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INCOMPRESSIBLELIFTING-SURFACEAERODYNAMICSFOR A ROTOR-STATORCOMBINATION

SrldharM. Ramachandra*
NationalAeronauticsand Space Administration

Lewis ResearchCenter
Cleveland,Ohio 44135

SUMMARY

• Currentliteratureon the three-dlmenslonalflow throughcompressorcas-
cades deals with a row of rotor blades in isolation. Since the distance
betweenthe rotor and stator is usuallylO to 20 percentof the blade chord,
the aerodynamicinterferencebetweenthem has to be consideredfor a proper
evaluationof the aerothermodynamlcperformanceof the stage. A unified
approach to.theaerodynamicsof the incompressibleflow througha stage is
presentedthat uses the llftlng-surfacetheory for a compressorcascadeof

, arbitrarycamber and thicknessdistribution. The effectsof rotor-stator
interferenceare representedas a linearfunctionof the rotor and stator flows
separately. The loadingdistributionon the rotor and stator blades and the
interferencefactorare determinedconcurrentlythrougha matrix iteration
process.

INTRODUCTION

The multistageaxial compressorfunctionsin such a way that each stage
performsessentiallythe same basic functionas the other. Air from the rotor
enters the stator,which is placed close behind it, usuallywithin a distance
of lO to 20 percentof the blade chord. The rotor impartskineticenergy of
rotationto the basicallyaxial incomingfree-streamflow and also increases
its potentialenergy in the form of a staticpressurerise while passing
through the Interbladepassages. The statorconvertsthe klnetlcenergy of
rotationof the enteringair into potentialenergy by a furtherincreaseof
the static pressureso that the flow downstreamof the stator is, again, nearly
axial.

Current literatureon the three-dlmenslonalflow in turbomachlnesis con-
cerned mainly with the flow over one row of rotor blades in isolation. In the
single actuatordisk model the perturbationvelocityof the disk decreases
exponentiallywith the distancefrom the disk. Qualitatively,thestrong
upwash field of the statorblades affectsa substantialportionof the flow
over the rotor blades and in turn increasesthe effectiveincidenceof the
rotor blades. Thus the rotor bladesare closerto positive stall with the
stator than without,when the effectiveincidenceof the rotor blades is high
in a positivesense. Similarly,when the effectiveincidenceof the stator
blades is high In a negat!vesense,the statorblades are closer to negative
stall with the rotor than without.

Thus it is importantto considerthe combinationof the two rows, which
form one stage of an axial turbomachlne,in order to understandtheir inter-
ferenceeffectsand obtain a more accurateevaluationof the dynamicand
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aerothermodynamtc behavior of the multistage compressor as a system through a
synthesis of the Individual stage performances.

Actuator disk models of the multistage compressor baslcally assumeeach
blade row to be of zero axial thickness. In these models such an arrangement
of many stages ls equivalent to flow through a series of thin actuator d_sks.
Using the actuator disk model, Traupel (ref. 1) dealt wtth the case of an axl-
ally symmetric, multistage machine with an Infinite number of Identical equi-
distant stages. He Introduced an axlally perlodlc stream function, wlth a
period of one stage pltch, to describe the flow and obtained an expression for
the radial velocity.

Marble (ref. 2), Marble and M1chelson (ref. 3), and Rallly (ref. 4) con-
sldered extensions of the actuator disk concept to disks of nonzero axial
thickness. Thus Marble considered an axially symmetric flow through an actu-
ator disk wlth the vortlclty shed from each blade row distributed contlnuously
over the region behind the blade. He obtained a llnear equatlon for the radial
veloclty on each side of the dlsk and obtalned a solution for a blade row of
finite chord by superposltlon.

Ra111y (ref. 4) assumed the radlal veloclty fleld In the multistage com-
pressor to be the sumof the radlal veloclty contrlbutlon of each stage In
Isolation and the axial and whirl velocities to remain the samefor each blade
row. He assumedan exponential varlatlon of the radial velocity components
along the axis and determined the radlal variation. Assuming an Inltlal axial
velocity for each stage, Rallly calculated the radial veloclty fields by super-
position of the stage contributions and used these fields to recalculate the
axial velocities Iterattvely In order to obtain the ftnal solutlon. He also
calculated the whirl componentsfor each case from the velocity triangles.

Horlock (ref. 5) used the actuator dlsk model to study the effect of
locating the actuator disk In the plane of the blade traillng edge and In the
plane of the center of pressure of each blade row. Horlock and Deverson
(ref. 6) found that theory and experiment agreed best for placement of the
actuator disk at the mldaxlal plane of the blades.

Kempand Sears (refs. 7 and 8) studied the aerodynamic interference between
the rotor and stator-blade rows for Incompressible, nonvlscous fluids by
regarding each blade row as an Inflnlte two-dlmens_onal cascade. They obtained
expressions for the unsteady componentsof 11ft and momentof the blades of
each row. They also calculated the effects of stator wakes on the unsteady
lift of rotor blades. They found lift fluctuation amplitudes of about 18 per-
cent of the steady lift. Besides, viscous interaction on the forces and
momentscaused unsteady forces and momentsof about the same order as the
aerodynamic Interference between the blade rows.

Prandtl and Betz (ref. 9) outlined the lifting-line theory of the propeller
for mlnlmum energy losses in an Incompressible lnvlscld fluid. This theory
was followed by Goldsteln (ref. 10), who formulated the Incompressible poten-
tial vortex theory of a propeller with a bound vortex line for each blade and
a helical trailing vortex sheet shed from Its tralltng edge. This theory was
Improved and later extended to llnearlzed compressible potentlal flow for the
propeller by Busemann(ref. 11) and Davldson (ref. 12) and to the flow through
a compressor by Rott (ref. 13).
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A llnearlzedthree-dlmenslonalllftlng-llnetheory for an axial compressor
blade row In an infiniteaxial duct was proposedby McCune (refs.14 and 15)
and by McCune and Okorounmu(ref. 16) for both subsonicand supersonicflow.
However,McCune's resultsare applicableto nonllftlngblades. Later,Namba
(ref. 17) proposedthe llftlng-surfacetheory for a rotatingthin blade row
for subsonicand supersonicMach numbersthat uses a distributionof oscillat-
ing pressuredipoleson the blades. Hls theorydoes not considerthe effects
of blade thickness,camber,and incidence. The effectsof trailingvortices
shed by the blades are omittedsince he used the accelerationpotential. Fur-
thermore,Namba'stheorydoes not considerthe radialvelocityor the swirl

. velocitycomponentat the inlet other than the circumferentialvelocitydue to
blade rotation.

