and fill directions, respectively.
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Table 2 .. - 0° (Warp Direction) Tension Test Results

Test # opytt (ksi) Eyy7(106 psi) V12 elu]tT(%)

1 87.8 5.92 0.085 1.44

2 89.3 . 5.69 = m---- 1.55

3 85.6 5.98 | 0.065 1.41

4 85.5 5.76 0.079 1.55

5 82.5 5.38 0.059 1.55
AVG: 86.1 5,72 0.072 1.50
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Table 3 , 90° (Fi11 Direction) Tension Test Results -

Table 3a Unstraightened
Test #  Angular o1t (Ks) E,,7(106 psi) Vo, a1t (%)
. '
1 1 55.8 6.05 0.072 0.92
2 12 27.3* 2.69* 0.079 1.20
3 13 24,0% 2,61 0.069 1.01
4 1 56,6 5.68 0.025 1.00
5 9 43,7* 3.59%*  eeoe- 1.43
6 15 24,9* 2.60% 0.082 1.39
7 5 52, 2% 4,32+ 0.055 1.17
8 42,8* 3.98%  —eee- ' 1.17
9 7 47.2* 4,20 eeee- 1.41
10 0 65.4 ~ 5.60 @ e---- 1.18
AVG: T 59.3 5.78 0.071 1.19
Table 3b Straightened Material
. Test # ogy1t (ksi) E2or(108 psi)  egyyq (%)
11 82.6 5.94 1.37
12 64.9* 5.57 1.13*
13 79.8 —m-- ——--
14 78.3 - -
AVG: . 80.2 5.76 1.37

* Not included in calculating average value
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Table 4 0° (Warp Direction) Compression Test Results

Test # # of P?]es ?121 (10%1C51) elultc(%) ?Eg?? | %iégfgzi)
1 12 21.9* 4,15 . 2,32%  13.7 —
2 12 23.4% 4,38 -—-- 14.6 0.44
3 12 21.6% 4,12 ———- 14,5 ——--
4 20 27.5  3.88 2.30 14.1 0.51
5 20 26.3 4,12 3.13 15.3 0.37
6 200 26,5  ---- —-- —-- ———-
7 20 27.3  3.83 3.12 14.2 0.47
8 20 26.7 4,01 3.01 16.0 0.44
9 20 27.8 4.09 — 15.8 0.46
10 20 26.3  4.48 2.73 14,8 0.4

AVG: 26.9  4.12 2.86 14.8 0.45

NOTE: * Not included in calculating average value.

Table 5 . 90° (Fi]l Direction) Compression Test Results

Test # # of Plies (kgl (10&1Cs1) elu]tc(%) (ks1? (iégf;:i)
1 20 26,8 4,50  2.96 16.0 0.47
2 20 26,6  4.75 2.72 14.8 0.46
3 20 26.5  4.33 3.04 14,6 0.45
4 20 27.1 4.31 3.2 14,9 0.38
5 20 25.4 4,59 = 2.58 14.5 0.49
AVG: 26,5 4,50 2,91 15,0 0.45
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Table 6 0° (Warp Direction) Torsion Test Results

Test # # of Plies ** - Gy,

W o
1 3 4,59* 0.377 1.46*
2 3 6.65* 0.397 1,94*
3 6- 10.09  0.39 4,03
4 6 8.61 0.449 2,52
5 6 9.69 0.392 4,07
6 6 9,15 0.385 3.45
7 6 8.65 0.363 5,00
8 6 ceee . 0.386 -
ave: 9.24 0.393 3.82
NOTE: * Not used in calculating averages

** These "ultimate" stresses correspond to initial torsional
‘buckling followed by material failure.

Table 7 90° (Fill Direction) Torsion Test Results

Test -# # of Plies Tl G, Yuit
(ksi (106 psi) (%)

1 8 11,98 0.428 3.99
-2 -8 12,93 0.362 5.70
3 8 m——— 0.320 ———--
-4 8 11.63 0.313 .4,61
5 8 14,84 .0.354 6.28
"6 8 16.20 0.393 6.33.

