General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(E8:3-4 1026 NASA-CR-174049)
H85-11439
SEECTHORADIOMETEIC CALIBRATICH OF THE THEMATIC HARPER AND MULTISPECTRAR SCANNER SYSTEM Quarterly Report, 1 May - 1 Aug. 1984 (arizona Univ.. Tucson.) 42 p

Uncles
G3/43 00026

SEVENTH QUARTERLY REPORT ON
"SPECTRORADIOMETRIC CALIBRATION OF THE THEMATIC MAPPER AND MULIISPECTRAL SCANNER SYSTEM"

Contract Number NAS5-27382
For the Period: 1 May 1984 - 1 August 1984

NASA/Goddard Space Flight Center Greenbelt MD 20771

James M. Palmer, Co-Investigator Philip N. Slater, Principal Investigator

> Optical Sciences Center
> University of Arizona
> Tucson, Arizona 85721

INTRODUCTION

This is the seventh quarterly report on Contract NAS5-27382 entitled, "Spectroradiometric Calibration of the thematic Mapper and the Multispectral Scanner System." In this report, we summitize the reduction of the data weasured on July 8,1984 at White Sands, New Mexico. The radiances incident at the entrance pupil of the Landsat 5 sensors have been computed for bands $1-4$. When the se are compared to the digital counts of the $T M$ image, we will have the ground based calibration of this sensor. The image has been received from Goddard SFC and is presently being analyzed.

JULY 8, 1984 CALIBRATION

Field Measurements
This was our first opportundty to acquire on-site measurements at White Sands in conjuction with Thematic Mapper imagery from Landsat 5. Imagery was not avaliable for previous trips due to cloud cover. Assisting in the field measurements were Harumi Aoki, Ken Castle, Barbara Capron, Madgeleine Dinguirard, Ron Holm, Ray Jackson, Carol Kastner, Amy Phillips, Rich Savage, and Phil Slater. The instrumentation on hand included two Barnes radiometers, the cart and yoke, an old model of Reagan's radiometer, both of the Castle spectropolarimeters, four polycorders, a printer, the Compaq computer, and two $2 X 2$ ft standard reflectance panels.

Sunrise on the morning of Juiy 8th was at 6:10 a.m. New Mexico was on Mountain Daylight Time (MDT) this time of year, as are the times quoted here. The Reagan instrument was set up and began acquiring solar irradiance measurements at 7:15 a.m. (airmass 4). Kich Savage took temperature, humidity, and pressure readings there at Chuck site. He also arrangec for a nearby radiosonde ascent. These data are presenced in Appendix B.

Two test sites bad been laid out on the previous trip. Each was a 4×4 pixel grid, aligned with the east/west scan lines expected of Landsat, A road with a 120° bend separated the two sites, and will facilitate the identification of the sites on the digital TM imagery. Each site was measured with a Barnes radiometer. Starting at the center of
each 30×30 meter pixel, five reflectance measurements were :jken of the gypsum sands, within an area of about 5, X 0.5 meters. Reflectance panel readings were taken periodically during the course of the me measurements. (Both the BaSO_{4} and Halon panels were recalibrated by Che Nianzeng immediately upon our return.) The data were averaged and recorded on polycorders. The site to the North of the road was scanned using the Purdue radiometer (one of the Barnes), mounted on the cart with the BaSO_{4} panel. Data were taken from 11 to 11:20 a.m. The south site was scanned simultaneously with an USDA Barnes attached to a yoke. A Halon panel was used as the reference here. In addjtion to the two 4×4 pixel areas, two small areas were scanned near the van. This was done between $10: 20$ and 11:40 a.m. These areas were selected for their contrast, representing extremes of light and dark for the local area. They will later be used in conjunction with aerial photography to map the reflectance of the entire area. Finally, diffuse to direct measurements were taken between 8:30 and $10: 20$ a.m. These were made by comparing the radiance reflected from the ground to that radiance measured when the sun was blocked with a styrofoam parasol. These data can be used for comparison with the radjative transfer code, to verify our atmospheric models.

A belicopter overflight was arranged for this trip. Jack Rees and co-pilot Keys piloted the helicopter and Jason Penny, PFC, was the photographer. The flight was almost exactly one full hour. It had the dual purpose of recsirding radiance at intermediate altitudes, again for comparison to the radiative transfer code output, and photographing the sites. Several slides nave been scanned, using a microdensitometer, and will be used to characterize the ground reflectance. Five rolls of

Ektachrome, ASA 100 , were shot. All photos were taken at $1 / 500$ th of a second, with a 200 mm focal length lens. A series were taken at 6,000, 2,000, and $500 \mathrm{ft}$. , AGL (above ground level). The photos we re bracketed from $F / 16$ to $F / 22$, in half $F / s t o p$ increments. Those taken at 2,000 ft. were particulary suited to our needs. Eight colored ground cloths had been laid out to define the two 4×4 pixel areas that were measured with the Barnes. We noted that the blue and orange ground cloths were the most visible from the air, as well as being the easiest to see on the color slides.

The field tests of the newly constructed spectropolarimeters will have to wait for our next trip to White Sands. The helicopter instrument suffered from a power failure, and data from the ground instrument, used for solar irradiance measurements, were lost during the TRS-80 to Compaq transfer. Back-up equipment was, however, available that enabled us to conduct an approximate calibration described in the following.

