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ABSTRACT

This report is an overview of the complete electronics

package which controls the Mars roving vehicle. It is meant to

provide a broad overview of the systems which are part of that

package and discusses some scftware debugging tools. The specific

functions of the different electronic subsystems are described,

with the microprocessor—based systems discussed more fully because

they are not discussed in other reports in their present farm.

ix

I



a
l

l

I

pAPT I

INTRODUCTION

The Mars rover was developed at Rensselaer for the purpose

of investigating the problems associated with an autonomous roving

vehicle. If it were necessary to man.,, illy control a rover on Mars

from Earth, the radio transmission time between the two planets would

significantly limit its performance. Therefore it is essential that

whatever control systems and computer programs used as a n►eans of

controlling the vehicle have the capability of operating without human

intervention for extended periods of time. To this end, our rover has

incorporated co %t,, ro ll elements through the use of a computer which is

at a fixed location as well as electronic systems on the vehicle it-

self with the intent that on a real Mars exploration mission the fixed

computer would either be on the Martian surface or else orbiting the

planet so that transmission time could be neglected.

As of 1975, the fixed computer used was a Varian 6201 lo-

cated in the basement of the Sage Laboratory building. It was used to

run the control algorithms which analyzed data from the rover. On

board the 1975 rover was a predominantly analog control electronics

package which provided feedback control of the vehicle's wheel speeds

and formed the telemetry data stream sent to the fixed computer. Tris

system had some inherent problems, however. First, the wheels often

fought with each other when they were driving the vehicle since no

provision was made for detecting if one or more of them might actually

be dragging. Second, since the electronics was mostly analog cir-

1
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cuitry, the drift which occurred between calibrations was a problem,

as was the rather complex calibration procedure itself. Third, new

ideas concerning control systems couldn't be experimented with be-

cause the basic system was realized totally in hardware.

It was decided that the control system should be redesigned

in an attempt to alleviate these problems. The fixed computer which

is presently used is a Prime 750 located on the second floor of the

Jonsson Engineering Canter (JEC) in the Image Processing Laboratory

(IPL). The 750 was chosen for the new system because it has more

speed than the Variar aad the programs which run on it could be written

in Fortran whereas before they were written in Varian assembler

language. The use of Fortran has made it possible to develop a large

part of the software on the IBM 3033 and subsequently transfer it to

the Prime. Also, new software people joining the project are more

likely to understand Fortran than assembler, thus simplifying the task

of understanding the present Prime software.

The on-board control electronics package has been replaced

by a completely digital system which is controlled by a Motorola

X16800 :microprocessor. The micro has the capabilit y to mcnitor all

wheel speeds independently and correct for both speed and torque varia-

tions on them. The feedback control for this purpose is digital in

nature under the present system, so that once it has been calibrated,

it should aot be necessary to repeat the calibration procedures for

some time, possibly never. Changes in the methods emploved in the

digital control system can be made easily due to the fact that such

CIt
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changes would most probably be made in the vropc.m running in the

microprocessor.

The laser hazard detection system installed on the 1975

rover was a single-lacer/single detector system which had the problem

of missing a significant number of the reflections from terrain in

front of the vehicle. The new laser system is a multi-laser/multi-

detector system which has the capability of firing up to 32 times the

number of laser shots per scan as the old system as well as having

better chances of receiving returns because of the fact that it has

20 d atectors instead of only one. as did the 1975 version.

This report deals with the present control systems used on

the rover as well as any related software tools and control programs

which are applicable in this regard.

I 



PART 2

SMPLIFIED OVERVIEW

A block diagram of the systems for controlling the rover

and gathering data from it is shown in Fig. 2.0.1. Key elements are

the laser mast, telemetry system, microprocessor, command link and

the Prime computer. The laser mast gathers ac:.a concerning objects

in front of the vehicle. This data is transmitted to the Prime by

the telemetry system along with vehicle data so that the programs

running on that machine can determine what course of action to take,

for example, stopping the vehicle if it encounters a ravine or other

hazardous terra{ .n feature. The microprocessor must interpret com-

manda sent from the Prime and also control the vehicle ' s wheel

speeds. It can also display data about the state of the vehicle on

a terminal attached to a port on the microprocessor itself. The pos-

sibIlity exists of sending commands to the laser mast from the Prime

by having the microprocessor relay those commands, for example,

it is possible to select the scan patterns used by the mast by send-

ii.g the appropriate mast command. Should manual control of the

vehi cle be desired, a portable command box can replace the Prime

computer as the source of commands. The General Purpose Interface

Board (GPIB) is installed in the mainframe of the Prime computer and

provides the circuitry for getting data into the Prime ' s memory where

programs can use it as well as for sending commands to the vehicle.

Through the use of radio frequency (RF) links, it is possible for the

vehicle to operate approximately ^i, mile from the fixed computer in

4
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the Engineering Center.

Because of the face that operation of the control system

as a whole relies upon complex software and hardware interactions,

testing the system provides numerous opportunities for exercising

the GPIB. To that end, it has proven useful to have several programs

which do nothing more than display data which the telemetry system is

transmitting, even though this data is presented in its raw form.

Still others exist which simulate commands which the path selection

and navigation routines might send to the vehicle in an attempt to

make sure that each command given to the microprocessor has the de-

sired effect.

I



PART 3

MICROPROCESSOR CONTROL OF THE ROVER

The microprocessor on board the rover is housed in a card

cage mounted in the rear of the vehicle's payload section. Its lo-

cation is shown in Fig. 3.f.1. This card cage contains all of the

electronics with which the iicf • .)processor interfaces except the

laser mast electronics, which are container? in a separate card cage

mounted on the mast itself. Multi-conductor ribbon cables connect

the microprocessor to these other ale,:tronic subsystems. Fig. 3.0.2

shows the card cage ribbon cable assembly.

The microprocessor functions to interpret commands from the

Prime computer or the portable command box, maintain proper wheel

speeds to result in a given vehicle speed and steering angle, display

vehicle data on a terminal attached to one of its serial ports, for-

mat telemetry data for its own use, and interpret information con-

cerning the torque on each wheel. Details of the microprocessor hard-

ware and software are given in References 1 and 8.

