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Abstract

Low Reynolds-number, mildly curved, tu-bulent channel low has been sim-
ulated numerically without subgrid scale models. A new spectral numerical method
developed for this problem was used, and the computations were performed with
2 million degrees of freedom. A variety of statistical and structural information
has been extracted from the computed flow fields. These include mean velocity,
turbulence stresses, velocity skewness and flatness factors, space-time correlations
and spectra, all the terms in the Reynolds-stress balance equations, and contour
and vector plots of instantaneous velocity fields.

The cffects of curvature on this flow were determined by comparing the
concave and convex sides of the channel. The observed effects are consistent with
experimenta! observations for mild curvature. The most significant d..” rence in
the turbulence statistics between the concave and convex sides was in the Reynolds
shear stress. This was accompanied by significant differences in the terms of the
Reynolds shear stress balance equations. In addition, it was found that stationary
Taylor-Gortler vortices were present and that they had a significant effect on the flow
by contributing to the mean Reynolds shear stress, and by affecting the underlying
turbulence.

Turbulence statistics were found to be in qualitative agreement with the
large-eddy simulation of a plane channel performed by Moin & Kim (J. Fluid Mech.
118, 341, 1982). Near the walls, the flow consists of alternating high and low speed
streaks, with mean spanwise spacing of 100 wall units. It was also found, however,
that near the wall, the velocity fluctuations normal to the wall are dominated by
small, intense regions that are not significantly elongated in the streamwise direc-
tion. Streamwise vortices were observed near the walls and were found to occur
most often as a single vortex, rather than in vortex pairs.
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1. Introduction

Turbulent flow over curved walls is of considerable engineering interest. It occurs,
for example, in turbomachinery and on airplane wings nnd in many other applica-
tions. However, current methods for predicting these flows are quite inadequate, as
is evidenced by their poor performance when applied to the relatively simple cur-
vature cases in the 1980-81 AFOSR-HTTM-:tanford Conference on Complex Tur-
bulent Flows (Kline, Cantwell, & Lilly 1982). One of the reason for this difficulty’
is what Bradshaw (1973) calls “the surprisingly large effect exerted on shear-flow
turbulence by curvature of the streamlines in the plane of the mean shear.” He
notes that curvature effects are often an order of magnitude greater than would be
predicted by using dimensional arguments. This poor understanding of the effects

of curvature greatly hinders modeling efforts.

1.1 Curvature Effects

The effects of curvature on fiuid flow have been under experimental and theo-
retical investigation for some time. An inviscid stability analysis first performed
by Rayleigh (1917) indicates that flow over a concave curved surface is unstable
and, ¢. sersely, that convex curved flows are stable. Goitler (1940) performed a
viscous stability analysis showing that laminar flow over a concave surface is un-
stable at sufficientlv high Reynolds number. This instability leads to a system of
large longitudinal roll cells. These so-called Taylor-Gortler cells were later observed
experimentally (Gregory & Walker 1950).

Early experimental studies of the effect of curvature on turbulence (Wilcken 1930,
Wattendorf 1935) revealed changes in mean-flow properties much larger than had

been predicted by mixing-length arguments. Boundary layers wers ~bserved to grow

1
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much faster on concave surfaces than on flat ones and, conversely, to grow slower on
convex surfaces (Wilcken). Wall shear stresses were also greatly affected, increasing
on a concave wall and decreasing on a convex wall. In a fully developed curved
channel with strong curvature (§/R = 0.1) Wattendorf observed a constant angular
momentum (rU) profile over a large portion of the central flow region; however,
Hunt & Joubert (1979) found that for a weakly curved, fully developed channel
(¢0/R = 0.01) this constant angular momentum region was not rresent.

Sufficiently close to the curved walls, mean velocity profiles have been observed
to obey the “law of the wall.” This has been the case for both concave and convex
curved flows in boundary i._ers (So & Mellor 1973, 1975, and others) and in fully
devel ped curved channel flow (Ellis & Joubert 1974). At larger distances from the
wall, the mean velocity of a convex wall layer exceeds that of the flat-wall profile and
the mean-velocity profile of a concave wall layer lies beilow the flat wall profile when
plotted in law of the wall coordinates. The point at which these deviations occur and
their magnitudes are dependent on the curvature parameter (§/R). For sufficiently
weak curvature (§/R = 0.01), these deviations occur beyond the logarithmic region
(Hunt & Joubert 1979; Hoffman & Bradshaw 1978); as an example, mean velocity
profiles from Hunt and Joubert are shown in Figure 1.1. It has been suggested
(Hoffman & Bradshaw 1978) that the flat-plate law of the wall applies where y/R
is small (y is distance from the wall).

Turbulence quantities are also affected by curvature, as would be expected from
Rayleigh’s analysis. In the strongly curved convex boundary layers (§/R = 0.05 —
0.1) of So & Mellor (1973) and Gillis & Johnston (1983) the turbulence virtually
vanished in the outer half of the boundary layer. The point at which the turbulent
shear stress fell to zero was well within the velocity gradient layer. This led Gillis
and Johnston to propose that outer layer scaling for these flows should be based
on the thickness of the shear-stress layer instead of on the classical boundary-layer

thickness. Gillis and Johnston also observed that when shear stress, normalized by
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friction velocity (—uw/u?), was plotted against y/R all of their data, as well as the
data of So and Mellor, collapsed to a single curve.

Boundary layers on strongly curved councave surfaces (6/R = 0.1), as studied by
So and Mellor (1975), show dramatic increases in turbulence activity. In the outer
layer, intensities and shear stress werc observed to be about twice as large as in
flat wall boundary layers at similar conditions. The point at which the shear stress
. fell to zero was at y/6 =~ 1.1. However, both turbulent shear stress normalized

by turbulence energy (—%v/q?) and energy normalized by friction velocity (¢?/u?)
showed reasonable agreement with flat-wall data near the wall. This is further
evidence of the similarity of the near-wall regions.

In the weakly curved boundary-layer cases (§/R = 0.01) of Hoffman & Bradshaw
(1978) and Muck (1982), smaller changes in turbulence quantities were observed.

Changes in turbulence intensities were 10% to 20%, increasing on the concave wall

and decreasing on the convex v.all. Turbulent shear stress increased or decreased
about 10% relative to the flat-wall case, with most of the change occurring in the
outer layer. Even these modest changes are noteworthy since an order of magnitude
analysis of the Reynolds-stress transport equations predicts changes an order of
magnitude smaller for this mild curvature. In these investigations changes in third
and fourth order statistics of order one were also stserved.

In fully developed curved channels, similar changes in turbulence quantities have
been observed (Eskinazi & Yeh 1956; Hunt & Joubert 1979). Turbulent intensities

are larger on the concave side and smaller on the convex side. Also, the point where

5
.
%
3
7

the turbuient shear stress is zero is displaced significantly toward the convex wall,

AL

* and the wall shear stress is larger on the concave side than on the convex side.

Tani (1962) has suggested that there is a turbulent analog to the laminar Taylor-

N et

Gortler vortices. He was led to this proposal after observing stationary spanwise
variations in mean velocity in a concavely curved boundary layer. Similar obser-

vations have since been made by many researchers (Patel 1968; So & Mellor 1975;
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Meroney & Bradshaw 1975; and others). Evidence of turbulent Taylor-Gortler cells
has also been found in fully developed channels (Hunt & Joubert 1979). These
longitudinal vortices give rise to spanwise variations in boundary-layer thickness
and skin friction. Boundary-layer thickness is greatest at the boundaries between
the assumed vortices where the motion is away from the wall (outflow), and skin
friction is lowest there. Turbulence quantities in the outer layer are also affected by
these large longitudinal structures. In general, the effects of concave curvature on
turbulence quantities are greater at the outflow boundaries between the postulated
roll cells (So & Mellor 1975; Muck 1982).

Many researchers have observed a repeatable stationary pattern of spanwise vari-
ations. This repeatability has been attributed to upstream disturbances (Meroney
& Bradshaw 1975). In an attempt to impose a more regular pattern of variations,
Muck (1982) placed regularly spaced vortex generators upstream of the curved
section. The resulting weak longitudinal vortices in the upstream boundary layer
were amplified by the curvature, serving to “lock in” the positions of the turbulent
Taylor-Gortler cells.

Interestingly, Jeans & Johnston (1982) did not observe a stationary pattern of
roll cells in their flow visualization study on concave curvature, presumably because
of a lack of persistent upstream disturbances. They observed large-scale roll-like
structures (they referred to them as sweeps and ejections) which appeared randemly
in time. These structures drifted in the spanwise direction and had streamwise
extent as small as “several boundary-layer thicknesses.” Barlow (1983), using the
same experimental facility, observed that the appearance of these structures was not
entirely random, and that their extent and persistence were dependent on upstream
conditions, for example, the condition of screens in the water channel. Barlow also
placed vortex generators upstream of the curved section and was able to make
the roll-cell pattern stationary, with rolls extending the entire length of the curved

section.
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To model the effects of ..uivaiure on the mean-flow properties, Bradshaw (1973)
suggested a correction factor for the apparent mixing length in analogy to the

Monin-Obouhkov formula for buoyant dows:

t 2U/R 3
S~ =1+p220 :
b aU/ay :
where £ and ¢, are the corrected and uncorrected mixing lengths, and f# is an ¥
empirical constant of the order of 10. This model has met with limited success in »

cases of weak curvature. More complicated schemes involving the solution of the

modeled Reynolds stress transport equations have also been used (Irwin & Smith

e dintih

1975; Gibson, Jones, & Younis 1981). The Reynolds-stress transport equations have
additional production, convection, and diffusion terms arising from the curvilinear :
coordinate system. These terms do not appear in scalar equations, such as those
used in models based on the k-e¢ equations. In addition, it has been suggested
that curvature terms which arise naturally in the model of Launder, Reece, & Rodi
(1974) for the pressure strain correlation may account for observed curvature effects
(Launder et al.). Thus, by solving the Reynolds-stress equations, the presence cf
curvature is reflected in the equations being solved, rather than explicitly added to
the turbulence models being used. This approach has enjoyed reasonable success.
Modeling eh. rts for curved flows have been hindered because the mechanism by
which curvature induces the dramatic changes noted above is not well understood.
The study reported here was undertaken in an attempt to improve this understand-
ing by using numerical simulation to provide data that are not normally available
from experiments. Numerical simulation of a turbulent flow can provide the turbu-
lent velocity field as a function of space and time, which can be used to compute any

quantity of interest. For example, all of the terms in the Reynolds-stress transport

equation can be computed, as can two-point space-time correlation functions. In
addition, the instantaneous velocity and pressure fields can be examined to gain

information about the turbulent structures they contain.
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1.2 Turbulent Flow Simulation

The numerical simulation of turbulent flows is a technique for investigating turbu-
ence, which has recently become feasible because of the development of large scale
computers. These simulations are proving to be valuable supplements to labora-
tory measurements. In one type of simulation (direct simulation), the Navier-Stokes
equations (usually incompressible) are numerically solved for a turbulent flow field.
However, such a simulation must resolve all important spatial and temporal scales
in the flow. One of the characteristics of turbulence is that the range of scales
in the flow increases rapidly with Reynolds number. Thus, a direct simulation is
necessarily limited to low Reynolds numbers.

Another method, the large-eddy simulation (LES), alleviates the low-Reynolds-
number restriction at the expense of including some modeling. In LES, the large-
scale motions are explicitly computed, but the effect of the unconputed small scales
is modeled. This strategy relies on the fact that the large-scale structures vary
significantly from flow to flow, whereas the small-scale eddies are thought to be
universal (Chapman 1979). This universality of the small scales makes them much
miore amer oie to modeling than the turbulent flow as a whole. However, there
are difficulties with the LES approach when computing the near-wall region of
a wall-bounded flow. In this region, the important large eddies (the streaks of
Kline, Schraub, & Runstadler 1967) are in fact quite small relative to the flow as a
whole, and they Lecome smaller as the Reynolds number increases. Thus, the LES
technique for wall-bounded flows is also limited to low Reynolds numbers when the
viscou ' 3ublayer is computed. However, this limitation can be alleviated somewhat
b+ the use of fine grids embedded near the walls. For more details on the techniques
of turbulent flow simulation, see the review article by Rogallo & Moin (1984).

3oth direct simulations and LES put a great burden on computing hardware, and

because of the great computational efforts involved they are limited to very simple
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flow situations. To date, flows that are at most one dimensional in the mean have
been computed. The other two dimensions are assumed to be homogeneous, and
periodic boundary conditions are used. The use of periodic boundary conditions
greatly simplifies the computation. The current limitations of these simulations
to one 1imensional, low-Reynolds-number turbulent flows makes them mmpractical
for engineering calculations. However, they are being used as a research tool in
fundamental studies of turbulence.

Unbounded turbulent ows have been computed quite successfully using both
direct simulation and LES. Homogeneous isotropic turbulence has been computed
by Orszag & Patterson (1972) and by many others using direct simulation, and by
Kwak, Reynolds, & Ferziger (1975), Shannan, Ferziger, & Reynolds (1975), Man-
sour et al. (1979), and Antonopoulos-Domis {1981) using large eddy shnulation.
Rogallo (1981), Feiereisen, Reynolds & Ferziger (1981), and Shirani, Ferziger, &
Reynolds (1981) have performed direct simulations of homogeneous turbulence un-
der the influence of various mean strains. Large eddy simulations of these flows
have also been performed (Kwak, Reynolds, & Ferziger 1975; Shaanan, Ferziger,
& Reynolds 1975; and Bardina, Ferziger, & Reynolds 1983). The results of these
computations have been usad as test cases for turbulence models. In addition,
simulations have been performed for time-developing unbounded plane shear layers
(Mansour et al. 1978; Cain et al. 1981; and Riley & Metcalf 1980).

Simulation of wall-bounded flows has proved to be more difficult, because the
energy-producing turbulence structures near the wall are small compared to the
overall dimensions of the flow. Deardroff (1970) and Schumann (1973) have per-
formed simulations of fully developed plane channel flow using LES. They were
able to compute the the flow far from the wall, but the effects of the walls and the
near-wall turbulence were modeled. Moin & Kim (1982), using LES, actually com-
puted the near-wall low, but their numerical resolution was insufficient to properly

resolve the near-wall turbulent eddies. However, their calculations did reproduce
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the experimentally observed structure of the flow near the wall, though at scales
larger than reported experimentally. A near-wall subgrid scale model was included
to account for the missing production of the under-resolved eddies. The simula-
tions being reported here were performed using direct simulation, at sufficiently

low Reynolds number for all important turbulence scales to be resolved.

1.3 Numerical Methods

Turbulent flow simulations are often performed using spectral methods. Spectral
methods are used, because for sufficiently smooth fields, they have a very high
formal accuracy. This is particularly important in three-dimensional simulations,
in which the number of modes that can be used in each spatial direction is severely
limited. In addition, the periodic boundary conditions often used in these problems
make spectral methods based on Fourier expansions quite natural and easy to apply.
However, the application of spectral methods to wall-bounded flows is considerably
more difficult. Fourier expansions are not appropriate for the direction normal to
the wall because the imposition of the no-slip boundary condition severly degrades
their accuracy. There is also a fundamental numerical difficulty associated with
the incompressible Navier-Stokes equations in wall-bounded domains when solved
using spectral methods. The difficulty stems from the continuity equation and
the no-slip boundary conditions, which appear as constraints to the Navier-Stokes
equations. When the dynamic equations are time-differenced, the continuity and
boundary constraints must be imposed on the velocity field at each time-step. Moin
& Kim (1980) have shown that when spectral methods are used, the most common
explicit time-advancement scheme leads to meaningless calculations, because the
continuity and boundary conditions cannot be properly enforced. They suggest
implicit time-differencing of the viscous and pressure terms to allow the imposition

of the constraints.
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Several schemes have been developed for solving the Navier-Stokes equations in
wall-bounded domains, sing spectral methods. Most of these computations have
used Fourier expansions in two space dimensions. In the method dcscribed by
Moin & Kim (1980), the velocity and pressure are expressed in terms of Chebyshev
polynomials (and Fourier functions). The momentum equations are time-differenced
with the viscous and pressure terms treated implicitly. The resulting equations are
solved simultaneounsly with the continuity equation and the boundary condition
equations for the Fourier-Chebyshev coefficierts. A nearly block-tridiagonal matrix
results in the chaninel problem, in which Cartesian coordinates are used. It was
found that in cylindrical coordinates a much more complicated matrix results.

In :nother approach, Orszag & Kells (1980) used a fractional-step scheme, using
Chehyshev polynomials, which seems to be quite efficient for the chainel problem.
Similar schemes have been used in cylindrical coordinates for the flow in a pipe
(Patera & Orszag 1981) and for Taylor-Couette flow (Marcus, Orszag, & Patera
1982); however, they result in matrices that are solved in O(N?2) operations, where
N is the number of Chebyshev polynomials. In the fractional-step scheme used by
these authors, each time-step is split into three independent “corrections.” First,
the nonlinear terms are explicitly timme-advanced, yielding an intermediate field v
Then the pressure correction is applied, enforcing the continuity constraint on the
second intermediate field V. Finally, the viscous correction is performed, allowing
the imposition of the boundary conditions on the velocity field at the new time-step.
Note that imposing the continuity constraint on the intermediate field ¢ leads t. an
error in the continuity equation of order At/Re for the final field. This appears to
cause no serious problems in the channel calculations of Orszag and Kells; however,
Marcus, Orszag, & Patera (1982) experienced some accuracy and stability problems
related to the splitting when calculating Taylor-Couette flow.

A third method is given by Kleiser & Schumann (1980), who developed a method

for the channel problem using Chebyshev polynomials. It is quite similar to the
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fractional-step scheme mentioned above. Illowever, a procedure is used to deter-
mine the proper boundary conditions for the pressure to ensure satistuction of the
continuity equation. This method is quite efficient for the channel problem, and
Marcus (1983) has extended this method to cylindrical coordinates to solve Taylor-
Couette flow.