Langley Plot Computations

The Reagan radiometer was cycled through its narrowband filter set 95 times during the course of the morning. Each data set included, to the nearest second, a start and finish time and a voltage reading for each of the 9 spectral filters. These data were used as input to a program which computed solar zenith angle from ephemermis data. Using a refraction correction, airmasses were then calculated for each measurement. Finally, a weighted least squares analysis was used to compute the slope of the natural \log voltages versus airmass, at each wavelength. The computed slopes are equivalent to the spectral optical depths of the atmosphere, text, at the time of overpass. Temporal
stablity of the atmosphere is assumed. These results are given in Table 1. Also shown are the optical depth components tmie, TRay, and toz. The computation of these components is discussed next.

Using measured atmospheric pressure (883 mbar), tRay can be easily computed. After subtracting this from rext, a curve is plotted, as in Figure la, which contains only Mie and ozone components. To determine TMie a curve is fit through all the text-tray data points that do not include absorption. Normally this is done by submitting the optical depth values to a routine which fits the data to an equation of the form log $T M e^{m a}{ }_{0}+a_{1} \log \lambda+a_{2}(\log \lambda)^{2}$. As many of the spectral filter data sets were rejected, an alternate approach was taken bere. These problems arose because the older of the two Reagan radiometers was used. On this instrument the heater was not functioning. The data are less reliable without the temperature stabilization, due to fluctuations in detector responsitivity. This problem is thought to have affected mainly the 0.872 and $1.03 \mu \mathrm{~m}$ channels.

Instead of our normal procedures, therefore, a manual fitting of the data was performed. A curve of the form $\log \tau M i{ }^{*} a_{0}+a_{1} \log \lambda$ was assumed (a straight line on this log-log plot). This is an approximation, valid only if the aerosols can be correctly modeled as obeying a Junge radial size distribution, $\mathrm{d} \| / \mathrm{dr}=\mathrm{c} \mathrm{r}^{-\infty}(\mathrm{v}+1)$. In such a case the data would fall exactly on a line whose slope, a_{\imath}, yields the Junge parameter via the relationship $a_{1}=-v+2$. By using only the 0.440 and $0.780 \mu \mathrm{~m}$ dsta points, a slope wis determined. At these wavelengths the ozone absorption coefficients are small. Actually, the 0.440 and $0.872 \mu \mathrm{~m}$ pair is prefered, as the absorption coefficients are approximately equal. The

Table 1. Langley Plot Results.
Data from Reagan Radjometer
8 July, 1984
Chuck Site, White Sands, New Mexico
Latitude

$$
32.935^{\circ}
$$

Longtitude
106.407°
Right Ascension Declination
7.226228 hours 22.365361°
Difference (Dec)
-419.3 arc-sec
Earth-Sun Distance 1.016701 AU Pressure
883. mbar

WAV ($\mu \mathrm{m}$)	$\tau_{\text {Text }}$	$\tau_{\text {Mie }}$	$\tau_{\text {Ray }}$	$\tau_{0 Z}$
0.4000	0.4426	0.0981	0.3172	0.0000
0.4400	0.3060	0.0922	0.2138	0.0006
0.5217	0.1921	0.0824	0.1063	0.0127
0.6120	0.1543	0.0743	0.0555	0.0246
0.6708	0.1091	0.0699	0.0382	0.0098
0.7120	0.1063	0.0673	0.0300	0.0046
0.7797	0.0842	0.0634	0.0208	0.0027
0.8717	0.0948	0.0589	0.0133	0.0006
1.0303	0.1103	0.0528	0.0068	0.0000

$\log \tau_{\mathrm{Mje}}=a_{0}+a_{1} \log \lambda ; \lambda$ in $\mu \mathrm{m}$ $a_{0} \leq-1.269 \quad a_{1}=-0.654$
$\tau_{\text {Ray }}=\frac{29123.7\left(n^{2}-1\right)^{2}}{\lambda^{4}}$
$n=6432.8+\frac{2949810}{146-\lambda^{2}}+\frac{25540}{41-\lambda^{4}}$
λ in micrometers
$\tau_{0 z, \lambda}=\operatorname{NOZ}^{*}{ }_{\alpha}$
NOZ $=$ columnar ozone
$=\frac{\tau_{0 Z 10 \cdot 012 \mu \mathrm{~m}}}{\alpha_{0 \cdot 012} \mu \mathrm{~m}}=213.2 \mathrm{matm}-\mathrm{cm}$
a * spectral absorption coefficient

Table 2. Spectral components for $T M$ midband wavelengths.

WAV ($\mu \mathrm{m})$	$\tau_{\text {ext }}$	$\tau_{\text {Mie }}$	$\tau_{\text {Ray }}$	$\tau_{0 z}$	$E_{0}\left(\mathrm{~mW} / \mathrm{cm}^{2}\right)$
0.486	0.2339	0.0864	0.1421	0.0055	175.955
0.571	0.1745	0.0777	0.0735	0.0232	180.580
0.661	0.1226	0.0706	0.0406	0.0114	153.916
0.838	0.0773	0.0605	0.0156	0.0013	104.708

data at $0.872 \mu m$ for this date, however, is unreliable, due to the temperature problem mentioned above. With the given constraints, the slope was found to be $a_{1}=-0.654$, thus $v=2.65$, and $a_{0}=-1.269$. With the se constants the TMie, tRay, and coz components can be computed for any wavelength. Figure $1 b$ shows how each of the se components contributes to the total optical depth. Table 2 gives the respective components for the IM midband wavelengths. These data will be used as input to the radiative transfer code. To be complete, a component of rheO should be included for band 4. The contribution due to water vapor has not as yet been assessed. Also reported is the exo-atmospheric solar irradiance, as determined from interpolating the data of Necker and Labs (1981). The midband wavelengths of the $T M$ sensor was computed by Palmer (1984) using the moments method and the premfight filter transmittance data.

