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INCOMPRESSIBLE LIFTING-~SURFACE AERODYNAMICS FOR A ROTOR-STATOR COMBINATION

Sridhar M. Ramachandra*

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Current 1iterature on the three-dimensional flow through compressor cas-
cades deals with a row of rotor blades in isolation. Since the distance
between the rotor and stator is usually 10 to 20 percent of the blade chord,
the aerodynamic interference between them has to be considered for a proper
evaluation of the aerothermodynamic performance of the stage. A unified
approach to-the aerodynamics of the incompressible flow through a stage is
presented that uses the 1ifting-surface theory for a compressor cascade of
arbitrary camber and thickness distribution. The effects of rotor-stator
interference are represented as a 1inear function of the rotor and stator flows
separately. The loading distribution on the rotor and stator blades and the
interference factor are determined concurrently through a matrix iteration
process.

INTRODUCTION

The multistage axial compressor functions in such a way that each stage
performs essentially the same basic function as the other. Air from the rotor
enters the stator, which is placed close behind it, usually within a distance
of 10 to 20 percent of the blade chord. The rotor imparts kinetic energy of
rotation to the basically axial incoming free-stream flow and aiso increases
its potential energy in the form of a static pressure rise while passing
through the interblade passages. The stator converts the kinetic energy of
rotation of the entering air into potential energy by a further increase of
the static pressure so that the flow downstream of the stator is, again, nearly
axial.

Current literature on the three-dimensional flow in turbomachines is con-
cerned mainly with the flow over one row of rotor blades in isolation. In the
single actuator disk model the perturbation velocity of the disk decreases
exponentially with the distance from the disk. Qualitatively, the strong
upwash field of the stator blades affects a substantial portion of the flow
over the rotor blades and in turn increases the effective incidence of the
rotor blades. Thus the rotor blades are closer to positive stall with the
stator than without, when the effective incidence of the rotor blades is high
in a positive sense. Similarly, when the effective incidence of the stator
blades is high in a negative sense, the stator blades are closer to negative
stall with the rotor than without.

Thus 1t is important to consider the combination of the two rows, which
form one stage of an axial turbomachine, in order to understand their inter-
ference effects and obtain a more accurate evaluation of the dynamic and
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aerothermodynamic behavior of the multistage compressor as a system through a
synthesis of the individual stage performances.

Actuator disk models of the multistage compressor basically assume each
blade row to be of zero axial thickness. In these models such an arrangement
of many stages is equivalent to flow through a series of thin actuator disks.
Using the actuator disk model, Traupel (ref. 1) dealt with the case of an axi-
ally symmetric, multistage machine with an infinite number of identical equi-
distant stages. He introduced an axially periodic stream function, with a
period of one stage pitch, to describe the flow and obtained an expression for
the radial velocity.

Marble (ref. 2), Marble and Michelson (ref. 3), and Railly (ref. 4) con-
sidered extensions of the actuator disk concept to disks of nonzero axial
thickness. Thus Marble considered an axially symmetric flow through an actu-
ator disk with the vorticity shed from each blade row distributed continuously
over the region behind the blade. He obtained a linear equation for the radial
velocity on each side of the disk and obtained a solution for a blade row of
finite chord by superposition.

Railly (ref. 4) assumed the radial velocity field in the multistage com-
pressor to be the sum of the radial velocity contribution of each stage in
isolation and the axial and whirl velocities to remain the same for each blade
row. He assumed an exponential variation of the radial velocity components
along the axis and determined the radial variation. Assuming an initial axial
velocity for each stage, Railly calculated the radial velocity fields by super-
position of the stage contributions and used these fields to recalculate the
axial velocities i1teratively in order to obtain the final solution. He also
calculated the whirl components for each case from the velocity triangles.

Horlock (ref. 5) used the actuator disk model to study the effect of
locating the actuator disk in the plane of the blade trailing edge and in the
plane of the center of pressure of each blade row. Horlock and Deverson
(ref. 6) found that theory and experiment agreed best for placement of the
actuator disk at the midaxial plane of the blades.