Wu (ref. 18) proposeda llnearlzed,three-dlmenslonal,compressiblefluid
flow for axial-, radial-,and mlxed-flowturbomachlnesand outlineda numerical
solutiontechniquefor the differentialequations.

The present reportdeals wlth the direct turbomachlneproblemby consider-
ing the rotatlonallysymmetric,three-dlmenslonal,steady, incompressibleideal
fluid flow throughan axial compressorstage consistingof a finite number of
blades In the rotor and stator. The rotor and statorare assumedto be located
centrallyin an infinite,coaxial,cylindricalduct wlth only a small clearance
betweenthe blade tips and the duct walls.

The stator experiencesa periodicflow when cuttingthroughthe multiple-
start helicalvortex sheetsof the rotor wake. For simplicity,it is assumed
that the discretemultlple-start,helical,trailingvortex sheetsmay be
replacedby an equivalentcontinuousvortex cylinderof the same root and tip
diameterbut with uniformvortlcltyover its cross section. In thls represen-
tation the statorblades wlll experiencea steady incomingflow. The effect
of nonunlform/dlscontlnuouswake vortlcltyis consideredseparately.

In the presentstudy both the rotor and the statorblades are considered
to be straight,rigid,and untapered. The incomingflow Into the rotor is
assumedto be uniformand axial wlth no radialor swirl componentother than
that due to the rotor rotation. Furthermorethe inflow Into the stator Is
assumedto be primarilya uniformaxial velocitywlth a varyingswirl component
impartedby the rotor. The radial inlet velocitycomponentdue to the rotor Is
neglectedat this stage.

The undisturbedfree-streamvelocityComponentsare taken to be (0, Vr, Wr)
in the (r, e, Z) directionsrelatlveto the rotor In a cylindricalcoordinate
system. The air is assumedto enter the rotorwlth uniformupstreamstatic
pressure p_ and density p_ and with an axial velocity Wr that is
uniformlydistributedover the rotor face.

To simplify the mathematical treatment and the application of surface

boundaryconditions,the stator is consideredto be stationary. For the stator
the radialvelocitycomponentin the rotor outflow is neglectedas negligible
so that the inlet velocitycomponentsfor the statorare assumedto be O, Vs,
and Ws. Since the stator is situatedclose to the rotor exit in a region of
rapid change,it Is not possibleto define,a priori,the inlet velocitycom-
ponents O, Vs, and Ws exactly. However,the stator inlet conditionsare
assumedto correspondapproximatelyto the value obtainedfrom the velocity
vectordiagram (fig. l) so that the inlet velocityto the statorwould have



the components O, Vr - Wr tan =2, and Nr. Assuming that the rotor and stator
are lightly loaded, thls ls tantamount to the hypothesis that the perturbation
velocity componentsdue to the rotor are small as comparedwith components
given at thls stage, that the stator axial veloclty Ws Is uniform and equals
Wr, and that the circumferential veloclty Vs ts uniform and equals
Vr - Wr tan =2-

In the following sections a scheme for representing the lifting-surface of
rotor and stator blades of arbitrary geometry through a distribution of flow
singularities is discussed, and their induced velocity fields at an arbitrary
point of the flow are obtained. The rotor-stator interference factor Is Intro-
duced next, and matching of the resultant flow field of the stage to provide
zero net vortlclty downstream of the stage ts discussed. The boundary condi-
tions on the blade surfaces are given in terms of blade and cascade geometry.
These are reduced to a set of simultaneous algebraic equations to determine
both the set of constants giving the distribution of flow singularities and
the interaction factor. The problem Is then dlscretlzed, and an lteratlve
schemefor the solution of the matrix of unknownconstants is outlined. The
net pressure distribution on the blades Is expressed In terms of the induced
velocities, and applications are briefly discussed.

SYMBOLS

A expansioncoefficientsfor rotor-bladechordwlsevortlclty
m distribution(eq. (lla))

Am modified rotor chordwlsevortlcltydistributioncoefficients
(eq. (27))

matrix of coefficients Am (eq. (61))

AA column vector of constantsAm, Bm, _m, _m, and c1

B expansionconstantsfor rotor-bladechordwisesourcem
distribution(eq. (llc))

B modified rotor-bladechordwlsesourcedistributionm
coefficients(eq. (27))

matrix of coefficients Bm (eq. (61))

C expansionconstantsfor stator-bladechordwlsevortlclty
m distribution(eq. (llb))

_m modlfledstator chordwlsevortlcltydistribution ,
coefficients(eq. (27))

CR, CS rotor-and stator-bladehalf-chordlengths

C, dlmenslonlessrotor-and stator-bladehalf-chords

matrix of coefficients (eq. (61))
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C_r, C_s local lift coefficient of rotor and stator blades

Dm expansion coefficients for stator-blade chordwtse source
distribution (eq. (lld))

_m modified stator-blade chordwise source distribution
coefficients (eq. (27))

matrix of coefficients(eq. (61))

Erm, Esm rotor and stator functions(eq. (35))

EE matrix definedin (eq. (59))

EF matrix of integrals(eq. (5?))

EM% matrix elementsdefined in eq. (60) (I = 1,2,3,4)

_m vector integraldefined in eqs. (28a) and (52)

_m matrix defined in (eq. (50))

_m vector integraldefinedIn eqs. (28b) and (52)

_m matrix definedIn eq. (50)

gr, gs rotor and statorgeometry functions(eq. (49))

_m vector integraldefined In eqs. (28c) and (52)

_m .. matrix defined In eq. (50)

hr, hs rotor and stator (hub/tlp)radius ratio

_m vector integraldefined in eqs. (28d) and (52)

Jm matrix defined In eq, (50)

kr, ks rotor and stator circumferentialmode numbers

Lr, Ls llft per unlt span of rotor and statorblades

M Mach number

M, matrix dimensionparameter,R,N,

N, number of chordwisestationson blade

p= free-streamstaticpressure

Pr, Ps perturbationpressuresdue to rotor and stator

Por, Pos total pressuresahead of rotor and stator
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APr, APs net pressure difference on rotor and stator blades
(eq. (68))

Qr total source denstty on rotor blade (eq. (11))

Qs total source denslty on stator-blade (eq. (11))

Rr, Rs functions deflned In eq. (30)