When all of the circuit boards are installed in the rear

vehicle card cage, the microprocessor is configured as shown in

Table 3.0.1. Note that the locations frog± $D400 through $DFFF can be

selected as corresponding to either Erasable Programmable Read-Only

Memory (EPROM) or Random Access Memory (RAM). The dollar sign in

this instance is used to indicate a hexadecimal address within the

microprocessor system. All EPROM sockets are located on the micro-

processor board except those for the A30 and A31 EPROMs, which are

T
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Table 3.0.1 Configuration of the Microprocessor System.

A. Input/Output Ports

2 Peripheral Interface Adapters (PIAs)

PIA 01 (loc. $8004) - interfaces to F.PROM programmer and tele-
metry system.

PIA #2 (loc. $8020) - interfaces to EPROM programmer, laser mast
and telemetry system.

2 Asyncronous Communications Interface Adapters (ACIAs)

ACIA #1 (loc. $8008) - interfaces to terminal attached to the
microprocessor.

ACIA #2 (loc. $8010) - interfaces to the command link receiver.

B. Ram Space

Propulsion system scratchpad memory (loc. $00 - $FF)

MINIBUG* monitor scratchpad memory (loc. $AOOO - $A07F)

Additional RAM on RAM board (loc. $B000 - $BFFF)

(loc. $D000 - SDFFF)

Ram shared with the telemetry system (loc. $C400 - $C4FF)

C. EPROM Space

2 Free EPROM sockets	 (loc. $D400 - $D7FF)

(loc. $D800 - $DBFF)

Input/Output Software (IOS) EPROM
(supplied by Votorola with the micro)

(loc. $D000 - $DFFF)

MINIBUG EPROM
(supplied by Motorola with the micro)

(loc. $E000 - $E3FF)

"A30" monitor EPROM
(developed in the rover lab to burn EPROMs)

(loc. $9000 - $93FF)

A31" text EPROM
(contains the text for messages printed out by the A30 monitor)

(loc. $9400 - $ 97FF)

*The MINIBUG is a Motorola monitor program which starts running on
the microprocessor when it is powered up.
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located on the RAM board. Since the software for the propulsion

system requires approximately 3K bytes (3072 locations) of EPROM

space (three type 2708 EPROMs), the Input/Output Software (I0S)

EPROM should be removed and the sockets corresponding to the con-

tinuous memory locations from $D400 through $DFFF should be used

for the EPROMs containing that software. It should be noted that

the Peripheral Interface Adapters (PIAs) do not interface to more

than one device at a time, but may be connected to each of the de-

vices they interface with via ribbon cables.

3.1 Program Organization

The program which runs in the M6800 was written to a large

m4tent a year ago and is discussed at length in the report by

J. Turner (Reference 1). The current version of the software is

stored in the User File Directory (UFD) named <USERS3>MARS>GRAHXM>

WHEELS.GD on the IPL's Prime 750 and should be on the backup tape

which contains all the files used by the rover project. Also in-

cluded in that UFD is a copy of the Motorola assembler and the emu-

lator for the M6800 as well as the program *DNLOAD which allows users

to download programs from the Prime to the microprocessor. There are

also several command files which are useful for assembling and re-

constructing the file TAPE and LISTING. The former contains the

M6800 machine code and the latter contains the listing of all of the

subroutines which are part of the propulsion system software.

Another UFD named <USERS3>MARS>GRAHAM>SIM68 is used to

store the copies of the `16800 assembler and emulator created when they

k
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were being developed to run on the Prime instead of the IBM 3033.

The assembler was furnished by Prof. J. McDonald, while the emulator

has been modified from the standard Motorola version by including

the capability to insert breakpoints in programs being emulated.

There is also a copy of this modified emulator which ran on the IBM

3033. Note that SIM68 contains the source listing of the above

programs, except the assembler, as well as some of the compiled code.

The propulsion system software itself consists of several

subroutines which are stored in EPROMs and implement the functions

described in the introduction to this chapter. A control loop whose

function is to call the subroutines is cop ied from one of the

EPROMs to the system's RAM during system initialization. Since the

subroutine calls are in RAM, it is possible to bypass any of these

subroutines by using a terminal attached to the micro to replace that

subroutine call with "no operation" (NOP) instructions. After the

propulsion system software has initialized itself, then t yping any

characters on that terminal will return the user to the MINIBUG

monitor on the microprocessor, thus enabling him to change any memory

locations or load additional programs before executing that software

again. Only a single character must be typed to break the control loop.

3.2 Command_ Decoding

The list of valid commands which the microprocessor can in-

terpret is shown in Table 3.2.1. These are decoded in a subroutine

named DIDDEC, which has replaced Turner's NEI40ID subroutine. In this

new routine, it is possible to decode both single-byte eight-bit and

It



13

Table 3.2.1 Valid Commands  Decoded by the Microprocessor.

Command Name	 Command Code (Hex)

ONE WHEEL DRIVE	 Off Og
Left Rear OC
Right Rear OD
Left Front OE
Right Front OF

STEERING: (LEFT) -90.00 47
-67.50 46
-56.250 45
-45.00 44
-33.750 43
-22.50 42
-11.250 41

0.00 40
(RIGHT)	 0.00 48

11.250 49
22.50 4A
33.750 4B
45.00 4C
56.250 4D
67.50 4E
90.0 4F

MAIN DRIVE	 Forward Full 53
Forward Two-thirds 52
Forward One-third 51
Stop 50
Stop 54
Reverse One third 55
Reverse Two-thirds 56
Reverse Full 57

FRONT WHEEL DRIVE :Forward 7A
Stop 78
Reverse 7B

MISC. COMMANDS:	 Gyro Init 77
Vehicle Reset 7F
Display On 76
Display Off 74
Override Terrain Compensation 10
Restore Terrain Compensation 11-1?

TIA10-BYTE STEERING 8X nn
where nn is the twos-complement steering
angle in steering units (STU).

TWO-BYTE MAST COMMAND 9n nn
where nnn are bits sent to the laser mast.
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two-byte eight-bit commands ) whereas on the 1975 rover only seven-bit

single-byte commands could be decoded. One reason for changing to

eight-bit commands was that the mose significant bit (MSB) now indi-

cates whether the command is one or two bytes long. A zero in the

MB signifies a single-byte command, while a one in the MSB signifies

a two-byte command and the microprocessor interprets the next command

byte which it receives as the second half of that command. This for-

mat keeps the commands used with the 1975 rover compatible with those

used with the 1980 vehicle. This was desirable so that time -consuming

hardware modifications would not have to be made to the portable

command box used for manual control of the vehicle.