Finally Leonard & Wray (1982) recently developed a new method and applied it
to flow in a pipe. A spectral representation based on Jacobi polynomials was used
which inherently satisfies the continuity and boundary constraints.

In the method used here, we follow Leonard & Wray (1982) and represent the
velocity field using vector functions that satisfy the continuity ecquation and bound-
ary conditions. In this way, these constraints are automatically satisfied. Satis[ying
the continuity equation also removes a degree of freedom, and, since the pressure
is eliminated from the equations, oniy two dependent variables are left. Applica-
tion of this method in both Cartesian and cylindrical coordinates using Chebyshev

polynomials is described in §2, and some implementation details are presented in §3.

1.4 Motivation and Objectives

The available turbulence data for curved wall-bounded flows is deficient in sev-
eral ways. First, most of the statistical correlations appearing in the Reynolds-stress
equations, especially those involving pressure and spatial derivatives, are very dif-
ficult if not impossible to measure, and thus are unavailable. Second, dectailed
statistical and tiine-dependent data needed to study the structure of turbulence are
scarce. Finally, in many experiments Taylor-Gortler vortices have been observed on
concave curved walls. However, detailed data on the variation of relevant turbulence
parameters with position in the vortices and on the contribution of the vortices to

turbulent stresses and higher order statistics are not available.

10



Tuarbulent flow simulation is uniquely suited to provide the information outlined
above. Moreover, such a simulation provides data relevant to general wall-bounded
flows since it is anticipated that many of the features of wall-bounded flows are
qualitatively unaflected by mild curvature. In particular, the structure of the flow
very necar the walls can be studied to discern the curvaturc-induced differences
between the concave and convex walls in a curved channel, and, in so doing, the
near wall features of noncurved wall bounded flows are observed as the features
common to both walls. A direct ..umerical simulation of a wall-bounded fow is
particularly valuable for verifying the results of large-eddy simulations, because
a direct simulation has not previously been performed of a fully developed wall-
bounded flow.

The study reported here was undertaken to perform such a simulation, and had

the following specific objectives:

(1) Develop and verify a fully spectral numerical method for incompressible flow
between parallel planes and concentric cylinders.
(71) Demonstrate the feasibility of performing direct simulation of a fully developed
wall-bounded turbulent flow.
(#41) Develop a detailed data base for curved turbulent channel flow to be used to
study curvature effects and the more general featurcs of wall-bounded flows.
(#v) Assist turbulence modelers by computing quantities of interest that are difficult
or impossible to measure.
(v) Investigate the presence and role of turbulent Taylor Gortler vortices in this
flow.
(vi) Investigate the structure of turbulence present in curved-channel flow and more
general wall-bounded flows, using statistical methods and computer visunaliza-

tions.
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2. Mathematical and Nuinerical Considerations

In this section, a method is described for numerically solving the incompressible
Navier-Stokes equations in a bounded domain. Much of the material presented
here appears in Moser, Moin, & Leonard (1983) and is included in the interest of
completeness. In the time-advancement procedure used here the viscous term is
treated implicitly, whereas an explicit scheme is used for the nonlinear (convective)
terms. In this mixed explicit-implicit time-differencing, the explicitly treated terms
act as forcing terms to the implicit part of the calculation. In essence, then, an
implicit time-advancement procedure is needed for the forced Stokes equations (the
nonlinear term is replaced by a forcing term). It will be convenient in much of
the discussion that follows to consider only the Stokes equations; however, the
Navier-Stokes equations can be easily solved with any scheme for solving the Stokes
equations, given a technique for computing the nonlinear terms, v X w.

We consider the forced Stokes equations,

ov _1_

-a—t =-VP - ReVXVXV+f,

V.-v=0, (2.0.1)
v=0 at the walls,

where v is the velocity vector and f is some forcing function.

2.1 Divergence-Free Vector Expansions

We seek a finite spatial representation of the velocity vector, v. Since v is con-
strained to satisfy the continuity equation.and the boundary conditions, we choose

a representation v,, which inherently satisfies these constraints,
J
va(z,0,2,t) = Y a;(t) w;(z,9,2) (2.1.1)
o
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where a;(t) are the coeflicients of the expansion, m:d w;(xz,y, z) are a set of vector

functions chosen to satisly
V.w; =0, w; =0 at the walls. (2.1.2)

The representation must also be complete so that for sufficiently large J all vector
fields of interest can be represented by (2.1.1).

The representation (2.1.1) is substituted into the Stokes equations (2.0.1) and a
weighted residual method is used to obtain ordinary differential cquations for the
coefficients a;(t). This involves dot multiplying the equations by a sct of weight
vectors and integrating over the computational domain. Vector weight functions

®;: are chosen such that
V. %, =0, ®;;-n=0 at the walls, (2.1.3)

where n is a unit vector normal to the wall. When the weight vectors are formed
in this way it can be shown, using integration by parts, that the pressure term is

eliminated from the resulting equations. The result is

da,- 1
}T‘_dT/Dq,J.,.wjd,,=--ﬁ;§j:a,./o<p,,-Vxwa,-du

(2.1.4)
+/ Q,'l -fdv.

D
These equations can be written in the compact form,

da 1

—_—= = 2.1.

7 = Re Ba+F, (2.1.5)
where A and B are (J + 1) x (J + 1) matrices with elements

ﬂjl'j "—-"/ QJ'I 'Wj dv ’
b (2.1.6)

BJ",J' = —/ le 'VXVXW‘J' dv N
D
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where a is the vector with elements a; and F is the vector with elements
th =/ @j: -fdv. (217)
D

Equation (2.1.5) is a system of linear ordinary differential equations which can
be solved numerically using any standard time-discretization scheme. It should
be noted that even an explicit scheme will require “nversion” of \he matrix 4;
thercfore, unless 4 is much more sparse than B, there is no computational adv: ntage
in using an explicit scheme.

It will be useful to consider the scheme described above from two ¢ *.. »oints
of view. First, it is shown in Appendix A that if (2.0.1) has a solution, it may be
obtained by solving the following “weak” problem, which is due to Leray (1934):

veV={ueH}, V-u=0},

& (u,v) =~ (Vxu, Vxv) + (u,0), (2.0.8)
YueV,

where (u,v) is an inner product defined as

(u,v) = /;)u -vdy, (2.1.9)

and V is the space of all divergence-free vecter functions satisfying the no-slip
boundary conditions with at least one square integrable derivative . It is clear that
in the numerical method described above, the functioas w, are a basis for a finite
dimensional subspace of V (w; has at least one square-integrable derivative), and
the functions &, also span a subspace of V. If the numerical method is to be
consistent with (2.1.8) both the finite dimensional subspaces spanned by w; and
®,: must converge to V as J becomes infinite.

The second point of view is related to the fact that any vector field u can be

uniquely decomposed into two fields S and V¢, where S satisfies the no-flow-through
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condition and is divergence free (Chocin & Marsden 1979). There is a projection

operator P which maps functions u into divergence-free functions S. By rewriting

(2.0.1) as

1
55 T VP = g VX Uxv+o, (2.1.10)

it can be scen that since dv/dt is divergence-free it is the projection of the right-

hand side of (2.1.10), that is,

av 1
E-P(—ﬂVxva+f). (2.1.11)

As is shown in Appendix A, the numerical method described here can be viewed as
an approximation to this projection operator, P7/. Let A be the difference between

the right-hand side of (2.1.10) and its approximate projection,
1 J 1
A=—R—;Vxva+f—P —FVxvaﬁ—f . (2.1.12)

If the projection were exact, A would b: the gradient of the pressure P; however,
since the projection is approximate (because of the finite spatial resolution), A is

not necessarily the gradient of a scalar. The pressure car be defined through the

exact projection of A,

VP=A-PA), (2.1.13)

and P(A) is a truncation error associated with the projection; it will be called the
projection error. If the numerical method is to converge, the projection error must
go to zero as J becomes infinite; also, we expect that for problems with adequate
resolution the projection error will be small. Note that the presence of projection
error is a manifestation of poor spatial resolution, and it can be monitored to

ascertain the adequacy of the reso'ution.
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2.2 Projection Error

The projection operator P discussed above maps any vector function into a vector
function satisfying the no-flow-through condition, not the no-slip condition. In fact,
for a general vector field, there is no decomposition into S and V¢ such that S is
divergence free and satisfies the no-slip condition (Chorin & Marsden 1979). Thus,
in general, the right-hand side of (2.1.11) is not guaranteed to vanish at the walls.

Consider the Navier-Stokes equations (f is replaced by v x w in equation 2.0.1).

av 1

E"'VP——"ﬁéVXVXV'*—VXU, (22.1)
or

ov 1

"a—t'—P(—ﬂVXVXV‘FVXW) . (222)

If v is such that the right-hand side of ‘2.2.2 is zero at the walls, v will be said to
be a compatible velocity field. This is the compatability condition pointed out by
Moin, Reynolds, & Ferziger (1978). It has been shown (Temam 1983) that with
an initial condition that has n > 2 square-integrable derivatives, the Navier-Stokes
equations have a un.jue solution for 0 < t < T for some finite time T', which has
n square integrable derivatives and is compatible in the above sense. Also, dv/dt
has, in general, n — 2 square-integrable derivatives.

At best then, dv/9t has two fewer square-integrable derivatives than v; at worst
v may not be compatible so that dv/3t does not have even one square integrable
derivative. In either case, dv/dt is not as smooth as v and is, therefore, more
difficult to represent with a numerical method. The spatial discretization error
in dv/dt may thus be much larger than in v, and this error contributes to the
projection error in the method presented in §2.1.

The computations of the various states of Taylor-Couette flow described in §4
have been examined for projection error. In the low Reynolds-number cases (Taylor

vortices and wavy Taylor vortices), where the velocity field and dv/dt are very
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smooth, the relative projection error |P(A)?|/|A?| (here | -| signifies the average
over a surface parallel to the walls) was less than 10~© everywhere. In the higher
Reynolds-number case of modulated wavy vortex flow, the velocity field and par-
ticularly the time-derivative field are less smooth and there is some evidence of
weak turbulence. For this case the the relative projection error was of the order of
1075, except very near the wall where it was 10~2. These results confirm that the
projection error is related to the lack of smoothness of dv/at.

Projection errors have also been observed in the turbulence calculations being
reported here. Values of |P(A)?|/|A?| as large as 1 have been observed near the
walls. This relative error falls off quickly to less than 10~2 going away from the
wall. Values of ||P(A)]|?/||Al|2 (|| - || signifies the L2 norm) and ||P(A)||/ji¢v/at|
were of the order of 10~3. It is not surprising that the error is so much larger
at the walls than away from the walls in view of the discussion above. To inves-
tigate these errors further, the approximate projection P2’ (using twice as many
expansion functions) was performed and compared with P’ reported above. The
projection error P(A27) at the walls was reduced by an order of magnitude from
the value reported above, and the errors in the center of the channel were reduced
by two orders of magnitude. The reduction of error at the wall when the more
accurate projection is used indicates that most of the error in PY at the wall is not
caused by the incompatibility of the velocity field. If the velocity field were truly
incompatible the wall error would not be reduced with improved approximations to
the projection. Instead, the large values of relative projection error at the walls is
caused by the finite spatial resolution used in the projection. The more rapid re-
duction of projection error away from the wall is further indication of the difficulty
of representing dv/dt near the wall. These projection errors are indicative of the

marginal resolution of the computations.
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2.3 Plane Channel

In order to use the method described in §2.1 the expunsion functions and weight
functions must be chosen. In this section, functions for planc-channel flow are
presented. Although plane-channel flow is not under investigation in this work, it
is instructive to first present the numerical method for this simple geometry. The
functions used in the curved channel will be presented in §2.4.

The plane-channel flow is homogeneous in the two directions parallel to the walls
(z and z). Therefore, in these directions, periodic boundary conditions and Fourier
expansions are used. Only the expansions in the direction normal to the walls (y)
necd to be determined. It is assumed that the-walls are located at y = +1. The

expansion functions of (2.1.1) become

Wiimt = W5 (y; Kz, ko )et ="e e, (2.3.1)
where
! 2
ko= 22, —L<i<L; k=T2" _M<m<M (2.3.2)
L, L.

are the wave numbers; L., L, are the pericds in z and z, respectively; L, M are half
the number of Fourier modes used, and u;(y;kz,k;) are a set of vector functions

chosen such that

V- -Wjmi=0 and u(y=+1)=0. (2.3.3)
The weight functions are chosen as
Bjimer = e (y; kay ki Je 2T 0%, (2.3.4)
with
V. ®pper =0, and ¥u(y=+1)-n=0, (2.3.5)

where n is a unit vector normal to the wall. After using the orthogonality property

of the complex exponentials to evaluate the z and z portions of the integrals in
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(2.1.4), the weighted residual method of §2.1 yields the following s<t of equations
for each wave-number set k., k,:

d
a,/‘ - u,dy-_—ﬁl— a,/ U, VxVxu, dy

l
+/ ‘I’J‘I'Edy,

-1

(2.3.6)

where ¥, and u,; depend parametrically on k, and k,, f is the Fourier transform
of f, and V x is the Fourier transformed curl operator. Note that the subscripts [
and m were introduced for the expansions in the z and z directions but have now
been dropped for brevity.

We now turn to the problem of choosing the vectors ¥;: and u,. There is consid-
erable freedom in this choice. The vectors presented here were constructed to yield
matrices 4 and B in (2.1.5) which are banded with small bandwidths. This is easily
accomplished when one of the wave numbers (say k) is zero. First, vectors will be
constructed for this special case; later the results will be extended to the general
case.

It becomes necessary to split the sets of vectors ¥ and u into two classes, (¥+,¥~)
and (u*,u"), respectively, each class having a different functional form. This is
equivalent to independently representing two components of the velocity vector,
with the third determined by the continuity equation. To obtain tightly banded
matrices, we desire that the equations for u* be deconpled from the equations for

-, that is,

1 1
/ V. -u;dy=0, / W}'Vxﬁxu; dy =0,
-1 -1

. ) (2.3.7)
[I\P;,-u;dyzo, ./:—I\P;'.-Vxquj*dyzo.
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A convenient choice which satisfies this requirement {for k, = 0) is

vz ) ig; 0 )
u;f =y | = kzg; |, u; =10 1|,
u,) 0 h,')
¥ ) - iQl, 0 )
‘I‘;' = ¢y = szj’ ’ \I';, = 0 ’
"l’:} Pj'/

(2.3.8)

where g, Q, h, and P are indexed functions of y to be chosen later, and the

superseript primes (not on subscripts) indicate differentiation with vespect to y. ..

cat be easi'y verified that these vectors satisfy the continunity conditions (2.3.3) and

(2.3.5); the boundary conditions will be satisfied if
gi{y==£1)=0, hij(y=+1)=0,

gily=+1)=0, Qp(y==+1)=0.

(2.3.9)

It will also be useful in reducing the band widths of matrices 4 and B, to require

that
Pi(y=+1)=0 and Qj(y==+1)=

(2.3.10)

The integrals in (2.1.6) can be evaluated using the identity in Cartesian coordi-

nates (for V -u = 0),
VxVxu=-Vu,

and integrating by parts with the results

/ O ufdy=— [:Qj'(ﬁgj)dy,

1
B, = [_1 jr Ix U xus dy————/_l(BQ,-,)(Lg,-) dy ,

1 1

ﬂ"J:/l\I‘;,-u; dy=/1Pj'(£h:‘)dVv
1 . 1

3;,”. = _/ Vs VxVxuy dy =/ Py(Lhy) dy,
-1 ~1

A 20
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where £ is the Fourier-transforined Laplaciau operator,
L=— k. (2.3.13)

Thercfore, when the vectors (2.3.8) are used, (2.3.6) is decomposed into two inde-

pendent equations for the coefficients of u* and u-,
dat 1
T - Z Btat + 2
A 7 ReB a* +F*, (2.3.14a)
_da” 1 o _
A - = -ﬁ;B a +F-, (2.3.14b)
with matrices as defined in (2.3.12) and F* and F - defined as follows:

l -~ -~
Fp = [ (@l - Qs f) dy,
-1 (2.3.15)

1
F;:/lp,-,f,dy.

It should be mentioned that in Cartesian coordinates (2.3.14) can be derived in
a more straightforward way (this will not be the case in cylindrical coordinates; see
§2.4). Equation (2.3.14b) is readily obtained from the z equation of (2.0.1), after

Fourier transforming (again k, = 0),

b 1 .
2 - —['% . ( s N
It Reacvz+fz \2316)

If the representation

b, = Za;h,- (2.3.17)
2

is used in a weighted residual method with weights P,., (2.3.14b) is obtained. For
(2.3.14a), the curl operator is used twice on (2.0.1), which yields

%(Vxva):-Rl—e-(Vx)‘v+Vxfo. (2.3.18)
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After Fourier transforming and using (2.3.11), the y equation of (2.3.18) is the

fOurth Ordel' equation
.“ ‘U” R ‘Uy) + ( X X ) . ( . )

The representation

by =) oajg; (2.3.20)
i

and the weight functions Q;- yield (2.3.14a). The continuity equation evaluated at
the wall requires

ov, , .
So=%1)=0, (2.3.21)

which provides the additional boundary conditions on v, to make (2.3.18) well
posed. The z velocity is determined from the continuity equation. Thus, for this
case, solution of (2.0.1) is equivalent to the solution of (2.3.16) and (2.3.19). These
equations were solved in a method used by Patera & Orszag (1981).

