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APPROXIMATION METHODS FOR INVERSE PROBLEMS

INVOLVING THE VIBRATION OF BEAMS WITH TIP BODIES*

I. G. Rosen+

University of Southern California

Abstract

We outline two cubic spllne based approximation schemes for the

estimation of structural parameters associated with the transverse vibration

of flexible beams with tip appendages. The identification problem is

formulated as a least squares fit to data subject to the system dynamics which

are given by a hybrid system of coupled ordinary and partial differential

equations. The first approximation scheme is based upon an abstract semigroup

formulation of the state equation while a weak/varlatlonal form is the basis

for the second. Cubic spline based subspaces together with a Raylelgh-Ritz-

Galerkln approach was used to construct sequences of easily solved finite

dimensional approximating identification problems. Convergence results are

briefly discussed and a numerical example demonstrating the feasibility of the

schemes and exhibiting their relative performance for purposes of comparison

is provided.
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the National Aeronautics and Space Adlmlnstratlon under NASA Contract No.

NASI-17070 while the author was a visiting scientist at the Institute for

Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, VA 23665.
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In this short paper we briefly outline two cubic spline based

approximation schemes for the solution of inverse problems involving the

vibration of flexible beams with attached tip bodies. The identification

problem is formulatedas the least squaresfit to data of a hybrid system of

coupled partialand ordinarydifferentialequationsdescribingthe dynamicsof

the beam and tip bodies. The resulting optimizationproblem is infinite

dimensionaland as such, necessitatesthe use of some form of approximation.

The schemeswe have developedare based upon the constructionof a sequenceof

approximating identificationproblems in which the underlying constraining

state equations are semi-discretefinite dimensional approximationsto the

infinite dimensional distributed system which governs the original

identification problem. Our study includes both theoretical convergence

resultsand numericaltesting.

Although our general approach applies to a broad class of problems, to

illustrate the two methods, we consider the problem of identifying the

spatially invariant flexural stiffness ql and linear mass density q2 for a

beam of length £ clamped at one end and cantilevered at the other with a tip

(point) mass of magnitude q3 which is also to be identified. Using the

Euler-Bernoulli theory and elementary Newtonian mechanics, the system of
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q2utt(t,x) = -qlUxxxx(t,x) + f(t,x) x _ (0,£), t € (0,T) (I)

q3utt(t,£) = qlUxxx(t,£) + g(t) t € (0,T) (2)

describing the transverse deflection of the beam and tip mass is obtained

where f and g denote externally applied lateral loads (see [2]). The boundary

conditions are given by

u(t,0)= Ux(t,0)= Uxx(t,£)= 0 t € (0,T). (3)

The initial conditions are of the form

u(0,x)= ¢(x), ut(0,x)= ¢(x) x € [0,_]. (4)

The identification problem is stated formally as

(ID): Flnd q = (ql,q2,q3)T E Q, Q a compact subset of _R'3,

which minimizes

v _ _(ti'xj)J_q;u(',';q)) = _ lu(ti,xj;q) - 12
t=1 j=l

subject to u(.,.;q) being a solution to (I) - (4) where

[_(tl,xj)}l=l,...,9 denote a set of given displacement

j=l,...,p
observations.
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The first approximation scheme, which is described in detail in [6], is

based upon the recasting of (I) - (4) as an abstract evolution equation set in

an infinite dimensional Hilbert space. Let H = RxH0(0,£) with inner product

<(q'_),(_,_)>H = q_ + <_'$>0 where {Hk,<-,.>k} denote the usual Sobolev

spaces and Sobolev inner products. Define the operators M0(q):H.H and

A0(q):DCH+H by M0(q)(n,_) = (q3q,q2 _) and

A0(q)_(£),_ ) I-ql_'''(£),ql_ .... ) respectively where

D = {(q,_)cH:_H4(0,£), _(0) = $'(0) = 0, $''(£_ = 0, n = _(£)}. Assume

f € L21[0,T],H0(0,£)) , g C L2(0,T) , _ _ H2(0,£) and _ € H0(0,£) and let
A

F0(t) = _g(t),f(t,.)), _ = I_(£),_) and _ = _(£),_) where _(£) € R is
i

specified if it is not well defined. We then rewrite (I) - (4) as an abstract

second-order system in H;