Kemp and Sears (refs. 7 and 8) studied the aerodynamic interference between
the rotor and stator-blade rows for incompressible, nonviscous fluids by
regarding each blade row as an infinite two-dimensional cascade. They obtained
expressions for the unsteady components of 1ift and moment of the blades of
each row. They also calculated the effects of stator wakes on the unsteady
1ift of rotor blades. They found 1ift fluctuation amplitudes of about 18 per-
cent of the steady 1ift. Besides, viscous interaction on the forces and
moments caused unsteady forces and moments of about the same order as the
aerodynamic interference between the blade rows.

Prandtl and Betz (ref. 9) outlined the 11fting-1ine theory of the propeller
for minimum energy losses in an incompressible inviscid fluid. This theory
was followed by Goldstein (ref. 10), who formulated the incompressible poten-
tial vortex theory of a propeller with a bound vortex 1ine for each blade and
a helical trailing vortex sheet shed from its trailing edge. This theory was
improved and later extended to linearized compressible potential flow for the
propeller by Busemann (ref. 11) and Davidson (ref. 12) and to the flow through
a compressor by Rott (ref. 13).




A Tinearized three-dimensional 1ifting-1ine theory for an axial compressor
blade row in an infinite axial duct was proposed by McCune (refs. 14 and 15)
and by McCune and Okorounmu (ref. 16) for both subsonic and supersonic flow.
However, McCune's results are applicable to nonlifting blades. Later, Namba
(ref. 17) proposed the 1ifting-surface theory for a rotating thin blade row
for subsonic and supersonic Mach numbers that uses a distribution of oscillat-
ing pressure dipoles on the blades. His theory does not consider the effects
of blade thickness, camber, and incidence. The effects of trailing vortices
shed by the blades are omitted since he used the acceleration potential. Fur-
thermore, Namba's theory does not consider the radial velocity or the swirl
velocity component at the inlet other than the circumferential velocity due to
blade rotation.

Wu (ref. 18) proposed a linearized, three-dimensional, compressible fluid
flow for axial-, radial-, and mixed-flow turbomachines and outlined a numerical
solution technique for the differential equations.

The present report deals with the direct turbomachine problem by consider-
ing the rotationally symmetric, three-dimensional, steady, incompressible ideal
fluid flow through an axial compressor stage consisting of a finite number of
blades in the rotor and stator. The rotor and stator are assumed to be located
centrally in an infinite, coaxial, cylindrical duct with only a small clearance
between the blade tips and the duct walls.

The stator experiences a periodic flow when cutting through the multiple-
start helical vortex sheets of the rotor wake. For simplicity, it is assumed
that the discrete multiple-start, helical, trailing vortex sheets may be
replaced by an equivalent continuous vortex cylinder of the same root and tip
diameter but with uniform vorticity over its cross section. In this represen-
tation the stator blades will experience a steady incoming flow. The effect
of nonuniform/discontinuous wake vorticity is considered separately.

In the present study both the rotor and the stator blades are considered
to be straight, rigid, and untapered. The incoming flow into the rotor is
assumed to be uniform and axial with no radial or swirl component other than
that due to the rotor rotation. Furthermore the inflow into the stator is
assumed to be primarily a uniform axial velocity with a varying swirl component
imparted by the rotor. The radial inlet velocity component due to the rotor is
neglected at this stage.

The undisturbed free-stream velocity components are taken to be (0, V., W)
in the (r, 6, Z) directions relative.to the rotor in a cylindrical coordinate
system. The air is assumed to enter the rotor with uniform upstream static
pressure p, and density p, and with an axial velocity W, that 1is
uniformly distributed over the rotor face.

