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PREFACE

This workshop on Wind Tunnel Wall Interference Assessment/Correction (WIAC)

techniques was an outgrowth of earlier NASA Langley workshops related to the

National Transonic Facility (NTF) (High Reynolds Number Research - 1980, NASA

CP-2183, 1981, and Wind Tunnel/Fllght Correlation - 1981, NASA CP-2225, 1982) and

of informal discussions among government, industry, and university personnel

during the AIAA 12th Aerodynamics Testing Conference in March 1982. The purpose

was to provide an informal technical information exchange focused upon the

emerging WIAC techniques applicable to transonic wind tunnels with conventional and

passively or partially adapted walls. The possibility of improving the assess-

ment and correction of data taken in conventional transonic wind tunnels by

utilizing simultaneously obtained flow field data (generally taken near the walls)

appears to offer a larger, nearer-term payoff than the fully adaptive wall

concept. Development of WIAC procedures continues, and aspects related to vali-

dating the concept needed to be addressed. Thus, the scope of wall interference

topics discussed at this workshop was somewhat limited. As analytical/numerical

techniques reach the demonstration stage, personnel involved with management,

software development, measurement techniques, hardware implementation, facility

operation, and data reduction will necessarily become involved.

The 25 informal technical presentations at this workshop consisted of invited

talks summarizing the foreign work on WIAC technology and solicited domestic talks

concerning data bases suitable for WIAC validation and the status of WIAC strate-

gies, codes, and epplications. These talks were grouped into the seven technical

sessions indicated in the contents; the material given herein consists of the

presentation viewgraphs accompanied by a few words of text. The workshop included

brief tours of the NTF and 0.3-Meter Transonic Cryogenic Tunnel and concluded

with an open forum discussion of WIAC issues, progress to date, and future direc-

tions. A list of attendees is included in this document.

We wish to express our appreciation to all who participated in this workshop:

the speakers, coauthors, session chairmen , and attendees. Our only regret is that

the workshop was not scheduled to last another day so that smaller group dis-

cussions could have been conducted to better assess the progress and recommend

future directions. However, we feel that this was more than compensated by the

spectrum of papers presented and the good attendance representing almost all groups

actively engaged in wind tunnel wall interference research.

Perry A. Newman

Richard W. Barnwell
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SESSION I

WIAC OVERVIEW AND WORKSHOP THEME

Chairman: R. W. Barnwell, NASA Langley



AN OVERVIEW OF APPROACHES AND ISSUES

FOR WALL INTERFERENCE ASSESSMENT/CORRECTION

E. M. Kraft

Calspan Field Services, Inc./AEDC Division
Arnold AFS, Tennessee
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THE CHALLENGE

After seven decades of effort, the solution to the wind tunnel wall

interference problem now appears on the horizon in the form of adaptive wind
tunnel walls, wall interference assessment/correction methods, or combinations of

the two. To make this happen will require a concerted effort on the part of the
wind tunnel industry. The challenge is to make these techniques practical and
routine. In the following discussion, emphasis will be given to the current state of
the art in wall interference assessment/correction methods and the issues that

have to be addressed inorder to meet the challenge.

IF THE CURRENTTHRUST IS CONTINUED WALL INTERFERENCE

WILL BE A SOLVED PROBLEM WITHIN A DECADE. THEREWILL

BE PRACTICAL AND ROUTINE APPLICATIONS OF

ADAPTIVE WALLS

WALL INTERFERENCE ASSESSMENT/CORRECTION

METHODS



BASIC PREMISES

The last decade has seen a tremendous development of wall inter-

ference assessment/correction techniques. Although many different

approaches have been developed all these methods require knowledge of two

independent quantities. The accuracy and validity of these independent

quantities are therefore measures of the adequacy of any one approach. The

nature of these independent quantities will become apparent in the following
discussion.

ALL WALL INTERFERENCEASSESSMENT/CORRECTION

(WIAC) TECHNIQUES REQUIRE KNOWLEDGEOF TWO

INDEPENDENTQUANTITIES

A MEASURE OF MERIT FOR ANY TECHNIQUE IS HOW

WELL THE TWO INDEPENDENTQUANTITIES ARE DETERMINED



DEFINITION

Throughout this presentation reference will be made to an "interface

surface". The definition of the interface surface isgiven in the figure below.

INTERFACE SURFACE IS DEFINED AS THE SURFACEOF A

CONTROLVOLUME CONVENIENTLY LOCATED ON OR NEAR

THE TUNNEL WALLS. MEASUREMENT OF FLOW VARIABLES

AND/OR DEFINITION OF BOUNDARY CONDITIONS FOR WIAC

METHODS ARE PERFORMEDON THE INTERFACE SURFACE



CURRFNT APPROACHES

Although not neeessarilyunique,it is convenient to eategorize the current

WIAC methods intoone of four groups based on what types of measurements are
made. As willbe shown, within any one eategory there are various ways of using
the same measurements to determine the wall interference. However, this
eategorizationallows an immediate definitionof the relativemerits of how well

the independentquantitiesare determined. Itisalsointerestingto note that ifthis
workshop were held a deeade ago only the elassieal methods would be discussed.

CLASSICAL THEORETICAL METHODS

INTERFACE PRESSURE METHODS

INTERFACE AND MODEL PRESSURE

MEASURED

MEASURED
METHODS

MEASURED INTERFACE PRESSURE AND FLOW
ANGLE METHODS



CLASSICAL THEORETICAL METHODS

Classical theoretical methods are herein generalized to include all techniques

that analytically or numerically simulate the flow in the tunnel using theoretical
boundary conditions on the walls and on the model. This encompasses the spectrum
from a simple source between parallel planes to numerical solutions of the Euler

equations. Typical examples of some classical methods are given in Refs. 1-3. The
independent quantities indicated below are theoretically contrived and hence can
be only as good as the theory on which they are based.

As suggested in the figure below, the primary advantages of the classical

methods are that they are rapid and easy to apply and are the only method
available for a _ estimates. Their inherent weakness is their dependence on
theoretical models. However, before strongly discounting these techniques one
should recognize that theoretical models of the wall behavior may be calibrated

using the more sophisticated techniques to be discussed subsequently. It may be
possible to combine the classical approach with some of the more advanced

methods to take advantage of the speed of the classical methods in dealing with
large quantities of data.

INDEPENDENT QUANTITIES

'1. THEORETICAL SIMULATION OF WALL BEHAVIOR

• LINEAR, HOMOGENEOUS WALL CHARACTERISTICS

U+K_V l--+--V "0
_X R

2. THEORETICAL SIMULATION OF MODEL

• SUBSONIC - SUPERPOSITION OF SINGULARITIES

• TRANSONIC - MODEL SURFACE GEOMETRY

APPROACH

FLOW OVER MODEL IN WIND TUNNEL IS ANALYTICALLY/

N UMERICALLY S IMULATED

ADVANTAGES

• RAPID, EASY TO APPLY

• ONlY METHOD FOR "A PRIORI" ESTIMATES

D I SADVANTAGES

• WALL CHARACTERISTICS DEPEND ON PHYSICAL WALL, Re,

M, AND MODEL GEOMETRY AND ATTITUDE, HENCE NOT

EASILY DETERMINED

• UNKNOWN ADEOUACY OF MODEL SIMULATION

8



MEASURED INTERFACE PRESSURE METHODS

To overcome the dependency of the classical theoretical methods on the
theoretical walt characteristic, the next level of sophistication is to measure the

static pressure at the interface. As seen in the figure below there are at least
three ways of using the measured interfaoe pressure to determine the wall
interference: 1) as a boundary condition for numerical methods such as in Refs. 4
and S, 2) to determine the classical theory wall porosity parameters as in Ref. 6,

or 3) to determine the strength and distribution of singularities for estimating wall
interference in solid-wail tunnels as in Ref. 7.

As shown in the figure below, the measured interface pressure methods
retain the convenience of the classical methods but have an improved definition of

the wall behavior. The weakness of the method still lies with the model

description. Hence, replacement of the model description is the next area of

improvement for WIAC methods.

INDEPENDENTQUANTITIES

1. MEASURED STATIC PRESSURESAT INTERFACE

"e AS BOUNDARY CONDITION FOR NUMERICAL METHODS

• TO DETERMINEWALL POROSITY

• TO DETERMINEMODEL SINGULARITY DISTRIBUTIONS

2. SIMULATION OF MODEL

APPROACH

SIMILAR TO CLASSICAL THEORETICAL METHODS EXCEPT

INFORMATION DERIVED FROM PRESSURES MEASURED AT

INTERFACE IS USED

ADVANTAGES

• RELATIVELYRAPID

• IMPROVED DESCRIPTION OF THE TUNNELWALL BEHAVIOR

DISADVANTAGES

• UNKNOWNADEQUACY OF MODEL SIMULATION



MEASURED INTERFACE AND MODEL PRESSURES METHODS

The most straightforward method for improving the simulation of the model
is to directly measure the pressure on the model surface. These measurements can
be coupled with the interface pressure measurements to compute an equivalent

body including viscous effects using a numerical inverse method (Refs. 8 and 9).
This equivalent body can then be used in further numerical computations to
determine the eorreeted Maeh number and ankle of attaek for the measured data.

While measuring the model surface pressures improves the simulation of the

model, this may be routinely done only in two-dimensional airfoiltests. For more

general three-dimensional production wind tunnel tests, model pressure

measurements are not available. Hence, these techniques may be limited in

application.

INDEPENDENTQUANTITIES

I. MEASURED STATIC

2. MEASURED STATIC

PRESSURES AT INTERFACE

PRESSURES AT MODEL SURFACE

APPROACH

EFFECTIVE BODY SHAPE DETERMINED FROM MEASURED

PRESSURES BY INVERSE CALCULATIONS. EFFECTIVE

BODY SHAPE USED FOR AN INFINITE DOMAIN CALCULATION

WHICH IS COMPARED WITH THE MEASURED PRESSURES ON

THE MODEL

ADVANTAGES

• ELIMINATES NEED FOR WALL CHARACTERISTIC DESCRIPTION

• IMPROVES SIMULATION OF MODEL

D ISADVANTAGE S

• INCREASED COMPUTATIONAL REQUIREMENTS

• MODEL PRESSURE MEASUREMENTS NOT GENERALLY AVAILABLE

lo



MEASURED INTERFACE PRESSURE AND FLOW ANOLE METHODS

The ideal WIAC technique should have two readily measurable independent

quantities that are transparent to any particular model installation. Clearly these
measurements should be made at the interface. This approach follows directly

from adaptive wall research wherein the pressure and flow angle are measured at
the interface. It has been established in Refs. 10 and 11 that use of these two

independent quantities avoids simulating the model in addition to the tunnel
boundary, at least for subsonic flows.

To illustrate the use of the measured interface pressure and flow angle

distributions, consider inviscid, incompressible flow. The perturbation potential in

the tunnel, _T , is governed by the Laplace equation, hence the solution can be
written directly from Green's theorem in terms of source and doublet distributions
on all the boundaries of the domain. As the tunnel boundary approaches infinity,

the integrals on the interface surface vanish, indicating the integrals on the model

surface are equivalent to the interference free potential %0 Consequently, the
wall interference is solely and uniquely a function of the potential and its normal
derivative on the interface surface.

Because the wall interference can be directly determined from the measured

pressures and flow angles at the interface, the application of the method can be
made completely transparent to any particular model installation. Although it is
difficult to measure flow angle near a ventilated wind tunnel wall, use of the

differential static pipes discussed in Ref. 12 and multiducer pressure transducers
now make it a practical reality. To date, the analysis has only been developed for
linear subsonic flows, and although it appears very promising for nonlinear,

transonic flows, it remains to be seen if all the advantages of the technique will be
realized for transonic flows.

INDEPENDENT QUANT ITIES

I. MEASURED STATIC PRESSURES AT INTERFACE

TO DETERMINE _T OR (I_)TIOX

2. MEASURED FLOW ANGLES AT INTERFACE TO

DETERMINE _T 1_n

APPROACH

FOR SUBSONIC FLOW THE FLOW VARIABLES

MEASURED AT THE INTERFACE CAN BE DIRECTLY

INTEGRATED TO YIELD THE WALL INTERFERENCE

11



MEASURED INTERFACE PRESSURE AND FLOW ANGLE METHODS

APPROACH (CONT.)

FROM GREEN'S THEOREM THE SOLUTION FOR THE PERTURBATION

IN THE TUNNEL, 0T, IS

OT'fflOT' 00Tl_nlds +fgl_T,O_TlOn)ds

INTERFACE MODEL

AS THE TUNNEL WALL (AND INTERFACE)---,._o

0 =lim OT -- /g(_T, _T lan)ds
- WALL-- oo

MODEL

HENCE, BY DEFINITION, THE WALL INTERFERENCE IS

_i _T - _ = / f(_T, °_T/On) ds

INTERFACE

ADVANTAGES

• ELIMINATES NEED FOR WALL CHARACTERISTIC DESCRIPTION

• ELIMINATES NEED FOR SIMULATING THE MODEL

DI SADVANTAGES

• MEASUREMENT OF FLOW ANGLE NEAR A VENTILATED WIND TUNNEL
WALL IS DIFFICULT

• SOME OF THE ADVANTAGES DETERMINED FOR LINEAR, SUBSONIC
FLOW MAY NOT BE EVIDENCED IN NONLINEAR TRANSONIC FLOW

12



ISSUES

At a workshop like this we have an excellent opportunity for indicating the
direction industry should proceed in developing W[AC techniques. In doing so,
however, attention must be paid to the issues enumerated below. Some of these

issues are very subtle in nature and not thoroughly understood at this point in time.
Part of our challenge is therefore to use the newer WIAC methods to reach a more

thorough understanding of these issues.

IN THE DEVELOPMENTOF WIAC SCHEMES, ATTENTION SHOULD
BE PAID TO THE FOLLOWING ISSUES

• APPROPRIATENESS OF AM AND Aa CORRECTIONS
VERSUS CORRECTING FORCES AND MOMENTS

• DEFINITIONS OF UNCORRECTABLEDATA

• VI SCOUS EFFECTS

• INTERPRETATION OF EOUIVALENT BODIES

• ALLOWABLE MODEL BLOCKAGE

• PRACTICALITY OF APPLICATION IN A PRODUCTION
WIND TUNNEL

13



APPROPRIATE CORRECTIONS

Traditionally wall interference corrections have been interpreted as

incremental corrections to the Mach number, AM, and angle of attack, A_.

These corrections require the gradient influences of the walls to be negligible,

or to be interpreted as a modification to the body shape (i.e.,an implied

camber). In transonic flows, such a simplification may not be justifiable

because of the steep gradients associated with shock waves. The results from

all of the WIAC methods presented could alternately be interpreted as

corrections to the pressure coefficient, Cp, or to the force and moment
coefficients, C_. However, a corrected pressure distribution on an airfoil,for

X • • • •

example, does not necessarnly colnclde w_th the boundary layer properties

measured. It may be feasible, however, to incorporate a simple boundary layer

method to simultaneously correct the viscous layer for the corrected pressure

distribution. As we develop WIAC techniques we should strive to resolve this

issue of how to interpret the wall interference.

• AM, Aa CORRECTIONS
-- ASSUMES SMALL GLOBAL CHANGES
-- IMPLIES AN EFFECTIVE CHANGE OF SHAPE OF THE

MODEL WHICH MAY NOT BE NEGLIGIBLE FOR CASES
OF INTEREST

ACp OR ACX CORRECTIONS

-- UNCLEAR INFLUENCE ON BOUNDARY LAYER INTERPRE'rATION

14



UNCORRECTABLE DATA

It is common terminology in the current WIAC methods to call data

uncorrectable if after a AM and &x correction the data does not agree with the
measured data in some global sense. It is of concern that this oversimplification

will categorize an inordinate amount of transonic wind tunnel data as
uncorrectable. On the other hand, if corrections are made to the pressures and

forces which take into account the gradient effects then it appears that all data is
correctable. However, it is not clear at this point in time if there is necessarily a

flight condition corresponding to the corrected measurements in the wind tunnel
for nonlinear transonic flow. The answer to this question will determine when an

adaptive wall tunnel is essential and when a WIAC method is adequate.

0 IS THE INABILITY OF AM, Aa CORRECTIONS TO MATCH A
GIVEN CONDITION AN ADEQUATEMEASURE OF WHETHERTHE
DATA IS CORRECTABLEOR NOT?

A DEEPERTHEORETICAL QUESTION FOR NONLINEAR TRANSONIC
FLOW IS.WHETHER THERE IS A CORRESPONDENCEBETWEEN
THE FLOW MEASURED IN THETUNNEL AND FREE FLIGHT

15



VISCOUS INTERACTIONS

As mentioned previously, when directly correcting pressure distributions on
models one needs to determine if the corrected pressure distribution has a
significant effect on the interpretation of the viseous interactions on the model. In

the validation of WIAC methods, concern must be given for two other viscous
effects, however. First, for any data set used to validate WIAC methods the
sensitivity of the model data to Reynolds number effects (as well as other faetors

sueh as noise, test installation, etc.) needs to be well doeumented and understood.

Otherwise, eomparisons of data from tunnel to tunnel at different Reynolds
numbers ran produce ambiguous wall interferenee results. Second, it is possible to
alter the level of wall interference with a Reynolds number ehange as suggested in

Ref. 13 and observed in some unpublished results at the Arnold Engineering
Development Center. This effect can be erroneously interpreted as a Reynolds
number effect.

IN THE
SHOULD

DEVELOPMENTAND VALIDATION OF WIAC METHODS
CONSIDER:

• WHETHERTHE INTERPRETATION OF THE VISCOUS
SIMULATION ON THE MODEL IS INFLUENCED BY

THE CORRECTIONS (PARTICULARLY ACp CORRECTIONS)

• IF ANY DATA SETS USED FOR VALIDATION ARE
SENSITIVE TO Re EFFECTS

• IF THE SENSITIVITY OF A DATA SETTO Re RESULTS
FROM THE MODEL VISCOUS EFFECTSOR TUNNEL WALL
VI SCOUS EFFECTS

16



EFFECTIVE BODIES

Several of the WIAC methods, and in particular the measured interface and

model pressures methods, use the concept of an equivalent body derived from the
measurements in the wind tunnel. Hence, contained in the definition of this

effective body are the perturbations caused by the wind tunnel boundaries.

Consequently, one must be careful in the interpretation of the results of using this
equivalent body in a free air calculation to determine the wall interference
effects.

ARE THE NONLINEARLY COUPLEDMODEL-AND WALL-INDUCED

PERTURBATIONS CONTAINED IN THE DEFINITION OF AN

EFFECTIVEBODY PROPERLYDELINEATEDIN DETERMINING

THE WALL INTERFERENCE?

17



ALLOWABLE MODEL BLOCKAGE

The energy savings of testing models in smaller wind tunnels, the use of

larger model_ for increased Reynolds number, or sometimes simply the availability
of a wind tunnel, is increasing the frequency of testing models with larger than the
1% blockage ratio commonly accepted as criterion for minimum wall interference.

In addition, since a large part of the wall interference can be reduced by using
small models, any WIAC method that is restricted to small models will not be

practical. A probable upper limit for model blockage ratios should be about 2.596.

PRACTICAL WIAC METHODS SHOULD NOT BE RESTRICTED

TO SMALL BLOCKAGE MODELS. THERE ARE INCREASING

ECONOMIC AND ENGINEERING REQUIREMENTS TO TEST

MODELS LARGER THAN 1% BLOCKAGE

18



GROUND RULES FOR APPLICATIONS

Returning to the challenge given in the first slides for routine and practical

applications of W]AC methods to come about within a decade, the guidelines listed

below need to be followed. If these requirements cannot be met in the production

wind tunnel environment, then the WIAC methods will be relegated to the role of

research tools only.

WIAC METHODS SHOULD
GENERALREQUIREMENTS

BE DEVELOPEDWITH THE FOLLOWING

IN MIND

3- D, TRANSONIC

ONLY GLOBAL MEASUREMENTSON THE MODEL SUCH
AS FORCESAND MOMENTS ARE AVAILABLE

SYSTEM MUST HAVE MINIMUM IMPACT ON DATA
PRODUCTIVITY

SYSTEM MUST BE ROBUST

SYSTEM SHOULD BE TRANSPARENT TO THE TEST
INSTALLATION

19
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PROBLEM: THREE-DIMENSIONAL WALL CORRECTIONS

TO LIFT REQUIRE VERY ACCURATE
EXPERIMENTAL METHODS

The purpose of this paper is not to provide a detailed discussion of several
wall interference experiments, but rather to use these experiments (recently
accomplished in the Boeing Transonic Wind Tunnel (BTWT)) to illustrate the

problems associated with many of the measurements required by current wall
interference assessment/correction (WIAC) procedures.

This paper will concentrate on the wall correction to llft and will show that,
because conventional tunnels and relatively small models wlll continue to be
used, the flow field or flow boundary measurements to be _de impose severe
requlrements on the experiment itself. In some cases, existlng

Instrumentatlon and test technlques may not be adequate to obtaln the data
accuracies needed.

Conventionol Transonic Tunnels and "Smell" Models

will continue to be used

- Porous Wells necessary to minimize blockage

- 3-D Model size constraints continue 1/ A model

\ A tunnel

Proposed 3-O Analytical Correction Schemes all

Require some Experimental Measurements

- Boundary Pressures

- Flow Field Velocities

Sensitivity of the Measured Forces to the Correction

Imposes Severe Requirements on the Experiment

- Test Technique

- Instrumentation: Colibrotion, Instollotion end Accuracy

FIGURE 1
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BOEING TRANSONIC WIND TUNNEL

The Boeing Transonic Wind Tunnel is an eight by twelve foot rectangular, slotted

tunnel with corner fillets and a porosity of 11%. Following are some of the
characteristics of the tunnel which are believed to impact wall interference.

l ,

,

3.

4.

The ftllet flap and re-entry doors are located at the aft end of the
test sectton. These doors control atr leaving or entering the test
section from the plenum. The doors are calibrated against Mach
number to mlnlmlze buoyancy and upflow in the tunnel test sectton.
The slots in the test sectlon vary in width longitudinally. There
are five In each horizontal wall and three In each vertlcal wall.
The pitch pod and strut are permanent features of the tunnel,
although the pod can be "stowed" near the cetllng when not In use.
The plenum beneath the floor of the test section ls smaller than that
above the celllng due to the presence of the shields surrounding the
balance.
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_ILLLrT rLRP DOORS

FZLJ.rr

CHRRRCT ER I ST Z CS

P(t) - P(Itm) T_IT ECTION SIZE:! 8 x 12 ¢t.
- 8.4 TO I,M _ NflLL POIII_ITY - IIX

Re Na. pep @t. - 5.7 x 10 Sut M - B.8 LONGZ31JOINRL _ u_J ~ II.ell at H - 8.8
OPIERFITZNGT[NP[RFITUR[ - 13!I*F

FIGURE 2
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RECENT STUDIES ON BTWT WALL INTERFERENCE

Recent studles on wall interference at Boetng began with an analytical
analysls of the tunnel using a three-dimensional, subsonic, potential flow
computer code (PANAIR). The code included a homogeneous boundary condition at
the walls. Various model configurations, mounting systems and wall porosities
were evaluated. (Reference 1)

It was deemed necessary to confirm that the PANAIR model was an acceptable
representation of the Boeing Transonic Wind Tunnel. Therefore an experiment

was done to determine the feasibility of measuring flow velocity through the
slots as well as the pressure distribution near the slot. The data were used
to compare with mass flux and pressure distributions from the PANAIR model,
and to compute K, the slot openness parameter.

At about the same time, a carefully controlled attempt was made to measure the

llft interference parameter directly by varying the porosity in BTWT from
completely solid walls tQ 3.5% and ll% openness. A typical transport type

model, stlng-mounted wlth an Internal slx-component balance, was used to
measure the interference.

Finally, a feaslbility study was performed to evaluate our ability to measure
flow field character%stics using static pressure pipes or flow angularity
probes.

• PANAIR

- Analytical, paneled model of BTWT, assumed homogeneous

boundary condition at the walls

- Various models, mounting systems and porosities

o Slot Flow Study

- Measurements of moss flux through the slots and the

pressure distribution at the wall

- Comparison to PANAIR

. Wall Porosity Variation
- Constant model, sting mounted

- Slot openness changes: OK , 3.5_ and 11_

. Flow Field Measurements

- Static pipe measurements

- Flow angularity measurements

24
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PANAIR- PROCEDURE

C_':.:..
OF FC; ._,: . _

The Subsonic/Supersonic Advanced Panel Pilot Code, PANAIR, solves for the
Invlscld, Irrotatlonal solution. Boundary conditions are set on the surfaces
of the panels upon whlch either sources, doublets, or both have been
distributed. In the example below, the boundary conditions on the wall are

based on the homogenous wall boundary condltlon:

_x + Ks Inx = 0

where K has been based on the Davis and Moore relationship between openness
ratio and slot parameter, as well as on the empirical correction of 4 x Davis
and Moore (Reference 2). The openness ratio was determined for each wail
separately, resulting tn different values of K for the walls than for the
ceiling and floor. The fillets are solid, as are the pitch strut and pod.
The wing/body, based on the BTWT calibration model, is modeled wtth both
sources and doublets to represent a lifting body. The paneling, however, was
too coarse to allow comparisons of the force data between PANAIR and
experiment. Wakes coming off of the wing and body satisfy the Kutta
condition.

All PANAIR runs were made at a Mach number of 0.5.

FIGURE 4
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PANAIR-PREDICTIONSOFLIFT INTERFERENCE PARAMETER

Each of the three models tested with PANAIR, a rectangular wing, a swept wing

based on the calibration model, and the wing/body, were "flown" first in free
air and then in the tunnel environment with various porosities. The lift

interference parameter, 50 , was determined from the differences in the lift
curves. These values were compared with the curves based on Pindzola and Lo
(Reference 3) technique using K factors reflecting both Davis and Moore and
4 x Davis and Moore (Reference 2). Considering that the theoretical predic-

tions of 6n are based on a rectangular tunnel having an average openness of
11%, whereas the PANAIR model included solid fillets and different porosities

on the walls and ceiling and floor, agreement is fairly good.

Results also indicate that the llft interference parameter Is somewhat model
dependent.
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FIGURE 5
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PANAIR- CONCERNS

Among the concerns left from the PANAIR study is the inability of the program
to model certain structural components of the tunnel which could affect wall
interference. In addition, the selection of K used in PANAIR is based on
empiricism and Is not confirmed by experiment. Furthermore, a quest lon remains
regarding the validity of representing a wall actually having discrete slots
as a homogeneous porous boundary.

The results from PANAIR also indicate, by means of a pitching moment change,
the presence of other wall effects, predominantly streamline curvature. In
order to correct for this condition, the lift interference parameter, &o, will
also have to be ad3usted. Currently, no feasible method for measuring or
detecting streamline curvature 1n BTWT has been _mplemented.

1. Unable to model Re-entry Doors, Fillet Flaps, or Plenum.

2. Used an empirical correction to the Davis and Moore relation

between tunnel openness and the slot parameter, K [2].

o Results gave evidence of streamline curvature effects

complicating the determination of the lift interference

poPameter, and currently not meosureoble in BTWT.

FIGURE 6
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SLOT FLOW STUDY - PROCEDURE AND APPARATUS

The slot flow study was carried out for a two-fold purpose: first, to

determine our ability to measure flow velocity and direction through the slot,
thereby allowing the computation of K dlrectly, and second, to compare the
measurements to those predicted with the PANAIR model.

In addition to slot flow velocity and direction, ceiling static pressures were

also required. Eight locations on the ceiling slat and in the plenum around
the center slot were chosen and measured at flve different tunnel stations.

The plenum pressures all more or less indicated the same pressure, as
expected. One of the pressure taps located l Inch from the slot was used In
the analysis.

The mass flux was determined from a hot fllm anemometer probe which traversed

across the slot measuring flow velocity and angle. An average, normallzed
mass flux was used.

While the probe was installed at one station location, data was taken at M =

0.7 wlth the model at -4, -2, O, 2 and 4 degrees angle of attack. Then the

probe was moved 6 Inches and the series repeated. In all, data was acquired
wlth the probe at S tunnel stations at 6-1nch intervals.

Wlth data for more than one angle of attack of the model, It was possible to
analyze the data for both absolute and incremental values. For the
incremental analysls, the zero angle of attack was selected as baseline.

1. Ceiling Pressure Measurements made

- I, 2 and 6.5 inches from center slot

- on the plenum side in four locations

- at five tunnel stations spanning 24 inches

2. Mass Flux was calculated r

- by o hot film anemometer measuring velocity

and angle across the center slot

- at five tunnel stations spanning 24 inches

8

==_ q" 7_-_

PROBE II

TRAVERSE PLENUM It

PATH 3 5 Jl 4

,\
_Lx; L.v

-_--e.e ----I

TEST SECTION

3. Tunnel conditions

- Calibration model, sting mounted, at 5 angles of attack
- Mach number of 0.7

4. Results analyzed with both absolute values and incremental changes
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ORIG!_:AL 7'!_/i :.:i_

OF POOR QU!_L;,'I.
SLOT VELOCITY AND PRESSURE

The data shows a discouragingly large variation of measured slot veloclty as a

function of tunnel station. Every effort was made to understand the
uncertainty In measured angle due to the reposltlonlng of the probe, but to
date no acceptable explanatlon for either the scatter or the offset In
absolute value has been found.

Even so, the gradient of the velocity through the slot matches PANAIR quite
well, and as it turns out, so does the variation of that gradient with model _.

Note too that the variation of measured slot pressure with model m is similar
to that of the PANAIR model, although again an unexplained offset exists,

40
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WALL INTERFERENCE FACTOR

Prediction of the wall interference factor, K, introduces another uncertainty,
resolving mass flux through a dlscrete slot to that through a homogeneous
boundary. If the average openness for BTWT, 11%, ls used, there ls poor

agreement between PANAIR and the experimental predictions.

However, tf the openness ratio of the celllng, 15%, Is used, as was used In

PANIAR, fatr agreement Is reached with the Incremental approach. Note that
using the measured values dlrectly (absolute analysis) gives a distinct
disagreement with the analytlcal mode].
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FACTOR

2OO

160

120

8O

4O

0

_ _ F _ AVERAGE OPENE_

.....
._U"__ .. J_">-_L_______-__-_

,, J, ,-2
0 .04 .08 .12 .16 .20 .28 24

A 8LOT WIDTH
• SLOT 8PACING

FIGURE 9

3o



SLOT FLOW STUDY - CONCERNS

It should be kept in mtnd that the purpose of this paper ls not to detail the
experiment, but rather to point out the very real problems tn applying these
techniques to a real tunnel. The local effects near the slot are probably
significant. Wu has looked at these effects on the tunnel stde of the slot
(Ref. 4), and they are probably similarly severe on the plenum side. At any
rate, conslderlng the detall with which thls type of measurement would have to
be taken (i.e., each slot and far upstream and downstream of the model), It

does not appear to hold much promise as an experlmental method for measurlng
slot performance.

1. Greatest error was in mass flux, uncertainty on

the same order as the measurement

2. Equating flow through discreet slots to flow through

a homogeneous boundary

e For determining wall corrections, measurements must

be "made over at least one-half the tunnel and the

length of the test section

FIGURE 10
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WALL POROSITY VARIATION - PROCEDURE

Llft interference should be directly measurable by varying the porosity In the
tunnel and observing the effect on the model llft curve. Recently thls
experiment was repeated In BTWT using a typical transport model, a
developmental model of the 767. Three wall porosltles were avallable, solid

walls, 3.5% and 11_ openness.

For each of the porosities, the test sections were first calibrated. The

fillet flap and re-entry doors schedules were selected for mlnlmal buoyancy
and upflow. The centerllne static and total pressures were callbrated to the
reference sensors. The upflow was determined by flying the model uprlght and
inverted.

In order to insure a hlgh degree of accuracy, each Mach series was repeated
three times. The balance used has the best zero stability history, and the
laser angle meter system, capable of measuring the angle of attack of the
model directly to within ±.Ol, was used. The tunnel exhaust doors and cold-

alr Intake doors were held to a constant setting throughout to minimize their
effects on the test section flow. The model boundary layer trip was monltored
throughout the test for consistency.

Although most emphasis was placed on the force data, model and wall static
pressures were also obtained. These wlll be used for comparisons and/or as
input wlth analytical methods.

1. Flow Calibration of all three Test Sections

- Optimized Rllet Rap and Re-entry doors schedules

- Gc static end total pressure corrections

- Measured upflow for model

2. Test Technique for best data accuracy

- Measured model alpha directly (Laser Angle Meter)

- Three repeat Mach series

- Balance selected for zero stability

- Boundary Layer trip using disks

- Constant Exhaust Door and Cold Air Intake Door settings

3. Measured Force and Pressure Data over range of M = .5 to .88

- Surface static pressures on wing and body

- Surface static pressures on Windtunnel walls

¢. Analysis emphasized Force Data

- Model upright and inverted

- Based on Lift curve and Drag polar

32
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TYPICAL MODEL INSTALLATION 

The model used i n  the study was a 767 development model ~ 

typical o f  models usually t e s t e d  i n  BTWT, with a blockage r a t i o  o f  near 0 .6% 
and a wing span of almost 69 inches. 
160 on the upper surface and 80 on the  lower. 

The model s i z e  i s  

In a l l ,  240 wing pressures were recorded, 

The model mountjng system was a straight stjng arrangement ,  d e p l c t e d  uslng the 
BTWT c a l l b r a t l o n  model In the photograph. 

(787 Development Model) 
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FIGURE 12 
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WALL POROSITY VARIATION - RESULTS

An assumption that has to be made Is that the llft interference parameter is

known for one of the porosities, and that _o would not vary with Mach
number. The PANAIR value of 0.I07 for the solld-wall case was selected.

However, since the solld-wall case for BTWT Is subject to blockage effects,

the classical correction to the data for blockage (Reference 3) was also

applied. Blockage effects at 3.5%and II% porosity are believed to be

negligible.

The values for 60 deduced from the measurements are shown for both the
upright and inverted model and using both the llft curve and drag polar
methods. A 95% confidence band Is shown for each deduced value.

In general, a downward trend of 4o wlth Mach number Is indicated, becoming
more severe for the higher Mach numbers. The uncertainty of the data also

increases at the high Math numbers. A number of factors could have caused

thls deviation from the expected. Classical blockage corrections could be

insufficient, other forms of wall interference may be affecting the data, or the

llft Interference parameter may actually vary wlth Mach number.
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WALL POROSITY VARIATION - CONCERNS

Concern remains primarily with the data acquired with solid walls. In

addition to the assumptions made for the solid wall case and the uncertainty
of the blockage corrections, questions remain regarding the abillty to test
with solid walls. The fillet flap and re-entry doors schedules were selected
to minimize buoyancy and upflow for both the 3.5_ and the 11% case. The

schedules result in a static pressure distribution in the test section that
could not be duplicated with solid walls. Normal static pressure measurements
for the determination of Mach number are made in the plenum. With solid
walls, this reference could not be used, and a static pressure tap had to be
located in the tunnel.

Furthermore, the accuracy goal in the determination of 6o (±.O.Ol), and
therefore a correction for llft interference (1% cruise drag), was not met
in all cases regardless of the care taken during the experiment. While some
areas of doubt can be tested in other ways, generally it is believed that the
experiment was conducted with state-of-the-art technique.

Io Correction of Solid Wall to Interference Free

- Variation with Mach number may be real, but may merely

reflect sensitivity to estimated blockage corrections

- No way to account for blockage buoyancy

- Model interference on static pressure source

- Unable to obtain the same pressure distributions with

solid walls as with porous walls with existing doors

o Transonic testing requires determination of ao to well within

"{- 0.01 in order to hove confidence in the correction

made to drag on the order of -F 1% of cruise drag for

a typical transport model

FIGURE 14
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FLOW FIELD MEASUREMENTS- PROCEDURE

Proposals have been made that wall interference, primarily llft interference,
can be obtained by measurlng flow field characteristlcs. Among the more

common suggestions Is the measurement of static pressure distrlbut%on or flow
angles. An analytical estimation of the feaslbillty of such an experimental
approach was conducted using an %nfinlteslmal horseshoe vortex to represent a

lifting body.

The expected distributions of static pressure and flow angle to be measured
are sketched in the figure below (referenced to the stationwise location of

the vortex). From the standpoint of repeatability and accuracy of the
measurement, it must be recognized that severe gradients in these parameters

will require close attentlon to repeatabllity of the location of the static
pipe and flow angle probe.

Io

e

Proposed Experiment

- Measure Row Field Static Pressure with Static Pipe

- Measure Flow Field Angularity with Cone Probe

First Order Approximation

- Represent lifting body with infinitesimal horseshoe vortex

to determine flow field and estimate the changes in flow

angle and pressure due to a change in wall porosity

3. Selection of the Location of the Probe:

FLOWANGLE

X

FIGURE 15
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FLOW FIELD MEASUREMENTS - RESULTS

The maximum change in llft interference would occur in going from an open jet

to a completely closed tunnel. Using an estimate of the llft interference

parameter from Reference 3, the maximum change In llft due to thls change In

wall configuration was calculated for typical models in BTWT. Since the

vortex strength Is directly proportional to llft, this provided an easy way to
model wall interference.

Results are presented for two model sizes. A maximum deviation of 0.004 psl In

static pressure and under 0.05 degrees In flow angle occurs with the larger

model. Considering that maximum openness in BTWT is ll%, not I00%, the

expected incremental measurements will be even less.

Current state of the art allows measurement of static pressures in a wlnd

tunnel environment to within O.OOl psi. At best, such a pressure measurement

would have 25% uncertainty.

For flow angle, the estimate Is worse. Cone probe accuracy is 0.02 degrees;

error Is at least 50% of the expected measurement.

Mach 0.5 P (psi)

c C 0.5

- 10 -8 -6 -4 -2 0

Fk)w A_e (_g)

- 10 -8 -6 -4 _-2_-._,._,,__

Cone Probe Accumcy----_ .04"_

.O8

.12

.._3.9

Transducer plus
"_ _ _Deta Syatem Accuracy

..... "" _L _ ,

2 4 6 8 10

x (ft)

I I I ,4

2 4 6 8 10
X (ft)

S= 3.9
-....

FIGURE 16
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FLOW FIELD MEASUREMENTS - CONCERNS

The small incremental levels to be measured and the accuracy requlred to
obtain meaningful results preclude, at this tlme, using thls technique for

determination of wall effects for these relatively small models in a
conventional tunnel.

In addition to measurement accuracy, other sources of error would have to be
considered, among them variation tn local Mach number and local flow
angularity. Other forms of wall interference, viscous effects arising from
proximity of the probe to the walls or model, and blockage effects would all
.have to be investigated or eliminated. Extreme care in probe design and
placement would have to be insured, so as not to introduce displacement
errors, especially tn flow angle measurements.

1. Measurement Accuracy and the small Magnitude of the data

2. Interference

- variation in local Moch number

- variation in local flow angularity

- wall/model effects

- blockage

3. Care in Experimental Technique

- rigidity of probe, cannot deflect under load

- alignment of orifice or probe with free stream

- displacement of probe in x, y or z direction

FIGURE 17
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CONCLUSIONS

Classical theory has not been able to predict wall interference In spectftc
_tnd tunnels to the degree of accuracy necessary for typtcal transport
testing. This ls partly due to tunnel characteristics not accountable wtth
current theories, and may also lndlcate some Insufficiencies In theories.

However, direct measurement of 11ft interference through typical force testing
In a tunnel with different porosities, while yielding fatr results, has also
not attained a level of accuracy required. Attempts to measure flow
characteristics have also proven extremely difficult, and those results
acquired raise questions regardlng their applicability to current theory. The
dtfflculties are due to the small quantities to be measured, the uncertainty
of the devices used to make the measurement and the interference from other
sources. It can be anticipated that should better quallty data be possible,
the questions surrounding blockage and streamline curvature will have to be
addressed.

As other uncertainties associated with wtnd tunnel testing continue to
tmprove and the data becomes more accurate, wall interference corrections
become more and more important. Experlments to directly or indirectly measure
wall effects promise to be very expensive and tlme consuming, In order to
obtain a degree of accuracy currently called for tn today's testing.
Therefore those working the problem are urged to consider these aspects of
three-dimensional reality in their selectlon of parameters to measure,
measurement systems, and the sensitivity of the result to expected
inaccuracies in the measurements.

1. Clossicol theory does not occount for physicol tunnel

chorocteristics (ie fillets, re'entry doors, etc.) whose

effects ore likely to influence woll interference.

2. Direct meosurement of flow chorocteristics is expected

to be very difficult for the level of occurocy required:

- smoll quontities

- meosurement uncertointy

- other sources of influence, interference

3. Questions regording reloting experimentol results to

clossicol theory remoin:

- seporoting blockoge ond streomline curvoture
from lift interference

- reloting discrete slot ond woll meosqrements to o

homogeneous boundory

4. Estimotes of lift interference corrections hove too high o

level of unce_ointy for tronsonic tronsport testing.

FIGURE i8
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SYMBOLS

a

b

c

1

s

x

Y

z

slot width

model span

model chord

model length

slot spacing

displacement In tunnel longitudinal direction

displacement in tunnel lateral direction

displacement in tunnel vertical direction

A

CD

CL

Cp

K

M

P

P(t)

S

Vslot

cross-sectlonal area

coefficient of drag

coefficient of llft

coefficient of pressure

slot openness parameter

Mach number

static pressure

total pressure

model reference area

flow velocity through slot

o

nx

I)x

lift interference parameter

rate of change as a function of X of the disturbance velocity

normal to the wall

disturbance velocity in the x-direction
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INTRODUCTION

The research undertaken at ONERA concerning the computation and/or reduction of

wall interference follows two main axes:

I. Improvement of wall correction determinations

2. Use of adaptive flexible walls

Although these two subjects are strongly interconnected, the different topics

will be considered in the following order for the sake of clarity:

i. Corrections computed from wall measured data

• Two-dimenslonal formulation review

o Three-dlmenslonal formulation review

2. Model representation

3. Two-dlmenslonal T2 wind tunnel operation

o Description

o Adaptation process

o Validation

4. Three-dimenslonal future concept

COMPUTATION OF CORRECTIONS FROM MEASURED WALL DATA:

REVIEW OF THE FORMULATIONS

This review of the formulation of the correction procedures based on measured

wall data for both two-dlmenslonal and three-dlmenslonal cases is given in detail in

reference I.

Two-Dimenslonal Case

The conventional assumptions of the linear approximation to subsonic compress-

ible flow are used. The perturbation potential _m is for unbounded flow around the

model, which is represented by singularities. These are deduced from measurements

made on the model submitted to the flow perturbed by _i' the tunnel interference

potential. In the wind tunnel, the total perturbation potential (@) yields

surface near the

wall. Values of these quantities are assumed to have been measured during the

test. The perturbation speed components from the model alone (at the same places)

may be computed using the volume, llft, pitching moment, and drag of the model. The

interference potential
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(i)

may be deduced from

_2 _2 +i
82 +i + __. 0 (2)

_2 ay2

subject to the conditions that #i be continuous inside the control surface, since

and _m have the same singularities, and that _i derivatives be given along the

control surface near or at the wall. That is, distributions of either 8_i/Sx, given

by (ref. I):

+(,+>+. (3)

or 8_i/Sy, given by (ref. 2):

=++++g(x) (4)

are known, as indicated above.

By conformal mapping, the problem may be solved analytically to express the

speed and the angle-of-attack correction, as well as their corresponding gradients.

In particular, for a model at the mldheight axis of the test section, we have

(ref. i):

_i (x) I /__ fB(_) + fH(_)_x -- 8--h 2 cosh[w(_-x)/Sh] d_
(s)

and

_y- (x) ffi _ e2_(_-x)/Sh + i d_ + c
(6)

where fH and fB denote the upper (+h/2) and lower (-h/2) walls.

The constant c is determined by the direction of the far upstream flow.

conjugate formulations (ref. 2)

The
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(x) 1 gtI( ) - gB(5) (7)

and

@¢i I /__ gH(_) + gB(_)_-- (x) ffi_ 2 cosh[_(_-x)/Sh] d5
(8)

are generally difficult to use, since the transverse speed yielding g is not

accurately measured.

Two questions may ,arise concerning the application of these formulas.

1. Since the functions f or g are obtained from 3_/_x or _¢/_y, it is

necessary to know not only the speed measured on the control surface but

also the "far upstream reference speed" we are seeking.

2. The extrapolation of the functions required to integrate between _= als0

depends on the far upstream and downstream conditions.

It may be easily demonstrated (ref. I) that any error on the first guess for the

Mach number and direction is automatically eliminated by the correction computation

through equations (5) and (8).

As concerns the extrapolation, the increase of the denominator with _ due to

the hyperbolic cosine allowed the truncation of the limits for equations (5) and (8).

Equations (6) and (7) must be handled more cautiously for two reasons.

I. They do not demonstrate the same advantage of autoconvergence.

2. Their denominator does not increase without bound in the upstream region of

the test section; that is, f and g must be accurately known in order that their

top and bottom wall dlfferences, whlch appear in the numerator, produce a negligible

contribution to 'the integral.