AVG: | 13,51 0.362 ~ 5.38
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Table 8 - . 0° (Warp Direction) Internal PreSsUre Test Results

Test # oy %oy €1ylt €9
(k81§ @dy t§

1 40.9* 81.8  0.57 ' 1.5%

2 45,2 90.4 0.57 1.84

3 39.5% 78.9* 0.58 1.61

4 44,0 88.0 0.61 1.75
AVG: 44.6 89.2 0.58 1.69
NOTE: *  Not used in calculating average value due to

fiber wrinkling.

Table 9 90° (Fi1l Direction) Internal Pressure Test Results
Test # oyt %2ul €lult €241
(kS1) (ke &) 6]
1 85.0% 42.,5% = cccee maea-
2 95.8 47.9 1.84 0.69
3 88.9* 44 5% ———— -—--
4 96.0 48.0 1.83 0.69
AVG: 9.9 48.0 1.84 0.69
NOTE: *  Not used in calculating average value due to

fiber wrinkling.



Table 10

Interaction Strength Tests

Test Loa Angle No. %14 °2u1 Tylt. €t €2ult Yult
#  Conf,  Deg.  Plies ks1j el sh )t W W)
1 Pressure- 0 3 -28.5 57.2 0.0 -0.47 ----- 0.0
Compression -
2 Tension- 0 5 28.4 0.0 15.4 0.45 0.0 1,87
Tarsion
3 Tension- 90 7 0.0 30.5 15,5 cccwe ceeea ————
Torsion
4 Tension- 90 7 0.0 33.5 14,7 occceca acae.. ———-

Torsion
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Table 11

Material Properties Summary

29

Property 0° (Warp) 90° (Fil1) Average Value*
ETension(106psi) 5,72 5.76 5.74
Poisson ratio 0.072 0.071 0.072
futt (%) 1.50 1.37 1.48
oyt (ks1) 86.1 80.2 83.2
Ecompression(106psi) 4,12 4.50 4.31
Efinal comp.(IOGPSi) 0.45 0.45 0.45
eu]tc(%) 2.86 2.91 2.89
Sutt(kst) 26.9 26.5 26.7

| Skneeg (ks1) 14.8 15.0 14.9
Gy, (106psi) 0.393 0.362 0.380
taelksi)  emees 13,51 13,51
Tael® e 5.38 5.38
* _ Weighted according to number of samples tested in each category




Table 12

Summary of Strength Parameters

Principal Strength

Parameters Eq. (3)

-2.552 x 10-° pSI-! -2.531 x 10-3 psI-! 0
Fl1 Fa2 Feo

4.312 x10-10 ps1-2

4,708 x 10-10 ps1-2

5.476 x 10-92 PSI-2

Interaction Terms
(Based on Tables
8, 9, 10)

F12

6.367 x 10-11 ps1-3

Fii12
-5.320 x 10-16 psi-3

Fi22

-4,049 x 10-16 psI-3

F166
3.749 x 10-15 psy-3

F266
3.543 x 10-15 ps1-3
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Fig. 3 TENSION SAMPLE and END GRIP FIXTURE
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Fig. 7 PRESSURE TEST FACILITY WITH DATA
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Fig. 9 TENSION - TORSION TEST APPARATUS
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Fig. 13 90° MODULUS vs MISALIGNMENT ANGLE
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Fig. 20

Comparison of Failure Models for G =0

Woven Kevlar/Epoxy Fabric Prepreg Narmco 5208-K285
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Fig. 22
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Fig. 24 Design Factors for Correcting Quadratic Model Strength Predictions
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APPENDIX: STIFFNESS AND STRENGTH

ANALYSIS OF WOVEN MATERIALS
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In order to analyze the stress state in the composite material it is

necessary to define the stiffness matrix [Q], where for a single ply, the

relationship is,

Lol = [Q)(e]

Expanded in the material coordinate axes, this becomes

K

Q12 Q22

[_éls Q6 Qee

11 Q2 Qe

—

Q26

(A.1)

(A.2)

If one considers the weave material to consist of two separate

materials superimposed on top of each other, equation (A.2) becomes,

\

Q1
+ Qli2

Q16

Qs
Q,%

Q26

Q¢
Q26

Use

€1
€y [(A.3)

Y12

where the ' and " represent the two directions of fibers (i.e.: warp and

£i11). It is now necessary to define the new [Q1] and [Ql1] matrices in

terms of known properies of the material.