The first type of two-byte command is the two-byte steering

command. This exists so that it is possible to choose any steering

angle from -90 to +90 degrees and not be limited by the fixed steering

angles provided by the single-byte steering commands. The first byte

of this command contains the hexadecimal characters 8X, where X indi-

cates four bits which are "don't-cares." The second byte contains the

desired steering angle in steering units in two's-complement form.

To convert from degrees to steering units, multiply by 1.421875. This

conversion factor results from representing an angle between -90 and +90

degrees as a two's compl, giant binary number between -127 and +127. The

Prime computer generates two-byte steering commands but the portable

command box still sends single-byte steering commands.

The second form of two-byte command which is also sent ex-

clusively by the Prime is the laser mast command, the format of which

is shown in Fig. 3.2.1. The actions which the mast takes when it

CI
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FIRST BYTE

mast command bits

A. Center of Scan Azimuth Command
Mast Command Bits - 0000

Second byte of the command contains the
azimuth angle, 0 through 255, of the
center-of-scan.

B. Scan Pattern/Laser Enable Command
Mast Command Bits - 0001

SECOND BYTE

1 - laser first elevation patternenabled 00 -
0 - laser disabled 01 - second elevation pattern

10 - third elevation pattern
11 - fourth elevation pattern

00 - first azimuth pattern
01 - second azimuth pattern
10 - third azimuth pattern
11 - fourth azimuth pattern

C. Scanning Speed Command
Mast Command Bits - 0010

SECOND BYTE

00 - 0 scans/sec.
01 - 0.25 scans/sec.
10 - 0.50 scans/sec.
11 - 1.0 scans/sec.

Fig. 3.2.1 Format of Laser *last Commands.

I 
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receives one of these commands are described in Section 4.1.

3.3 Wheel Speed Control

It is desirable to control the speed of each wheel indi-

vidually from two points of view. The first is to take into account

the desired steeeriug angle of the vehicle and change the wheel

speeds accordingly. Since that front axle of the 1984 rover no longer

has a steering motor as the 1975 version did, it relies on differences

in the front wheel speeds as the only means for steering the vehicle.

The subroutine which corrects the wheel speeds for an appropriate

steering angle is named STEERCOR. Its present form is essentially

that described in Reference 1.

The second reason for controlling the wheel speeds is to

attempt to keep them from working against one another and wasting

battery power. A subroutine named TERCOR monitors switches on the

dri,re train of each wheel which measures whether the torque on that

wheel is positive or negative. If a wheel is found to be dragging

(negative torque), then adjustments are made in that wheel's speed

until it does not drag. This is done by increasing a parameter called

the set speed for that wheel. Each time the microprocessor detects

that the wheel is dragging, it will increase the set speed by 38 speed

units (SPU), which corresponds to a velocity of 0.15 m/sec. in the

forward direction.

Once the set speed parameters for each wheel are generated

by STEERCOR and TERCOR, they are digitally low pass filtered by the

subroutine FILTER. These filtered set speeds are used b y the propor-

EIT
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tional speed controller subroutine CONTROL to generate the drive

signals which are fed to the motor driver circuitry for each wheel.

CONTROL calculates the difference between the filtered set

speed and the actual wheel speed for each wheel, multiplies this by

the appropriate controller gain, and adds or subtracts the resulting

change in the drive signal to the present drive signal. It checks

that the maximum values for negative and Fositive wheel speeds are

not exceeded in the process of this calculation. lae controller

gains are switch-selectable parameters, the switches for which are

located on the motor speed board in the microprocessor card cage.

Fig. 3.3.1 shows the location of these switches as well as those

used to set the filter parameters of the digital. filter. It is good

practice to set the filter parameters and controller gains with the

vehicle's wheels off the ground and the display routine described in

Section 3.4 running in order to monitor the numerical values of

those parameters.

Each of the switches in Fig. 3.3.1 is divided into two

sections of four bits each. After reading them, the subroutine

GETDAT calculates the controller gains, filter parameters and the

three velocities at whic , the vehicle can travel as shown in Table

3.3.1. These three velocities are the full, two-thirds and one-third

speeds, calculated in speed units (SPU). The circuity , which inter-

faces the microprocessor to the drive motors has been chan ged x1nce

Turner's original. design and is discussed in Reference 8. Suggested

switch settings are discussed in Reference 1.

IIt



S11 SPEEDI

S12 SPEED2

S 2 
SPEED3

S22 LFGAIN

S31 MAIN

S32 RRGAIN

S41 LRGAIN

S42 FILPA2 0 FILPAR

S51 DELTVI

Fig. 3.3.1 Switch Location on Motor Speed Board for
Vehicle Control Parameters.



Table 3.3.1 Formulas for Switch-Selectable Vehicle Control
Parameters used by Subroutine GETDAT,

Parameter	 Formula
	

Comments
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'One-third' speed (SPU)

'Two-third' speed (SPU)

'Full' speed (SPU)

Left front controller gain

Right front controller gain

Right rear controller gairt

Left rear controller gain

Filter time constant

Filter gain

Maximum turn rate

Speedl 25+4*I)S11

Speed2 25+4*DS12

Speed3 25+4*DS,1

LFGAIN 4*DS,,a

°Ft:AIN 4*DS 31

RRGAIN 4*DS32)

I.RGAIN 4 *DS 41

FILPA21 0.875+DS42*0.00078125

FILPAR 1-FILPA2

DELTVI 4*DS 51

Note: DF ij is the Netting of the switch for the selected

parameter as shown in Fig. 3.1.1

i

II
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3.4 Display of Vehicle Parameters.mow ^w^ ^^^^ r

The subroutine DISPLAY will display certain information

about the state of the vehicle on a terminal connected to the micro-

processor. The micropressor responds to commands which can cause

it to enable or disable this display. While any type of terminal

may be used for this purpose, a CRT type running at 9600 baud should

give the best performance as it provides a fairly fast update of the

screen, the format of which is shown in Fig. 3.4.1. The amount of

data displayed by this subroutine has been increased ;since Turner's

original version to display almost all of the dynamic variables used

by the microprocessor. In the figure, numerical data which is

printed out is shown as 'nnn.' The steering angle is printed in

degrees and the wheel speeds are printed in mm/sec as the linear

speed of the center of each wheel.