Rsr ratto of stator ttp radtus to rotor ttp radius, rts/rtr

R, number of stations along blade radlus

_(r,e,z)(x,y,z) posttlon vector of arbitrary potnt (cyllndrlcal/Carteslan
coordlnates)

r 1 dimensionless radtal coordlnate, r/rtr

rhr, rhs hub radlus of rotor and stator

rtr, rts tlp radtus of rotor and stator

Srh, Ssh functions defined at rotor and stator hub (eq. (36))

SR matrtx deftned tn eq. (51)

Trm, Tsm rotor and stator functions defined In eq. (47)

_R, _S resultant total veloctty of rotor and stator

OR, 0S modlfted resultant total veloctty of rotor and stator
(eq. (39))

u resultant Induced veloctty vector (eq. (25))

u modified resultant tnduced veloclty (eqs. (26) and (27)),

/Wa

Vr, Vs circumferential velocity of air for rotor and stator

_r, _s free-stream velocity vector for rotor and stator

_r, Us modtfled free-stream velocity vector for rotor and stator
(eq. (39))

Wr, Ws axlal velocity of air for rotor and stator

(x,y,z) Cartesian coordinates of arbitrary potnt

' z') Cartesian coordinates of rotor and stator tn local coordlnate(Ys' s
system of blade



Zr, Zs number of blades In rotor and stator

_lr,_2r rotor vector functton (eq. (29))

_ls,_'2s stator vector function (eq. (29))

Zcr,' Z'cs mean-llne ordinate of rotor- and stator-blade profiles

z' z' lower surface ordinate of rotor- and stator-blade profilesLr' Ls

' z.' local half-thlckness of rotor- and stator-blade profiles' ZTr' [s

z' upper surface ordinate of rotor- and stator-blade profilesZur' Us

ZrO, ZsO axial position of mldrotor and mldstator plane from
reference orlgln

Zrl, Zr2 axial coordinate of stator-blade leading and trailing edges

Zsl, Zs2 axial coordinate of stator-blade leading and tralllng edges

=r, =s blade angle settings of rotor and stator blades

=2r exlt blade angle of rotor

r r, Fs total vortlclty density of rotor and stator blades
(eq. (ll))

c rotor-stator interaction factor

cl Interaction parameter (eq. (56)), l/(l + c)

e azimuth angle of cyllndrlca] coordinate system

(kr) (ks)
x_ , X_ _-th elgenvaluefor mode mr, ms

vr, vs mean azimuthangle of mr-th rotor blade, ms-th
statorblade (eq. (14))

"-P(p,_, ¢) positionvectorof a point on rotor/statorwlth cylindrical
coordinates p, _,

Pr, Ps radial positionof source/vortexon rotor and stator blades

(k r)
€_ normalizedBessel functionof rotor blade of mode number

k and _-th elgenvaluer

•r, _s azimuthangle of source/vortexon rotor and stator blades



_r, _s mean offset angle of first rotor and stator blades

(ks)
normalizedBessel functionof statorblade of mode
number k and _-th elgenvalues

_r, Ss azimuthangle of point on mr-th rotor and stator blades
defined In eqs. (12) and (18)

angularvelocityof rotor

ur, us Glauertangle of blade defined In eq. (1)

Subscripts:

r,s rotor,stator

h,t hub, tlp

I, J, k unit vectorsalong (x, y, z) directions

REPRESENTATIONOF LIFTINGSURFACE

The blades of the stage are consideredto be thln with small camber. The
pressuredistributionon the blade may be regardedas arising from a surface
distributionof flow singularitiesthat glve rise to the given blade profile
and Its llft. The thicknesseffect of the blade is representedby a surface
distributionof sourcesand its llft distributionby a surfacedistributionof
vortices. The distributionof both the sourceand vortex singularitiesvaries
radiallyand chordwlseover the blade section. A study of the llnearlzedpar-
tial differentialequationsfor the perturbationpressuresof the rotor and
statorwhen the fluid is incompressibleshows that the radial variationof the
pressure satisfiesBessel'sdifferentialequation. Therefore,to providefor
the radial variationof the singularities,the chordwlsevariationIs modulated
by a Bessel function.

To specifythe chordwisedistribution,It Is convenientto refer to a
locally rotatedcoordinatesystem (Y_ - Z_) (fig. 2) and to define the
Glauertangles ur and us, for a point on the rotor-and stator-bladechords,
respectively,throughthe equations

= '<CR; O<u <_Yr' -CR cos Ur; -CR -<Yr - - r -
(1)

Ys = CS -Cs Ys CS" < _' cos Us; <_ ' < , 0 <_us _

If the midpoint of the blade chord is used as the referenceorlgln for each
blade, the unlt vectorsIn the (R, Y', Z') coordinatesystemare relatedto
the unit vectors(R, o, Z) In the cylindricalcoordinatesby the
transformation
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iRii1o0II lY_ = 0 sin _r cos _r (2a)

Z'r 0 -cos _r sln _r

(< o o)<R)Y's = 0 sin _s cos _s e (2b)

Z's 0 -cos _s sin _s z

This system of coordinates is rotated from the plane of rotation by the anglesI !

_r and _, respectlvel_ The relation between the coordinates (Yr, Zr)and (Y_, Z_) of a point a rotor or stator blade wlth the corresponding
coordinates(Yr, Zr) and (Ys, Zs) In the (Y - Z) system is given by the
equations

I R I c°s Ir sln _r 0 _ Xr1

Y' = -sin _ sin • sln _ cos I cos _ Yrr r r r r r (3)

Z'r cos _r sin Vr -cos _r cos Vr sin =r Zr

Y_ = {-sin _s sin t s sin _s cos ! s cos _ Ys (4)
\Z_ \cos _s sin ! s -cos _s cos ! s stn _ Zs

where

Zrl = Zr0 - CR cos _r; Zr2 = Zr0 + CR cos _r
(s)

Zsl = Zs0 - CS cos _s; Zs2 = Zs0 + CS cos _s

and (Zrl, Zr2) and (Zsl, Zs2) refer to the leadingand trailingedges of the
rotor and stator. The cylindricalcoordinatesof an arbitrarypoint Yr, Ys
on the rotor-and stator-bladechord at any radius r are given by

_ CR

rl; _r + Vr - arctan _llcos mr sln _r ; Zr0 + CR cos _r cos _r

Cs (6)
rl; _s + Us - arctan _llcos ms sln _s ; Zs0 + CS cos ms cos _s

' ' < +l; hr < r < l; hsRs < r < R- l _ Yr' Ys - - - r- - sr
I I

Note that the chordwisecoordinates Yr and Ys are normalized
relativeto the chords 2CR and 2CS, respectively.