Since one set of fibers is

usually straight, one can then define the 'l' direction to be parallel to
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the straight fibers. The [Q'] matrix will represent the contribution due to
the straight (warp direction) fibers and the [Q"] matrix will represent the
contribution from the 'fill' direction fibers.

For a general unidirection material the stiffness terms are, (in the

material coordinates)

Q _ Ellu
Hu I'Vlzuv21u

Qpp, = T—E”“ ~ (A4)
22 L=vyp Vayy

Q _ Vig,E22,
12y I'VIZUVZIU

Qs = G1gy

Qrey = 0

Qz6, = 0

where the subscript 'u' denotes ‘unidirectional'. If we rotate the
unidirectional ply by some angle @ with respect to the structual axes, one

obtains

Q11 = Quy cos™P + 2(Qyz, *+ ee,) sinZcos2P + Q,,sin“@

Qg = Qqy,sin'g + 2(Q12u + 2Q66u) sin20cos2f + Q,,cos“p
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Q;, (Quu + Qp_zu - 4065U)Sin2¢C052¢ + leu(Sinug + cos'p) (A.5)

A .
Qge = (Qqy, + Qppy = Ny, - Weg,)sin?Peos?P + Qg (sin*P + cos™p)

516 = (Qqyy - Qg - 2066u)sin¢cos3g + (Qyp, - Qg * 2066u)sin3¢ cosP

A
Q6 = (Quyy = Q2 - 2056u)sin3¢cos¢ + Qg - Qg * 2gg,,)sinPcos 3P

One can now equate [Q'] to equation (A.4) and [Q"] to equation A.5 where the
material properties Ej , Ejp s Vip s V2, and Gy,, are for one set of
fibers only, and @ = 90° + a, where « is the 'misalignment' angle. All that
remains is to define the properties of the unidirectional material.

Consider now the case where the 90° fibers ére square td the 0° fibers, then

P = 90° and solving for [Q"] gives,

Qi1 = Qyy,

Q22 = Qyy

Qf2 = Qy,, (A.6)
Q66 = Qg6

Qfe = 0

Q26 = 0

and for [Q'],
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Q1 = Qy,

Q2 = Qg

Qi2 = Qyy, - (A.7)
Qs = Qgs,

Qe = O

Q¢ = 0

Since in this case one can solve for [Qm], (where subscript m denotes the
overall material stiffness matrix), from known material properties, one

finds that,

El
Qllm 5 (I'V12V21)

By : :
Q2o = (T-vi,va1) (A.8)

_ vigEi1
Qiop = (T-vi2vy;)

Qesp = 612

Qep =
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U6y = 0
Subtituting for [QmJ = [Q'] + Q"] gives
Qi = 1 + Q1)
Q2 = Q22 + Q32 | (A.9)
Qo = U2 + Q12
Qe = Qe * Q66
Next, substituting equations (A.7) and (A.é) inté (A.9) gives |

Qg = Qg ¥ Q2gy

Q22 = Q2zy * Qi . : (A.10)
Qo = Qg * Qg

Qe = Y66y * Qssy

. _ Q12 _ Q6 _ _
From these relations one. finds leuA—«f—;—»and Qgey —,re;— and Q), = Qyp =

Qy1, *+ Q- -Since Qpy, and Qyp, have not been measured, one can assume for

11
purposes of illustration a ratio of © Y = K, where K is determined from

2
u
stiffness values of unidirectional material, such as Kevlar/Epoxy for
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example. This giyves the resultant unidirectional values as,