To simplify the mathematical treatment and the application of surface
boundary conditions, the stator is considered to be stationary. For the stator
the radial velocity component in the rotor outflow is neglected as negligible
so that the inlet velocity components for the stator are assumed to be 0, V¢,
and Ws. Since the stator is situated close to the rotor exit in a region of
rapid change, it is not possible to define, a priori, the inlet velocity com-
ponents 0, Vg, and Wg exactly. However, the stator inlet conditions are
assumed to correspond approximately to the value obtained from the velocity
vector diagram (fig. 1) so that the inlet velocity to the stator would have
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the components 0, V, - W, tan ap, and Wp. Assuming that the rotor and stator
are 1ightly loaded, this is tantamount to the hypothesis that the perturbation
velocity components due to the rotor are small as compared with components
given at this stage, that the stator axial velocity Wg 1s uniform and equals
Wr, and that the circumferential velocity Vg 4s uniform and equals

Vr - Nr tan Gz.

In the following sections a scheme for representing the 1ifting-surface of
rotor and stator blades of arbitrary geometry through a distribution of flow
singularities 1s discussed, and their induced velocity fields at an arbitrary
point of the flow are obtained. The rotor-stator interference factor is intro-
duced next, and matching of the resultant flow field of the stage to provide
zero net vorticity downstream of the stage is discussed. The boundary condi-
tions on the blade surfaces are given in terms of blade and cascade geometry.
These are reduced to a set of simultaneous algebraic equations to determine
both the set of constants giving the distribution of flow singularities and
the interaction factor. The problem 1s then discretized, and an iterative
scheme for the solution of the matrix of unknown constants is outlined. The
net pressure distribution on the blades is expressed in terms of the induced
velocities, and applications are briefly discussed.

SYMBOLS

Am expansion coefficients for rotor-blade chordwise vorticity
distribution (eq. (11a))

A modified rotor chordwise vorticity distribution coefficients

m
(eq. (27))

K-4 matrix of coefficients Rm (eq. (61))

AA column vector of constants ﬁm, ﬁm- Em, ﬁm, and €,

Bm expansion constants for rotor-blade chordwise source
distribution (eq. (11c))

§m modified rotor-blade chordwise source distribution
coefficients (eq. (27))

% matrix of coefficients ﬁm (eq. (61))

C expansion constants for stator-blade chordwise vorticity

m distribution (eq. (11b))

Em modified stator chordwise vorticity distribution
coefficients (eq. (27))

CR' CS rotor- and stator-blade half-chord lengths

Cx dimensionless rotor- and stator-blade half-chords

74 matrix of coefficients (eq. (61))




Ly, Lg
M

Mx

N

Pe

Pr,» Pg

Por» Pos

local 1ift coefficient of rotor and stator blades

expansion coefficients for stator-blade chordwise source

distribution (eq. (11d))

modified stator-blade chordwise source distribution

coefficients (eq. (27))

matrix of coefficienfs (eq. (61))

rotor and stator functions (eq. (35))

matrix defined in (eq. (59))

matrix of integrals (eq. (57))

matrix elements defined in eq. (60) (1 = 1,2,3,4)
vector integral defined in eqs. (28a) and (52)
matrix defined in (eq. (50))

vector integral defined in eqs. (28b) and (52)
matrix defined in eq. (50)

rotor and stator geometry functions (eq. (49))
vector integral defined in eqs. (28c) and (52)
matrix defined in eq. (50)

rotor and stator (hub/tip) radius ratio

vector integral defined in eqs. (28d) and (52)
matrix defined in eq. (50)

rotor and stator circumferential mode numbers
11ft per unit span of rotor and stator blades
Mach number

matrix d1meh510n parameter, RaNx

number of chordwise stations on blade
free-stream static pressure

perturbation pressures due to rotor and stator

total pressures ahead of rotor and stator




Apr, APS

Qr

Qs

Rr, Rs
Rsr

Rx

?(r,0,2)(x,y,2)

We, W
(x,y,2)

(Ypo 205 (¥5,2¢)

net pressure difference on rotor and stator blades
(eq. (68))

total source density on rotor blade (eq. (11))

total source density on stator-blade (eq. (11))
functions defined in eq. (30)

ratio of stator tip radius to rotor tip radius, ryg/rip
number of stations along blade radius

position vector of arbitrary point (cylindrical/Cartesian
coordinates)

dimensionless radial coordinate, r/ry,

hub radius of rotor and stator

tip radius of rotor and stator

functions defined at rotor and stator hub (eq. (36))
matrix defined in eq. (51)

rotor and stator functions defined in eq. (47)

resultant total velocity of rotor and stator

modified resultant total velocity of rotor and stator
(eq. (39))

resultant induced velocity vector (eq. (25))

modified resultant induced velocity (eqs. (26) and (27)),
/Wy

circumferential velocity of air for rotor and stator

free-stream velocity vector for rotor and stator

modified free-stream velocity vector for rotor and stator
(eq. (39))

axial velocity of air for rotor and stator
Cartesian coordinates of arbitrary point