Extension of the vectors used above to the general case when k, # 0 and &k, # 0
is straightforward. By rotating the coordinate system about the y axis, the general
problem can be reduced to the k., = 0 case already discussed. The new axes (z'

and 2') are rotated such that the z’ axis is alizned with the vector
ke, + k,e, , (2.3.22)

where e, and e, are unit vectors in the z and z directions. Then,
ko = (k2 +&3)V2,  ky =0, (2.3.23)

and the vectors (2.3.8) can be used. This is the coordinate transformation at the
heart of Squires’ theorem in the hydrodynamic stability of plane parallel shear flows

(Stuart 1963).
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Finally, the vectors defined in (2.3.8) are incomplete when both &, and k, are

zero. For this case, the following set of vectors is used:

( (0
u;? =10 ], u: =101,
0 h,
(\P‘, (\ 0’ (2.3.24)
vy, = o |, =0
\ 0 \ P

This leads to identical matrices for the plus and minus equations; the derivation
follows that for (2.3.14b).

The expansion functions g, Q, k, and P must now be chosen. Strictly orthogonal
functions (which would lead to diagonal matrices A and B in 2.3.14) should not be
used because requiring orthogonal functions to satisfy boundary conditions (2.3.9)
imposes extraneous conditions on higher derivatives of the functions, which degrades
the rapid convergence of the method (Gottlieb & Orszag 1977). Instead, we use
quasi-orthogonal functions, which lead to banded matrices 4 and B, and do not
suffer from this convergence problem. Quasi-orthogonal functions are constructed
from a set of orthogonal functions which admit general boundary conditions (see
Gottlieb & Orszag 1977 for a discussion of this class of functions). Since these
functions do not inherently satisfy any boundary conditions, boundary conditions
are imposed by forming linear combinations of them to make the quasi-orthogonal
function. This construction must be done in such a way as to make matrices 4 and
8, which involve integrals of the functions and their derivatives, banded. Orthogonal
polynomials are suitable for this purpose because they satisfy recursion relations
which make this construction easier.

The Chebyshev polynomials have been chosen for this application because they
have two properties that are particularly useful. (¢) They are related to the cosine

function through a coordinate transformation (Fox & Parker 1968); this allows the
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use of the fast Fourier transform algorithin in evaluating F. (&) They arc partic-
ularly efficient for resolving boundary layers near the walls (y = 1) (Gottlieb &
Orszag 1977). The functions g, @, h, and P are constructed so that they and their
derivatives have simple forms when expressed as linear combinations of Chebyshev
polynomials, which guarantees that the matrices A and B are banded. This can be
accomplished by manipulating the recursion relations for the Chebyshev polynomi-

als. The constructed functions ¢, @, k, and P are,

g = (1 - %) T;(v), hy = (1 - 9?)T5(y),
_f Tiv2 2T; Ti-2 212
%= (55~ g m 7o) /" e

1/2
Py = (Tj_y — Tj41)/20(1 - v?)'%,

where T is the Chebyshev polynomial of order j and the factor 1/(1 — y2)1/ 2 ap-
pearing in @ and P is the weight for the Chebyshev orthogonality relation.

Other orthogonal polynomials can be used to construct quasi-orthogonal func-
tions. This is a consequence of the recursion and differential relationships that
orthogonal polynomials satisfy (the Chebyshev relationships are particularly sim-
ple). Thus, there are many possible sets of quasi-orthogonal functions that can be
used to meet requirements that might be imposed in a given problem. For example,
Legendre polynomials could be used in this problem instead of Chebyshev polyno-
mials; in that, case the g and Q functions would be identical, as would the h and P
functions. The resulting approximation would have identical expansion and weight
functions so that the analysis in Appendix A would apply. A second example is the
functions based on chifted Jacobi polynomials used by Leonard & Wray (1982) in
the calculation of flow in a pipe.

With the choice of the functions g, h, Q and P the method is completely defined.
Of great interest is the amount of computation required to implement this method.

After taking advantage of the decoupling f even and odd functions, both matrices
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A' and B are banded with two subdiagonals and four superdiagonals, and A~ and
B- have one subdiagonal and two superdiagonals. Also, the elements in the matrices
depend only on the square of the wave numbers k, and k, so that at least two wave-
number sets can be solved simultaneously. The result is that for each wavc-nuxﬁber
set kg, k,, the matrices arising from the haplicit time-differencing of (2.3.14) can
be solved in 30NV real additions and multiplications, where N is the number of u+
vectors used (three less than the highest-order Chebyshev polynomials used). There
is some additional computation required to calculate the forcing vector F and to
perform the coordinate rotations discussed earlier. The total cost is then about
50N operations. This compares favorably with the 376 N operations required for
matrix solution in the finite difference method used by Moin & Kim (1982). Thus,
the method is operationally efficient, in addition to offering savings in computer

storage by reducing the number of independent variables.

2.4 Curved Channel

In this section, expansion and weight functions to be used for a curved charnel
will be described. We shall consider the flow in an annulus. In this case the flow is
assumed to be periodic in the axial (z) and the azimuthal (@) directions. The inner
and outer walls are located at r = r; and r = r,, respectively. Using representation
and weight vectors as in (2.3.1) and (2.3.4), a result (for cylindrical coordinates)

similar to (2.3.6) is obtained.

where ¥,/ (r) and u;(r) depend parametrically on ky and k., which are the 6 and z

wave numbers.
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Again, it is desirable to choose ¥ and u to make 4 and B tightly banded. The
first step is to attempt to uncouple the equations for the two sets of veciors ¥ ',
u*, and ¥, u~. In cylindrical coordinates, however, the appcarance of uy in the
r-component of VXV xu (for V-u = 0) and u, in the §-component makes the
decoupling more difficult than in the Cartesian case.

The following vectors satisfy the decoupling requirement, though they have an

important defect to be discussed later.

w) (e — ik, g
uf = |u [ =Vx| g |= — kig; , (2.4.2a)
U, 0 J g_;' + ﬁ#gj
o —iQjr )
\II;, =V*'xV*'x Qj ) (2.4.2b)
0 )
. —1g; -~ 1k2g;
u; =Vx| g; = k.g; , (2.4.2¢)
0 g; + 5keg;
. ‘lQJl
¥, =V'xV'x| Q |, (2.4.2d)
0

where Q;/ and g; are indexed functions of r (not the same as in (2.3.25)) and
V*x is tie complex conjugate Fourier-transformed curl operator. Satisfaction of
the continuity equation is guaranteed by the identity V - (Vxu) = 0. In order to

enforce the boundary conditions, we require
Qj’(r = riaro) =0 ’
Qi (r=ri,ro) =0.

Equation (2.4.1) now decomposes into two equations, as in (2.3.14). However, the

9,1'(7' = T,',To) =0,
(2.4.3)
g;(r=ri,re) =0,

vector functions defined in (2.4.2) are an incomplete set, because the imposition of
the boundary conditions in (2.4.3) forces the §-velocity to satisfy the condition

du
_51'—0 =0, atr=r,r,, (2.4.4)
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which is too restrictive. To alleviate this problem, the vectors in (2.4.2) are aug-

mented with two extra vectors,

0 0
u=| -2kh; |, =] -ksP |, (2.4.5)
(Zko/‘r)hj ko?‘le

where j and j' can be 0 or 1. With this addition, dup/dr can have arbitrary
values at the walls. It can be shown that a finite number of expansion functions
u*, u~, u® can exactly represent the Fourier components of any divergence-free
velocity field with polynomial dependence on r that satisfies the no slip boundary
conditions; therefore, the expansion functions are complete. When the extra vectors

are included, equations (2.3.14) become

+da+ +da° _ i + 4+ t o +
A 7 + A, 5 "Re(3~+°’ + B;a®) + F*, (2.4.6a)
-da” -da® 1 A A _
A_W + Ao —d—t_ = ﬁ-e'(B_ﬂ + Bod )+F , (2.4.6b)
o dat da- oda’® 1 . 0
-4+ dt +ﬂi di +ﬂ°—5=ﬁ;(31a++3‘ia +BZG°)+F, (2.4.60)

where the matrices are defined ag

(A3)js = / O\I’;, -uf r dr,
o (2.4.7)
(B,’,),-,-:/ ¥],-VxVxuf rdr.

The subscripts/superscripts v and 8 can be the symbols +, —, or 0 as used above.
The equations in (2.4.6) are coupled, but in = weak way that will not significantly
affect the computational ell.ciency of the method (see below).
The functions g, h, Q, and P are again constructed with Chebyshev polynomials,
2
g; =r(1-9")'T;(¥) hi =r(1 -y T;(y)
T'+2 2T T'_2 ' 22 1/2
Q-=r’(, I )/41—y , (2.4.8
= GG+n GFOG-D TiG-n)/ WY @48

2
Pj = (Tj—1 - Typr)/2(1 —y2)"?,
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where y = (2r --r, — 1) /(ro - 7i), so that p is -1 whexre r == r; and +1 where
r = r,. These are the same functions used in the Cartesian problem, except for the
factors of r and r?. These factors are included to cancel the various 1/r’s appearing
in the £ operators, which is necessary if the Chebyshev orthogonality rclations are

to be used to evaluate t'ae integrals in (2.4.7).

The coupled equations (2.4.6a-c) can be written as a single equation, as in (2.1.5)
(o is ccmposed of the vectors a*,a~, and a°). The resulting matrices 4 and 8
have the special form shown in Figure 2.1. Also shown are the bandwidths for
the various nonzero bands in the submatrices. Though this matrix is not strictly
banded, it can be solved with no difficulty. As in the Cartesian case, there are wave-
number symrr etries that allow the solution of more than one wave-number set at a
time. Including these symmetries, the operation count for the matrix solution for
each wave-number set kg, k, is 235N additions and multiplications, where N is the

number of u* vectors (four fewer than the highest order Chebyshev polynomials

used).

The representation presented above is incomplete when k, = 0. The following

vectors are used in the special case k, =0, k; # 0:

(2.4.9)

where 7, h, Q, and P are as defined in (2.4.8). When k, = 0 and ';y = 0, the
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vectors in (2.4.9) are incomplete. In this case the following vectors are used:

(o [0
u: = | h; |, u 0
\ 0 \ hi
(0 (9
Wt = PJ" , \I’;,= 0
Lo \Pr

b}

(2.4.10)

The vectors in (2.4.9) and (2.4.10) are very similar to the oncs used in the Cartesian
case and lead to uncouple:! sets " { equations. Solution for these caser requires less

computation than the general case considered above.
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3.Implementation Details

The numerical method outlined in §2.4 has been implemented on the Cray-XMP
computer. The code CURVE which implements the method was written in VEC-
TORAL, which is a language developed at NASA-Ames Research Center for large-
scale computations on vector processors (Wray 1983). Some of the important fea-
tures of CUKVE and some of the other codes used in conjunction with it are dis-

cussed in the following sections.

3.1 Time Advancement

The method outlined in §2.4 is used for the spatial discretization of the Navier-
Stokes equations. For the time-discretization, the viscous terms are advanced us-
ing the Crank-Nicholson scheme (trapezoidal rule), whereas second order Adams-

Bashforth is used for the nonlinear terms (f = v x w). The resulting equations

are
At n+l _ At n At n n—-1
(A o )a = (A+2Re )a +5 (BF"-F"7Y) (3.1.1)
where
F} =/ W (v xw") rdr, (3.1.2)

A, B, and « are a- defined in §2.4 and the superscripts denote time-level. Each
time-step consists of five steps:
(5) Compute v X w from v* and w™
(i) Compute F", save it, and add 35*F" to (4 + AL B)a™ — £!F"~! saved from
the previous time-step
(#4) Solve 3.1.1 for a™*?
(fv) Compute (A + 2%—'58)0"“ and add it to —4!F" saved from step (i)

(v) Compute v"*! and w™*! from a™*!
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In the first step, v X w is computed by evaluating v and w on a grid of quadra-
ture (collocation) points and performing the required multiplications. To eliminate
aliasing errors, the number of quadrature points in each direction is chosen to be
3/2 the number of modes in that direction (Paterson & Orszag 1971). To evalu-
ate v and w on the grid and to express v X w in terms of Fourier functions and
Chebyshev polynomials the fast Fourier-transform algorithm is used. Once an ap-
proximation for v X w in terms of Fourier functions and Chebyshev polynomials is
obtained, the integrals in (3.1.2) are performed semi-analytically to obtain F. This

is accomplished by using the analytically pre-computed values of the integrals

/ : TJWJI ‘ e,' rdr, (3.1.3)

where e; are the unit vectors in each of the coordinate directions. Thus, the evalu-
ation of the integrals in (3.1.2) reduces to a matrix multiply. This matrix is banded
for ¥, as defined in (2.4.2), (2.4.9), and (2.4.10).

Solving (3.1.1) for a™*! once the right-hand side is computed requires the solu-
tion of a system of linear equations defined by the matrix (4 — A% B), which has the

banded structure shown in Figure (2.1). This is accomplished using Gauss elimina-

tion without pivoting. The elements of 4 and B are pre-computed by analytically

n+1 n+1

evalual’.g the integrals in (2.4.7). Once a™*! is known, computing (A+ Eén_te )a
is a banded matrix multiply.

To compute v X w we must obtain the velocity field v expressed in terms of
Chebyshev polynomials instead of the divergence free vector representation. Since
the vector basis functions uf defined in (2.4.2), (2.4.9), and (2.4.10) are known
in terms of Chebyshev polynomials, this is straightforward and again involves a
banded matrix multiply. Once v is known in terms of Chebyshev polynomials ana
Fourier functions, w is obtained by differentiation.

The various matrices required in the above computations are computed once and

stored to be used at each time-step. However, the matrices are functions of the wave
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numbers kg and k,. To avoid storing all these  trices for each wave number, they
are decomposed into sums of several matrices with powers of the wave numbers as

coefficients; for example
Alko k) = A1+ k3 Az + K245 . (3.1.4)

where A;, A2, and A3 are constant matrices, independent of k4 and k,. The com-
ponent matrices are stored, and A(ky,k.) and the other required matrices are re-
constructed as needed. The component matrices are evaluated using a FORTRAN
routine (GENMAT) which evaiuates the class of integrals

/,, di [,ij,(r)] d' [r™g;(r)] rdr
i drt dr! ’

(3.1.5)

analytically given the representation of g; and its derivatives up to order ! in terms
of Chebyshev polynomials, and the representation of Q;+ and its derivatives up to
order i in terms of Chebyshev polynomials divided by (1 — y?)'/2. GENMAT uses
the Chebyshev orthogonality relation to perform these integrals.

3.2 Data Management

The turbulence simulations being reported here were performed with 65x 128 x 128
(~ 108) Fourier/Chebyshev modes. Because the amount of data involved is much
larger than will fit in the central memory of the Cray-XMP, it is necessary to
maintain the data on a secondary storage device and perform the computations
by loading small sections of the data at a time into central memory. To avoid the
relatively long access times inherent in disk-based mass storage, a very large (16
million 64-bit words) solid-state memory called the SSD (Solid State Device) is used
for the second..ry storage. In addition, to reduce the amount of storage required
on the SSD, the data are packed from 64-bit words to 32-bit words, thus reducing
the storage and precision by a factor of 2. Note that the 32- bit precision is used
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only on the SSD; all computations are done with 64-bit precision. This reduction in
precision each time data is stored on the SSD has minima!l impact on the accuracy
of the computations.

To use secondary storage effectively, the computations and the data base must
be carefully structured. For each time step, two passes are made through the data
base (see the flow chart in Figurc 3.1). In the first pass (PASS1), v xw is computed
and the required Fourier transforins in the 8 and z directions are performed. In the
second pass (PASS2), the Chebyshev transforms in the r direction are performed
as are the matrix operations outlined in steps (it) through (iv) in §3.1. On leaving
PASS2 and entering PASS1, the main data base (called VDATA) must contain the
three components of velocity, as well as dvy/dr and dv./dr. These two derivatives
are needed to compute the vorticity in PASS1, but they must be computed in
PASS2. On leaving PASS1 and entering PASS2, the VDATA data base contains
the three components of v x w; the space that previously contained the derivatives
is empty. The data in VDATA are Fourier transformed in the # and z directions,
but are not Chebyshev transformed in the r direction; for example, the velocity is
stored in VDATA as ¥(r, kg, k;). In addition to the data in VDATA, the result of
step (iv) in §3.1 is computed in PASS2 and must be saved to be used in PASS2
on the next time-step. These data are stored in the secondary data base, RDATA,
which is accessed only in PASS2.

When performing the Fourier transforms, all the data to be transformed must be
in core memory. Therefore, in PASS1, where the transforms in 6 and z are done, 8-z
planes of data at individual r locations must be brought into core. In PASS2, we
only need to have all the data for a given wave-number pair kj, k. in core; however,
data were loaded into core in 7-0 planes to facilitate vectorization. To allow the
data in VDATA to be brought intc core in either -8 or 8-z planes it is divided
into an array of “drawers,” cach of which can be accessed separately. Each drawer

contains data for all values of ks and for a few points in r and a few values of k,
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(5 and 4, respectively, in the current calculations). To bring in a §-z plane, a row of
drawers at constant r is accessed; to bring in an r-0 plane, a column of drawers at
constant k; is accessed. Each drawer is arranged to contain the data for both wave
numbers k, and —k;. This is advantageous because in PASS2 the matrices to be
solved for k, and —k; are identical. The data contained in the RDATA data basc
are only required in PASS2, so RDATA necd not be structured in drawers. It is
divided into slabs that coniain several 7-8 planes of data. Each slab contains data
for the same values of k, as a column of drawers in the VDATA data base. See

Appendix B for more informaticn on the data bases.

3.3 Statistics

A variety of statistical correlations have been collected from the turbulence com-
putations. Among the statistics gathered were mean velocity, turbulent intensities,
rms vorticity fluctuations, velocity skewness and flatness factors, and Reynolds shear
stress. All of these quantities were calculated as a function of r by averaging the rel-
evant quantities in the # and z directions and time. In addition, the mean velocity
and Reynolds-stress tensor were obtained as a function of r and z by averaging only
in 0 and time. To improve the statistical sample, these two-dimensional statistics
were also averaged over the mirror image of the computed flow (z is mapped to
—2z). This was done because the Navier-Stokes equations are invariant with respect
to a reflection so that the mirror-imnage flow is an equally valid solution.