Panel Calibration

The Herman radiative transfer code requires that the absolute reflectance of the gypsum sands be known. We have instead chosen to use the reflectance factor $R\left(\theta_{2} / 0^{\circ}\right)$. (A discussion of reflectance nomenclature and definitions is given in Appendix A.) Here θ_{2} is the angle incident upon the gyspum, and 0° is the reflected angle, equal to the Thematic Mapper nadir-look angle. By using this quantity, the amount of light reflected in the direction of the $T M$ is accurately characterized. A full BRDF characterization would be prefered. The gain in accuracy is not warranted, however, as the BRDF data would be difficult and time consuming to obtain.

In the field the reflectance factor is measured with one of two Barnes radiometers. As these are uncalibrated they must be used in
conjunction with a rfference panel. The reflectance factor of the sands is determined via the relationship

$$
\begin{equation*}
R_{\text {sand }}=\frac{V_{\text {sand }}{ }^{*} R_{\text {ref }}}{V_{\text {ref }}} \tag{1}
\end{equation*}
$$

Here $V_{\text {sand }}$ and $V_{\text {ref }}$ are the output voltages of the Barnes when looking over the sands and reference panel, respectively. These voltages are proportional to the radiance scattered upward and within the instrument's 15° field of view (FOV). Rref is the reflectance factor of the panel, as determined in the laboratory. On July 8 th one of the radiometers was assigned the Halon panel; the other radiometer was assigned the BaSO_{4} panel. While looking at the sands, each Barnes was periodically swung over the reference panel and voltage readings were recorded. Upon our return Che Nianzeng calibrated both panels.

The calibration of the panels was conducted at the Optical Sciences Center, in a manner illustrated in Figure 2. A tungsten lamp was put at the focal point of an off-axis parabolic mirror. The emerging planar wavefront thereafter illuminated the reference panel at a known angle. The radiance reflected in a direction normal to the surface was then measured using a radiometer built by Che. Thereafter the reference panel was removed, and a primary standard surface put in its place. Tbis primary standard was a Halon panel which had been calibrated by NBS on February 8, 1984. (They determined the reflectance factor $\mathrm{R}_{\mathrm{NBS}}\left(45 \% / 0^{\circ}\right)$ for this surface.)

In the first phase of the field panel calibration, the reflectance factor $\operatorname{Rr}_{\mathrm{re}} \mathrm{f}\left(45^{\circ} / 0^{\circ}\right)$ was determined. This was computed from the following

Figure 2. Laboratory ser-up for the calibration of field reflectance
panels.

Figure 3. Schematic of Chuck Site test area.

Table 3. Laboratory calibration of BaSO , panel.

THE REFLECTANCE FACTOR OF BaSO 4 PANEL NO. 5

Iradiance Angle (deg.)	$430-470 \mathrm{~nm}$	$530-570 \mathrm{~mm}$	$630-670 \mathrm{~nm}$	$830-870 \mathrm{~nm}$
10	1.0420	1.0355	1.0205	0.9858
15	1.0196	1.0138	0.9990	0.9651
20	1.0011	0.9945	0.9807	0.9479
25	0.9836	0.9779	0.9642	0.9331
30	0.9668	0.9610	0.9479	0.9185
35	0.9499	0.9449	0.9327	0.9045
40	0.9326	0.9279	0.9169	0.8905
45	0.9155	0.9119	0.9007	0.8773
50	0.8971	0.8937	0.6851	0.8627
55	0.8783	0.8765	0.8676	0.8474
60	0.8597	0.8582	0.8498	0.8326
65	0.8380	0.8390	0.8310	0.8157
70	0.8157	0.8174	0.8127	0.7986
75	0.7926	0.7929	0.7892	0.7789

Data: July 12,1984
Sample: BaSO_{4} Panel No. 5
Reference: Halon calibrated at (45/0) geometry by NBS (Feb.

$$
8,1984)
$$

Location: Infra. Lab.,OSC
Viewing Zenith Angle: 0 deg.
Irradiance Angle: 10-75 deg.

Irradiance Angle (deg)

10
15
20
25
30
35
40
45
50
55
60
65
70

75

430-470 min
530-570תm
630-670ת
$830-870 \mathrm{~nm}$

0.9965	1.0007
0.9892	0.9949
0.9829	0.9872
0.9741	0.9794
0.9648	0.9702
0.9556	0.9597
0.9442	0.9489
0.9319	0.9368
0.9166	0.9210
0.8991	0.9042
0.8784	0.8832
0.8539	0.8608
0.8221	0.8297
0.7805	0.7872

1. 0020
1.0042
0.9951
0.9973
0.9888
0.9901
0.9804
0.98 .16
0.9716
0.9728
0.9618
0.9636
0.9499
0.9515
0.9377
0.9391
0.9231
0.9253
0.9061
0.9073
0.8860
0.8877
0.8633
0.3638
0.8323
0.8 .343
0.7805
0.7872
0.7919
0.7944

Data: July 12,1984
Sample: Halon panel (Ray's).
Reference: Halor calibrated at (45/0) geometry by NBS (Feb.8, 1984)

Location: Infra. Lab.,OSC
Viewing Zenith Angle: 0 deg.
Irfadiance angle: 10-75 deg.