Cartesian coordinates of rotor and stator in local coordinate
system of blade
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ZLer s

] ]
zTr' sz

Ur’ “Us

Zr0» Zs0

Zrl, Zr2
Zs1» Zs2
ar, Qg
*2r

Ty, Tg

€

€

1

e
(k) (k)
r S
Moo N

¥r» Vs

—

\P(Pv v, ()
Pr» Ps

(k)
‘I’gr

Prr» Pg

number of blades in rotor and stator
rotor vector function (eq. (29))
stator vector function (eq. (29))

mean-1ine ordinate of rotor- and stator-blade profiles
lower surface ordinate of rotor- and stator-blade profiles
Tocal half-thickness of rotor- and stator-blade profiles
uppef surface ordinate of rotor- and stator-blade profiles

axial position of midrotor and midstator plane from
reference origin

axial coordinate of stator-blade leading and trailing edges
axial coordinate of stator-blade leading and trailing edges
blade angle settings of rotor and stator blades

exit blade angle of rotor

total vorticity density of rotor and stator blades
(eq. (11))

rotor-stator interaction factor

interaction parameter (eqg. (56)), 1/(1 + ¢)

azimuth angle of cylindrical coordinate system

2-th eigenvalue for mode mp, mg

mean azimuth angle of m.-th rotor blade, mg-th
stator blade (eq. (14))

position vector of a point on rotor/stator with cylindrical
coordinates p, v, ¢

radial position of source/vortex on rotor and stator blades

normalized Bessel function of rotor blade of mode number
kr and 2-th eigenvalue

azimuth angle of source/vortex on rotor and stator blades




or, 9 mean offset angle of first rotor and stator blades

(k.)
¥ S normalized Bessel function of stator blade of mode
number kS and %-th eigenvalue ,

Yr, Yg azimuth angle of point on mp-th rotor and stator blades
defined in egs. (12) and (18)

Q angular velocity of rotor

Wp, Wg Glauert angle of blade defined in eq. (1)

Subscripts: |

r,s rotor, stator

h,t hub, tip

1, 3}, k unit vectors along (x, y, z) directions

REPRESENTATION OF LIFTING SURFACE

The blades of .the stage are considered to be thin with small camber. The
pressure distribution on the blade may be regarded as arising from a surface
distribution of flow singularities that give rise to the given blade profile
and its 11ft. The thickness effect of the blade is represented by a surface
distribution of sources and its 1ift distribution by a surface distribution of
vortices. The distribution of both the source and vortex singularities varies
radially and chordwise over the blade section. A study of the 1inearized par-
tial differential equations for the perturbation pressures of the rotor and
stator when the fluid is incompressible shows that the radial variation of the
pressure satisfies Bessel's differential equation. Therefore, to provide for
the radial variation of the singularities, the chordwise variation is modulated
by a Bessel function.

To specify the chordwise distribution, it is convenient to refer to a
lTocally rotated coordinate system (Yp - Z;) (fig. 2) and to define the
Glauert angles wpr and wg, for a point on the rotor- and stator-blade chords,
respectively, through the equations

. t .
r -CR cos w3 -C, <y'<¢C

' ()

i -C.<y'<C.: <
. CS cos o C yS < CS, 0<ow

<
[}

«<
i

If the midpoint of the blade chord is used as the reference origin for each
blade, the unit vectors in the (R, Y', Z') coordinate system are related to
the unit vectors (R, 6, Z) in the cylindrical coordinates by the
transformation




This system of coordinates
respectively.