All terms in the Reynolds-stress tensor balance equations have been computed.
Again, the relevant quantities were averaged in the @ and z directions and in time.
Some of these terms involve the pressure, which is not directly available from the

computations. To obtain the pressure, the following Poisson problem was solved:

ViP=V-.A,
(3.3.1)
VP.-n=A n at the walls,

34

LR RPR TN WP - G

- *v;.-u..u..‘...-uu. P XNE ST SRS



where n is the unit vector normal to the wall and A is defined in (2.1.12). The
solution was obtained using a Chebyshev weighted residual method with expansion
functions satisfying the derivative boundary cendition and weight functions P as
dcfined in (2.4.8). The contribution of the projection error to the Reynolds-stress
balances was also computed.

Two point correlations and spectra were computel in 0, z, and time (t); one-
dimensional and two-dimensional correlations have been obtained. Correlations
and spectra not involving time were found at selected r locations by computing
the two-dimensional (@ and z) energy spectra at those locations. These spectra
were sampled every 20 time-steps throughout the computations to ensure a good
statistical sample. The two-point correlation functions were obtained by Fourier
transforming the spectra; they includ= the averages over the mirror image-flow.

Frequency spectra were obtained by temporally Fourie: transformirig the velocity
field at selected r locations. This Fourier transform was performed as the calcula-
tions progressed. The discrete temporal Fourier transform is defined as

1 & .
a(w;) = > a(kAt)etr*at, (3.3.2)
k=0

At each time-sample point, the velocities in the chosen plane were multiplied by e*«:*
for each w;. The result was added to the sum of previously calculated products,
thus producing the sum in (3.3.2). However, it was not possible to use equally
spaced w;, as would normally be done in a discrete Fourier transform, because for
the range of frequencies of interest, this would require too much storage. Instead,
the w;’s were chosen in a geometric series, so that log(w;) are equally spaced. This
has the advantage that more data are obtained at the low frequencies where most
of the energy resides. To obtain the two-point correlation, the frequency spectra
are Fourier transformed; this was accomplished by first interpolating the spectra
available at the chosen w; points to a set of uniformly spaced points wy using a

cubic spline.
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4. Verification

The major verification tests for CURVE have been the computation of several
states of Taylor-Couette flow. Taylor-Couette flow is the low between concentric
cylinders with the inner cylinder rotating. As the Reynolds number increases this
flow undergoes a series of three transitions to increasingly complicated laminar
states before the transition to turbulence. These transitions and the intermediate
states have been under extensive theoretical, experimental, and numerical inves-
tigation; therefore, there is a large body of information concerning this flow with
which the numerical results can be compared.

The first transition is from the one-dimensional laminar Taylor-Couette flow to
a system of counterrotating, axisymmetric toroidal vortices (Taylor vortices, after
G. 1. Taylor who first predicted their existence, Taylor 1923). In addition to the
formation of the vortices, this transition is marked by a sudden change in slope of
the torque required to drive the inner cylinder as a function of Reynolds number.
Both the critical Reynolds number for this transition and the torque for a Reynolds
number greater than critical have been computed for two geometries: with inner to
outer radius ratio n = r;/r, = 0.95 and with 7 = 0.5. These computations were
performed with no aliasing errors, using nine Fourier modes in the 2z direction and
11 Chebyshev polynomials in the r direction. The length in the z direction over
which periodicity was imposed was chosen to be the wavelength of Taylor vortices
corresponding to the minimum critical Reynolds number (A/26 = 2.009 for the
narrow-gap case and 1.988 for the wide-gap case; DiPrima & Eagles 1977). The
results of these calculations are summarized in table 4.1.

The critical Reynolds number for transition to axisymmetric Taylor vortices was
determined by searching for the Reynolds number at which a small disturbance

neither decayed nor grew. A disturbance of wavelength A was added to the laminar

36




TABLE 4.1

Results of Axisymmetric Calculations

Critical Reynolds No. Torque, G
Stability Present Experi- Present
analysist | calculation | Re mental? calculation
Narrow gap
n = 0.95 184.99 185 195 | 5.26 x 10° | 5.42 x 10°
Wide gap
n=0.5 68.19 68.2 78.8 | 1.479 x 103 | 1.487 x 103

t DiPrima & Eagles (1977), 1 Donnelly & Simon (1960)

solution, and the time-evolution of the first Fourier coefficient was monitored. The
disturbance would decay rapidly at first, until it consisted of only the least stable
eigenmode; it would then either slowly grow or slowly decay, depending on whether
the Reynolds number was above or below critical. Critical Reynolds numbers found
in this way are presented in table 4.1; note that they are in excellent agreement
with the analysis of DiPrima & Eagles (1977) for both narrow-gap and wide-gap
problems.

For the torque calculations, a disturbance to the laminar solution of wavelength
A was allowed to grow to steady state. The nondimensional torque G (torque per
unit length normalized by pv?, where v is the kinematic viscosity of the fluid) was
computed from the formula

G = 2nrRe (%(Tf)o) - 250) , (4.1)

where the overbar denotes average over 2. These calculated torques are presented
in Table 4.1 together with the data of Donnelly & Simon (1960). However, there are
two reasons why comparisons with the experimental data should be made with some

caution. First, the axial wavelength of the Taylor vortices in the experiment was
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not measured. The wavelength correspending to mirdmum critical Reynolds number
was used in the calculations as a good guess, because the Reynolds numbers are
not far above the critical Reynolds numbers, zad the experimental conditions were
obtained by slowly increasing the spced of the inner cylinder from zero. Second, the
experimental torque values in the subcritical regime arc not in very good agreement
with the torques predicted for laminar Taylor-Couette flow. This is especially true
for the narrow-gap experiment, in which the experimental torque is consistently 3%
below the theoretical value. For the wide-gap experiment, the data are within 0.6%
of the laminar torque for Reynolds numbers far below critical. In light of these
considerations, the agreement of the present calculations with the experimental
data of Dounelly and Simon is as good as can be expected (within 3% and 0.5% for
narrow and wide gaps, respectively). In Figure 4.1, contours of the secondary flow
stream function are plotted for the narrow-gap case, showing the familiar Taylor
vortices.

The next transition is to nonaxisymmetric wavy Taylor vortices. Here, Taylor
vortices develop waviness in the.azimuthal direction, with a range of possible wave
lengths. These waves travel about the cylinder at about half the speed of the inner
cylinder.

The critical Reynolds number for the transition to nonaxisymmetric flow for the
case ;. = 2.007, n = 0.877, and mm = 1 (where the f-wavelength is 27/m), was
determined as before by introducing a disturbance and allowing it to grow or decay.
In this case, the base low was Taylor vortices calculated with nine Fourier modes
and 11 Chebyshev polynomials. For the three-dimensional calculations, nine Fourier
modes were used in the 8 direction. The critical Reynolds number was found in this
way to be 130, in good agreement with the value of 131 reported by Jones (1981).
The growth rate and fundamental frequency (precession speed), for an unstable
nonaxisymmetric mode (Re = 177.6, A = 2.007, n = 0.877, m = 6) were found

by allowing a small disturbance to develop until it consisted of only the unstable
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mode. Resulting values for growth rate (1.11 x 1072) and precession speed (2.54)
are within 0.6% and 0.5%, respectively, of the values reported hy Jones (1981).

Iully developed wavy vortices (Re = 458., A = 3.0, n = 0.8G8, m — ) were
computed using 31 Fourier modes in the z direction, 15 in the 0 direction, and
Chebyshev polynomials through order 32. Figure 4.2 shows contours of axial veloc-
ity at r = 0.882r, (close to the outer cylinder), showing the wave in the 0 direction.
The calculated angular wave speed was 0.3344();, where {); is the rotation spced of
the inner cylinder. This is in very good agreement with the experimental value of
0.3347(2; of King et a!. (1983) and the numerical value of 0.3344(2; obtained with
a different method using similar resolution (King et al. 1983).

The final transition studied here is from wavy Taylor vortices to modulated wavy
vortices. Modulations appear on the azimuthal traveling wave. These modulations
may be interpreted as a second traveling wave at a different speed. The second wave
also has a variety of possible azimuthal wavelengths, which give rise to different
modulation patterns. Modulated wavy vortex flow has been computed for the case
Re = 1300, A = 2.36, m;y = my = 4, n = 0.877. The precession speed of the
two waves were computed to be 0.327€); and 0.437();, in good agreement with the
experimentally determined values 0.33(Q2; and 0.44Q); (Gorman & Swinney 1982).
In addition, it was found that the wave speeds vary by about 7%, depending on
the position in the modulation cycle. This frequency modulation is also in good
agreement with the experiments of Gorman and Swinney. Figure 4.3a and 4.3b
show contours of axial velocity at » = 0.8867, (close to the inner cylinder) at times
separated by 180° in the modulation cycle. Note the more pronounced waviness in
Figure 4.3b than in Figure 4.3a.

All the results quoted above show remarkably good agreement with theoretical,
experimental, and other numerical results. The results of these test cases instill
confidence in the accuracy of the numerical method and the reliability of the code

that implements it.
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5. Curved Turbulent Channel Flow

In this section, results of the direct nuinerical simulation of curved, turbulent
channel flow are presented. These computations were performed using .he numerical
method described in §2 and the code CURVE described in §3. The curvature
parameter §/r, where § is the channel half-width and r, is the radius of curvature
measured at the centerline, was chosen to be 1/79 = 0.0127. This is within the
range described by Bradshaw (1973) as mild curvature {§/R = 0.01); Bradshaw
suggested that studies on curvature effects should concentrate on mild curvature
because in problems of aerodynamic interest streamline curvature is most often
mild. The computational domain (a scale drawing appears in Figure 5.1) has a
length of 476 /3 in the spanwise (z) direction and subtends an angle >f 0.16 radians
in the streamwise () direction, which yields a length of 12.646 along the centerline.
As will be showa in §5.5 the size of the computational domain was sufficiently large
for the periodic boundary conditions used in the streamwise and spanwise directions
to cause minimal distortion of the results.

Unless otherwise stated, results presented throughout this section will be nondi-
mensionalized with the shear velocity and channel half-width. However, because a
curved channe] is not symmetric with respect to the channel centerline, the defi-
nition of the shear velocity is not unique. Three different definitions will be used.

The first two definitions are based on the wall shear-stress at each of the two walls,

1/2 - 1/2
- bt}
rzﬂ) Urp = (U or r=,r,) : (501)

These will collectively be called local «,. The third definition is global; it is obtained

that is,

or

Uy = (V ?"t{‘o‘

by analogy to the plane channel. In the plane channel, the mean pressurz gradient

40




% is —1 when normalized by pu?; in the curved channel, the mean pressure gradient
is %‘(%3 so the global u; is defined as

1/2 2, 2 2, 2\ 1/2
1 dP i Ur; Ao Us
u,a = (—-——-—-——-) = (-—~ ;1————-——"2 ——q) . (502)

The global value u,, will be referred to simply as u,. The Reynolds number based
on u, and & is 168 for the results presented here. This correspends to a Reynolds
number of 2990 based on the centerline mean velocity. Reynolds numbers based on
u,; and u,, (Re; and Re,) are 155 and 180 respectively.

In these computations, 128 Fourier modes are used to represent the velocity field
in the z and @ directions. Chebyshev polynomial- through order 64 are used in the
r direction. In wall units, grid spacing in the z direction is Az* = Azu,/v = 6,
and in the @ direction it is r} A8 = 18. In the r direction, the closest grid point to
the wall is at y* = 0.2, and toward the center of the channel the maximum spacing
is Ayt = 8.2. These grid dimensions are for the coarsest collocation grid that
can be used to represent the Fourier/Chebyshev velocity representation without
loss of information; thus the grid dimensions are indicative of the resolution of
the velocity field (this is no! the collocation grid used to compute the nonlinear
terms). In computing tb convective terms, aliasing eriors were removed since for
time dcpendent problems aliasing may be particularly damaging (Moser, Moin, &
Leonard 1983). A time-step of 0.00056 /u, was used in these computations, which

yielded a maximum Courant number of 0.8, where the Courant number C is defined

).

The initial condition for these computations was obtained from a low-Reynolds-

as
v,

Az

C:n’At(l

Vg | + Uy
rdo Ar(r)

number, large-eddy simulation of Moin & Kim (1982). The velocity field from their
calculation was siniply interpolated to the collocation grid for the current calcula-

tion. It was then allowed to evolve for about 126 /u,, at which time the flow reached
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statistical equilibrium. The calculations were then continued in order to obtain an
adcquate statistical sample. Statistics rcported here were averaged over a time of
about 66 /u,, which corresponds to 1076 /U, where Uy is the centerline mean veloc-
ity. The statistics were obtained by averaging in the streamwise direction, in time,
and often in the spanwisc direction. However, averages in the streamwise direction
and time are not irdependent because of the Taylor hypothesis. The space time
correlation functions in §5.5 indicate that the largest eddies are coherent for a time
of about 0.56 /u,. Thus, the temporal averaging over 66 /u, provides approximately
12 times better sample of the largest eddies tha . a single velocity field. Also, the
two point spatial correlations (§5.4) indicate that the largest eddies are coherent
in the streamwise and spanwise directions over about é the computational domain
in those directions. The statistics reported here therefore represent approxiniately
300 independent samples of the largest eddies. This statistical sample is considered
marginal for some quantities (e.g. two point correlations, spectra, and high order
moments).

In the sections to follow, we will be concerned with several types of averaging and
several different velocities. To facilitate discussion, the following notation will be
used. The velocity vector is aenoted v as in the previous sections, with components
vy, vy, and v,, and (a).p; denotes a averaged over the z, § and ¢ coordinate
directions. Two special averages are defined as @ = (a).s: and @ = (a)g:. Several
averages of the velocity are defined as U; = o;, u; = v; = U;, and u} = v; —
9;. To facilitate compai son with the plane channel, u, v, and w will be used

interchangeably with uy, u,, and u,; for example U = U, and v' = .

Finally,
the superscript + indicates normalization by local u, and v. All velocities are
normalized by global u, unless otherwise indicated. When quantities are plotted in
local wall coordi.aates, they will be normalized such that positive normal velocity is

directed away from the wall.
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5.1 Mean Statistics

The mean velocity has been plotted in law of the wall coordinates i* "igure 5.2.
Both u' and y' are based on the local u,. Also plotted are the piane chanrel dyta
of Xckelmann (1974) at Reynolds number Re, = 146. The mean velocities on both
sides of the channel and th:: data of Eckelinann are in excellent agrecment for y* less
than 20. For y* greater than 20, the mean velocity of the unstable (concave) side
lies below the other two. This is the experimentally observed effect of curvature. In
the experiments of Hunt & Joubert (1979), with approximately the same curvature
and a 10 times larger Reynnlds number than in these :omputations, the mean-
velocity profiles of the concave and convex sides did not diverge until y* = 200 (see
Figure 1.1). In both the experiments and the computations, Lowever, the point of
divergence is at approximatly the same y/r location of 0.0015 (here.y is distance
from the wall). Th's is in accordance with the conjecture of Hoffinan & Bradshaw
(1978) that curvature will not affect the law of the wall until y/r is sufficiently large.
Also note that the mean- velocity profile of the convex side is in good agreement with
the plane-channel prohle of Eckelmann, indicating that the effect of curvature on
the mean-velocity profile is not significant on the convex ride. In the experiments
of Hunt & Joubert (1979) the convex wall mean velocity profile was not in good
agreement with the plane channel profile at large y*. This may be due to the much
higher Reynolds number of the experiments.

In strongly curved channels, Wattendorf (1¢35) and Eskinazi & Yeh (1456) ob-
served a region of constant mean angular momentum (rU’). In a region of constant
mean angular momentu, the mean vorticity is zero (poiential luw in the mean).
However, in a mild curvature case (§/R = 0.01), Hunt & Joubert (1979) did not
observe a censtant mean angular momentumn region. The mean angular momen-
tum profile from the current calculation (Fignre 5.3) also shows no constant region,

which confirius that it is probably a stiong curvature effect.
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Turbulent intensities as a function of radial position are shown in Figure 5.4a. As
expected, turbulence intensities near the concave wall arc substantially higher than
those near the convex wall. As can be seen in Figure 5.4, this difference persists

2
even when the contribution of the Taylor-Gértler vortices 4? /

is not included (see
§5.2). In Figure 5.5 the intensities (;?1/2) are plotted in local wall coordinates for
both sides of the channel. Also plottcd are the plane-channel data of Kreplin &
Eckelmann (1979q) at Reynolds number Re, = 195. The strcamwise intensities
(;7!/2) for both curved walls and the plane channel are in good agreement when
normalized in this way. The spanwise (@71/2) and normal (v-—2-1/2) intensities on both
curved walls are also in good agruinent when normalized by local u.. However, their
agreement with the data of Kreplin and Eckelmann is not as good as that of 551/2.
In particular, the computed v intensities are considerably below the experimental
plane channel data. The reasons for this are not known, but it is unlikely to be a
curvature effect.

The turbulent shear stress (—uv) is presented in Figure 5.6a along with the con-
tribution of the Taylor-Gértler vortices to the turbulent stress (— %) and the total
shear stress (viscous and turbulent). The differences between the concave and con-
vex sides are striking. In particular, away from the wall the Taylor-Gortler vortices
make o significant contribution to the concave side Reynolds stress (as much as
40%), but they contribute negligibly to the convex side. In Figure 5.6b where —u'v’
normalized by local u, is plotted, it is clear that the curvature has eahanced the
Reynolds stress on the concave side relative to the convex side. Figure 5.6¢, in
which —%v in local wall coordinates and the data of Eckelmann (1974) are plotted,
shows that Eckelmann’s plane channel data ai Re, = 146 lies between the concave
and convex wall Reynolds stress. The correlation coefficient @/ (u? v2)!/2 shown
in Figure 5.7 indicates that streamwise and normal fluctuations ar. more corre-
lated cn the concave side than on the convex side (coefficients of 0.5 as opposed to

0.4). Away from the wall, this is in part a result of the Taylor-Géortler vortices, as
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is scen in the correlation coeflicient with the contribution of the vortices removed
@) 7).