It should be pointed out that by using this method, the results of an "empty

test section calibration" are eliminated unless some "hole defects" in the wall are

detected. These can be taken into account by a corresponding AKp before using the

wall pressure to obtain _/_x (x) for the boundary condition (equation (3)).

Three-Dimensional Case

The conventional assumptions of the linear approximation to the subsonic com-

presslble flow are made for a rectangular (2a x 2b) test section with two plane solid

vertical walls. The total perturbation potential _ can be separated into three

terms (ref. 1):

!

¢ = Cm + _m ÷ ¢I (9)
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where

_m potential for unconfined flow about model yielding same measurements on
model

_m' potential of infinite row of model images as a result of vertical solid
walls

The potential

tunnel interference potential of top and bottom walls

_i is determined to be a solution of

A_± = 0 (10)

with the boundary conditions given in equations (II) and (13). Thus

--= o (it)
ay.

on the lateral vertical solid walls, and

_-_-= _x \ax -_-/
(12)

which is determined on the control surface z = ea by measuring the pressures yield-

_A
ing

_x_ and by computing _--+ _ from the representation of the model. Thus
we

have

ax (x,y,+Ba) " fH(x,y) (13a)

(x,y,-Sa) = fB(x,y) .(13b)

When _i is continuous in the band [z I < a and periodic in y, the following

series are used:

I_n (2n + I)_,i(x,y,z) = _ (x,z) cos 2n_y + en(X,Z ) sin 2Bb Jn 2_
(14)
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(2n + i)_+ gn(X) sinf(x,y) = _ n(X) cos 28b 2Bb J
n

(15)

The speed and angle-of-attack corrections based on _i may be expressed by

_¢i 1 ?®
(16)

and

(17)

where the weighting functions I n and Jn are written as follows:

in(X ) = e d_ (18)

e-ial_42 + (n2 2/82b2)
dR} (19)

= x nwa
Using the reduced variables _ (--_-, _ = b ' and

expressed by
t =' Bato, In and Jn are

1
In({) = -_ F( _:,n) (20a)

and

Jn({) = - I--G({,n) (20b)

where

cos _t

4J 22 cosh +

dt (2la)
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and

2s,n t
jt 22t sinh 2+ n

dt (21b)

As an example, the wall signature weighting functions F are presented in

figure I for a square test section. The figure shows the decrease of F versus

and also versus its order of magnitude. It is necessary to add the terms resulting

from _m' to the corrections based on @i"

If a crude, uniform, transverse adaptation of the top and bottom walls is made,

the residual corrections can be attributed primarily to _m' because the remaining

terms based on _i are weighted by F(_,_), F(_,2_), ..., which are very small.

MODEL REPRESENTATION

For both the two- and the three-dlmenslonal cases, the results of the correction

computations depend on the accuracy of the model representation (ref. 3). In princi-

ple, there are no restrictions as to the number of singularities used in the model

representation. In fact, however, the trend is toward a small number of singular-

ities. It is necessary in each case to assess the validity of this representation.

Some sample results are given for model representations that are too crude; there are

large differences between the measured or computed "signatures" at the wall for both

the two-dlmenslonal and the three-dlmenslonal cases (figs. 2 and 3).

It should be pointed out that the good agreement of results obtained with two

different boundary conditions at the wall is not a sufficient validation, since the

error caused by the defect in the model representation is the same in both cases

(ref. 4). Indeed, when shock waves or separations appear on the model but do not

extend to the wall, their corresponding fields must be determined by more elaborate

methods and assessed by the wall pressure measured with a known boundary condition.

ONERA T2 WIND TUNNEL OPERATION

Description

The ONERA T2 is a closed-circult inductlon-drlven blowdown wind tunnel with the

following main features (fig. 4 and ref. 5):

I. Stagnation pressure: 5 bars

2. Run duration: 30-60 sec

3. Test section: length = 1.32 m

height = 0.37 to 0.39 m

4. Two removable blocks for top and bottom flexible adaptive walls, each fitted

with 16 jacks (step 0.2 mm, range 25 mm), 16 potentiometers (displacement

accuracy 0.05 mm), 91 pressure holes along three llnes
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5. Data acquisition (I000 points/set) and reduction, as well as jack and probe

displacements, obtained in real time on RP I000 computer

Adaptation Process

The well-knownlteratlve process used to adapt the wall is shown in the simpli-

fied diagram in figure 5. Thls process Is reduced to one run by the following

procedures:

1. Choice of Initlal shape (computed or adapted during previous test under

slightly different conditions)

2. Use of four relaxation coefficients optimized for each term of the set of

symmetrical and antlsymmetrlcal parts of test section mldllne and height

3. Definition of test Math number during adaptation, consistent with method

described for correction computation (see fig. 6)

The tlme required for one iteration is calculated as follows:

Displacement of walls .................. i sec

Wall and model pressure measurements ........... 5 sec

Virtual external field and new shape computation ..... 4 sec

Total ........................ I0 sec

At the end of the run, a graphic display of the followlng results is available:

I. Mach number distribution on walls

2. Wall shapes for each iteration

3. Pressure coefficient distribution on model and integration results

at each step

These results are used to observe the convergence during the prescribed number of

iterations (three to five). After the adaptation run, another run is required to

obtain the drag by wake probing.

Validation

There are several points to be checked in the adaptlve-wall operation.

1. According to our experience, with the optimized relaxation coefficients, the

convergence of the process is always obtained in one run.

2. All the results depend on the external flow field computation, and a part of

the data has to be extrapolated from the control surface measurements.

What then is the influence of this extrapolation? By substituting zero for

the extrapolated values, we flnd a difference in the wall shape of only

about one Jack step (fig. 7).
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3. It is not simple to assess the accuracy of the whole process, since the

propagation of measurement errors in the functionals given by Green's

method is difficult to follow.

Some special tests were made for this purpose in which the same airfoil was

placed first on the centerllne and then 80 mm below this line (20 percent of the

total test section height). The wall shapes and the pressure distributions after the

adaptation were quite different in the two cases (fig. 8), but the results on the

airfoil (CAST 7; c = 200 mm) were quite similar. The comparison may be made on the

very sensitive pressure distribution (fig. 9) or on the llft coefficient obtained by

integration (fig. I0). On these last curves, the scale is sufficiently enlarged to

show a scatter corresponding to a few thousandths in the Mach number or a few

hundredths of a degree in the angle of attack.

Some other tests wlth systematic changes of the slope or divergence of the test

section (yielding nonadapted shapes) assess the influence of the wall shape near the

model on the "far upstream references." The latest improvements concern the follow-

ing points.

I. The small differences between the wall and the plane control surface for both

the measured values and the external flow field boundary are now taken into

account by the _/_x values of the variables at the wall.

2. The vectorizatlon of a part of the code reduces the computation time, despite

a decrease in the mesh size.

3. The Mach number determination will be included in the real-time process to

obtain a test at given angle-of-attack and Mach number conditions.

4. Operation under cryogenic conditions with a device to precool the special

model is planned in the near future.

THREE-DIMENSIONAL FUTURE CONCEPT

From the two-dimenslonal experiments on adaptive walls and the three-dimenslonal

interference computation, we can try to formulate some general observations for the

orientation of our future work. The perturbation field of a three-dlmenslonal model

with the conventional limitation of size is 1 order of magnitude smaller than that

for a two-dlmenslonal airfoil such as the CAST 7 in the T2 test section (blockage

ratio 6 percent). Just as for the three-dlmenslonal wall interference computation,

we can consider the adaptation as the superpositlon of different terms, the first

being, for example, the two-dlmensi0nal case with flat parallel vertical walls and

adapted top and bottom walls. In theory, the residual corrections in this case can

easily be computed from

I. The field of the infinite file of images through the lateral walls

2. The residual corrections arising from the second term of the development

These corrections appear to be an order of magnitude smaller than the part cor-

rected by the adaptation of the top and bottom walls, by which the mean longitudinal

gradients are nullified. However, in practice, our experience concerning the wall

pressure measurement accuracy has shown that it may be difficult to estimate the
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higher order terms, and we have to hope that they are negligible. Moreover, model

representation of vortex sheets remains a problem to be solved.

The application of these crude concepts may be useful in showing the posslbil_ty
and the need to go beyond a two-dlmensional adaptation for the sonic 0.8- by 0.8-m

S3CH wind tunnel improvement project presently under way. The T2 test section may

also be used in the same way, but only with a half model. However, for the indus-

trial tests, the confidence in the corrections computed by the signatures method with

improved model representation seems sufficient to render adaptive technologies unnec-

essary at the present time, as long as the Mach number is significantly under I.

CONCLUSIONS

The use of wall-measured data to compute interference effects is reliable when

the model representation is assessed by "signatures with known boundary conditions."

When the computed interferences are not easily applicable to correcting the results

(especially for gradients in two-dlmensional cases), the flexible adaptive walls in

operation in T2 are an efficient and assessed means of reducing the boundary effects

to a negligible level, if the d[rectlon and speed of the flow are accurately measured

on the boundary. The extension of the use of adaptive walls to three-dimensional

cases may be attempted since the residual corrections are assumed to be small and are

computable.

1.

2.

.

.

.
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Figure I. Wall signature weighting functions.
Three-dimensional case.
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Figure 2. Theoretical assessment of the model representation

from the transverse speed component at the wall.
Two-dimensional case.
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I Wall shape, first guess I

Jack displacements I_

Airfoil pressures I

Wai] position yp(X) II
Wall pressures p(x I

Measurements

I Mach number determination I

I Longitudinal perturbation speed analyzedin four parts according to symmetry: u(x)

I

Boundary layer

displacement
correction

y(x) = Yp - 61

II Transverse perturbation speed i_--- by Green formulation v(x)

II II I,
t

I Improved wall shape with Ifour optimized relaxation factors

VFixed number of iteration;

Figure 5. Wail adjustment diagram.
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Wall measurements

DisplacementSyp(X) I PressureSp(x)

I Boundary layer correction ]y(x)

I ,x,l
I Vertical component: v of V I-._

Perturbation speed u(x)

I +ooi,

u(x)- _ __. v{._.at

g
Top and bottom wall integrations

So,x>[o(x_-(Oo+ulx_)]ox;o

Local speed

7(x){vu

Bin,

Figure 6. Mach number determination,
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Figure 7. Virtual flow computation.
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Figure I0. Lift coefficients. T2 wind tunnel, CAST 7 profile,
c = 200 mm.
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SUMMARY

A wall interference correction method for closed rectangular test sections has

been developed which uses measured wall pressures. Measurements with circular discs

for blockage and a rectangular wing as a lift generator in a square closed test sec-

tion validate this method. These measurements are intended to be a basis of compari-

son for measurements in the same tunnel using ventilated (in this case, slotted)

walls. Using the vortex lattice method and homogeneous boundary conditions, calcula-

tions have been performed which show sufficiently high pressure levels at the walls

for correction purposes in test sections with porous walls.

In G_ttingen, an adaptive test section (which is a deformable rubber tube of

800 mm diameter) has been built and a computer program has been developed which is

able to find the necessary wall adaptation for interference-free measurements in a

single step. To check the program prior to the first run, the vortex lattice method

has been used to calculate wall pressure distributions in the nonadapted test s6ction

as input data for the "one-step method." Comparison of the pressure distribution in

the adapted test section with "free-flight" data shows nearly perfect agreement. An

extension of the computer program can be made to evaluate the remaining interference

corrections.

INTRODUCTION

In many cases the classical wall interference correction methods are not suffi-

ciently accurate because not all model parameters (e.g., extension of the wake) are

known. To get rid of this difficulty, a wall pressure method has been developed by

G. Schulz, DFVLR Koln (ref. I). His method is based on the image technique and is

restricted to closed rectangular test sections. Measurements in a 1.3-m closed

square test section have been carried out at DFVLR Braunschweig and corrected with

his method.

Based on calculations with the vortex lattice method and homogeneous boundary

conditions, it is shown that in ventilated test sections there is a sufficiently high

pressure to apply correction methods using measured wall pressures (ref. 2). The new

adaptive test section at Gottingen and the one-step method for wall adaptation

(ref. 3) are discussed in the last part of this paper.

SQUARE TEST SECTIONS WITH SOLID WALLS

Measurements have been carried out in a 1.3-m closed square test section at

DFVLR Braunschweig. Circular discs were used for blockage and a rectangular wing

was used as a lift generator.

Blockage

Figure 1 shows the measured wall pressure distribution for a 0.5-m-diameter

circular disc. This corresponds to 11.6 percent geometric blockage. The abscissa

62



indicates the parameter 2s/H, which is the dimensionless circumferential distance,
as shown in the sketch below. The symbols (triangle, square, and cross) designate

different longitudinal stations. Positive values of x are upstream of the model,

x = 0 is the position of the model, and x negative is downstream of the model.

There exist optimum positions at the walls where the influence coefficients used for

correction of the dynamic pressure are independent of model parameters (Zop t in

fig. i). Extensive parametric studies have been done to show this (ref. ]). Com-

parison with a theoretical result (using a source and a sink) shows that in this

case, where the geometric blockage is 11.6 percent and the effective blockage is

estimated to be around 30 percent, the results cannot be corrected due to a strong

deformation of the wake. The flow has no similarity with the "free-flight" case.

The influence coefficients used are basically the longitudinal velocities

induced by the model and the walls (the measured quantity is the wall pressure),

divided by the average longitudinal velocity induced by the walls at the position of

the model. These influence coefficients or influence functions can be precalculated

and can easily be used for the correction procedure.

The correction of the drag coefficients of the circular discs is shown in fig-

ure 2. The results can be corrected properly for up to 5 percent geometric blockage.

The increasing error for higher blockage ratios is due to the strong deformation of

the wake, which the correction procedure cannot account for.

Figure 3 illustrates the optimal positions for the wall pressure measurements.

They are situated at the side walls as indicated by Yopt = ±H/2 and Zop t = ±0.348H.

Both of the longitudinal positions needed are indicated as Xwl and Xw2. At these

two positions the wall pressures had to be interpolated. For a given tunnel, the

pressure taps can be installed permanently at the optimal positions. Again, negative

values of x are positions downstream of the model.

Lift Generator

The model used as a lift generator is shown in figure 4. The quarter-chord line

is at x - O. The model is supported by a rearward sting. Figure 5 shows the mea-

sured wall pressure distribution, which includes l_ft and blockage influences. The

different longitudinal stations are represented by x w. It can be seen that there is

blockage influence because there is no antisymmetry to Cpw = 0, as one would expect

if the model would generate lift alone. By adding top and bottom wall pressure sig-

nals and, of course, dividing the results by two, the wall pressure signals (i.e.,

the pressure coefficients due to blockage) can be extracted. This is possible

because pressure signals due to lift differ in sign from top to bottom wall, and

those due to blockage have the same sign. Therefore lift signals are cancelled and

the blockage signals remain. This is shown in figure 6. The theoretical result has

been calculated by representing the volume distributions of fuselage and rectangular

wing with a number of doublets in longitudinal and spanwise directions. The strength

of the doublets is obviously wrong by a factor of 2.5, but the shape of the theoreti-

cal curve compared to the squares looks right, and the correction procedure takes

account of the correct strength because it uses the measured wall pressures.

The pressure distribution due to lift alone can be extracted by subtracting

bottom wall signals from top wall signals and averaging. This is illustrated in

figure 7. For reasons of comparison, theoretical results for two different longi-

tudinal stations have been plotted in the figure. The differences between
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experimental data and theoretical results are due to the fact that the calculations
were donewith a single horseshoevortex, which meansconstant lift distribution.
The agreementwould be better with an elliptical load simulated by a set of horseshoe
vortices. The influence coefficients for blockage were mentionedpreviously. For
lift, they are the wall- and model-inducedx-velocities at the walls, divided by the
vertical velocity w induced by the wall alone. Thus the measuredquantity is the
wall pressure, which gives the longitudinal velocity. Thesevelocities and the
influence coefficients or influence functions give the vertical velocity w due to
the walls alone; that is, the angle-of-attack correction As. Also, for the influ-
ence function for angle-of-attack correction, fL' optimumpositions exist for pres-
sure tap locations. This is illustrated in figure 8. The parameter varied is the
relative span, fL being independent of this modelparameter at a certain spanwise
station in this tunnel.

The final results for the corrections are given in table I. The last line
illustrates the case discussed in figures 5 to 7. There is a 2.3-percent correction
of dynamicpressure, a 1.8° angle-of-attack correction, and a 16-percent changein
drag coefficient.

PERFORATEDWALLS

Figure 9 showsthe influence of wall porosity on spanwisedistributions of
interference. The vortex lattice methodwasused for the calculation, with homo-
geneousboundary conditions. The induced velocities at the walls in the main cross
section (i.e., at x = 0), where the model is located, are presented in figure i0.
Theparameter varied is the porosity factor Q, and 6Xw is the dimensionless longi-
tudinal velocity induced by the model and the tunnel walls. The calculations indi-
cate a sufficiently high pressure level for application of a Schulz-type wall pres-
sure methodeven in perforated test sections.

ADAPTIVETESTSECTION

An adaptive test section that is a deformable rubber tube of 800mmdiameter
has been built in Gottingen (ref. 3). (See fig. ii.) It will be installed in the
high-speed intermittent facility of DFVLRGottingen (ref. 4) in the near future. It
uses a "one-step method" (adaptation in a single step, no iteration necessary). This
computerprogramuses Fourier series and Fourier transforms to find the interference-
free contour of the circular test section. Theprinciple of the methodis given in
appendixA.

To check the one-step methodprior to the first run, the vortex lattice method
has been used to calculate pressure distributions at the tunnel walls whena model is
present, and potential theory gives free-flight data at imaginary walls.

First simulated experimental data were used as input to thecomputer program,
and then calculated free-flight data were input. If the one-step methodworks as
expected, it should give the free-flight pressure distribution after the wall adapta-
tion has beenmade. Of course, this is just a simulation.

Figure 12 illustrates the principle of the vortex lattice method. Theboundary
conditions are fulfilled at a set of control points. The case in figure 13 was
calculated with a single doublet representing a sphere of 7.5 percent geometric
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blockage. Starting from the nonadaptedtunnel with cylindrical walls, the free-
flight pressure distribution at imaginary walls is reachedwithin an accuracy of
2 percent of the difference. In figure 14 the analytical solution gives the
unconfined-flow streamline to be achievedby wall deformation. Thedifferences in
this figure and in figure 13 can be explained as follows. Upstreamand downstreamof
the model, the test section diameter was taken to be 800 mmfor the analytical calcu-
lation. At the beginning of the rubber tube test section, however, the theoretical
streamtube already has a diameter of more than 800ram,whereas the test section hard-
ware is fixed to 800m diameter. If a parallel streamline is taken for comparison,
the two upper curves in figure 14 fit together exactly. The lower curve showsthe
influence of compressibility. It should be mentioned that the model is designed for
compressible subsonic-flow conditions.

Figure 15 showsanother example of checking the one-step method using a wing

with elliptic load as a lift generator. The wall pressure distribution calculated by

the one-step method after the wall adaptation shows good agreement with "free-flight"

imaginary walls. Figure 16 shows the wall displacement for this same case. No data

are available presently to compare with such an analytical solution. This figure

serves to indicate the order of magnitude of wall displacement. The data used for

the calculation were:

Aspect ratio ....... 5.0

Lift coefficient ..... 2.0

Relative span ...... 0.7

Elliptic load

At the end of the test section, the wall displacement is about 40 mm.

Measurements have not yet been carried out in the deformable rubber tube

adaptable test section. The influence of errors in the wall pressure measurement on

the wall adaptatio_ is presently being investigated. It wiil probably be necessary

to evaluate the remaining wall interferences if the wall adaptation cannot be per-

formed fully.

CONCLUDING REMARKS

A correction method for closed rectangular test sections based on measured wall

pressure data and using influence coefficients has been shown. This method appears

to be applicable to perforated test sections as well.

Prior to the first run in the deformable rubber tube test section, the computa-

tional adaptation procedure (the one-step method) was shown to give accurate results

for the cases discussed previously. Experiments will show how good the one-step

method and the adaptable test section will be in realitx, as well as whether there

will be a need to evaluate the remaining wind tunnel wall interference.
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APPENDIXA

PRINCIPLEOFTHEONE-STEPMETHODFORCALCULATIONOFTHE
FINALWALLCONTOURIN A SINGLESTEP

Thedisplacement of the wall comparedto a cylindrical nondeformedwall is
N(x, 0) in cylindrical coordinates. The calculation starts with an initial pre-
liminary wall setting no(X, 0). This setting of the wall can be zero, for example,
but it is better to choosea wall setting that has been found previously for a
neighboring angle of incidence or Machnumber.

For the wall setting Do, the inner f]ow with the model included has the poten-
tial _o(r, x, 0). Normally Go is not known, but the velocity componentsat the
wall can be determined. The value of uo is determined by measuring the wall pres-
sure, and by knowing the wall setting, vo is also known:

Uo = \_x /R AP° = -0°°U°°u°

Vo = \_r /R v° = U°° dx

(i)

(2)

An additional wall displacement AN = n I - No generates an additional perturbation

of the flow and.accordingly an additional perturbation potential. This unknown addi-

tional perturbation potential must be determined; this is done by using Fourier
series.

The inner flow region is represented by

=Oo+ufr.nan'kIn( kr)ei(n@+kx)dk (3)

and the fictitious outer flow region is given by:

where

-uo bn,kKn(Skr)ei(nO+kx) dk
n

(i) = inner flow region

(o) = outer flow region (fictitious)

(4)
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The coefficients a and b can be determined as follows:
n,k n,k

and

whe re

v(i) = V(o )

u(i) = U(o)

and

u(i) = R

Using equations (3) and (4) we get

and

v(i ) = v 0 + uoof_ n an,kln'(SkR) Bke i(n@+kx) dk

V(o) = Uoof n_ bn,kKn'(SkR)Bke i(nO+kx) dk

By integration of equations (5) and (6) we find that

and

ql(i) = _0 +rE _ an,kln '(BkR)ei(no+kx) dk
n

I"11(o) = f En _ bn'kKn' (BkR)ei(nG+kx) dk

(5)

(6)

(7)

(8)

Equations (3) and (4) further give

u(i) = u0 +U/n an,kikln(_kR)ei(nG+kx)dk
(9)
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u f ikK f_kR _e i (n()+kx)(o) = Uc° _n bn'k n_ _ dk
(i0)

By setting

and

Q(i) = q(o) and u(i ) = U(o), equations (7) to (i0) give

f_ _ , ,)ei(nO+kx)
n o = _ (bn,kK n - an,kI n dk

./ n

uo f i (nO+kx)- n_ ik(bn,kK n -an,kln)e dk

(ii)

(12)

Fourier transforms of equations (ii) and (12) lead to

6 (bn,kK n, , = I f/N0e-i(nG+kx)
- an,kl n ) (2_) 2 dO dx

and

1 //u0 -i(n0+kx)
ik(bn,kK n - an,ki n) "* (2_) 2 _ e dO dx

(13)

(14)

From equations (13) and (14) and b
for b is an,k n,k

n,k

can be determined. The expression

,f/uo -i(n@+kx) k ff -i(n@+kx) dO dxIn _ e dO dx + _ In n0e

bn'k = ik(2_)2(In'K - I K ') (15)
n n n

The result for the final (additional) wall displacement is obtained from equation (8)

using the b values given in equation (15)
n,k



OF POOR QU:&LiTY.

TABLE I .- FINAL RESULTS FOR RECTANGULAR WING

O( a CL

-2,05 # I, 125 O, I Zt.K)

0 ° 1,276 0,1571

1,12 ° 1,360 0,1755

3,16 ° 1,510. 0,2125

4,25 e ],589 0,2321

5,18 ° 1,6.=.3 0,2510

6,32 ° 1,736 "0,2724

7,3'I ° I .808 0,2948

7,80" 1,834 O, 3037

8,84 ° 1,892 0,3244

10,90 ° i ,876 0,3512

uncorr,expdata

cn aq/% cL cn acxm m Cn: Cll
w

0,01587 1,107 0,12599

0,01741 1,254 0,15440

0,01746 1,337 0,17248

0,01838 1,483 0,20865

0,01996 1,558 0,22754

0,02004 1,625 0,24604

0,02107 1,700 0,26675

0,02113 1,770 0,28867

0,02177 1,795 0,29719

0,02229 1,851 0,31729

0,02334 1,833 0,34314

blockage corr

I,OU734 ° _),963 ° O,(]JlO 0,1.1/0(())

1,22754 ° +1,227 ° 0,0269 0,1U13

1,30387 ° 2,424 ° 0,0304 0,2029

1,46121 © 4,621 ° 0,0378 0,2465

1,55156 ° 5,802 ° 0,0422 0,2697

1,60764 ° 6,788 ° 0,0456 0,29]6

1,68709 e 8,(.107° 0,0501 O,_lb8

1,74473 ° 9,115 ° 0,0539 0,3426

1,78211 ° 9,582 ° 0i0558 0,3530

1,81638 ° 10,656 ° 0,0587 0, J760

1,80704 ° 12,707 ° 0,0578 0,4010

angle of attack corr.
final values
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OF POOR QUAL_T"I
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Figure 4.- Lift generator.
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INTRODUCTION

The test section has impervious flexible top and bottom walls and therefore
has two-dimenslonalcontrol over the internal flow. With two-dimensional models
this allows wall interference to be essentially eliminated at all conditions at
least up to the walls becomingsupercritlcal. The practice is to streamline and
not to apply corrections, since attempts to apply corrections with our wall-data-
basedcorrection methodwere not reliable. Data bases of wall position, local
Machnumbers,andmodel data are available mostly for walls-streamlined and walls-

partially-streamlined cases. Examples are included from recent tests on a CAST-7
airfoil.

The same test section is now being used in three-dimensional testing, where

the goal of testing completely free from wall interference is impossible. The

philosophy is being adopted of providing the test section with sufficient static

pressure tappings around and along its length to allow various measures of inter-

ference to be quantified. The principal interferences that the model experiences
are wall±induced velocities in the streamwise and vertical directions. This

induced velocity field can be manipulated by wall movement and hence the level of

interference can be reduced. Information is included which illustrates the levels

and types of control over test section flow which are possible by these means. An

example of the level of interference experienced by a model in a transonic test
with straight test section walls leads in turn to estimates of the wall movements

required to eliminate the interference. (See fig. l.)

2D= INTERFERENCE IS ELININATED BY ADJUST_NTS BASED ON DATA TAKEN AT

WALLS. CAST-7 DATA ¥ILL ILLUSTRATE AGREEMENT BETWEEN VARIOUS

FLEXIBLE-WALLED TUNNELS,

3D= INTERFERENCE CANNOT BE ELIHINATED BUT WALL ADJUSTMENTS CAN CONTROL

8 RELIEVE THE PRINCIPAL SOURCES OF WALL-INDU_D ERRORS.

THIS TALK WELLw

Cl GIVE ESTE_fATES OF NAGNITUDES OF THE CONTROL VHICH MAY BE EXERCISED

ON FLOW BY HOVENENT OF ONE WALL JACK

[3 OUTLINE NEW WALL CONTROL ALGORITI'_f ( STILL IN ANALYTIC DEVELDPHENT STAGE )

BASED ON USE OF" THIS DATA

r-I GIVE BRIEF EXAHPLES OF CONTROL OF WALL-INDUCED PERTURBATIONS IN

REGION OF MODEL

Figure 1
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TRANSONICFLEXIBLE-WALLEDTESTSECTIONLAYOUT

Both two- and three-dimensional model testing is being carried out in the
transonic flexible-walled test section (fig. 2). The test section has flexible
top and bottomwalls with rigid sidewalls. It is 6 in. square, runs at atmos-
pheric stagnation conditions, is injector driven, and has a closed circuit. Wall
data (pressure and position) are used to automatically streamline the flexible
walls. Eachwall has 20 motor-drlven jacks controlled on-line by a computer.
Following streamlining, no corrections are applied to two-dimensional data. The
relative sizes of typical modelsare indicated.

Pltn view of 3-I} Model #nd

.Support to same scale as below

Fixed
Contraction

e i i

}4ode l axis
o£ rotation

14 17

a ' . I m I

........ ,

6 14

Jack Numbers

_ ference "----'---- Stremsllned
Pre|sura So ctioJl

Jacks 20
avallab le for
Hath Control

I I --

Wind tunnel injector

_I rl_cot "erusure vent

rake

Figure 2
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CAST-7AIRFOILDATACOMPARISONS

Recently, eight Europeantunnels have beenused In two-dlmenslonal tests of
the CAST-7airfoil (ref. I). Figure 3 showsresults from five tunnels (Rebetween
1.4 × 106 and 2.5 × 106). Results from the two adaptive tunnels showedexcellent
correlation.
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CAST-7 AIRFOIL DATA COMPARISONS

Results from three flexible-walled adaptive tunnels show excellent agreement

for maximum lift coefficient as a function of Reynolds number. Two trend lines

are shown in figure 4, the upper for corrected data (including adaptive), and the

lower for uncorrected data. The agreement shown in this unique comparison between

results from three flexible-walled adaptive-test-section tunnels is encouraging.

0. 85

0.80

MAXIMUM

CL 0.75

O. 70

0. B5

NAXINUN LIFT COEFFICIENT AT MACH O, 78

ONERA
-

- TEC UN BERLIN
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-- +

• ADAPTIVE TUNNELS

D CORRECTED DATq OTHER
l
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I I I
2 5 IO
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I
20

Figure 4
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OF POOl, _ C:J.:!.C.i,':w' ESTIMATES OF PERTURBATIONS IN MACH NUMBERS

INDUCED BY MOVEMENT OF A SINGLE JACK

Three-dimensional testing requires a new wall control algorithm. Wall data

provide estimates of wall-induced perturbations in the region of the model. Data

of the type shown in figure 5 can lead to a solution of the inverse problem,

namely, the wall movement required to reduce the principal perturbations. The

figure shows computations of perturbations induced near the centerline by moving

one jack by a representative amount. The jack spacing corresponds to the closest

one shown in figure 2. Information is also required for the other spacings.

0.01

Streamwise

Mock number

perturk_t ;on

U. OO5

Straight
woll

x,m,:o

_] A 8
--"_,-," CL h=6"

' !'7- 0,02

One iock moved to produce
approximately o _lnumldal wave

.OO2

__ Moo_0.85

Mao =0.7

l I i_'_'_This _ack moved into

.Jacks _- _6-_ lest sect;on 0,02"

Vertical Mach

number perturbation

M_ -001

Moo

- .001

Cross-strearn /v_ch number M at

component = M U. po;nt ;n flow

Streamw ;se componenl
_M

------ Mco=0.85

-- Moo- 0.7

I/" \I

\_ Slope is

; ;
Jock ix_s_tions .w /_

This iock moved _

Figure 5
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PERTURBATIONS ON CENTERLINE ABOVE SINGLE MOVED JACK

Figure 6 shows perturbations on the centerline as a function of the distance

a single jack is moved into the tunnel and shows a strong sensitivity to Mach

number. However, at each Mach number a roughly linear variation of perturation

with jack movement results. This linearity suggests that effects due to the

movement of multiple jacks may be additive, thus simplifying the application of

data in streamlining.
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Figure 6
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ADDITIVE EFFECTS OF WALL MOVEMENT: TWO JACKS MOVED

Flexible walls can easily be adjusted to induce uniform velocity or Mach

number perturbations in the streamwise (u) and cross-stream (v) directions as well

as to induce a u-gradient. It is more difficult (but important) to induce a

v-gradien_. The example on the left in figure 7 shows results for the simple

case in which two jacks have been moved in order to induce a v-gradient between

them. Comparison between these results and those of figure 6 shows that the

effects of moving two jacks are additive (i.e., along the centerline the u-

perturbation is near zero). However, the constant v-gradient does not extend far

enough along the test section in this example.

The sketch on the right in figure 7 illustrates a case in which many jacks

are moved in order to induce a constant v-gradient well beyond the axial extent

of a model. The maximum wall movement required was quite acceptable at i/8 in.
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S_¥

Figure 8 st_mmarizes the current status of the research at the University of

Southampton.

20m INTERFERENCES FROM TOP & BOTTOM WALLS ARE ELIMINATED AT MACH

NUMBERS TO WHERE THE WALLS BECOME SUPERCRITICAL. CORRECTIONS ARE

NOT APPLIED. FACILITY IS AUTOMATED, USING h PREDICTIVE ALGORITHM

& HAS RAPID RESPONSE. GOOD AGREEMENT IS SEEN BETWEEN SEVERAL

ADAPTIVE FLEX WALL TUNNELS.

CURRENT RESEARCH IS TOWARD USE OF MACH NUMBERS THROUGH UNITY,

3D, a PREDICTIVE ALGORITHM IS IN DEVELOPMENT TO GIVE TOP & BOTTOM

WALL CONTOURS TO RELIEVE ALL WALL-INDUCED PERTURBATIONS IN THE

STREhMWISE & VERTICAL DIRECTIONS. THE TECHNIQUE IS BEING EXPLORED

INITIALLY WITH h CALIBRATED FORCE MODEL.

Figure 8

\.
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INTRODUCTION

Recently, a three-dimensional adaptive-wall wind tunnel

experiment was conducted at Ames Research Center (ref. i).

This experiment demonstrated the effects of wall interference

on the upwash distribution on an imaginary surface

surrounding a lifting wing. This presentation demonstrates

how the interference assessment procedure used in the

adaptive-wall experiments to determine the wall adjustments

can be used to separately assess lift- and blockage-induced

wall interference in a passive-wall wind tunnel. The effects

of lift interference on the upwash distribution and on the

model lift coefficient are interpreted by a simple horseshoe

vortex analysis.
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ADAPTIVE-WALLTEST SECTION

OR[C,t ":'_ !_ i . .

OF PG..;;_ 0. ...... _'

The adaptive-wall experiments were conducted in the Ames 25-

by 13-cm atmospheric indraft wind tunnel. The model was a

semi-span wing supported by a force balance and was mounted to

one sidewall of the test section. The sidewalls were solid

plexiglass; the top and bottom walls were slotted. Separate
top and bottom plenums were divided into streamwise and

cross-stream compartments. Pressures in the compartments

were independently adjustable. All the data presented at

this workshop, however, were obtained with passive walls

(i.e., no net mass flow through the walls). This configuration
differs from a conventional passive ventilated wail since the

partitions prevent circulation of the air in the plenums.

FORCE
BALANCE
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INTERFERENCE ASSESSMENT PROCEDURE

A two-surface, one-velocity component interference assessment

procedure was used (ref. 2). This figure illustrates in

cross section the test section, Lne model, and the interference

assessment surfaces. A laser velocimeter was used to measure

vertical velocities (upwashes) at control points on the inner

(source) and outer (field) interference assessment surfaces.

The measured upwash distribution at the source surface was

imposed as a near-field boundary condition, and free-air

conditions were imposed at a fictitious far-field boundary.

The corresponding free-air upwash distribution was computed

in the region exterior to the source surface. Interference

was assessed by comparing this "outer flow solution" with the

measured upwashes at the control points on the field surface.

The outer flow solution only approximated the true free-air

solution since, for passive walls, the boundary conditions at

the source surface included wall effects.
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COMPARISONS OF ACTUAL AND INTERPOLATED VERTICAL VELOCITY

PROFILES ALONG AXIAL LINES ON THE SOURCE SURFACE

The boundary conditions at the source surface were

interpolated from upwash measurements at 49 control points.

The control points were located along seven axial lines. On

each line, measurements were made at seven points between

stations 1.15 mean aerodynamic chords (c) upstream and

downstream of the model quarter chord. This figure compares

upwash distributions obtained by linear interpolation between

the control points with data obtained at more closely spaced

intervals. The inset illustrates in cross section the

locations of these measurements.
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COMPARISONS OF ACTUAL AND INTERPOLATED VERTICAL VELOCITY

PROFILES ALONG SPANWISE LINES ON THE SOURCE SURFACE

Spanwise upwash distributions at each longitudinal station

were approximated by interpolating between measurements at

three control points. The figure illustrates measurements

made 1.15 c downstream of the wing quarter chord.

Substantial interpolation errors are evident near the wing

tip.
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PASSIVE-WALL INTERFERENCE ASSESSMENT

This figure compares vertical velocities measured at the

field surface control points (circles) with the outer flow

solution at the same points (solid line). Seven longitudinal

upwash distributions are illustrated (see inset). Inboard of
the wing tip and downstream of the model the outer flow

solution is more negative than the measured downwash. This

can be interpreted as a wall-induced upwash. Outboard and

downstream of the wing tip the upwash predicted by the outer

flow solution exceeds the measured upwash, indicating a
wall-induced downwash.

M = 0.60, o_= 5.3 =

:D
Z=

8

Z=

.O4

8
0

-.04

.04 -(b)

-.04

.... MEASURED (LV)

-- OUTER FLOW SOLUTION

i I I I I

-1 0 1

xR

-(c)

' I tp

_% / It

-(d)

a c •

+ 8
+ 4" 4"

b d f

-- -- --O%

' ' , I I
-I 0 1

XI6

-(e)

- /
-_--,._ _i_- --''- _.o I

I I i I I

-1 0 1

x/_"

t

(g)

(f)

4

95



LIFT AND BLOCKAGE INTERFERENCES

The measured upwash distributions were separated into

components which were symmetric and antisymmetric with

respect to the plane of the wing. These components were

associated with lift- and blockage-induced perturbations,

respectively. The interference assessment procedure was

applied separately to these components to assess lift and

blockage interference. The effect of lift interference on

the upwash distributions was greater than that of blockage

interference. The most pronounced effect of the lift

interference was to induce upwash downstream and inboard of

the wing tip. Outboard of the tip, the walls induced
downwash.
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UPWASH DISTRIBUTIONS INDUCED BY A HORSESHOE VORTEX

The lift interference was interpreted by comparing upwash
distributions due to a horseshoe vortex in free air and a

horseshoe vortex in a solid-wall tunnel. Downstream and

inboard of the bound vortex the downwash is far greater for

the vortex in free air than in the wind tunnel. This is

consistent with the lift interference assessment in the

previous figure. Outboard and downstream of the bound

vortex, the free-air upwash is less than the in-tunnel

upwash. Thus the walls induce upwash in this region. This

conflicts with the lift interference assessment illustrated

in the previous figure. This conflict is due in part to

errors in the outer flow solution outboard and downstream of

the wing tip. Errors occurred because the interpolated

upwash distribution at the source surface did not accurately

represent the actual distribution there. Interpolation

errors were largest outboard and downstream of the wing tip.
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COMPARISON OF LIFT CURVES WITH FREE-AIR DATA

This figure illustrates the passive-wall lift versus angle of

attack of the model in the adaptive-wall test section.

Passive slotted-wall and solid-wall (taped slots) data are
presented. Two classical corrections for lift interference

were applied to the taped-wall data, and the corrected lift

curves are compared with free-air data (ref. 3). The Glauert

method of images (ref. 4) overpredicts the angle-of-attack

correction. This is not surprising since in his formulation

Glauert assumes that the model span is small compared to the

height of the wind tunnel. This condition is clearly
violated in this experiment. An alternate correction, also

computed by the method of images but without the assumption
of a small model, undercorrects for the effects of wall

interference.
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SUMMARY

This presentation has shown that data acquired in an

adaptive-wall test section for the purpose of adjusting the

tunnel walls can be used to qualitatively assess lift- and

blockage-induced wall interference. The lift interference

was interDreted by a horseshoe vortex analysis. Classical

corrections for lift interference were applied to the

measured lift coefficients, and the corrected data were

compared with experimental free-air data.
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NEED FOR EXPERIMENTAL EVALUATION

A validation of a measured boundary condition technique is the only

means to demonstrate the feasibility of a wall interference
assessment/correctlon (WIAC) system. An experimental evaluation is also a

means to compare performances of various techniques, to define the number
of necessary boundary measurements for accurate assessment/corrections, to
define the envelope of test conditions for which accurate

assessment/corrections are achieved, and finally, to compare the relative
merits of a WIAC system and an adaptive wall tunnel and integrate the two to .

compliment each other.

TO DEMONSTRATETHE FEASIBILITY OF A WlAC SYSTEM

TO COMPAREVARIOUS TECHNIQUES

TO DEFINE MEASUREMENTRESOLUTION

TO DETERMINEACCURACY OF THE ASSESSMENT/CORRECTION

• TO DEFINE ENVELOPEOF TEST CONDITIONS FOR ACCURATE AIC

TO COMPARE AND INTEGRATEWIAC SYSTEM TO ADAPTIVE
WALL TUNNEL
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REQUIREMENTS OF A WIAC DATA BASE

A suitable set of three-dimensional data for evaluating and comparing

measured boundary conditions techniques should have the following features.

Sufficient boundary measurement should be made for good spatial resolution.

Measurements should be made far enough upstream and downstream of the model

that they can be assumed as the infinity boundary conditions. Another desirable

feature of the boundary data would be the measurement of two parameters, such as

pressure and flow angle. This would allow evaluation with both one-variable and

two-variable techniques.

The model data for this data base should include the following features. Of

course, interference must be present and of sufficient amplitude. The model

should be instrumented for lifting surface pressures and for forces and moments.

The data base should also include interference-free reference data for verification

of corrections. Reynolds number sensitivity should be well defined in order to

separate wall interference effects from Reynolds number efforts.

Simple model geometry would facilitate computational modeling. Data

should exist for a variety of test conditions ranging from subcritical to strongly

supercritical flows.

1. BOUNDARY DATA

• ADEOUATE SPATIAL RESOLUTION

• UPSTREAM AND DOWNSTREAM OF MODEL

• TWO MEASUREMENT PARAMETERS

2. MODEL DATA

• INTERFERENCEMUST EXI ST

• FORCES AND MOMENTS

• WING SURFACE PRESSURES

• INTERFERENCE-FREE REFERENCE DATA

• VARIETY OF TEST CONDITIONS

• SIMPLE MODEL GEOMETRY

• WELL DEFINED Re SENSITIVITY

3. ADDITIONAL

• AVAILABLE I0 WIAC COMMUNITY

• AVAILABLE IN TIME TO MEET DEMAND

103



AEDC WIAC DATA BASE

As a by-product of the adaptive wall demonstration effort at AEDC, a

complete set of experimental data will soon be available. As will be shown, this
data will be well suited for WIAC evaluation and meets the aforementioned

requirements. This data is being obtained in the AEDC Adaptive Wall
Demonstration Tunnel (IT).

@ OBTAINED IN AEDCADAPTIVEWALL DEMONSTRATION
TUNNEL(ITI

MEETSTHEAFOREMENTIONEDREQUIREMENTS
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AEDC TUNNEL IT

Tunnel IT isa continuous-flow, nonreturn wind tunnel equipped with a two-

dimensional, flexible nozzle and an auxiliary plenum evacuation system. The

tunnel test section isone foot square and 37.5 inches in length.
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SEGMENTEDt VARIABLE-POROSITY TEST SECTION

The AEDC Adaptive Wall Demonstration Tunnel has a one-foot-square test

section with segmented, variable-porosity walls for active wall control. There is

a total of sixty-four individually controlled segments, twenty-four on the top and

bottom and eight on each side. The porosity of each segment can be varied from

approximately eight percent to zero percent open-area ratio.

OF POOR QU_-_'_r¢

%

106



INTERFACE FLOW VARIABLE MEASUREMENT SYSTEM

r .

OF POO,_ _....,_ _,_

The measurement surface boundary data is performed with a system of two

rotating pipes. These pipes sweep out a cylindrical measurement surface near the

tunnel walls, approximately one inch from the wall at the closest point. Each

static pipe is equipped with forty pairs of diametrically opposed orifices. The

diameter of the pipe is 5/8 inch. The pressure and the difference in the pressures

for each pair are used to determine the components of velocity in the streamwise

direction and in the surface normal direction (u and v).

The measurement system offers good resolution of measurements. The

longitudinal distribution of measured pressure is well defined by making

measurements far upstream and downstream of the model and by making finely

spaced measurements in the anticipated regions of large gradients. The rotating

pipe system allows one to make measurements at as many azimuthal positions as

necessary to adequately define the azimuthal variations.

The flow angle probes at the upstream and downstream are used in the

calculation of the v-velocity distributions.

107



DETERMINATION OF TWO VELOCITY COMPONENTS

The two velocity components are determined by the following equations.
These equations are derived from potential flow theory for a cylinder in a cross

flow. A detailed derivation of these equations can he found in Ref. 1.

The integration to determine the longitudinal distributions of v is performed

in two intervals. First, we determine the peak in the pressure distributions,

minimum C . The location of C rain segments the region into an upstream region
and a downstream region. Integl_ation in the upstream regions is performed from

far upstream to the peak, and integration in the downstream region is performed

from far downstream back to the peak. The integration constants for the two

regions are measured by upstream and downstream flow angle probes.