I I

If ZCr and ZCs refer to the mean camber llne of the rotor-
I I

and stator-bladeprofilesand ZTr and ZTs refer to the half-
thicknessof the correspondingblades,we have the relations



zl _ I I Z I _ I I
Cr Zcr(Yr); Tr ZTr(Yr)

(7)
Z I I)o Z I I ICs = Zcs(Ys ' Cs = Zcs(Ys)

The equation of the upper and lower surface blade profiles can be obtained from

Z i = Z i + Z i " Z i = Z' - Z.iUr Cr Tr' Lr Cr rr
(8)

Z' = Z i + i . Z i = Z i - Z'Us Cs ZTs' Ls Cs Ts

Following Schllchtlng (ref. 19), the chordwlse distribution of the flow sin-
gularltles Is assumedto have the form of a Glauert-Birnbaum series (refs. 20
and 21). Furthermore because of the three-dimensional nature of the flow, the
Glauert expansion wlll be modulated by suitable functions _, and _, of the
radius. These functions are obtained as sumsof the elgenfunctlons
(kr) (ks) (k) (ks)

@_ , _ . In turn, _ r and _ are normalizedlinearcombinations

of Bessel and Neumannfunctionsof order kr and ks for the _-th elgenvalue

(kr) (ks)
X_ and x_ of the rotor and stator

(kr,) (ks)
The functions @_ and _ are normalizedlinearcombinationsof

Bessel and Neumannfunctionsof order kr and ks for the t-th elgenvalue
for the rotor and statorand can be written

[ (k)h')- Y(k+l)(x_k)hr)]

_(_)_ Y(k-I)(x_ r
- 3(k_l)(_k)hr) _ 3(k+l)(_k)hr)

x J(k)(rl_k)) + Y(k)(rix_k))

(9)

V(_) = j(k_l)(x_k)Rsrhs) - (x_k)Rsrhs)Rsrhs) 3(k+l)(x_k)Rsrh s)

x 3(k)(_k)rl) + y(k)(x[k)rl)

(k r) (k s)
The pressureelgenfunctlons @t and V_ satisfythe'endconditionsat

the root and tip expressedby the equations
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d _k) 0 at rI hr and r I 1dr I e (r I) = = =
(lO)

d _k) and rI = Rs_rr_ (rl) = 0 at rl = hsRsr r

which representzero radial velocitycorrespondingto zero radial pressure
gradientat the hub and tip of the rotor and stator. The elgenvalues

k_k)" for the rotor and statorare given by the roots of the corresponding
transcendentalequationsobtainedby satisfyingthe end conditions(eq. (lO))
at the blade tip.

Althoughthe inlet flow conditionsfor the statorare really periodicas a
result of the perturbationsintroducedby the rotor blade passingeach point
with a frequency _s = Zr_/2_,in this paper, it is simplyassumedthat the
stator-bladeinlet conditionsare steady by putting u-s = O.

The total surfacedensityof sourceand vortlcltyfor the complete range
of elgenvalues(_ = 0,1,2,...,=) and the mode numbers kr and ks (kr,
ks = O, ±l, ±2,...,_+_)is given by

. (A Urm_l r)

rr(Pr) = 2Wa 0 cot _--+ Am sin m_ @,(#r) (lla)

. u s

rs(Ps) = 2Wa 0 cot _--+ Cm sin m_s _,(ps) (llb)
m=l

. [ < ur ) m_2 1

= - + Bm sin m_ @,(pr) (llc)Qr(Pr) 2Wa B0 cot _- 2 sin _r

Qs(_s) = 2Wa DO cot _-- 2 sin us + Dm sin rr_s _,(ps) (lld)
m=2

@*(Pr) _ _ D_kr) (kr)

r 5

The expansioncoefficients Am, Bm, Cm, and Dm (m = O, I, 2,.., =) are
determinedby satisfyingthe boundaryconditionson the rotor and stator blades
simultaneously. The cylindricalcoordinates(Pr, _r, _r) and (Ps, _s,
(s) of a point on the mr-th rotor blade and ms-th stator blade are
relatedto the correspondingchordwisecoordinates(ur, #r) and (us, ps) the
relations
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(CRsnocosr5,r . --T)orctanPrr

orctan(CSsnscos1
_r = Zro + CR cos _ cosr r

_s = ZsO - CS cos _s cos us

The distributions assumed in equations (2), (3), or (9) for the flow
singularities are such that the vortlclty density r(p, _, ¢) becomes infinite
at the blade leading edge (_ = O) to give infinite suction and vanishes at the
trailing edge (_ = _), satisfyingthe Kutta conditionas In the case of a flat
plate at incidencefor both the rotor and the stator. The assumed sourceden-
sity Q(p, _, C) vanishesat the trailingedge (m = _) and becomes infinite
at the leadingedge (_ = 0), correspondingto the case of symmetricJoukowskl
profileat zero incidence.

InducedVelocityField of Bound Vortlclty

Assuming that the bound vortex filamentshave their axes along radial lines
and consideringa rotor-bladesurfacearea element (dpr der sec ar), the vor-
tlclty containedIn the elementIs rr(Pr, _r, _r)sec _r dpr dCr- The induced

velocity d_, at the point (r, e, z) in the flow field, due to the bound

vortex filamentwith a unlt vector _r at _r (Pr' _r' {r) can be obtained
from Biot-Savart'slaw as

)
d_r = rr(Pr, _or, _r) sec _r _r x . 3 dPrdCr (13)

4_1_-rPl

which can be written as

d_r =l-_(z - Cr) sln,r + _ (z - Or) cos *r - _r sln (e - ,r)}

x [ rr(pr'_r'(r)4_Rr(3.rl,Pr).sec _r dPrd_rl (14)

where _, _, and _ are the unlt vectorsalong the (x, y, z) d_rectlonsand
the angle Sr Is definedby

_r = _r + _r + Ur Ur = 2_mr/Zr; mr = O, I, 2,..., (Zr - l) (15)

The inducedvelocity d_r due to all of the Zr blades and all of the circum-
ferentialorders kr at the blade elementIs given by
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Z-l
r

4_ cos _r d_r =_ =0 [-_(z -¢r) sin _r . _(z-Or) cos _r-_r sin (e-_r)l

R3,. . dPrd_r_ r _r 1, Pr)

Introducing the vorttclty distribution from equation (2a) into equation
(15) and integrating with respect to Pr and _r gives the induced

.
velocity Ur due to the vortlclty on the whole blade surface.