$$
\begin{equation*}
\operatorname{Rref}\left(45^{\circ} / 0^{\circ}\right)=\frac{V_{\text {ref }}\left(450 / 0^{\circ}\right) * \operatorname{R}_{\mathrm{NBS}}\left(45^{\circ} / 0^{\circ}\right)}{V_{\mathrm{NBS}}\left(45^{\circ} / 0^{\circ}\right)} \tag{2}
\end{equation*}
$$

Next, the desired reflectance factor was computed from

$$
\begin{equation*}
\operatorname{Rref}_{\mathrm{re}}\left(\theta / 0^{0}\right)=\frac{V_{r e f}\left(\theta / 0^{\circ}\right) * \cos 45^{\circ} * \operatorname{Refef}\left(45^{\circ} / 0^{\circ}\right)}{V_{r e f}\left(45^{\circ} / 0^{\circ}\right) * \cos \theta} \tag{3}
\end{equation*}
$$

The above steps were repeated for four spectral bandpass filters, each 40 nm wide. The measurement uncertainty was estimated to be less then 1%. A small error in the reflectance factor was also fntroduced due to the nonmunformaty of the panels. In the field the radiance reflected from the panels was averaged over a larger area. This was dus to the $15^{\circ} \mathrm{FOV}$, as compared to the $1^{\circ} \mathrm{FOV}$ of the laboratory radiometer. The results of the panel calibration are shown in Table 3 for the BaSO_{4} panel, and in Table 4 for Ray Jackson's Halon panel.

Reflectance Data
Both the Barnes data and the panel calibration data were used to determine the reflectance factors of each of the test sites at White Sands. It is noted that the field measurements were taken at several times throughout the morning. Those data taken closest to the time of the Landsat overpass, 11:07:40 MDT, were used in the radiance computations.

Several interpolations had to be made on the laboratory calibration data. The solar zenith angles were first computed for those times at which a field measurement of the sands was taken. The panel reflectance factors of Tables 3 and 4 were next interpolated to find the corresponding reflectance factors at these angles, for the four spectral filters available on Che's radiometer. These wavelengths differ from
those of the Barnes, therefore one more interpolation was necessary. The intermedfate compitations were used to compute the reflectances for the eight Barnes' wavelengths. (The Barnes' wavelengths correspond to those of the IM , for bands 1-4.)

The reflectanse factors of the gypsum are determined from the above computed panel reflectances via Equation (1) above, A summary of this data reduction is given in Table 5 . Only the data in channels $1-4$ are used here. Reflectance factors are given for pixels 1-16. A schematic of the site, which identifies these pixels is shown in Figure 3.

Radiative Transfer Computations

The mean reflectance values, given in the bold type of Table 5, were used as input to the radiative transfer code. Also input were the atmospheric components listed in Table 2. The usual model assumptions were made for the aerosols. The maximum, minimum, and incremental radial sizes were $5.02,0.02$, and $0.04 \mu \mathrm{~m}$, respectively. A refractive index of 1.54-0.01i was assumed. The code was zun for both a solar zenith angle of 25° and 35°. The output, given in Table 6, is normalized for an exoatmospheric solar irradiance of 1 . After interpolating the data for a solar angle of 29.22° (that corresponding to the time of the overpass) the output is multiplied by the appropiate irradiance value. These final values are given in Table 7. They are the radiances that were incident on the TM sensor, for the morning of July 8 .

Summary
He cause of instrumentation problems and difficulties in accurately mapping ground reflectance due to the helicopter photography not being

Table 5. Absolute Reflectance of White Sands test sites.

\qquad

Table 5. Continued
Oning
OR POE:
South Site

ABSOLUTE REFLECTANCE

TIME $\mathrm{CH}(3)$. . . $\mathrm{CH}(7)$

Halon							
$10: 58$.965	.968	.970	.971	.973	.974	.980
$11: 09$.969	.973	.974	.975	.977	.978	.983
1ST SCAN (PIXELS 1-16)							
$10: 59$.489	.551	.599	.642	.625	.500	.233
$10: 59$.494	.557	.601	.638	.618	.497	.241
$11: 00$.491	.548	.590	.627	.604	.481	.229
$11: 00$.468	.529	.573	.612	.591	.468	.229
$11: 01$.487	.546	.588	.626	.600	.480	.246
$11: 01$.493	.550	.592	.632	.606	.482	.228
$11: 02$.509	.572	.615	.653	.630	.508	.251
$11: 02$.514	.576	.618	.658	.628	.500	.231
$11: 03$.486	.546	.590	.629	.614	.491	.236
$11: 04$.503	.567	.611	.650	.634	.519	.256
$11: 04$.516	.578	.622	.660	.637	.512	.243
$11: 05$.498	.559	.603	.641	.621	.500	.241
$11: 05$.510	.572	.616	.654	.624	.492	.228
$11: 06$.510	.569	.610	.647	.616	.489	.230
$11: 06$.506	.567	.610	.650	.632	.514	.250
$11: 07$.503	.561	.603	.643	.622	.500	.250
MEAN	.499	.559	.603	.641	.619	.496	.239
SDEV	.013	.014	.013	.013	.013	.014	.010

Halon

$11: 16$.972	.975	.976	.977	.980	.980	.986
$11: 27$.976	.979	.980	$.98 i$.984	.984	.989

2ND SCAN (PIXELS 1-16)