1. EQUATIONS

Cp£ Ix) + Cpu Ix)
u (x) = -

4
X

v (x) = vo(x) + ; v'i_)d(
Xo

where v' (x) =

(6

2. INTEGRATION

Cpmin

Cp,_

Cp_ (x) - Cpu (x)

86

RADIUS OF PIPE)

Xp

UPSTREAM + DOWNSTREAMREGION REGION
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EXPERIMENTAL MODEL

The experimental model was specially designed and fabricated for the

adaptive wall experiments. The model isa wing/tail/body configuration with swept

lifting surface. The s_.mple design allows for easy eomputational modeling. The
model has a model-to-tunnel solid bloekage ratio of 2.5 percent, whieh is large

enough to generate a signifieant amount of interferenee. The liftingsurfaces have
NACA-0012 airfoil seetions with constant chord and are instrumented for

chordwise pressure distributions at various span loeations on the upper and lower

surfaces. The sting support is an integral part of the model and is gauged to

measuro normal force and pitehing moment. Referenee data for this model were
taken in AEDC Tunnel 4T where the data are assumed to be free of wall

interferenee since the model-to-tunnel solid blockage ratio is0.156 pereent. Model

data will be taken in the adaptive-wall tunnel at a variety of test eonditions and at

a variety of wall porosities including a standard uniform porosity and fully adapted

walls. The model data with fully adapted walls constitutes an additional set of

referenee data which eliminates the questions of uneertainty in the data due to

installation,flow uniformity, or Reynolds number effects.

• SWEPT WiNGtHORIZONTAL TAILIBODY

• SOLID BLOCKAGE RATIO- 2.5 PERCENT

• lZ INCH LENGTH

• 8.4 iNCH WING SPAN

• 2_4 INCH WING CHORD

• NACA-0012 LIFTING SURFACE

• FORCE AND PRESSURE iNSTRUMENTED

• REFERENCE 0ATA OBTAINED IN TUNNEL 4T

• 0.6 <M.o <1.2

• -8 _<cl <_.12DEG.

• • 0.6g x 106<_.Rec <_.0._9 x 10'

• REFERENCE DATA WILL ALSO BE DETERMINED
IN ]T WITH FULLY ADAPTED WALLS TO ELIMINATE

QUESTIONS OF INSTALLATION, FLOW UNIFORMITY,
OR REYNOLDS NUMBER EFFECT5

1.27C

IILOCfiAGE = 2.5%
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STATUS OF AEDC ADAPTIVE WALL TUNNEL

The adaptive-wall test section has been installed, All the wall control
hardware and software systems have been checked out and are fully operational.
The model was installed in January 1985 and baseline data are now being
obtained.

• ADAPTIVE WALL TEST SECTION HAS BEEN INSTALLED

• ALL HARDWARE AND SOFTWARESYSTEMS CHECKED OUT

• MODEL IS IN STALLED

• BASELINE DATA IS NOW BEING OBTAINED
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SUMMARY OF AEDC WIAC DATA BASE

The boundary data taken in Tunnel IT with the rotating pipe system has
been shown to offer several attractive features for WIAC code evaluation. Good

spatial resolution of measurements is achieved and measurements are made

upstream and downstream of the model. Also, two velocity components are
determined.

The completeness of the model data isanother strong point of thi_ data set.

The model data will include forces and moments_ and lifting-surface pressure
distributions. Interference-free reference data will exist from Tunnel 4T and from

the fully adjusted adaptive wall tunnel.

This data base will soon be obtained and compiled. Requests for this data
should be submitted to the address below.

l. BOUNDARY DATA TAKEN WITH ROTATING PIPE SYSTEM

• GOOD RESOLUTION

• UPSTREAM AND DOWNSTREAM MEASUREMENTS

• TWO VELOCITY PARAMETERS

2. MODEL DATA

• SIMPLIFIED MODEL

• FORCES AND MOMENTS

• WING SURFACE PRESSURES

• INTERFERENCE-FREE REFERENCEDATA (4T AND ADAPTIVE WALL)

• VARIETY OF TEST CONDITIONS

. AVAILABILITY

• SUBMIT REQUESTFOR DATA TO

DR. K. L. KUSHMAN
AEDC/DOT

MS 9OO

ARNOLD AFS, TN 37389
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A WIAC MEASUREMENT SYSTEM

Current eoneeptual designs of a WIAC measurement system call for a large
number of pressuremeasurements to be made on or near tunnel walls. The
conventional method for making multiple pressure measurements uses Seanivalves _.

Although these devices are reliable, they are time eonsuming and there is concern
about their impact on produetivity. Ideally, one wants a measurement system that
keeps pace with the rate at which model data is taken.

A WIAC measurement system that uses electronically scanned presssure

measuring (ESPM)modules to rapidly acquire pressures on three fixed static pipes
near the tunnel walls was demonstrated in AEDC Tunnel 4T. The aequisition of

pipe pressures was able to keep pace with acquisition of model forces and

pressures. This demonstrates the feasibility of making large numbers of pressure

measurements without impaeting productivity.

REQUIRES LARGE NUMBER OF PRESSURE MEASUREMENTS

CONCERNED ABOUT IMPACT ON PRODUCTIVITY USING
CONVENTIONAL SCANIVALVEC_

A WIAC MEASUREMENT SYSTEM THAT USES ELECTRONICALLY
SCANNED PRESSUREMEASURING (ESPM) MODULES WAS

DEMONSTRATED IN AEDC TUNNEL 4T

DEMONSTRATESTHE FEASIBILITY OF MAKING LARGE

NUMBER OF PRESSURE MEASUREMENTS WITHOUT IMPACTING
PRODUCTIVITY
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AEDC 4T EXPERIMENT

The purpose of this test was to obtain wind tunnel data with probable wall

interference effects. The model data is to be compared with both flight test data
and reference data obtained in Tunnel 16T. The boundary data was obtained for
the purpose of assessing wall interference.

• OBTAINED MODEL DATA FOR TUNNEL-TO-TUNNEL CORRELATION

• OBTAINED BOUNDARY DATA FOR INTERFERENCEASSESSEMENT
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TUNNEL 4'1" WIAC INSTALLATION

A sehematie of the Tunnel 4T installation is shown below. The relative

loeation of the pipes and model are illustrated. The pipes are mounted on the top,
bottom, and side walls. The test matrix was run with the pipes located at three
different loeations on the top and bottom walls and four locations on the side wall.

Lateral symmetry is assumed so that the boundary data is only obtained on one side
of the tunnel.
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TUNNEL 4T STATIC PRESSURE PIPES

OF PO0_ _L;:;,Li"P/

The construction of the static pressure pipes and mounting brackets is

shown below. JThe three pipes are one inch in diameter and each contains thirty!

pairs of diametrically opposed orifices. The pipes are constructed with a

removable cover for repairing damaged tubing. The pipes are mounted to the wall

by a fore and aft plate and are suspended four inches from the wall by support
arms.
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ABSTRACT

The free-stream interference caused by the flow through the slotted walls of

the test sections of transonic wind tunnels has continuously presented a problem

in transonic tunnel testing. The problem of wall interference appears in the

imposing constraints presented by the partially ventilated walls, which take the

form of a resistance to the flow normal to the walls. The adaptive-wall tran-

sonic tunnel is designed to actively control the near-wall boundary conditions

by sucking or blowing through the wall. This may introduce even larger near-

wall flow field perturbations.

In order to make the adaptive-wall concept work, one must know two flow

parameters for computational boundary conditions. These parameters must be

measured with sufficient accuracy to allow numerical convergence of the flow

field computations and must be measured in an inviscid region away from the

model that is placed inside the wind tunnel. We have been engaged in the mea-

surement of the near-wall flow field perturbations for the past two and one-

half years with the support of the NASA Ames Research Center. The near-wall

flow field was mapped in detail using a five-port cone probe that was traversed

in a plane transverse to the free-stream flow. The initial experiments were

made using a single slot and recent measurements used multiple slots, all with

the tunnel empty. The projection of the flow field velocity vectors on the

transverse plane revealed the presence of a vortex-like flow with vorticlty in

the free stream. These results were discussed in the presentation. Our current

research involves the measurement of the flow field above a multislotted system

with segmented plenums behind it, in which the flow is controlled through sever-

al plenums simultaneously. This system would be used to control a three-dimen-

sional flow field. Research to be performed on this configuration was also

discussed.
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UTSI TRANSONIC WIND TUNNEL
OF PO,_,_ C:iu .... i_ /

Three-dimensional flow field measurements were made near a single-slotted

and multislotted transonic wind tunnel wall. Velocity and static pressure dis-

tributions were obtained above the wall for Mach numbers ranging from 0.6 to

0.9 and wall suction strengths varying from zero (natural flow into the plenum

chamber) to 0.25 standard m3/s (530 SCFM). The measurements were made in the

UTSI transonic wind tunnel. The tunnel is of the blow-down type with a test

section measuring 0.34 m wide by 0.28 m high and 2.66 m long. The test section

is topped along its entire length with a plenum chamber which is connected to

the test section through a porous plate having about a 30% open area. No exter-

nal suction or blowing was applied to the upper plenum. Figure I shows the UTSI

transonic wind tunnel test section with the model wall on the tunnel floor.

©

Wind tunnel test
section

Slotted model wall

Auxi llary suction/

plenum chamber

Ejector (suction)
sys tem

Figure I.
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WALL MODEL

A model of a section of a slotted-wall test section similar to that which

exists in the ii x ii ft. transonic tunnel at NASA Ames Research Center was

constructed and mounted on the test section wall. The model contained three

slots, one on the tunnel centerline and one on each side, separated from the

centerline by 0.051 m. Inserts could be placed in the slots to vary the width,

upstream geometry and edge geometry. The first measurements were performed on a

single slot on the tunnel centerline measuring 0.0066 m wide and 0.36 m long

(ref. i). The leading edge was perpendicular to the flow direction. Zigzag

baffles with 140 slant angle were used to direct the flow in the slots (fig. 2).

O

L O. 0508

I A -1.o16

0.0102

t i n
Sect|on A-A

0.0066

Baffle Geometry

Figure 2.
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WALL SLOT GEOMETRY

The present measurements were performed on a single slot on the tunnel cen-

terline and on three slots. The slots were 0.66 m long, 0.0065 m wide and had a

tapered upstream end with 60 included angle (fig. 3). All edges were sharp.

22"

Figure 3.
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WALL PLENUM CHAMBER

A separate plenum chamber was provided below the slotted-wall model. Suc-

tion to the chamber was provided by two air-operated ejector pumps. The suction

rate was measured by a sharp-edge orifice plate flow meter that was placed in

the pipe. Four rows of static pressure orifices were installed on the plenum

chamber plate. They ran longitudinally at the center of the solid portion be-

tween the slots and outside the slots, each at a distance of 2.54 cm from a slot

centerline. (See fig. 4.)

Suction Chambef_l

,,, l" Static pressure taps

Boundary Laye__

Traversing ProbeU _ rj

U

Suction Line

%,

Orifice Plate

_ III _ _ To_ectorPump

Pressure Taps

Figure 4.
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CONE FLOW ANGLE PROBE OF POC;_ QUALj_f

In the present investigation a detailed study of the viscous flow phenomena

over a slotted wind tunnel wall was made. Due to the fact that the flow over a

slotted wall is semi-three-dimensional in nature, a five-port cone probe (fig. 5)

was used to measure the flow velocity through the wall boundary layer. The bound-

ary layer traverses were made above the single slot on an outside slot and at three

stations 1.3, 2.5, or 3.8 cm transversely away from the slot (toward the center

slot for the three-slotted model). Previous measurements were made 0.19 m down-

stream from the slot leading edge (ref. i); present measurements were 0.05 m,

0.15 m and 0.25 m downstream from the end of the tapered section of the slots

(Figure 3). The small perturbation analysis of Wu and Lock (ref. 2) and super-

sonic small perturbation theory were applied to the cone-cylinder configuration

of the cone probe to estimate its performance. From each reading of the probe

the local Mach number, static pressure, stagnation pressure and flow direction

were determined. Then, using an assumed form of the veloclty-temperature rela-

tion for an equilibrium turbulent boundary layer, the flow velocity components

were determined.

0.965 0.533
0

J Z

-
< 5.44 _- 2.95--,- 3.97 I/

3.15

(All dimensions in ram)

Figure 5.
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SLOT FLOW AND MEASUREMENT PLANE

The tests were performed at Mach numbers of approximately 0.6, 0.76 and 0.9.

The unit Reynolds number varied from 1.6 x 107 to 3.1 x 107 per meter. The applied

suction through the slots varied from zero to 0.25 standard m3/s (530 SCFM).

For all the tests the cone probe was traversed in the z-direction for various x-

stations and y = O, 1.3, 2.5 and 3.8 cm. (See fig. 6.)

Lateral spreadingTransverse
^ of suction effects

1P
_ / \ Inhomogenous

_'_. _,._J \ boundary layer

_X of present study)

Figure 6.
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OF POOR QUALi'FV

VELOCITY COMPONENT DISTRIBUTION

The velocity components u, v, w in the x, y, z-directions, respectively, were

obtained from the cone probe measurements. A typical result for one cone probe

traverse is given in figure 7 (ref. i). These results were obtained for the sin-

gle, short, slotted-wall model at M = 0.81, Re/m = 2.67 x lO 7, Q = 1.65 m3/min

and y = 1.27 cm. The nature of the wall shear layer and the near region exter-

nal to the shear layer was analyzed using these measured velocity components.

In the immediate neighborhood of the wall (approximately 1.5 probe diameters)

the cone probe results become spurious due to the probe-wall interference.

M= 0.812, RE/FT.= 8.14E+06, Q= 56 CFM, Y= -9.5 IN.

3.0 --

2.5

Y 2.0

(Iaches )

].5

1.0

0.5

O.O

0.0 0.5 1.0

u/u=

IXxj ,X K I
-0.02 0.0 0.02 0.015 0.045

vl U= wl U=

-0.015

Figure 7.
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THREE-DIMENSIONAL VELOCITY PROFILES

Figure 8 is an example of the three-dimensional velocity profiles that were

measured at the four transverse planes for one test condition. They were ob-

tained using the short one-slot wall model for M= = 0.76, Re/m = 3.4 x 107 and

no applied suction (ref. 1). This plot exhibits the three-dimensional nature of

the flow field on the single slotted-wall model in a qualitative sense. From

this result it can be seen that the transverse and normal velocity components

were skewed toward the slot for measurement stations away from the slot. The

extent of the skewness decreased with a distance away from the slot. There was

flow outward from the test section through the slot to the plenum chamher at

this longitudinal measuring station (x = 0.19 m) for all the measurements, even

without applied suction (i.e., natural ventilation only). At the slot itself

the flow was directed %nto the slot by the baffles. The baffle angle was 14 °

and the measured fl0w angle on the slot was slightly greater than 14 ° .

Figure 8. OF POOR QOALIYg
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BOUNDARY LAYER THICKNESS DISTRIBUTION

IN TRANSVERSE PLANE

The boundary layer thickness was defined as the z-location where the u-com-

ponent of the velocity was equal to 0.99 Ue, where Ue is the u-component of the
velocity at the edge of the boundary layer. The distribution of the boundary

layer thickness in the transverse measurement plane on the one-slot wall model is

shown in figure 9 (ref. i). The boundary layer thickness remained relatively

constant with no applied suction through the slot but decreased in the vicinity of

the slot wlth applied suction and almost disappeared above the slot at the highest

suction rate.

E
u

6.0

S.0

4.0

3.C

2._

-4.0

M Re/m x I0 -7 3Q
® m /mi n.

0.6 2.30 0.0

o 0.6 1.88 2.12
0 0.6 1.82 5.66
0 0.76 2.67 2.12
0 0.76 2.60 7.08

0

0

I I !
-3.0 -2.0 -1.0

y (cm)

0

0.0

Figure 9.
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BOUNDARY LAYER DISPLACEMENT THICKNESS

DISTRIBUTION IN TRANSVERSE PLANE

The displacement thickness was defined as

z

_, =f e(l pu
PeUe) dz

J
o

where p and u are the density and velocity, respectively, at a distance z above

the wall and p and U are the density and velocity, respectively, at the edge of
e e

the boundary layer (z). This is only an approximation to the actual displace-
e

ment thickness for the three-dimensional flow (ref. 3). The boundary layer dis-

placement thickness distributions in the transverse plane are shown for various Mach

numbers and suction rates (fig. I0). The measurements are for the short one-slot

wall model (ref. i). For no auxiliary suction, 6" decreased monotonically with

increase in distance away from the slot axis except at the lowest Mach number.

At M = 0.6 the natural suction velocity (Q = 0.0) is larger than at higher Mach

numbers and this results in a lower downstream test section pressure with a con-

sequently larger outflow from the test section into the plenum upstream on the

slot at the measuring station. The increase in 6" For no applied suction can be

explained as follows. For Q = 0 the flow entering the plenum chamber was mostly

drawn from the low-momentum slotted-wall boundary layer and very little came in

from the outer stream. Also, _ varied only slightly away from the slot (fig. 9).

The drawing of mass from the boundary layer together with only a slight change

in 6 (from zero to a moderate amount of applied suction through the slot) resulted

in an increased velocity defect in the shear layer and consequently an increase

in _*. With applied suction the displacement thickness above the slot was re-

duced and the influence of the suction spread laterally as the suction rate was

increased.
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VELOCITY VECTOR DISTRIBUTION ON TRANSVERSE PLANE

Q = 0.0, M = 0.6, Re/m = 2.4 x i0 ?
oo

The behavior of the flow field is better visualized by considering the pro-

jection of the resultant of the v and w velocity components onto the traverse

plane (figures ii, 12, 13). In these figures the main flow direction is out of

the plane of the paper. These measurements were made on the short one-slot wall

model (ref. 1). The flow pattern in the tranverse plane indicated the existence

of a vortex-like secondary flow. For no applied suction (only with natural ven-

tilation), the vortex-like flow is strong and spread to the outer regions of the

measurement plane which are outside the wall shear layer. Close to the slotted

wall the flow is directed toward and into the slot. At moderate suction the

vortex-like tendency of the outer flow is rather decreased (figure 12) and at

high suction this phenomenon has almost disappeared (figure 13). Secondary flow

can arise in turbulent flows from mean flow skewing (secondary flow of the first

kind) and from anisotropy of the wall turbulence in the presence of a boundary

layer which is nonuniform in the transverse direction (secondary flow of the

second kind) (ref. 4). Following the analysis of ref. 4 it is possible to ex-

plain the formation and the subsequent attenuation with increased applied suc-

tion of the secondary vortex flow observed in these experiments. Details of the

argument are given in ref. i. For natural ventilation into the slot the mean

flow skewing leads to the generation of a pair of vortices which expel fluid

from the shear layer out into the mean flow.

\

Figure ii.
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VELOCITY VECTOR DISTRIBUTION ON TRANSVERSE PLANE

Q = 2.01 m3/min, M = 0.6, Re/m = 1.89 x i0 ?

At moderate suction the vortex-like tendency of the outer flow is rather

decreased (fig. 12). It can be argued (ref. i) that the only stress-induced stream-

wise vorticity production term leads in this case to a secondary motion in a sense

opposite to that produced by mean flow skewing. At moderate suction this term bal-

ances the mean flow skewing and the secondary motion disappears. Another plaus-

ible explanation for the disappearance of secondary motion with moderate suction

is that the upward movement along the centerline from the secondary motion caused

by mean flow skewing (Figure ii) was balanced by the downward movement toward the

slot caused by the increased suction. Only further experimentation can unambigu-

ously determine the source of the streamwise vorticity that is observed and its

change with amount of applied suction.

Y = -3.81 -2.54 -1.27 0.0

Z _, 6.5 .._ .- d -.
_ r." mr _.

l.Jll _ _' a, e.

Uei .

Figure 12.

6
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VELOCITY VECTOR DISTRIBUTION ON TRANSVERSE PLANE

Q = 7.1 m3/min, _ = 0.6, Re/m - 1.78 x i07

At high suction rate the secondary motion has almost dlsappeared (fig. 13). The

conclusion is that the two sources of streamwise vorticity generate secondary motions

of the opposite rotation sense, for the present geometry, which tend to counter-

balance each other. At no applied suction, since there is only a slight varia-

tion of _ with y, the contribution to the secondary flow is mainly from the mean

flow skewing (Figure ii). With moderate applied suction the influence of the in-

homogeneous boundary layer is strong and the two secondary flow sources tend to

cancel one another. Then no secondary pattern is discernable (Figure 12). At

the h_ghest applied suction rate the suction effect overrides the secondary mo-

tion and the velocity vectors are directed toward the slot.

I

Z = 6.5cm

Figure 13.
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LONGITUDINALDISPLACEMENTTHICKNESSDISTRIBUTION

Theresults given in Figures 14 to 18 were obtained using the long one-slot
wall model (Figure 3). The longitudinal displacement thickness distribution is
shownfor y = 0.0 and 1.3 cm for M = 0.76 for various amounts of suction through

the slot. The displacement thickness decreased at all longitudinal stations with

increased suction. There was natural flow into the plenum chamber at the first

and last longitudinal measurement stations but not at the middle station and the

displacement thickness was influenced little until large amounts of suction were

applied.
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Figure 14.
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BOUNDARY LAYER DISPLACEMENT THICKNESS

DISTRIBUTION IN TRANSVERSE PLANES

The displacement thickness distributions at three transverse planes measured

on the long one-slot tunnel wall at M = 0.76 are shown. They can be explained

in the same way as the distributions _hown in Figure i0.
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VELOCITY VECTOR DISTRIBUTIONS IN TRANSVERSE PLANE

M = 0.76, x = 5.1 cm, Re/m - 3.6 x i0 ?

The velocity vector distributions in the transverse plane x = 5.1 cm down-

stream from the end of the tapered section of the one-slot wall model for zero

and low suction rates are shown. For no suction there is no significant varia-

tion of the boundary layer thickness across the transverse plane. The main con-

tribution to the secondary vortex motion is due to the skewing of the mean flow

as a result of the flow into the plenum through the slot. Close to the wall the

flow is directed by the wall and the slot. There is an increased variation in

the boundary layer thickness at increased suction with slightly increased local

suction and somewhat attenuated vortex motion. The flow is mostly directed
towards the slot.
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VELOCITY VECTOR DISTRIBUTIONS IN TRANSVERSE PLANE

M = 0.76, x = 15.2 cm, Re/m = 3.6 x I0 ?

The velocity vector distributions in the transverse plane x = 15.2 cm

downstream from the end of the tapered section of the one-slot wall model for

zero, moderate and large suction rates are shown. For Q = 0.0, there is no

variation of the boundary layer thickness across the plane and there is very

little natural ventilation at this station. A weak vortex-like motion exists

outside the conventional wall shear layer. In the wall shear layer the flow

moves toward the slot and is constrained by the wall. Mean flow skewing is

possibly the source of outside vortex motion. At Q = 9.91 m3/min there is

greater variation of the boundary layer thickness with y but little suction

at the slot. Mean flow skewing generates outside vortex motion. Similar

remarks apply at the highest suction.

e
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VELOCITY VECTOR DISTRIBUTION IN TRANSVERSE PLANE

M = 0.76, x = 25.4 cm
OO

The velocity vector distributions in the transverse plane x = 25.4 cm down-

stream from the end of the tapered section of the one-slot wall model for two

'suction rates are shown. The boundary layer thickness variations are small and

of the type that enhances vortex motion produced by mean flow skewing. In this

case the vortex motion is closer to the normally defined shear layer than for

those stations upstream.

-3.81 - -2.5tJ -1.27 0,0
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(b) Q -- 14.16 m3/mln.

Figure 18.
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TRIPLE-SLOTTED WALL MODEL

The triple-slotted wall model is shown in figure 20. The probe holder

moved upward through one of the side slots and measured the velocity about

the center slot. The presence of the probe holder interfered with the suction

through the side slot. A new probe holder is being constructed that will move

the probe from the wall above the slotted-wall model and eliminate this

interference.

p0slt10n

I

I

I
I
!
!

lS._

40.0

Figure 19.
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DISPLACEMENT THICKNESS DISTRIBUTION IN

TRANSVERSE PLANE

M = 0.6, x = 15.2 cm, three slots

The displacement thickness distribution in the transverse plane, with and with-

out suction, is given in figure 20. The displacement thickness is reduced across

most of the plate as a result of the suction. The increase above the slot for zero

suction was previously explained (see fig. I0).
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Figure 20.
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VELOCITY VECTOR DISTRIBUTION ON TRANSVERSE PLANE

M = 0,6, x ffi15.2 cm

The velocity vector distribution on the transverse plane was measured at

four positions away from the center slot. Symmetry was prevented because the

probe holder proceeded up from the left hand slot, The vortex-like motion does

not appear to exist for the conditions shown but the suction continues to influ-

ence the flow beyond the edge of the normally-defined shear layer (fig. 21).
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ABSTRACT

Sidewall boundary layer effects have been investigated by applying partial

upstream sidewall boundary layer removal in the Langley O.3-m Transonic Cryogenic
Tunnel. Over the range of sidewall boundary layer displacement thickness (26"/b =
0.02 to 0.01) of these tests the influence on pressure distribution was found to be
small for subcritical conditions; however, for supercritical conditions the shock
position was affected by the sidewall boundary layer. For these tests, with and

without boundary layer removal, comparisons with predictions of the GRUMFOIL
computer code indicated that Mach number corrections due to the sidewall boundary
layer improve the agreement for both subcritical and supercritical conditions. The

esults also show that sidewall boundary layer removal reduces the magnitude of tile
sidewall correction; however, a suitable correction _st still be made.

INTRODUCTION

With the development of advanced technology airfoils in the past decade, there
has been a need to generate reliable wind tunnel data at transonic speeds and high
Reynolds numbers, both for practical applications and also to assess the merits of

the sophisticated computer codes developed for airfoil analysis. This has led to a
renewed interest in the understanding and evaluation of the tunnel wall interference
effects. Considerable work has been reported in the literature (refs. 1, 2 and 3)

on the top and bottom wall corrections which use measured data near or on the wall
to assess the interference effects which are primarily inviscid in nature. The side

wall interference, which is primarily viscous in nature, has received considerable
attention after a lapse of about 30 years. In the past, the general practice was to

use as high an aspect ratio as possible and assume that the sidewall boundary layer
effect can be ignored on the large aspect ratio models. However, systematic
investigations conducted at ONERA (ref. 4) recently demostrated the sidewall effects
to be nearly independent of the aspect ratio, at least for subsonic flows, and if

anything, the sidewall effects were slightly higher for small chord airfoils due to
the increased pressure gradients over the chord. Following this study, Barnwell

(ref. 5), and Winter and Smith (ref. 6) with independent but somewhat similar
approaches showed that for the case of an attached sidewall boundary layer, change
in normal force coefficient was directly proportional to the ratio of boundary layer
displacement thickness to the semispan and was independent of aspect ratio.

The purpose of this paper is to present some of the observed effects of the
sidewall boundary layer on a 12% supercritical advanced technology airfoil at
transonic speeds and also to assess the importance of sidewall corrections in

relation to top and bottom wall interference. These results are from tests
conducted in the Langley O.3-m Transonic Cryogenic Tunnel.
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NOMENCLATURE

b

C

C£

c n

Cp

M

Mc

M
W

P
R

Rc

SW

T&B

x

Y
Z

(z

_G

AM

span of tunnel, 8 inches
chord of airfoil, 6 inches

section lift coefficient from airfoil pressures

section normal.-force coefficient from airfoil pressures

pressure coefficient

Mach number

corrected Mach number

nominal _ch number upstream of perforated plates

mass flow rate

pressure
Reynolds number per meter

Reynolds number based on airfoil chord

sidewall

top and bottom wall

chordwise distance from leading edge of airfoil
spanwise distance from centerline of tunnel and model
vertical distance normal to upstream flow vector

uncorrected angle of attack, deg

angle of attack obtained from GRUMFOIL code

displacement thickness

change in _ch number for the wall corrections

(AM : Mc - M)

Subscripts

hl
t

ts
w

boundary layer removal
total value

test section

wake trailing airfoil
free-stream condition upstream of perforated plates
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SIDEWALL BOUNDARY LAYER GROWTH WITH AN AIRFOIL

The interaction of the sidewall boundary layer with the airfoil pressure fields
(shown schematically in Figure I), gives rise to a locally three-dimensional flow
field at the junction of the model and wall, and also causes variations in the width

of the flow passage above and below the airfoil because of different pressure
fields. This introduces a blockage type of interference and can be viewed as a

global correction to the free-stream Mach number. To account for this type of
effect, a flow similarity correction procedure was developed by Barnwel] (ref. 5)

and later extended to transonic speeds by Sewall (ref. 7).

The Barnwell-Sewall similarity rules, in addition to providing a first
approximation to correct for the sidewall boundary layer effects, demonstrate the

importance of keeping the value of the ratio of boundary layer thickness to semispan
(2a*/b) small. At transonic speeds, with relatively thin sidewall boundary layer (I
- 2% of tunnel width), the corrections to the overall force coefficients may not be
appreciable; however, the shock location and pressure distribution on the airfoil
under supercritical conditions can be altered. Also, in addition to the blockage
type of interference, the shock wave boundary layer effects on the sidewall can

introduce spanwise nonuniformities. In order to study these effects, an
investigation was conducted in the Langley O.3-m Transonic Cryogenic Tunnel (TCT)
(described in ref. 8) with and without sidewall boundary layer removal ahead of the
model.

FLOW ABOVE BELOW NO
--AIRFOIL ---AIRFOIL-- AIRFOIL AIRFOIL •

Figure l.- Typical sidewall boundary layer growth due to
lifting airfoil flow field.

146



0.3-METER TRANSONIC CRYOGENIC TUNNEL 

A top view of the  Langley 0.3-meter TCT t e s t  sec t ion  i s  shown i n  F igure 2. I n  
t h i s  photograph, the  top  of the plenum chamber and the top tunnel s l o t t e d  wa l l  have 
been removed. 
ducting, one of the f o u r  boundary l aye r  sidewall  rakes, and one of the  two 
per fo ra ted  p la tes.  The electron-beam-dri 1 l e d  per fo ra ted  p la tes  are f i t t e d  upstream 
o f  the  model l o c a t i o n  on both sidewalls i n  order t o  remove the  boundary layer .  The 
per fo ra ted  p la tes  (0.726 mm th i ck ) ,  used f o r  "boundary l aye r  mass removal" i n  the  
s idewal l  boundary l a y e r  bleed system, have a nominal po ros i t y  o f  20 percent, w i th  
e lec t ron-beam-dr i l led  holes 0.25 mm in diameter and 0.5 m apart.  
noted t h a t  "boundary l a y e r  mass removal" has o f ten  been re fe r red  t o  i n  engineer ing 
terms as "boundary l a y e r  bleed", thus throughout t h i s  paper the  c o l l o q u i a l  ism 
"bleed" w i l l  be used t o  dep ic t  the  s idewal l  boundary layer mass removal. The 
per forated p l a t e  was etched t o  obta in  a smooth surface on the  s ide  exposed t o  the  
flow. 

V i s i b l e  i n  the  photograph are the  a i r f o i l  model, boundary l a y e r  bleed 

It should be 

The amount of the  boundary layer  mass f low removed from e i t h e r  o f  the  s idewal ls  
i s  con t ro l l ed  independently by two d i g i t a l  valves and discharged d i r e c t l y  t o  t h e  
atmosphere. With t h i s  arrangement, the  maximum mass f low t h a t  can. be removed i s  
equal t o  the mass f l o w  o f  l i q u i d  n i t rogen t h a t  i s  being i n j e c t e d  i n t o  the  tunnel  f o r  
cool i ng purposes. 

F igure  2.- 0.3-Meter Transonic Cryogenic Tunnel 2-0 t e s t  sec t ion .  
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SIDEWALL DISPLACEMENT THICKNESS WITH BLEED

Initially, tests were conducted to determine the sidewall boundary layer
thickness and also to obtain the Mach number calibration under different bleed

conditions. The details and analysis of the sidewall boundary layer are reported in
ref. 9. Shown in Figure 3 is the variation of the sidewall boundary layer bleed at
the model location for the tunnel empty condition. It may be noted that the ratio
of the displacement thickness to the tunnel width (26"/b) is reduced from about 0.02

with no bleed to about 0.O1 with bleed. These tests also indicated approximately
the same thickening of the boundary layer growth when there was no bleed through the
perforated plates as was observed with the solid walls. A calibration factor

relating the upstream reference Mach number and the test Mach number at the model
location was also established for different bleed rates in order to arrive at the
correct test Mach number with the model in the tunnel.

These passive bleed tests without the model showed that a thin sidewall boundary
layer displacement thickness (26"/b ~ 0.01 is generally considered to be low enough
for the sidewall boundary layer effects to be small) could be obtained by bleeding
about 2 percent of the test section mass flow.

•025

• 020 -

26'/b

•015 -

0

M = 0.76
OO

© R=40x106/m

[] 100x 106/m

170x 106/m

0

0

•010-
I I I I

0 i 2 3

mbllmts, %

Figure 3.- Variation of sidewall boundary layer displacement thickness
with sidewall bleed at location of airfoil•
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AIRFOIL PRESSURE DISTRIBUTION WITH BLEED

In contrast to other studies, the present investigation is in the regime of
relatively thin boundary layer displacement thicknesses (1 to 2 percent of tunnel

width); therefore, the influence of bleed (at least for attached sidewall boundary

layers) on global parameters such as cn was not significant and hence direct
comparison of the mid-span pressure distribution is made. Shown in Figure 4 is the

effect of bleed on mid-span pressure distribution for angles of attack _f O° and 2°
at a nominal upstream Mach number of 0.76 and Reynolds number of 6 x 10u. For the
shock-free, baseline case at _ = 0°, corresponding to a cn of about 0.56 (near the

design cn of 0.70), the effect of reducing 26"/b from 0.022 to 0.012 is not
significant. However, at _ = 2o (Cn : 0.88), there is a forward movement of the
shock with increasing sidewall bounBary layer bleed. This effect is associated both
with the slight drop in the test Mach number, M, due to bleed and with the

reduction in the sidewall boundary layer displacement thickness. In all figures the
Mach number, M, associated with specific data refers to the calibrated Mach number

obtained with and without bleed, In this figure and in the next 6 figures, the
solid lines are simply a fairing of the data. The change in Mach number and in 6*
when bleed is applied is not a significant problem in applying the correction since
the Barnwell-Sewall flow similarity correction procedure (refs. 5 and 7) takes
into account both Mach number and 6*.

c
P

Moo=0.76. Rc = 6x]O 6

---o.--- NO BLEED.26'_1b= 0.022

--..-o--- BLEED.20_'lb= 0.012 i-

a=O °. cn:0.56

Cp

.... /-M : 0.763

!

20i o : cn = 0.88

L

Figure 4.- Effect of sidewall boundary layer bleed
on airfoil pressure distribution.
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AIRFOIL WAKE WITH BLEED

The total head pressure distribution in the wake of the airfoil ratioed to the

total pressure upstream of the perforated plates is shown in Figure 5 for three
spanwise locations (2y/b of - 0.75, - 0.50 and O.O). The results for this shock-
free baseline case at _ = 0° indicates that the effect of reducing the boundary

layer displacement thickness is not significant. The shift in the wake distribution
is due to the change in Mach number due to the bleed. The right hand portion (with

respect to z) of the wake distribution above the airfoil indicates no entropy change
thus indicating that the flow is shock free.

Ptw

Ptoo

0,9 --

1.0 --

=0.76, Rc=6x106 'a=0 °. cn=0.56M
oo

/

--_y /
/

/

/

/ FLOW
/ +
J

/
/
/
/
/

/
/ NO BLEED 26_/b= 0.022,M = 0.759

/ BLEED 26"/b = 0.012, M = 0.742
• I I /

o

,,,-o
/--BLEED /--BLEED )I II/--BLEED

J I I l I
Z Z Z

Figure 5.- Effect of sidewall boundary layer bleed on airfoil wake
at various spanwise locations.
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AIRFOIL WAKE WITH BLEED OF POOR -.......W

The total head pressure distribution in the wake of the airfoil ratioed to the

total pressure upstream of the perforated plates is shown in Figure 6 for three

spanwise locaAions (2y/b of - 0.75, - 0.50 and 0.0). The results for this high lift
case at _ = 2v indicate that the effect of reducing the sidewall boundary layer
displacement thickness is to smooth the wake distributions, especially the outer

portion of the wake from the flow over the upper surface of the airfoil. The change

in the level of the upper (shock related) portion of the wake is due to the combined
change in displacement thickness and Math number when bleed is applied.

0.9 --

Pt.w

Pt.oo

Moo=0.76, Rc=6X106, a=2 °. Cn=0.88

/

l--y
, /

i /

/

/

FLOW

1

/

/

/

f
I
/

NO BLEED 28_/b = 0.022,M = 0.763

BLEED 26"/b = 0.012,M = 0.738

z

Figure 6.- Effect of sidewall boundary layer bleed on airfoil wake
at various spanwise lacations.
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SPANWISE PRESSURE DISTRIBUTION WITH BLEED

Spanwise pressure distributions are shown in Figure 7 at three chordwise
locations (x/c's of 0.15, 0.5, and 0.8) for the shock-free baseline case at
a = 0u. For this shock-free case the distributions are nearly uniform in the

spanwise direction. The upstream spanwise distribution (x/c = 0.15) suggests

possible wave disturbances emanating from the interaction region at the junction of
the airfoil leading edge and the sidewall. However, in general, for these flow
conditions the effect of sidewall bleed does not have a significant effect on the

spanwise pressure distributions.

M o-- 0.76, Rc = 6x106 ' a= 0°, cn= 0.56

Cp

_-A4 - 0.759

x/c= O.15 .5 .8

NO BLEED 26_Ib= 0.022

WITH BLEED 26_Ib= 0.012

x/c

_::_ .15

O

2ylb

Figure 7.- Effect of sidewall boundary layer bleed
on spanwise pressure distribution.
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SPANWISE PRESSURE DISTRIBUTION WITH BLEED

The effect of bleed is shown in Figuse 8 for the mid-span chordwise pressure

distribution and for three spanwise pressure distributions (x/c_s of 0.15, 0.5 and

0,8) for a high lift and moderately high angle of attack (a = 4v) condition. When
bleed is applied there is a significant improvement of the mid span pressure

recovery on the upper surface near the tailing edge of the airfoil. This suggests
that with bleed the separation on the upper surface is significantly reduced, and in
turn, the supersonic region becomes larger, and thus moving the shock downstream

despite the fact that there is a decrease in Mach number when bleed is applied. In
addition, reducing the sidewall boundary layer displacement thickness with bleed for
this moderately high angle of attack case improves the spanwise uniformity at the
50 percent chord station. It is interesting to note at 80 percent chord where the
flow is subsonic and possibly separated that the spanwise distribution is uniform.
At the 15 percent chord station, the spanwise distribution again suggests possible

wave disturbances emanating from the region at the junction of the airfoil leading

edge and sidewall.

Cp

M =0.76. R =6x106 , a-4 o
oo c

M=0.759, cn=0.9

1.0

C

x/c = 0.15

•-"C)"-" NO BLEED 26_1b = 0,022

•--CI---- WITH BLEED26_*/b = 0.012

xlc

1"8 I

0 .1

.5 .8 Zylb

Figure 8.- Effect of sidewall boundary layer bleed
on spanwise pressure distribution.
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EFFECT OF REYNOLDS NUMBER

The effect of Reynolds number with and without bleed is shown in Figure 9 for a

high angle of attack ( _ = 60) high lift case. For this high angle of attack
condition the flow over the airfoil tends to be somewhat three-dimensional and the

analysis of the flow becomes quite difficult and complex. As was noted previously

for _ = 40, when bleed is applied for the Rc = 6 x 10U condition there is an
increase in the pressure recovery on the trailing edge of the upper surface of the
airfoil indicating that bleed decreases the boundary layer separation on the upper
surface of the airfoil. Again the region of supersonic flow increases when bleed is

applied and the shock location moves downstream despite t_e decrease in Mach
number. When the Reynolds number is increased to 25 x 10_ the effect of b_eed is

not nearly as pronounced as it was for the lower Reynolds number of 6 x 10v . For
the rest of the figures the data will be at Rc = 25 x 106 (with one exception
for the shock-free baseline case at _ = 0° and R,,= 6 x 10b, which will be shown
in a subsequent figure). This value of Reynolds'number (Rc = 25 x 106) is near the

design and flight conditions for this class of airfoil and also eliminates the
uncertainties in the location of transition.

M
O0

NO BLEED,26*Ib= 0.022

BLEED.26_Ib= 0.012

AA= 0,760 (cn = 0.97)

M = 0.730 (cn = 1.1)

C

/ P

= 0.76,a = 60

26_Ib= 0.018

26W/b= O.OiI

• /-M = 0.761 (cn = 0.94)
--- • "- •

C_. f1- -<

Rc = 25 x 106

Figure 9.- Effect of Reynolds number with and without bleed.
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AIRFOIL PRESSURE DISTRIBUTION WITH BLEED

The effect of sidewall boundary layer bleed on the pressure distribution at a
nominal free stream Mach number of 0.70 is shown in Figure 10. Up to this point al]
the data shown have been at a nominal free stream Mach number of 0.76 and all the

f]ow on the upper surface of the airfoil has been predominately supercritical. In

Figure 10 at a = 0° the flow is subcritical and when hired is applied there is no
change in the pressure distribution. However, at _ = 2v when the flow becomes

supercritical and there are strong shocks on the upper surface, the effect of bleed
is to cause an upstream movement in shock position. The movement of the shock for

this condition again is a combined effect of Mach number and the change in the
sidewall 6*; however, this combined effect is accounted for by the Barnwell-Sewal|
flow similarity correction (refs. 5 and 7).

The data thus far indicate that the effect of bleed on the pressure
distributions for shock free supercritical and subcritical flow is not

significant. However, when the flow is supercritical, with strong shocks, the

position of the shock can change depending on the combined influence of the change
in Mach number and the change in sidewall a*.

C
P

M=o=0.70. Rc=25X106

NO BLEED,264'/b = 0.017
D

BLEED,25'_/b = 0.011

/-'M = 0.703

Cp

o=0 °, cn=0.57

-C_

Figure I0.- Effect of sidewal] boundary layer bleed
on airfoil pressure distribution.
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DATA-THEORY COMPARISON

The effects on airfoil data with and without bleed are examined in Figures Ii
through 16 by comparing the uncorrected and corrected experimental pressure
distributions with the GRUMFOIL (refs. 10, 11 and 12) 2-D transonic airfoil code.

The corrections to the experimental data consist of (i) only sidewall corrections,
and (2) combined top and bottom wall and sidewall corrections. The sidewall
correction is based on the procedures suggested by Barnwell (ref. 5) and Sewall
(ref. 7) and consists of making global corrections to the measured Mach number,
pressure coefficients, and lift coefficient. The top and bottom wall interference

assessment and correction have been made using the transonic flow computations
developed by Kemp (refs. 2 and 13). To correct for both sidewall boundary layer and
top and bottom wail effects, two procedures, sequential and unified, either of which
can be considered to be equally valid, have been suggested recently by Kemp and

Adcock (ref. 14). In the present calculations, for purposes of convenience, the
sequential procedure has been adopted.

SUBCRITICAL CASE-NO BLEED

A comparison of data with GRUMFOIL is shown in Figure 11 for a subcritical case
at a nominal free stream Mach number of 0.70 with no bleed. For the uncorrected

data the agreement between the data and theory is fairly good. This indicates, at

this high Reynolds number, which results in 1.7 percent 6* (on both walls--in
relation to the total span), that the corrections for the subcritical case are quite
small. When the sidewall correction is applied to the data, there is a 0.016
decrease in the Mach number at the airfoil and the agreement between the data and
theory improves, particularly on the lower surface.

M =0.70.NOBLEED,26_Ib=O.Dl/.R =25xi06, a=O01 o
oo C

C
P

M = 0.703, c_= 0.57, F

oG=-0.5o°

=0687,c =0.58,Nc _

UNCORRECTED CORRECTEDFOR SIDEVVALLONLY

Figure If.- Comparison of data with GRUMFOIL for a subcritical case.
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SUBCRITICAL CASE-WITH BLEED

A comparison of data with GRUMF01L is shown in Figure 12 for a subcritica] case
with sidewall boundary |ayer bleed. When the bleed is applied the 6" reduces to 1.1

percent of the span and the agreement between the uncorrected data and theory is
quite good. When the sidewall correction is made the Mach number correction is

about 0.O10 and the agreement between the data and theory is further improved. In
general, the effect of bleed on the data-theory comparison was not significant;
however, it is interesting to note that even with boundary layer bleed a sidewall

correction was needed to get the best agreement with theory and data. It is felt
that the comparison of the corrected and uncorrected data with GRUMFOIL will serve
as a guide to check the validity of state of the art wall corrections to the 2-D

airfoil data, primarily because the GRUMF01L computer code is considered to
represent the present state of the art for making 2-D transonic airfoil flow field
calculations.

C
P

ORIGINAL FA_Z iS

OF pOOR QUAL_'_'Y

M =0.70. WITHBLEED, 26"Ib=0.011, R =25x106, a=O °
oo C

'M = 0.686,c_= 0.57 M c = 0.676.c: = 0.58

oG = -0.41o

Cp

UNCORRECTED CORRECTED FOR SIDEWALL ONLY

Figure 12.- Comparison of data with GRUMF01L for a subcritical case.
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NEAR DESIGN LIFT CASE - NO BLEED

A comparison of data with GRUMFOIL at near the design lift is shown in Figure 13

for the baseline, suBercritical shock-free case (see Figures 4, 5, and 7) with no

bleed at Rc = 6 x 10u. This is the only data-theory comparison at the lower
Reynolds number which has a sidewall 6* of 2.2 percent of the span. The comparison
between the uncorrected data and theory shows a noticeable discrepancy in the

supersonic region on the upper surface and some discrepancy on the lower surface.