. 1 _ Z-1 =

2, cos *r Urr _ jr2 r
= _ _ [-_(Zl- Cr) sln Cr + _(z- ¢r)

Wa Zrl mr=O kr=-=

x cos _r - _r sin (e - Tr)] 0 cot _--+ Am sin nwo

x €,(Pr)Rr3(_l, _r)d_rdPr (17)

Simllarly,by defining _s and us by

_S = _S + _S + VS

2_m ms = O, I, 2,...m (Zs - l) (18)
s

-

s Zs

We can write the inducedvelocitydue to the bound vortlcltyon the stator
blades as

. R = Z-I

= _" _ [-_(Zl- Cs)sln *s * _(Zl - Cs)
Wa rhs 1 ks=-= ms=O

x cos *s _r sin (e - ,s)] 0 cot _--+ C sin m_
m=l

x T,(Ps)R;3(rl, os)dCsdos (19)
o

InducedVelocityField of Source Distribution

For a rotor-bladesurface-areaelement(dpr dCr sec _r), the source
of strength Qr (Pr, _r, _r)sec _r dpr dCr at (Pr, _r, Or) induces
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! I I

a veloctty dur(U r, vr, wr) at the point (r 1, e, z) in the flow. The veloc-
Ity ts obtained from Blot-Savart's law as

rl - Pr

= , " 3r dPrd( r (20)d_r qr(p r Or, (r) sec r 4_R (r 1, pr )

whose Cartesian componentscan be obtained from the expression

4_ cos _r d.ur = [(rlcos e - Pr cos Or)_' + (r sin e - Pr sin Or)_'+ (z - (r)_' ]

"IQr(Pr , Or, ( r

x _33._- "_ _ dPrdCr (21)1_r, Pr )

The induced velocity d_r due to the sources on all of the Zr blades located
at the same relative location for the whole set of circumferential orders kr
is given by the summation

4g cos _r dUr

Z-1
r

m =0
r

x Qr(Pr, Or ' (r)dPrd¢r (22)

Again, by introducing the source distribution from equation (llc) into
equation (22), the induced velocity ur due to the source distribution over
the whole rotor-blade surface can be obtained by Integrating wtth respect to
Pr and (r and is given by

I ,,zZrẐ-I

Wa UrQ = _(rI cos o - Pr cos Or) + _(r sin e
rl mr=O

- pr sin Or) + _(zI - ¢r B0 ot 2 - 2 sin _ + Bm sin m_r
m=2

-3 -_ -)

x @ PrRr (rl, Pr)dPrd(r (23)

Slm_larly,the inducedvelocitydue to the sourcedlstrlbutlonon the Zr
stator blades can be written for the whole set of circumferentialorders ks
as
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R z Zs-'l

¢2_ cos _ s2

\ _i7 _sQ= _ [_(rI cos e- Ps cos _s)+ _(r slne
Rsrhs Zsl ms=0

] Us- os sin ,s) + _(zI - _s) DO cot _-- 2 sin us + Dm sin rn_s
m=2

-3 ->

x _osRs (rI, _s)dosdCs (24)

InducedVelocityof CombinedSource and Vortex System
of Rotor and Stator

For low subsonicaxial flow (M << l) the resultantinducedvelocity _ (_)
at an arbitrarypoint _ (r, e, z) of the flow field due to the combined
system of sourcesand vorticeson both the rotor and stator is obtainedfrom
the equation

u = Urr + Usr + UrQ + UsQ (25)

.
By combining equations (16), (18), (23), and (24), u can be expressed in terms
of the expansioncoefficientsof the Glauertseries of equations(2) as

-)

_= _ (Rm_m + _mi_m+ _mi_m+ Bm_m) (26)
m=0

where 0, _m, Bm, _m, and Bm are redefined by the coefficients

_. A " .W
Am = Am/C°S ar Bm = Bm/C°S_r u = u/ a

_m = Cm/C°S _s Bm = Dm/C°S_s Q = Q/2Wa

and _m, _m, _m, and _m are the set of vector functionsdefinedfor
the rotor and stator by
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gO 1 r2 cot _--

' + -> . ___ }@(Pr)dPrdC'r (28a)
= "_'lr(_l' Or) ' _'_7/

Zrl

. + --_... @(Pr)dPrdCr (28b)

2_ = :_'2r(_l,pr)\71n m_r/

Similarly,for the stator the vector functionsare

Rsr _ s2 __c ?.._
- + _,(Ps)dPsdCs (28c)

Rsrhs Zsl

R z

_sr _s2 \( :_:"__°t"s/

= _,(Ps)dosd_s (28d)

Rsrhs Zsl

+ ,.) .+ .-)

T,evectorfunction<r,  'ls,  '2r,and '2s aredefinedby

• _. -_'(z " €'r)Sin q_r+ _'(z - ¢'r)COS *r - _r stn(o - q,r)

r = R3r(_l' _r)

_2r _(r cos e - Pr cos _r) + _(r sin o - Pr sin _r) + _(z - Cr)= 3 + .
Rr(rI, Pr)

(29)

. -_(z - _s)Sln _s + _(z - _s)COS_s - _r sln(e - _s)
_'Is = 3 + -_

Rs(rI, Ps)

. _'(r cos e - Ps cos q_s) + _'(r sin e - Ps sin q_s) + _(z - _s )

_'2S R ( , ps)

wIth

"i
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(30)

. . [ 2Rs(rI,ps)= (rI -ps) + (zI -¢s)2-4rps cos2½(e-,s)]

Besides considering the induced velocity of the bound vortices In the rotor
and stator, tt Is also necessary to include the induced velocity of the trail-
lng vortices shed by the rotor and stator. These vortices movedownstream
along helical paths. The trailing vortices shed by the stator blades are
opposite In their sense of rotation to those shed by the rotor blades. Fur-
thermore, when the rotor and stator have nearly equal reactions, the trailing
vortices of both the rotor and stator may be assumed to be nearly equal In
strength at all radii. Thus the net vortlclty downstream of the stator Is
assumedto be nearly zero. Furthermore, because of the close spacing between
the rotor and the stator, the effect of the vortices shed by the rotor In the
rotor-statorgap will also be neglected. Consequentlythe

inducedvelocity _ of equation(26) is the complete inducedvelocityof the
stage.