On both sides of the channel the corrclation cocflicient shows a local maximum
near the wall (y* = 10). The same behavior of the corrclation cocfficient is dis-
cernible in the calculations of Moin & Kimn (1982). This is most probably a result
of the prescnce of organized motions near the walls.

Profiles of rms vorticity fluctuations excluding the contribution of the Taylor-
Gortier vortices (;31/2) normalized by u,/§ are shawn in Figure 5.8a. Because of
the large spatial scale of the Taylor-Gortler vortices their contribution to the rms
vorticity fluctuations is negligible (less than 4%). As was observed by Moin & Kim
(1982), the spanwise vorticity profile attains its maximum at the wall, and falls off
monotonically away from the wall, and the streainwise vorticity profile attains its
maximum at the wall and has a local maximum at y* = 20. This streamwise rms
vorticity profile is consistent with the presence of streamwise vortices near the walls
(see for example Bakewell & Lumley 1967; Blackwelder & Eckelmann 1979}, since
such streamwise vortices would have vorticity concentrated in their cores, account-
ing for the maximum in vorticity fluctuations at y* = 20. The vorticity would also
change sign as the wall is approached because of the nresence of the wall and the
no-slip boundary conditions. The change of sign would account for the minimum in
rms vorticity at y* &~ 5. The streamwise vortices will be discussed further in §5.4
and §5.6. A maximum in the streamwise and spanwise rms vorticity at the wall is
also an expected consequence of the “splatting” effect (Moin & Kim 1982) to be
discussed in §5.3. Away from the walls, the three components of the rms vorticity
fluctuations are virtually identical, in contrast to the velocity fluctuations, which
are significantly different. As explained by Moia & Kim (1982), the cortribution of
small-scale fluctuations to the rms vorticity is much larger than their contribution
to the intensities, and away from the wal the small-scale fluctuations are expected

to be isotropic.
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In Figure 5.8b the rms streamwise vorticity fluctuations, nondimensionalized by
local uf /v for each wall, are shown, as well as the plane-channel data of Kastrinakis
& Eckelmann (1983), at Re, — 580. The profiles from both walls are in very good
agreement when nondimensionalized in this way, and they arc in good agrcement
with the plane-channel data for y greater than 10. However, the experimental
plane-channel profile does not obtain a minimum near the wall, and the computa-
tional and experimental limiting wall values are in disagreement. Other researchers
have observed a range of limiting wall values of w, from 0.065 to 0.12 (see Kreplin
& Eckelmann 1979a) and Moin & Kim (1982) calculated a value of 0.13; 0.19 was
calculated here. The reason for this discrepancy is not known, but it is unlikely to
be a curvature effect since it is the same on both curved walls. The plain-channel
calculations of Moin & Kim (1982) and the present calculations, which use un-
related numerical methods, both show local minima in rms streamwise vorticity
fluctuations near the wall. This suggests to us that the computed results, which
show the minimum, may be correct despite their disagreement with Kastrinakis
and Eckelmann. However, it is possible that the results of the current calculations
are affected by the projection error (see §2.2). This uncertainty precludes a final
conclusion on the near-wall behavior of the streamwise vorticity. The limiting wall
value of the spanwise vorticity fluctuations (0.36) in the present calculations is also
higher than observed experimentally (0.2 to 0.3, Kreplin & Eckelmann 1979a) and
the computed value (0.2) of Moin & Kim (1982).

In Figure 5.9 the skewness factors of u, v, and w (S(u) = ﬁ/?yz) are shown
with and without the contribution of the Taylor-Gortler vortices; (S(u) and S(u')).
When the Taylor-Gortler vortices are included, the skewness of u becomes large
and negative away from the walls (as large as -77.22). The reason for this behavior
will be discussed in the following section. Because of the reflection symmetry of the
Navier-Stokes equations, the skewness of w should be zero. The very small values

of w skewness shown in Figure 5.9 indicate that the statistical sample from which

46




the skewness is calculated is adequate. In Figure 5.10, skewness factors from both
sides of the channel are plotted in local y* coordinates, together with the data of
Kreplin & Eckelmann (19794) for the plane channel. Note that the u’ skewness
factors are in very good agreement with the plane-channel data. The agreement for
the v' skewness is not nearly as good. The v' skewness of Kreplin and Eckelmann
never becomes negative and has a much larger value at the wall. Also, recent S(v)
measurements by Alfredson & Johansson (1984), which were limited to y* > 30,
show no tendency to become negative near the wall. Moin & Kim (1982) also
observed negative v skewness factors in the vicinity of the wall.

It is interesting that the u' skewness at the wall is approximatly 60% higher on
the convex side than on the concave side, indicating that the large u fluctuations
associated with high speed fluid arriving from away from the wall are stronger on
the convex side. This may be attributed to the effect of the Taylor-Géortler vortices
on the unierlying turbulence. On the concave, side there is a region of strong flow
away form the wall (see §5.2), which would tend to inhibit the motion of high speed
fluid toward the wall.

Velocity flatness factors of 4, v, and w (F(u) = _11—4/1_172) are shcwn, with and
without the contributions of the Taylor-Gortler vortices (F(u) and F(u’)), in Figure
5.11. With Taylor-Gortler vortices included, the flatness of u is very large away
from the wall (see §5.2). When the contribution of the vortices is removed, the
flatnesses of all three velocity components are between three and four away from
the walls (a Gaussian distribution has a flatness of 3). Near the wall, the flatness
factors generally become large, which is indicative of int:rmittence or spottiness
of turbulence near the walls. The u’ flatness factors for both curved walls are in
good agreement with the plane-channel data of Kreplin and Eckelmann (Figure
5.12). The w’' and particularly the v’ flatness factors do not agree as well with the
experiments. The computations of Moin & Kim (1982) show similar disagreement

of v’ flatness with the data of Kreplin and Eckelmann. Near the walls, the flatness
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of v’ and w' are extremely large (as high as 30.83 for v’ and 9.62 for w'). Also, the
flatness iactors of all three velocity components are higher at the convex wall than
at the concave wall, which suggests that the turbulence is more intermittent very
near the convex wall. This may be a consequence of the lower Re, on the convex
side.

In order to evaluate Bradshaw’s (1973) suggestion for a correction to the mixing
length for curved flows, the constant 8 in the expression,

L 2U/r

%~ Paujar —ujr (5.1.1)

was calculated. Here, £ is the mixing length computed from

. 1/2
-uv
t:( U _U[(dU _U ) : (5.1.2)
ro [ k)

This definition of mixing length is not meaningful where either wv or U /dr —U/r

is zero (y = —0.163 and 0.033 respectively) because they do not vanish at the same
place as required by the mixing-length assumption. The reference length £y was

assumed to be that of a plane-channel computed from the expression

b_x [1 B (1 e - Iyl)) ] (1= 'A%, (5.1.3)

which is an adaptation of a length-scale expression used by Norris & Reynolds
(1975). The constants x and A* were chosen to fit the mean-velocity profile of
Eckelmann (1974). Thus, this reference length can be viewed as the mixing length
implied by Eckelmann’s mean-velocity profile. However, near the wall where viscous
stresses dominate the turbulent shear-stress, the mean-velocity profile is not sensi-
tive to the mixing length, and the reference length Z; is not expected to be relevant
there. The computed values of 8 for the convex and concave walls are shown in

Figure 5.13. In the region where we expect (5.1.1)-(5.1.3) to be meaningful (say
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40 < y* < 120), B varies from about 20 to 2.5, and is consistently lower on the

convex side than on the concave side. This is consistent with the recommendations
of Bradshaw (1973).

It is interesting that on the convex side the value of 3 is large despite the fact that

3
g
¥
3
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the velocity profile on the convex side is in good agreement with that of Eckelmann
(1974) see Figure 5.2. This is because the turbulent shear stresses (—uw) for tue
convex wall and for the plane channel differ by as much as 20%. These shear stresses
result from virtually identical mean-velocity profiles because of differences in the
corresponding mean-velocity equations, which result in different expressions for the

turbulent shear stress in terms of the mean velocity. For the plane channel, the

PR

shear stress is
oP 19U :
Uy = (1 - yw)—a—z -+ ﬁ;a—y , (5.1.4) ¥

where y,, is distance from the wall. For the curved channel,

. 19P 2 r? r U/r
“”‘55‘5(“:5)75*@ o (5.1.5)

where velocities and the pressure have been normalized by the u, local to the convex

INT FYRRETSS, VAN SVRRp JCS

wall. Thus, curvature has a significant effect on the mean equation.

[ TN

5.2 Taylor-Gortler Vortices ;

In laboratory experiments, Taylor-Gértler vortices can be made stationary by

introducing weak disturbances into the boundary layer upstream of the curved
section (see §1.1). These controlled disturbances have the effect of triggering th-

Gortler instability, causing the vortices to grow in preferred locations. In the present

fee degere 30

computation the analogous upstream disturbances are the Taylor-Gortler vortices

Py

themselves as they are convected out the downstream end of the computational

domain and are reintroduced at the upstream boundary by the periodic boundary ;
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conditions. A similar phenomenon occurs in high-Reynolds-number Taylor-Couette
flow; although the flow is fully turbulent, there are stationary, axisymmetric Taylor
vortices present (Coles 1965) because of the periodicity in the azimuthal dircction.
Note that nothing precludes the vortices from moving in the spanwise direction;
the spanwisc periodicity does not force them to remain stationary. However, the
periodic boundary conditions in the spanwise direction do have the artificial effect
of restricting the possible wavelengths of the Taylor-Gortler vortices. The results in
this section concerning the effects of presumably stationary Taylor-Gortler vortices
are expected to be valid for nonstationary vortices, as long as they are coherent over
distances and times much larger than the length and time scales of the underlying
turbulence. Also note that these calculations are fundamentally different from the
experiments in which disturbances are introduced to lock in the vortices, because
here no artificial disturbances were introduced. The computations were started with
a turbulent velocity field taken from the computations of Moin & Kim (1982) which
was allowed to evolve in the curved channel. The Taylor-Gortler vortices in this
computation developed from turbulent fluctuations with a broad spectrum.

In order to study turbulent Taylor-Gortler vortices they must be differentiated
from the underlying turbulence. For this study the vortices are determined to be
the average of the velocity field in 8 and ¢ minus the average in 8, z and ¢ (V — V).
Other definitions are possible; for example, any spatial and/or temporal filter could
be used (the averages used here are a special case). Note that since the temporal
average is over a finite time, the vortices that survive this averaging may actually
be moving or evolving on a time scale of the averaging time (66/u,) or longer.
Therefore, with the current method it is not possible to determine whether the
vortices are drifting or not. If slowly drifting Taylor-Gortler vortices were present,
the results of the averaging performed here would underestimate their strength and

effects. Thus the effects of the vortices reported in this and other sections may be
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understated. Qther schemes for differentiating the Taylor-Gortler vortices from the
underlying turbulence are a topic for future work.

The Taylor-Cortler vortices were isolaled by determining the average velocity v as
a tunction of r and 2. In Figure 5.14 the secondary flow streamlines of the vortices
are plotted. The streamlines before and after averaging over the mirror image
flow arc shown (z is mapped to —z, see §3.3). Note that the effect of averaging
over the mirror image is to make the contour lines somewhat smoother, and to
remove a minor asymmetry of the vortices. Averaging over the mirror image flow
was performed for all the remaining results in this section, which had the effect of
removing similar asymmetries from the results. In this and all subsequent contour
plots, negative quantities are denoted by dashed lines. The streamlines show that
the vortices fill the entire channel, though they are concentrated somewhat on the
concave side. Between the two vortices, where the streamlines are closely packed,
is a region of rclatively strong flow away from the concave wall. Note that the flow
toward the concave wall due to the Taylor-Gortler vortices is significantly more
diffuse than the flow away from the concave wall. The contorted shape of the
outer contours is an artifact of the finite statistical sample used; so no particular
significance should be attached to it.

In Figure 5.15 the spanwise variation of the wall shear-stress is shown for both

walls (g: a(U+i)

o ). The z position of the plot is aligned with Figure 5.146.

T=T4,To

On the concave wall, there is a very sharp minimum in shear stress located between
the vortices. The oscillatory behavior of the shear-stress curves on both walls is
attributed to a poor statistical sample. On the convex side, the cffect of the vortices
is so small that it is masked by the statistical noise.

Contours of the average velocities associated with the Taylor-Goértler vortices are
shown in Figure 5.16. The intense region of negative r velocity is evident in the area
between the vortices. Note that the largest radial velocity is 0.85u, or about 5% of

the centerline velocity. This strong radial flow convects low-speed {luid away from
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the wall, giving rise to an area of strongly negative 1, that has a magnitude as large
as 2.8u, (about 15% of the centerline velocity). It is clear that the region of strong
negative ¥ is responsible for most of the Reynolds stress contributed by the Taylor-
Gortler vortices, as can be seen in Figure 5.17 where the contours of 4t are plotted.
In the middle of the region of strong radial flow, the local Taylor-Gortler Reynolds
stress is as high as 1.5u? (recall that the maximuum contribution of the vortices to
Reynolds stress is about 0.2u?). Also of interest is the significant gradient of the
streamwise and spanwise velocities (31/9r and dw/dr) near the concave wall, as
indicated by the concentration of contour lines in Figures 5.16a and ¢. The gradient
of the streamwise velocity is responsible for the large defect in shear stress on the
concave side (Figure 5.15).

It is now clear why the skewness S(u) and flatness F'(u) that include the contri-
bution of the Taylor-Gortler vortices are so large away from the walls. The intense
region of negative u makes the velocity distribution of the vortices extremely skew.
This region also contributes greatly to #*, resulting in a very large flatness. There
is probably no significant effect on S(v) and F(v) because ¢ is small compared to
the fluctuations of the underlying turbulence.

The Taylor-Gortler vortices affect the underlying turbulence by convecting it
along the streamlines in Figure 5.14, and by introducing a secondary strain field
which contributes to its production. In Figure 5.18 the contribution of the un-
derlying turbulence to the components of the Reynolds stress tensor are shown as
a function of r and 2. Plotted are contours of v ; - ul ; ; the mean value is
subtracted to make the variations more apparent.

In the plots of the diagonal elements of the Reynolds-stress tensor (Figure 5.18
a, b and ¢ for '“o - uoz, u’ w2 — u'?, and 172 - u/2, respectively) there is a strong
positive region slightly away from the concave wall centered on the region of strong

negative i, (labeled A in the figures). This is the result of the turbulence near the

wall, where the intensities are maximum (see Figure 5.4b), being convected toward
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the center of the channel by the strong 4,. The positive region of 1705 - u_;)z is
the strongest of the three, since the maximum in intensity near the wall is most
pronounced for the @ intensity. Likewise, 1’1\;5 — u’? has the weakest such positive
region, because the maxinmum in 7 intensity is least pronounced. Toward the sides
of the plot domain, where 4, is weak but positive, the opposite mechanism (fluid
with a low turbulence level convected toward the concave wall) produces the regions
of negative 125 - @ in the region labeled B. It could also be argued that a similar

convection mechanism is at work near the convex wall; however, the cffect is much

weaker and cannot be reliably differentiated from statistical noise.

r~

Near the concave wall (y* < 20) there is a region of very intense negative u/? —1705
under the positive regions discussed ir the previous paragraph (labeled C). There
is a similar, though considerably weaker, region of negative {L? - E’? In Figure
5.16a we saw that Oty /dr was positive in this same area. Thus, production of 1?},5 is
adversely affected, which would contribute to the depression of 1’;’;5 —u—’f in region C.

The Reynolds shear-stress term J’o\t::. — Ef,—uz (Figure 5.19) is similar to 1?2,5 - u_j,"’
in that it is positive in region A and negative in regions B and C. Convection is

responsible for the behavior in regions A and B. In region C, the production of t:’;JL

is suppressed, contributing to the negative values there.

5.3 Reynolds Stress Balance Equations

The Reynolds-stress equations in cylindrical coordinates are derived in Appendix
C. Here we consider the Reynolds-stress equations for the special case in which

the mean velocity Uy only varies in the radial direction. For this special case, the
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where € is the dissipation of turbulent kinetic energy. In these equations ((5.3.1)
and (5.3.2)) the terms on the right-hand sides are labeled (in order of appearance)
production, convection, turbulent diffusion, velocity-pressure gradient (VPG),viscous
diffuston, and dissipation. Zeros appearing in the equations indicate terms that are
identically zero. Many of the terms in the Reynolds-stress equations in cylindrical
coordinates do not appear in the corresponding equations in Cartesian coordinates;
they are the so-called “extra” terms (Bradshaw 1973). These terms reflect the fact
that in cylindrical coordinates the orientation of the coordinate axes is a function of
0. If the flow is homogeneous in the # direction, the orientation of the mean velocity
vector and the principal axes of the Reynolds-stress tensor are also a function of 6.
This gives rise to streamwise (#) gradients of mean velocity and Reynolds stress.
The streamwise gradients contribute to production, convection, and diffusion of
the Reynolds stresses. For example, in the u2 equation the production term consists
of two parts: —Zﬁﬁrgg%-'- which represents the production of u? by interaction of
turbulence with the mean shear; and —2uv % which is the production caused by the
interaction of turbulence with the streamwise gradient of the mean velocity vector.
Similar streamwise production terms appear in the balance of v? and @5. The
convection terms in each of the equations represent the convection of the Reynolds
stresses by the mean eocity; this is not zero because of the nonzero streamwise
gradients of the Reynolds-stress tensor. The diffusion terms. consist of diffusion in
the radial direction (2 25::) and diffusion in the streamwise direction, which acts to

dimninish the gradient of the stress tensor in the streamwise direction.
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In the 12 equation, all the str:amwise pradient terms are the same as in “he v?
equation with opposite sign, and there are no strzamwise gradient t~ . in the w?
equation. Thus, these terms do not contribute to the equation for the kinctic encrgy
q_z. The reason is that there is no strcainwise gradient of g2 since it is an invariant
of the Reynolds-stress tensor.