When the sequential procedure is used for the combined sidewall and topand bottom
wall correction there is a net 0.010 decrease in Mach number at the model (top and
bottom wall has aM = + O.OOg, and the sidewall has a AM: -0.019). The correction

results in some improvement in the agreement on the upper surface, particularly in
the supercritical region, with not much change on the lower surface. When the
corrections are made for the sidewall only (AM= - 0.019) the agreement is excellent

on the lower surface and is considerably improved on the upper surface. Thus it
appears that the sidewall similarity correction procedure may provide a quick and

simple method that accounts for most of the blockage effects. These results were
quite surprising considering the importance normally attributed to the top and
bottom wall effects in contrast to the sidewall effects which are often ignored.

C
P

M :0.76, NO BLEED26_/b=O.022, R =6x106 , a=-O.Ol °
:o C

M = 0,759, c(= 0.56 Mc = 0.749, c( = 0.56 Mc = 0.74. c_= 0..57

aG = -0.74o aG = -0.630 aG = -0 50o

0 o 0 ° o o o

UNCORRECTED CORRECTED FOR SW AND T & B
CORRECTED FOR

SIDEWALL ONLY

Figure 13.- Comparison of data with GRUMFOIL at near design lift.
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NEAR DESIGN LIFT CASE WIFH BLEED

A comparison of data with GRUMFOIL is shown in Figure 14 f_r a case near the
design lift with bleed applied at a Reynolds number of _5 x 10 . When bleed is
applied and the Reynolds number is increased to 25 x 10v the 6* on the sidewall
reduces by a factor of 2 from the previous data in Figure 13 to 1.1 percent of the

span. The agreement between the uncorrected data and theory is much improved as a
result of the combined effect of bleed and increasing Reyolds number. When the
sidewall correction (AM = -0.010) is applied to the data, the agreement with GRUMFOIL

is again improved. The agreement on the lower surface is excellent; however, the
upper surface expansions and compression in the supersonic region are not completely
predicted by the theory. Again it can be seen that even when sidewall bleed is
applied, a sidewall correction is needed to get good agreement between data and
GRUMFOIL.

Cp

M = 0.76. WITH BLEED. 26_/b= 0.011.R = 25 x 106.a = 0.050
oo c

Cp

M c =0.734, c_=0.63

aG =-0.45 °

0 • 0 O 0

UNCORRECTED CORRECTED FOR SIDEWALL ONLY

Figure 14.- Comparison of data with GRUMFOIL at near design lift.
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HIGH LIFT CASE - NO BLEED

A comparison of data with GRUMFOIL for a high lift case (_ ~ 2o) with a strong

shock is shown in Figure 15 with no sidewall bleed and sidewall 6* that is 1.8
percent of the span. With no corrections there is considerable disparity between
data and theory particularly on the upper surface of the airfoil. When the

sequential procedure is used the sidewall correction to Mach number is -0.016 and
the top and bottom wall correction is +0.018, which results in a net AM = +0.002.
The sequential procedure correction improves the agreement on the upper surface;

however, on the lower surface the agreement is not as good as it was with the
uncorrected data. When the sidewall correction is applied there is good agreement
on the lower surface, good agreement in the supercritical region, and good
prediction of the shock location; however, downstream of the shock on the upper
surface the measured pressures are much lower than the predictions of GRUMFOIL. A

possible explanation of the low pressure near the trailing edge of the upper surface
is that there is considerable thickening of the sidewall boundary layer downstream
of the shock wave which tends to accelerate the subsonic flow in this region.

Moo = 0.76,NO BLEED. 25_/b = 0.018.Rc = 25 x 106.a = 2.030

aG=0.430 . laG=0.640 o_

D

Cp - ,z

o

UNCORRECTED CORRECTED FOR SW AND T & B CORRECTED FOR SW ONLY

Figure 15.- Comparison of data with GRUMFOIL for a high lift case.
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HIGH LIFT CASE WITH BLEED

A comparison of data with GRUMFOIL is shown in Figure 16 for a high lift case

with sidewall bleed which reduces the sidewa]| 6* to 1.1 percent of the span. When

the bleed is applied, the data-theory agreement for the uncorrected data is greatly
improved over the no bleed condition shown on Figure 15; however, with no sidewall
correction, the shock position is not correctly predicted. When the sidewall

correction is made (a M = -0.010) the data and GRUMFOIL indicate excel]ent agreement
on the lower surface and improved agreement on the upper surface, and a correct
prediction of the shock location. Thus even with sidewall bleed, an appropriate
sidewall correction must be made. In genera|, it was observed in Figures 11 through
16 that with the measured Mach number corrected for only sidewall effects, the shock

location and the pressure distribution are remarkably well predicted. This result
was surprising in view of the first-order global treatment of the model-induced
sidewall boundary layer effects.

C
P

Moo = 0.76.WITH BLEED.26"Ib= 0.011.Rc = 25x 106,a = 1.990

=0.732, c = 0.94M = 0.742. c _= 0.94 /V1c

aG = O.630 _ aG = O.940
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Figure 16.- Comparison of data with GRUMFOIL for a high lift case.
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CONCLUDING REMARKS

Wind tunnel tests conducted on an advanced-technology 12-percent supercritical

airfoil with and without upstream sidewall boundary layer bleed over the range of
sidewall boundary layer displacement thicknesses of 2a*/b ~ 0.02 to 0.01 indicated

the following:

1. The effects of bleed on mid-span pressure distributions are not significant
for subcritical conditions.

2. For supercritical conditions, the shock position is affected by bleed.

3. At a high lift condition, sidewall boundary layer bleed has a significantly

larger effect on the |ow Reynolds number pressure distributions than on the high

Reynolds number distributions.

4. Sidewall boundary layer bleed tends to improve the spanwise uniformity of

the pressure distribution at increased angles of attack.

5. For supercritical conditions sidewall boundary layer bleed smooths the

shape of the total head wake behind the airfoil.

6. For supercritical flows in this tunnel the shock position and pressure
distribution compare well with GRUMFOIL predictions when the sidewall similarity
rule is used to correct for sidewall boundary layer effects.

7. The sidewall boundary layer removal reduces the magnitude of the sidewall
corrections. However, suitable corrections must still be made.

162



REFERENCES

I. Mokry, M. and Ohman, L. H: Application of the Fast Fourier Transform
to Two-Dimensional Wind Tunnel Wall Interference. Journal of Aircraft,

Vol. 17, No. 6, pp. 402-408, June 1980.

.

.

.

1

g

.

.

u

10.

11.

12.

13.

14.

Kemp, W. B.: Transonic Assessment of Two-Dimensional Wind Tunnel Wall

Interference Using Measured Wall Pressures. Advanced Technology Airfoil
Research, Vol. I, NASA CP-2045, 1979, pp. 473-486.

Murman, E. M.: A Correction Method for Transonic Wind Tunnel Wall

Interference. AIAA Paper 79-1533, July 1979.

Bernard-Guelle, Rene: Influence of Wind Tunnel Wail Boundary-Layers on
Two-Dimensional Transonic Tests. NASA TT F-17255, October 1976.

Barnwell, R. W.: Similarity Rule for Sidewall Boundary Layer Effect in
Two-Dimensional Wind Tunnels. AIAA Journal, Vol. 18, Sept. 1980,

pp. 1149-1151.

Winter, K. G. and Smith, J. H. B.: A Comment on the Origin of Endwall
Interference in Wind Tunnel Tests of Aerofoils. RAE Tech Memo. Aero 1816,

August 1979.

Sewall, W. G.: The Effects of Sidewall Boundary Layer in Two-Dimensional
Subsonic and Transonic Wind Tunnels. AIAA Journal, Vol. 20, Sept. 1982,

pp. 1253-1256.

Ray, E. J., Lads,n, C. L., Adcock, J. B., Lawing, P. L., and Hall, R. M.:
Review of Design and Operational Characteristics of the O.3-Meter Transonic
Cryogenic Tunnel. NASA TM-80123, Sept. 1979.

Murthy, A. V., Johnson, C. B., Ray, E. J., and Lawing, P. L.: Recent Sidewall
Boundary Layer Investigations with Suction in the Langley O.3-m Transonic
Cryogenic Tunnel. AIAA Paper No. 82-0234, January 1982.

_|nik, R. E., Chow, R., and Mead, H. R.: Theory of Viscous Transonic

Flow Over Airfoils at High Reynolds Number. AIAA Paper No. 77-680,
June 1977.

Melnik, R. E.: Wake Curvature and Trailing-Edge Interaction Effects in Viscous
Flow over Airfoils. Advanced Technology Airfoil Research, NASA CP-2045,

pp. 255-270, 1979.

Melnik, R. E.:
Developments.
CP-291, 1981.

Turbulent Interactions on Airfoils at Transonic Speeds--Recent

Computations of Viscous-Inviscid Interactions. AGARD

Kemp, W. B.: TWINTAN; A Program for Transonic Wall Interference Assessment in
Two-Dimensional Wind Tunnels. NASA TM-81819, May 1980.

Kemp, W. B. and Adcock, J. B.: Combined Four-Wall Interference Assessment in
Two-Dimensional Airfoil Tests. AIAA Paper No. 82-0586, March 1982.

163



,N85 12020

PERFORMANCE OF TWO TRANSONIC AIRFOIL WIND

TUNNELS UTILIZING LIMITED VENTILATION

J. D. Lee and G. M. Gregorek

The Ohio State University

Columbus, Ohio

Precedingpageblank ,6s



ABSTRACT

A limited-zone ventilated wall panel was developed for a closed-wall icing

tunnel which permitted correct simulation of transonic flow over model rotor

airfoil sections with and without ice accretions. Candidate porous panels were

tested in the OSU 6- x 12-1nch transonic airfoil tunnel and result in essentlally

interference-free flow, as evidenced by pressure distributions over a NACA 0012

airfoil for Mach numbers up to 0.75. Application to the NRC 12- × 12-inch

icing tunnel showed a slmilar result, which allowed proper transonic flow simu-

lation in that tunnel over its full speed ranBe.
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Figure i. - High-speed iclng wind tunnel.
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Flgure 2. - Configuration tested in the OSU 6- × 12-in. high

Reynolds number transonic wind tunnel as a

simulation of proposed modification to NRC

high-speed icing tunnel.

167



OF pOC.R Q_AL_V

Cp

-4

-3

-2

-I

I

0

I I I I

M =0.34, 0"8 e

-- THEORY, NCS

..... OSU6x22IN. -

L 0 OSU6x 121N.

I I I I

0.2 0.4 0.6 0.8 1.0
X/C

Figure 3. - Comparison of subcritical data from OSU 6- x 12-in.
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tunnel with limited ventilation panel with other

data and theory.

168



-Z.O

-I .5

- 1.0

Cp -05

o

0.5

I I I I

M=0.7, 0=3 °

THEORY BGK
ooOO

o SOLID _ttd_LS

oO°U I o OSU 6xI2IN._

° o

b o _,_o [] °°o 0

- o°g

1.0 I I I I
0 0.2 0.4 0.6 0.8 1.0

X/C

Figure 5. - Comparison of supercritical flow theory with

experiment showing interference from solid wall.
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Figure 6. - Dimensions of NRC high-speed icing tunnel with

ventilated panels proposed and tested.
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icing tunnel having limited ventilation panels with

theory. NACA profile; C = 6 in. (Compare with

figs. 4 and 5.)

170



N85 12021

EXPERIMENTS SUITABLE FOR WIND TUNNEL WALL

INTERFERENCE ASSESSMENT/CORRECTION

Joseph G. Marvin

NASA Ames Research Center

Moffett Field, California

171



INTRODUCTION

The Experimental Fluid Dynamics Branch has been conducting careful

experiments intended to verify advanced computer codes being developed
at Ames Research Center. Part of that effort is directed toward verifi-

cation experiments at transonic speeds and high Reynolds numbers. The

purpose of this paper will be to report on three experiments that con-

tain information suitable for assessing wind tunnel wall interference

and verifying techniques used to correct for interference effects. The

experiments are: (I) a series of airfoil tests using a newly designed

transonic flow facility that employs slde-wall boundary layer suction

and upper- and lower-wall shaping; (2) tests on a swept airfoil section

spanning a solld-wall wind tunnel with fixed contouring on all four

walls; and (3) tests on a swept wing of aspect ratio 3 mounted in a

solld-wall wind tunnel with fixed flat walls. Each of the experiments

provides data on the airfoll sections as well as on the wind tunnel
walls.

0 INTRODUCTION

MOTIVATION

FACILITIES

0 EXPERIMENTSSUITABLEFOR WIAC

AIRFOILS

SWEPTAIRFOIL

SEMI-SPANWING

0 SUMMARYOF EXPERIMENTALRESULTS

AIRFOILS

SWEPTAIRFOIL

SEMI-SPANWING

December 1984
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SYNERGISTIC FRAMEWORK FOR ADVANCING COMPUTATIONAL AERODYNAMICS

The primary motivation for our experiments is to provide support

for the development of computational aerodynamics. The experiments are

keyed directly to three stages of development: research codes_ pilot

codes, and production codes. Experiments supporting each stage require
different measurement information.

The experiments discussed herein are verification experiments and

they are intended primarily to provide benchmark data to assess the

transonic codes being developed at the Ames Research Center. However,

since our data requirements include simultaneous measurements on wind

tunnel wall surfaces as well as model surfaces, they may be suitable for

evaluating methods for assessing and/or correcting wind tunnel wall
interference.

PRODUCTION
CODES

RESEARCH

CODES

MEASURE

(TYPICAL)

PILOT DESIGN

CODES

(co_ figurational)

BUILDIN(3
EXPERIMENTS

(phenomemological)

Pw, cf, CH ....

(xi), _i (xi) ....

p u i uj ....
B.C.

VERIFICATION

EXPERIMENTS

(parametrical)

Pw. cf, CH ....
(xi), u'i (xi)...

B.C.

CD. CL, CM ....B.C.
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AMES HIGH REYNOLDS NUMBER FACILITY 

TUNNEL 1 

A photograph of one of the test facilities used in these experiments 
is shown. It is a blowdown tunnel that can operate subsonically between 
Mach numbers of 0.4 and 0.9 for Reynolds numbers up to 4 0 ~ 1 0 ~  per foot. 
The Mach number is fixed by choking inserts at the downstream end of the 
solid-wall test section, which is rectangular with cross section dimensions 
of 10x15 inches and a length of 60 inches. It can also operate super- 
sonically at Mach numbers of 2 and 3 with the rectangular test section 
by inserting nozzle blocks between the entrance section and the test . 
section. The photograph was taken with the facility configured for 
supersonic flow. 
screens, honeycomb and acoustic absorbing material to provide a low 
disturbance test stream. 

The settling chamber is fitted with a combination of 

The swept-airfoil and low-aspect-ratio-wing experiments were tested 
in this facility. 
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AMES HIGH REYNOLDS NUMBER FACILITY 

TUNNEL 2 

A description of the design and operational characteristics of this 
test leg for the Ames High Reynolds Number Facility i s  given in 
reference 1. 
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AIRFOIL EXPERIMENTS

The airfoil experiments are being conducted under the direction of

John B. McDevitt. Two airfoil sections are being investigated. Wall

and model pressuresare measured simultaneously and the tests have

several unique features. The NACA 0012 tests are in progress and the

supercrltical tests will begin later thls year.

PRINCIPALINVESTIGATOR

JOHN McDEVITT, MAIL STOP 229-1

AIRFOILSECTIONS
NACA0012 (8 INCHCHORD)

KORN-GARABEDIANSUPERCRITICAL(8 INCHCHORD)

MEASUREMENTS
AIRFOILPRESSURES
TUNNELWALL PRESSURES
LASERVELOCIMETERSURVEYS

UNIQUEFEATURES
HIGH REYNOLDSNUMBER
SHAPEDUPPER/LOWERWALLS
SIDEWALL MASSREMOVAL
ACCURATETEST VARIABLESETTINGS

BUFFETTONSETDETERMINATION

STATUS

NACA0012TESTS IN PROGRESS
SUPERCRITICALTESTSTO BEGINFEB '83
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AIRFOIL TEST SECTION

OF POu,. < .;,._.__V

A sketch of the test section used in the airfoil tests is shown.

All walls are solid. The top and bottom have flexible Jacking stations

to provide shaping to eliminate wall interference. On the sides, two

boundary layer mass removal panels are provided. For these tests wall

shapes are set to correspond to streamlines at one and a half chords

from the model as computed from a Reynolds averaged Navler-Stokes code

(refs. 2 and 3). Sidewall pressures are measured at various locations

up to II inches above the tunnel centerllne. It is assumed that topwall

pressures are uniform across the test section and equivalent to those

measured at the ll-lnch sidewall stations.

BOUNDARY LAYER PITOT
SURVEY STATIONS

BOUNDARY LAYER FLEXIBLE WALL / ADJUSTABLE THROAT

REMOVAL PANELS JACKING STATIONS / FOR SPEED CONTROL

i, '/_L: / \/x_
!

':Q:: z' :fS,OEWALLI'
. . t_t f.[lJl HATCH.L_ ,,,

.- _ TURNTABLE --7--

I

I I I I I I

BASIC DIMENSIONS I I I t I I II
• WIDTH = 16 in. , I I I I I , /
• HEIGHT = 24 in. -20 -10 10 20 1
• LENGTH = 110 in. X. in. VENT TO TEST CABIN
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CORRECTIONS FOR WALL BOUNDARY LAYER

DISPLACEMENT AND MASS REMOVAL

Wall boundary layer growth and sidewall mass removal both affect

the Mach number distribution in the test section and corrections must be

provided. The upper portion of the figure illustrates the tunnel empty

wall corrections for the boundary layer (dashed curve) and for the com-

bined effects of boundary layer and mass removal (solid curve).

The Mach number distribution achieved in the empty tunnel with the

wall corrections for mass removal and boundary layer is shown in the

lower portion of the figure. The square symbols represent the distribution

with mass removal and illustrate that uniform free stream Mach number

can be achieved about 3 chords ahead of the model station (x = 0). The

circle symbols represent the distribution with the same contour, but for,

no mass removal, and a significant influence of mass removal on Mach

number distribution is illustrated. Also, the difference in Mach number

level for the two cases is a result of the influence of mass removal on

the effectiveness of the speed control.

BOUNDARY LAYER

"! I GROWTH CORRECTION ...- ""

\ ._ --- " .UPPER WALL

• _ .---- -,,- _ --" _ _CONTOUR

_Z, .,,_

in. ..._ _
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-2 .015, (._Z = 0.18 in.)

- TUNNEL __

.82

.78

M

.74

.70
-6O

WITH SIDEWALL SUCTION

m(2) = 0.01 rnr

m(2 ) = 0

/S,O.WA''..CTIO..ANE''\
(b,, , ,®, ,

_' _1-40 -30 _20 I_ _I -10

X=, _11.

- -i----El-- ---- _ -- ---- _-- --

OPEN SYMBOLS = SIDEWALL _.. Z = 0
CLOSED SYMBOLS = SIDEWALL, Z = 11 in

/ MODEL TEST STATION

I I I
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NACA O012 AIRFOTL EXPERIMENT

Additional wall shaping Is employed for the alrfoll tests. The

separate effects of boundary layer growth correction (tunnel empty),

side wall mass removal correction (tunnel empty), and the airfoll free-

air streamlining to account for the alrfoil are combined. The result2ng

airfoil pressure d_strlbutlon compares well with the computation used

to determine the free air streamline shapes (refs. 2 and 3).

.4

in. .2

0

(+ FOR UPPER WALL, - FOR LOWER WALL)

AREA-RULE CORRECTION FOR SIDE WALL MASS
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e • • . i

-.4
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• _ _ _ _ 4

-*2

H_" 0.75_ REe, _ " 107_ a - 20

BOUNDARY LAYER GROWTH CORRECTION

% AI.FO,L

-1.2 _ O D MEASURED
I

COMPUTATION (FREE.AIR),

DEIWERT

-,S

I I ! * I I I
-30 -20 -I0 0 10 20 30

X, in.

O

O

• ° , ° °

.... ' :' i,( 'i
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TYPICAL TEST DATA

OF POOR _!._:'._i; ,:_

The data from the airfoil tests will be available in the format

shown here. Wall shape settings will accompany these data which will be

acquired over a range of Mach number, Reynolds number, and angle of

attack. Such data will provide the opportunity to assess methods of

determining and/or correcting wall interference effects.

"£E5T - 204, RUN" 73 • FRRf'£, " 17

NRCR 0012 AIRFOIL

¢_- 2.02, M-0.749, PT- 60.04

REYN. NO.- 1.32E+07, CPW=-0.594
-!.s

o
-! .o ov

-O.S _'R_'C_"_

o

Cp 0.0 o

o

0.5.

1.0.

I.cj.
O.O 0.2

o o o

o

o o
o o

° I o

_- 0oo °

o.t o.s o.8 t.o
X/C

o- AIRFOIL LOWER SLIRFRCE

X/C Cp P/PT M

0.025 0.237 0.753 0,650
0.050 -0.015 0.685 0.755
0.100 -0.261 0.6]9 0.858
0.200 -0.392 0.583 0.914
0.300 -0.389 0.584 0.912
0.400 -0.311 0.604 0.880
0.500 -0.259 0.619 0.857
0,600 -0,18[ 0,640 0,825
0.700 -0.113 0,658 0.796
0.800 -0.039 0.678 0.766
0.850 0.006 0.691 0.747
0.900 0.066 0,707 0,722
0.925 0.094 0.715 0.710
0.950 0,130 0.724 0,696
0.975 0.178 0.737 0.674

SIOENALL, Z'O

Cp PIPT M

-30.0 0.054 0.704 0.727
-24.0 0.003 0.690 0.748
-I0.0 0.056 0.704 0.726

I0.0 0.033 0.698 0.736
30.0 0.024 0.696 0.739

0 - AIRFOIL UPPER 5URFFK_/

X/C Cp P/PT M
0.000 l.OBI 0.976 0.!85
0,025 -0,536 0.544 0.975
0.050 -0.743 0.488 1.066
0.075 -0.911 0.442 1.145
O.IO0 -0.979 0.424 [.178
0.150 -1.070 0.400 [.224
0.200 -1.144 0.380 1.263
0.250 -1,172 0.372 1.278
0.300 -I.215 0.360 1.301
0.350 -1.211 0.353 1.316
0.400 -1.237 0.354 1,313
0,450 -0.59] 0.529 0.999
0.500 -0.405 0.580 0.918
0.550 -0.283 0.613 0.867
0.600 -0.227 0.628 0.844

0.650 -0.187 0.639 0.827
0.700 -0.142 0.651 0.808
0.750 -0.098 0.663 0.790
0.800 -0.046 0.677 0.768
0.850 0.005 0.691 0.747
0.900 0.059 0.705 0.725
0,925 0.095 0.715 0.709
0,950 0,129 0.724 0.695
0.975 0.187 0.740 0.671
1.000 0.25t 0.757 &.643

SIOEHALL, Z" II

Cp P/PT" M

-30.0 0.034 0,696 0.736
-20.0 -0.018 0.684 0.757
-16.0 -0.016 0.585 0.756
-12.0 -0.013 0.685 0.755

-8.0 -0.055 0.674 0.773
-4.0 -0.I03 0.661 0.793

0.0 -0.057 0.673 0.773
4.0 -0.079 0.667 0.783
8.0 -0.021 0.683 0,759

12.9 -0.001 0.688 0,750
16.0 -0.013 0.685 0.755
20.0 -0.005 0.687 0.752
30.0 0.024 0,695 0.740

510ENIRLL, Z = -II

Cp P/PT M

-30,0 0,043 0.700 0.732
-8.0 -0.009 0.686 0.753
-4.0 0.016 0.693 0._3

O.O O.OOt u.089 6.7_9
4.0 -0.008 0.686 0.753
3.0 -0.009 3.686 C.'53

12.0 0.019 0.694 u.742
18.0 0.012 0.692 0.745
20.0 0.02 ? 0.696 0.738
30.0 J.O33 0.6£6 0.736
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SWEPT AIRFOIL EXPERIMENT

The swept airfoil experiments are being conducted under the direction

of George Mateer in tunnel l of the Righ Reynolds No. Facility. When

swept across the tunnel the airfoil has a NACA 0012 section in the

streamwise direction. Pressures are measured simultaneously on the model

and all four tunnel walls. Skin friction will also be measured on the

airfoil. The tests are performed with the airfoil at zero incidence.

All four tunnel walls are uniquely shaped to minimize the wall interference

and establish a flow simulating infinite sweep for subcritical flow

conditions. The pressure tests are complete (ref. 4) and skin friction

tests are planned.

PRINCIPALI_IVESTIGATOR:

GEORGEMATEER,MAIL STOP 229-1

AIRFCILSFCTIOH
_ACA0012 (STREAMWISE)

MEASUREMERTS
AIRFOILPRESSURES
TUNNELWALLPRESSURES
SKIN FRICTION

UNIQUEFEATURES
HIGH REYNOLDS_IUIIBER
SHAPING0_IFOUR WALLS
ACCURATETESTVARIABLESETTINGS

STATUS

AIRFOILA_'.DWALL PRESSURFTESTSCOMPLETE
SKIN FRICTIONTO BEGI,_!SEPT 1983
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SWEPT AIRFOIL EXPERIMENTAL ARRANGEMENT

A sketch of the model installation is shown to illustrate the wall

shaping. It should be noted that the sketched wall shaping is not to

scale. The side and top wall shaping was determined by calculations

using the inviscid transonic small disturbance code developed by Ballhaus

and Bailey (ref. 5) and Bailey and Ballhaus (ref. 6) for a free stream

Mach number of 0.8. Essentially, the shapes represent the inviscid free

air streamlines from the calculations. The sidewalls were manufactured

_on a progra_able milling machine. The upper and lower walls were

;diverged to account for sidewall boundary layer displacement effects from

all four walls.

TOP V IEW

/ / 2s-cm

X :

SIDE VIEW

I

Flow

____CA 0012_-_,

21-cm
chord

38 cm
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SWEPT AIRFOIL PRESSURES

A condition of infinite sweep was achieved as illustrated here.

Pressures over the span of the airfoil are shown to illustrate the

results. They were achieved at a Mach number slightly different from

the design value, i.e., 0.74 versus 0.8, and that may be due to the use

of the small disturbance code. A prediction using Holst's full potential

code (ref. 7) shows good agreement.

M- .74 Re=4.7XIO 6

I

I Z/S = "1-°
I

i .... HOLST.

(FREE Al

N1 I

# !.....
:_ I _""_ --__.._...

-CP

0 " 0 _ .....

-1. I

t

@,0 0.2 0.4 Q.G Q.8 1.0

X/¢
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TUNNEL WALL PRESSURES

Data were als0 obtained simultaneously on the tunnel walls. Pres-

sures on the left and right sidewalls along a single line above the

airfoil and along the centerline of the top and bottom walls are shown

here. Data on the sidewalls are available along nine lines above the

model. Data along the side walls and along the top and bottom walls

compare favorably, illustrating that wall interference has been eliminated.

The data will also be compared with predictions from the Holst code (ref. 7).
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SEMISPAN WING EXPERIMENT

The wing experiments were conducted in tunnel 1 of the High Reynolds

Number Facility under the direction of William Lockman (ref. 8). A wlng

with aspect ratio 3 was mounted on the tunnel sidewall and swept 20 ° •

The streamwlse wlng section was an NACA OO12 section. The chord-to-

tunnel half-helght ratio was 1.875. The tunnel walls were flat and the

top and bottom walls were tapered to allow for boundary layer displace-

ment effects. Mach number was varied between 0.5 and 0.84, a between 0 °

and 2 ° and Reynolds number between 2xlO 6 and 8x106, based on chord. Wing

and wall pressures were measured simultaneously. Some velocity profiles

over the wing at several span stations, obtained with a laser veloclmeter,

are also avallable for the higher Mach number tests.

PRINCIPALINVESTIGATOR

WILLIAMLOCKMAN.,MAIL STOP229-1

AIRFOILSECTIOb!S
NACA0012 (STREAMWISE)

MEASUREMENTS
WING PRESSURES
TUNNELWALL PRESSURES
VELOCITYPROFILESFROM LDV

UNIQUEFEATURES
HIGH REYNOLDSNU_ER
SUBCRITICALTNRUSUPERCRITICALFLOWS
FLATWALLS

ACCURATETESTVARIABLESETTINGS

STATUS
COMPLETED
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WING SURFACE PRESSURES

Data for a subcrltical flow condition are illustrated here. They

are compared with two full potential transonic codes, FLO-29 prepared by

Flow Research Corp. (refs. 9 to II) and TWING prepared by Hoist (ref. 12)

at ARC. The FL0-29 code was developed to include solid wall boundary

conditions• The agreement of the predictions employing free air boundary
conditions and the data indicates minimal wall interference.

-$UBCRITICAL WING FLOW-

= 0 °a Moo = .499

1.000

.900

.775

.500

0000
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.850
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...... FLO-28 _ FREE AIR
TWING )
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WING PRESSURES
OF POOR QuALi;V

Data for a supercritical flow condition are illustrated here.

In this case there is significant influence of the tunnel walls and the

data should provide an excellent test case for assessing interference

correction methods. The data are compared with the two potential code

predictions with free air boundary conditions and the disagreement is a

measure of the wall interference effects. The two predictions, which

use essentially the same number of grid points, do not agree with one

another and the reasons for the differences are not understood at this

time, However, our experiences with the FLO-29 code (refs. 9 to II) have

shown anomalies and indicate the code is not performing adequately. For

that reason, solutions using the exact wall boundary conditions in that

code are not presented at this time. Wall boundary conditions have not

yet been added to the TWING code (ref. 12).
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CHANNEL TOP-WALL MACH NUMBERS

t_

Data were taken on the tunnel side and top and bottom walls. Here

data along the top wall for the subcritical and supercritical wing flows

shown previously are presented. For the subcritical flow case the Mach

number across the tunnel wall is essentially the same at all wall span

locations y; this further illustrates the presence of minimal wall

interference. In contrast, the data for the supercritical flow case
show a spanwise variation and hence the presence of wall effects.
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SUMMARY

Three experiments suitable for wall interference assessment and

evaluation of proposed correction methods have been presented. All

the experiments were performed in solid wall wind tunnels corrected for

boundary layer displacement effects. Simultaneous model and wall pressure

data are available. Although the experiments were performed primarily

to evaluate computer code performance, it is believed that they also

provide information that can be used to evaluate methods for assessing

and correcting wall interference effects. The principal investigators

may be contacted for further information and will provide any data

presently available.

0

0

0

THREEEXPERIMENTSDESCRIBED

o AIRFOIL

o SWEPTAIRFOIL

o SEMISPANSWEPT_fING

UNIQUEFEATURESOF EXPERIMENT

o HIGH REYNOLDSNUMBER

o PERFORMEDIN SOLIDWALL FACILITIES

o UPPER/LOWERWALLSDIVERGEDFOR DISPLACEr_E_TCORRECTIONS

o WALL SHAPING(S_fEPT/UNSWEPTAIRFOILS:)

o SIDEWALLMASS REMOVAL(UNSWEPTAIRFOID

AIRFOIL#ND WALLPRESSURE_ATA FOR WIAC STUDIES

o SUBCRITICALAN_ SUPERCRITICALFLOWS

o DATA AVAILABLETHRUPRINCIPALINVESTIGATORS
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ASYMPTOTICMETHODSFORWINDTUNNELWALLCORRECTIONSAT TRANSONICSPEED

This talk will be an outline of our effort in developing classical methodsto
computewall interference at transonic speeds. To be discussed are the two-
dimensional theory and three-dimensional developments. Also, somenumerical appli-
cation of the two-dimensional work will be indicated.
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ASYMPTOTIC METHODS FOR TRANSONIC WIND TUNNEL WALL CORRECTIONS

The basic meaning of the asymptotic procedure is to compute the flow field in

the limit as some parameter takes on extreme values. In our analyses, this limit is

that the height-to-chord ratio becomes large. This will lead to important simpli-

fications of the analysis which will reduce the number of parameters necessary to

describe the corrections as well as the associated computational effort. In addi-

tion, the results should provide insight into adaptive applications.

GOALS

• STUDY STRUCTURE OF CONFINED FLOWS AT TRANSONIC SPEEDS

USING ASYMPTOTIC THEORY

• REDUCE NUMBER OF PARAMETERS NECESSARY TO DESCRIBE

CORRECTIONS

• REDUCE COMPUTATIONAL EFFORT IN CORRECTION AND

ASSESSMENT EVALUATION

• PROVIDE INSIGHT RELEVANT TO ADAPTIVE APPLICATIONS
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CONFINED AIRFOIL

This figure shows a schematic of a two-dimensional problem involving an airfoil

confined between walls. The walls are assumed (without excessive loss of generality)

to be solid. For large height-to-chord ratio, a singular perturbation problem occurs

in which the walls weakly and linearly perturb the near field from its nonlinear

behavior in the corresponding unconfined flow. Near these walls, the approximation

becomes invalid, and a different one idealizing the flow as a reflected potentia]

vortex must be used. Matching between both domains determines unknown elements in

both approximations.

UT, M T H=h6

X
r

1/3

ORIG:N/-_.LF;._ "_

OF POOR QUR.L.F:!'V
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INNER FORMULATION

These ideas can be made more precise by using so-called "limit process

expansions" in which the flow quantities are written as perturbation series for

the velocity potential _ which become more accurate as the parameters 6 (charac-

teristic flow deflection) and H (height) take on the indicated limiting values.

These series are substituted into the exact equations to obtain equations of motion

for the approximate quantities. For the inner (near-field region), the dominant

equation is the Karman-Guderley (KG) small-disturbance equation. The perturbation

equation is a linearized form of the KG equation. Matching with the outer approxi-

mation (valid near the walls) gives the necessary far-fleld boundary condition to

solve this equation.

AIRFOIL SHAPE

y = _Fu, j_(x) -aT(X), IFu.t MAX I = 1

KARMAN-GUDERLEY (KG) EXPANSION

(I, = U T II x + _2/3¢_(x. y"; KT. A T, H) +
= " "°1

1 - MT2 ' a T= A=T'"=h6113fi" ' 6--O

INNER EXPANSIONS

_nH + ..._1
=_0(x'Y)+ I1-_ _1/2 H2 _1 +''"

tnH +__1 Kc +
K T=K F+_KS H 2 "'"

(1/2 SUBSCR IPT TE RMS ARE "SWITCHBACKS" INTRODUCED FOR MATCH ING)

INNER LIMIT:

x, y FIXED AS H .-,.oo
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BASIC STRUCTURE OF FLOW OVER CONFINED SLENDER VEHICLE

For the three-dimensional case of a fighter shape that can be approximated by a

slender body, three rather than two regions are necessary to properly describe the

confined flow. If the body's transverse dimensions are small compared to those of

the wall, an inner region near the body has dominant cross-flow gradients which lead

to the flow being harmonic in cross planes. In an "outer" region, the flow is repre-

sentable as a nonlinear line source. Near the walls, in an "outer-outer" region, we

obtain a linear line source representation for the flow in which the influence of the

walls is to introduce image reflections. The behavior of this solution in the outer

region provides a far-field boundary condition for the determination of the nonlinear
line source flow.

INNER

H _ oo LIMIT

• INNER - DOMINANTLY UNCONFINED SLENDER-BODY THEORY

• OUTER - WALL-INDUCED LINEAR PERTURBATIONS ON DOMINANT
UNCONFINED LINE SOURCE

- DOMINANT FLOW GIVEN BY EQUIVALENCE RULE

• OUTER-OUTER - FOR LOCALLY SUBSONIC CONDITIONS IS LINE

SOURCE OR DOUBLET IMAGED IN WALLS
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FREE AND CONFINED CHORDWISE PRESSURES - NACA 0012 AIRFOIL

Returning to the two-dimensional problem, results will be presented from the

computational solution of the perturbed near field near the model using successive

line overrelaxation solvers with proper attention to the treatment of the perturbed

shocks. Chordwise pressures for a NACA 0012 airfoil at a tunnel Mach number MF

of 0.75 and angle of attack _C of 2° are depicted in the plot for various values of

the height parameter H as compared to the free-field values. Strikingly and sur-

prisingly small effects are shown upstream of the shock for the rather low values

of H used. Important numerical issues are the treatment of the perturbed Kutta

conditions and the proper treatment of the shock waves in these calculations.
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COMPARISON BETWEEN EXACT AND APPROXIMATE CHORDWISE PRESSURES

ON CONFINED NACA 0012 AIRFOIL

This is an example of one validation of the solution against a so-called exact

approach in which the confined flow is a solution of the small-disturbance equation

required to satisfy the exact boundary conditions. The agreement is quite reasonable.

However, further effort is required to reduce the discrepancies to be substantially

below the magnitude of the basic interference effect. This is related to the

numerical issues described previously.
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COMPARISON OF LIFT COEFFICIENTS FOR CONFINED AIRFOIL AT VARIOUS WALL HEIGHTS

Corresponding to the validation of the chordwise pressures shown previously,

other validations were performed for the confined lift using the exact and perturba-

tion theories. The results show very good comparisons down to fairly low values of

the height parameter. In spite of this, more effort is required to properly treat
the Kutta condition in the perturbed problem.

M F = 0.7, a F = 3.5 °

1 2 3 4 5

EXACT .3655 .3653 .3652 .3652 .3652

ASYMPTOTIC .3662 .3654 .3653 .3652 .3652

SOLUTION

M F = 0.75° a F = 2°

1 2 3 4
5 6

EXACT .4322 .4266 .4234 .4234 .4233 .4234

ASYMPTOTIC .4356 .4264 .4248 .4242 .4238 .4237
SOLUTION

2Ol



INTERFERENCE LIFT VERSUS REDUCED ANGLE OF ATTACK - NACA 0012 AIRFOIL

1 Here is the interference lift
The total lift CL is equal to CLF + _ CLI. , CLI

coefficient. If A c is the tunnel angle of attack in units of the thickness ratio 6,

the curve shows a universal variation of CLI with Ac, with the height parameter

separated out. Also indicated is the necessary adjustment of A c to provide

interference-free lift (CLI = O) independent of H, demonstrating the utility of the

theory in extrapolations down to zero model size in the transonic regime.
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SUmmARY AND CONCLUSIONS

The basic advantages of the asymptotic theory are indicated. In the future,

three-dimensional generalizations of the two-dimensional model will be developed.

ASYMPTOTIC THEORY OF SOLID TUNNEL WALL INTERFERENCE ON TRANSONIC AIRFOILS:

• LEADS TO SINGULAR PERTURBATION PROBLEM FOR LARGE H

• NEAR FIELD- WEAK LINEAR PERTURBATIONS ON KG THEORY

• FAR FIELD - REFLECTED MULTIPOLE DOMINATED BY VORTEX

• SWITCHBACK TERMS REQUIRED FOR MATCHING, ALTERING SIMILARITY
PARAMETER

• GIVES PERTURBATIONS OF NEAR-FIELD PRESSURES AND FORCES O ( (_n H}/H 2)

• PROVIDES GOOD AGREEMENTWlTH THE EXACT KG MODEL FOR LARGE TO
MODERATE H FOR LIFT CORRECTIONS

UTILITY OF THEORY

• SEPARATES H OUT OF PROBLEM

• INVOLVES A NONLINEAR AND LINEAR UNIVERSAL PROBLEM AS COMPARED
TO TWO NONLINEAR PROBLEMS IN EXACT CASE

3-D EXTENSION TO SLENDER MODEL CONFINED BETWEEN SOLID WALLS SHOWS 3-LAYER

STRUCTURE
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NASA Langley Research Center
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Introduction

A numberof linear methodshave beendeveloped for predicting the interference
of open, closed, and ventilated walls in two- and three-dimensional subsonic
wind tunnels. Summariesof these methodsare given in references ! and 2. In
general, the ventilated walls are assumedto be homogeneousand are either
perforated with small holes or are slotted longitudinally. The purposeof the
present paper is to present a linear methodwhich accounts for the effects of
boundarylayers on solid walls in subsonic three-dimensional wind tunnels. As
will be shown, the numerical method and the nature of the results bear a

striking resemblance to those for subsonic wind tunnels with slotted walls.

The critical feature of the present method is the manner in which the boundary
condition for solid wind tunnel walls is handled. The present method is based

on a theory developed recently by Barnwell (ref. 3) and Sewall (ref. 4) which
predicts the effects of boundary layers on solid sidewalls in two-dimensional
subsonic and transonic wind tunnels. The present solution for three-dimensional
flow is substantially different from the two-dimensional solutions of

references 3 and 4 in that the two-dimensional solutions result in similarity
rules relating compressibility and sidewall boundary layer effects. No such
similarity exists for the three-dimensional problem.
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Three Dimensional Subsonic Wind Tunnel With Wall Boundary Layers

Consider steady subsonic, small-perturbation flow in a wind tunnel with a

rectangular cross section of width 2b and height 2h. Let the Cartesian
coordinates in the freestream, horizontal, and vertical directions be x, y,
and z, respectively, and let the perturbation velocity potential be @. The
flow is governed by the small disturbance condition and the viscous solid-wall
boundary condition.

SMALL DISTURBANCE EQUATION

(I_M=2) (_20 + (_2_ + (_2_ = 0

(_x2 -_y2 "_z2

VISCOUS SOLID-WALL BOUNDARY
CONDITI ON

_ -U m

i)n _x
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Tunnel Wall Boundary Layer Analysis

In the present treatment, the dynamics of the sidewall boundary layer are
modeled with the yon Karman momentum integral, which can be written as

shown. This equation can be simplified because the sidewall boundary layer in
most wind tunnels can be approximated as a flat-plate boundary layer with a

* 2
large Reynolds number and an equivalent length on the order of _ /(_w/PU }.

In general, the model length scale c is much smaller than the boundary layer

equivalent length so that the inequality shown pertains.

As shown in reference 5, the shape factor for boundary layers with constant

total temperatures can be approximated as shown in the third expression where
is the transformed shape factor and y is the ratio of specific heats.

Because H approaches I as the Reynolds number becomes large, this equation
can be written as

H = I+(y-I)M 2

for the present problem. From this equation and the small perturbation energy
equation, it follows that the streamwise gradient of H is given by the
fourth expression.

With the inequality and the shape factor gradient derived above, the

yon Karman momentum integral can be simplified as indicated. This simplified
expression can then be used to evaluate the viscous solid-wall boundary
condition as indicated. Note that thls is a linear boundary condition for the
function ¢.

VON KARMAN MOMENTUM INTEGRAL

__B6"+ _(2+H-M 2) 8U _ Ht'w +--8" __.BH
ax 8x pU2 H 6x

BOUNDARY LAYER LENGTHSCALE APPROXIMATION

_O

LENGTH SCALE ~ >> c = MODEL LENGIH

'rwlpU2

SHAPE FACTOR APPROXIMAT,ON

H=(R+]){I+ _ M2}-l =l + (y-l)M Z

OH = (H-I|(H*I) 8U
ax U _x

SI MPLI F I ED MOMEN'IUM IN'IEGRAL

N_2__BU
_x

VlSCOUS SOLID -WALL BOUNDARY COND ITION

80 = 6"12 1 820
an +H "M2) ax2
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Comparison of Tunnel Wall Boundary Conditions

The viscous solid-wall boundary condition is similar in form to the

conventional linear boundary conditions for slotted and porous walls. The
quantities F and R are nondimensional constraints, and

2
B=I-M

As in reference I, Fourier transforms are used to account for dependence on

the streamwise coordinate in the present treatment. The present solutions for
the viscous solid-wall boundary condition are very similar to those for the
slotted-wall boundary condition.

VISCOUS SOLID WALL

SLOTTEDWALL

POROUSWALL

_ =6 _ _ M2 _On- (2 + - ) 2¢
i_x2

i_¢ 1
- _

On Fb

be R _¢

_n - _ c_x
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Analysis Parameters

The results for the viscous solid-wall boundary condition are expressed in

terms of the viscous parameter N. This parameter has a value of 1 for a wall
with a zero-thickness free-stream velocity. The results for the slotted-wall
boundary condition are presented in terms of the parameter P of reference 1,
which is related to the slotted-wall coefficient F as indicated. This

parameter has values of {) and 1 for closed and open walls, respectively.
As a study of the boundary conditions will show, the blockage for a solid wall
with N = i and a slotted wall with P = O must be identical because both

are simply a solid wall with no boundary layer. Although it is not as
obvious, the boundary conditions require that the blockage for a solid wall
wlth N = O be identical to that of a slotted wall with P = I.