ar and a

1}
o O -

i}
o —

o

0 0

sin cos
Qr Gr
-Ccos a. sin a.
0 0
sin cos
%s %s
-C0S sin o
S S

R

© (2a)
YA

R

© (2b)
z

is rotated from the plane of rotation by the ang]es
The relation between the coordinates (Yr,

Zr)

and (Ys, Zs) of a point on a rotor or stator blade with the corresponding
coordinates (Yyr, Zy) and (Yg, Zg) in the (Y - Z) system is given by the

equations
R cos Wr sin Wr 0 Xr
(I - _
Yr = sin a. sin Wr sin a. cos Yr cos o Yr (3)
]
Zr cos . sin Wr -CO0S @, COS Wr sin a. Zr
R cos YS sin WS 0 xS
' = -
Ys = sin a sin WS sin a cos WS cos a YS (4)
Z! cos o_ sin ¥ -C0S a_ COS ¥ sin a z
s s s s s s s
where
Z,4 = zro - CR cos a zr2 = zr0 + CR cos a.
(5)
zS1 = zsO - Cs cos ag; z52 = zSO + CS cos @
and (zpy, Zp2) and (zgy, zgp) refer to the leading and trailing edges of the
rotor and stator. The cylindrical coordinates of an arbitrary point yr, ys
on the rotor- and stator-blade chord at any radius r are given by
C
ry; . + v_ - arctan R cos w, Sina, ; 2z, +C, CcOS w COS a
1" r r r r?’ ro R r r
C (6)
P13 @ + vo - arctan F; COS w, sin ag ; Zg * CS COS w, COS a f
v v . y .
—1Syr._ysﬁ+]s hrﬁrS]- thsrerRsr
Note that the chordwise coordinates y} and ys are normalized

relative to the chords 2Cp and 2Cg, respectively.

If zCr and zés refer to the mean camber line of the rotor-
and stator-blade profiles and zy, and zyg refer to the half-
thickness of the corresponding blades, we have the relations




] — ' . 1 - 1 ]
zCr - zCr(y;)’ ZTr - zTr(yr)
(7

] 1 . ) ] ]
Zes ch(yS), Zes = ZCs(ys)

The equation of the upper and lTower surface blade profiles can be obtained from

' ' [ Y B
ZUr - zCr * zTr' er = Zer zTr
(8)

] ] I . ] ] ]
Zus = Zes * st I T g Ts
Following Schiichting (ref. 19), the chordwise distribution of the flow sin-
gularities is assumed to have the form of a Glauert-Birnbaum series (refs. 20
and 21). Furthermore because of the three-dimensional nature of the flow, the
Glauert expansion will be modulated by suitable functions &x and ¥« of the
radius. These functions are obtained as sums of the eigenfunctions

(k) (ko) (k) (ks)

S r
Ql . Yl In turn, @1 and WQ

of Bessel and Neumann functions of order kr and ks for the 2-th eigenvalue

(k) (k)

S
xg and xl

are normalized linear combinations

of the rotor and stator

(k.) (k)
The functions 2 ™ and ¥ " are normalized linear combinations of
Bessel and Neumann functions of order k, and kg for the 2-th eigenvalue

for the rotor and stator and can be written

Y(k-])(kék)hr) _ Y(k+])(kék)hr)

50 _
2 2N Ky y - gtk L),
X J(k)(r1k;k)) + Y(k)(r]kék))
(9)
(k-1),, (k) (k+1) . (k)
W(k) - Y (kﬁ Rsrhs) -V (kn Rsrhs)
2 J(k—])(xék)Rsrhs) _ J(k+1)(kék)Rsrhs)
X J(k)(xék)r]) + Y(k)(kék)r])
(k) (k) |
The pressure eigenfunctions Qg and Wl satisfy the end conditions at

the root and tip expressed by the equations
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4 (k) _ - -
@2 (r]) =0 at ry = h_ and ry = 1

dr] r
(10)
d (k) _ - -
dr W2 (r]) =0 at r1 = thsr and r1 = RSr

which represent zero radial velocity corresponding to zero radial pressure
gradient at the hub and tip of the rotor and stator. The eigenvalues

xék) for the rotor and stator are given by the roots of the corresponding

transcendental equations obtained by satisfying the end conditions (eq. (10))
at the blade tip.