$11: 16$.492	.552	.594	.634	.619	.499	.247
11.17	.495	.561	.607	.646	.625	.500	.240
11.17	.494	.557	.601	.638	.616	.488	.236
11.18	.493	.555	.601	.640	.621	.494	.239
11.18	.499	.558	.600	.638	.612	.487	.248
11.19	.512	.573	.618	.659	.633	.503	.235
$11: 19$.508	.571	.614	.653	.629	.502	.238
$11: 20$.520	.582	.626	.666	.638	.503	.234
$11: 21$.501	.563	.610	.651	.633	.505	.242
11.21	.521	.587	.633	.673	.654	.527	.250
11.22	.519	.582	.626	.665	.643	.513	.239
11.22	.518	.579	.623	.662	.642	.517	.249
11.23	.520	.584	.630	.670	.639	.500	.229
$11: 24$.513	.573	.618	.659	.633	.502	.244
$11: 24$.507	.573	.618	.658	.640	.520	.254
$11: 25$.514	.574	.616	.655	.630	.501	.250
MEAN	.508	.570	.615	.654	.632	.504	.242
SDEV	.011	.011	.012	.012	.011	.011	.007

Table 5. Continued

Road Site
TIME $\mathrm{CH}(1) \cdot \mathrm{CH}(7) \mathrm{COLUTE}$ REFLECTANCE

BASO4							
$10: 27$.940	.935	.924	.900	.846	.828	.711
$10: 32$.943	.939	.927	.903	.849	.831	.711

1ST DARK AREA

10.28	.445	.495	.529	.553	.540	.472	.235
10.28	.459	.508	.541	.562	.543	.473	.228
10.28	.463	.513	.544	.565	.543	.470	.223
10.29	.458	.509	.544	.564	.543	.470	.224
10.29	.473	.525	.559	.581	.558	.481	.226
MEAN	.459	.510	.543	.565	.545	.473	.227
SDEV	.010	.011	.011	.010	.007	.005	.005

1 ST LIGHT AREA

$10: 29$.516	.580	.623	.656	.607	.480	.178
10.30	.501	.560	.600	.632	.585	.463	.169
10.30	.504	.564	.602	.635	.589	.469	.174
MEAN	.507	.568	.608	.641	.594	.471	.174
SDEV	.008	.010	.013	.013	.012	.009	.004

BASO4

$10: 37$.947	.942	.930	.906	.851	.832	.712
$10: 40$.949	.944	.932	.908	.852	.834	.712

2ND DARK AREA

$10: 37$.447	.495	.527	.549	.534	.467	.233
$10: 38$.455	.505	.538	.559	.543	.473	.233
10.38	.457	.506	.538	.560	.541	.469	.224
$10: 38$.457	.507	.540	.562	.541	.467	.224
$10: 38$.476	.525	.558	.579	.556	.476	.223
MEAN	.458	.508	.540	.562	.543	.470	.227
SDEV	.011	.011	.011	.011	.008	.004	.005

2ND LIGHT AREA

$10: 39$.516	.578	.618	.651	.604	.477	.177
$10: 39$.505	.566	.605	.638	.590	.463	.167
$10: 40$.504	.561	.597	.628	.583	.464	.172
MEAN	.509	.568	.607	.639	.592	.468	.172
SDEV	.007	.009	.011	.011	.010	.008	.005
BASO4							
$11: 38$.989	.983	.969	.942	.879	.859	.722
$11: 42$.991	.986	.972	.945	.881	.860	.723

Road Site, Continued

3RD DARK AREA							
$11: 39$.478	.534	.568	.589	.569	.495	.245
$11: 39$.479	.534	.569	.591	.567	.488	.233
$11: 40$.487	.543	.577	.598	.573	.493	.236
$11: 40$.485	.542	.577	.598	.571	.490	.233
$11: 40$.499	.554	.587	.608	.580	.495	.232
MEAN	.486	.541	.576	.597	.572	.492	.236
SDEV	.008	.008	.008	.008	.005	.003	.005
3RD LIGHT AREA							
11.41	.540	.608	.651	.682	.629	.498	.189
11.41	.530	.597	.639	.669	.614	.481	.176
11.42	.530	.598	.639	.667	.613	.485	.181
MEAN	.533	.601	.643	.673	.619	.488	.182
SDEV	.006	.006	.007	.008	.009	.009	.006

Ghe
OF FORA Munanto

Table 6. Herman Code Output

WAV	TMie	$\tau_{\text {Ray }}$	102	${ }^{2}$		$E_{\text {dir }}$	$E_{\text {dif }}$	Lpath	L_{t}
0.486	0.0864	0.1421	0.0055	25	0.507	0.7001	0.1519	0.0246	0.1334
					0.499		0.1504	0.0244	0.1313
0.486	0.0864	0.1421	0.0055	35	0.507	0.6156	0.1417	0.0223	0.1190
					0.499		0.1404	0.0222	0.1172
0.571	0.0777	0.0735	0.0232	25	0.576	0.7477	0.1113	0.0134	0.1457
					0.559		0.1088	0.0133	0.1413
0.571	0.0777	0.0735	0.0232	35	0.576	0.6621	0.1028	0.0121	0.1299
					0.559		0.1006	0.0120	0.1260
0.661	0.0706	0.0406	0.0114	25	0.619	0.7916	0.9078	0.0080	0.1618
					0.603		0.8880	0.0079	0.1574
0.661	0.0706	0.0406	0.0114	35	0.619	0.7053	0.8337	0.0072	0.1447
					0.603		0.8160	C. 0071	0.1407
0.838	0.0605	0.0156	0.0013	25	0.651	0.8321	0.6780	0.0033	0.1759
					0.641		0.6683	0.0032	0.1730
0.838	0.0605	0.0156	0.0013	35	0.651	0.7453	0.6182	0.0030	0.1578
					0.64 .1		0.6095	0.0029	0.1552

where
Edir The downward direct solar irradiance at the ground, $\cos \theta_{z}$ * $\exp \left(-\tau_{e x t} \sec \theta_{z}\right)$.