Equations 5.3.1 are derived from the Navier-Stokes equations. When the Navier-
Stokes equations are discretized in space and titue by the method outlined in §2 and
§3, an additional term enters each equation, which represents the contribution of
the projection error (see §2.2). This projection-error term, u;P(A); 4 u; P(A); (A
is as defined in (2.1.12)), was computed and found to be ucgligibly smail compared
with other terms in the equations.

In Figures 5.20, 5.21, 5.22 and 5.23 the various terms in the Reynolds-stress bal-
ance equations (5.3.1) are plotted in local wall coordinates for both walls (velocities
nondimensionalized by local u, and lengths by v/u,). This nondimensionalizatio.-
is consistent with the wall-similarity hypothesis, and attempts to climinate the ef-
fect of the different Reyncids nnmbers on the concave and convex walls. Except
for the streamwise turbulent diffusion in the wo equation, none of the terms due to
strcamwise gradients are included because they are negligibly sniall. Terms in each
of the equations show remarkably little difference between the concave and con-
vex sides of the channel when plotted in local wall coordinates. The few significant
differences will be discussed after we examine the commeon features.

The u? equation is largely dominated by production and dissipation. There is
a large peak in production near the wall (y' = 15), which is balanced in part by
the large dissipation n2ar the wall. Turbulent and viscous diffusion carry u? energy
from the region of maximum production (note the minima in viscous and turbulent
diffusion) in both directions, away from and toward the wall. Very necar the wall,
the extreme values of dissipa’.on are balanced by diftusion from the maximum

production region. Far from the wall, production and the positive contribution of
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turbulent diffusion are balanced by dissipation and the vclocity pressure gradient
terms. I: the uZ? cquation, the velocity pressure gradient term consists entirely
of the pressure-strain correlation which represents transfer of energy to the uther
components of turbulent intensity (v2 and w?).

Since the v2 and w? equations contain no significant production terms, their only
source of energy is the pressure-strain correlation. In Figure 5.24, the pressure-strain
terms appearing in the u2, v2, and w? equations are plotted together. Beyond y*
of 20, the major effect of the pressure-strain correlation is to distribute energy from
the uZ component to the vZ and w? components. However, close to the wall there is
a large transfer from the normal component, v2, to the other compo~ 1ts. This was
observed by Moin & Kim (1982) in their computations of plane-chz nel flow and was
referred to as the “splatting” or impingement effect. It is caused by fluid elements
coming from away from the wall, impinging on it, and transferring their energy to
motion parallel to the wall. Because of the no-slip boundary conditions and vortex
stretching, the splattiug effect gives rise to larze streamwise and spanwise vorticity
fluctuations, as seen in Figure 5.8.

In the v2? equation, the pressure-strain and pressure-diffusion terms combir= to
form the velocity pressure gradient term. In Figure 5.21 the velocity pressure-
gradient correlation is the major positive contribution to v2. Note that it is only
slightly negative uear the wall, implying that the pressure diffusion termn is posi-
tive near the wall to cancel the negative pressure-strain term. The pressure-strain
correlation, which is the source of v2 energy, is maximum at y* =~ 35. As m the
u? equation, energy is diffused from this location in both directions, toward and
away from the wall, the predominant term being the turbulent diffusion. Kinematic
constrainis oa the normal velocity (dv/dr = 0 at the walls) require that the vis-
cous difiusion and viscous dissipation of v? have zero slope at the wall. This is not
apparent in Figure 5.21; however, when the region around the origin is magnified

(Figure 5.25) it can be seen that these slopes are indeed zero.
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Pressure-strain and viscous dissipation dominate the w? equation. Very near the
wall, however, there is significant viscous diffusion.

In the uv equation, the production dominates, and again there is viscous and
turbulent diffusion from the maximum source region (y* =~ 15) toward and away
from the wall. However, in this case the viscous dissipation is negligible almost
everywhere, and the production is balanced by the velocity pressure gradient and
turbulent-diffusion terms.

It is interesting to compare the current Reynolds-stress balances to those obtained
by Moin & Kim (1982). As with other statistical correlations, there is a remarkable
similarity of the u2 and w? balances in this study and those reported by Moin and
Kim, though there are differences in the y* locations of the maxima, minima, and
zero crossings of the various terms. In general, the y* location of each feature is
larger in the calculations of Mnin and Kim. This difference is due to the resolution
in their computations which was inadequate to resolve the wall-layer structures at
their prooer scale.

The v? and v balances appear quite differen: in the two calculations. However,
in the case of v2, if we approach the wall from the center of the channel, the
same features a observed in both calculations thongh at different y* locations.
In addition, in the vicinity of the wall (y* < 15), Moin and Kim show a relatively
larze magnitude of turbulent diffusion balanced by a large velocity pressure-gradient
term. This is not found in the present calculations. Note that in both calculations
the location of the maximum in the turbulent diffusion term (y* = 15 here and
y* = 30 in Moin and Kim) is at the same location as the minimum in the v
skewness factor.

The balance of the turbulent kinetic energy 2q? = u?-+v2+w? is shown in Figure
5.26. The kinetic energy equation is dominated by the u? term, so this balance is
very similar to the u? balance. As wa~ seen above the turbui.. t diffusion is positive

very near the wall as a result of {.:¢ 4 {usion of energy fromn the maximum source
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region. In contrast, the estimated balance of Townsend (1976) shows no positive
region of turbulent diffusion. Morcover, Townsend shows a very large pressure
diffusion term near the wall which is also contrary (in relative magnitude) to the
current results and to those of Moin & Kim (1982). Townsend’s estimates for the
remaining terms arc in qualitative agreement with the current calculations.

As was noted above the terms of the Reynolds-stress balance are remarkably simi-
lar on the convex and concave sides (when normalized by local wall variables). There
are, however, several significant differences. In the u? equation, the production is
somewhat higher on the concave side (about 10%), and near the wall (y* < 25) the
turbulent diffusion is lower. The opposite is true in the v2 balance, in which the
turbulent diffusion is larger on the concave side. The v balances show the most
diffccences between the concave and convex sides. This is not surprising since uv
itself shows more differences between the two sides than the turbulence intensities.
On the concave side the peak production of —%w is about 5% less than on the convex
side, a result of the smaller values of dU/dr on the concave side when expressed
in local wall coordinates. The vclocity pressure gradient term is as much as 20%
greater on the convex side, and the turbulent diffusion from the maximum source
region is about 40% lower on the concave side. Also, in this balance the streamwi.
turbulence diffusion is significant and contributes to —%v on the concave side and
diminishes —uv on the convex side. Note that away from the walls the streamwise
turbulent diffusion is as large as the radial diffusion (about 20% of production).

Many of the differences c.ted above are in the turbulent diffusion and pressure
strain terms. The turbulent diffusion terms in these calculations include several
effects: the convection of the underlying turbulence by the Taylor-Gortler vortices,
the actual turbulent diffusion or the ur.derlying turbulence, and the enhancement (or
diminishment) of that diffusion by the Reyleigh instability mechanism. The effects
of the Taylor-Gortler vortices and the Rayleigh mechanism on the concave wall

will be opposive that on the convex wall, so it is not surprising that the turbulent
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diffusion is different on the two walls. This is in accordance with Bradshaw’s (1973)
assertion that curvature cffects on the Reynolds-stress equations must appear in the
higher order statistical correlations. Bradshaw’s argument would also suggest that
the pressure strain terms should be affected since they can be expressed as integrals
of two-point triple correlations of the velocity gradients (see for example Launder,
Reece, & Rodi 1974). The significant curvature effects on the 7w pressure-strain
terms is also in accordance with the suggestions of Launder, Reece, & Rodi (1974)
and So (1975) that curvature effects can be accounted for by properly modeling the
pressure strain terms.

It is interesting that thc dissipation terms, which are dominated by the small
scales, are in very good agreement on the two walls. Also, as noted in §5.1, the
rms vorticity fluctuations, which are sensitive to the small scales, were in good
agreement in local wall variables. This suggests that curvature has a minimal effect

on the small scales of turbulence.

5.4 Spectra and Two Point Spatial Correlations

One dimensional, two-point correlation furctions,

u!(r,0,2)ul(r,0 + &, 2)

2
u;

k.(8) =

(5.4.1)

ul(r, 0, z)ui(r,0,z + 6z
Uy

(no summation) are plotted in Figures 5.27 and 5.28 at six r locations. The corre-
lations have nonzero values for large separations, indicating that the length of the
computational domain in the streamwise direction is somewhat inadequate. Ilow-
ever, the values are small, which suggests that the periodic boundary conditions in
the streamwise and spanwise directions have not significantly distorted the compu-

tations. Also, as expected, for small displacements, the correlation of the velocity
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component in the direction of the displacement is greater than for the transverse
components.

Very near the walls, Rgy(80) decays very slowly with increasing 8, which indicates
that structures are coherent over long distances in the streamwise direction. In the
spanwise direction, Rgo(6z) decays to zero very quickly, showing that the spanwise
extent of these structures is much smaller. Also, Ryy(6z) becomes negative and
reaches a minimum at 62z* = 50. The presence of a negative minimum in Ry, (62)
and the slow decay of Rgg(80) are clear evidence of elongated rcgions of high and
low spced fluid alternating in the spanwise direction (streaks). The location of the
minimum is the mean distance between a high speed and a low speed streak; thus,
the mean streak spacing is twice this distance (A* = 100), in agrecement with Kline
et al. (1967). At a greater distance from the walls, the pronounced minimum in
Ryo(6z) does not appear. This is also in accordance with the observations of Kline
et al. that the high and low speed streaks are confined to a region close to the wall.

Note that near the wall, R,,(éz) and R,,(8z) also attain negative minina, indicat-
ing the existence of alternating regions of positive and negative u, and v/, though
the stteamwise coherence of these regions is significantly smaller than that for uj.
The locaticn of the ininimum in R,,(6z) is at 6z = 50, but the minimmum in R,,(6z)
is at 6z = 25.

Bakewell & Lumley (1967) and Blackwelder & Eckelmann {. >~9), among others,
have proposed that the wall region is doininated by pairs of cou..  rotating stream-
wise vortices. These vortex pairs are thought to have a long streamwise extent, and
to be responsible for the low and high speed streaks. However, the streamwise two-
point correlations show that the streamwise coherence of v' and w’ fluctuations is
smaller than that of ' fluctuations; as will be seen in §5.6, the v’ and w’ velocities
do not exhibit streakiness near the walls. If such vortex pairs provided a signifizant

contribution to v’ and w’ fluctuations, they would give rise to spanwise two-point
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correlation functions of v and w with negative minima. The position of the mini-
mum in R,,(6z) would be rclated to the mean distance between vortices of opposite
sense, and the minimum in R,.(6z) would be related to the mean distance across
a vortex. In Figure 5.29 the spanwise two-point correlation functions at several y
locations near the concave wall are shown. An important feature of these correla-
tion functions is that R,.(6z) does not have a negative minimum beyond y* == 18,
whereas Ryy(6z) and R,,(6z) do. The absence of a minimum in R,.(6z) implies that
vortex pairs, with their centers at the same y location, are not a dominant feature of
the near-wall turbulence. But, this does not preclude the existence of vortex pairs
with the vortex centers at different y locations. The existence of solitary vortices
is consistent with the behavior of R,,(6z). Moreover, the fact that the location of
the minimum in R,,(6z) moves to larger separations as the distance from the wall
increases, indicates that vortices away from the wall have larger diameters than
those near the wall.

The spanwise two-point correlations reported here are in disagreement with the
measurements of Gupta, Laufer, & Kaplan (1971) in a turbulent boundary layer.
Their experimentally determined R,.(8z) measured at y* < 12 did not become
significantly negative and did not have a distinct minimum. They showed no indi-
cation of the presence of the near-wall streaks. This led them to abandon R,.(6z)
as a useful quantity for investigating the near-wall streaks. However, it is clear that
if the streaks are the dominant structures in the viscous sublayer, as observed by
many investigators, they must produce spanwise two-point corrclation functions of
u’ with a negative minimum as presented here. These calculations, the experiments
of Bakewell & Lumley {1967) and Tritton (1967), and the computations of Moin
& Kim (1982) all obtain minima in the spanwise two-point correlation of u’. Thus
we must conclude that the correlation functions of Gupta et al. and their conclu-
sion that the two-point correlation function carries no stiuctural information are in

error.
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Length scales related to the integral length scale may be determined from the
one-dimensional, two-point correlation functions using the following definitions:
Ri(%0 =2L¢/r)=0.1,
(5.4.2)
Rii{6z=2L7)=0.1.
The choice of 0.1 is arbitrary. This definition is used instead of the integral scale
because it is insensitive to the correlation function at large separation, where statis-
tical noise is significant. The values of these length scales are plotted in Figure 5.30
along with a length scale used by Norris & Reynolds (1975) for the plane channel.
Note that the streamwise length scales turn up near the walls (especially L)), and
that the spanwise length scales are significantly smaller near the walls than ip the
regions away from the walls. Also, L9 and L? are greater than the other length-
scale components in accordance with the observation that correlations are greater
for components in the direction of the displacement. It is also of interest to calculate
LY to compare with the streamwise and spanwise length scales.

The two-dimensional, two-point correlation functions,

u! (7,0, z,t)u'(r,0 + 8,2 + 8z,

12
u;

have been computed at selected r locations. Isocorrelation contours are shown
in Figures 5.31, 5.32 and 5.33. Near the walls, these correlations are elongated
in the streamwise direction, while surrounded by negative regions in the spanwise
direction. The positive region of the Ryg correlation extends approximately 400 wall
units in the streamwise direction, which is indicative of the length over which the
high and low speed wall streaks are substantially coherent. Note that the R,, and
R, correlations are not as coherent in the streamwise direction. Also, the width
in the spanwise direction of the R,, correlation is considerably smaller than the
other two. These observations are consistent with the deductions made from the

one-dimensional correlations discussed above.
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Away from the wall, only the Ryp correlation is signilicantly elongated in the
streamwise direction; R,, and R,, have contour lines which are almost circular.
This is consistent with the spanwise space-time corrclations of Kovasznay, Kibens,
& Blackwelder (1970), which are related to the space-space corrclations through the
Taylor hypothesis.

One-dimensional energy spectra, defined as the Fourier transforn of the two-point

correlations, have been computed (they appear in Figures 5.34 and 5.35):

E;i(kg) = —I:l; /a' ul(r,0,z,t)ul(r,0 4+ 6,2, t)e“‘"w de’

: (5.4.4)
Eii(k:) = L. /‘ ul(r, 0, z,t)ul(r, 0,2 + 2/, te'k=*' d7' .

All of these spectra show at least a 2 decade reduction of the high wave-number
energy density compared with the low wave-numbers. In addition, none of the spec-
tra show a significant upturning at the highest wave-numbers. These observations
indicate that the present computational resolution is adequate.

Throughout the channel, the spectra at high wave numbers (as well as the low
wave numbers) exhibit anisotropy. Near the walls, the spectra E;;(k,) attain local
maxima. These maxima occur at the wave numbers corresponding to the minima in
the two-point correlation function (k; =~ 10 for Egg and E.,, and k. =~ 20 for E,,;
here we are discovuting the small glitch in E,,(k,) very near the concave wall as
statistical noise). The spectra E,.(k.) exhibit a local maximum throughout most of
the channel, just as R,.(6z) maintains its negative minimum far from the wall. Far
from the wall, the spectra E;;(kg) are not smooth for low wave numbers, which is an
indication of poor statistical sample. This is probably a result of the slow evolution
of large structures away from the walls, arid may be related to the evolution of tue
Taylor-Gortler vortices.

The dissipation spectra are shown in Figures 5.36 and 5.37. The dissipation spec-

tra are defined such that their integrals over k are the dissipation given in (5.3.1).

64

LN

e



[

In these spectra, the values of the maximum dissipation at low wave nuinbers are
a decade larger than the values at the high wave numbers. The spanwise spectra,
hoewever, generally exhibit a substantial upturn at high wave numbers, indicating
some deficiency in the spanwise resolution. The amount of dissipation represented
in these upturned tails, which is a measure of the dissip:.tion in the unresolved
small scales, is generally less than 10% of the total dissip \tion. Thus, most of the
viscous dissipation resides in resolved scales, which is an indication of the overall
adequacy of the computational resolution. Note, however, that we do not resolve
the Kolmogorov length scale (n* ~ (Re/U.)'/* = 2) in this calculation. Most of
the viscous dissipation takes place at scales larger than 157. Also of interest is the
anisotropy of .he dissipation at high wave numbers, similar to the anisotropy in
energy; this may be due to the low Reynolds number of this computation.

Spectra in the normal direction can be dcfined from the Chebyshev representation

of the velocity field,
N
'u,-(y,e,z,t) = Z a,-(n,0,z, t)Tn(y)- (5.4.5)

n=0

The Chebyshev coeflicient spectra are defined as
Ci(n) = a2(n). (5.4.6)

These spectra (Figure 5.38) show a 3 to 4 decade fail off from low to high n. However,
C. has a substantial vpturn at high n, indicating a difficulty in the resolution of

u,. It is suspected that this difficulty is rclated to the projection error (see §2.2).

5.5 Temporal Spectra and Correlations

The temporal energy spectra and space-time correlations have been obtained

using the method described in §3.3. In Figure 5.39 one-dimensional temporal energy
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spectra are plotted at four r locations. Shown are the spectra determined at the
chosen frequencies (see §3.3). Note that the spectra start to turn up at the two
highest frequency points, the reason being that the values of the spectra at these
points are of the same order as round-off errors. itcurd-off error is one part in 107
because the data were packed tc 32-bit words to save storage. These last points have
not been included in the interpolations used to obtain the two-point correlations. It
is also interesting that the spectra decay very rapidly beyond 2 ~ 300 (see below).