3.5 Vehicle Data Acquisition

lThe microprocessor relies on the telemetry system to gather

,:he vehicle data it needs. The vehicle data is fed through an
I

analog multiplexer to an analog-to-digital converter. The telemetry

system makes this digitized analog data, along with any digital

vehicle data, available to the microprocessor by storing the data in

a Random Access Memory (RAM) which is shared by the telemetr y system

and the microprocessor.

Currently the micro? rocessor has control over whc has read

and write access to that RAM; thus it has the responsibility of

allowing the tolemetry system to write to it. The software in use

20
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at the present time grants this access to the telemetry system for

the majority of the time that it is running. The microprocessor

will rescind that access only while it is reading the RAM and

writing to it for its own purposes, a process which happens only

once each time through the control loop and which takes 100-120 Usec.

every 10 msec. Thus the telemetry system is denied access to that

RAM for approximately 1% of the time when both the microprocessor

and telemetry system are running.

I 



PART 4

LASER MAST

The laser mast provides the means by which the Prime com-

puter can detect objects in the vehicle's path. The mast supports

optics and electronics which allow its laser to fire a matrix of

laser shots on the terrain in front of the vehicle. While it is

possible to scan the terrain behind the rover, this is not practical

due to the range of the laser scanning system and the amount the

vehicle extends behind the mast. Documentation on the mast control

electronics may be found in References 3 and 6. Documentation on

the laser and detector electronics can be found in Reference 7.

Laser shots can be fired so as to form a straight line

radiating outward from the mast on level ground. Each such line of

laser shots is referred to as an azimuth because it occurs at a par-

ticular azimuth angle with respect to a zero-degree reference directly

ahead of the vehicle. Since there are 256 possible azimuth angles and

the mast rotates through 360 degrees for each scan, it is possible to

fire an azimuth of laser shots anywhere with a resolution of 1.4

degrees. A maximum of 32 of the available 256 azimuths may be used

in any particular scan.

Within each azimuth it is possible to have up to 32 laser

shots which are known as elevations because they are laser shots which

are fired at different angles in a vertical plane which contains the

mast. Each ele•ration will correspond to a spot on the terrain about

the vehicle at a certain radial distance from the mast along that

23
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azimuth angle. The resolution of elevation angles is 0.35 degrees.

Azimuth and elevation angles are depicted in Fig. 4.0.1.

4.1 Electronic Mast Controller Capabilities

The multi-laser/multi-detector (ML/MD) laser scanning sys-

tem is controlled by an electronics package located in the mast

electronics card cage mounted on the back of the laser mast and shown

in Fig. 4.1.1. It was originally designed by Crai3 (Ref. 3) during

the academic year 1977/78. Its present form has not changed signifi-

cantly from the original design, except as noted in Reference 6.

Fig. 4.1.2 shows the rotating mirror located at the top of

the mast. This mirror is used to generate different elevation angles

within a particular azimuth of laser shots. The speed of the mirror

is controlled by phase-locked loop (PLL) circuitry such that it spins

at a rate which is 24 times that of the laser mast as a whole. A

shaft encoder is connected to the mirror and provides a pulse output

as feedback to the PLL. The same type of PLL and shaft encoder

arrangement controls the speed of rotation of the entire mast.

By sending laser mast commands from the Prime computer via

the command link to the microprocessor on board the vehicle it is

possible to change the scanning speeds of the laser mast., Available

speeds are 0., 0.25, 0.5 and 1.0 scans per second. The ratio of mast

velocity to that of the mirror is always 1 to 24. It is also possible

to turn off the mirror or mast drive motors independently.

In addition to controlling the mast and mirror velocities,

the mast controller also controls the pattern of the laser shots for

IIt
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Fish. 4.1.1 Mast Electronics Card Cage.
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each scan. Both the elevation and azimuth angles at which laser shots

occur are determined by data stored in two type 2708 EPROMs, one for

elevation and one for azimuth angles. The system is set up so that

there are 256 possible elevation angles and 256 possible azimuth

angles. Since each type 2708 EPROM has 1024 locations, the elevation

and azimuth EPROMs can ,More up to four different ele-ation and azi-

muth patterns each. The elevation and azimuth patterns being used can

be selected by switches on the memory board in the mast electronics

card cage.

The capability exists to offset the entire set of azimuth

angles by a fixed angle called the center-of-scan azimuth (CSA)

angle. The CSA angle can be any of the possible azimuth angles, and

can only be changed by a command received from the Prime. It is also

possible to specify a fixed offset angle for elevation angles by

setting switches on the elevation board.

4.2 Laser Mast Commands

The ML/MD controller electronics has been designed to accept

several commands from the Prime computer via the command link. This

would enable a program running on the Prime to change the dynamic

operation of the laser mast to suit conditions which the rover might

encounter. At the present time, there ara three commands to which the

mast electronics will respond. 'These are the command to change the

CSA angle, the command to select scan patterns and enable the laser,

and the command to specify the scanning speed of the mast. They are

explained further in Fig. 3.2.1 and Reference 6.

I
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4.3 Laser Electronics and Power Supply

The laser on the mast is a pulsed type and as such can

generate considerable noise spikes in other electronic systems,

particularly in the detector electronics. The power supply for

the laser has been located in close proximity to the laser itself

to minimize interference generated by longer cabling. The addition

of bypass capacitors at key points, enabling the detector electron-

ics only at the instants when the laser fires, and other measures

described in Reference 7 0 have reduced the noise to an acceptable

level.

4.4 Laser Data Description

Near the base of the rotating portion of the laser mast is

the detector, shown in Fig. 4.3.1, which detects reflections of

laser shots from terrain in front of the vehicle. In the figure is

shown a 135-mm camera lens behind which is mounted a 20-element photo-

diode array. Shown above the lens-photo-diode assembly is the de-

tector electronics, discussed in Reference 7.