K
Gy = gaT Qi

Q22 = K%I'Qllm (A.11)
Q2
Qzy = 2~
Qg6
Qee, = ——

This assumes that the material modulus is the same in the two fiber

directions. If this is not true, then equation (A,10) is rewritten as,
Quy, = Quiyo + Q1190
Qa2 = Q22,50 * Q290 | ~(A.12)
Qap = Uzyo * Qg0
Qe = Qg0 * Qé6u9o

where the 0 and 90 represent the two fiber directions. The ratio K is
Quyo _ Qyyso
Q22,90 Q22,0
equal for both directions, the unidirectional material properties are;

defined to be K = . Assuming that the Q;, and Qg¢ terms are
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: K
Qiyo = ga1 Qg
=1 4
Q2240 = w37 Q22
K v
011u90 T szm o : (A.13)

1
Q22490 = g37 U1y

Quayo = Qugys0" 20
1240 = N12,90

Q66
stuo = 055u90 = —EJE

where Qp; s Qppps Qo and Qge are the overall material properties
calculated in equation (A.8). |

Une can now assemble the stiffness matrix for any 1aminate, with any
misalignment angle «, by sutstituting the unidirectional values given in
equation (A.7) for [Q']. If the 1amina is oriented at same angle © to the
structural axes, by using the appropriate transformations, one obtains the

stress-strain relationship in structural coordinates to be:

B o, Qi1 Qiz2 Que €y
O:Y = 012 622 026 Sy (A.14)
o “xy_ _016 r326_ 066_ vay_
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where Q is defined as
Q) = Qpm* - 4Q;mn + 2(Q), + 2gg)m2n2 - 4Q,gmn? + Qppn'
Qi2 = Qua(m* * %) + 2(Qyg ~ Que)nn + () + Qyp - 4Qgg)m2n2
+2(Q = Qpe)mn?

Qe = Quem* + (Qyp - Q1 - gm0 + 3(Qpg - Qy¢)m2n2

-

(Qyp - Qpp *+ gg)mn3 - Qygn

622.= Qgom* + 4Qz¢m3n + 2(Qy, + 2066)m2n2 + 4Q)mn3 + Qyn*  (A.15)
Qg6 = Qagm* + (Q); = Qpy + Wggm®n + 3(Qyq - Qpg)m2n

+(Qyy - Q) "qus)mns - Qygn*
Qes = Qea(m* + n*) * 2(Qyq =~ Qzg)m3n + 2(Qpg - Qyg)mn3

+ (Qy; - 25, + Qpp - 2Q44)m2n2

and m cos O

sin ©

=]
n

The summation through the thickness of the laminate is then performed

in the standard way to give the terms,
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A = y Q . (h h _1)
137 b Mg M M
1 0 2 . h2
B35 =z b &y (0§ - hg-1)
k=1
1§ (h3 - h3
Dij =3 L Uy (hg - hg-1)
k=1
where k = ply number

(A.16)

hk= position of the top surface of the ply relative to the centre

of the specimen

N = number of plies.

The terms A, B, D relate the applied loads and moments to the strains and

curvatures by the equations,

(A.17)

Equation (A.17) can then be inverted to give the strains and curvatures in

terms of the loads such that
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e
e0 A’: B’ N
S I DR (A.18)
) |
K B | D M
|

Knowing the applied loads N and moments M, the in-plane strains €° and

curvatures K can be calculated from equation (A.18).
At this point, the stresses in the individual lamina can be calculated
in order to determine the load required for failure. The equation for the

stress in the k-th ply is, in the lamina fiber directions,
Col, = [TI[Q1, Le0D + Z[T][ﬁ]k[K] (A.19)

where Z is the position of the ply from the laminate mid-plane, and [T] is

the transformation matrix

(TJ=1"m2 n2 2m (A.20)
n? m2 -2mn '
-mn mn m2-n2 .
where m = cosO
n = sin0d
© = angle of rotation from structural axes.