The temporal spectra, rescaled using the Taylor hypothesis based on the local

mean velocity, are

/] 1 _ 7: . ULt i
E., (k,, = Un) = T Bal0) (5.5.1)

where L; and Ly are the lengths of the domain in which the transforms are taken
in time and @, respectively; the spectra are shown in Figure 5.40 along with the
streamwise spectra at the same r locations. The local mean velocity was used for this
purpose instead of any of the convection velocities discussed below, because it has
been observed that “mall scales are converted at about the mean velocity (Sternberg
1967). Thus, the use of the mean velocity should bring the high wave-number
part of the temporal and spacial spectra into agrecement. Convection velocities
appropriate for the low wave-number part of the spectra were not used because
statistical noise precludes accurate comparisons of the low wave-number spectra.
At all the r locations, the spectra at high wave numbers are in remarkably good
agreement, indicating that the small-scale turbulence is indeed convected with the
local mean velocity. At the two r locations nearest the walls (y* = 26 and 37), the
low wave-number parts of the spectra are also in good agreement. Farther from the
wall, the low wave numbers appear to be only in fair agreement, though the issue is
clouded somewhat by statistical noise. This will be discussed further below. Note
that the location of the downturn in the temporal spectra mentioned above is at the

cutoff of the computed streamwise spectra when scaled using the Taylor hypothesis.
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Beyond this wave number, the computed streamwise spectra are formally zero; thus,
by the Taylor hypothesis, the temporal spectra should also be zero. This results in
the sharp downturn in the temporal spectra.

Contours of the streamwise space-time correlation functions at several r locations
are shown in Figures 5.41, 5.42, 5.43 and 5.44. Also drawn in these plots is a line
with slope equal to the local mean velocity. If the Taylor hypothesis were satisfied
exactly, all isocorrelation contours would be straight parallel lines, and their slope
would be the convection velocity. In the contour plots we see that near the origin the
contours are nearly parallel to the line representing the mean velocity. However,
far from the origin the elongated region of positive correlation bends below the
mean-velocity line, indicating that structures which are coherent over longer times
are convected at a reduced velocity. It has been found by several authors (Favre,
Gaviglio, & Dumas 1957; Willmarth 1975; and Wills 1964) that convection speed
varies with the size of the structure being convected. Sternberg (1967), using the
boundary-layer data of Favre et al., found that convection speeds for large-scale
disturbances are as much as 25% greater than the local mean velocity very near
the wall, and about 25% lower than the mean velocity far from the wall. Small-
scale structures were found to convect with the mean velocity. Since structures
that are coherent over long times are expected to be large, it is not surprising that
our contours indicate that their convection velocities are different from the mean
velocity.

A convection velocity may be defined as the slope of the curved line which traces
the path of slowest descent of the correlation function (Willmarth 1975); in this case
the convection velocity is a function of the separation in time (or space). Convection
velocities for the largest separations were estimated in this way at each r position
and are summarized in Table 5.1. Shown are convection velocities normalized by the
Jocal mean velocity U(y) and the average mean velocity Um = 55 ffa U(y)dy. Note

that at the locations nearer to the wall this convection velocity is generally closer to
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TABLE 5.1

Relative Convection Velocities at Large Separation

U./U based on U./U,, based on
Yy y+ R00 Rrr Rzz Roo Rrr Rzz

0.813 34 0.78 0.81 0.89 0.75 0.78 rag
0.352 | 117 0.65 0.54 0.66 0.74 0.61 C.oc
-0.352 | 100 0.79 0.66 0.79 0.87 0.73 0.87
-0.813 29 0.98 0.97 0.86 0.85 0.84 0.74

the local mean velocity than it is at locations farther from the wall. As explained
by Sternberg (1967), large-scale structures extend over a significant portion of the
flow; thus, their convection velocities are lower than the local mean velocity in the
regions away from the wall and higher near the wall. Consequently, there exists a
point at which the convection velocity of large structures is equal to the local mean
velocity. Apparently, the 7 locations closer to the wall are near this point because
the ratio of the convection velocity to the local mean velocity is approaching 1. We
neglected to calculate space-time correlations and convection velocities for y*+ < 30
where we would expect the convection velocitics to be greater than the local mean
velocity. These arguments would also lead us to expect that the temporal spectra
at the locations nearer the wall (Figure 5.40) would show better agreement with
the streamwise spectra for large wave numbers. As mentioned above, this appears

to be the case.

6.6 Turbulent Flow Structures

In this section we will investigate the structure of an instantancous velocity field
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from the present calculations. Presented are contour plots of the velocity and vor-
ticity fields, as well as plots of the velocity vectors. Note that in all the contour
plots to follow, solid lines will depict a positive qu:.atity and dashed lines a negative
quantity.

Figure 5.45 shows the streamwise velocity v’ in (0, z)-planes near the concave
wall at y* = 6.14 and near the convex wall at y* = 5.29. In these plots note the
elongation of the positive and negative regions (streaks) in the streainwise direction
in agreement with experimental observations (Kline et al. 1967). This is also
consistent with the two-point correlation functions presented in §5.4. In contrast,
the radial and spanwise velocities (v’ and w') do not show this distinctive streakiness
(Figures 5.46 and 5.47). The outstanding feature of the radial velocity is that
strong fluctuations are concentrated in very small regions, with strong negative and
positive fluctuations tending to lie next to each other in the spanwise direction. As
will be seen below these regions contribute to the Reynolds shear stress. These
characteristics are reflected in the large values of v-flatness F(v) at the walls, and
the two-point correlation of v, R,,(6z) (see §5.1 and §5.4). The spanwise velocity
also shows small regions of intense fluctuation, though not as small as the regions
of intense radial fluctuations. These regions of intense w fluctuations tend to occur
at the same positions as the regions of intense v fluctuations. Notice that near the
convex wall, turbulence is less vigorous than on the concave side, as is evidenced by
the concentration of contour lines. For each velocity component, the same contour
levels are used for both sides of the channel.

High and low speed streaks have been observed experimentally only near the
walls. In agreement with this result, contour plots of v’ at y = +0.352 (Figure
5.48) are not streaky.

In order to determine the structures associated with the regions of intense v
fluctuations mentior.ed above, we examine some enlargements of the area around

one pair of intense regions near the concave wall (the framed area in Figures 5.45,
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5.46 and 5.47). Contours of ', v’ and w' fluctuations in the (0, z)-planc at y* = 6.14
are shown in Figure 5.49. The distance between the centers of the regions of positive
and negative v fluctuations (Figure 5.49b) is 20 wall units, which is thz approximate
position of the negative minimum in R,,.(6z) at this y location (sce Figure 5.28).
Comparison of the u’ and v’ contours shows that u’ and v’ in this region have the
same sign and thus contribute positively to the Reynolds shear stress (recall that v
is positive loward the wall on this side of the channel). Contours of v’ and v’ in an
(r,0)-plane passing through this region (at the z location designated as A in Figure
5.49) are shown in Figure 5.50. Here, a sharp gradient of u' is seen to occur along
a front inclined upstrecam fromn the wall. A sharp gradient of this kind is t“e event
detected by the VITA conditional sampling technique (Blackwelder & Kaplan 1979;
Kim 1983). The inclined front observed here is in agrcement with the observations
of Praturi & Brodkey (1978) and the conditionally averaged velocity found by Kim
(1984). In Figure 5.50c the velocity vectors projected into this plane are shown.
In agreement with the observations of Praturi and Brodkey, a transverse vortex
downstream of the front is barely discernible; this spanwise vortex is more apparent
in other (r,0)-planes.

In Figure 5.51, velocity vectors projected into several (r, z)-planes are shown; the
6 locations of the planes are designated B through F in Figures 5.49 and 5.50. In
plane B just downstream of the front, a single vortex can be seen very near the wall.
The inflow and outflow sides of this vortex are seen in Figure 5.49 as the positive
and negative regions cf v’ fluctuation. This vortex is not discernible upstream oi
this location. Note, however, that the region of negative v’ in Figure 5.49 extends
significantly upstream of the beginning of the vortex. Downstream, in plane ", the
vortex is larger and farther from the wall. Farther downstream, in planes D through
F, a second vortex of opposite sign appears and the pair lifts away from the wall.
The vortex has moved beyond y* = 40 in a streamwise distance of approximately

150 wall units. The fact that the vortex is much larger where it is distant from
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the wall is in agreement with the behavior of the spanwise two point correlation
function R, (6z) (sec §5.4). Also, in §5.4 it was found that R,.(éz) lid not indicate
the presence of vortex pairs at y* > 20. Note that the vortex pair in Figure 5.51
would not contribute to the minimum in the spanwise two-point corrclation function,
because the vortices are not at the same y location. Farther downstream, the vortex
pair in plane F has lifted out of the domain, probably because of mutually induced
velocity.

We emphasize that only a solitary vortex was ohserved near the wall ir the (7, 2)-
p'ane passing through point B. Further downstream anc. away from the wall, this
vortex was joined by a vortex of opposite sign. In fact, in a random sampling ¢f
(r, z)-planes, significantly more solitary vortices than vortex pairs were observed.
In their dual-view, hydrogen-bubble flow-visualization, studies Sriith & Schwartz
(1983) ohserved twice as many patterns in.icating the presence of streamwise rota-
tion as those indicating streamwise counterrotating pairs.

The streamwise and radial velocities u’ and v’ in the (@, r)-plane located at z =
2r /3 (halfway across the domain in the 2z direction) are shown in Figure 5.52. In
the u’ plot, the most striking feature is that near the wall the struciures (fronts)
are inclined in the downstream direction, at a small angle from the wall. A similar
behavior was observed hy Moin & Kim (1982) in their calculations, by Rajagopalan
& Antonia (1979) and Kreplin & Eckelmanwn {1979b) in their experiments in a plane
duct, and by Brown and Thomas (1977) in a boundary layer. The contours of v’
do not exhibit this feature. Note that near both walls the regions of positive u’
fluctuations correspond to fluid coming toward the wall (v < 0 at the convex or
lower wall, and v’ > 0 at the concave wall). Also, the turbulince activity is much
greater near the concave wall.

In Figure 5.53 the streamwise velocity in the (r,z)-plane at § = 0.08 (halfway
across the domain in the 6 direction) is plotted. Near both walls the :.ter.icting

regions of high and low speed fluid are apparent. Also, these vegions ar= : -ufined
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to locations near the walls, where they can be counted to obiain the mean streak
spacing. On the concave wall, the streak spacing is found in this way tobe A' = 107,
and on the convex wall it is A' = 92 or 108, depending on how the strcaks are
counted. These values are in very good agreement with those obtained from the
two-point correlation function Ryy(62), (sce §5.4) and the generally accepted value
of 100. Contours of the velocity components near the walls (y* < 50) in the (r, z)-
plane have been examined and found to be in agreement with the results of Moin
& Kim (1982).

Streamwise vorticity contours in the (r, z)-plane, both near the wall and across
the entire channel, are shown in Figure 5.54. Note that the streamwise vorticity
is concentrated near the walls, as was indicated by the rms vorticity profiles (see
§5.1), and thut the ccncave side of the channel appears more turbulent than the
convex side. Near the v we see that there are actually two regions in which
the streamwise vorticity is concentrated. One is very near the wall (y* < 5), and
the other a little cway from the wall (¢ ntered about y* = 20). These two regions
correspund to the wall maximum and the local maximium which were observed in
the rms streamwise vorticity profiles (see §5.1). Also notice that the regions of
intense streamwise vorticity at the wall tend to occur beneath intense regions away
from the wall and are of opposite sign. This is the effect of the no-slip boundary
condition on vortical structures slightly away from the wall. This change of sign is

responsible for the minimum in the rms streamwise vorticity profile at y* = 5.
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6. Summary and Conclusions

There are specific conclusions to be drawn from this work in the areas of (1) the
development of the numerical methods, (#1) the structure of wall-bounded turbulent
flows, and (iii) the effects of longitudinal curvature on turbulence. These will be
covered in the following paragraphs.

A spectral method for the solution of the Navier-Stokes equations for plane-
channel flow and for flow between concentric cylinders has been developed. The
method is based on divergence-frec vector expansions and quasi-orthogonal func-
tions, which offer advantages in memory requirements and computing speed. In
addition, the method treats the boundary conditions and the continuity constraint
exactly. This new method has been tested by computing the various states of Taylor-
Couette ow. The results are in excellent agreement with available experimental,
theoretical, and other numerical results.

Mildly curved (6/R = 0.013), turbulent channel flow has been successfully sim-
ulated, demonstrating the feasibility of computing fully developed wall-bounded
turbulent flows without subgrid scale models. The computation does, however, ex-
hibit marginal resoiution, which is most apparent in the projection .rror. This error
is potentially significant near the walls, though its contribution to the Reynolds-
stress balances is negligible and the details of the computed near-wall structure
of the flow are in agreement with available experimental results. Further study is
need. * io determine what effect the projection error has on other propertics of the
flow (e.g., higher order statistical correlations), and what, if anything, car be done
to alleviate it.

A technique has been developed for calculating the temporal spectra and corre-
lations with minimal cost in compvtation and computer memory. The technique

relies on the simoothness of the energy spectrum in a turbulent flow to allow accurate
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interpolatior of sparsely distvibuted comrputed spectral data. This is a promising
method for obtaining temporal information from a turbulence sunulation.

In the numecrical simulation of curved, turbulent channel flow, the overall agree-
ment of the mcaun-velocity prefile and higher order turbulence statistics with avail-
able plane-channel data was good, except for the known cffects of curvature. The
present simulation has : rovided a large amount of data concerning various features
of wall-bounded turbulent flows that are qualitatively unaffected by curvature. Near
the walls, the flow was found to be dominated by alternating high and low specd
streaks, elongated in the strecamwise direction with mean spanwise spacing of about.
100 wall units, in agreement with experimental observations. This value was ob-
tained from both the instantaneous velocity fields and from two-point correlation
functions. The velocity norinal to the wall, however, is dominated by small spots of
intense fluctuations, rather than streaks. Away from the walls, convection velocities
of large-scale structures were found to be significantly lower than the local mean
velocity, also in agreement with experiinental observation. Althought streamwise
vortices were observed in the vicinity of the wall, the two-point correlation functions
showed little evidence of vortex pairs. Solitary vortices were observed to be more
prominent near the wall than were vortex pairs.

Many features of the present simulation are in excellent qualitative agreement
with the large-eddy simulation of Moin & Kim (1982). For example, in agreement
with their results, the strcamwise rms vorticity profile near the wall exhibits two
local maxima, one at the wall and the other slightly away from the wall. The max-
imum away from the wall is attributed to the streamwise vortical structures which
were observed in the vicinity of the wall. The wall maximum is due to the combined
effects of the vorticity slightly away from the wall and the no-slip boundary condi-
tions. Further, at the wall the streamwise and spanwise vorticity are enhanced by
the splatting effect through vortex stretching and the no-slip boundary conditicns.

Also in agreemer: v ith Moin and Kim, but in disagreement with the experiments
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of Kieplin & Lckelimann (1979a), the skewness of the velocity luctuations normal
to the wall, S(v), were found to become negative and to obtain a local minimum
slightly away from the wall. The terms in the balance equations for the clements
of the Reynolds stress were in qualitative agreement with those of Moin & Kim
(1982). In particular, it was found that viscous and turbuleat Jd’ffusion acted to
transport turbulence energy from the regions of maximum turbulence production,
both toward and away from the wall.

The effect of curvature on the miean velocity was found to be in agreement with
experimental ohservations; namely, in local wall coordinates the mean-velocity pro-
file sufficiently far from the wall (y/r > 0.0015) on the concave side lics below the
convex side profile and the plane-channel profile. By comparing the concave and
convex sides of the channel, it was found that curvature had little effect on the
turbulence statistics when they were normalized by locul wall variables. The most
notable exceptions to this were the Reynolds shear stress, the terms in the balance
equation for the Reynolds shear stress, and the near-wall skewness and flatness fac-
tors. On the concave side, the Reynolds shear stress is enhanced relative to the
convex side shear stress. In the balance equation, the turbulent diffusion and veloc-
ity pressure terms are significantly aiicre”. And, away from the wall, the so called
“extra” term due to streamwise turbulent diffusion is not negligible.

A dominant feature of the computed flow was the Taylor-Gorltler vortices. They
made a significant contribution to the Reynolds shear stress on the concave side,
and were found to affect the underlying turbulence by convecting it, and by inducing

a strain field which locally affected turbulence production near the concave wall.
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Appendix A

Weak Formulation

In this appendix we consider the weak formulation of the forced Stokes equations,
and its connection with the numerical method discusscd in §2. We start with the

classical form of the forced Stokes equations

%‘t’- =-VP -VxVxv+f,

V.v=0, vt =0) = vy, (A1)

v =0 at the walls

v periodic at periodic boundaries.
The Reynolds number parameter is not necessary and is omitted for brevity. The
viscous term, which is usually written V2, is written here as —V x V x, which is
equivalent and more instructive in this case. Let u be any vector function such
that V-u = 0 and u = 0 at the walls; u must also be a function for which these

conditions make sense, thus,
ue V={u:ueH},V-u=0}. (A.2)

When (A.1) is dot multiplied by u and integrated over the domain D, we obtain

/u-a—vdvz—/ qu-vadv+/u-fdv. (A.3)
p Ot D o

where we have integrated the pressure term and the viscous term by parts. The
pressvre term drovs out. We define the inner product (v, u) to be f pV-udv. The
weak formulation is obtained by requiring v € V and that (A.3) be true for all

V.
"e ve, v(it=0)=v;,

(u, %}) = —(Vxu,Vxv)+(u,f), (A.4)
VueV.
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If v is a solution to (A.1), then it must be a solution to the weak problem (A.4).
We will now show that it is the anique solution to (A.4). Suppose there were a

second solution to (A.4), call it w. Then we would have

ow

(u, —5[) = —(Vxu,Vxw)+ (u,f) . (A.5)

Subtracting (A.5) from (A.4) and letting A = v — w we obtain

(u, %?—) =—(Vxu,VxA4). (A.6)
At any time A(t) € V, so
(A,%—?) = _(VXA,VxA4) . (A7)
Now
(Vx 4,V xA4) =/ (VxA)2dv >0, (A.8)
D
and
— 10 2
’6t /A —-d =331 ), A%dv . (A.9)
Thus, for all times,
2/ Aldv <o, (A.10)
at Jp

and since A = A2 =0 at ¢t =0 (v and w have the same initial conditions),

/ Adv =0, (A.11)
D

for all times. Therefore, since the square integral of A is zero, A is zero for all time
and the solutions v and w are the same.