MATCHINGOF ROTOR AND STATOR FLOW FIELDS

The perturbationvelocities _ (_, t) and the resultingperturbation

pressuresglven In the precedingsectionat a point _ In the flow field are
based on the hypothesisthat the individualcontributionsof the rotor and
stator are additiveand are not vitiatedby the interactioneffectsbetween
them. The singularitydistributionson the blade surfacesassumed In
equations(2) imply no rotor-statorinterferenceand satisfy,individually,
the Kutta conditionat the trailingedge of both the rotor and stator. How-
ever, the flow tangencyconditionIs disturbedwhen the rotor and stator are
juxtaposedcloselyto form a compressorstage.

It is necessaryto satisfythe flow tangencyconditionfor the combination
simultaneously. Thls can be done by introducingan interferencevelocity

_rs and the correspondinginterferencepressure Prs so that the.

resultantinducedvelocityvector _ and the resultantperturbationpressure.
p are written as

= _ + _rs; _ = p + Prs (31)

Under the hypotheslsof small perturbationsthe interferenceveloclty _rs
.

Is assumed to be a constant fraction c of the Induced velocity _ of the
rotor and stator

; = (l + c)_ (32)
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From the lifting-line model It is known that the strength of the bound vor-
tex is a maximumat the blade root for both the rotor and the stator. A vortex
filament of this maximumstrength extends downstream to infinity from the root
of each blade. If rrh and rsh be the strength of the blade root
vortlclty per blade of the rotor and stator, respectively, the condition of
zero net vorttctty behind the stator blade becomes

ZrFrh + Zsrsh = 0 (33)

This equation provides the necessary condition for determining the set of
expansion coefficients In the Glauert series and the interaction factor c.
The vortex strengths rrh and rsh are obtained by a chordwlse integration
of the surface density of vortlclty In equation (11) so that we have

GO O0

rrh = _ _,mErm(hr); rsh = _ CmEsm(hs) (34)m=O m=O

where Erm(hr) and Esm(hs) are defined by

Ero(hr)= Srh cot _-dCr; Erm(hr)= Srh sln m_r der

(35)

fo ofEso(hs)= Ssh cot _-d_s; Esm(hs)= Ssh sin m_s des

wlth Srh and Ssh obtainedfrom equation (9) by setting rI equal to
hr and Rsrhs for the rotor and stator so that

Srh(hr)= @,(hr); Ssh(Rsrhs)= ?,(Rsrhs) (36)

Equation(35) can be integratedand rewrittenas

Ero(hr) = -2_CRSrh(hr)C°S_r; Eso(hs)= -2_CsSsh(Rsrhs)C°S_s

Erl(hr)= -_CRSrh(hr)C°S_r; Esl(hs)= -_CsSsh(Rsrhs)C°S_s (37)

Erm(hr)= 0; Esm(hs)= 0 m = 2, 3, ...,

BOUNDARYCONDITIONS

For compressorsand fans wlth small tlp clearances,the combinedperturba-
.

tlon velocityfield _ of equation(32) togetherwlth the gross velocitiesof
the free stream must satisfythe condltlonof no radial flow at both the hub
and tip of the rotor and stator. Furthermore,both the rotor-and stator-blade
surfacesmust be stream surfaces. The latter conditionIs convenientto apply
whlle dealingwith the resultantvelocityfield of the flow slngularltles.
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The gross free-stream velocltles _R (0, Vr, Wr) and _s (0, Vs, Ws)
for the rotor and stator assumedIn the Introduction together wlth the.

resultant _ert_rbation velocity _ of equation (32) give the resultant total
velocity 0R, 0s

A A

UR = V . v (38)= R + v; US s

where OR, Os, _R, and Vs are velocities renormallzed in such a way
that

OR = _R/Wa; 0s = Os/Wa
(39)

_R = _R/Wa; _s = _s/Wa

whose Cartesiancomponentsfor any azimuthangle _r, _s on the rotor
and statorare given by

rI rI .

VR = _++ sln _r; - _++cos _r, 1

. rI ) (r_+ ) . ]
US = _+++ tan _2 sin _s; + tan _2 cos _s' l

(40)

. (rl rl _ )OR = _ sin _r + Ox; - _++cos Cr + Oy; l + vz

Us = tan sin + + tan cos + 1 + _z
i

where R+ = (Wa/_rtr)is a characteristicdimensionlessradius. R. may also
be regardedas the advance ratio of the blade based on the tlp radiusof the
rotor. Assumingthat the incomingflow is uniformin front of the rotor,the
flow characteristicsat any point of the blade surfaceare only peculiarto its
radial locationon an arbitraryblade. The same conditionapplies, likewise,
to the stator blade. Thereforethe angles _r and _s given by equations
(14) and (17) can be replacedby mr and ms, respectively,and the mldchord

. llne of the blade may be consideredto be parallelto the X-axls.

-> -@

The resultantvelocities _R and _s can be resolvedalong and
perpendicularto the blade chord in terms of the local coordinates(Y' - Z')
mentionedin the sectionRepresentationof LiftingSurface. To be consistent
wlth the postulatesof thln-aerofolltheory,the boundaryconditionIs applied
at the blade chord. The resultantvelocitiesare given by
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/rR-_'+ _x mr ^Vy mr/ORy, = + sin + cos sin _r . (l + Oz)COS_r

URz, = + _xsin mr + m cos _r - (1 . _z)Sln ar

USy, = - + tan + , _y cos sln , (l +

_Sz' = + tan + + _yCOS cos _s + (I + _z)Sln _S

wherein we have neglected terms of second order and higher in _x, _y, 9z-@ @

The resultant perturbation velocity components _R and _s at the rotor
and stator In the local coordinate system are related to those In the Cartesian
system by the matrix transformation

70Rr ..... mr mrcos sin 0 _x

VRy, sin mr sin _r cos mr sin =r cos = r

_Rz' = sin mr cos _r cos mr cos _r -sin _r _y

QSr cos ms sin ms 0 (42)

_Sy' -sin ms sin _s -cos ms sln _s cos _s Vz

gSz' sin ms cos _s cos ms cos _s sin _s

Whlle calculating the perturbation velocities vR and _s In the blade
coordinates at the rotor and stator given by the column matrix on the left of
equation (42), it is to be noted that the Cartesian velocity components(_x,
_y, _z) are evaluatedat the correspondingpointson the rotor and stator,
respectively. The kinematicalflow condltlonsof flow tangencyon the blade
surfaceat any radius rI can now be expressedas

(dZc_ _Rz'I_ -- ; \ Y Jr(dZT_ 1QrI_ - 2
\ Y Jr URy' z =o DRy'z =O

^ (43)

\d-V)s- ; \dY'/s-2
Osy'z =o DRy'z =o

To be consistentwith the postulatesof thln-aerofolltheory, in equations(43)
the boundaryconditionsare satisfiedat the local chord of the blade by set-, !

tlng zr = 0 or zs = 0 as appropriateto the blade in question.
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From these considerationsand equation(12) at any given radiusa relation
betweenthe azimuthangles (_r, Zr, rl) and (_s, Zs, rl) is obtainedas

(Zr0 - Zr)tan_r (Zs - Zs0)tan_s

tan _r = rI , tan _s = rI (44)

These can be substitutedfor zr and zs in the expressionsof equations(43).