Although the inlet flow conditions for the stator are really periodic as a
result of the perturbations introduced by the rotor blade passing each point
with a frequency wg = ZyQ/2w, in this paper, it is simply assumed that the
stator-blade inlet conditions are steady by putting ws = 0.

The total surface density of source and vorticity for the complete range
of eigenvalues (& = 0,1,2,..., «») and the mode numbers k, and kg (kp,
k¢ = 0, #1, %2,..., +w) is given by

w
> “r
r.(3,) = 2W (g cot +Z AL sin mo_ ) 24(p.) (11a)
-1
r () = 2W.[C t“’_s+ic sin ¥, (p.) (11b)
s\Pg) = cWaltp €Ot 3 m Mg § Txlpg
m=1
Q.(p.) = 2W B(cot(i-251nm)+ B sin mo. | &,(p.) (11¢)
r'Pr? = %3t o 2 r m r| **\Pr
m=2
Q.(p.) = 2W D(t(i 2 si )+ D si ¥ 11d
s\Pg) = Myl Up\COt 57 = ¢ 51N o 2{: m S1N Mog | Tulpg) (11d)
m=2
Bl = D D0 ) e = D Yt e
kr=—°° =0 ks=—°° =0

The expansion coefficients Ap, By, Cy, and Dy (m =0, 1, 2,..., @) are
determined by satisfying the boundary conditions on the rotor and stator blades
simultaneously. The cylindrical coordinates (pop, ¥, {r) and (pg, ¥s,

Zs) of a point on the mp-th rotor blade and mg-th stator blade are

related to the corresponding chordwise coordinates (wpr, pr) and (ws, ps) the
relations

n




2nm C.sin a_ cos
- r R r r
\Iﬂr = 9, +< Zr ) - arctan ( o )

2wm C. sin a_ €cOS w
- S S S S
Vo= oo * < Zs ) + arctan < B > (12)
S
Cr = zro + cR cos @ cos .
Cs = zSO - CS cosS a CcosS 0

The distributions assumed in equations (2), (3), or (9) for the flow
singularities are such that the vorticity density r(p, ¢, ¢) becomes infinite
at the blade leading edge (w = 0) to give infinite suction and vanishes at the
trailing edge (w = w), satisfying the Kutta condition as in the case of a flat
plate at incidence for both the rotor and the stator. The assumed source den-
sity Q(p, @, ) vanishes at the trailing edge (w = w) and becomes infinite
at the leading edge (w = 0), corresponding to the case of symmetric Joukowski
profile at zero incidence.

Induced Velocity Field of Bound Vorticity

Assuming that the bound vortex filaments have their axes along radial lines
and considering a rotor-blade surface area element (dp, df, sec a« ), the vor-
ticity contained in the element is Tn(epr, ¢, ¢r)sec ap dpp dZr. The induced

velocity dﬁ, at the point (r, o, z) in the»f]ow field, due to the bound
vortex filament with a unit vector ﬂr at Py (pr, ®p cr) can be obtained
from Biot-Savart's law as

> (r - p.)
dur = l‘r(pr, ®pr Cr) sec a ﬂr X =5 3 dprdC (13)
41r|r =P |

which can be written as

di, ={-F(z - ¢.) siny, « F (z-¢.) cos v, - Kr sin (0 - v)}

T (p., V., ) S€C a
r*"r? Yp' cp r
X 3,2 > dprdCr (14)
4nRr(r],

p.)

r

where ? j and K are the unit vectors along the (x, y, z) directions and
the ang]e Yy 1s defined by

Vp = 0p t ety v =2m /75 m.o=0,1,2,...,(Z -1) (15

The induced velocity dﬁr due to all of the Z, blades and all of the circum-
ferential orders Kk, at the blade element is given by
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Zr—l

4% cos a. dﬁr = 62;0 [-?(z - cr) sin ¥t j(z - cr) cos wr - Rr sin (6 - wr)]
r

rr(Pr' wrr Cr)

X 5 dprdCr

3,»
R.(Fyy L)

Introducing the vorticity distribution from equation (2a) into equation
(15) and integrating with respect to pr and ¢y gives the induced

velocity 3r due to the vorticity on the whole blade surface.