• VISCOUS SOLID-WALL BOUNDARY CONDITION

Bm 8_/I _ a2m

_n- b _" + I+H

I
VISCOUS PARAMETER : N =

LIMITS N = i, 8" = 0

N-,,-O, M'-,-- 1.0

• SLOTTED-WALLBOUNDARY CONDITION

SLOT PARAMETER :
I

p_-
I+F

LIMITS P--,.-O, F_, SOLID WALL

P = 1. F = O, OPEN WALL
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Solid Blockage Ratios for Solid-Wall Tunnels

The model-induced wall boundary layer effects on the solid blockage for the

solid-wall configurations 1 and 2, which have height-to-width ratios of I and
0.7, respectively, are presented. These blockage ratios, _, are at the
model position (x=O) and for values of the boundary layer parameter, N, from
0.0 to 1.0. In reality, values of N less than about 2/3 are largely

academic because they can be obtained only with excessively thick boundary
layers or with near-sonic free-stream Mach numbers; in both cases, this linear

procedure would be less than adequate for the problem. The model-induced wall
boundary layer effect reduces the blockage factor from the closed-wall zero-
thickness value (N=I, _=I) and is similar to the blockage relief that is
obtained when the walls are slotted. As a matter of interest, the tick marks

indicate the slot parameter values for an equivalent slotted tunnel (P=Ph=Pv

on horizontal and vertical walls) that would produce the same blockage

factors. For the square tunnel, a boundary layer parameter, N, of 0.780

produced a blockage ratio of 0.5 as does the slotted tunnel with a P factor
of 0.1. For given boundary layer parameter values, the blockage relief is
greater for configuration 2 (h/b=O.7) than for the square tunnel.

EQUIVALENT
SLOI_ED

TUNNELS

CONFIGURATION 1. h/b =

Ph=Pv = 0.I

0

-.2

.8 -CONFIGURATION.2. hlb = 0.7

I I I I
.1 .2 .3 .4

! I I I I I
.7 .8 .9 1.0
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Solid Blockage Ratios Along Tunnel Centerline

The wall boundary layer effect on the solid blockage distributionalong the
longitudinal axis of tunnel configuration1 has been evaluated and is shown.
The blockage factor varies symmetricallyabout the model position, with N
values from 0.4 to 0.6 producing fairly constant values of blockage along the
axis.

CONFIGURATION 1, h/b = 1.0
N .0

0

-.2

-.4

I
-I.0

I
-,8

I I I I
-.6 '.4 -.2 0

x/_h

I I I I I
.2 .4 .6 .8 1.0

OF POOR QUALITY
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Solid Blockage Ratios for Combination Wall Tunnel

The blockage ratio at the _del station for the combination wall configu-
ration, which has slotted top and bottom walls and solid sidewalls, is

presented. It is assumed that the horizontal wall boundary condition is
dominated by the slot effects; no attempt has been made to combine slot and
boundary layer conditions on the same wall.

At N equals 1.0 (no sidewall boundary layers), the blockage factors for the
various horizontal slot parameter values are the same as those of Pindzola and

Lo (ref. 1). As the boundary layer on the sidewall builds up (decreasing N),

additional blockage ratio reductions occur. This effect is nw)re pronounced

for the more closed horizontal slots. As the horizontal slots go toward fully
open (Ph=l.O) it is anticipated that the sidewall boundary layer effect should

diminish.

1.0 CONFIGURATION 3. hlb = 1.0 Ph = 0 CLOSED

.8

I I I I I I I
0 .1 .2 .3 .4 .5 .6

N

I ¸ I I I

.l .8 .9 1.0
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Lift Interference Factors Along Tunnel Centerline

The lift interference, 6, contains two terms, one of which is independent
of x (two-dimensional lift) and the second of which is x-dependent (three-
dimensional lift). An examination of the two-dimensional-lift boundary

condition reveals that the wall boundary layer parameter, N, has no effect
on the two-dimensional-lift interference term. The value for this term is

just the closed-wall value. The three-dimensional-lift term is affected by

the wall boundary layer; the longitudinal distributions of this term for the
solid-wall tunnel configurations are shown in the figure. The lift
interference values for the no-boundary-layer case (N=I) are the same _s those

of reference 1. It is apparent that the effect of the wall boundary layer is
smaller for the lift interference factor than for the solid blockage ratio.

CONFIGURATION 1, h/b = 1.0

6 .1

0

N = 1.0-/
- 0.8
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Streamline Curvature Factors Along Tunnel Centerline

The model-induced wall boundary layer effects on the streamline curvature

factor _I are presented for a solid-wall configuration. The streamline

curvature factors near the model station (x=O) are reduced by the wall
boundary layer effect. This effect is similar to opening slots in the
horizontal walls.
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Streamline Curvature Factors for Combination-Wall Tunnel

The streamline curvature factor 61 at the model station (x=O) for a square

combination-wall tunnel with slotted horizontal walls and solid sidewalls is

presented. It is seen that the slotted horizontal wall effects are dominant
with only slight changes in the streamline curvature factor for practical
values of the boundary layer parameter N.

CONFIGURATION 3, hlb = 1.0
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Summary

A solution for the tunnel wall boundary layer effects for three-dimensional
subsonic tunnels has been presented. The fundamentals and methodology of the

procedure are the same as the Pindzola and Lo treatment of the ventilated wall
problem (ref. I). The model potentials are represented with simple singularities

placed on the centerline of the tunnel and Laplace's equation in cylindrical
coordinates is solved for either the conventional homogeneous slotted-wall

boundary condition, the solid-wall viscous boundary condition (refs. 3 and 4), or
a combination of them. The Fourier transform and point-matching techniques of
reference I are used.

This analysis of the model-induced boundary layer effects on the solid walls

of several three-dimensional wind tunnel configurations leads to several
observations.

The most pronounced wall boundary layer effect is on solid blockage for
completely closed wind tunnels. Boundary layers on the wall reduce the

blockage from the solid-wall, no-boundary-layer case in a manner similar to
opening slots in a solid wall. Additionally, for solid-wall tunnel
configurations, the streamline curvature interference factor is reduced by a
significant amount, whereas the lift interference factor at the model station

does not depend on the boundary layer parameter.

For combination wall configurations, the slot effect of the horizontal walls

dominates the viscous effect of the solid sidewalls. This is true not only
for solid blockage but for lift and streamline curvature interference as well.

• MODEL-INDUCED, VISCOUS; SOLID-WALL BOUNDARY CONDITION

HAS BEENDEVELOPEDAND LINEAR I_OTENTIAL-FLOWSOLUTIONS

FOR 3-D SUBSONIC WIND TUNNELSHAVE BEENOBTAINED

• SOLID-WALL TUNNELS - SOLID BLOCKAGE AND STREAMLINE

CURVATURE INTERFERENCEFACTORS ARE INFLUENCED MOST

BY WALL BOUNDARY LAYER EFFECT

• COMBINATION-WALL TUNNELS- TYPICAL SLOT OPENINGS

IN THE HORIZONTAL WALLS; THE SLOT EFFECTSDOMINATE

THE SIDE-WALL BOUNDARY LAYER EFFECTS
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BASIC WIAC OPTIONS

Modern WIAC methods apply some form of measured field data as a boundary

condition for calculating the interference flow field. They can be roughly

divided into two categories. For the first category, the field data must consist

of distributions of a single velocity component, but in addition, an accurate

estimate of the hypothetical free-air contribution of the model to this com-

ponent is required. The differences between measured values and estimated
model contributions are attributed to wall interference (after appropriate

corrections for disturbances already present are made in absence of the model),

and they establish the aforementioned boundary condition. The associated

field data measurements can be rather simple, but the necessary "mode]

representation" generally is a serious drawback.

The second category requires field data consisting of velocity vector

distributions at the price of multicomponent measurements, but at the profit

that no information at all is required about the model. In solid-wall test

sections (where v = 0 or, for compliant walls, v is known anyhow), the

price is reduced to virtually zero but the profit remains (ref. l). (See fig. I.)

SINGLE COMPONENT:

(2D :"Sc hwa rz."type)

- Model representation
+ Limited field data

+ Simple measurement
of field data

MULTICOMPONENT:

(2D :"Cauchy':type)

+ No model representation

(_) More extensive field data
- More complicated measurement

of field data

Figure 1

222



NLR WIAC STRATEGY
OF' POOR Q_L_ALITY

NLR initially chose the single-component approach because our main

interest was in ventilated-wall test sections, and the available instrumentation

for multicomponent velocity measurements did not seem attractive for routine

testing. The experience gained with the 2-D "Schwarz" type method has given us

enough confidence in the field data approach to attack the 3-D problem. However,

the necessary model representation is considered to be a very serious obstruc-

tion; it will have to depend on the type of model and thus be a recurrent

problem and wipe out the possibility to attain a compact computer program. On

the contrary, the problem of multicomponent velocity measurements could have

a very general solution, i.e., a solution applicable to a very wide variety of

models. Besides, the so-called "Calspan pipe" proposed by Wittliff (ref. 2)

seems a very promissing solution already. Therefore, NLR is now aiming at the

more versatile multicomponent approach and is presently exploring the merits

of the Calspan pipe. The evolution of this strategy is reflected in figure 2,

which summarizes the 2-D field data now available at NLR. The complete set of

data should be sufficient for 2-D WIAC procedure evaluations, but the Calspan

pipe results are still being analyzed. Several parts of the data set include

the test program shown in the section concerning the experimental 2-D data

base.

NLR PT 0.42 X 0.55 m 2

MODEL: CAST-7/DOA1 (c/H=.33)

///z////l
O.-0-

1,[

.0.- ..... -0

(p.-4

I q

•"1- REF.

t-

_///I

RAI L (slotted wall)

SLAT (slotted wall)

t¥
I

!

I
o
!

, z

CALSPAN PIPE (slotted wall)
A_

CALSPAN PIPE (solid wall)

Figure 2
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PLANNED THREE-DIMENSIONAL EVALUATIONS

In accordance with our present strategy, a 3-D WIAC procedure that requires

multicomponent field data measurements has been developed, and models are being
defined in behalf of its experimental evaluation. The models will be tested in
both a small and a relatively large test section. Field data will be measured

in, at least, the smaller test section, and the larger one should provide a
nominally interference-free environment (or one requiring sufficiently small
corrections that can be applied with great confidence). In order to obtain the

wall velocity vector, it seems convenient to measure two of its components and,
from these, to calculate the third one. Since the solid-wall test sections present
the minor instrumentation problem (zero velocity normal to the walls, hence only
wall pressure measurements required), the low-speed tests will be performed

first. This will leave some time to evaluate properly the 2-D tests with Calspan
pipes (fig. 2) before possibly using those in the subsequent 3-D transonic-speed
tests. (See fig. 3.)

A basic drawback of this approach is that, together with the fact that
the wind tunnels involved (except for the HST) operate at atmospheric conditions,

the sma]] model sizes ]ead to low Reynolds numbers (]O0 000 for the low-speed
model). In spite of that, NLR will try to simulate low-speed high-lift conditions

(CL > 2).
max

1983

LST 3 x 2 m 2

.8x.6 m 2

!-'-I

OF pOC;_ C_":;-_.LiTV
1983/84

HST 2 X 1.6 m 2

PT

E]
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LOW SPEED

(wall pressure orifices)

Figure 3
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PRELIMINARY CALSPAN PIPE RESULTS OF PO_,_ QL._LiI"_

The Calspan pipe results obtained in the NLR PT are still being analyzed,

so they are preliminary in nature but may be of some interest. The data obtained

in the slotted-wall test section look rather promising although some possibly

minor problems were encountered. Examples of the repeatability of the v-component

are shown in figure 4. It is noted that v is determined from the actually

measured av/_x by simple integration, assuming v to be zero at the most

upstream pressure stations. Remarkably, the repeatability of V/URE F may be

as bad as 0.30 ° in terms of flow angle, but in spite of that, the corresponding

repeatability of the wall corrections turns out to be (almost) acceptable.

It was found that the pressures on the pipe Fluctuate by about ±0.002 in

Cp with a frequency of roughly 3 Hz. Since _v/_x is related to a pressure

difference, this may well be the cause of the poor repeatability: These fluc-

tuations occurred both with and without the model installed, but they were not

present in the tunnel reference pressure. Therefore, a possible cause could be

the upstream pipe support.

' (,'_')--- o2° / V/Uref I Ma-- '60lot= 1.06 °
J (,_ Ma ) ---- .0005 .02

.2 .4 ,- .6

"-.'_LOo_ _,'t ," ,//,"

I /
I " ,AM_,:-.OO,SI - _ 7:,"! Mo=.,_I,\ / ,, I ....

- .04 kxx_/" :

Figure 4
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EXPERIMENTAL TWO-DIMENSIONAL DATA BASE

NLR participates in the Group for Aeronautical Research and Technology in

Europe (GARTEur) Action Group (AG 02), which is mainly concerned with a "valid-

ation of 2-D transonic testing." To this purpose, measurements were performed

in seven European wind tunnels, each using its own model of the same airfoil

(CAST-7/DO At) and its own measurement system. A summary of wind turlnel char-

acteristics is shown in figure 5, together with the common test program. Exten-

sive field data measurements were performed in the ONERA T2 and S3MA, TU-Berlin,

and NLR PT wind tunnels. The field data consist of wall and/or rail pressures

and, in the compliant-wall wind tunnels, also of wall shape. These data are

being used for WIAC evaluation studies.

The group's final report is expected to appear in 1983. A progress report,

however, has been published by Elsenaar and Stanewsky (ref. 3) with ample

references to the separate data reports.

No Tunnel

1 S3Ma

2 TWB

3 ARA

4 TKG

5 T--2

6 NLR

7 TU--B

bxH (m 2) Type

0.56 x 0.78 Perforated

0.34 x0.60 Slotted

O.20 x0.46 Slotted

0.99 x 0.98 Slotted 2)

O.40x0.38 Solid

O.42 x0.55 Slotted

0.15x0.15 Solid

(7 (%) NS 1) b/c H/c ,_"/b R_marks

9.7 -- 2.8 3.9 0.010 Straicjht holes; solid
side walls

2.3 4.0 -- Solid side walls
2,35 4

1,7 3.O

3.2 6 1.6 3.6 0.015 Solid side walls

3.43) 4 5 4.9 0.011 Solid side wails

-- -- 3.3 3.2 0.005 Parallel side walls;
flexible top and bottom

2.0 1.9 wails

10 7 2.3 3.1 0.007 Solid side walls

Parallel side walls;
-- -- 1.5 1.5 --

flexible top and bottom

wails

1) No. of slots (excluding slotsat intersection of vertical and horizontal walls

2) Aluminium bars of 10 mm thickness mounted on perforated walls

3) Based on slot width only

CHARACTERISTICS OF WIND TUNNELS INVOLVED

A. Angle-of-attack sweeps

_Mm_-2 -1 0 1 1,5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.60 • • • • • • • • • • • • • •

0.70 • • • • • • • • • • •

0.76 • • • • • • • • •

B. Mach number sweeps

I M _ 1o6ol06510.7o Io.72 10.74 I o.Ts10.7610.7710.78 10.79 10.80 Io.82I at angles of attack

giving at Moo=0.76 lift coefficients of CL=0.52 and CL=0.73, respectively

TEST PROG RAM

Figure 5
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NEED FOR A THEORETICAL DATA BASE

The ultimate goal of WIAC methods is, of course, to attain an imp[oved

accuracy of measured data. Consequently, an experimental data base should

provide the ultimate test for the applicability and reliability of a WIAC

method. However, experiments are all too often poor guides to improvements of

the methods. The amount of information from an experiment is generally rather

limited. On the contrary, theoretical data can be as extensive as desired at

relatively low cost. Besides, theoretical wind tunnel and corresponding

unbounded flow data can both be obtained with the same accuracy. Therefore, a

theoretical data base seems an ideal source of Information for detailed WIAC

studies. However, a first attempt to create a set of theoretical data for 2-D

transonic flow did not quite succeed because the generated field data seemed

questionable although the calculated model pressure distributions looked

quite reliable. This may be related to the fact that many computation methods

focus on the model and have relaxed accuracy requirements for the "far field."

It also suggests that the creation of a theoretical WIAC data base may be of

some benefit to theoreticians also.

An example of a theoretical data base for 2-D flow and some possible

applications are shown in figure 6. Similar considerations should also

apply to 3-D flow.

WIND TUNNEL:

O O O ©

o 0 c o

O O _ C O

0 0 0 0

O O C O

CORRESPONOING FREE AIR:

+ + + 4- -F _- + + ,4- 4-

-,,- -'1-

4.

+ _ 4.
. 4-

4- 4-

+ + 4- 4- 4- 4- + 4- 4- + -_

CONDITIONS e.g

-clean aerofoil at low-speed

clean aerofoil with weak shock.

-clean aerofoil with strong shock

-aerofoil with flap at low.speed

several types of wind tunnel walls

DATA e.g.

-Model pressure and/or Much number distribution.

-Velocity vectors at (real and imaginary} walls.

-Velocity vector distributions along x=const.

-Tunnel data at ,, n and Ma n

-Free-alr data at ,, -M-carpet about ("r,, Man)

POSSIBLE APPLICAT40NS e.g.

-Investigate correctabdity in connection with required accuracy

-investigate validity of WIAC methods in transonic flow conditions.

-Imoro_e definitions of wall corrections, it necessary

-Evaluate possible model representation.

Evaluate extrapolation procedures

Figure 6
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FUTURE WORK AND POTENTIAL PROBLEM AREAS

At present, the principles and possibilities of WIAC methods using
"measured boundary conditions" are becoming well established. However, for

routine testing, it is desirable to reduce the amount and the complexity of

required field data. On the other hand, applying appropriate theoretical means

to achieve this may endanger the feasibility of the often expressed desire to

apply the corrections on-line. Probably, some optimum will have to be esta-

blished for the somewhat conflicting requirements I and 2 of figure 7.

Another aspect that will need more attention is the connection between required

accuracy and "correctability. '_Resulting quantitative correctability criteria

may then be used as a "target" for the design and operation of "correctable-

interference" test sections. As part of this process, it may be desirable to

reconsider definitions of wall interference corrections, especially for compli-
cated models. Appropriate theoretical data bases, in a sense as shown in

figure 5, may be the most efficient tools for this job.

Beyond the scope of WIAC, other interference effects can be of comparable

importance to the experimental aerodynamicist with model support interference

(especially in connection with strut supports) as the most obvious example.

1. REDUCTION OF NECESSARY AMOUNT OF FIELD DATA AND SAMPLING TIME

-Accurate, fast- response instrumentation
-Simu Itaneous readings
-Efficient theoretical use of measured data

2. ON--LINE WIAC CALCULATIONS

--Fast algorithms

3. IMPROVED WlAC DEFINITIONS

-Fundamental research in order to

--define correctability in terms of required accuracy
--define corrections for complicated models

(such as: propellors, TPS, 3-D aircraft)

4. DESIGN AND OPERATION OF CORRECTABLE-INTERFERENCE TEST SECTIONS

5. OTHER INTERFERENCES (E.G. MODEL SUPPORTS)

Figure 7
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INTRODUCTION

The initial approach to the transonic wall interference problem at the

NAE was to assess wall corrections as a function of wall porosity.

Considerable efforts were thus directed towards establishing effective

porosities primarily for the two-dimenslonal case.

i. Through comparison of experimental data for two geometrically similar

models of different chord/height ratio, an Overall value of wall

porosity could be deduced (ref. I).

. Through theoretical development allowing for unequal porosity for the

floor and ceiling and wall boundary pressure measurements,

porosities for floor and ceiling could be deduced. Various schemes

were developed to obtain porosity values via best fit procedures

(ref. 2).

3. Following point 2 above, a scheme was also developed which allowed

not only for unequal porosity of floor and ceiling but also for

s trean_ise varying porosity (ref. 3).

In an experiment performed to determine the boundary layer development

along the perforated floor and ceiling under the influence of the model

pressure field (ref. 4), substantial variations in boundary layer thickness

were measured, underlining the difficulties in deducing meaningful values of

wall porosity. Since 1980 the concept of wall porosity, in the aerodynamic

sense, was dropped and an entirely new approach was adopted (ref. 5). Wall

boundary pressure measurement, in combination with singularity modelling of

the airfoil, was then sufficient to yield required information on the wall

interference flow wlthout first having to establish some value for wall

porosity. This new method has been used routinely at NAE for two-dlmenslonal

investigations since 1980 and has proven to be very effective and consistent.

The singularity modelling of the airfoil initially covered only lift and

volume but has been extended to include drag (wake) and pitching moment

(unpublished results), and second-order volume term (ref. 6). A good col-

lection of simultaneously measured model data and wall boundary pressure data

exists at NAE for a variety of airfoils and a good range of Maeh numbers.

Although the methods discussed above are all based on subsonic

compressible flow analysis, it has been shown by asymptotic transonic small

disturbance analysis (ref. 7) that the derived corrections to angle of attack

and free-stream Math number are correct to the first order. The asymptotic

analysis further shows that the second-order term for the angle-of-attack

correction is insignificant.
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SAMPLE DATA AND CORRECTIONS FOR BGKI AIRFOIL

Samples of data and wall interference corrections for the BGKI alrfoil

are given in figures I through I0 as corrections to Math number (AM) and angle

of attack (Au). Figures I to 7 show results according to the method described

in reference 5, which accounts for lift and solid blockage. The data for the

case shown in figure 4 have also been corrected using the extended methods.

Figure 8 shows calculated corrections based upon the method of Mokry

(unpublished results), which accounts for llft, solid blockage, pitching

moment, and wake drag. Figure 9 shows similar results when the volume doublet

due to lift is also included (ref. 6). The case shown in figure 7 has been

circulated among a number of researchers as a test case to obtain their

assessment of the wall interference corrections to Mach number and angle of

attack. The results are summarized in figure IO.

233



RUN 23893/I

Rc - 20.28xI06

M - 0.7826

a - -3.639 °

ON - -0.2194

OF POOR _b.:.L!'=.:

AN - -0.0021

&_ - 0.243 °

c _ _ AId/S x -

c_h_/_x -

0.0024

0.015 °

CO - 0.0000 Moo r - 0.7805

CM - 0.0000 _cor " -3-3970

R - 0.0754

c/h - 0.1667

o
r

i

.--4

i1
-B.O

z_ v meosuned

LntenpoLoted

' I I i

-I.0 0.o LI.O

x/c

Figure I.- Data for BGKI airfoil, run no. 23893/I. Calculated corrections

AM and As account for lift and solid blockage (ref. 5).
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RUN 23893/2

Rc - 20.49_10 s

M - 0.7824

a - -0.397 °

CN = 0.2935

CO - 0.0000

CM - 0.0000

R - 0.0754

c/h - 0.1667

OF Poor Pb-',' "_'-

AM : -0.0034

Am - -0.490 °

c_$AM/gx = 0.0011

c_gA_/g× - -0.042 °

Mcor - 0.7790

_oor - -0-888°

n °
c) c;

C3

A V meosurecl

LnLerpoLoLed

' I I I

3.0 " -4.0 0.0 _.0

X/C

Figure 2.- Data for BGKI airfoil, run no. 23893/2. Calculated corrections

AM and Ac_ account for ]ift and solid blockage (ref. 5).
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RUN 23893/3

Rc - 20.57_]06

M - 0.7826

a - 1.486 °

CN - 0,6154

C0 = 0.0000

CM - 0.0000

R - 0.0754

c/h - 0.1667

AM - -0.0]03

Am - -0.814 °

cxSAM/Sx - O. OOt5

cxgAe/$x - -0.029 °

Ncor " 0.7723

ecor " 0.672 °

;..:_,/.i .... " ....

!

I

f"l 0

f.jo

C_ ,.

-B,O

v meosured

LnterpoLoted

I ' I I

-4.0 0.0 4.0

X/C

Figure 3.- Data for BGKI airfoil, run no. 23893/3. Calculated corrections

&M and As account for lift and solid blockage (ref. 5).
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RUN 23893/4

Rc - 20.62_]06

M - 0.782S

a - 2.497 °

CN - 0.7697

C0 - 0.0000

CN - 0.0000

R - 0.0754

c/h - 0.1667

Am - -0.0136

A_ - -0.965 °

cx_;AN/Sx - 0.0022

cx_Ae/_× - -0.030 °

Moo r - 0.7690

e,cor - 1.5133 °

c5
I

o

I

13_°
[_3o

c5

c5 _

-8.0

r,2. .... -_--

V meosunecl

LnLerpoLoLed

' I " I ' I

-_.0 o.o 4.0

xIC

Figure 4.- Data for BGKI airfoil, run no. 23893/4. Calculated corrections

AM and As account for lift and solid blockage (ref. 5).
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RUN 23893/5

AM - -0.0i46

Rc - 20.66_I06 Ae - -].006 °

M - 0.7824 c_gAM/gx - 0.0027

a - 3.518 ° c_gAa/gx - -0 027 °

CN - 0.8]67

CO i 010000 Moo r I 0.7678

ON - 0.0000 _cor " 2"513°

R - 0.0754

clh - 0.1667

0
!

0
I

r..__ o

-8.0

& V meosured

LnterpoLoLed

I I I

-4.0 0.0 4.0

X/C

Figure 5.- Data for BGKI airfoil, run no. 23893/5. Calculated corrections

AM and As account for lift and solid blockage (ref. 5).

238



RUN 23893/6

..... , -

AN - -0.0150

Rc - 20.70_I06 Am - -1.006 °

M - 0.7827 c_&Ml_x - 0.0031

a - 4.524 ° c_A_l_x - -0.025 °

ON - 0.8291

CD - 0.0000 Mcor - 0.7677

CN - 0.0000 acor " 3-518 °

R - 0.0754

c/h - 0.1667

,S
I

I

-_.0

A V meos urecl

LnterpoLated

I I I

-4.0 0.0 4.0

X/C

Figure 6.- Data for BGKI airfoil, run no. 23893/6. Calculated corrections

AM and A_ account for lift and solid blockage (ref. 5).
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RUN 2091414

Rc - 21.03x10 fi

M - 0.7839

- 2. 560 °

ON - 0.7641

O0 - 0.0000

CN - 0.0000

R - 0.0754

c/h - 0.1667

AN - -0.0150

Aa - -0.669 °

c_AM/_x - 0.0003

c-$B_/_x - -0.053 °

Mcor - 0.7689

Ocor " 1.891°

o
I

o
I

6"

,)F pC.L;

A v meosured

-- LnterpoLoted

I I I

-8.0 -4.0 0.0 4.0

X/C

Figure 7.- Data for BGKI airfoil, run no. 20914/4. Calculated corrections

AM and An account for lift and solid blockage (ref. 5).
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RUN 23893/4

Rc - 20.62_106

M - 0.7825

a - 2.497 °

CN - 0.7697

CD - 0.0187

CN - -0.1395

R - 0.0754

c/h - 0.1667

C

AM - -0.0136

Aa - -I. 065 °

c._AHl_x - 0.0019

c._Aol_x - -0.030 °

Mcor - 0.7690

aco r - ].433 °

!

o

c;-

A V meosured

tnterpo Lotecl

i I I

-8.0 -4.0 0.0 4.0

X/C

Figure 8.- Data for BGKI airfoil, run no. 23893/4. Calculated corrections

AM and A_ account for lift, solid blockage, pitching moment, and

wake drag. (M. Mokry, unpublished results, 1983).
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RUN 23893/4

Rc -- 20.62wi0 B

M - 0.7825

a - 2.497 °

CN - 0.7697

CD - 0.0187

CM - -0.1395

R - 0.0754

c/h - 0.1667

AM - -0.0144

As - -1.065 °

cw_AM/_x - 0.0019

cw_A_/$× - -0.030 °

Moo r - 0.7681

aoo r - ].433 °

!

13_ °
f_)c5-

c)

_V meosurecl

LnterpoLoted

c;
I I I

-8.0 -4.0 0.0 4.0

xic

Figure 9.- Data for BGKI airfoil, run no. 23893/4. Calculated corrections

AM and Aa account for lift, solid blockage, pitching moment, wake

drag, and the "Chan" doublet (ref. 6).
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AM AOC

ONERA, France

Capelier, Chevallier and Bouniol -0.015 -0.67"

NAB, Canada

Mokry and Ohman
-0.015 -0.67 °

NLR, The Netherlands

Smith
-0.015 -0.56 °

NAL, Japan -0.58 °
Sawada

NASA Langley, USA
Kemp

-0.017
-0.64 °

_0.89 o "

Figure I0.- Comparison of corrections for the BGKI airfoil test case.
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NAE TWO-DIMENSIONAL HIGH LIFT AIRFOIL

Wall pressure data were obtained in the NAE 15- x 60-in. high Reynolds

number 2-D test facility for a 21-percent-thlck simple slotted airfoil

(fig. ll). Note that in spite of a fairly large correction to angle of

attack, there are no significant wall-lnduced gradients (velocity and flow

curvature) at the position of the model. This latter fact implies that
correction of the measured data for wall interference effects is indeed

meaningful.

o_
_o

Test Conditions Calc. Corrections Corrected Results

Rc = 10.29'x 10 6 AM = -0.0087 RC = 9.81 x 106
N- = 0.2253 &Q = -4.24 ° M®e = 0.2166
ag = 17.85o

6SM ac :13 61
c/h: 0.2 c_f-- = 0.0005 "

A = 0.1390 _a= 9° CL = 3.7524
EL = 3.4643 c6--_--=-0.00 c

CD = 0.3647 CD : 0.1152
C

Cm(c/4):-0-5570 Cm =-0.6003
C

0
I

I

O

6-

X/C

_gure Ii.- Wall pressure data for high-lift airfoil.
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EFFECT OF TRUNCATION OF WALL PRESSURE DATA ON WIND TUNNEL CORRECTIONS

The Mach number and angle-of-attack corrections, _ and As, are the

corrections to the corresponding free-stream fl_ quantities at the position

of the model (fig. 12). It appears that _M is not excessively sensitive to

the length over which the wall pressures are measured. To obtain a

meaningful A=, however, the reference point (Xl,0), where the flow is assumed

parallel to the tunnel axis, must be sufficlently far from the model so that

the pressures at x = x I are not influenced by model incidence.

×I .x2

+
(x1,0)

RUN 209141g NUN 23893/4

Xl/C X2/C A M A_ ° AM a_ °

-8 #.5 -0.01}0 -0,669 -0.0136 -0.965

-6 4.5 -0.0151 -0.843 -0.0123 -I.095

-4 4.5 -0.0139 -I,080 -0.0095 -I.129

-4 2.5 -0.0170 -1.387 -0.0156 -1.530

-2.5 2.5 -0.0170 -I.749 -0.0143 -I.716

Figure 12.- Effect of truncation of wall pressure data on AM and

As. NAE two-dimensional data.
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EDGETONENOISEEFFECTONNAESUPERCRITICALAIRFOILDATA

Wall boundaryand airfoil pressure data were obtained in the NAE
15- × 60-in. high Reynoldsnumber2-D test facility for the BGKIsupercritical
airfoil with and without edgetonenoise suppression. The data tabulated in
figure 13 relate to those presented in figure 14. The noise suppression is
obtained by overlaying the 20-percent perforated floor and ceiling with a fine
meshscreen of 40 percent openarea (ref. 8).

Although the elimination of edgetone noise significantly reduces the

overall free-stream noise level (by 50 percent or more), the effect of this

noise reduction is hardly discernible on the airfoil pressure data

(figs. 14(a) and 15). There is some evidence (fig. 15) that shock position is

influenced by the noise level when the shock is located over the "'flat"

portion of the airfoil surface.

The data plotted in figure 14(b) show that the use of a fine mesh screen

for edgetone suppression has a negligible effect on the wall interference

characteristics. This is further emphasized by the tabulated results in

figure 13. Note, however, the appreciable difference in As and consequently

in _e" "nnls difference, 0.30 ° in A=, is believed to be due to a small
measuring error, or bias, in the 1978 wall data, which prlmarily affected the

m-correctlon results. Only solid blockage and lift effects are accounted for

in both of these calculated wall correction examples.

NORMAL WALLS (1978)

Test Conditions

Re : 21.O3 x 106

M® = 0.7839

ag = 2.56 °

CNp= 0.757

Cm(c/_)= 0.1401

CDw(_) = 0.0186

Cale. Corrections

AM = -0.015

&a = -0.67 °

Bat,i -0.0003
C _X =

e --= -0.053 °
Bx

"SCREENED" WALtS (1981)

Test Conditions Calc. Corrections

RUN 2091414

Corrected Results

Rc : 20.78 x 106

H®c= 0.769

=c = 1"89°

CNe= 0.775

Cmc= -0.1435

CDwc = 0.0187

RUN 23893/4

Corrected Results

Rc = 20.62 x 106 AH = -0.014 Re = 20.42 x 106

M_ = 0.7825 A_ =-0.97 ° M=c= 0.769
_AI4

(_g = 2.50 ° c _ = 0.0022 ctc = 1.53°Bx

CNp= 0,780 CNc= 0.798

Cm(c/_)=-0.1480 c *----ox = -0"030° Cmc= -O.1512

CDw (_)= 0.0187 CDWc= O.0192

Figure 13.- Edgetone noise effect on supercritical airfoil data

and wall correction data.
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x/c

(a) Airfoil pressure distributions.

6
I

0. O

o6"

N

6

O,

_._..NORMAL WALLS

---SCR£ENED "

• i ,

-8.O -4.0 0.0 4.0

X/C

(b) Wall pressure dlstributlons.

Figure 14.- Sample data from edgetone noise study (ref. 8).
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-I.0

-0.5

0.0

CP

0.0

0.0

0.0

0.5-

1.0
0.0 0.1

ag Moo

% Mooc

\t... "_.'-I]53/I.74

I 58/I 50

! __.. 159/I 50

0.804/0.802
0.789/0.790

0.784/0.783
0.7 72/0.772

0.774/0.775
0.762/0.766

0.755/0.758
0.92/0.83 0.745/0.750

NORMAL WALLS

..... SCREENED WALLS

I

0.2
I I I I I I I I

03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X/C
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Figure 15.- BGKI airfoil upper surface pressure distributions.

R C = 21 x 106 (ref. 8).
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NAE APPROACH TO THREE-DIMENSIONAL WALL INTERFERENCE CORRECTIONS

The approach to three-dlmenslongl wall interference has basically

followed the same pattern as for the two-dlmenslonal case (ref. 9). The

theoretical development has also in this case progressed to the stage

(ref. I0) equivalent to that reported for the two-dimensional case (ref. 5).

Figure 16 illustrates tunnel cross section shapes for three-dimensional

testing with four static pressure pipes installed near the walls (ref. II).

Suhsonlc wall interference corrections are evaluated using the Fourier

solution for the Dirichlet problem in the circular cylinder interior to a

three-dimensional test section, with the required wall boundary values

obtained from static pressure measurements along four generators of the

cylinder. Figure 17 depicts the three-dlmenslonal model and outlines the

correction procedure. The feasibility and accuracy of the method have been

demonstrated on a theorectical example, as indicated In figure 18.

"< "--e--"/

• %%S

i I %&

t I

!

? ®
!

!\ ,
% I

%% 1

%'_ ,,s _

Figure 16.- Tunnel cross section shapes with four static pressure

pipes. (From ref. 11.)
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I II

.- t -,

',., •/'

IV

i . . I,III

"Y i x, "x

IV

z

CL ^ 2rs_ : "

:

:
i

= Or + _, --_ u = OO./Ox = -Cp/2 - O@r/Ox

u = a0(x,p) + _. a=(x,p) cos ne + b(x,p) sin ne
n-l

2 tubes : a0(x,r), b,(x,r)

4 tubes : a,(x,r), a,(x,r), b,(x,r), az(x,r)

ao(0,0 ) ..... lvfach number correction AM.

a,(0,0 ) ..... sideslip correction _

b_(O,O) ..... incidence correction Aa=

Figure 17.- NAE three-dimensional geometry and correction

procedure. (From ref. ii.)

exact present method

-1.6<x<1.6 -3.2<x<3.2

m=32 m=128

/Table 2/

AM 0.00724 0.00715 0.00722

Aa (deg) -0.05900 -0.05420 -0.05892
y

As (deg) 0.22020 0.20228 0.21989
z

_dM/_x (l/L) 0.00210 0.00207 0.,00209

BAOy/BX (deg/L) -0.08254 -0,08123 -0.08221

_Uz/_X (deg/L) 0.30803 0.30315 0.30680

Figure 18.- Three-dimensional wall interference corrections,

theoretical example. (From ref. II.)
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NAE THREE-DIMI,,>ISIONAI, WALL iNTERbERENCE DATA

No good e,_perimental data base exists for the three-dimensional case because of

inadequate data discrimination. Because of the much lower pressure signature at the

wall boundary, it is extremely difficult to obtain well-defined wall pressure data.

A typical example, takeu from an earJy test (ref. 9) is given in figure 19. Improve-

ments have been made to the flow quality in the 5-ft wind tunnel since those data

were obtained, and some initial samples of data were given in reference II. Figure

20 is atypica] example from this latter study, and, as can be seen, the field

pressure signals are small and so too are the corrections AM and A,_. In this case,

the model was located too far downstream in the test section to obtain a reasonably

complete wall pressure signature.

-.02 -- i i i I -I I i I i I i i i i i

- CL = 0,0163

.oo CX_ - -_ .........
- _ _ _

• O_ -" E_(PERIMENT _ CALCULATION • -- p:O --

BOT I0M WALL p : I P

.... i 1 I 1 L 1 1 I 1 I I I I I

-. 02 ---T----T----I-- l--f I I I 1 I- I I I I 1

"" --_ * /k .2477
- .- .- ._,. __mm _. -

oo -- o- ILT 

V_ " -- _ _- _ VV_ -
.0_

._ J_.L__L__I_ _1_ I I I I I I I I I I

-.02 I , ---I----I--T- ' /1 , , 1\ , , I , , •

_ _- _ _,_e _" - - "-_-ZA._,,
.oo -- --A---_ _w -_'----_V _" _, _ -- ---4

___l I l I l I I \1---J/'l I I _Tv ; I ]

-'°2F--, , , , r ,,, ' _>=_K_-._ ' ' l

.oo --2E- v _ V _ _ _--

-A_w _--w ."-, _ -

•02 _ X _ 'q;__ _ 'q7 -
..... _, . ,_Z.%v._,*.

L___L _ L----J-- __L___t a____..J___l__ _L__L I _ Y I
-0.8 -0.6 -0.4 -0.2 O.O 0.2 0.4 0.6 0.,

x/H

Figure 19.- Samples of early three-dimensional wall pressure

data (ref. 9).

251



0

RUN 23310/2

ORIGN.!::L i: .......: .
OF POOR _:f,d.,:

M - 0.7538 AN - -0.0051

a - 4.441 ° _a - -0. I00 °

CY - 0.0022

CZ - 0.5029

c5
I

Q

I

0

nO_

0

0

8 - 90 °

v 8 - 270 °

I • ,, , ,, ill | ' ' " ] ' ' l

-1.5 -1,0 -0.5 0.0

x/h

c_

-2.0 0.5

Figure 20.- Sample of more recent three-dimensional

wall pressure data.
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PROPOSED SCHEME FOR TWO-DIMENSIONAL WALL CORRECTIONS

BASED UPON I_40 MEASURED DATA ARRAYS

Mach number and angle-of-attack correction schemes for two-dimensional wind

tunnel flows based upon two measured quantity arrays are shown in figure 21. Figure

21(a) depicts a scheme for u and v arrays measured along a single boundary and

figure 21(b) depicts a scheme for u arrays measured along double boundaries.

Measurements are not required at the model and the flow around it as well as at the

wall need not be potential. However, it is assumed that in the region where

measurements are made the flow can be described by subsonic linearized equations.

U,V

flow

U,V

h

,0J ;)1 ]
' x2 + (1) ;Jx _ -'?,_

Ac, = _ ---- dx

...,./4) _

..

CORRECTIONS OBTAINED FROM THE PRECEDING FORMULAE USING

AND INTEGRATING BY PARTS OR

(2) DIRECTLY SUBSTITUTING

x

_u (Ly) dE',I,,y) : f

(a) u and v measured along

single boundary.
(b) u measured along double boundary.

Figure 21.- Mach number and angle of attack corrections based on

two measured data arrays.
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SIDEWALL BOUNDARY LAYER AND SUCTION EFFECTS

In an airfoil test facility, the sidewall boundary layer thickness varies

in a three-dimensional fashion due to the "two-dimensional" airfoil pressure

field superimposed upon it. This effect is particularly severe for high-speed

transonic flows since the strength and location of the shock o[I the model are

sensitive to the perturbed boundary layer shape. To lessen the sidewall

boundary layer effect, a common practice is to control the growth of the

boundary layer by applying suction at an area of the wall where the model is

mounted. This method is employed in the NAE two-dimensional test facility

(refs. 1 and 12). The effectiveness of the control is demonsLrated by

comparing measured airfoil pressure distributions and the boundary layer

developments without and with surface suction.

Figure 22 is sample data showing the effect of sidewall suction level

(CDW) on the airfoil surface pressure distribution for a supercritlcal

airfoil. The shock wave has been shifted appreciably.

Calculations of the sidewall boundary layer development for a typical

transonic airfoil test case were reported recently in reference 13. Fi_Ire 23

and 24, taken from reference 13, show the three-dimensional nature and

relative size of the sidewall boundary layer displacement effects,

respectively.

-2. B

cP

-1.5

-I.B

-B.5

o v/u CNP CNB COW OCDWI DCDW2 D,..2DW3 OCDW4
RUN SCAN M. RE _g AVG 1,2,3

20962 4 0.759 21 31 2.55 0.0054 0.665 0.857 0.0262 0 0016 -0 0016 0.9000 - 0.00"-,5

20966 4 0.759 2134 2.56 0.0056 0.851 0.857 0.0265 00019 -0.0009 -0.0010 -0 0057

20967 4 071_0 21,39 256 0.0014 0.648 0.632 0.0107 0.0031 -0.0,30_ -00030 +0.0072

/

=tUN LIN,_ TYF =-

,/
/2

I_.B i_.2 it. 6 0.8 X/g

;O952 ....

20966

20967 ....................
%

\I

\

..... -%%<...
. ........ l............... :2"2:- ........

Figure 22.- Effect of sidewall suction on airfoil pressure distribution.
M = 0.76, Re = 21 × 106 •
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(a) No suction.

(b) With suction.

Figure 23.- Effect of suction on sidewall boundary layer
development. (From ref. 13.)
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2.0 F-

0::_,-'<-"L _........

OF PO_ L ........ ;

1.5

a'Jc],,6'

I.C

0.5--

0
-2.0

NO SUCTION

\ // "-" -- -.._
\ i

_ 6-- _ 20 BOUNDARY LAYER

i ON MODEL SURFACE

-I.0 0 1.0
I

2.0

(a) Displacement thickness.

0.02

0.01

%/Ue

0

-O.OI

-0.02

-2.0

NO SUCTION

_2D BOUNDARY LAYER

,_ -I.o \ / ._.o_. 1 ,,_\ _ /

\v/
\J

(b) Effective normal velocities.

x/c
I

2.0

Figure 24.- Effect of suction on sidewall boundary layer development

and comparison with data from two-dimensional boundary

layer on model surface. (From ref. 13.)
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CURRENT UK WORK

It is generally agreed that the classical methods of calculating wall corrections

are not satisfactory for a number of flows of interest. To meet these objections, a

number of methods have been developed which use measurements of the flow at or close

to the tunnel walls as an outer boundary condition to define wall interference. Work

currently in progress in the UK on the development, assessment and application of one

such method is summarized in fig. i.

• DEVELOPMENT OF WALL-CORRECTION METHOD

AT R AE

• ASSESSMENT OF RAE METHOD FOR

FLOWS (ARA)

TRANSONIC

APPLICATION OF

WALL TUNNELS

RAE METHOD TO POROUS -

(CITY UNIVERSITY, LONDON)

Figure 1
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RAE WALL-CORRECTION METHOD : BASIC ASSUMPTION

The method relies on one main assumption, namely that there is a region A (fig. 2)

between the model and the tunnel where the flow satisfies the small-perturbation

equation (i). As shown in fig. 2, this region is bounded by the surface S 1 surrounding

the model and its associated regions of transonic flow and shear and a cylindrical

surface S_ adjacent to the tunnel walls. By using the transformation (2) (fig. 2) the

small-per_urbation equation may be transformed to Laplace's equation (3) (ref. i).

FLOW SATISFIES SMALL

PERTURBATION EQUATION

IB2Cxx + @yy ÷ Czz = 0

IN REGION A

(1)
BY USING TRANSFORMATION

(X,Y,_'}: (x,py, pz ) (2}

SMALL PERTURBATION EQUATION

TRANSFORMED TO LAPLACE'S

EQUATION

l,,,xx.,_,vy+ ,zz=oI (3}

Figure 2
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APPLICATION OF GREEN'S THEOREM

The formal solution to Laplace's equation in the transformed space is obtained

by using Green's theorem (ref. 2). The solution is written in terms of integrals

over the surfaces S and S (equation I, fig. 3), the integal over the latter surface
1 2

being the wall interference velocity potential (equation 2). The further assumption

is made that the wall interference velocity may be continued analytically within the

shaded region close to the model. This is a reasonable basis on which to proceed for

flows in which the wall interference velocity varies slowly in the region of the

model; e.g., 'correctable' flows.

_, (x,Y,z)= A_ - _"_JJ[_'R R

WHERE sl

'0N R
$2

IS WALL INTERFERENCE POTENTIAL

Figure 3
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INTERPRETATION OF WALL INTERFERENCE VELOCITY POTENTIAL

Fig. 4 shows an interpretation of the expression for the wall interference

velocity potential. The first term under the integral sign is the contribution of a

distribution over S 2 of sources, the local strength of which is equal to the normal

velocity increment at the surface S2 . For tunnels with solid, though possibly

adaptive, walls (ref. 3) this velocity component is essentially defined by the

condition of no flow through the tunnel walls. Unfortunately, the situation is less

straightforward for tunnels with porous or slotted walls which need special techniques

to determine the normal-velocity increment, as will be shown later. The second term

is associated with doublets with axes normal to the surface S2; this distribution is

mathematically equivalent to a distribution of elementary horseshoe vortices of

strength equal to the local increment in streamwise velocity. This velocity increment

may be deduced from measurements of static pressure at or close to the walls by

using the linearised version of Bernoulli's equation.