We have shown that if there is a solution to (A.1) it is the unique solution to
(A.4), and is, therefore, also the unique solution to (A.1). However, it is possibl:
that (A.4) will have a solution when (A.1) has none. This can occur when the

solution to (A.4) does not have a second spatial derivative, so that the derivatives
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in the viscous term of (A.1) are not defined. In this case, the solution of (A.4) is
often referred to as a weak solution to (A.1). Note also, that we need not have
required that u € V. If we require (A.2) to be truc for all u in some space of which
V' is a subspace (as long as the integrals exist ana the integrations by parts can be
performed), the uniqueness result would still hold.

We will assume that %‘{ € V, which is an additional regularity condition. At any

time we may consider (A.1} as an equation tor 9.—‘{, given v and f; with the weak
formulation,
ov
—6? eV ,
0
(0, 5%) = (0,~VxVxv 4 1), (A12)
YVue V.

This is a useful point of view for separating the spacial and temporal discretizations.
1,y arguments similar to those used above, we find that (A.12) uniquely determines

%‘{. Note that the weak formulation requires that the pressure gradicnt term be

orthogonal (i.e., the inner product is zero) to all u € V; thus, %lt' is the orthogonal
projection onto V of —VxVxv +f. This is the projection mentioned in §2.1. There
is the possibility that A.12 will not have a solution, which would occur if VxVxv+f
were incompatible in the sense described in §2.2.

Now consider the approximation to (A.12),

av N
a—: e VW,

avl A.13

(UN,g} )=(u”,—Vxva+f), ( )
VuEVN,

where V¥ is an N-dimensional subspace of V. This is a special case of the weighted

. . N . .
residual method presented in §2.1. Let €V be the error ¥ — 4¥, by letting u in

(A.12) be u" and subtracting (A.13) from (A.12) we find that (uV,eV) = 0.
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Consider another approximate solution, 2%~ € VN, with error €V = €M + 1,

where 4 € VN, We are intcrested in the Lz norm of ¢V,
(€N, eV) = (eV,eV) + 2(eMN, ) + (1,7) - (A.14)
Since (¢V,4) =0 and (4,9) = 0, we get
(eV,eV) < (¢V, €M) (A.15)

for all other approximations %%’-N. Thus, the solution of A.13 minimizes the Lo

norm of the error of the approximation to ¥ in V.
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APPENDIX B

Saved Velocity Fields

Velocity fields from the present calculation were saved every 200 time-steps (0.1
time units).This was accomplished by saving the restart files of each run. The
first record of these files contains six integers tha‘ describe the data. They are

T3TEP, NR = 96, NTH1 = 128, NZ1 = 128, MR = 5, and MZ = 4; which are

(in order), the time-step number, the number of planes in the r direction minus.

one, the number of Fourier modes in the @ direction, the number of modes in the
z direction, the drawer size in the r direction, and the drawer size in the z direction
(see §3 concerning drawers). Record two contains a single word used in computing
the mean pressure gradient. The next NR/MR + 1 = 20 records contain the first
column of drawers of the VDATA data base, which are followed by a single record
containing a slaub of the RDATA data base. This pattern of a column of VDATA
drawers followed by an RDATA slab is repeated NZ1/MZ = 32 times.

Each vDATA drawer is a complex array DATAV dimensioned as
DATAV[NTH1/2,MZ,5MR], which contains the Fourier coefficients of the veloc-
ity field and its derivatives with respect to r. The first index indicates the 8 wave
number of the coefficient (kg = 2x(I3 —1)/0.16). The second index is for the z wave
number,

b = { %[Ig + (ZGROUP — 1)MZ/2 — 1 I <MZ/2.
- 312 = MZ/2+ (ZGROUP - 1)MZ/2 - 1] I, >MZ/2
where ZGROUP is the column number of the drawer. The third irdex determines
the velocity component (1 — v, 2 > v,, 3 > v,,4 — %‘i"-, 5 — %":). And finally,
the last index indicates the r plane (NRPLANE = I, + (RGROUP — 1)MR), where
RGROUP is the row number of the drawer. The y location of the r plane is given
by y = cos(r{(NRPLANE — 1) /NR). Data in the VDATA drawers has been packed
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to half precision and thus each record aciually contains NTH1 x MZ x5 « NR/2
physical words which must be unpacked before they are used. The slabs of the
RDATA data base are useful only for restarting the computations, so these records
should be skipped when using the data for another purpose.

The restart files described abcve have been saved on XIOP tapes on the Cray-
XMP at Ames Research Center using the STAGEX utility. The files are named
‘CURVE0022’, where the “2” is either A or B. The individuai restart files are dis-
tinguished by their edition numbers. Table A.1 lists the tape names and the files
they contain. The owner of the tapes and the ID of the files is STTRDM.
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Table A.1

Restart Tapes

o h Al oD

Tapes Suffix z Edition numbers
CURVE002ATAPEOM1 A 17, 18, 19, 20, 21
CURVE002ATAPE001 A 22, 23, 24 _
CURVE002ATAPE002 A 25, 26, 27
CURVE002ATAPE003 A 28, 29, 30
CURVE002ATAPE004 A 31, 32, 33
CURVE002ATAPE005 A 34, 35, 36
CURVE002ATAPE006 A 37
EMERGENCY, ED=1 A 38, 39, 40, 41, 42, 43
CURVE002ATAPE007 A 44, 45, 46
CURVE002ATAPE008 A 47, 48
CURVE002ATAPE009 A 49, 50, 51 5
CURVE002ATAPE010 A 52, 53, 54 |
CURVE002ATAPEO11 A 55, 56, 57 |
CURVE002ATAPE012 A 58, 59
CURVE002ATAPE013 B 60, 61, 62, 63
CURVEO02ATAPEO14 B 64, 65, 66, 67
CURVE002ATAPEO15 B 68, 69
CURVE002A..\PE016 B 70, 71, 72, 73
CURVE002ATAPE017 B 74, 75, 76
CURVE002ATAPEO18 B 77,78, 79, 80, 81
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APPENDIX C

Reynolds Stress Equations in Cylindrical Coordinates

In this appendix the Reynolds-stress balance equations in cylindrical coordinates
are presented. They arc derived from the balance equations in general tensor nota-

tion, which may be obtained easily from the Navier-Stokes equations; they are

Jutud
ot

- - vt (), - (v + v - ()

o

(), ot (9),) o)

1 kl ) .) 1 kl . J' j .
J— 1yl —_—— t t
+ 729 (u W) Re (u'ku,l + u,ku',) . (C.1)

Here, U' is the mean velocity and u’ is the fluctuating velocity. The superscripts
are contravariant indices, and the subscripts are covariant indices. Subscripts fol-
lowing a comma indicate the covariant derivative. The summation convention is
implied, and the overbars indicate ensemble averages; g*’ is the contravariant met-
ric tensor which in cylindrical coordinates is diagonal (since the coordinate system
is orthogonal). For the cylindrical coordinate system with coordinates », 8, and 2,

the contravariant elements of the metric tensor are given by

1 0 0
g=|0 F 0 (C.2)
0 0 1

Terms on the right-hand side of equation (C.1) are given the interpretations (in
order of appearance) convection (referred to as C;; in the discussion below), pro-

duction (P,;), turbulent diffusion (T D;;), pressure diffusion (P D;;), pressure strain
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correlution (PS;;), viscous diffusion (P%EVD-J), and viscous disstpalion ('ﬁlTD.'j).

Thus, the transport equation for the Reynolds stresses (R;;) can be written

ORii _ i+ P, +TDi;+PDy; + PS,, + -R!;VD@‘ + f,:-;D-'j : (C.3)

Each of these terms has been expanded in cylindrical coordinates and is presented
in the equations that follow. In these equations, subscripts refer to the component,
thus u, is the fluctuation part of the radial velocity and C,y is the convection term
in the equation for @;up (this is not to be confused with the general tensor notation
used in (C.1)). A subscript following a comma indicates a derivative (not a covariant
derivative); thus (T-%g) 5 = ucug

The convection terms C;; expand to

C'r = —'Ur (u'-ur),' - —Ur—o' ((uf‘uf)‘o - zurUO) + lll (m),z ; (C'4a)
Usp o —

Coo = —U, (WTs),, — — ((uouo),a + lu'uo) - U, (90w) , ; (C.4b)
Uy .

C,‘ = —-U,. (u,u,,)" - 'r— (u,u,)_o - Uz (uzut)', ) (C.4C)

CrO = -U,. (W),r - To ((UrUO)'g + U, u, — u0u0) - UI (m_u—o),x ; (C4d)

Cor = ~U, (G5%) , — 2 (@75, + &) ~ U, (@), i (Cde)
Us S
Crs = U, (@%5),, ~ - (@), - ww;) - U, (#55) . - (C.41)

The production terms P;; expand to

Prr = 20, 575 — 2 (U ~ Uy) 0585 — 20, 45785 (C.52)
Pap = —2Us 5 — § (Us,o + U,) Tatig ~ 2Us 1 0505 ; (C.5b)
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Pz: = '—2Uz,ra:ﬁ—z- - ;Uz,oﬁ‘o—ﬂ? - 21,:,11—1:{‘: ) (C5C)
e 1 1 -
Pfﬂ == ‘Ur,rUruo - Uo,rurur - ; (U',o - Ua) Uglg — ; (U0,0 + []') Urliy
- Ur,zu0u3 - U0,:1Tv:'Tz— ' (C5d)
o 1 I T
190z = -—Uo‘,.u,.u, - U,‘,u,ug - ; (UO.O + Ur) UgUy -~ ; z,0UgUg
- Uo,zﬁﬁf? - Uz,xul)“z ) (CSe)
e 1 1
P, = -U, %0, ~- U, a7, - , (U'.ﬂ - Uo) UgUsy — r z,0Ur Uy
- Ur.zu—;a; - U:.zuruz . (CSf)

The turbulent diffusion terms TD;; expand to

1 1
TD,, = - (ru,‘u,u,)', -2 ((u,urug),o - 'Zu,uouo) - (u,u,u,)‘, ; (C.6a)
1 1 p A
TDyg - (ravaeug) , — - ((uououg),o + zu,uoua) — (UpUsTy) , ; (C.6b)
" t, 1,
TD,, = - (reww;) , - " (Tu38;) 4 - (Tw5;), ; (C.6¢.)
1/, __
TD,y = —= (ru;u,ug) , - " ((u,"gu,,}“,‘ + W, Ug - uguguo)
- (wau;) , ; (C.6d)
) 1/, . - .
TDy, = - - (rvugu;), - ; ((uauau,)’a + u,uou,) ~ (%u4;) , 5 (C.6Ge)

1 1
TD,, = - ; (_ru,u,u;’)" - ((u,uou,)ﬁ - ?Ib“'fp-—u;) - (u",u,u,),, . (C.6f)
The pressure diffusion terms PD;; expand to

2

PD,. = - ((@p), - %) ; (C.7a)
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PDgy = - ((uop)',, + "rP) ; (C.7b)

PD,; = -2(u:p) , ; (C.7¢)
1 1/, .

PDeo = -~ (Fisp), - - ((urp),o - 2uop) ; (C.74)
_ 1,

PD,, = - (uoP),z + 7 (uzP),a ) . (C.Te)
1

PD,. =~ ((F&p),, - wp) - (wp),, - (C.1m)

Tae pressure strain terms PS,; expand to

PSrr = 2pur," ’ (CB&)
y D

PSye = ;p(uﬂ,o + u,) 3 (C.8b)

PS,, =2pu,; ; (C.8¢)
1

PS,s=p ( = (uro —uo) + uo,r) ; (C.84d)
1

PSo, =p (;‘uz,g + ‘UQ,;) ) (CS(‘)

PSe; =p(tr: +us,). (C.8f)

The viscous diffusion terms V D;; expand to

1 1
VDo = (r@w),) + 7 (&) 00 ~ 4 (5m) o +2 (@ - 7))

+ (@) (C-9a)
VDgy = 1 r (uouo),, + —15 (mo-),oo + 4(@5),0 — 2 (Uoup — G, 4y)
r r r
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(C.9¢)

1 1 /7, o e S
VD, = ; (r (ﬂ:ﬁ.’,)_r) -+ 2 ((uouo).“ +2(urur) 5 ~ 2 (lgtig) o — 4u,uo)

+ (uru0)‘z: H

1 . 1/, \
VDy. = - (r ("0“=),r),' + = ((uou,)‘o, +2 (u,u,)’o - ugu,)

+ (uauz),zz i

VD,, = ; (r (ﬂ:ﬁ),) ] + '—.1—2* ((m)‘,,, —2(%5;) o — u,u,)

+ (ufux),zz .

The viscous dissipation terms D;, expand to

e —— Uro — Ug Ug.0 +u, —_—
D, = —UrrUgyr — — Uy ;Ug: ;

T T
S Ugg +Ur \ Uz ___
Dy, = —Ug Uy — — Ug,zUz 7 ,
T T
Upg — U9\ Uz o
Dr: = TUpplUzye — r r — Up 2 UY
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dve dv,
MEFTE or

PASS1

Compute w

Fourier transform in 6, z
Compute v X w

Fourier transform in 6, 2

RDATA

PASS2

Chebyshev transform
Time Advance (steps 1i-v)
Compute v, %"rl, %‘:}
Chebyshev ransform

VDATA
vVXW

Figure 3.1. Flow of externally stored data in program CURVE. RDATA and
VDATA are independent data bases, and PASS1 and PASS2 are the
two passes through the database each timestep (see §3.2).
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Figure 4.1. Secondary flow stream-function contours for Taylor-Couctte flow,

(Re = 195, A = 2.004, n = 0.95). Solid lines are positive contours;
dashed lines are negative contours.

vortices (Re = 458, A = 3.0, n = 0.868, m = 6).

Figure 4.2. Contours of axial velocity at r = 0.822r, for fully developed wavy



(b)

Figure 4.3. Contours of axial velocity at r = 0.9867, for modulated wavy vortex
flow (Re = 1300, A = 2.73, m) = mz = 4, n = 0.877); (a) t = 12.59,
(b) ¢ = 11.58.
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Figure 5.1. Scale drawing of the computational domain for curved, turbulent

channel flow.
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Figure 5.7. Correlation coefficient with and without the contribution of the
) u'v’

Taylor-Gortler vortices.
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most negative contours are (a) —2.8u,, (b) —0.82u., (c), —0.52u,.
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Figure 5.17. Contours of 40 in the (r,z) ;1 e. Contour Jevels incremented by 0.1.

Innermost positive contour s 1.55u2.
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Figure 5.18. Contours of the diagonal elements of the Reynolds stress tensor due to

the underlying turbulence in the (r, z)-plane. (a) u

~u?, (b) wt-u?,

(¢) 12':’ — w?2. Contour levels in (a) incremented by 0.2, in (b) and
(c) by 0.05. Innermost negative contour in region “C”, (a) —1.9u2,

(b) —.08u2, (c) —.22u2.
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Figure 5.19. Contours of the Reynolds shear stress due to the underlying turbu-
lence in the (r,z)-plane. Contour levels incremented by 0.05. Inner-

most negative contour in Region “C” 0.18u2.
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Figure 5.41. Isocorrelation contours in the (6,t)-plane at y = 813, y™ = 34,
(a) Reo, (b) R,r, (c) R... Contour levels incremented by 0.1. Do-
main is 0.56 /u, in time and 12.86 in 0.
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(b)

Figure 5.42. Isocorrelation contours in the (6,i)-plane at y = .352, y* = 117,
(2) Rga, (b) Ry, (c) R;.. Countour levels incremented by 0.1. Domain
is 0.56 /u, in time and 12.76 in 0.
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Figure 5.43. Isocorrelation contours in the (6,t)-plane at y = -.352, y* = 100,
(a) Rog, (b) R,r, (¢) R... Contour levels incremented by 0.1. Domain
is 0.56 /u, in time and 12.68 in 6.
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Figure 5.44. Isocorrelation contours in the (6,t)-plane at y = —.813, y* = 29,
(2) Roe, (b) Ryr, (c) Rz Contour levels incremented by 0.1. Domain
is 0.56 /u, in time and 12.56 in 0.
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Figure 5.45. Contours of streamwise velocity u’ in the (8, z)-plane, (a) near the
concave wall, y* = 6.14, (b) near the convex wall, y* = 5.29.
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Figure 5.46. Contours of radial velocity v’ in the (6, z)-plane, (a) near the concave
wall, y* = 6.14, (b) near the convex wall, y* = 5.29.
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Figure 5.47. Contours of spanwise velocity w’ in the (6, 2)-plane, (a) near the con-
cave wall, y* = 6.14, (b) near the convex wall, y* = 5.29,
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Figure 5.48. Contours of streamwise velocity u' in the (6, z)-plane, (a) near the

concave wall, y = .352, y* = 117, (b) near the convex wall, y = —.352,
y* = 100.
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Figure 5.51. See next page for caption.
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“B” through “F” in Figures 5.49 and 5.50. The domain is 135 wall

Figure 5.51. Velocity vectors projected into (r, z)-planes at the 8 locations marked
units in the z direction.
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Figure 5.52. Contours of (a) 4’ and (b) ¢’ in the (0,7)-plane at z = 27/3. The
radial direction has been magnified by a factor of 2.5.
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Figure 5.53. Contours of streamwise velocity u’ in the (7, z)-plane at 8 = 0.08.
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Figure 5.54. See next page for caption.
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