The slopes of the mean camber llne and the thicknessdistributionfor the
rotor and stator blades as given by the derivativeson the left of equa-
tlons (43) are known for given blade profiles. These derivativesare denoted
as

_rc = dy'-----]r;_rT = 2 \d-_jr
(45)

rsc = \d-'_-_'}s; TsT= 2_d-7)s

Combiningequations(42) and (43)with equation(3) gives, after some
simplification,

rI _ /sln e_r + T cos __r_

_r---"_rcrCs_-n_r ] = 0R- + _x sin £or + _y cos £or - (l + Vz)_-_s

rI ^ ./sln_s_S-+TscTSCCOSsin _s_sl/= 0_--+ tan _2 + _x sin _s + _y cos _os + (l + Vz)_-_
(46)

(__]_l r) _z ) _+ _x sin _or + _y cos _o tan _r + (1 + = _ BmTrm(rl )m=O

(___!l _2 _°s _yCOS _°sl _°s _ _mTsm(
+ tan + _xSln + tan + (l + _z) = - rl)

w_

where

@(rI) U__r_r. T(rI) us
Tr0(rl) - cot 2 ' Ts0(rl) - cot _--

TrT TsT

@(rI) Y(rI)
Trm(rl) - sin m_r; Tsm(rl)- sin m_ (47)TrT TsT S

@(rI) T(rI)
Trl = -2 _ sin • = -2 _ sin us

_rT Ur' Tsl _sT
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DETERMINATIONOF CONSTANTS

The nature of the distributionof the flow singularitieson the blade sur-
face dependson the coefficients Am, Bm, Cm, and Dm (m = O, l, 2,...,m) In
equations(2). To determinethese coefficients,the surfaceboundarycondi-
tions in equations(46) have been introduced. Substitutingfor the resultant
inducedvelocities _x, 9y, and _z from equations(32) and (26) and combining
the differentquantitiesglve for each point on the blade the followingset of
simultaneousalgebraicequations:

GO

rl/R+ - gr
_m_{m . Bm_m . _m_m + _m_lm + 1 +€ = 0

m=O

_o rllR+ + tan a2 - gs
Xm Bm Dm = 0_22m+ _2m+_n_m + _m + 1 . c

m=O (48)

Am_33m+ Bm_m + _m_m + Dm_m + 1 + rl/R+tan _'r . _] ]+;BmTrmm=O 1 + c m=O

= .1 + rl/R+ + tan a2 _ _mTsm_] Rm_44m+ Bm_m . _nr_m + _m_4m+ =-
m=O 1 + c m=O _ T

where gr and gs are definedby the relations

sin ar + _rc cos ar

gr(_r) = cos ar - trc sin ar
(49)

sin a . T cos a
S SC S

gs(_s) = cos ar - _rc sin ar

and the set of functions _, _, _, and J by the matrix relations

_m = SR * Fm; _m = SR * Gm
(50)

_m = Sr * Hm; Jm = SR * Jm

The matrix SR and the column vectors Fm, Gm, Hm, Jm,_m, _m,_m, and
_m are given by

I sln _r c°s _r -gr1

sin _s cos _s +gs

SR = sin _r tan ar cos _r tan ar 1 (51)

sin _s tan as cos _s tan as -l
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]Lrmz  LGmz LHmzJ Lmzj

"Ylm" "_m" "'_lm" "4m"

_m _2m _m _2m

_m = "_3m ; '_m = _3m ; _ = _'3m ; Jm " ,J3m (53)

.Y4m. Y4m. i._m. ._m.

for m = O, l, 2,...,=. The coefficients Xm, Bm, _m, and Dm can be deter-
mined from the set of equations(48). However,since the interactionparameter
c is unknown,an additionalequationmust be provided. This is done by
adjoiningequation (33) to equation(48), which providesthe matchingof the
rotor and the stator.By combiningequations(33) and (34), the additional
equationbecomes

[XmZrErm + _mZsEsm]= 0 (54)m=O

with Erm (hr) and Esm (hs) definedby equations(35). Thus equations(48)
and (54) are the set of slmultaneous,_equatlonsto be _olved in order to deter-
mine the Inflnlteset of constants Am, Bm, Cm, and Dm and the interference
parameter c.

Dlscretlzatlonof Problem

It is seen from equations(48) and (54) that the infiniteset of coeffl-
cients Xm, Bm, _m, and _m is, indeed,requiredto describethe flow over
the rotor-and stator-bladesurfacesfor each value of rl and resultsin
Infinltematrlces. The dlmenslonsof the problemcan be reducedby selectinga
finite numberof terms m = (M, - l) in the Glauertseriesof equations(2) for
both the rotor and the statorso that 4M, + l unknownconstantsmust be
determined. As for the blade surface,R, stationsover the blade lengthand
N, points along the blade chord are consideredat which the camber and thick:
ness profilesand their slopes are specifiedfor both the rotor and stator.
Thus the number of terms in each of equations(2) equals M, = R,N, and the
matrix of the coefficients X, B, _, and 8m is of order 4M,.

The chordw1selocationof the points can be obtainedby using the 3/4-chord
theorem for each chord segment. Thus, s_nce the midpoint of the chord has been
chosen for each chord referencefor N, = 4, these pointswill be locatedat

: (-5/16,-I/16, 3/16, 7/16) of the dlmenslonlessrotor and statorchords CR and
CS, respectively. For R, = 3, the radial locationof the pointswould be
rI = [hr, (l + hr)/2, l] on the rotor and rI _ [Rsrhs, Rsr(l * hs)/2, Rsr] on
the stator,correspondingto the hub, mean, and tip, respectively,of each
blade.
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The set of equations (48) and (54) can be written as a slngle matrix
equation

EF * AA = (EE * AA)€1 (55)

where EF Is a (4M, + l)-ordersquarematrix of the integrals_,,_,_, and J
and the blade geometryDarameters; AA is the (4M, + l)-ordercolumn vector of
the constants Xm, Bm, _m, I)m,and el, where

l
Cl = l + c (56)

and the matrices EF, AA, and EE are definedby

EF : .i- (57)