__ BNRldS'

POINT SOURCES,

STRENGTHBgI(tN

FLOW PITCH ANGLE

TYPE OF

SINGULARITY

REPRESENTS

CHANGE IN-

AT Sz RELATIVE

TO CALIBRATED

EMPTY TUNNEl

DOUBLETS, STRENGTH _ OR

HORSESHOE VORTICES,STRENGTH

b'/,htx

STREAMWISE VELOCITY

b¢IBx = u =-U,,,Cpl2

...H......J, .........,L .....dk..

Figure 4
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WALL INTERFERENCE Z: _:RFOIL TESTS IN RAE 8 FT X 8 FT TUNNEL

A series of airfoil sections has been tested in the 8 ft x 8 ft Tunnel at RAE

Bedford with the aim of providing a better understanding of the boundary layers of

'advanced' airfoil sections. The 8 ft x 8 ft Tunnel is equipped with solid walls

that, for subsonic tests, are maintained in an essentially straight configuration,

and static pressures are measured on the walls over the interval shown in fig. 5.

Also shown in this figure is one of the sections studied, RAE 5225; the size of the

model is decided primarily by the need to make boundary-layer measurements over a

range of Reynolds numbers (up to 20 x 106). As a consequence, the model is relatively

large for tests at high subsonic speeds in a solid-wall tunnel, and some of the flows

examined are not strictly correctable (ref. 4). Calculations by the present method

indicate that, while the chordwise variation of blockage may be ignored, the variation

along the model chord line of wall-lnduced upwash cannot be neglected for a number of

cases of interest.

RAE 5225 SECTION IN 8ft x 8ft

TUNNEL RAE

TUNNEL -

11_I_111111111_i ill 11 p i.,ii s ¢'t' ¢"

- ESSENTIALLY STRAIGHT WALLS

?; bt..... .......
_ WALL PRESSURES-0"3 < xlh < 0'9

1_'111flfI/ff4fl ," f f I f14 lJ 111,"_"

MODEL -

TRANSITION FIXIN5- AIR INJECTION

TECHNIQUE

MEASUREMENTS- MODELPRESSURE

DISTRIBUTIONS,
WAKE DRAG

Figure 5
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CALCULATION OF BLOCKAGE INCREMENT IN 8 FT X 8 FT AIRFOIL TESTS

Since the chordwise variation of blockage increment in Mach number is small, it

is reasonable to define a mean value along the chord AM. Calculations of this

increment are shown in fig. 6 plotted against normal-force coefficient for an effective

free-stream Mach number, Me, of 0.73. Results are shown for various methods including

those of the present method, Smith's method (ref. 5), C4_thert's technique (ref. 6) and

classical linear theory (ref. 7). Agreement between the first three methods, which all

use wall-pressure measurements, is reasonable, thevariation wlth normal-force coef-

ficient of the present method being closely matched by that of G_thert's method. The

linear theory, on the other hand, gives values that are consistently lower than those

of the other methods. G_thert's method and the present approach are found to give

blockage increments that are in good agreement over the range of Mach numbers and

angles of incidence tested.

0"013

0-012

o 0"011

0"009

SYMBOL CASE

A SMITH o cpr.-._, r,

60THERT "/ [ _P

o _sE_ ,,S i/ "33
--'-- CLASSICALLINEAR / V "_'..

THEORY Co= 0-007 o/2- L.E. "'-

" 0/ cPt/'%_cP'

o.olo. V ",3....
• " L.E. T.E.

i i i i i i I

0 0"I 0'2 0'3 0.& 0"S CN 0"6 0"7

BLOCKAGEINCREMENTIN MACH NUMBER,VARIATION

WITH NORMALFORCECOEFFICIENT,Me _ 0"/3

Figure 6
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ASSESSMENT OF PRESENT METHOD : i. COMPARISON BEq%rEEN

VISCOUS FREE-AIR THEORY AND MEASUREMENT

Although the flows studied are not strictly 'correctable', comparisons have been

made between measurement and calculation of equivalent free-air flows with the object

of assessing the accuracy of the wall corrections by the present method. The calcula-

tions have been made with a viscous version of the Garabedian and Korn program (ref. 8),

and airfoil pressure distributions are shown in fig. 7 for one of the cases examined

(M e = 0.736, CL = 0.54, R = 20 x 106). The chordal Reynolds number 20 x 106 was

deliberately chosen to minimise differences between theory and measurement arising

from the failure of the former to represent viscous effects accurately. Two types of

calculations are shown, one with a camber correction to allow for the chordwise

variation in upwash (the dashed line), and the other without (the full line). Broadly,

the agreement with either £ype of calculation and measurement is reasonable but the

effect of camber is to worsen the agreement with measurement in the region of the

shock. However, the lack of agreement in this region may be due to extraneous viscous

effects (e.g., due to sidewall boundary layers (ref. 9)), although the effect of these

layers would be expected to be small because of the relatively large aspect ratio of
the model.
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ASSESSmeNTOFPRESENTMETHOD:
2. USEOFTRANSONICFLOWFIELDMETHOD

Oi:" _-..

In order to avoid the extraneous viscous effects referred to previously, Carr

and Morrison of Aircraft Research Association (Bedford) have performed some numerical

experiments, nnder contract to RAE, using a potential-flow method for calculating

inviscid transonic flows around airfoils. Fig. 8 shows the Mach number distributions

calculated for two airfoils, each in wind tunnels with porous walls designed to

minimise the wall camber effect. The calculations are also used to provide the flow

data needed by the present method to calculate the wall corrections. In turn, the

corrections are used to define free-stream conditions for an equivalent free-air flow

which is calculated by the same potential-flow method that is used to calculate the

wind-tunnel flow. The airfoil Mach-number distributions for the equivalent free-air

flows are shown in fig. 8 to be in reasonably qood agreement with those of the

corresponding ttmnel flows, indicating that, for these cases, the correction method

is of acceptable accuracy.
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ASSESSMENTOFPRESENTMETHOD: 3 . APPLICATIONTOTHREE-
DIMENSIONAL,WALLINTERFERENCE

The present methodwill be used to correct three-dimensional flows only if it

does not need an unacceptably large number of measurements to achieve the desired

accuracy. In order to provide a check, some calculations have been made for a solid-

wall tunnel with a working section that is cylindrical and is of square cross section

(fig. 9). The classical image method has been used to provide static pressures at a

number of streamwise rows of holes spaced at equal intervals around the working

section. Each row consists of ii wall holes distributed in the way shown in fig. 9.

A number of different flows have been examined (ref. 4), all with a vertical plane of

symmetry so that the wall-pressure data only needs to be specified in one half of the

working section, and, in each case, results for wall-induced velocities at the axis

of symmetry are compared with those of the image method. Results for the wall-

induced upwasn for one of the cases studied (a horseshoe vortex on the horizontal

plane of symmetry) are shown in fig. 9. With 5 streamwise rows or 55 wall holes, the

present method gives values within 5% of those of the image method. An increase in

the number of wall holes to 99 reduces the discrepancy to within 1%.
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BOUNDARY CONDITIONS FOR PERFORATED-WALL WIND TUNNELS:

I. CORRELATION OF WALL TRANSPIRATION

As already noted, the normal velocity increment at the boundary surface S 2 (fig. 2)

is not readily determined for tunnels with either perforated or slotted walls. In

the former case, Freestone and Henington (refs. i0 and ii) have proposed a model of the

flow close to the walls consisting of two interacting components, namely the wall

boundary layer and the mass transfer through the perforations. Under contract to USAF,

they have attempted to establish experimentally a correlation of the mass transfer in

the form given in equation (i) of fig. i0. The experiments have consisted of measure-

ments of the streamwise distribution of wall boundary-layer, displacement thickness

and flow angle at the outer edge of the wall boundary layer, @e' for various working-

section flows. On the assumption that the flow near the wall is a transpiring, two-

dimensional, boundary layer, they have then calculated the wall transpiration using

the mass balance equation (2). Recently, in work under contract to RAE, Freestone _nd

Henington have considered an alternative method of determining wall transpiration b_

measuring mass flow through a perforation directly with a mass-flow cell. This

promises to be more accurate than the original method, and offers the possibility of

extending the method to three-dimensional flows.

Ap ,6' (I)

6p = PRESSURE DIFFERENCE ACROSS LINER

oa = DYNAMIC PRESSURE AT EDGE OF BOUNDARY LAYER

Ow = _ w Vwlee Ue, WALL TRANSPIRATION PARAMETER

Me = MACH NUMBER AT EDGE OF BOUNDARY LAYER

6' = BOUNDARY LAYER DISPLACEMENT THICKNESS

ew : ee + _ _eUe (6-6") (2)

Figure i0
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BOUNDARYCONDITIONSFORPERFORATED-WALL
WINDTUNNELS:2. APPLICATIONOFMETHOD

The procedure used to calculate the normal-velocity increment is outlined in
fig. ii. Stage 2 has beenprogrammedand Stage 3 follows once Stage 2 is complete.
It is planned to assess the procedure in tests on a series of airfoils in the

transonic wind tunnel at City University, London in the near future under contract

to RAE°

The prospects for an analogous procedure for slotted-wall tunnels seem remote,

at present, and the only feasible scheme for determining normal-velocity increment

in this case would seem to be by direct measurement of flow angle. It is interesting

to note, in this respect, the development by Calspan (ref. 12) of a two-velocity-

component static pipe. In the view of the author, further work in this area is

justified by the considerable gain in simplicity in the wall-correction method that

follows from not needing a representation of the flow in the region of the model.

(I) MEASURE STATIC PRESSURE DISTRIBUTION

AT OR CLOSE TO TUNNEL WALLS

(2) CALCULATE BOUNDARY- LAYER DEVELOPMENT

ITERATIVELY WITH WALL TRANSPIRATION EI_UATION

(3) DETERMINE NORMAL VELOCITY INCREMENT AT

BOUNDARY OF INVISCID FLOW

I d

Ue0w + ee& (eeUe 6')

Figure ii

270



REFERENCES

I. Goldstein, S.; Young,A. D.: Thelinear perturbation theory of compressible flow
with applications to wind tunnel interference. Aeronautics ResearchCommittee
Reports and Memoranda1909, 1943.

2. Robinson, A.; Laurmann,J. A.: WingTheory. CambridgeUniversity Press
(p. 22-23), 1956.

3. Chevallier, J.-P.: Soufflerie transsonique a patois auto-adaptables. Paper 12,
AGARDCP174, 1976, pp. 12-1 - 12-8.

4. Ashill, P. R.; Weeks,D. J.: A methodfor determining wall interference correc-
tions in solid wall tunnels from measurementsof static pressures at the walls.
RAETR82091, 1982.

5. Smith, J.: A methodfor determining 2Dwall interference on an aerofoil from
measuredpressure distributions near the walls and on the model. NLRTR81016U,
1981.

6. Gothert, B.: Windkanalkorrecturenbei hohenunterschallgeschwindigkeiten unter
besondererber_cksichtigung des geschlossenenkreiskanals. Deutsche
Luftfahrtforschung Forschungsbericht1216, 1940 (translated as NACATech
Memo1300), Feb. 1952.

7. Garner, H. C.; Rogers, E. W. E.; Acum,W. E. A.; Maskell, E. C.: Subsonicwind
tunnel wall corrections. AGARDograph109, 1966.

8. Locke, R. C.: A review of methodsfor predicting viscous effects on aerofoils
andwings at transonic speeds. AGARDCP291, Feb. 1981, pp. 2-1 - 2-32.

9. Barnwell, R. W.: Similarity rule for sidewall boundarylayers in two-dimensional
wind tunnels. AIAAJournal, Vol. 18, No. i, 1980, pp. 1149-1151.

I0. Freestone, M. M.; Henington, P.: A schemefor incorporating the viscous effects
of perforated windtunnel walls in two-dimensional flow calculations. TheCity
university ResearchMemoAero78/7, City University London,1979.

ii. Freestone, M. M.; Henington, P.: Incorporation of viscous effects of perforated
windtunnel walls in two-dimensional flow calculations. The City University

Research Memo Aero 81/1, City University London, 1981.

12. Parker, R. L., Jr.; Erickson, J. C., Jr.: Development of a three-dimensional

adaptive wall test section with perforated walls. Paper 17, AGARD CP No. 335,

1982, pp. 17-1 - 17-14.

271



_, N85 'I20 27

TUNNEL CONSTRAINT FOR A JET IN CROSSFLOW

D. J. Wilsden and J. E. Hackett

Lockheed-Georgia Company

Marietta_ Georgia

_ i : ,. 7 - ...

Precedingpageblank ,_73



RELATIONSHIP OF JET-IN-CROSSFLOW PROCEDURES TO

REMAINDER OF TUNNEL CORRECTION SCHEME

This paper describes one facet of a unified tunnel correction scheme

which uses wall pressures to determine tunnel-induced blockage

and upwash. With this method, there is usually no need to use data

concerning model forces or power settings to find the interference;

it follows directly from the pressures and tunnel dimensions. However,

highly inclined jets do not produce good pressure signatures and are

highly three dimensional, so they must be treated differently (fig. i).o

The remainder of this paper wlll be devoted to !'filling in the boxes"

concerning flow modeling. Jet impingement cases wlll be discussed later
in this paper.

I
I
I
I
L--

JET DETAILS:

LOCATION, DIAMETER

C_, ANGLE

MEASURED

TUNNEL SURFACE

PRESSURES

CALCULATE

A_ AND

BLOCKAGE

REMOVE JET

EFFECTS FROM

MEASURED

PRESSURES

ANALYSE 'REST-OF-MODEL'

WALL PRESSURES. DETERMINE

CORRESPONDING _._ AND

BLOCKAGE

SUM JET AND REST-OF-MODEL EFFECTS

]
FINAL OUTPUT OF '_= AND BLOCKAGE

Relationship between jet-in-crossflow and the

main. _all-pressure-anaIysis programs.

IJET IN CROSSFLOW

IP ogA 
I
I

.i

MAIN
PROGRAM

Figure 1

OF FOC,_ C d/-,';,"/

274



RIG FOR JET-IN-GI_UbD_uw _A_,_ ....

Though a wealth of jet-in-crossflow experimental data exists, no data could be

found on wall pressure measurements or on the effects of tunnel constraint on

jet trajectory, so new tests were conducted (fig. 2). Jets of two alternative
sizes (3- and l-in. in diameter) were used and were tested at various inclinations

and velocity ratios. The large jet was used predominantly for getting wall

pressure data and for _mpingement studies. The small jet was used to check the

large jet trajectory for tunnel-induced di[;tortion and to provide a check on the

wall pressures predicted by the present method.

Instrumentation at the positions indicated in figure 2 was via a rake of 5-holed

pneumatic probes. Boundary layer blowing was applied, as shown, to control flow

breakdown when the jet impinged. Feedback for the boundary layer control was on

the basis of measured tunnel surface pressures.

/////
I

B.L. BLOWING
6D 1"0'

0.8

,0
, |

TYPICAL JET

PROFI LES

rlR

0 1.0

/

-'l---D- 1.O7" and _.05"

//
/

,¢

Figure 2
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IMPINGEMENT AND FREE-AIR STREAMLINES (R = 6)

Streamlines were calculated from measured crossflows at X/D = 6.0

(fig. 2). These streamlines gave a very clear indication of vortex

trajectory and of the effects of the tunnel upon it, particularly at

impingement (fig. 3).

Additional plots were made of total pressure contours to define the

maximum energy centerline.
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VORTEX PENETRATION AS A FUNCTION OF JET VELOCITY RATIO, R

Figure 4 shows a compilation of vortex center locations as a function of

R(EVj/V_) taken from plots of which figure 3 is an example. The 1-in. jet,

which should be affected very little by the tunnel, penetrates slightly farther

than the data reported by Weston (ref. i); however, Weston's jets emerged from a

flat surface. A pipe was chosen in the present experiments as being more

representative of typical powered models.

Trajectories of I- and 3-in. jets disagree only beyond R = 3, and the difference

is not large at R = 4. Figure 4 shows that the large jet holds its trajectory in

impinging cases until the plume is within a diameter of the tunnel roof. This

gives a useful clue for modeling the impinged cases; the free-air shape can

be "cut off" at the impingement point and can approximate the real situation

reasonably well.
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Figure 4
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VORTEX AND JET CENTER PENETRATION AS A FUNCTION

OF JET VELOCITY RATIO

Figure 5 shows jet center and vortex center penetration from the present
tests (jet from pipe) and as quoted by Williams and Wood (ref. 2) (jet__from

surface). The greater penetration of the jet center is evident and was

accommodated in the flow model that was developed.

Similar plots were prepared for lateral vortex spacing and plume width.
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FEATURES OF THE VORTEX SOURCE DOUBLET (VSD) JET-IN-CROSSFLOW

THEORETICAL MODEL

The theoretical model shown in figure 6 was developed using trajectory

information developed previously. Trajectory equations developed by

Fearn (ref. i) were used, but the constants were revised. Originally,

only vortices were included, but these d_d not produce enough pressure

perturbation at the tunnel walls. Only when both source and doublet lines

were added as indicated below was the flow model good enough to predict

wall pressures properly. Further details are given in figure 7.

)URCF./

DOUBLET

PAIR

VORTEX
PAIR

x

Figure 6
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LINESINGULARITYPROFILEANDSTRENGTH
EQUATIONSFORTHEVSDMODEL

Vortex trajectories closely followed the measuredpaths. However, it
was found that wall pressures were not sensitive to source and doublet
llne spacing, so the vortex value wasused for convenience.

Vortex strength distribution again rested uponFearn's work, again with
appropriately revised constants. Sourceand doublet strengths were
assigned using simple mixing and blockage considerations respectively
(fig. 7). Wall pressures could then be matchedwithout the need for further
adjustment.

Broadly speaking, it maybe stated that the source and doublet lines
affect u-componentinterference (and hencewall pressures) while the
vortex system causesupwashinterference.

x

LINE
STRENGTH TRAJECTORY

SINGULARITY

VORTEX Z/D = 0.352 (X/D) 0.429 R1.122

SOURCE

DOUBLET

r = o.6OO(x__ (1 - e"0"035(x/0)2)

* 0.084 tanh (X/D)
%

QIZ = U=O (Z 2 - Z 1) / (1+0.23 $12/D) ]

Ul 2 = -_ U D2 v' (1+0.23 512/0)

Z/D = 0.758 (x/o) 0.333 RI.000

V/O = 0.0769 (x/o) 0._0 Rt.O00 for all

Figure 7
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TYPICAL LINE SINGULARITY STRENGTHS

FOR THE VSO FLOW MODEL

C '...}*i .

The broken line (fig. 8) shows vortex strength buildup (as per Fearn)

as the round jet rolls up to a vortex pair. The llne source strength

buildup is as needed to provide the mass flow augmentation caused by
entrainment. The doublet distribution (not shown) has the same

form as for the source strength, but it is sized to match the jet diameter

at the jet exit plane, thus giving the proper solid blockage effect.

Only upstream-dlrected doublets are included.

Total source strength includes not only the line sources mentioned

but also point sources implied where the straight lengths of line

doublet join. These point sources cause the steps that occur in

the total source strength curve.
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THE EFFECTS OF POWERED-FLOW IMPINGEMENT

Any jet-in-crossflow model for use in tunnel constraint calculations is

incomplete if it is unable to accommodate impingement cases. We shall

therefore digress temporarily to consider this subject.

Figure 9 shows floor impingement beneath a 3-D Jet flap model at high C_.

This example has been selected because the laser velocimeter provides

the best illustration. Forward-moving Jet air causes a massive floor

separation that straightens the flow approaching the wing. Because

of this distortion, it is not considered reasonable to try to model the

flow unless the separation is suppressed. For this reason, a blowing

slot is provided as shown. The question is how hard should the blowing
be?

Figure 9
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SELECTION OF FLOOR BLOWING STRENGTH

The floor separation vortex produces an unmistakeable peaked suction

signature, as shown in figure i0. As blowing is increased along the floor,

the peak height and width diminish and eventually they disappear. This
was used, somewhat arbitrarily, as a criterion, and it was found that a

significant deficit in model lift relative to large tunnel data was

removed. It will also be noted (as shown in the lower plot below) that floor

blowing almost cuts in half the magnitude of wall signature. This is a

sure indication of a substantial reduction in blockage.
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LV _ASUREMENTS WITII FLOOR BLOWING APPLIED

Having set the floor blowing entirely on the basis of removing the

suction peak (fig. i0), new LV measurements showed a dramatic re-

duction in floor vortex size and a large increase in upwash at the

model. This confirms the need to remove or at least minimize the

vortex whenever possible. The fact that the flow gave good force
corrections shows that a small residual vortex is permissible (fig. Ii).

BLOWI NO
SLOT TUNNEL FLOOR

Figure ii
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FLOWMODELINGFORIMPINGEMENTCASES

Provided floor separation is controlled as just described, figure 4
suggests that one mayapproximatethe impingedflow by truncating the
free-air plumewhere it intersects the floor, thus allowing the vortices
to trail downstreamalong the tunnel surface as shownin the left
sketch in figure 12. Thesevortices split into the jet legs (a) and
the trailing part (b) as illustrated. In doing the correction, however,
it is obvious that (b) is totally unrealistic since the real jet continues

L_OW.to penetrate into the :_ What is needed is a correction which,

after performing the usual imaging operations, redirects the trajectories

from the "kinked plume" configuration to a "flowing plume" condition.

The "redirection term" sketched in (c) does this and has been included

in this VSD correction scheme.
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INTERFERENCE ANALYSIS FOR AN IMPINGED CASE

The plots in figure 13 show the tunnel centerline distributions of blockage

and upwash interference due to the impinged 3-_n. jet at R = 6. The cumulative

effects of components (a), (b), and (c) in figure 12 are shown. Though

blockage Is sufficiently well represented without the redirection term (c),

upwash interference cannot be predicted successfully without it. This

is because the image of the kinked part of the trail_ng plume produces

a large excess of interference (compare (a) + (b) with (a) in the lower

figure). On redirecting the plume (i.e., (a) + (b) + (c)), a more realistic

upwash distribution is obtained.

The effects described are more noticeable aft of the jet and should be

expected to be particularly significant at tailplane locations.
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DISCUSSION

It should be emphasized that this work stops short of a direct checkout

involving powered-model comparisons between large and small wind tunnels.

Nonetheless, several factors suggest the potential for more accurate

tunnel corrections than are possible via existing methods. The most

compelling of these factors is the fact that this adaptation of the unified

tunnel correction scheme method can predict wall pressures for a large jet

in crossflow which contemporary methods cannot. This shows that tl,e VSD

model has superior far-field prediction capability and so should give better

interference estimates.

Though currently entirely theoretical, the treatment of impingement

cases has already answered a number of questions qualitatively, parti-

cularly concerning previous difficulties with pitching moment inter-

ference for tailed models. Nonetheless, detailed validation of the

method is obviously highly desirable (ref. 3).
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CONCLUSIONS

PREIMPINGEMENTCASES

o Effects on wall pressures are weak; upwasheffects predominate

o Existing flow modelspredict wall pressures poorly

o Improvedflow model adds source and doublet lines to Fearn's

curved-vortex model

o Recommended procedure:

a) Characterize jet by CMU, DIA, ANGLE

b) Remove jet effects from wall pressures

c) Calculate jet effects

d) Calculate rest-of-model effects from wall pressures

POSTIMPINGEMENT CASES

o Floor blowing to remove standing vortex reduces flow distortion

and improves chance for successful correction

o Redirection term needed to "unkink" the impinged plume to an estimated

free-air trajectory

o Recommended procedure:

a) (As before)

b) (As before)

c) Calculate jet effects, including redirection

d) (As before)
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LIVING WITH SOLID-WALLED TUNNELS

Upgrading existing tunnels may be accomplished by

o Measuring, interpreting, and sometimes reacting to test section

conditions

o Exploiting the latest data recording and computer advances when

doing this

The payoff:

o Reliable corrections for models several times larger than before

o Tunnel flow breakdown point pushed back substantially
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DATA BASES FROM FFA 5LOTTED TRANSONIC WIND TUNNELS

Three data bases are mentioned here. They were obtained in the tunnels shown

in Fig. 1. The models and wall geometries used were not defined to minimize

wall interference but rather to make the wall interference predominant so as to

facilitate study of the slot flow itself.

'<i) Plane flow (Ref. I)

Model: 6% circular-arc profile. Range: a = O, M = 0.7-0.9
Pressure distributions: model, side wall, slats, slots, plenum

Wall boundary layers: two different thicknesses
Total pressures: inside slots and plenum
0il flow pictures: slats, slot walls, symmetry plane of slots

(ii) Axisymmetrie flow (Ref. 2)

Models: Parabolic-are, blockage ratios 0.4 and 2.2%

Range: _ = O, M = 0.90-0.98

Pressure distributions: large model, slats

Total pressures: symmetry plane of slots

(iii) Lifting delta wing

Model: Triangular, A _2/7, span = 40 % of test section widthRange: a = 4 - 14°, - 0.8-0.975

Pressure distributions: slats, Dlenum

_ PLENUM CHAMBER _ o_
To diffusor inlet ==_) _!

I 6% THICK CIRCULAR !

I ARC PROFILE
_-_

CHORD = 90 mm

<_=8[][I

234

I

(a) Two-dimensiona] test sections. (b) Three-dimensional test sections.

Figure 1. Two- and three-dimensional test sections.
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VISCOUS EFFECTS IN SLOTS

(_T::: .....

OF FOG:: ,,...,-.; o:

Early two-dimensional measurements (Ref. 1) indicated that agreement between the

classical slotted-wall formula (including a quadratic cross-flow term) and

experiments could be obtained if in the formula were used (I) a reduced slot width

(by some 15%) as determined from the boundary layers inside the sloL, and (2) a

reduced longitudinal velocity in the slot (and correspondingly reduced density)

as determined from the total-pressure loss in the plane of symmetry of the slot.

In evaluating the axisymmetric tests in which the viscous effects are stronger,
detailed measurements of the slot flow were not available. A cruder version of the

correction scheme was therefore adopted. It is postulated that a constant slot

width reduction and a constant total-pressure reduction can be used. The width

reduction is determined at a position (arrow at x = 600 mm in Fig. 2) where the

crossflow is dominating, while the total-pressure reduction is determined at a

position (x _ 1100 mm) where the curvature term is strong and the e¢ossflow

vanishes. Figure 2 shows the kind of agreement that is obtained. The width reduction

in this case is 20%, and the longitudinal velocity reduction is 30%. The theoretical

results were obtained by solving the transonic small-perturbation equation with

the generalized homogeneous wall boundary condition of Ref. 3, and accounting for
the wall boundacy layer buildup of the empty test section.

The remaining disagreement, essentially in the shock position, might be due to (I)

wall boundary layers,(2) the numerical method, or (3) the wall boundary condition
in the shock region.

-010

•

0.10

CPwoLL Moo: 0.98

+÷+÷
. +,,_, I_®®

__ _ _,' X

, +@@ . +0
500 / -t.,_ 1000 J. ^ 1500_ ,,,6e.

+ @ 0 [mm]

+ thaory without viscous effects

X theory corrected for viscous effects

Figure 2. Pressure distributions alon 9 slat (larg'e model in
forward position, shallow slots).
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WALL INTERFERENCE ASSESSMENT FROM NEAR-WALL MEASUREMENTS

A number of tw0-dimensional assessment mmthods reported in the literature
depend upon measuring pressure distributions at two levels near the wall. In Ref.

4, this approach is analyzed in the situation in which the two levels are located

within the influence region of individual slots. Approximating the slots by line

sources and locally using the slender-body approximation, the cross flow velocities
(Fig. 3) that are needed for an accurate assessment are obtained. Extension to

three-dimensional tests is now being considered.

Notation: y_z

d

S ,SzY

cross flow coordinates, wall at y = O
distance between slots

cross flow velocities in y and z directions

20

zld: 1

1.5 _

05

zld -.1

I
.3

\,
0.5

./,

O. 5 - yld I. 0 0 O. 5 - yld

Figure 3. Cross flow velocities at a slotted wall.

1.0
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INTERFERENCE ON LIFTING DELIA WINGS

OF POOR QUALITY

Preliminary theoretical results for slots of constant width have recently been

presented by Sedin and Karlsson (Ref. 5). The method is an extension of the

method used by them in the axisymmetric case. A few samples are shown in Figs. 4a,b

and c. The continued computations are planned to include the cases tested by FFA

and numerical experiments to define minimum interference slot geometries.

All the diagrams demonstrate a basic assymetry between the pressure side and the

suction side, pointing to the necessity of having wider slots on the pressure side

than on the suction side. There is nothing to indicate that even with the larger

model (Fig. 4c) the interference cannot be considerably reduced by selectir,g a

3roper slot geometry. Fig. 4c demonstrates that the interference in the region of

the mode] can be reduced by lowering the plenum pressure. The number of slots is
B in ai1 three cases. Cases with 16 slots have also been computed and show very

small deviations, indicating that 8 slots will suffice.

.._@ ............................ , ................................................

DOL_LET B_JND_R¥ CON_: D_LTA-_IhG, _R=Z.S, HSp-.s nuRU_@3 D@UBL'L'T BOUHi)ARY COND, _ELTA-_'I'HG. AR-_.£,HSP-.5 *=RUN_@3

(a) Moo = 0.95, _ = 6.6 °, span = 50% of tunnel width.

Figure _. Pressure distributions at inner boundary.
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INTRODUCTION

A model tested in a wind tunnel at a given free-stream Mach number will

develop different flow properties at its surface (Mach number and pressure

distribution) as compared to those developed by the same model in free air at

the same free-stream Mach number. Wall interference correction procedures

seek to determine the required changes in certain flow or geometric parameters

so that the difference between the flow properties at the model's surface in

the tunnel and free air are minimized. A transonic and a linear correction

procedure have been developed for aircraft models.

In addition to Mach number and angle-of-attack corrections, the transonic

correction procedure provides an estimate of the accuracy of the corrections.

Lift, pitching moment and pressure measurements near the tunnel walls are

required. Details of the transonic correction procedure are given in Ref. i.

An earlier but less complete version of this work has been presented in

Ref. 2. In the present work, the efficiency and accuracy of the correction

procedure are improved. Moreover, the present work allows correction of both

the wing and tail angles of attack, while the work described in Ref. 2 allows

only one angle-of-attack correction.

The above procedure is valid for transonic as well as subcritical flows.

However, for subcritical flows further approximations and simplifying

assumptions may be made, leading to a very simple and efficient correction

procedure. Details of the linear correction procedure are given in Refs. 3

and 4. This procedure is an extension of the two-dimensional method of Ref. 5

to three-dimensional flows.

302

A Procedure is Developed for Post-Test Assessment of Wall

Interference Applicable to Wind Tunnel Tests at Transonic

Speeds for Three- Dimensional Aircraft Models

• The Assessment Results Include Corrections to Mach Number

and Angle of Attack and Some Quantitative Indication of the

Residual Interfereqce Not Accounted for by the Corrections

• The Cost and Complexity of the Procedure is within Limits

which Allow its Use as a Practical Tool for Wind Tunnel Test

Corrections

For Subcritical Flows Simplifying A_ 'mptions are Introduced

Leading to a Highly Efficient Lineari_ d Correction Procedure

Both Correction Procedures are Demonstrated Through

Numerical Examples



SYMBOLS AND ABBREVIATIONS

C

L =

--

M =

m

p -_

p ---

o

X =

x_ y, Z

X =
m

y

=

AM =

AS =

characteristic chord length

lift/(Po c2)

lift spanwise distribution/(P c 2)
O

Mach number

Pitching moment about the axis x = x
m

3
Pc
o

Pressure

total pressure

x coordinate relative to the wing leading tip

Cartesian coordinate system

x coordinate of axis about which the model pitching moment is

measured

y coordinate normalized by the wing semispan

angle of attack

Mach number correction

angle-of-attack correction

perturbation velocity potential for the tunnel flow

Subscripts and Superscripts

d = model

e = measured quantity or experimental condition

F = calculated quantity for the equivalent model in an inviscid

free-air flow

f = corrected condition

s = shock wave

T = calculated quantity for the equivalent model in an inviscid

tunnel flow

t = tall

w = wing

=o = undisturbed condition
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OBJECTIVE OF WALL INTERFERENCE

CORRECTION PROCEDURES

To match as much as possible the flow properties
on the surface of the tested model to those which

would develop by the model when tested in free air.

METHODS FOR MAKING WALL

INTERFERENCE CORRECTIONS

• Adaptive Wall Tunnels

• Eliminates wall interference by creating free-air conditions

• Data Corrections

• Determines the aerodynamic data which will result if the

model is tested in free air at the same tunnel conditions =,

Moo

• Test Condition Correction

• Determines the values of o and Moo which would produce

nearly the same aerodynamic tunnel _a if the mode! is

tested in free air
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BASIC REQUIREMENTS FOR THE TEST

CONDITION CORRECTION PROCEDURE

• An Estimate of the Flow Properties (e.g. P or M) on the Model

Surface in the Wind Tunnel

• An Estimate of the Flow Properties on the Model Surface in

Free Air

• Determination of &a and &Moo Which Will Reduce the

Difference Between the Flow Properties in Both Cases

as Much as Possible

GEOMETRICAL CONFIGURATION
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REQUIRED INPUT

• Pressure Measurements at Pamllelepiped Boundaries

• Free-Stream Mach Number and Wing and Tail Angle of Attacks

• Measured Lift Force and Pitching Moment

• Model Geometrical Description
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CORRECTION PROCEDURE

Step I: Numerically Simulate the Wind Tunnel Flow ( MooT = Mooe )

About a Simplified Representation of the Experimental

Model, and Determine the Angles of Attack UT, w and _T,t

Such that the Calculated Lift and Pitching Moment are

Matched to the Corresponding Measured Values

LT, d = Le, d and mT,d = me,d

Step I1:

Step II1:

Numerically Simulate the Free Air Flow About the Simplified

Representation of the Model, and Determine the Angles of

Attack aF,w and _F,t and Mach Number MFoo Such that

LF,w-- LT,w LF,t = LT,t

J(M F - MT)2 dS is minimized

Calculate Corrections

AM = MFoo - MToo

Aor w = (:XF,w - aT, w

Aor t = OfF,t - (XT,t

Step IV: Apply Corrections to Data

Mfoo = Meoo + AM

orf,w = ae, w + Aaw

Qf,t = (Xe,t + A_rt
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NUMERICAL APPROACH

• A Standard Line Relaxation Solution is Used to Solve the

Potential Equation for

• In Addition to Updating the Value of 4>in Each Iterative

Sweep, the Values of ¢rw and ¢_t are Updated to Reduce

the Difference Between the Measured Lift and Pitching

Moment Values.and the Corresponding Iterative Values,

While the Value of Moo is Updated to Reduce the Mach

Number Difference on the Model Surface
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WING IN TUNNEL

Angle-of-attack and Mach number corrections are calculated for a rectan-

gular wing in a solid-wall wind tunnel. The wing is assumed to be located at

mid-distance between the tunnel upper and lower walls. The distance between

the walls is 3.26. A NACA 0012 airfoil section is used for the wing. The

flow in the wind tunnel is assumed to be inviscid with an undisturbed Mach

number value 0.8, while the value of the lift experienced by the wing is

assumed to be L = 0.343. In the case of a model with only one lifting

surface, the correction procedure does not require the pitching moment.

04

-----I.0---_

T
1.09

L'

y

_ X
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SPANWISE LIFT DISTRIBUTION

A comparison is presented between the spanwise lift distribution for the

wind tunnel flow (M_ = 0.8, _ = 2.768°), the free-air flow at the

uncorrected conditions (M0o = 0.8, _ = 2.768°), the free-air flow at the

corrected conditions (M_ = 0.809, _ = 3.361 ° ) and the free-air flow at

the conditions corrected by linear theory (_ = 0.804, _ = 3.318°).
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Free Air Row at the Corrected Conditions

.... Transonic Theory
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MACH NUMBER DISTRIBUTION ON WING

TOP AT THE MID SEMISPAN STATION
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MACH NUMBER DISTRIBUTION ON

WING BO'I-rOM AT THE MID
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SHOCK POSITION ON WING TOP
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TOP VIEW OF MODEL IN TUNNEL

ORI,_!ND,L p_,,,.,b_

OF POOR QUALITY

The correction procedure [s applied to a wing-body-tail model configura-

tion. The geometrical configuration of the model in a solid-wall wind tunnel

is shown. The model is assumed to be located at mid-distance between the

tunnel upper and lower walls. The distance between the walls is 3.2. A

NACA 0012 airfoil section is used for both the wing and tail. The maximum

body radius is Rma x = 0.4. The undisturbed wind tunnel Mach number is

assumed to be 0.77, while Le, d and me, d are assumed to be 0.4 and 1.6,
respectively.

_x

313



SPANWISE LIFT _ISTRIBUTION

FOR WING AND TAIL

A comparison is given between the spanwise lift distribution for the wind

tunnel flow (M_ = 0.77, _w = 3"296°, _t = 3-780°), the free-air flow at the

corrected conditions (M_ = 0.799, a w = 4.212 ° , s t = 4.9440) and the free-air

flow at the uncorrected conditions(M=o " 0.77, aw = 3"296°' _t = 3"780°)"
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MAXIMUM MACH NUMBER DISTRIBUTION

ALONG WING TOP AND TAIL TOP
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SHOCK POSITION ON WING TOP
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SUMMARY OF LINEAR CORRECTION

PROCEDURE FOR SUBCRITICAL FLOWS

• The Tunnel Flow is Assumed to Satisfy the PrandtI-Glauert

Equation; However, a Numerical Simulation of this Flow

is Not Required

• The Free Air Flow About a Model With the Same Spanwise

Lift Distribution as the Tested Model is Assumed to Satisfy

the PrandtI-Giauert Equation; However, a Numerical Simula-

tion of This Flow is Not Required

• The Procedure Requires the Calculation of the Correction

Flow Which is the Difference Between the Free Air Flow

and the Tunnel Flow
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LINEAR CORRECTION PROCEDURE (CONT.)

• Boundary Conditions for the Correction Flow are the

Difference Between the Tunnel Flow Boundary Conditions

(Obtained from Pressure Measurements Near the Wall)

and the Free Air Conditions (Obtained from a Truncated

Series Describing the Free-Air Solution)

• The Correction Flow Solution is Obtained Through the

Use of a Fast Three-Dimensional Laplace Solver, Leading

to a Very Efficient Procedure

• The Correction Flow Solution Allows the Calculation of

Angle of Attack and Mach Number Corrections

• The Linear Procedure Does Not Give a Quantitative Indication

of the Residual Interference not Accounted for by the

Correction
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TOP ViEW OF WiNG-TAlL [N TUNNEl.

Angle-of-attack corrections are calculated for the wing-tail configuration

in a solid-wall wind tunnel. The dashed lines in the figure indicate th_

boundaries of the boundary value problem for the correction flow. The wing

angle of attack is chosen to be 3o, .while the tail angle of attack is chosen

to be 4 ° . The undisturbed wind tunnel Mach number M_ is taken to be 0.7, and

a NACA 0012 airfoil section is used for both the wing and the tail.
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SIDE VIEW OF WING-TAIL IN TUNNEL
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SPANWISE LIFT DISTRIBUTION FOR WING AND TAIL

A comparison is presented between the spanwise lift distribution for the

wind tunnel flow (aw = 3°, at = 4°), the free-air flow at the corrected

conditions derived from first-order theory (Ref. 3) (_I = 3"52°, _[I = 5'32°),

the free-air flow at the corrected conditions derived from second-order theory

(Ref. 4) (a_l I - 3.74 °, a_l I - 5.37°), and the free-air flow at the uncor-

rected conditions (e w - 3 ° , e t n 40).
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CONCLUDING REMARKS

A Procedure has been Developed for the Evaluation of Wall

Interference Corrections for Three-Dimensional Aircraft

Configurations in the Transonic Regime

The Procedure Requires an Inviscid Potential Code to Solve

the Flow Field About a Suitable Simplification of the

Experimental Model

Pressure Measurements Near the Walls and the Model Lift

and Pitching Moment are Required Input

For Subcritical Flows Simplifying Assumptions Reduce the

Correction Procedure to a Highly Efficient Linear Procedure

Which Requires Pressure Measurements Near the Walls and

an Approximate Estimate of the Spanwise Lift Distribution

•. The Procedures have been Applied to Examples with

Numerically Generated Test Data with Good Results.
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GOALS OF STUDY

The various procedures referred to as wall interference assessment and correc-

tion procedures presume the existence of a surface distribution of data (usually

static pressure) measured over a surface on or near the tunnel walls for each test

point to be assessed. The present study addresses an alternative approach in which

a reasonably sophisticated computer model of the test section flow would be fitted

parametrically to a sparse set of measured data. For application to the National

Transonic Facility, for example, the measurements would provide line distributions of

static pressure near the center lines of the top, side and bottom wails. The major

goals of the study are noted in figure I. This paper will show highlights of pro-

gress to date toward the first goal, development of a test section model incorpora-

ting explicit recognition of discrete slots of finite length with controlled flow

reentry into the solid-wall downstream portion of the tunnel.

I DEVELOP HIGH-LEVEL MODEL OF 3-D FINITE LENGTH SLOTTED-WALL TEST SECTION

FOR WIAC, ADJUST PARAMETERS IN ABOVE MODEL TO MATCH IT TO AVAILABLE PRESSURE

DATA

DEVELOP ALTERNATIVE WIAt PROCEDURE USING KNOWN FLOW AT WALL AND EXTERIOR

FLOW SOLUTION

Figure i
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ELEMENTS USED IN TEST SECTION MODELING

The test section model is being developed initially for subsonic speed§ within

the framework of a high-order panel method using technology similar to that of ref-

erence i. The author is indebted to James L. Thomas of Langley Research Center for

making available the basic panel method program wrltten by him for the CYBER203 vector

processor. As shown in figure 2j the test section and flow are assumed to be symmet-

rical so that only one half need be modeled. The type of singularity used in each of

the various paneled regions is chosen to minimize the perturbation in the fictitious

flow outside the panels. Accordingly, doublet panels alone are suitable for model-

ing solid walls. Combined source and doublet panels are used to implement a homo-

geneous slotted-wall boundary condition and segmented source lines are added for dis-

crete slot modeling. The upstream and downstream terminations are provided by source

panels, the downstream panel being linked with special control points to provide a

smooth flow exit regardless of the velocity in the exit duct. For the results shown

in this paper, the test model is represented by a point disturbance but a full wing-

body-tail representation similar to that used in reference 2 is also available.
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DISCRETE SLOT REPRESENTATION

A discrete slot representation is used so that the modeled pressures may be

matched to data measured directly on the wall between slots. As illustrated sche-

matlcally in figure 3_ the discretely slotted wall flow is represented as a flow

which satisfies a homogeneous wall representation plus a perturbation which serves

to cancel the wall normal flux between slots and replace it with an equal flux along

lines at the slot locations. The discrete slot perturbation is modeled as the in-

fluence of a combination of surface and line source distributions. To insure that

this influence decays to zero at large distance from the wall, the net source strength

associated with the discrete slot perturbation must integrate to zero over a region

extending one half of the slot spacing to each side of each slot. The resulting

local line source strength is -2a v where v is the outward normal velocity of the

homogeneous wall flow. n n
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WALL vn

SOURCE
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SLOTTED-@ALLBOUNDARY CONDITIONS

The boundary condition used in this study for the homogeneous representation of

a slotted wall as well as those used for the discrete slotted wall are given in

figure 4. In both cases, provision is made for a non-zero pressure coefficient in

the plenum as well as a quadratic term to account for the dynamic pressure of slot

flow issuing into the plenum as a jet. The quadratic term (shown in parentheses)

has not yet been implemented but will be included in a future iterative solution pro-

cedure. For the discrete slot case, the zero normal velocity condition is imposed

explicitly at control points between the slots. The condition imposed at the slots

is derived from the homogeneous wall condition by using the normal flux equivalence

S = -2a v . The longltudinal gradient of S is expressed in a difference form compa-

tible wlt_ the linear strength variation used in each line source segment. Although

the source llne influence is singular at the line, the longitudinal perturbation ve-

locity u can be evaluated using a limit form for control points on the llne.

HOMOGENEOUS REPRESENTATION

• _V N

2u + 2KQTR-- -Cp,PLEN

DISCRETE SLOT REPRESENTATION

2u- KA-_x=- Cp,PLEN- (_) AT SLOTS

vN = 0 BETWEEN SLOTS

Figure 4
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LATER_J,SURVEYOF FLOW AT TOP WALL

A conceptual error was made when the discrete slot model was first programmed.