Edif The downward diffuse solar irradiance at the ground.
Lpath The upward path radjance at the $T M, L_{T}\left(E_{d i r}+E_{d i f}\right)$ * $\exp \left(-\tau_{\text {ext }} \sec 5^{\circ}\right) \rho / \pi$

Lt The total radiance at the $T M$ at a 5° nadir angle.
Note all irradiance and radiance values are normalized for an exoatmospheric solar irradjance of 1.

Table 7. Computed radiance at Landsat sensors.
$\mathrm{L}\left(\mathrm{mW} / \mathrm{cm}^{2} \mathrm{sr} \mu \mathrm{m}\right)$

Band	North Site	South Site
1.	23.18	22.82
2	25.13	24.37
3	23.82	23.17
4	17.64	17.35

vertical, the results of the July 8,1984 measurement will have high uncertainties associated with them. However, the measurement attempt was wortbwhile because of the experience gained in instrument operation and measurement.

There are still a few remaining computations to be made with the July $8^{\text {th }}$ data. Only a few discrete points of data were taken at the pixel centers of the two test sites. We are currently exploring the usage of the aerial photography (the slide imagery which has been scanned) to better characterize the reflectance of the area. The radiosonde and humidity data will also be looked at. Once the optical depth component th20 can be determined, the Herman code will be rerun to account for atmospheric water vapoir in band 4. The diffuse to direct data will be compared with the Herman code output. Finally, it remains to inspect the Landsat imagery, identify our test site, and compute incident radiance, as determined from the pre-flight data. A comparison can then be made of our in-flight calibration, to that made based upon pre-flight data and the internal calibrator data. The calibrations of bands 5 and 7 will not be investigated for this date. No atmospheric data are available at the se wavelengths and the optical depth components cannot be computed. The Castle spectropolarimeters will be equipped with a filter set which will allow us, in the future, to do calibrations in the short wave infrared.

References

1. Necke1, H. and D. Labs. "Improved data of solar spectral irradiance from 0.33 to $1.25 \mu \mathrm{~m} "$. Solar Physics, Vol. 74, p. 231, 1981.
2. Palmer, James M. "Effective bandwidths for Landsat-4 and Landsat-4' multispectral scanner and thematic mapper subsystems". IEEE trans, Geoscience and Remote Sensing, Vol. GE-22, p.336-338, 1984.

APPENDIX A

Reflectance

The nomenclature, measuring geometry, and techniques assocjated with determining the reflectance of a given surface are quite varied. With this in mind, the technical basis of our measurements at White Sands is presented bere. We are interested in the directional properties, as well as the magnitude, of the reflectance at the field site, for this reason we determine the reflectance factor. Reflectance factor and other quantities are defined below. A spectral dependance is assumed for each quantity. All of our reflectance measurements are made with finite spectral bandwidths. These are, in general, the 40 nm bandwidths of a laboratory radiometer, or those bandwidths associated with the Thematic Mapper and the Barnes modular multiband radiometer.

Definitions and Nomenclature
Reflectance Factor, $K\left(\theta, \phi ; \theta^{\prime}, \phi^{\prime}\right)$ (unitless). Ratio of the flux reflected by a sample surface to that which would be reflected into the same beam geometry by a lossless, lambertian surface which is identically irradiated. Thus,

$$
\begin{equation*}
R\left(\theta, \phi ; \theta^{\prime}, \phi^{\prime}\right)=\frac{\int_{\text {IFOV }} L_{t}\left(\theta^{\prime}, \phi^{\prime}\right) \cos \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}}{\int_{I F O V} L_{p}\left(\theta^{\prime}, \phi^{\prime}\right) \cos \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}} \tag{1}
\end{equation*}
$$

is the reflectance factor measured with a detector having a given
instantaneous field of view (IFOV). L_{t} is the radiance reflected off the sample target, and L_{p} is the radiance reflected off a perfect (lossless), diffuse surface, The incident beam originates from (θ, ϕ), and the reflected beam is viewed in the direction ($\theta^{\prime}, \phi^{\prime}$).

Reflectance ρ (unftless). Ratio of the reflected flux to the incident flux. When referring to this parameter one needs to specify if the flux is integrated over the reflecting hemisphere, or if the reflected flux is measured within a given cone angle. The hemispherical reflectance can be related to the reflectance factor by

$$
\begin{align*}
\rho & =\int_{2 \pi} \int_{\pi / 2} L_{t}\left(\theta^{\prime}, \phi^{\prime}\right) \cos \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime} / E \tag{2}\\
& =R(\theta, \phi ; 2 \pi)
\end{align*}
$$

where E is the incident irradiance, generally from a well collimated beam. It is computed from

$$
\begin{equation*}
E=\iint_{\omega} L_{t}(\theta, \phi) \cos \theta \sin \theta d \theta d \phi \tag{3}
\end{equation*}
$$