Briefly, if a reflection occurs from the surrounding ter-

rain within the field of view of the detector, which is about 30

degrees, then it will fall on one or more of the photo-diodes in the

array. The detector electronics looks for pulses at the outputs of

the diode array only when the laser fires and feeds its output to a

priority network which determines the identification numbers of up

to two of the diodes which received the reflection. Most returns

will fall on a maximum of two diodes. Due to the design of the
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Fig. 4.3.1 Laser Detector and its Electronics.
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priority network, when two or more detectors receive a return from

a laser shot. the two identification numbers which are generated are

those of the highest and lowest detector which received that return.

The laser data sent to the Prime computer has the form of

two 16-bit words for each laser shot. First, a 16-bit address in-

dicates which azimuth and which elevation the shot was fired at, and

second, a 16-bit data word indicates which detector diode(s) received

a return from that shot, if any. The 16-bit data word actually con-

tains only 10 bits of valid information. The six most significant

bits CHSBs) are all ones while the ten least significant bits (LSBs)

contain two 5-bit words which are the identification numbers of the

detector diode(s) receiving the return. Since there are only 20

diodes in the array, these identification numbers will be between 1

and 20 inclusive when a return is received. If no return is received,

then the 5 LSBs of the data will be all zeros.

Data coming from the priority network is stored in First In-

First-Out (FIFO) memories because the mast can generate data faster

than the telemetry system can transmit it to the Prime computer for

analysis. The FIFOs buffer the rates at which data is generated and

transmitted. The telemetry system gives priority to the transmission

of laser data over transmission of vehicle data such as wheel speeds

or gyro angles.



PART 5

TELEMETRY SYSTEM

It is the function of the telemetry system to gather all

analog and digital vehicle data as well as the digital data from

the laser mast, make is available to the microprocessor, and transmit

it to the Prime computer. There is provision for up to 16 analog and

16 digital channels of vehicle data, the sampling of which is con-

trollable by a type 2708 EPROM on the analog multiplexer board shown

in Fig. 5.0.1. The analog multiplexer board is connected by ribbon

cable to the telemetry transmitter board, shown in Fig. 5.0.2, which

formats the telemetry data into a serial stream for transmission to

the Prime computer. It is the responsibility of the telemetry system

to supply vehicle data not only to the Prime computer via the radio

frequency (RF) telemetry link, but also to the microprocessor on

board the vehicle via the RAM shared by both of them. The ha_aware

is described by Cipolle (Reference 2).

5.1 Data Format

The data sent to the Prime computer is made up of a 16-bit

address word sent with each 16-bit data word. The address word tells

the Prime where that data word came from on the vehicle or what laser

shot the data word correspends to if it came from the mast. 'ach

address word contains three interrupt bits which cause the Pri •ie to

perform certain operations in regard to where in the user's address

space the data is stored.

The three interrupts which the Prime recognizes are the

1
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end-of-azimuth (EDA), end-of-vehicle (EOV), and end-of-scan (EOS).

An EOA interrupt is sent as part of the address for the last laser

data word for each group of shots in an azimuth generated by the

laser mast. An EOV interrupt is generated as part of the address

for the last vehicle data word in a group of those words sent to

the Prime. Finally, an EOS interrupt is generated by the laser mast

as part of the address sent with the last laser data word of each

scan made by the laser mast. For an explanation of the elevation/

azimuth scanning concept used by the mast, see Part 4.

5.2 Vehicle and Laser Data Multiplexing

The telemetry system must multiplex the laser data coming

from the mast with 32 vehicle data words to be sent hack to the Prime

computer. The software which drives the interface in the mainframe

of the Prime expects 32 vehicle words to accompany, that is imme-

diately precede, each section of 32 laser words for each azimuth.

Each azimuth need not contain 32 elevations and it is not necessary

to send the vehicle data with each azimuth, but doing the latter will

ensure that valid vehicle data are always stored with any particular

section of laser data. Although the vehicle data words sent back to

the Prime are 16 bits long, none of the data sent occupies all, lb

bits except the command word echo data.

5.3 Fate BufferinF, and Data Priority

The data from both the vehicle and the laser mast are fed

into FIFO memories in order to allow the telemetry system to transmit

data at a different rate from that at which `ney are collected. The
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absence of the FIFOs to buffer these two rates would have forced the

synchronous operation of all of the systems on the vehicle which

would have hindered design tasks considerably and greatly reduced

their flexibility as a research tool. Data coming from the lesser

mast have priority over the vehicle data when both are present, en-

suring that none of the data from a laser scan are lost.

5.4 General Information

The final serial output of the telemetry transmitter is

generated by a Motorola chip called an Advanced Data Link Controller

(ADLC) from the parallel data presented to it. The format of the

transmission along with the mode of the transmitter section of the

ADLC is controlled by type 8223 Programmable Read-Only Memories

(PROMS) which are documented in the report by Cipolle (Reference 2).

Each frame transmitted by the ADLC contains 16 address bits, 16 data

bits, and 32 bits relating to starting the frame, error checking, and

frame termination. The error checking code provides the ADLC which

receives the data at the other end of the telemetry link with the

capability to perform cyclic redundancy error checking on each frame.

The telemetry receiver is constructed on a portion of the

GPIB interface in the mainframe of the Prime computer. The output

of the ADLC which receives the serial data is in parallel form and is

used to fill FIFOs whose outputs are placed in the user's address space

via direct memory access (DMA) transfer.

While it is intended that the link from the telemetry trans-

mitter board to the Prime be an RF link, presently it is made by co-

It
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axial cable. When the RF link is implemented, cables will still

run from the Prime to the rover lab because the radio receiver for

the telemetry data will be located in the rover lab with its an-

tenna on the roof of the Engineering Center.

11



PART 6

COMMAND LINK

The command link is the means by which programs running

on the Prime analyzing data from the cast and the vehicle may direct

the vehicle's actions so that it may travel toward its target while

avoiding obstacles in its path. The command link consists of a

Universal Asynchronous Receiver/Transmitter (UAR/T) on the GPIB

interface which generates a serial data stream that is sent up-

stairs to the rover lab over a multi-conductor cable. In order for

this cable to attach to the GPIB, a short length of coaxial cable

with a BNC connector was used in the Image Processing Lab (IPL)

where the Prime is located. The radio frequency (RF) transmitter

for the command link is in the rover lab and has an antenna on the

roof of the Engineering Center. An RF receiver is located on the

vehicle and its output is fed through demodulator circuitry to the

microprocessor.