Results from a fully correct discrete slot case are not yet available. The error was

such that the source conservation condition noted on figure 3 was not satisfied al-

though all boundary conditions were correctly satisfied at control points. It as be-

lieved that results from this program, a sample of which is shown in figure 5_ are

adequate to illustrate qualitatively the nature of the discrete slot flow even though

the solution as quantitatively in error. Note that on figure 5 the normal velocity

component w has been enlarged by a factor of I00 before plotting to illustrate that

the high-order panels achieve a commendable approximation to the zero normal velo-

city condition not only at control points but also across the entire flat between

slots. Although the Cp variations across the flats are fairly small, it is not yet

possible to judge the need for discrete slot modeling in using pressure measurements
at wall orifices.
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FINITE-LENGTH EFFECTS ON SOLID BLOCKAGE OF FO'Oi_ _ :_I_

Tunnel centerline distributions of wall interference velocity and distributions

near the top-wall centerline of total longitudinal velocity are shown in figures 6, 7

and 8 for point disturbance models yielding solid blockage, wake blockage and lift

interference respectively. All of these results were obtained using the homogeneous
representation of slotted top and bottom walls. Interference distributions for solid

walls and for infinite-length slotted walls with K=3 are compared wlth predictions of

the value and gradient at the model location from reference 3 and show excellent

agreement. The finite-length slotted walls extended from 1.5 h upstream of the model
to about 1.42 h downstream.

For the solid-blockage case (figure 6), finite-length slots with zero plenum

pressure coefficient resulted in a significant excess velocity in the downstream

solid-wall region implying a significant mass transfer from the plenum Into the

tunnel. A negative value of Cp, plen could be found which eliminated this plenum
pumping. The resulting interference velocity distribution is shifted upward from

the infinite-length case by about the amount needed to join smoothly the solid-wall

interference values at the upstream and downstream ends of the slots.
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FINITE-LENGT_ EFFECTS ON WAKE BLOCKAGE

The model disturbance for the wake blockage case (figure 7) is a point source in

the center of the tunnel. With solid walls, the added mass from the point source

causes a higher velocity in the exit duct than that in the entrance duct. With finite-

length slots, this downstream velocity could be matched by setting C.,=l_n._ to
-.072 C_S/C. The resulting wake blockage interference at the model Is higher in both

magnitude and gradient than that for the inflnlte-length slotted case. A further re-

duction in plenum pressure was used to model the case in which the added mass corres-

ponding to wake thickness was removed by suction from the plenum, thereby reducing the

velocity perturbation in the exit duct to zero. The resulting wake blockage inter-

ference velocity is still higher than that for the infinlte-length case but the gra-

dient is now less. These results imply that any other phenomena affecting the velo-

city entering the exit duc_, such as a sting support system and shaping of the dif-

fuser walls, should be accounted for in the test section model.
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FINITE LENGTH EFFECTS ON LIFT INTERFERENCE OF _C_ _c_...i%_

As shown in figure 8, the level of wall-lnduced upwash downstream of the model

is much less for the infinite-length slotted tunnel than for the solid tunnel whose

walls must cancel the downwash which occurs naturally behind a lifting system. In

the finite-length slotted tunnel, the interference upwash must undergo a transition

from the slotted-wall level to the solid-wall level. If the presence of a reentry

flap is ignored, this transition is centered around the entrance to the solld-wall

exit duct and is not felt at the model. The sudden turning of the flow into the exit

duct produces a sharp spike in the upper-wall velocity signature. Most slotted-wall

tunnels employ some form of reentry flap to guide the flow smoothly into the exit

duct. Such a flap was modeled by prescribing a linear variation of plenum C from

zero at the flap leading edge to a value at the end of the slots such that t_e normal

velocity w at the top and bottom walls approached zero smoothly. The effect on the

center line interference was an upstream shift in the transition from slotted wall to
solld-wall levels.
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CONCLUSIONS

The conclusions drawn from the information presented in this paper are summa-
rized in figure 9.

HIGH-LEVEL MODEL OF SLOTTED TEST SECTION APPEARS FEASIBLE

PLENUM PRESSURE CONTROLS DIFFUSER ENTRANCE VELOCITY

REENTRY FLAP EFFECTS CAN BE SIMULATED BY A DISTRIBUTION OF PLENUM PRESSURE

STING SUPPORT AND DIFFUSER WALL SHAPE SHOULD BE INCLUDED IN TEST SECTION

MODEL

Figure 9
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SYMBOLS AND ABBREVIATIONS

slot spacing

cross section area of test section

drag coefficient of test model

lift coefficient of test model

pressure coefficient

pressure coefficient in plenum surrounding test section

half height of test section

slotted-wall parameter normalized by slot spacing

line source strength, also reference area for lift and drag coefficients

perturbation velocity components in x, y and z directions respectively

test model volume

normal velocity at wall

Cartesian coordinates

slot width

source sheet strength

three-dlmenslonal
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INTRODUCTION

The residual interference must be assessed to determine the wall interference

in a conventional tunnel or the degree of convergence of the adaptive-wall procedure.

Since there are two variables measured at the interface of an adaptive-wall tunnel,

a theoretical procedure can be developed to assess the level of interference with

these two variables as known inputs. In general, the equivalent model geometry,

including viscous effects, is not known in the tunnel experiments. However, the

flow variables measured at the interface contain the influence of such viscous

effects in addition to those of the model itself. If one can determine the equiva-

lent model shape based on these variables, this shape then can be used to assess the
wall interference.

The present effort, based on two-dimensional subsonic flow, is devoted to

deriving a formula for the determination of equivalent model geometry with two

variables measured at the interface. It is believed that this predicted model pro-

file is a reasonable initial estimate for transonic flow as long as the sonic region
does not reach the interface.

In the presentation, a general formula will be given in two forms. One is in

terms of complex variable functions and the other is an integral equation. The

complex-function formula has the advantage of using analytic expressions. The

integral-equation form requires a numerical solution after assuming the model geom-

etry as a polynomial function. Examples will be given to illustrate the application
of the formulas.

TUNNEL FLOW FIELD

The boundary value problem for the tunnel flow field is described in figure i.

Two techniques are applied to solve the boundary value problem. First, a Fourier

transform technique solution is given, followed by an alternate derivation for two-

dimensional flow based on the complex velocity.

The solution of the velocity field components is obtained in the Fourier trans-

formed plane:

_T(p,y ) = i8_T(P,h ) sinh pSy cosh p_(h-y)
cosh pSh + _' (p) cosh pSh

(i)

Evaluation of equation (i) at the interface y = h yields

VT(P,h) = iSUT(P,h) tanh pSh + F'(p)/cosh pBh (2)

By eliminating F'(p) in equations (I) and (2), the vertical velocity component is

obtained in terms of the measured velocity components at the interface as
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VT(p,y ) = VT(P,h) cosh pB(h-y) - IBUT(P,h) sinh pB(h-y) (3)

The relationship corresponding to equation (3) in the physical plane can be derived

by inverting equation (31 using the Wiener-Hopf technique (ref. i) to obtain

VT(X,y) = Re { VT[X+IB(h-y),h] I + 8 Im {UT[X+iB(h-y),h]} (4)

MODEL PROFILE FORMULA

Equation (A) gives the vertical velocity component inside the tunnel region.

The equivalent model profile is assumed to be the vertical velocity along the

x-axis; that is, as y _ 0 for thin airfoils,

F'(x) = lim VT(X,y)
y+O

lira Re { VT[X+iB(h-y),h] I + B Ira{ UT[X+iB(h-y),h] 1

y+0
(5)

This equation indicates that the model geometry can be determined once two

components of velocity at the interface are measured. Equation (5) can also be

derived using complex velocity with analytic continuation theory, as presented in

the next section. However, the Fourier transform technique can be extended to the

three-dimensional case but the complex (variable) velocity approach is limited to

the two-dimenslonal problem.

MODEL PROFILE EQUATION DERIVED BY COMPLEX FUNCTION

In ,two-dlmensional flow with the Laplace equation as the field equation, the

complex-variables approach is the most efficient way to obtain the solution. Let the

complex velocity be (dropping all subscripts for convenience)

U(x,y) - iV(x,y) = g(x+iy)

Re{ + iIm{g(x+iy)} (6)

Rewriting x + iy = x - i(h - y) + ih in the expression on the right-hand side (RBS)

of equation (6) yields

RHS of eq. (6) = Re {g[x-i(h-y)+ih]}+ i Im{g[x-i(h-y)+ih]}
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The substitution of g = U - iV in the above equation yields

RBS of eq. (6) = Re {U[x-i(h-y),h] - iV[x-i(h-y),h]l

+ i Im {U[x-i(h-y),h] - iV[x-i(h-y),h]l (7)

Thus equation (6) can be rewritten with the form of equation (7) as

U(x,y) - iV(x,y) = Re {U[x-i(h-y),h]l + Im {V[x-i(h-y),h]l

- i Re { V[x-i(h-y),h] } + i Im {U[x-i(h-y),h] } (8)

Hence equating the imaginary part of equation (8) yields

V(x,y) = Re V[x-i(h-y),h] - Im U[x-i(h-y),h] (9)

If f(x) is a real function, then

Re {f(z)} = Re {f(z)}

Im {f(z)} = -Ira {f(1)}

(lO)

where z = x + iy and its conjugate z = x - iy.

Using the relationship of equation (i0), we rewrite equation (9) as

V(x,y) = Re {V[x+i(h-y),h]l + Im{U[x+i(h-y),h]} (ii)

which is identical to equation (4) as derived by the Fourier transform and Wiener-

Hopf techniques (without the 8 factor).

ILLUSTRATIVE EXAMPLES

Examples selected to demonstrate the model profile predicted by equation (5) are

given for a general profile in solid-wall and open-jet tunnels and for a circular-arc
airfoil in a solid-wall tunnel.
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Solid Wall Tunnel

Assume the interface y = h ]ocated at the tunnel wall; hence VT(x,y) = 0

for a solid-wall tunnel. We obtain the velocity distribution UT(X,h)- by taking

the inverse transform of equation (2):

-i

UT(X,h ) = 2hB2
oo-- F' (_) tanh _-_ (E-x) dE

--Oo

(12)

where F'(E) is a general function of mode] geometry.

Substituting UT(X,h) of equation (12) and VT(x,h) = 0 into the right-hand

side of equation (5), we obtain

lim B Im {UT[X+iB(h-y),h] 1
y_O

-I

- 2Bh- -- lira Im F'(_) tanh _ [_-x-iB(h-y)] dE
y-*O _

= • F'(_) lira Im tanh _ [(_-x)-iB(h-y)] d_
-_ y_O

(13)

It should be noted that for _ - x # 0,

_ [ (_-_)-iS(h-y) ] }lim Im tanh
y_0

= lim _

y-_O cosh-_ (_-x) - cos _ y

= 0
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Equation (13) becomes

w

s.n y-_! F'(C) lira
2Sh _ II w

y-+0 cosh _ (_-x) - cos _ y

d_

7[

=__l_l F,(x)lim f__ -sin_ y

2_h _cosh (_-x) - cos _ y

dC

( sln y)2 lim tan -I ----

= F'(x) _ y_0 i - cos _ y

= F'(x)

Thus the right-hand side of equation (5) is equal to F'(x). (14)

This result is expected; that is, equation (5) is verified.

Open-Jet Tunnel

Again, assume the interface y = h is located at the tunnel test section

boundary and UT(X,h) = O for an open-jet tunnel. The vertical velocity distribu-

tion VT(X,h ) is obtained by taking the inverse transform of equation (2):

VT(X,h) = _-_ (_) sech 28h
(15)

Substituting VT(X,h) of equation (15) and UT(X,h) = 0 into the right-hand side

of equation (5), we obtain

lira Re IVT[X+i_(h-y),h]}
y_O

1
F'( ) lim Re sech

= _ 28h
o0 y-_

(16)
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It is noted that for _ - x # 0,

lira Re sech _-_ [(_-x)-iB(h-y)]

y+0

cosh 7f_ (_-x) sin _-_ y

= lira

y-_0 sinh 2 _ (_-x) + sin 2 __Y

=0

Then equation (16) becomes

IT IT

lim

y_0 sinh 2 _-_ (_-x) + sin 2 _ Y

d_

i

2Bh

sinh _ (n)
F' (x) 2h_BBlim tan -1 -

II
r[ y-_O sin _-_ y

= F'(x)

Thus we have verified the profile formula, equation (5).

_Q
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SUMMARY

Because of the interest in representing the flow around full-scale ships,

naval and marine hydrodynamic researchers have turned to subsonic wind tunnels in

order to attain Reynolds numbers as high as possible. Whl]e the attainment of

length Reynolds numbers needed to represent a full-scale ship (above 1000 milllon)

is beyond the capability of present wind tunnels, Reynolds numbers above I00 million

are possible and represent an order of magnitude improvement over typical hydro-

mechanics facilities. As part of the quest to attain the largest possible Reynolds

number for any tunnel facility, large models with high blockage (greater than

1 percent) are used which can result in significant wall interference effects.

Some experiences with such a high blockage model (2.6 percent) tested in the

NASA Ames 12-Foot Pressure Wind Tunnel are summarized here.

In the Ames experiment, hull static pressure distributions, hull boundary layer

flows (velocity profiles), stern flows (velocity components and Reynolds stresses),

and resistance of a body of revolution model were measured. The static pressure

distribution on the wall of the tunnel and the tunnel wall boundary layer velocity

profile (at the mid-model location) were also measured to aid in the assessment of

wlnd tunnel wall interference effects. These tunnel wa]l measurements were invalu-

able in interpreting the test results and performing wind tunnel wall corrections.

For example, the two methods that were used during the test to calculate the tunnel

velocity failed to produce reasonable results for model hull static pressure coef-

ficient over the entire range of test conditions. Reasonable results were obtained

(during data analysis after the test) only by developing an alternate method of

determining the tunnel velocity using the tunnel wall measurements. Further,

comparisons of blockage effects calculated separately from the model hull static

pressure distributions and from the tunnel wall static pressure distributions

indicated the extent of an interference effect at the stern of the model caused

by a downstream strut in the tunnel diffuser. This enabled a tunnel strut inter-

ference correction to be made to the measured stern flow and tunnel thrust (hori-

zontal buoyancy) calculations.

The main results of the experiment relating to wlnd tunnel wall interference

effects are as follows:

• The high blockage of the model caused a somewhat higher velocity over the

forward part of the model than that predicted for infinite fluid. Measured boundary

layer velocity profiles over this part of the model, where the boundary layer is

"thin", a_reed well wlth calculated velocity profl]es assummlng an inflplte fluld.

Also, no notlcable differences were obtained with the boundary layer calculations

whenever the measured hull static pressure distributions were used to represent

the in-the-tunnel situation in the calculations.

• The tunnel strut interference caused a lower velocity over the model stern

than that predicted for an infinite fluid. Here, the boundary layer may be considered

"thick" and developing in an adverse pressure gradient. The measured stern flow

velocity profiles were significantly different from those calculated for an infinite

fluid. Fair agreement was obtained between the measured profiles and calculated

ones whenever measured hull static pressure coeffielent distributions were used to

represent the In-the-tunnel situation in the calculations.

• The values of the tunnel thrust (horizontal buoyancy) calculated from the

mode] hull static pressure distributions were consistently lower than those obtalred

from tunnel wall measurements. This is due largely to the strut Interference effect

that created a pseudo "pressure recovery" at the stern of the model.
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CHARACTERISTICS OF CANDIDATE WIND TUNNELS

The Reynolds number based on length for a full-scale ship can be as large as

I000 million and higher. In order to perform experiments as close to this Reynolds

number as possible under controlled conditions, wind tunnels in the United States

and Canada (refs. i through 5) were considered for subsonic flow (Hach number

less than or equal to 0.3) high Reynolds testing of ship models. Tbls led to

consideration of the large subsonic, pressure subsonic, and transonic wind tunnels

as shown ranked in Figure l. The tunnels were ranked based on a hlgh Reynolds

number figure of merit which is the quoted maximum Reynolds number per length

times the square root of the test section cross sectional area. Other character-

istics of the tunnels listed in the table are: (a) the ability to change Reynolds

number and Hach number independently, (b) the quality of flow (turbulence level),

and (c) the availability of the tunnel during the proposed testing period. The

National Transonic Facility (NTF, ref. 6) and the NASA Ames 80x120 were not

considered for the present test but are recent inclusions for completeness and

future consideration. Even though the NASA Ames 40x80 wind tunnel has the largest

Reynolds number figure of merit (except for the NTF and the 80x120), the other

tunnel characteristics made the NASA Ames 12-Foot Pressure Wind Tunnel more

attractive for the present experiment. Also, in the smaller tunnel, tbe model

needed for equivalent Reynolds numbers in the larger tunnel was proportlonally

smaller. This reduced model construction and transportation costs and made for

easier handling.

RANK TUNNEL

A NATIONAL TRANSONIC
FACILITY (2.5M x 2.5M)

B AMES 80 FT x 120 FT

1 AMES 40 FT x 80 FT

2 AMES 12 FT

3 NAE 5FT x FT

4 UNITED AIRCRAFT 18 FT

5 LOCKHEED 26 FT x 30FT

6 NAE 15 IN. x 60 IN.

7 LANGLEY 30 FT x 60 FT

8 VERTOL 20 FT x 20 FT

9 DOUGLAS 4FT x 4FT

TYPE

TRANSONIC

SUBSONIC

SUBSONH_

SUBSONIC

PRESSURE

TRANSONIC

SUBSONIC

SUBSONIC

TRANSONIC I

SUBSONIC

SUBSONIC

TRANSONIC

RN/FT x 10 -e'

AT

MN<_0.3

707

2.1

2.1

9

14.6

4.2

2.3

22.8

1

2

10"

RNIFT x _FA
x10-6

58O

206

119

96

73

67

64

57

42

4O

4O

RN AND MN TURBULENCE
INDEP. LEVEL

VARIABLE SAT.

v" v"

X X

X X

v" v"

v" v"

X X

X X

v" y"

X X

X X

v" v"

_VAILABILITY

v"

AFTER JAN

79

*_HIS TUNNEL IS BEING MODIFIED FOR CRYOGENIC OPERATIONWHICH IS EXPECTED TO INCREASE THE MAXIMUM REYNOLDS
NUMBER BY ABOUT 5.0

Figure I
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HIGH REYNOLDS NUMBER/LOW BLOCKAGE TRADE-OFF

In order to obtain the highest Reynolds number possible in a wind tunnel,

the largest possible model should be used. However, the larger the model becomes,

the larger the solid blockage and the associated wind tunnel wall effects become.

In order to make the trade-off between high Reynolds number and low blockage,

Figure 2 was constructed for the subject body of revolution mode]. The maximum

Reynolds number may be calculated as the maximum Reynolds number per length

(Rn/length) times the model length (L). The solid blockage (h) Is the model cross

sectional area ('If R2) divided by the tunnel cross sectional area (A). Thus

for the model in question the maximum Reynolds number equation may be rearranged

to yield

(Rn/length)x(A) 0"5 = 0.0806(Rn)/(b) 0"5

where the left side is the tunnel Reynolds number figure of merit and the right

slde is composed of the desired experimental parameters of maximum model Reynolds

number and model solld blockage. It is seen from Figure 2 that for the NASA Ames

12-Foot Pressure Wind Tunnel (refs. 1 and 2), that a Reynolds number of i00 million

can be obtained with a model having less than i percent solid blockage. Con-

versely, it is seen that for i percent blockage only two tunnels (excluding the

NTF (ref. 6) and the NASA Ames S0x120) can obtain model Reynolds numbers of i00

million. Note that, In the future, full-scale Reynolds numbers of interest (I000

million and above) would be obtainable with a 2 percent solid blockage model In

the NTF. For the present experiment a 20-it-long model with a solid blockage of

about 2.6 percent in the NASA Ames 12-Foot Pressure Wind Tunnel was chosen.
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DEFINITION OF TUNNEL VELOCITY

The ideal wind tunnel would be one in which the blockage would be so small

that the velocity of flow near and along the tunnel wall would be essentially the

same as the free-stream velocity for the model in infinite flow. However, in a

conventional tunnel (solid and straight walled) of finite size as show in

Figure 3, the blockage due to the model, support structure, boundary layers on

the model and tunnel walls, and the wakes of the model and support structure

cause a general increase in velocity of flow around the model compared with that

obtained in an infinite fluid. Since the main purpose for the experiment was to

determine the flow characteristics around the model in infinite flow, the measure-

ments in the tunnel needed to be corrected for any tunnel effects. In order to

make these wind tunnel wall corrections for the present experiment it was consid-

ered essential to make measurements of the tunnel wall static pressure distrib-

ution and tunnel wall boundary layer profiles. These measurements were not only

used to calculate the classical blockage corrections for a solid wall tunnel but

also added understanding to all of the measured data. In particular, these wall

measurements allowed a more reasonable determination of the tunnel velocity and

equivalent infinite-fluid free-stream velocity than what was provided by the

standard tunnel method. Further, these measurements together with model meas-

urements provided a means to evaluate the interference effect due to a large

strut (used for sting mount models) located in the tunnel diffuser.

U_ Uew _U_.. U,_

U_
Uew =U_ U=_

MODEL IN INFINITE FLUID

TUNNEL WALL BOUNDARY LAYER

MODEL BOUNDARY LAYER _ _UNNEL WALL

REVOLUTION I__--__ l

..... UNNEL '

L TEST SECTION

l l 1__
110 120 130

TUNNEL STATION

MODEL IN WIND TUNNEL

Figure 3
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DETERMINATION OF TUNI_L VELOCITY

For the present experiment the model almost entirely occupied the tunnel test
section so that nowhere in the tunnel did there exist a uniform flow that could

be considered the infinite fluid free-stream velocity. Thus, the measurement of

thls velocity was indirect. Two methods of measurement were employed during test-

Ing. The first method (ref. 7) was based on measurement of tunnel total pressure

and the static wall pressure in the nozzle, known geometry of the tunnel (ref. 8),

calculation of the maximum solid blockage, and estimates of the drag coefficients

(ref. 9) for the model and support struts. The velocity determined this way is

labeled "Ua". The second method, which was much s2mpler, was based on the tunnel

total pressure and the static pressure in the plenum chamber around the test

section. Thls velocity Is labeled "Ua'". During data analysis after the experiment,

a third method was used which made the model hull static pressure distribution

results more consistent. Here the velocity at the edge of the tunnel wall boundary

layer at the mld-model location (Umm) was determined from the tunnel wall static

pressure at that ]ocatlon and the tunnel total pressure. This velocity was then

divided by the classical blockage factor (ref. I0) determined for that location

(l+emm). These three "tunnel reference velocities" are compared with the theo-

retically predicted value of infinite fluid free-stream velocity in Figure 4. It

is seen that Umm/(l+emm) best represents the predicted free-stream velocity

over the range of test conditions. The first methods appear to be adequate for

the lower Reynolds number range which occurred under atmospheric tunne] condi-

tions. The discrepancy appears at the higher Reynolds numbers and under pres-

surized tunnel conditions.
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TUNNEL SOLID BLOCKAG_E

A graphical representation of the solid blockage for the present mode] in

the NASA Ames 12-Foot Pressure Wind Tunnel (ref. 8) is shown in Figure 5. The

cross section of the tunnel test section is circular wlth an inslde dlameter of

12 ft. However, for part of the test section, there are ramped flat plates about

4 ft wlde on the floor, ceiling, and both sides that occupy about 4.1 percent of

the tunnel cross sectional area. The model was placed such that its nose and tall

would span the length of the ramped plates. Thus the model nose was in a slight

nozzle area and Its tall was in a slight diffuser area but most of the model was

in the straight walled part of the test section. The model solid blockage based

on the total circular tunnel area was about 2.3 percent and doubled to 4.6 percent

at the two model support locations. The tunnel strut, used to support a sting

mechanism, is mostly located In the tunnel diffuser so that Its blockage is com-

pensated for by the increase In tunnel area. However, part of the strut is in

front of the diffuser and causes a solid blockage of about 5.3 percent at the end

of the test section. Thus It can be seen that the solid blockage varies signif-

icantly throughout the tunnel and Is of such a magnitude that wind tunnel wall

interaction effects must be considered.
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TYPICAL TUNNEL WALL STATIC PRESSURE DISTRIBUTIONS

Typical distributions of tunnel wall static pressure with no model in the

tunnel (ref. 11) and with the model in place are shown in Figure 6. These data

were obtained from circumferential static rings (four static pressure taps located

in an "X" pattern and hooked together), static pressure taps located 45 deg from

the bottom on the port and starboard (left and right looking forward) s/des of the

tunnel. One additional wall-mounted static tube was added on the port side across

from the mld-bow of the model. The data are seen to have a lot of scatter an_

several trends are notlcable. First of all, since these pressure coefficients are

based on Umm, the average of the port and starboard measurement at mi_ mcdeJ (X/L

ffi0.5) Is zero. Also, the starboard values are in general lower than the port

values. Since all the tunnel wall pressures (except the most forward ring pressure)

were measured wlth a common pressure gage (by use of a Scannl-valve arrangement),

this indicated that the flow velocity was not perfectly uniform across the tunnel

and was slightly higher on the starboard side. Also observable is a significant dip

in the pressure near the rear mounting strut indicating a local increase in velo-

city. No dlp Is obvious near the forward mount, perhaps due to the sparseness of

measurements. Further, note the rise of pressure near the stern of the model due

partly to the decrease In model diameter but mostly due to the disappearance of

the side wall plates. Proceeding down the diffuser there is a significant dip and

then an increase of pressure. Thls indicates that the flow was not gently diffused

and may indicate an area for posslble tunnel improvement.
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TYPICAL MODEL SKIN STATIC PRESSURE DISTRIBUTION

A typical set of measurements of model hull static pressure taken along the

top of the model (to stay as far away from the model support strut influence as

possible) are presented in Figure 7. These data are pressure coefficients based

on Umm, the velocity near the tunnel wall at the mld-model location. As is to be

expected, the velocity accelerates (Cp decreases) around the bow, becomes almost

constant over the parallel mlddlebody (X/L from about 0.16 to about 0.62), acce].-

erates over the front half of the stern, and then shows a steady pressure recovery

over the hack half of the stern. The slight increase In velocity over the parallel

mlddlebody is due to increasing viscous blockage caused by boundary layer growth

on the model and the walls of the tunnel. Apparent near the locations of the model

support struts are local dips in pressure. These dlps were disregarded when the

data were hand-smoothed in order to be used for fnput to an axisymmetric boundary

layer code (refs. 12 and 13).
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BLOCKAGE EFFECT ON TUNNEL WALL AND MODEL SKIN

If the boundary layers on the wall of the tunnel and the hull of the model

are assummed to be "thin" (no pressure gradient across the layer) and the blockage

effect on the boundary layer edge velocity was assumed to be Ue' = (i + e)Ue

where e is the local blockage ratio (ref. 10), then the in-the-tunnel measured pres-

sure coefficient based on Umm and the infinite fluid calculated pressure coefficient

based on U_ were related as

(i - Cp'')/(1 - Cp) = [(i + e)/(l + emm)] 2

Thus, the blockage effect was determined from both the tunnel wall measurements of

Cp" (Cp for the wall is zero) and the measured Cp" and the calculated Cp for the

model. However when both blockage effects are plotted, as in Figure 8, a discrep-

ancy is observed. The wall values are fairly flat but the model values show an

approximate linear drop as the end of the model is approached. These data indicate

that at the location of the stern of the model, the flow is significantly different

in the center of the tunnel than at the walls. This condition is attributed to the

upstream pressure field from the tunnel strut In the diffuser. The effect was

considered as a negative blockage effect (slowing of the flow), assummed linear

(as shown In Figure 8) as the strut is approached, and used to extrapolate the

pressure coefficient to the end of the model.
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INTERFERENCE EFFECT OF TUNNEL STRUT

The design of the present experiment included calculations that approximated

the interference effect of the strut in the diffuser of the tunnel using uniform,

infinite fluid, potential flow past a 2-D section of the strut. It was thought

that this would represent a worst case for upstream effects. The results of this

analysis, as shown in Figure 9, _ndlcate that at a distance of about 2 ft In front

of the strut, the velocity would be slowed down only about 2.5 percent and that

the effect decays very little with Jncreaslng distance. The rationale for locating

the stern measurement plane was to make sure that it was at least 2 ft from the

strut. If the analysis indeed represents a worst case, the effects would be less

than indicated. Sufficient measurements of wall and model pressures made durln 8

the experiment indicate that the strut effect is of the same order as the predic-

tion. Thus, the stern flow was significantly affected and significant corrections

had to he applied to these data to convert them to infinite-fluid predictions.

30 28 22 6 4 2 0

1.0 'l' ]

26 24

I I

0.7 Q,6

DISTANCE IN FRONT OF LEADING EDGE IN INCHES

20 18 16 14 12 10 8

I I I I

I
I
I
i PLANE OF STERN FLOW MEASUREMENT

END OF MODEL

-_ END OF STERN STING

I
I I I I 1

0.5 0.4 0.3 0.2

DISTANCE IN FRONT OF LEADING EDGE IN METERS

I
O.1

Figure 9

355



MEASURED AND CALCULATED MODEL SKIN STATIC PRESSURE DISTRIBUTION

The model hull static pressure coefflc_ent distributions measured in the

tunnel and calculated for infinite fluid using an axlsymmetrlc boundary layer code

(refs. 12 and 13) for a Reynolds number of i00 million are shown in Figure 10.

In general, the velocities measured in the tunnel are lower (higher Cp) than the

Inflnlte-fluld velocities over the bow of the model and h_gher (lower Cp) over much

of the remaining hull except in the region toward the end of the stern. For the

stern region aft of about X/L greater than 0.9, velocities for the measurements in
the tunnel are much lower than for infinite fluid. This was attributed to the

pressure field created ahead of the large floor-to-ceiling strut permanently

installed in the diffuser of the wind tunnel.
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MEASURED AND CALCULATED BOUNDARY LAYER VELOCITY PROFILES

In Figure Ii the in-the-tunnel measured "thin" boundary layer velocity pro-

files along the length of the model are compared with profiles calculated assuming

infinite fluid and measured model hull pressure distributions (ref. 14). The two

sets of calculated profiles are not distinguishable from each other (and are shown

by a common curve in the figure) even though the static pressure distributions used

to calculate them are somewhat different. These calculations indicate that the

wind tunnel wall interference effect on thin boundary layer growth for this situa-

tion Is negligible. Comparing the calculated profiles to the measured ones, it is

seen that the calculated profiles are consistently slightly fuller than the expert-

mental ones.
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MEASURED AND CALCULATED STERN FLOW VELOCITY PROFILES

A comparison of the measured and calculated "thick" boundary layer velocity

profiles on the stern of the model (from ref. 14) is shown in Figure 12. Here

there is a considerable difference between the two calculated profiles depending

upon whether infinite fluid or in-the-tunnel measured static pressure distributions

are used for the calculations. The stern flow is very sensitive to the distribution

of pressure since the boundary layer Is thick at the stern and is developing in an

adverse pressure gradient. Further it is seen that the calculated results obtained

using the measured static pressure distributions are in fair agreement with the

measured results. The difference between the two calculated velocity profiles was

used as a correction factor that was added to the experimental results to convert

them to Infinite-fluld predictions.
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TUNNEL THRUST CALCULATIONS

As shown in Figure 13, the calculation of the tunnel thrust (horizontal

bouyancy) from the experimental data shows that calculations using model hull

static pressure distributions are consistently lower than those obtained from

tunnel wall measurements. This is due largely to the strut interference effect

that created a pseudo "pressure recovery" at the stern of the model.
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INTERCHANGEABLE TEST SECTIONS IN THE 0.3-M TCT

The original three-dlmenslonal test section was replaced

with a two-dlmensional test section insert during the summer of

1976, taking advantage of the interchangeable test section

feature of the 0.3-m TCT (fig. I). The two-fold purpose of this

extensive modification was to assess the feasibility of two-

dimensional testing at cryogenic temperatures and to take

additional advantage of the very high unit Reynolds number

capability of this relatively small, economical test facility.
The two-dimenslonal insert consisted of a new contraction

section, a rectangular pressure plenum encompassing a 20- x
60-cm test secZlon and a new diffuser. The two-dimensional

test section provided removable model modules which allow the

complete preparation of one model during the testing of another

model. In addition, provisions were made to enable computer-
driven angle-of-attack and momentum rake systems and a sidewall

boundary layer treatment system to be used with the two-dimen-

sional test section. The sidewall treatment is accomplished by

"removal" of the boundary layer through porous sidewall
inserts.

2- D INSERT • Pt 1.2 TO 6.0 atm

20cmx60cm •T t 77.4 TO 340K

• M 0.02 TO O.g

BASIC TUNNEL WITH 3-D

INSERT 34cm OCTAGONAL

• Pt 1.2 TO 5.0 atm

• Tt 77.4 TO 340 K

• M 0.02 TO 1.2
oO
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n l n t q .  f-. - . . % A  
. I . l ,  

QF PO’S,, - _  .’* ,-i.j ‘d THE 0.3-METER T R A N S O N I C  C R Y O G E N I C  TUNNEL 

A p h o t o g r a p h  of t h e  L a n g l e y  0.3-m T C T ,  i n  which t h e  t e s t  
p r o g r a m  i s  b e i n g  u n d e r t a k e n ,  i s  shown b e l o w .  T h i s  t u n n e l  i s  a 
c o n t i n u o u s - f  l o w  f a n - d r i v e n  t r a n s o n i c  t u n n e l  w h i c h  u s e s  n i t r o g e n  
g a s  as t h e  t e s t  medium. I t  i s  c a p a b l e  of o p e r a t i o n  a t  Mach 
n u m b e r s  f r o m  a b o u t  0 . 2  t o  0 .85  a n d  t h e  maximum R e y n o l d s  n u m b e r  
(at M = 0 . 8 5 )  b a s e d  on a m o d e l  c h o r d  o f  1 5 . 2 4  c m  ( 6 . 0 0  i n . )  i s  
a b o u t  50 x 10 . T h e  b a s i c  t u n n e l .  i s  d e s c r i b e d  i n  r e f e r e n c e  1 
a n d  a d e s c r i p t i o n  of t h e  t w o - d i m e n s i o n a l  t e s t  s e c t i o n  i s  
c o n t a i n e d  i n  r e f e r e n c e  2 .  A d d i t i o n a l  i n f o r m a t i o n  on i n s t r u m e n -  
t a t i o n  a n d  c a l i b r a t i o n  r e s u l t s  i s  a v a i l a b l e  i n  r e f e r e n c e  3 .  
Shown i n  f i g u r e  2 a r e  t h e  f a n  d r i v e  s e c t i o n ,  l o w - s p e e d  
d i f f u s e r ,  . c o n t r a c t i o n  a n d  s c r e e n  s e c t i o n ,  t e s t  s e c t i o n ,  a n d  
h i g h - s p e e d  d i f f u s e r .  L i q u i d - n i t r o g e n  i n j e c t i o n  p o r t s  a n d  
g a s e o u s - n i t r o g e n  e x h a u s t  p o r t s  f o r  p r e s s u r e  c o n t r o l  a n d  
s i d e w a l l  b o u n d a r y  l a y e r  b l e e d  a r e  a l s o  v i s i b l e .  The 2 . 2  MW 
d r i v e  m o t o r  is l o c a t e d  j u s t  o f f  t h e  l o w e r  r i g h t - h a n d  c o r n e r  
o f  t h e  f i g u r e .  
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TWO-DIMENSIONAL SECTION OF THE 0.3-m TCT 

A t o p  v i e w  of t h e  L a n g l e y  0.3-m TCT t e s t  s e c t i o n  i s  -. s h o w n  . ... 

in f i g u r e  3. I n  t h i s  f i g u r e  t h e  t o p  o f  t h e  p l e n u m  c h a m b e r  a n d  
t h e  t o p  t u n n e l  s l o t t e d  w a l l  h a v e  b e e n  r e m o v e d .  V i s i b l e  i n  t h e  
p h o t o g r a p h  a r e  t h e  a i r f o i l  m o d e l ,  wake s u r v e y  p r o b e ,  a n g l e - o f -  
a t t a c k  p o s i t i o n  e n c o d e r ,  b o x e s  h o u s i n g  a s c h l i e r e n  s y s t e m ,  a n d  
t h e  b o t t o m  s l o t t e d  w a l l .  B o t h  t h e  t o p  a n d  b o t t o m  w a l l s  h a v e  
two s l o t s  w i t h  a n  o p e n - a r e a  ratio of 0.05. The t e s t  s e c t i o n  
h a s  r e m o v a b l e  s i d e w a l l  i n s e r t s  j u s t  u p s t r e a m  o f  t h e  m o d e l  
l o c a t i o n .  The  s o l i d  i n s e r t s  c a n  be r e m o v e d  a n d  p o r o u s  m e d i a  
i n s t a l l e d  f o r  r e m o v a l  of the t u n n e l  s i d e w a l l  b o u n d a r y  l a y e r .  
By u s e  o f  t h i s  m e c h a n i s m ,  t h e  wall e f f e c t s  d u e  t o  s i d e w a l l  
b o u n d a r y - l a y e r  c a n  be i n v e s t i g a t e d  and  r e d u c e d  o r  p o s s i b l y  
e l i m i n a t e d .  S e v e r a l  s t u d i e s  h a v e  b e e n  made u t i l i z i n g  t h e  
s i d e w a l l  b o u n d a r y  l a y e r  s y s t e m  i n  t h e  p a s s i v e  mode of 
o p e r a t i o n .  Some of  t h e  r e s u l t s  h a v e  b e e n  p u b l i s h e d  i n  
r e f e r e n c e  4 .  

364 
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T Y P l C A L  A I R F O I L  INSTALLATION I N  THE 0.3-m TZT 

F i g u r e  4 b e l o w  s h o w s  a c l o s e u p  v i e w  o f  t h e  B A C  1 
(Boeing) a i r f o i l  i n s t a l l e d  i n  t h e  t w o - d i m e n s i o n a l  t e s t  s e c t i o n  
o f  t h e  0.3-m TCT. The mode l s  u s e d  i n  t h e  A d v a n c e d  T e c h n o l o g y  
A i r f o i l  T e s t  P r o g r a m  h a v e  b e e n  f a b r i c a t e d  a n d  f i n i s h e d  t o  a 
h i g h  d e g r e e  of a c c u r a c y .  V e r y  s m a l l ,  e x a c t ,  s t a t i c  p r e s s u r e  
o r i f i c e s  w e r e  i n c o r p o r a t e d  i n  a l l  of t h e  a i r f o i l s .  A 1 1  of t h e  
m o d e l s  were t h o r o u g h l y  m e a s u r e d  and c h e c k e d  b e f o r e  a n d  a f t e r  
t e s t i n g  t o  p r e c l u d e  a n y  unknowns r e g a r d i n g  c h a n g e s  i n  a i r f o i l  
s h a p e  d u r i n g  t h e  c r y o g e n i c  p r e s s u r e  t e s t i n g .  A d e s c r i p t i o n  o f  
t h e  BAC 1. m o d e l  a n d  t h e  r e s u l t s  of  t h e  0.3-m TCT s t u d y  
u t i l i z i n g  t h i s  p a r t i c u l a r  a i r f o i l  a r e  c o n t a i n e d  in r e f e r e n c e  5. 

F i g u r e  4 
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AIRFOIL CAPABILITY IN THE 0.3-m TCT

The 0. 3-m TCT with the two-dlmenslonal test section

installed provides one of the foremost airfoil test

capabilities in existence. Figure 5 below presents a summary
of the two-dimensional 0.3-m TCT Macn number and Reynolds

number test capability and the flight Reynolds number airfoil

design conditions for several classes of aircraft. The general-

aviation design envelope, shown in the low Math number_ low

Reynolds number corner of the figure, has not changed signifi-

cantly over the past several decades. Typical helicopter

design conditions have also remained at about the same level

for a number of years. The transport-cargo aircraft design

trend, however_ has changed rapidly and dramatically. The

larger transport-cargo types, such as the 747 and C-5, tend to

establish the upper requirement for airfoil design considera-

tions. As can be seen from the figure below, the 0.3-m TCT

provides an adequate Mach number and Reynolds number capability

to simulate the design flight conditions for even the largest

of current aircraft.

REYNOLDS

NUMBER,

Rc

60 - x 106

OF POOR QL_,-I'_V TRANSPORT-CARGO

• _/ESIGN TREND

p+=6atm /71C-5
• _ /" 747_'

Tt, min > 0/_

,/ 707t C-141/

/ /
/ / _- TYPI CAL

/y \HELICOPTER

,_-GENERAL AVIATION o/-pt = 1.2atm-- Tt..... 1 j amb

.2 .4 .6 .8 1.0

MACH NUMBER

Figure 5
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ADVANCED TECHNOLOGY AIRFOIL TEST (ATAT) PROGRAM

FOR THE 0. 3-m TCT

Figure 6 below summarizes the scope and current status of

the 0.3-m TCT airfoil program. As shown in this figure, the

program includes a series of correlation airfoils as well as

advanced NASA, U.S. transport industry, and DFVLR airfoils.

Four airfoils are included in the correlation series, two

conventional NACA and two NASA supercrltical airfoils. Each of
the correlation airfoils was selected because of the avail-

ability of data from other well-known facilities, including

results from other high Reynolds tunnels such as the Lockheed

CFWT and the Canadian NAE 5-foot facilities. The advanced NASA

airfoil design was selected to provide an indication of the

current level of NASA supercritlcal technology. One of the

advanced NASA supercritical airfoils, NASA SC(3)0712A, has

been tested, but a post-test validation of airfoil shape

revealed that the model had been slightly bowed (in the

spanwise direction) and decambered during the cryogenic

testing. This airfoil has been redesigned and constructed and

a new model, NASA SC(3)0712B, is now available for testing.

The industry series of airfoils includes advanced-technology

airfoils designed and constructed by the Boeing, Lockheed, and

Douglas corporations. In the DFVLR portion of the program, the

CAST [0 model was seiected due to the unusually high degree of

sensitivity of the airfoil to changes in Reynolds number and

wall effects. The R-4 represents an advanced technology

supercritical airfoil.

TEST
CORRELATION STATUS

NACA _ZZ COMPLETE
NACA 65-213 COMPLETE
NASA SC(2)0510 SCHEDULED

NASA SC(2)0"/14 PENDING

NASA SC_3)0"/IZA COMPLETE

NASA SC(3)O?IZB SCHEDULED

INDUSTRY PROGRAM

BAC | COMPLETE
BAC Z _ COMPLEI_
DAC PENDING
LAC ] COMPLETE
LAC 2 COMPLETE
LAC 3 COMPLETE

DFVLR PROGRAM

CAST |0 COMPLETE
CAST 10, cR COMPLETE
R-4 COMPLETE

Figure 6
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COOPERATIVE CAST I0 AIRFOIL STUDIES

In addition to the basic ATAT program CAST I0 tests in the

Langley 0.3-m TCT, this interesting airfoil has been tested in

several European tunnels as well as in the Lockheed CFWT

facility. Figure 7 below summarizes some of the major tunnel,

model, and test parameters associated with the DFVLR TKG and

TWB tunnel tests, the Lockheed CFWT study, and the Langley

0.3-m TCT tests. The primary tunnel-to-model relationships are

shown as h/c (ratio of test section height to model chord).

The Langley 0.3-m TCT tests will be made with and without boundary

layer control. In addition, the overall CAST I0 program includes

plans for additional tests in the French ONERA T-2 self-

streamlining wall tunnel, the DFVLR TWB tunnel and the Langley

self-streamllning wall 0.3-m TCT. The joint NASA/DFVLR/ONERA

CAST I0 studies will provide a classic set of experimental

results for the overall assessment of wind tunnel wall effects

and the evaluation of current corrective techniques.

Tunnel

11<G

TWB

CF'_T

0.3-m
TCT 1

0.3-m

TCT s

e]

Tunnel Characteristics

Model Type Paros.
Chord. |n h/c b/o Wall • Z

7.87 5 5.0 Perf. 6

7.87 3 1.7. Slotted 2.4

7.01 4 2.g Perf. 4

6.0 4 1.33 Slotted 5

3.0 B 2.66 Slotted 5

M

0.50,-0.62

0.6,0.7.0.76 !

0.60-0.82

0.60--0.80

Teat Condltlons

a ° Rcx 10 _

-2 ,-10 1.3 ",-4

3 -,-14

4m-31

4 "--45

4_-20

TronsiUon

Fixed & Free

!
with/without BLC

*, ONERA streamline wall tun.el tests and additional DFVLR te_s
+ NASA follow -on tests

Figure 7
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EFFECTS OF REYNOLDS NUMBER ON NORMAL FORCE COEFFICIENT

The effects of Reynolds number on several aerodynamic

parameters are presented in figures 8 through 10. Data are

shown at lifting conditions for three airfoils: the NACA 0012,

the NASA SC(3)0712A, and the BAC I airfoils. Data for the NACA

0012 are shown for a normal force coefficient of 0.4, whereas,

the remaining airfoils are for 0.6 since the high normal force

is above drag rise for this airfoil. The BAC 1 airfoil Is

about I0 percent thick and would be expected to have different

characteristics than the thick airfoils shown.

Plots of normal force coefficient as a function of angle of

attack are presented in figure 8 for a Mach number of 0.76.

There are no appreciable effects of Reynolds number on the lift
curve slope noted for any of the airfoils at this Mach

number. Howeverj the two advanced airfoils do exhibit an

increase in normal force coefficient as the Reynolds number is

increased from the minimu_ value to 30 x 106 . A further
increase to about 40 x I0 v has only little effect.