Note the integration is over the solid angle $d \omega=\sin \theta d \theta d \phi$.
Bidirectional Reflectance Distribution Function (BRDF), f(sr-l). The ratiu of the radiance reflected in the direction ($\theta^{\prime}, \phi^{\prime}$) to the total irradiance on the surface from the direction (θ, ϕ).

$$
\begin{equation*}
f\left(\theta, \phi ; \theta^{\prime}, \phi^{\prime}\right)=L_{t}\left(\theta^{\prime}, \phi^{\prime}\right) / E \tag{4}
\end{equation*}
$$

The quantity $R(\theta, \phi ; 2 \pi)$ is equivalent to ρ. The 2π denotes that the reflectance factor has been integrated over a hemisphere. $R(\theta ; d)$, or $R(\theta / d)$, is an equivalent description, the " d " denoting that diffuse reflectance has been accounted for. Even when an integration is not
implied, the symbols ϕ and ϕ^{\prime} are often dropped for simplicity (as is true for any of the above parameters).

Choice of the Reflectance Factor
In calibrating the $T M$ we are interested in knowing the radiance reflected from the gypsum sands into a number of discrete angles. This allows both the directly and diffusely reflected solar radiation to be accurately characterized. Such a complete BRDF measurement is, however, both time consuming and difficult to measure. The equipment required is relatively complex, and there are difficulties associated with measuring the incident irradiance. Instead we have chosen to characterize the g.ypsum by the reflectance factor $\mathbb{R}\left(\theta_{z} ; 0^{\circ}\right)$. This accurately describes the flux that is directiy reflected towards the Landsat sensors. As the gypsum sands are not truely lambertian, some error is incured in not computing the full BRDF. Without the BRDF data, a lambertian surface is assumed. Thus an overestimate is made in the radiance not directiy reflected towards the $T M$. Due to atmospheric multiple scattering in the atmosphere, some of this flux edventually reaches the sensors. This is the diffuse component of the radiance. The error made in predicting this term increases with increased multiple scattering, and with departure from a lambertian behavior. Even so, the usage of the reflectance factor is justified. This is because the radiance recejved at the $T M$ is dominated by the direct component, and multiple scattering is minimal for clear atmospheric conditions.

Calibrating the Field Reference
The reflectancu factor is measured with respect to a reference panel which is calibrated in the laboratory to account for its non-ideal characteristics. The calibration procedure was, briefly described in the body of the report. Here a development of the equations used in the two step calibration procedure is given.

To begin with, it is assumed that a laboratory standard is available. In our case a 50 mm diameter Halon disc was used which had been calibrated by NBS to determine $\mathrm{R}_{\mathrm{NBS}}\left(4^{\circ} ; 0^{\circ}\right)$. The fictional parameter $V_{p}\left(45^{\circ} ; 0^{\circ}\right)$ is thereby computed:

$$
\begin{equation*}
V_{p}\left(45^{\circ} ; 0^{\circ}\right)=\frac{V_{\mathrm{NBS}}\left(45^{\circ} ; 0^{\circ}\right)}{R_{\mathrm{NBS}}\left(45^{\circ} ; 0^{\circ}\right)} \tag{5}
\end{equation*}
$$

This is the voltage that would bave been measured had a perfect (lossless) lambertian surface been present.

Using the above, the reflectance factor of the refence panel is found for the same geometry:

$$
\begin{align*}
\operatorname{Rrff}\left(45^{0} ; 0^{0}\right) & =\frac{V_{r e f}\left(45^{0} ; 0^{0}\right)}{V_{p}\left(45^{0} ; 0^{0}\right)} \tag{6}\\
& =\frac{V_{r e f}\left(45^{\circ} ; 0^{0}\right) * R_{\mathrm{NBS}}\left(45^{\circ} ; 0^{\circ}\right)}{V_{\mathrm{NBS}}\left(45^{0} ; 0^{\circ}\right)}
\end{align*}
$$

In the next phase of calibration, the reflectance factor measurements are made at the angle of interest, θ. For the ideal lambertian surface the detector response at angle θ is easily predicted from the response at 45°. Such a surface reflects radiance uniformly into the upper bemisphere, thereby reflecting a factor of $1 / \pi$ of the incident irradiance. Thus, for this perfect ($p=1$) lambertian surface, illuminated with a beam of irradiance $E(\theta)$, the following relationships
hold:

$$
\begin{align*}
V_{p}\left(45^{\circ} ; 0^{\circ}\right) & =R * E\left(45^{\circ}\right) \rho / \pi=R * E_{0} \cos 45^{\circ} / \pi \tag{7}\\
V_{p}\left(\theta ; 0^{\circ}\right) & =R * E(\theta) \rho / \pi=R * E_{0} \cos \theta / \pi \tag{8}\\
& =\frac{V_{p}\left(45^{\circ} ; 0^{\circ}\right) * \cos \theta}{\cos 45^{\circ}}
\end{align*}
$$

The detector is assumed to bave a given cesponse, R, to the incoming radiance. This latter result is now substituted into the equation for Rref($\theta ; 0^{\circ}$), to yield the final, desired result:

$$
\begin{align*}
R_{r e f}\left(\theta ; 0^{\circ}\right) & =\frac{V_{r e f}\left(\theta ; 0^{\circ}\right)}{V_{p}\left(\theta ; 0^{\circ}\right)} \tag{9}\\
& =\frac{V_{r e f}\left(\theta ; 0^{\circ}\right) * \cos 45^{\circ}}{V_{p}\left(45^{\circ} ; 0^{\circ}\right) * \cos \theta} \\
& =\frac{V_{r e f}\left(\theta ; 0^{\circ}\right) * \cos 45^{\circ} * R_{r e f}\left(45^{\circ} ; 0^{\circ}\right)}{V_{r e f}\left(45^{\circ} ; 0^{\circ}\right) * \cos \theta}
\end{align*}
$$