6.1 Command Transmitter

On the GPIB interface, the UAR/T converts the parallel

data commands from the Prime into serial form. The resulting

transistor-transistor logic (TTL) level signal is buffered and sent

via cable to the RF transmitter t'.n the rover lab. The RF trans-

mitter also incorporates a Frequency Shift Keying (FSK) modulation

circuit which converts the TTL input to an audio signal before it

is transmitted to the rover.

38
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6.2 Command Receiver

The RF receiver on board the vehicle is mounted inside a

small box with an antenna on it in a central position on the

vehicle. This enclosure also contains an FSK demodulator which

takes the received audio signal and converts it back into a TTL

level serial data stream. The box operates on 12 VDC and contains

the necessary voltage regulators to produce the correct voltages

for the components inside. A speaker has been provided to mnnttor

the quality of the audio signal being received by the RF receiver.

The receiver box has two outputs which are fed to the

Asynchronous Communications Interface Adapter (ACIA) on the micro-

processor board which receives commands. The first output is the

serial data output which is a TTL level signal that the ACIA can

accept as an input. The second output is the loss-of-signal output,

which remains in the low state as long as a strong, clean signal is

being received.

6.3 Portable Command Box

If it is desirable to test the rover under manual control,

this can be done by using the portable command box to send commands

to the vehicle. It contains the necessary radio transmitter and

FSK modulation circuitry to communicate with the rover in the same

manner as the Prime does. The box has been modified to send eight-

bit commands with even parity and one stop bit since this is the

format of the serial data stream used for commands to the 1980 rover.

The most significant bit (11S B) is always a zero, since the box

I
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PART 7

PRIME INTERFACE BOARD AND PRIME SOFTWARE

The General Purpose Interface Board (GPIB) or the Prime

provides a means for getting information into that computer at a

high data rate via direct memory access (DMA) transfer. As men-

tioned in Section 5.1 9 each 16-bit data word is accompanied by a

16-bit address word which indicates where that data came from on the

rover. Present in that address word are three interrupt bits which

cause the Prime to perform certain operations as it is storing the

rover data.

Due to the complex nature of the Prime's operating system,

a user's program cannot simply manipulate the GPIB but must call a

special PRIMOS* system subroutine named T$ROVR that was developed

by M. Potmesil (Reference 5). This routine is an input/output (IM)

driver which handles all interactions with the interface board. By

using T$ROVR the user's access to the GPIB is easily accomplished.

The software that has been written for the Prime falls

into three categories. First, the realtime software which processes

the data from the rover and sends appropriate commands back to it;

second, the diagnostic programs written to debug the telemetry sys-

tem and the laser mast itself, and third, the assembler I/O driver

T$ROVR written by Potmesil. The realtime software is described in

References 9 and 10. The diagnostic programs are mentioned in

Section 7.3 and are completely documented in the notebook entitled

*PRIMOS is the operating system used on the Prime computer.

42
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" f,PIB," volume 2 9 in the laboratory.

This chapter discusses some of the physical properties of

the GPIB board, some of the more obscure details of the operation

of T$ROVR, and the functions of several programs which were written

as diagnostic tools for debugging not only the GPIB itself but the

entire system. A complete description of the hardware can be found

in Reference 4.

7.1 Interrupt Handlin

Upon the start of execution of a user's program on the

Prime, a call must be made to T$ROVR to initialize itself and the

GPIB. After this initialization, T$ROVR waits for an EOS interrupt

before making any data available to the user. Therefore it is

imperative that the telemetry system be transmitting these inter-

rupts from time to time. Once an EOS has been received, T$ROVR

starts to fill the first buffer which the user has specified to hold

the telemetry data. From that point on, every time an EOA interrupt

is sensed, T$ROVR will start to fill the next section of the buffer

until the buffer is full. Subsequent EOS interrupts will declare

the buffer as being full and T$ROVR will start to fill the next

buffer if it is empty. It is important to note that an EOS can

occur at any time, and that the occurrence of that EOS is the only

determining factor for declaring a buffer as being full.

7.2 VLDATA, VLSTAT. ITSTAT and Scratch Buffers

The buffers which the user specifies to be filled by T$ROVR
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must be referenced in the call to T$ROVR which initializes it. The

Interrupt process of T$ROVR fills two 2048-word buffers in the

array named VLDATA. Each of these buffers is divided into 32 sec-

tions, one for each azimuth angle scanned by the laser mast. Each

section contains 64 words consisting of 32 words of vehicle data

followed by 32 words of laser data. The layout of each buffer is

shown in Fig. 7.2.1.

The array VLSTAT contains status information which is

stored there concerning each section of VLDATA as that section is

being filled. The format of this array is shown in Fig. 7.2.2. The

array ITSTAT contains status information about the GPIB interface

itself. The information in ITSTAT can be updated by a special call

to T$ROVR, otherwise it is never changed. The format if ITSTAT is

shown in Table 7.2.1.

It should be pointed out that the names assigned to the

three arrays VLDATA, VLSTAT and ITSTAT used in the user's program

are not important as long as the conventions for loading the programs

are followed. These are explained in the documentation of T$ROVR

(Reference 5). All of the Fortran routines which run on the Prime

use these names for the three arrays, however.

The scratch buffer used by T$ROVR is needed in order for

interrupts to be received even if both buffers in VLDATA are full.

In general, it is bad practice to use this data in any calculations

involving laser data because it will be constantl y changing. If

bath VLDATA buffers are full, however, it is possible to get the

1



vehicle and laser data buffer
(32 sections of 64 words =
2048 words).

vehicle and laser data buffer 2
(32 sections of 64 words =
2048 words).
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VLDATA(1)*

VLDATA(4096)

buffer
section

1.
1

buffer
section

buffer
section

1,
32

2,
1

buffer
section

2,
32

* must be on a Prime memory page boundary

Fig. 7.2.1 Format of VLDATA array
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A section of 64 words in VLDATA buffer (one of 32):

VLDATA (index

32 words of vehicle data

32 words of laser data

VLDATA (index+63

index	 2048 *(buffno-1) + 64 *(sectno-1) + 1

buffno	 buffer number (1 or 2)

sectno	 section number in one of the two buffers
(1, 2, . . . , 31, 32)

Note

Each received data word is accompanied by an address word. The

six least significant bits of the address word are used as offset into

the current 64-word section and therefore determine where the data word

will be stored within the current section.