Cn

NACA0012 NASA SC(3}0712A

1.0

0.5

R x I0-6
C

o 6
w

0 '

A
-.5 i J_ I

-4 0 4 8 -4 0 4

{I (I

BAC I (tlc= I0_/o)

R × 10.6
C

o 7.7

I t
8-_ 0 4

O

Figure 8
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EFFECTS OF REYNOLDS NUMBER ON CENTER OF PRESSURE

The effects of Reynolds number on the variation of

longitudinal location of center of pressure with Mach number is

shown In figure 9 for the same three airfoil shapes as the

previous figure. The NACA 0012 airfoil shows essentially no

effect from Reynolds number, whereas the two advanced airfoil

shapes indicate a rearward movement wlth increasing Reynolds

number. The effect of increasing R c from 30 to about 40 x 106

is very slight, however. Other than the slight rearward shift

(about 4 percent chord at the higher Mach number), no effects

of R c are observed for these test conditions.

.2

.6

NACA 0012 NASA SC(3)_I2A

c =0.4 c =0.6
n n

R xl0 -6
c

o 6
15

O3O

I I

.5 .6 .7
M

R xl0 -6
c

o 6
o30
O40

.8 .5 .6 .7 .8 .5
M

BAC 1 (tic = 109'o)

C =0.6
n

R x 10.6
c

o 7.7

0 45

I I I
.6 .7 .8

M

Figure 9
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EFFECTS OF REYNOLDS NUMBER ON DRAG COEFFICIENT

The variation of drag coefficient with Mach number and

Reynolds number for the three airfoil shapes is shown in

figure I0. At the lower Mach number, the drag is constant with

Mach number for the NACA O012, whereas the SC(3)0712A shows a

contlnual gradual rise. This rise (or drag cceep) is also

evident for the BAC 1 at the lower Reynolds number, but tends

to decrease with increasing Reynolds number. There is very

little effect of Reynolds number on the drag rise Math number

for the two advanced-technology airfoils.

cd

.020F

.016

012

008

.004

NACA 0012 NASA SC(3)0/12A BAC I (t/c= 10%)

= 0.6 c = 0.6cn = 0.4 cn n

_ Rc x 10-6

I I

.5 .6 .7

M

I x 10-6
Rc

o 6

o 30

- O 40

! I I I

.8 .5 .6 .7

M

B

1

I i
.8.5

R x I0-6
C

o 7.7

n30

| I I
.6 .? .8

AA

Figure i0
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COMPARISON OF EXPERIMENTAL RESULTS WITH THEORY:

NASA SC(3)0712A STUDY

In the upper left-hand portion of figure II, a comparison

of experimental upper and lower surface pressure coefficient

results is shown for the NASA SC(3)0712A airfoil. The shock

position for the high Reynolds number case is about 6 percent

(of the airfoil chord) more rearward than the low Reynolds

number shock position. This comparison of experimental results

provides an indication of the sensitivity of the pressure

distribution of this class of airfoil to moderate changes in

Reynolds number. Figure II also includes a comparison of the

higher Reynolds number M = 0.76 experimental results with an

analytical prediction by a method of Bauer, .Garabedian, Korn

and Jameson (ref. 6). The degree of agreement as shown in the

lower left part of figure 11 is surprisingly good and may be

fortuitous considering the fact that the experimental results

have not been corrected for the effects of the tunnel walls.

If the method of Sewall (ref. 7) were considered for this

same condition, there would be an indication that a tunnel

sidewall boundary layer correction should be applied to the

Mach number. When tunnel sidewall corrections (ref. 7)

were applied to the experimental results and the GRUMFOIL theory

(ref. g) was used to predict the pressure characteristics at the

corrected Mach number of 0.745, the agreement as shown in the

lower right-hand portion of figure II between experiment and

theory is quite good.

Cp 0

EXPERIMENTALRESULTS

M R x 166 cno 0.763 6 .88

o 0.76l 25 .93

L I I I I

Cp O

UNCORRECTEDRESULTS

M = 0.761, Rc = 2.5x 106. cn = 0.93

. TESTRESULTS

BGKJTHEORY

I I I [ I

0 .2 .4 .6 .8 1.0

x/c

Cp O

CORRECTED RESULTS

M=0.745. R =25x106 '
C

GRUMFOIL THEORY + SEWALL
I #

0 .2 .4 .6 .8 1.0

xlc

Figure 11
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Introduction

A series of airfoilshas been tested in the Langley 0.3-bleter

Transonic Cryogenic Tunnel (TCT) at Reynolds numbers from 2 to

50 million.The O.3-m TCT is equipped with Barnwell slots (ref I)

designed to minimize blockage due to the tunnel floor and ceiling.

This design suggests that sidewall corrections for blockage may

be needed, and that o liftingairfoilproduces o change in angle

of attack (ie.A _ ~ -1.721 Cl, ref. 1). Sidewall correction methods

have been developed for subsonic (ref. 2) and subsonic-transonic

(ref. 3) flow. This paper presents comparisons of theory with ex-

perimental date obtained in the O.3-rn TCT for two airfoils,the

BrTtish NPL 9510 and the German R-4. The NPL 9510 was tested

as port of the NASA/United Kingdom Joint Aeronautical Program and

R-4 was tested as part of the DFVLR/NASA Advanced AirfoilRe-

search Program. For the NPL 9510 airfoil,only those test points

that one would anticipate being difficultto predict theore'cicolly

ore presented.
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Data Comparison with V(3K Theory

NPL 9510 Airfoil

Dr. Robin Lock of RAEJFornborough, the United Kingdom technical
contact for the NPL 9510 airfoil tests, compared the 0.3-m Tran-
sonic Cryogenic Tunnel data with VCK theory (ref. 4). This was
accomplished with successful agreement for many data points by
reducing Mach number until the pressure peak is matched and
correcting the lift coefficient by the dynamic pressure ratio, ie:

q mea

= c I meac I car q car

Data points such as the one presented here were not matched. The

suction peak and lower surface pressures are accurately predicted.
On the other hand, the upper surface pressures, shock strength and
location were not well predicted. This approach requires o decrease
in Mach number of 0.025 and a lift coefficient increase of 3.7
percent.

0.3

0

0
I

1.0

F_gure 1.
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Sidewall Corrected Data Comparison with CRUMFOIL Theory

NPL g510 Airfoil

The data from the previous figure has been corrected by the
Sewall sidewall method and compared to CRUMFOIL (ref. 5). The

experimental Mach number, lift coefficient, and angle of attack
were .B17, .436, and 1.5 degrees, respectively. Sewall's sidewall
method provides corrected Mach number and lift coefficient of
.802 and .4¢1. These values were input to GRUMFOIL and the pre-

sented pressure distribution and an angle of attack of .533 de-
grees were calculated. Note that the measured pressures (symbols)
have also been corrected by the SewolI method to account for the
0.015 change in Mach number. The lift coefficient is increased by
1.1 percent and the upper surface pressure distribution forward
of the shock location is now better matched, however, the lower

surface is not as good.

-I.6_--

.°PI --

C
P

o_ _

O_,IG;NAL PAGF- _

OF POOR QUALITY

Figure 2.
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Uncorrected Data Comparison with CRUMFOIL Theory

NPL 9510 Airfoil

This is a data point with a pressure distribution similar to
the one previously presented. This data, however, has not been

corrected by any method and is compared to GRUMFOIL directly.
The theoretical and experimental values of Mach number and lift

coefficient have the same values of .792 and .551. The experi-

mental angle of attack is 2.2 degrees and GRUMFOIL computes
angle of attack as .843 degrees. This procedure results in an
over-prediction of the downstream location of the shock wave and

a poorly matched pressure distribution.

-1.6

P

0

Figure 3.
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Sidewall Corrected Data Comparison with GRUMFOIL Theory

NPL 9510 Airfoil

The data from the previous figure has been corrected by Sewoll's
sidewall method and compared to (_RUMFOIL. The Moch number and
lift coefficient ore corrected to .777 and .558 and GRUMFOIL now

calculates angle of attack as 1.051 degrees. The agreement in the
pressure distribution is greatly improved, with o particularly note-

worthy forward location for the predicted shock location.

-I -6 _"

!

-1.2

-.e ----

i

I
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Figure 4.
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Uncorrected Data Comparison with BGKJ Theory

NPL 9510 Airfoil

This is a comparison of on uncorrected pressure distribution
with a BGKJ Cref. 6_ theoretical prediction. The Math number and
lift coefficient ore .736 and .548 respectively, w|th an expert-
mental angle of attack of 2.47 degrees. The BGKJ prediction gives
an angle of attack of 1.72 degrees and the pressure distribution
matched rather well.

-I .5

-!,0 _

)

0
P

•0 r"

.s L

i.o

Figure 5.
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Uncorrected Data Comparison with GIRUMFOIL Theory

NPL 9510 Airfoil

The good agreement of the BGKJ predicted pressure distribution
with the experimental data was not anticipated. The same uncor-
rected data was then compared to GRUMFOIL with equally as good
results as shown below. ORUMFOIL gives a better suction peak
prediction and an angle of attack of 1.384 degrees.

-I .6

-! .2

Cp

1.2__

f_

Figure 6.
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Sidewall Corrected Data Comparison with ORUMFOIL Theory

NPL 9510 Airfoil

The results of the previous two figures suggest that the pres-
sure distribution does not change significantly with small changes
in Moch number and lift coefficient for this data point. The same
data was. thus, corrected by Sewoll's method and compared to
GRUMFOIL. Sewoll's method gives Moch number as .721, lift coeffi-
cient as .556, and angle of attack as 1.521 degrees. The predic-
tion still agrees with the experimental pressure distribution although
the Mach number decreased by .015 and lift increased by 1.5
percent.

-1 .£

-t ,2
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Figure 7.
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DFVLR R-4 Airfoil Drag Results

At this point the DF'VLR R-4 airfoilis introduced by way of a

plot of its section drag coefficientversus Mach number for a

constant liftcoefficient of .65. The circular symbol is cross-

plotted data and the square symbol represents this cross-plotted

data corrected by Sewall's sidewall method. Drag rise Mach number

dc d

as determined by the criterion - .I is very near the design
dM

Mach number of .73.

.o3

.02

.0]

c Z = .65
f

R c = 30 Million

2D Design conditions:

Rc = 50 million

Corrected by Sewall's method M c_ .73

Cz .6 to .7

___L___J_ J _ I _ I . I I I L___l_J t f I

.5 .6 M_ .7 .8

i i I

Figure 8.
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Pressure Distribution Comparison

R-4 Airfoil

The next six figures show pressure distributions, for data
points from o drag polar near drag rise Mach number for the
R-4 which hove been corrected by Sewall's method and compared
to GRUMFOIL. The experimental btach number, lift coefficient, and
angle of attack ore .750, .278, and -2.0 degrees respectively.
The sidewalY corrected Moch number and lift coefficient are .735

and .281, and GRUMFOIL determines angle as -2.363 degrees.

(o) _T - -2.0 degrees

-t ._

-.B

--.I

Cp

o

.B

t.2

Figure 9.

385



Pressure Dis'tribution Comparison
R--4 Airfoil

The experimental Moch number, liftcoefficient,and angle of

attack are .750, .436, and -1.0 degrees. These values are correct-
ed to .735. and .442 for Moch number and lift coefficient and

GRUMFOIL gives angle of attack as -1.57 degrees. The pressure
distribution is still very well predicted.

-I .[_

-! .2 --

-°8 --

Cp
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°U L --

1.2__

(b) (zT - -1.0 degrees

Figure 9. - Continued.
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Pressure Distribution Comparison
R-4 Airfoil

Here the experimental Moch number, lift coefficient, and
ongle of ottock ore .748, .596, ond 0.0 degrees. The corrected
Moch number ond lift coefficient ore .734, ond .604. With these

volues, GRUMFOIL gives an ongle of ottock of -.818 degrees ond
predicts the pressure distribution except for o smoll wove on the
oirfoil upper surfoce.

-t .6 m

-1.2 m

Cp

O--

t.2_

(c) or,T = 0.0 degrees

OR_&',_P,',qLp,:!.;._:_
OF POOR QL.',_.ITIt

Figure 9. - Continued.
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Pressure Distribution Comparison
R-4 AirfoTI

Experimental Mach number, lift coefficient and angle of attack
ore .750, .685, and 0.5 degrees, respectively. The Sewall method

gives .735 for Moch number and .694 for lift coefficient. GRUM-
FOIL produces on angle of attack of -.45 degrees and predicts the
pressure distribution except for o wove on the upper surface of
the airfoil.

-t .6

- =..2 --

-°8 --

Cp

0--

(d) a T = 0.5 degrees

.q_

!
!
I

Figure 9. -- Continued.
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Pressure Distribution Comparison
R-4 Airfoil

Experimental values of .747, .833 and 1.5 are corrected and
computed to a Mach number, lift coefficient, and angle of attack
of .732, .845, and .186 degrees. GRUMFOIL is still missing the
wave on the upper surface.

-1.6

-1.2

-.8

-.4

Cp

0

.8

t.2

(e) ¢xT = 1.5 degrees

0

• O0 °

Figure 9. - Continued.
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Pressure Distribution Comporison
R-4 Airfoil

Experimentol Mach number, lift coefficient, ond ongle of
ottock of .749, .913, ond 2.5 degrees ore corrected to .734,
.926, and .539 degrees. Here the whole upper surfoce distribution

is slightlymissed.

-L .6

(f) CT = 2.5 degrees

Figure 9. - Concluded.
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Concluding Remorks

Sidewoll woll corrections ore required for doto token in the
0.3--m TCT ot most test conditions. The present results were
corrected for blockoge effects using the Bornwell-Sewoll sidewoll-
only correction theory (refs. 2 & 3). The odequocy of the correc-
tion wos ossessed with GRUMFOIL free oir colculotions. These

findings indicote the need for further investigotion of correction
methods, which include on occounting of the response of the
sidewoll boundory Ioyer to the model pressure field, such os the
one proposed in reference 7.
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DATA FLOW FOR AUTOMATED, TRANSONIC,

FOUR-WALL CORRECTIONS

In order to validate a wall-interference assessment/correction (WIAC) method

by applying it to many sets of test data, an automated procedure is required.

The procedure devised and discussed here is for airfoil test data from the

0.3-m Transonic Cryogenic Tunnel (TCT). This procedure consists of three

computer programs: (I) a Data Preprocessor code to preview the data from 0.3-m

TCT data tapes and transform it to an input file for the correction code; (2)

TWINTAN (ref. I), a transonic, small-disturbance potential flow code to obtain

a four-wall interference correction to the tunnel Maeh number and

angle of attack: and (3) GRUMFOIL (ref. 2), a 2-D, full-potentlal transonic

analysis code with viscous interaction to independently cheek the corrections

in free air. The data flow through these codes and output are indicated in

figure I. Both the sequential and the unified four-wall correction methods

discussed in ref. I are included here.

DATA I
PREPROCESSOR I

IANALYSISI
/

Figure i
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SAMPLE PLOTS OF MEASURED PRESSURE COEFFICIENTS

FROM DATA PREPROCESSOR PROGRAM

The Preprocessor Program allows the user to preview measured pressures on

both the airfoil surface and the top and bottom tunnel walls. Any

unreasonable-looking data points can be edited or deleted before corrections

are attempted. Three representative plots from the test of a 12-percent-thlck

supercritlcal airfoil, the NASA SC(3)0712A, at various tunnel

angles of attack, aT , are shown in figure 2. The nominal tunnel reference

Mach number HT is 0.76 while the Reynolds number based on chord, Re c, is
about six million. All of these pressures are used as boundary conditions In

the TWINTAN correction code. An additional boundary condition representing

the upstream flow direction near the walls is also required but such values

were not measured during the test. Note that for all three cases

(figs. 2a,b,c) the most upstream values of Cp on the walls do not coincide,

indicating a possible non-parallel upstream flow. For thls tunnel, this Is

the region in which the tapered slots are opening and ahead of which pressure

measurements were not taken.

f
AIRFOIL DISTRIBUTION WALL DISTRIBUTIONS

Figure 2(a)
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AIRFOIL DISTRIBUTION WALL DISTRI BUTIONS

Figure 2(b)

AIRFOIL DISTRIBUTION WALL DISTRI BUTIONS

Figure 2(c')
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SAMPLE PLOTS FROM TWINT_ FOUR-WALL CORRECTION PROGRAM

The TWINTAN correction program provides the user with three types of

plotted output. Figure 3a compares the hard airfoil geometry and calculated

equlvalent-body shape; figure 3b shows the wall-lnduced disturbance velocities

along the tunnel centerllne; and figure 3c compares measured airfoil

pressure coefficients (renormalized by the corrected Math number) with

the free-alr solution for the equivalent body at corrected M(= MT + AM) and

=(= _T + A_). These figures, as well as several to follow, are for the

case where M T _ 0.76 and _T ~ -30. The comparison of airfoil shapes in

figure 3a indicates a slight mlsallgnment which is most noticeable toward the

trailing edge. There one would expect the effective invlscld shape to show a

Boundary layer displacement thickness; however, it is not apparent on the

airfoil upper surface.

TWINTAN AIRFOIL SHAPES

w HARD GEOMETRY

+,x EQUIVALENT BODY

Figure 3(a)
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WALL-INDUCED VELOCITIES

.+. AIRFOIL
I ' 1"4"4"

Figure 3(b)

AIRFOIL PRESSURES

,_._. '_, '_,_

.J
I

* RENORMALIZEDDATA

+,x I"WINI"ANFREE-AIR WITH
A M AND Z_a CORRECTIONS

Figure 3(e)
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SAMPLE PLOTS FROM ORUMFOIL FREE-AIR ANALYSIS PROGRAM

The GRUMFOIL free-air analysis program provides the user with a number of

plots, three of which are of interest here. Figure 4a compares measured

pressure data (renormallzed by the corrected Math number) with the free-alr

solution for the hard airfoil geometry at the corrected Math number, llft

coefficient and tunnel Reynolds number. Several GRUMFOIL curves are shown on

figure 4a: the solid line (easily seen between symbols near the leading edge

and through the shock) gives the airfoil surface and mean wake pressures

aocountlng for the strong viscous interaction at the trailing edge. The

symbols (+.x) denote inviseld (outer-edge) pressures above and below the

airfoil wake viscous regions, respectively. At the traillng edge, the solid

line results satisfy the Kutta condition, while the mismatch seen for the

symbol results (+,x) indicates the normal pressure gradient across the near

wake.

Figures 4b and 4e show detail comparisons of the equivalent invlscid body

calculated in the TWINTAN correction code with the effective Invlseid shape as

obtained from the GRUMFOIL free-air solution boundary layer displacement

thicknesses. The increment in effective thickness over that of the hard

airfoil shape is shown in flgure 4b while the increment in camber is shown in

figure 4c. Again this is for the sample case where MT--O.76 and a T -- -3. In

this comparison of magnified camber increments, the mlsallgnment of airfoil

shapes is very apparent and is deemed to be caused by the assumed upstrea_

flow direction. It should be pointed out that in TWINTAN, matehlng the

measured drag essentially fixes the equlvalent-body thickness increment level

near the airfoil trailing edge. However, no such constraint affects the local

level of camber increment and it has been shifted slightly in figure 4c so

that the slope can be compared easily.

AIRFOIL PRESSURES

_ \ _._.

[3 RENORNLALIZEDDATA
•,-.x GRUMFOIL. FREE-AIRAT

CORRECTEDM AND C[

Figure 4(a)
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THI CKNESS INCREMENTS
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Figure 4(b)

NEGATIVE OF CAMBER INCREMENTS
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MODIFIED DATA FLOW FOR MULTIPLE WALL CORRECTIONS

This modified procedure allows the user to look at several types of

corrections independently and make multiple corrections. The first pass

through the correction procedure can be used to assess the upstream flow

angularity if it has not been measured. This upstream boundary condition can

then be adjusted and used as input for a second pass through the TWINTAN

correction program. In addition, the modified procedure allows one to make

input files for the free-air GRUMFOIL analysis program at several points in

the correction procedure so that various types of corrections can be made and

compared. The data flow and feedback are indicated in figure 5. The TWINTAN
correction code has also been modified to automatically find the _M and _a

corrections subject to a best least-squares pressure matching constraint over

the airfoil surface (as proposed in ref. 3) rather than the single match point

condition originally used in TWINTAN (ref. 4).

lp DATA I UPSTREAM FLOWREP ROCESSOR D! RECT ION - ]
• I

I,!
I

MODIFIED SIDEWALL I
J

TW INTAN
I

4 I
I

I
2-WALL ._t

;RUMFOIL

UNCO RRECTED

Figure 5
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AIRFOIL PRESSURE COEFFICIENT COMPARISONS

FOR DIFFERENT WALL CORRECTIONS

OF POOR QUALIT_

Free-air results from GRUMFOIL for conditions predicted by several types of

wall corrections (as well as uncorrected) are compared with the renormallzed

tunnel data in figure 6, For this sample case all of the pressure

distributions look reasonable. The shock wave on the airfoil lower surface,

as predicted by GRUMFOIL, is noticeably downstream for the uncorrected

conditions, not present at all for the sidewall-only correction conditions,

and reasonably located (with respect to that in the experiment) for the 4-wall

correction conditions. These 4-wall results were from the unified procedure,

with and without upstream flow direction feedback.

It was suggested in ref. 3 that the pressure distribution calculated in

free-air by the assessment/correction procedure be considered as better

corrected for higher order interference effects than is the renormalized

tunnel data. Ref. I reinforced this suggestion by correlating the pressure

distribution differences with the nonuniformltles in both components of

wall-lnduced velocity. For the present sample case, the pressure comparison

shown in figure 3c implies that the higher-order correction would improve the

agreement with the GRUMFOIL prediction on the lower part of figure 6.

Adoption of such higher order corrections to the airfoil pressure distribution

should be considered for future versions of the WIAC procedure.

o: RENORMALIZED DATA; +. x: GRUMFOIL AT CORRECTEDCONDITIONS

,<, ; \-,

$ "_c "-.

I! "-,
• 'ZI

UNCORRECTED : .F

t

-r _.

4-WALL ""-""'

CORRECTION,

Vupstream = O

8 _v--- •

t "SIDEWALL ",.: 2

CORRECTION "'"-'J:

i /'_="i,

'_,p •

4-WALL "_Z"

I CORRECTION,Vupstream _ 0

Figure 6
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UPSTREAM FLOW DIRECTION EFFECTS ON EQUIVALENT BODY

The upstream flow direction near the walls is not measured in the 0.3-m TCT

airfoil tests. Here it Is assumed that it can be linearly decomposed into

v^v _,the angularity or lift component, and Vodd, the divergence or thickness
c_m_nent. This latter component is an indication of flow through the slots

into the plenum since the average of the upper- and lower-wall pressures,

_'well, at the first wall pressure tap location is higher than the plenum
pressure. At the bottom of figure 7a , -Cp along the walls is plotted and

values for CPplenu m end Cp= are also sho_n. To lowest order, rod d is _all"

Applying thls approximate flow divergence at the upstream boundary makes the

effective body thinner, as seen at the top of figure 7a. However, this seems

to be in the wrong direction for this sample case.

The angularity component is evaluated from the mismatch in the camber

increment comparison as indicated on figure ?b. Thls assessment is done over

the forward part of the airfoil where differential upper-to-lower surface

boundary layer effects are deemed to be negligible. The GRUMFOIL results for

(8_-_) are plotted as (+) on figure 7b. The curve to the right shows the
effect of applying the angularity from the first pass as an upstream boundary

condition in the second pass. As intended, the mismatch in the slope of the

camber increments was reduced, perhaps even overcorrected, ln the second pass.

The airfoil shapes plotted by TWINTAN and shown in figure 7c also appear

to be better aligned.

THICKNESS INCREMENTS

UPSTREAM B.C.,veal d = 0 UPSTREAM B.C., Vodd ='_/-/_pp, wall

-Cp_, plenums..

-Cp, wall __

WALL PRESSURES

Figure 7(a)
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NEGATIVE OF CAMBER INCREMENTS OF POOR (_'.:AL|,'i_'
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Figure 7(0)
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SLOPE OF EQUIVALENT-BODY CAMBER INCREMENT CURVE

The SLOPE values of TWINTAN first-pass equivalent-body camber increment

curves were deduced for several different lift coefficient levels at each of

three tunnel Maeh numbers. These SLOPE values are shown in figure 8 to be

linearly dependent upon the lift coefficient and only mildly dependent upon the

Mach number. The sample ease previously shown is labeled as _T ~ -3u" These

SLOPE values are used as upstream boundary conditions in the second-pass

TWINTAN correction.

SLOPE =

d(-Ac)

dx

M T
• _ --3 0

oD,_ aT 0 0.30e ° o 0.60

D 0.76
Q

0
{)

13

oE b
0

0
Q

CORRECTEDLIFT COEFFICIENT

Figure 8
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TIPSTREAMFLOWDIRECTIONEFFECTONANGlE-OF-ATTACKCORRECTION

The angle-of-attack corrections for the two passes through the _#INTAN
correction code are compared in f[Rure q. Results for the first pass,
Vupstream= O, are g_venby the solid symbols. For the second pass, Vupstream
is derived from SLOPEas shownin figures 7 and 8 and the results are given by

the open symbols in figure 9. It is seen that in some cases the angle-of-

attack correction even changes sign. o It should he pointed out that this

cambered alrfoil must be near s T = -4 for zero llft.

_e

OF PC ._""

ANGLE-

OF-

ATTACK

CORRECTI ON

Vupstream - MT
=0 @0

(:IT = -3o 0 0 0.30

• o 0.60
• o 0.76

m ! i | l I "_ • I i

CORRECTEDLIFT COEFFICIENT

Figure 9
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WALL INTERFERENCE CORRECTION OF LIFT CURVES

Initial results for wall-interference corrections to lift curves (cQ vs. _ )
for 0.3-m TiT data by several procedures included in the modified, automated

procedure are shown in figure 10. Figure 10a is the key while figures 10b and

10o give curves for MT--0.60 and 0.76 respectively. The experimental data is

shown by the open squares (D) with a solid llne through them. The

Barnwell-Sewall (ref. 5) type sidewall-only boundary layer correction does not

significantly affect this curve The data (O) is shifted slightly upward

indicating the magnitude of the renormalization due to the Math number correc-

tion. The lift curve appears to be rotated counterclockwise by only a small

amount. Corrections calculated from the first pass through the TWINTAN 4-wall

code (+) increase the lift-curve slope but not quite to that of the GRUMFOIL

free-air results (_,_). Accounting for the upstream flow angularity in the

second pass through the 4-wall correction code (x) increases this slope above

what GRUMFOIL predicts. It should be noted that the GRUMFOIL free-air

analysis is run with the corrected M and c_ as input and returns _ as an

answer. Sinee none of the Math number corrections here are large, the

GRUMFOIL results are essentially along one curve, the dashed line. These

nonlinear corrections are compared with two classical, linear, angle-of-attack

corrections of the experimental data. The Davis-Moore correction is shown as

the open diamonds (_) while the solid diamonds (_) are for the

emplrically-correlated Davis-Moore (ref. 6). It is encouraging that the

C-wail corrections lie near both the GRUMFOIL free-air results and the

empirically correlated linear corrections throughout this moderate lift range.

NASA SC(3)0112AAIRFOIL, 0.3m TCT, Re ~ 6 x 106
C

F1 UNCORRECTEDTUNNEL DATA

0 SIDEWALL, BARNWELL-SEWALL CORRECTION

TWlNTAN, 4-WALL, UNIFIED CORRECTIONS:

+ Vupstream = 0

x Vupstream:/0

GRUMFOIL FREE-AIR ANALYSES:

/x AT UNCORRECTEDM AND c_.
AT CORRECTEDM AND c__

CLASS ICAL CORRECTIONS:
0 DAVIS-MOO RE

• EMPIRICALLY CORRELATED DAVIS-MOORE

Figure lO(a)
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MT ~ 0.76 0

LIFT
COEFFIClENT

ANGLE-OF-A'FrACK

Figure 10 (e)
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COMMENTS

Based upon our limited, initial observations of wall interference

corrections obtained for one airfoil test, there is a need for assessing the

upstream flow direction. If there Is no direct measurement then a two-pass

correction procedure similar to the one described here is required. Questions

have arisen pertaining to the correct interpretation of the pressure

coefficients measured on the slats of a slotted tunnel wall, the

interpretation of just what the calculated equivalent body encompasses or

should include, and what can or should be considered as quantitative criteria

for data correctability. Further studies using this modified procedure will

address these questions. Hopefully, a meaningful WIAC procedure can be

validated for the airfoil tests in the 0.3-m TiT. (See fig. Ii.)

INITIAL LOOK AT SO[IEDATA FROM ONE TEST ONLY

NEED FOR UPSTREAM FLOW DIRECTION ASSESSMENT

OPEN QUESTIONS TO BE ADDRESSED IN VALIDATION WITH MORE DATA:

- INTERPRETATION OF SLAT Cp FOR SLOTTED WALL

- INTERPRETATION OF EQUIVALENT BODY RESULTS

- QUANTITATIVE MEASURE OF CORRECTABILITY

Figure ii
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SESSION VI

OP_ FORUM - ASSESSMENT OF ISSUES

Moderator: P0 Jo Bobbitt, NASA Langley

Editors' Note:

The open-forum session was originally intended to be a one-half-day group

discussion session to identify WIAC issues, assess progress to date and suggest

future directions. However, as the final program evolved, it was felt that all

who had responded to our abstract solicitation should be given an opportunity to

participate in this first wall interference assessment�correction workshop, if

possible. In addition, since a number of attendees had expressed an interest in

seeing the NTF, a tour was included in the program. Furthermore, the workshop

attendance was also larger than anticipated. As a consequence, this session was

shortened and there was not sufficient time to break up into smaller informal

discussion groups prior to an open forum. The end result was a short, directed

open-forum discussion with the entire group in which a series of problem areas

and questions were posed and comments from the audience solicited. Unfortunately

the comments of several people were not recorded. Thus, the following w_itten

version of the open forum discussion is limited to the questions raised by the

moderator for discussion and to several items suggested for near-term future

emphasis. The questions posed have been regrouped and, consequently, are not in

the order presented and discussed at the workshop. The discussion generally

affirmed that most of these questions are indeed issues and, in many cases, are

being worked on,

Precedingpageblank
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INTRODUCTION

I thought the workshop was excellent, and the reason, aside from the

material presented, is that many of the key players in the world of wind tunnel

wall interference are here and they represent most of the organizations which one

would expect to be interested in the subject. It is a bit surprising that so

many came because wind tunnel wall interference is not the number one priority on

most laboratories' list of "things to do;" there is, evidently, a continuous but

low level effort. Certainly since May 1974, when NASA Langley had a much smaller

workshop prior to key NTF decisions, the progress has been steady if not

remarkable. We have heard papers on both adaptive and fixed walls of various

kinds; some of these adaptive walls (there were three examples in the workshop)

are now trying to "work" the 3-D problem. Linear and nonlinear theories have

been displayed here in various stages of completeness. Some of the research is

Just now nearing a point where good results can be obtained and compared to

theory and to other cases. Several tunnels have recently added or are in the

process of implementing flow field or boundary instrumentation in order to

acquire data suitable for validating and implementing correction schemes. Much

of the classical data used for comparisons are of little use now because most

current methodology requires a great deal more than just wake rake and surface

pressure data.

There are a number of formal and informal cooperative arrangements that

appear to be very instrumental in providing communication between people in this

discipline, in accelerating the formulation of _)od data bases, and in getting

experimentalists and theoreticians to understand each other. Nevertheless, there

are a few problems in communication, both in terms of distributing the latest

data or theories and in relating to the experiences gained by others. In the

past, each group or laboratory has tended to concentrate on a particular airfoil

in a particular tunnel with a particular methodology, and this individualistic

approach has impeded this transfer of information. Clearly, cooperative efforts

should include theory and experiment; one presenter suggested having a runoff

with experimental competition or comparison, in addition to theory validations.

Test models that can serve now as some "absolute standard" were mentioned and are

of interest. In particular we need to have these 3-D cases established where all

of these flow field data needed by assessment and correction methods have been

taken. The AEDC interference model might be one candidate; Mike Goodyer's

interference model was also tested in the NASA Langley 7- by 10-Foot High-Speed

Tunnel; Pathfinder T and Pathfinder 1/2 (NTF calibration models) might be

additional candidates that could be used to assess these methods and, in fact,

could also be tested in di[ferent tunnels.

TUNNEL WALL INTERFERENCE QUESTIONS

I have several viewgraphs which list some particular issues, concerns or

questions that came to me before, during and after the presentations. Many of

these have been raised in the summary papers. There are quite a few of them and

they cover the waterfront, so there is little possibility that your interests

have been left out. In addition, if there are things which have not been

discussed that are relevant to the material we saw or, more importantly, to what

we should be doing next, please bring this up in the discussion.

416



Measured Data Aspects

One of the things that a lot of people talked about here was the measurement

in the flow field on a reference surface, or the tunnel wall, of various kinds of

data; the first viewgraph poses questions related to measured data aspects. It

is not clear to me how useful wall pressures are in slotted and porous tunnels.

Can we measure P along with U or should we obtain U and W? Should we use a

single quantity on two planes or two quantities on one plane? The degree of

variability we saw in the presentations makes it all rather confusing. If anyone

has light to shed on the "best" combination, please let us know! Also, in many

cases, particularly in 3-D, it would seem difficult to measure enough data in a

wind tunnel to get the answer that you need for a complicated geometry.

Do we need more experimental research to characterize boundary conditions?

We saw several papers that related to this topic. The question then has to be

asked: Do we get the data to try to provide an effective homogeneous boundary

condition or do we do it to model the finite, variable, boundary condition?

Where are we there?

Do we need to know more about what the free-stream conditions are? We make

a measurement of the free-stream condition and use it when we provide a

correction. It is the number we add to or subtract from. However, the fact is

that a lot of times, because of the model size blockage or the length of the test

section or whatever, th/s number many not be what we think it is. It appears

that we have to do more work to understand what free-stream condition means both

in theory and in experiment.

This gets to the question of whether we have any useful wall interference

data and, if so, whether we have enough. The answer to these questions may

be a judgemental thing but I think that a lot of the data we previously thought

of as being archival or certified would now be judged as unfit for use in the

newer methods for evaluating interference. I do not know whether that is a

general view, but if it is, we must collectively decide how many kinds of

airfoils or thicknesses or configurations we should strive for as well as what

types of data and resolution are required. In our 0.3-m TCT, we carried out a

cooperative airfoil program with industry mainly to look at high Reynolds number

effects, but in the process some wall pressures were obtained. These data may

be useful for WIAC applications.

Should we do more with the tunnel-to-tunnel comparisons? The kinds of

things we are doing now with CAST-10, such as testing in both slotted and

streamline walls and in several different sizes, seem appropriate to really tie

things down for one airfoil. We should do this for more airfoil types and also

get the associated flow field and wall pressures. In the case of bodies of

revolution, we are building several for testing in the NTF to understand

blockage. It would be desirable to have other organizations test these models,

or similar ones, as an aid in evaluating both the data differences between

different tunnels and the interference calculations. Similar tests of other

calibration models, such as the AEDC interference model, would also be a

beneficial activity.
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Theory/Code Aspects

The second viewgraph deals with theory/code aspects or issues. In regard to

the first question listed, there are several aspects. How complicated (accurate)

does the geometry have to be if you are using theory to augment experiment? Can

we actually substitute theoretically manufactured data? I am not talking here

about the interpolation of actual data, but the augmentation of measured data.

If you did that, what would that combination be?

We really need to have a hierarchy of codes and this observation stems from

a comment that was made earlier. When you are doing production work you may want

something that is very fast using a minimum of measurements; that is particularly

true if you are involved in parametric work. But if you are really looking for

that last drag count, if you are betting millions of dollars on an answer, I

think you would be willing to run the tunnel for 10 minutes on a test point to

obtain the data that would enable you to make the most accurate correction

possible. So you may end up with a linear code and several different types of

nonlinear codes that solve various forms of the Navier-Stokes equations as

well. In the nonlinear, high-subsonic-speed range, when we try to do

assessment/corrections and understand whether data are really correctable, are we

going to have to run these 3-D full potential and Euler equation codes? Perhaps

when you see how complicated the flow field is, particularly where you have

shocks hitting the wall, separated flows, etc., you may get more and more

interested in how far you can push linear theory. This question was brought up

several times by different speakers and I am not sure whether we have the answer

to that yet but I think it is an important one. Most of the theory that we have

heard here relates to linear analysis or the nonlinear potential approach. We

have seen some remarkable progress, in the last few years, in applying Euler

equations to both 2-D and 3-D and the Navier-Stokes, of course, mainly to 2-D.

Someone may correct ms here, but I have not seen any of that methodology applied

to tunnel walls at this workshop. It would seem that there are a lot of

conditions at the higher speeds where the shocks do get to be significant and the

Euler equations would have an advantage. What do you see as the barriers to

going ahead and applying those kinds of equations?

Do we need more theoretical research to characterize tunnel wall boundary

conditions? Several papers discussed or used (Bill Kemp's analysis, for

instance) representations of finite discrete tunnel wall boundary conditions.

Nevertheless, my impression is that we are not very far along in this area and

we continue to use the age-old homogeneous boundary conditions even though we do

not know how well they represent slotted and perforated walls. In regard to

"free-stream" conditions, early 3-D TSDE calculations, including tunnel walls with

different kinds of boundary conditions, found results sensitive to the placement

of the upstream boundary condition. Norm Malmuth talked about it earlier. There

appears to be a need for both theoretical and experimental work in this area. As

a point of interest, the NTF was made with a lot longer test section than most

transonic tunnels because of this concern.
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WIAC Applicability and Other Aspects

The third viewgraph relates to WIAC applicability and relationship to other

ispects concerning flow confinement. We did not talk much here, that I noticed,

_bout high alpha and high _ corrections, yet we all test fighter aircraft at

_igh alpha and we want to test airfoils and high-lift systems at high lift as

_ell. The corrections that go with high alpha flows when you have flow separa-

tion, vortex flows, etc., require some special treatment and attention. We have

_one that in a free-air environment and the various theories are published, but

[ have not seen tunnel walls incorporated in any of these calculations. What are

the prospects for extending our methods to deal with separated flows? That is a

zritical concern; I would appreciate a lot of you giving some thought to it.

What is the combined effect of wall and sting? We saw one application in

the workshop where the sting was accounted for and it was a critical element.

Zonversely, if the sting had not been accounted for the answer would have been

_orthless. I wonder, when we do all these corrections, how we are going to

extract the sting effects. Certainly you can model the sting, but many times

that degree of detail is beyond what we want to do or can do. I think we need to

look at it as an additive effect, where it is modeled versus where it is not

modeled, and try to understand what it does not only to the wind tunnel model

itself but to the far-field and/or wall measurements.

How about WIAC applicability to dynamic data? I threw that one in because

no one said anything about dynamic motions and how wall effects are accounted

for. There are only one or two papers in the literature pertaining to the

subject that I know about. It is a real problem if you are doing forced

oscillation work or perhaps where you have an oscillating wake. What is the

importance of unsteadiness in the wake and can its effect can be accounted for, in

some way, by a steady one?

There is another effect on wall interference which we must also be able to

handle, or even before that, to understand. It is the influence of a shock

impinging on a ventilated wall, an old problem that unfortunately happens in

situations where the corrections are large, we want to be able to analyze it but

I am not sure that any of us understand yet how to do that.

We did not talk about flow quality effects here but I think a number of us

realize that at times the wall interference effects get confused with flow

quality effects, in the sense that flow quality and tunnel walls can affect the

pressure distribution (particularly through shock location), which in turn

affects the transition point. Even at high Reynolds numbers you can get

significant runs of laminar flow on wings and bodies. You do not want to put a

trip strip on them to make comparisons with other tunnels or flight data, but if

the flow qualities are different, you have no choice. Furthermore, if you force

transition to be at a specific location in order to make a valid comparison, then

you had better be sure that those trip strips look alike. People are worried

about flow quality more and more and we do lots of things here at Langley in our

tunnels to make flow quality better. We do this knowing that it affects drag,

pitching moment, lift - the whole thing. Normally in wind tunnel wall

inteference discussions this subject is not brought up as a source of confusion

and error.
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As for the last point here, Reynolds number effects are a particular

concern at Langley. Typically in the past, when we calibrated older wind

tunnels, the Reynolds number range at a given Mach number was so small that we

never worried about it in terms of wall interference effect. None of the

theories used a dozen years ago concerned that at all. But now, when you can

change Reynolds number from a couple of million to 100 million, the thickness of

the boundary layer in the test section is going to be very different. The

effective width of the wall slots is going to be different, and in that way, the

data will be affected. The addition of Reynolds number to the "puzzle" lends

added concern in terms of the methodology required.

Tunnel and Hardware Aspects

The last viewgraph deals with tunnel and hardware aspects. Will our renewed

concentration on the wall interference problem and correction methods lead to

improved passive walls? I remember some time ago when Tony Ferri had ideas about

some welrd-looklng wall geometries that seem to have been forgotten. But still,

I wonder whether or not porous and slotted walls are the best answer for a

passive-wall wind tunnel.

In an airfoil tunnel, what is the "best" approach for sidewall boundary

layer control? The observation was made that you have to apply suction around

the juncture region. If you do not do it all the way from the roof to the floor,

then the boundary layer above this suction region has a different thickness

distribution. You have thinned it down over the area where suction was applied.

I am wondering if people who use this technique, although it helps the problem of

sidewall separation at high angles of attack, really know what is in the

tunnel. The sidewall boundary layer becomes a complicated looking flow and we

need to do some analysis to define what the total 3-D environment looks like in a

so-called 2-D test.

What about partially adaptive strategies? Most flexible walls are solid;

that is the way you have to start out. The question that comes to me is whether

or not we can combine that idea with a slotted or porous wall to help the

interference problem. Some of you know that AFWAL researchers built a flex wall:

it had about a dozen different segments (rods) so you could form it differently

across the span, from one wall to the other, to get a 3-D effect on the

streamlines. That approach was a little bit in the hybrid wall direction. Can

we have adaptive walls in one plane? This is the sort of thing Mike Goodyer is

trying to do now; you use only the top and bottom walls to eliminate the

interference and correct for the rest. Hopefully, if you are lucky, that is

90 percent of it. In fact, there was a theoretical result some years ago by

Newman and Klunker indicating that this was the case. Earlier measurements, done

at AEDC and NAE, with uniform porosity on the top, bottom, and side walls (but

not the same on all walls) indicated that most of the interference could be

eliminated with Just that simple kind of articulation.
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NEAR-TERMFUTUREDIRECTIONS
SUGGESTEDIN OPENFORUM DISCUSSION

It goes without saying that all the things we intend to do in the near term

are high priority, but we want to look beyond that. What should we do

collectively? I feel that we should place particular emphasis on cooperative

efforts where possible and feasible because these seem to get the job done

better. As I said earlier, they promote communication and continued contacts.

Efforts should be made to periodically hold workshops or informal meetings, such

as this one, to aid in this communication and continually assess the progress.

Specific items for consideration, action or research in the near term, as

suggested during the open-forum discussion, were

i,

The collection or establishment of both theoretical and experimental

data bases suitable for WIAC use, particularly for comparison of

procedures; these data would be made generally available without

restriction and would include data for two-dimensional, body-of-

revolution, and three-dimensional configurations

2. An appraisal of the flow field data measurements suitable for WIAC

procedures which can now be routinely made and an assessment of the

impact of typical measurement errors associated with them upon WIAC

3. The inclusion of model support system interference effects in WIAC

procedures

4e The continued effort to develop a hierarchy of WIAC codes, since

questions remain concerning the requirements on degree of flow equation

complexity, type and amount of measured boundary data, computational

time versus tunnel hardware costs, etc.; requirements will surely vary

from facility to facility and test to test in a given facility.
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MEASURED DATA ASPECTS

• What type and amount data required for WlAC?

• Pressures/velocities
• Flow field/model/wall
.How much for 3-D?

• Is there need for experimental research to characterize:

• Discrete/homogeneousboundary conditions?
• "Free-stream" conditions?

• Do we have adequate "absolute" reference data?

• What about tunnel-to-tunnel and flight-to-tunnel comparisons?

• Airfoils (0012,.55-213, CAST-10, BGK-1, etc)
• Vehicles (B-O-R, Pathfinder, AEDC int. model, etc)

THEORY/CODE ASPECTS

• Can theory be used as partial substitute for data?

• Is there virtue in having available a hierarchy of codes?

• How far can you push linear theory ideas?
• Can we run nonlinear codes in parallel with tunnel?
• Should Euler or Navier-Stokes codes be developed?

• Is there need for theoretical research to characterize:

• Discrete/homogeneous boundary conditions?
• "Free-stream" conditions?
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WIAC APPLICABILITY AND OTHER ASPECTS

• How about WIAC applicability to:

• High o/High C[?

• Sting and support system effects?
• Dynamic data?

• Do we understand how to handle or separate:

• Shock impingement on ventilated walls?
• Flow quality effects?
• Wall Reynoldsnumber effects, especially for cryo?

TUNNEL AND HARDWARE ASPECTS

• Do we have the "best" types of passive walls?

• What is the "best" approachfor sidewall BLC in Z-D?

• What partially adaptedwalls are possible?

• Combined flexible and ventilated?

• Spatially limited adaptability?
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