M0(q) D_u(t) + A0(q)u(t ) = F0(t), t _ (0,T) (5)

A

u(0) Dtu(0) (6)

= d
where u(t) = _u(t,£),u(t,-))_ H and Dt _-_ . Let

V = {(n,_)cH:_H2(0,£),_(0) = _'(0) = 0,q = _(£)} and define

L:VCH+H by L_(£),_) = (0,_''). The operator A0(q) can then be written in

factored form as A0(q) = qlL*L where L*:Dom(L*)CH.H is given by

L*(_,$) = (-$'(£),$'') for (n,$)cDom(L*) = ((n,_)cH : ._H2(0,£), _(£) = 0}.

Let Z = H x H with inner product

<z,W>q = <qlzl,Wl> H + <M0(q)z2,w2> H. Choosing our state as

z(t) = _Lu(t),Dtu(t) ) we rewrite (5), (6) as the first-order system in Z given

by
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_(t) = A(q)z(t) + F(t;q), z(0) = z0 (7)

where A(q):Dom(L*)×VCZ+Z is given in matrix form by

A(q) = [-qlM0(0q)-IL * 0L]

F(t;q) = (0,M0(q)-IF0(t)) and z0 = (L$,_) ($ is assumed to be an element in

V). The operator A(q) is densely defined and skew self adjoint. It

therefore generates (see [8]) a CO group of unitary operators

{S(t;q): -_ < t < =} on Z. The mild solution (strong or classical if F and

z0 are sufficiently regular) t0 (7) is then given by (see [5])

t

z(t) = S(t;q)z 0 + f S(t-T;q)F(T;q)dT. (8)
0

Problem (ID) can then be written as

(IDA): Find qcQ which minimizes J(q;Cl(-)z(';q) ) subject to

z(-;q) being given by (8) where the operators

CI(X):Z.R are defined by

x T

Cl(X)I(q,¢),(_,,) ) = f f O(o)d_dT for x € [0,£].O0

For each N = 1,2..., let S3(AN) denote the space of cubic spline

functions on the interval [0,g] corresponding to the uniform partition

AN={0,_,g --N''2£..,£} (see [7]). Let WN = {(q,_)gH:_S3(AN),_(£) = 0},

VN = {(q,0)cH:0ESB(AN),¢(0) = 0"(0) = 0,_ = ¢(g)} and ZN = WN x VN. Then
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ZN is a 2N+4 dimensional subspace of Z which satisfies

zNCDomIA(q)) = Dom(L*)xV for all q_Q. Let pN denote the orthogonal
q

projection of Z onto ZN wlth respect to the <-,-> inner product.
q

Define AN(q):Z N + ZN by AN(q) = pNA(q) and noting that AN(q) is a linear
q

operator defined on a finite dimensional space (and is therefore bounded),

consider the initial value problem

z (t) = AN(q)zN(t) + P (t)F(t;q), t € (0,T)

zN(0) = P_z0,

and its solution

zN(t) = exp(AN(q)t)P_z0

t

+ f exp(AN(q)(t-T))pNF(T;q)d_ t € [0,T]. (9)0

The approximating identification problems for the first method take the form

(iDNI): Find qeQ which minimizes JIq;Cl(.)zN(-;q)) subject

to zN(-;q) being given by (9).

Under rather mild assumptions it can be shown that each of the problems

--N {q-N} contains a(IDN 1) admits a solution q and that the sequence

_k . -- k . Using standardconvergent subsequence k}, q e Q as =.

approximation results from linear semigroup theory (see [5]) and the
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properties of spllne functions (see [7]) to establish convergence of the state

aPproximations, it can then be argued that _ is a solution to problem (ID).