Fig. 7.2.1 (continued)

I 
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VLSTAT(1)*

System and data status,
data scratch buffer (detailed description
follows on next page)

VLSTAT(201)
Status register and system time
at EOA interrupts for VLDATA
buffer 1 (32 sections of 4 words**)

Not used

VLSTAT(401)

Status register and system time
at EOA interrupts for VLDATA
buffer 2 (32 sections of 4 words**)

Not used

VLSTAT(601)

Not used

VLSTAT(1024)

* must be on a Prime memory page boundary

** 4 words per EOA interrupt:

word 1	 GPIB status register
word 2	

Current system time
word 3	 (Format given in Fig. 5)
word 4

1t	 Fig. 7. ^.2	 Format of VLSTAT array

200 words

128 words

72 words

128 words

72 words

424 words
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System and data status:

VLSTAT(1)	 System status:

•1 . . . system initialized, waiting for EOS interrupt
to start scanning to VLDATA (data is currently
received to data scratch buffer, rover is
stopped)

0 . . . both VLDATA buffers are full (data is currently
received to data scratch buffer, rover is
stopped)

1 . . . data is currently received to VLDATA buffer 1,
rover is started

2 . . . data is currently received to VLDATA buffer 2,
rover is started

3 . . . received FIFO overflow while filling VLDATA
buffer 1, waiting for EOS interrupt to start
refilling buffer 1 (data is currently received
to data scratch buffer, rover is stopped)

4	 received FIFO overflow while filling VLDATA
buffer 2, waiting for EOS interrupt to start
refilling buffer 2 (data is currently received
to data scratch buffer, rover is stopped)

5	 received TIMEOUT error, waiting for EOS
interrupt to start refilling current VLDATA
buffer (data is currently received to data
scratch buffer, rover is stopped)

G	 received raw error (no interrupt bits set),
see Status register in VLSTAT(2), rover
stopped, interrupts and DMX disabled, data
not received.

VLSTAT(2)	 CPIB Status register during the last interrupt, initialized
to zero.

VLSTAT(3)	
System time at the beginning of the last interrupt,

VLSTAT(4)	
initialized to zero. (Format given in Fig. 5)	

p

VLSTAT(5)

VLSTAT(o)	 Number of TIMEOUT interrupts*
VLSTAT(7)	 Number of FIFO overflow interrupts*
VLSTAT(8)	 Number of EOS interrupts*

* given as mod 2 15 number since system initialized.

t
Fic. 7.2.2 (continued)
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VLSTAT(9) Not used
VLSTAT(10) Not used

VLSTAT(11) Number of filled (valid) vehicle sections in VLDATA
buffer 1 (0	 empty, 1-32 sections filled)

VLSTAT0 2) Number of EOV interrupts received while filling
VLDATA buffer 1

VLSTAT(13) Number of filled(valid)laser sections in VLDATA buffer
1	 (0	 . . . empty, 1 -32 sections filled)

VLSTAT(14) Number of EOA interrupts received while filling VLDATA
buffer 1

VLSTAT(15)	 EOS interrupt status of VLDATA buffer 1

0 . . . EOS not received

1	 EOS received, VLDATA buffer 1	 is full,
at this time VLSTAT 11	 and VLSTAT(14)
should contain 32

VLSTAT(16)
to Not used

VLSTAT(20)

VLSTAT(21)
Same as VLSTAT(11) to VLSTAT(20) but apply

to
VLSTAT(30)

to VLDATA buffer 2

VLSTAT(31)
to Not used

VLSTAT(64)

VLSTAT(65) Data scratch buffer, data is stored into this 64-word
to

VLSTAT(128)
buffer while it cannot be stored into VLDATA buffers

VLSTAT(129)I
to  Not used

VLSTAT(200)

Fig. 7.2.2 (continued)
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ITSTAT(1)	 Status register

ITSTAT(2)	 Command register

ITSTAT(3)	 DMX address register

ITSTAT(4)	 Vector address and DMX mode register

ITSTAT(5)	 ID slot register

ITSTAT(6)	 Total number of interrupts generated by the interface
since last initialize operation or last assign conmand

ITSTAT(7)	 Number of "invalid address" interrupts (for T$ROVR
debugging only)

ITSTAT(8)	 Number of "attempted page-fault" interrupts (for
T$ROVR debugging only)

ITSTAT(9)	 Run flag:	 0 . . . vehicle started
1 . . . vehicle stopped

ITSTAT(10)	 VLDATA buffer 1 full flag:	 0 . . . buffer empty
1 . . . buffer full

ITSTAT(11)	 VLDATA buffer 2 full flag:	 0 . . . buffer empty
1 . . . buffer full

ITSTAT(12)	 System time (minutes)
ITSTAT(13)	 System time(seconds)
ITSTAT(14)	 System time (ticks, where 1 tick = 1/330 second)

ITSTAT(15)
to	 Not used

ITSTAT(20)

Table 7.2.1	 Format of ITSTAT array
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latest vehicle data from the first part of that buffer due to the

fact that the same analog and digital data will be stored at any

particular location in the block of vehicle data. In the case of

laser data received while both buffers are full, however, the

user would have no way of knowing which azimuth was being stored

in the scratch buffer when it was being read.

7.3 Debugging Aids for the GPIB Interface and Telemetry Svstem

In addition to the I/O driver T$ROVR, M. Potmesil also

wrote a number of diagnostic programs that are useful for testing

the interface between the telemetn• system and the Prime. These

programs are shown in 'Table 7.3.1. All of the programs in that table

reside in the User File Directory (UFD) <SYSTEMO>TEST.GPIBS>TEST.

T$ROVR. There are also other programs, discussed below, which were

written by the author. These programs are stored on the backup tape

of the MARS UFD created at the end of the project and are located in

the UFD named <USERS3>MARS>GRAHAM. Source listings are also in the

notebook pertaining to the GPIB interface, volume 2.

The program named #SEND essentially has the same function

as Potmesil's except that it tests all possible bit patterns which

can be written into the command-transmit register on the GPIB inter-

face. It also prints a message for evero 1024 commands which are

sent.