The equations given above are for a standard unidirectional material,

and need to be modified for the misaligned material under investigation.
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Several approaches can be used to calculate the stress and failure loads for
the weave material.
The failure equation to be used is a tensor polynomial failure

criterion based on the lamina stresses. The equation is,

F:o. +F

i % ijoij +F 0; 05 0} + ... =1 (A.21)

igk i3
where i,j,k = 1,2,6

F. ... are the Strength tensors.

i* Fige Fijk
Initially a quadratic equation will be used for the strength analysis.

Equatihg-Fij to Fji and noting that all odd order terms in og are zero,

equation (A.21) reduces to
Flo1 + Foop + F11012 + Fp00p2 + Fggae2 + 2F o010 = 1 (A.22)

These F terms can be calculated from unidirectional tension, compression and
shear tests on 0° and 90° specimens and a combined o)-o, test for the Fy,
term. The following section describes the stress and failure analysis
methods which can be used.

The first method is to use equation (A.19) directly for the stresses.
This will not change the stress-load ratio as the misalignment angle
changes. It would then be necessary to calculate the strength parameters
Fi’Fij as a function of the misalignment angle. The problem with this
method is that many tests are required to find thé strength tensors as a
function of the misalignment angle. Because of the number of tests

required, this method was not used.
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A second method is to alter the transformation matrix (equation A.20)
so that the stresses o, and o, are parallel to the fibers in the misaligned
material. This can be easily done and provides for the additional stress in

the fiber directions due to the misalignment. The problem with this method

is that the effect of the shear strain is not accounted for, since the shear
stress is equal to zero. For this reason an alternate solution was needed.

The method which we decided to use was to modify the Q matrix to
account for the different strain states. What is done is to apply the
strains and curvatures calculated using the misaligned material propehties,
to an aligned material. In this way the shear strain is equated to an
equivalent shear stress as well as altering the stresses in the fiber
directions. This stress state is then put into the fai1ure equation (A.22)
using the strength terms from the aligned material tests. In effect what is
being done here is to consider the problem to be a strain failure equation,
since the results obtained are the same as one would get if you converted
the F terms into strain space from stress space, then solving the problem
using the strains resulting from the misaligned material. As can be seen in
Figures 12 and 13, this analysis provides reasonably good agreement with the
experimental strength and modulus data. The ratio of fiber to transverse
modulus in the unidirectional material K is varied to examine it's effect.
As can be seen in Figures 12 and 13, the effect of varying K is minimal and
the average value of K=15 will be used for further analysis.

The other type of ané]ysis which can be used is to consider the
material fibers to have remained perpendicular to each other, and the entire
material rotated about the structural axes. The standard analysis for an
off-axis specimen is used and the results are presented in Figures 12 and 13
for comparison with the other theories. As can be seen, this method

predicts the modulus much the same as the other method, but it vastly
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overpredicts the strength. As a result, this analysis should not be used

_for material strength predictions to account for misaligned fibers.

In summary, the methodology used for this analysis is given below.

1)

2)

5)

6)

8)

9)

Calculate the material stiffness [Qm] for a perfectly aligned
material;

Divide the material into two parts, [Q'] for the straight (warp
direction fibers and [Q''] for the misaligned (fill direction)
fibers;

Assume a ratio of unidirectional properties for the two directions
Quigo _ Quyyoo

022“90 Uzz,0

Calculate [Q'] and [Q"] in terms of [Qm], K and the misalignment
angle a;

Assemble the stiffness matrix [Q] = [Q'] + [Q"] which represents
the stiffness of a single ply of misaligned material in material
coordinates;

Rotate [Q] into structural axes giving [Q] and sum over all plies
to give [A], [B] and [D], the structural stiffness matrices;
Invert the structural stiffness matrix to give the ratio of
strains and curvatures to the applied loads and moments;

Knowing the applied loads, calculate the specimen strains and
curvatures, then calculate the stresses resulting from applying
these strains to an aligned ply;

Using these stresses and a quadratic tensor polynomial failure
equatioh, calculate the loads required for failure as a function

of the misalignment angle.
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