The second approximation scheme involves the rewriting of (I) - (4) in an

equivalent weak/variational form (see [4]). Let H and V be as they have

been defined previously. Define the inner product on V, <'''>V by

<_'$>V = <L$'L_>H" We have the usual dense embeddlngs V C H C V" where V"

is the dual of V. We consider the weak form of (I) - (4)

<M0(q)D (t),8> H + alu(t),8;q ) = <F0(t),B>H, B € V, t € (0,T) (I0)

_( ^ Dt_( ^O) = @, O) = _ (11)

where the bilinear form a(.,-;q) on VxV is defined by

a(_,_;q) = ql<L$,L$>H = <_(q)_,$>H" The derivatives in the definition of

the operator AO(q) are interpreted in the distributional sense and AO(q)

is considered to be an element in-_-_(V,V'), the space of continuous linear

operators from V into V'.

We define a Galerkin approximation GN to u as the solution to

<M0(q)D2uN(t),_N>H + a(uN(t),_N q) = <F0(t),_N>H ' _N g VN, t E (0,T)(12)

uN(0) = pN_, DtuN(0 ) = pN_ (13)

where VN is as it was defined above and pN is now the orthogonal

projection of H onto VN with respect to the <','>H inner product.
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The approximating identification problems are then given by

(IDN2): Find q_Q which minimizes J[q;C2(-)uN(.;q) ) subject to

_N(.;q) being the solution to (12), (13) where the operators

C2(x):V.R are defined by C2(x)I_(£),_) = _(x),x£[0,£].

Using standard variational arguments of the type found in [3] it can be

argued that under sufficient regularity assumptions, for {qN},cQ with

qN.q, we have _N(qN)._(q,) in V and DtuN(qN).Dtu(q*) in H as

N+_ where _N(qN) is the solution to (12), (13) corresponding to qN and

u(q*) is the solutlon to (I0), (II) corresponding to q*. This in turn

yields a convergence result analogous to the one stated above for the first

scheme. A more detailed discussion of these results appears in [I].

We demonstrate the feasibility of our methods with a simple example. We

consider a beam of length 1 and use the two schemes described above to

estimate its stiffness ql, its linear mass density q2 and the magnitude of

a tip mass q3" We assumed that the system was initially at rest (#=@=0)

and then excited via the distributed lateral load f(t,x) = eXsln 2_t and the

point force g(t) = 2e-2t acting on the tip mass. Displacement observations

at positions xj = .5, .75, 1.0, j=1,2,3, at times ti = .5i, i=1,2,...,I0,

were generated using the "true" parameter values ql = 1.0, q2 = 3.0 and

q3 = 1.5, the first two natural modes of the system and a standard Galerkin

method. The approximating identification problems (IDN I) and (IDN2) were

solved using an iterative Levenberg-Marquardt scheme with the approximating

state equations solved at each iteration using a variable order Adams i

Predictor Corrector method. The "start-up" values for the unknown parameters
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0 .7, q_ = 2.7 and q_ = 1.7. Our results for methods Iwere taken to be ql =

and 2 are given in Tables 1 and 2 respectively below.

Table 1

--N ---N --N

N ql q2 q3 CPU (m:s)

2 1.00083 2.99817 1.50090 0:08.70

3 1.00072 3.00317 1.49868 0:29.38

4 1.00061 2.99227 1.50141 1:01.19

5 1.00009 2.98711 1.50195 1:35.26

6 1.00061 2.99039 1.50144 2:45.20

Table 2

--N --N ---N
N ql q2 q3 CPU (m:s)

2 1.00057 3.04455 1.48957 0:09.19

3 1.00067 3.01256 1.49707 0:22.10

4 1.00027 3.00922 1.49721 0:57.57

5 1.00016 2.98936 1.50262 1:22.52

6 .99912 2.99720 1.49952 2:52.76
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