APPENDIX B
Radiosonde and atmospheric data for July $8^{\text {th }}$, as provided by the Atmospheric Sciences Laboratory, White Sands Missle Range.
PPOUSECT SURFACE ORSEPVATION

OBS TRUCTIONS TO VISIBILITY	Clauns									RE:IARKS
	1st LAYER			2nd LAYER			3 Cd LAYEP			
	AMT	TYPE	IIGT	AMT	TYPE	IIGT	A 171	TTYPE	HG7	
							1	Ci	25000	
							2	Ci	25000	
							2	Ci	25000	

ORIGNAD
OF POOR Oumbity

TIME:	0730	0930	0345
DRY BULE TEIP.	20.2	27.2	28.5
HET BULB TEAP.	15.2	18.0	18.1
HET BULB DEPR.	5.0	9.2	10.4
DEN POINT	12.4	13.4	12.9
RELATIVE HUMID.	61	12	38

Supersedes A?SEL-EL-ITT-HS Fonn 12, ZB Aug 72 and all project surface observation
PROJECT SURFACE OBSERYATION

96
$8:$
$8:$

PSYSURYMETRIC COAPUTATION			
TIPE:	1000	1015	1030
DPY GIJB TEIY.	29.1	30.0	30.2
WET BUIB TEIH.	18.3	19.7	19.8
WET BIJB IKPR.	10.8	10.3	10.4
DEN POINT	12.9	15.0	15.1
PELATIVE IUMID.	37	10	40

Supersedes AitSEL-BL-IIT.iIS Form 12, 28 Aug 72 DELAS-MS-MT-WS TORN 12 01 IOV 1980
project surgace observation

OBSTRUCTIOASTO VISIBILITY	clalins									RE:TAPKS
	1st LAYER			2nd LAYER			3rd LAYER			
	AMT	TYPE	IIGT	AMT	TVPE	IIGT	AMT	TYPE	HGT	
	2	Cl	6000	0	AC	12000	2	Ci	25000	
	2	Cl	6000	0	AC	12000	2	Ci	25000	
	2	Cu	6000	0	AC	12000	2	Ci	25000	

?
OF PGun

and all project surface observation forms, except DIVAD Surface Observation for.
PROJECT SURFACE OBSERVATION

PSYCIIPOIETRIC COAPUTATION

MILEISMA

OROTMM

 6
6
-2
-2

$?$
-
-2
-2

\vdots
\vdots

\vdots | $? 0$ |
| :--- |
| $\therefore=$ |
| $=$ |
| $=$ | 0

\therefore
$=$
$=1$
 $0 ?$
6
5
5
-3
 $\begin{array}{r}\because 63 \\ \therefore 8 \\ \hdashline-3 \\ \hdashline-3\end{array}$ E
E
E
 0
c
0
0
$7 ?$
$\therefore: \because$
$=\pi$

$=-$ | c |
| :--- |
| c |
| |
| | | $?$ |
| :--- |
| \vdots |
| \vdots | ? $\because \square$

$=6$
\because
\because

］f 1 YYO，ATE
 m

7IL．HUY．NLOSIIY STEEO
P：RCEVT FMICUJIC SOUND

	1

dINR OATA
 dCGREE

$\stackrel{\sim}{6}$
GA／CIIIC SOINO
HFIFG KNJIS

$4: 502 . j$
4
4
4 10.0
$445 \cdot 9$
4531.9
51.9 .9
$\pm 50.3 .0$
0.0 .9

 $\mu \leq 1.5 .3$
ruc！． $? \begin{gathered}? \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\end{gathered}$
 $\stackrel{?}{\square}$ $?$
$?$
\vdots
$i r$
$i n$ $\because 01.0 .9$ 0
0
0
0
0
0
0
0
 9
\vdots
\vdots
3
3

 \begin{tabular}{l}
$?$

\multirow{2}{n}{}

n

a

\vdots

\ddot{y}

\hdashline
\end{tabular}

0
\vdots
\vdots
\vdots
3

\therefore
3
3
3 9
\vdots
\vdots
\vdots

\vdots | 36 |
| :--- |
| \vdots |
| -7 |
| -2 | ： | - |
| :--- |
| \vdots |
| \vdots |

	± 6
	－
	\cdots

こ

9
$\stackrel{9}{*}$

$\stackrel{y}{*}$ | 76 |
| :--- |
| 3 |
| |
| |
| 4 | $: ?$

\therefore
5
\vdots
i

6
:---
$=2$

0
0
0
0

0 | $?$ |
| :--- |
| $\therefore ?$ |
| $\therefore=$ |

Er
\vdots
\vdots
r

0
\vdots

\vdots
\vdots
\vdots

 $?$
\div
\vdots
\vdots

 of POOR gumbity

第放

\qquad
；$\stackrel{a}{3}$
n＝nreungaunnanonocoznnonanetoringo

咅き

$$
\begin{aligned}
& \text { * HIVD DAIA NOI CUMPUISD DUL ID MISJINS RA甘 AZIMIIII Fid ELEVATIJY AVGLES. }
\end{aligned}
$$

OF POOR QUALITY

On Puon gumen

自

 t Juiry 84

GEPDOIEVTIAL