ZmErm 0 ZmEsm 0 :0 ]

AA : [ a_ _ _ _ €l]T (58)

0 0 0 0 0
0 0 T 0 0

rm (59)EE= 0 0 0 0 0

0 0 0 Tsm 0

0 0 0 0 0

The submafrlcesY,,_ _, and of are each of order 4M, x M,),; EM Is a
(4M, x l)-ordercolumnmatrix wlth each block of elements EMl, EM2, EM3, and
EM4 given by

(r_+) (rI )EMI = - gr ; EM2 = _+++ tan _2r + gs
(60)

(rl r) {rl n) 'EM3 = l + _++tan _ ; EM4 = l + _+++ tan _2r ta _s

and

_'= CXO" _M*-I 3; _ = [Bo" _M*-I ]
(61)

-- [no""- eM*-l]; •

are (l x M,)-orderrow vectors;and ZrErm and ZsEsm are (l"xM,) row
vectors. The matrix EE has only two nonnullsubmatrlces,Trm/TrT and
-Tsm/TsT,each of order (M, x M,).

It Is observedfrom equations(48) that the unknowninteractionparameter
cI multipliesthe unknowncoefficientmatrix AA of which cI Is also an
element. In this sense, the matrix equation(55) is nonlinear. The equation
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can be solved by an iteration process that assumes c < 1 and expands tn
powers of c so that

-1 2 3
c1 = (1 + c) = l - c + c - c + ... (62)

Equation (55)can also be written

2 3
EF * AA = (EE * AA)(1 - c + c - c + ...) (63)

By setting c = the zeroth-order solution AA(0) Is obtained from the
elgenvectors AA0'of the matrix equation

EF * AA = EE * AA (64)

to)from which € to zeroth order ls obtained. This can be used to obtain

the first-order c_1)- , and a first-order vector AA(I) can be obtained
from the equation

(1)
EF * AA = (l - c )(EE * AA) (65)

This matrix iteration process can be continued until the changes In the suc-
ceeding values of =l or c and the elgenvectors are within acceptable
llmlts. The elgenvectors provide the constants used In the distribution of
flow singularities over the blade surface.

NET PRESSUREDISTRIBUTIONON LIFTINGSURFACE

From the resultsobtainedIn the precedingsectionfor _ and _, Includ-

Ing the effectsof rotor-statorinteraction,It Is possibleto obtain the local
static pressureon the blade. Thus, If POr and POs be the total pres-
sures ahead of the rotor and statorwlth the correspondingalr density p, the
Bernoulliequationgives

POr - Pr = 2\ r Pos

where Vr and Vs are the correspondinglocal velocities. Using equations

(40) for the resultantvelocities UQ and U_ at the rotor and statorandneglectingthe quadraticterms _, _, and glve

p - p (r_+ .)p=- p [(___l+ _ ]1 2 - 2 _e + Vz r; 1 Z = 2 - tan _ Or + _z (67)
_PWa _PWa

The net pressuredistributionon the blades,definedas the difference
' betweenthe upper and lower surfacesof the blades,can be obtainedfrom

equations(67) to the first order In the inducedvelocities _x, _y, and _z
as
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--_= _ _n°r+_oso _L- _U - _o,_ - _no _L- Vz

--_ = _++- tan "2 sin "s + cos _S (_yL - _yU)

- - tan cos - sin . (_yL - _zU)

where _U and _L are, respectively, the total Induced-velocity vectors on
the upper and lower surfaces of the blades evaluated at the chordltne of the
rotor and stator blades as required.

The local lift coefficients CEr and CEs of the rotor and stator
blades are defined by

L L
= r s

CEr q(1 . 1/ +)2Cr q(1 + rl/E.)2C s
r2.R 2. ; CEs = 2 2 (69)

where Lr and Ls are the local ltft per untt span of the rotor and
stator blades and can be expressed in terms of Apr and Aps as

j_r2 is2
Lr = APr dZl; Ls = Aps dzI (70)

Zrl Zsl

Since the flow field of the stage Is complex, It would be convenientto
define the upwash as the axial componentof the inducedvelocity. Becauseof
the nature of the chordwlsedistributionof circulationgiven In equa-
tions (9), the magnltudeof the upwashvelocityon the rotor dependson the
chordwisepositionof the rotor point considered. Let us considerthe upwash
velocityat the midpointof the rotor-bladechord at the median plane. From
equation(26) the upwashvelocity is obtainedas

Oz= _ (AmFmz + BmGmz+ _mHmz+ Bmamz)I (71)m=O Z=ZR

which Is a functionof the radial position rI along the blade. Since the
blade loadingincreasestoward the blade tlp, the blade tlps will probablybe
closer to stall with the statorthan without.

DISCUSSION

Thls report Is primarilyof a theoreticalnature,outliningthe method-
ology for includingthe stator of a turbomachlneto make a combinedstudy of
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the rotor and stator as a subsystem. The lifting-surface theory outltned here
provides a proper framework for the analysis. The theory can be applied to
several interesting cases. Thus the case of an isolated rotor can be discussed
by putting Zs = O. The solution for a single actuator disk can be obtained by
letting Zr . _ and Zs = 0 while allow%ng the l%ft force per rotor blade to
tend toward zero. The flow field of a pair of infinite, two-dimens%onal cas-
cades In paratlel is obtained for hr . 1; hs . 1.

It ls seen from the method used to represent the llftlng-surface of the
rotor and stator that each add%tlonal row of blades introduces two more sets of
coefficients In the corresponding Glauert series expansion. The overall aero-
dynamic interaction effect of additional rows on the first row can still be
represented by c. Keeping the same number of R, stations over the blade
length and N, points along the blade chord for specifying the blade surface
geometry results in the slze of the matrix Involved in determining the Glauert
series coefficients being 2 x number of rows x R,N, + 1.

The Bessel functions employed above In the distribution of the flow singu-
larities extend to very high orders, for which asymptotic representations are
important for numer%cal evaluation. This aspect will be discussed along with
the results for a stage of given geometry and flow condition and comparedwith
measurements In a separate report.

CONCLUDINGREMARKS

The applicationof the llfting-surfacetheory for a completestage of a
turbomach%neof arbitrarycamber,thickness,and other cascadegeometry param-
eters has been demonstratedfor arbitraryflow conditionswlth subsonicaxial
flow. The separationof the rotor-statorinterferenceeffect has also been
shown. Expressionshave been given for the spanw%seloadingon the individual
blades for uniformsteady inlet flow.
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