The program #SEND.GD can be used to send any of the cur-

rently implemented commands which the microprocessor of the laser

mast recognizes. It was written primarily as an aid for testing

f
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#START	 Initializes T$ROVR.

#STOP	 Stops T$ROVR from receiving data and
interrupts from the GPIB.

#BADKEY	 Cells T$ROVR with a bad key and
should generate an error message.

#BADBUF	 Tries to initialize T$ROVR with a bad
buffer address for VLDATA. Note
both VLDATA and VLSTAT must be
located on a page boundary.

#STATUS	 Calls T$ROVR to get the GPIB status
and prints it.

#SEND	 Loads the command link register and
reads it back to verify the
contents of that register.

#SCAN	 Fully tests T$ROVR in diagnostic mode.
This program generates simulated
vehicle and laser data and inter-
rupts and also demonstrates the
correct use of T$ROVR as a sub-
routine called by Fortran prc^rams.

Table 7.3.1 GPIB Diagnostic Programs.

It
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actual commands sent from the Prime to the rover via the RF command

link and also served as a reference for the software group when it

I	 came time for them to send commands in the path-selection and

navigation routines.

The program #RECV.GD is probably the single most powerful

I

tool in discovering problems occurring in the telemetry system.

This program has the capability of displaying any data which T$ROVR

can store in the user's address space. It will empty the VLDATA

buffers consecutively and can store any or all of the incoming data

from the rover in these buffers as well as the contents of the

VLSTAT and ITSTAT buffers on disk or magnetic tape for later use.

In the early stages of the development of a running version of the

controlling software on the Prime, this disk or magnetic tape data

base could provide consistent data to that software. The program

#RECV.GD has several interactive qualities which enable the user to

selectively empty buffers ., disable emptying buffers entirely, stop

dumping data to disk and/or tape, and reinitialize T$ROVR even in

the middle of execution of the program, to mention a few of the

possibilities. A complete list of commands for the program is con-

tained in the GPIB notebook mentioned above.

There is also a MAP mode which will display a matrix of

laser returns. This display condenses information about all azi-

muths and elevations at which laser shots occur into one screen

image. A maximum of eight azimuths (columns) and 12 elevations (rows)

can be displayed at any one time. The starting row and column of the
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upper left-hand element in the matrix can be set by the NEnn and

NAnn commands, respectively. The two numbers which appear at each

location of the matrix are the identification numbers of the

detectors which received returns from a given laser shot at the

elevation and azimuth given by their location in the table. If

asterisks appear at a location, then no data concerning a laser

shot at that azimuth and elevation angle was received by the GPIB.

If a location is blank, this indicates that a missing return

cccurred, i.e., none of the detectors received a return for that

laser shot.

The program #POST.GD can be used to read the disk or mag-

netic tape files created by #RECV.GD and provides for displaying

any of the data which T$ROVR stored in the VLDATA, VLSTAT and ITSTAT

buffers in a manner similar to #RECV.GD except that the data being

displayed could have been received minutes or hours before. It

features the same MAP mode as #RECV.GD and the commands which it

accepts are also documented in the notebook along with the commands

for #RECV.GD.

The programs in the UFD<USERS3>MARS>GRARAM are of more

interest to the hardware development group since they provide more

data on the number of ti-rteouts, total number of interrupts, et

cetera, than the control-oriented software group would in general

be interested in.

Several files in the UFD also contain code for the M6800

microprocessor which enable it to operate the telemetry transmitter
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and send dummy data dcr*,n to the Prime. Some of these are listed in

Table 7.3.2. These programs can be downloaded into the micropro-

cessor from the Prime by running the program *DnOAD and then con-

necting the microprocessor to the user's terminal as described in

the notebook pertaining to the microprocessor (see Chapter 8).

,^I
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CTTION

XMIT.GD	 Sands data from 1024 laser shots and 1024 vehicle
words ) and fills an entire VLDATA buffer.
The address and data words are the same
except for interrupt bits set for EOA, EOV
and EOS interrupts. Data and address words
increment from zero to $7FF.

XMIT.NOEOV	 Same as XMIT.GD except doesn't generate EOV

interrupts. This program shows the dramatic
effect EOV interrupts have on the system's
performance as far as slowing it down.

.%"j%1IT.NOEOA	 Same as XMIT.GD except doesn't generate EOV or EO&.
interrupts.

XMIT.NOINT	 Same as XMIT.GD except doesn't generate any
interrupts after the first EOS interrupt.

Table 7.3.2 Microvrocessor Transmitter Programs.
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LABORATORY REFERENCE MATERIAL

There are several notebooks in the lab which contain

information about all parts of the systems controlling the rover.

Each is labeled, making it easy to find information on any one

of them. For example, the documentation on the GPIB interface

takes up two such notebooks, Volume 1 containing mostly hardware

specifications and Volume 2 containing mostly software specifica-

tions and listings. The titles of these notebooks are shown in

Table 8.0.1.

57
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TITLE	 CONTENTS

MICRO	 Contains documentation on the microprocessor board
itself along with the instruction manuals
supplied by Motorola and listings of all
programs which were written for the M6800 for
use by the rover project. Also has instruc-
tions for downloading programs from the Prime
computer to the microprocessor.

PROPULSION/	 Contains the hardware description of the motor speed
STEERING	 controller board as designed by both Turner

and Bogdan, a copy of Turner's masters thesis,
and lists of signals which the microprocessor
uses and generates when it controls the vehicle.

TELEMETRY	 Contains the hardware description of the telemetry
transmitter and analog multiplexor boards as
well as the final circuit diagrams of the
command link.

GPIB, Vol. 1 Contains the hardware description of the circuitry
on the GPIB which was designed by Donaldson.
All modifications are noted.

GPIB, Vol. 2 Contains the listings and descriptions of programs
which exercise the GPIB interface as well as
those for use in debugging the telemetry data
link.

MAST	 Contains the hardware description of the mast elec-
tronics including the laser detector elec-
tronics.

REALTIME	 Contains documentation on the realti°ne programs which
SOFT14ARE	 run on the Prime, the locations of mag tape

backups for the Mars UFD, etc.

Table 8.0.1 Laboratory Notebooks
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