21 COS o, U Yo TS
- r rr=f f DD [-?(21-;",) s‘incr+3(z-c‘r)
m =0k =-
r

r zr1 r

(-]
W
X €oSs ¢ - Rr sin (e - wr)] A0 cot EL + E Am sin Me
m=1

-3, -
X Q*(pr)Rr (rqs pr)dCrdpr (17)

Similarly, by defining ¢ and vg by

v =9

+ +
S ¢ TV

S S

m.=0,1, 2,...m(Z_-1) | (18)

2mm S
v = S
S Zs

We can write the induced velocity due to the bound vorticity on the stator

blades as
2w COS as KSF Rsr 252 @ ZS—]
W = f f 2 2 [-?(z] - cs)s1n b o+ j’(z] - Cs)
a Rsrhs Z4 ks=—m ms=0

@
W .
X COS ¢5 7 Rr sin (e - ws)] Co cot 55 + E Cp, sin Moo
m=1

-3
X V(P IRC(T), pg)dL dp | (19)

Induced Velocity Field of Source Distribution

For a rotor-blade surface-area element (dp, d{, sec ap), the source
of strength Qp (py, ¥y, ¢r)sec ap dpp dZ, at (prs ¥r» Cr) induces
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>
a velocity dug(up, vy, wy) at the point (ry, @, z) in the flow. The veloc-
i1ty i1s obtained from Biot-Savart's law as

2> ?1 - Zr
~dip = Q. (e, v, C)) SEC 0 — dpdg. (20)
4aR 0 (ryy o))

whose Cartesian components can be obtained from the expression

> 2
4w cos oL dur = [(r]cos o - P, COS wr)? + (r stn 6 - Py sin wr)j + (z - cr)k]

Q (P y Yo, C )
- ; 3 r» - dp dC,. (21)
32, 2

X

The induced velocity dﬁr due to the sources on all of the Z, blades located
at the same relative location for the whole set of circumferential orders kp
is given by the summation

5>
4% cos d
ar ur

Zr-l
?(r] cos 0 - P, COS wr) + T(r sin e - Py sin wr) + ?(z] - (r)
= > 3.3
: Rr(r]v Pr)
m =0
r
X Q.(pps s ¢ )dp dC_ (22)

Again, by introducing the source distribution from equation (11c) into

equation (22), the induced velocity 3r due to the source distribution over
the whole rotor-blade surface can be obtained by integrating with respect to
pr and ¢, and is given by

1 zr2 Zr—l
27 COS o ‘
R S - _ '
< W )urq _/ / E [?(r] Cos © - p_cOS ) + F(r sin o
hr 2 mr=0

5 o -
- P sin wr) + k(z] - Crﬂ BO(%ot 5 - 2 sin . -+:z: Bm sin Mo,
m=2

-3, >
X & pR(ry, p)dp dC (23)

Similarly, the induced velocity due to the source distribution on the 4%
stator blades can be written for the whole set of circumferential orders kg
as :
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R z Z -1 '
21 €OS el fsr s2 S
-—;E;————- uSQ = EE: [?(r] cos & - p, COS ws) + 3(r sin o
Rerhs  Zy m =0

- P sin ws) + k(z] - cs)] D0 cot 3 - 2 sin W * j{: Dm sin Moo
m=2
x ¥ R(T, B)dp (24)

Induced Velocity of Combined Source and Vortex System
of Rotor and Stator

For low subsonic axla] flow (M << 1) the resultant induced velocity u (?)
at an arbitrary point ¥ (r, o, z) of the flow field due to the combined
system of sources and vortices on both the rotor and stator is obtained from

the equation
> > > > >
U=uU.+ U+ urQ + uSQ (25)

By combining equations (16), (18), (23), and (24), U can be expressed in terms
of the expansion coefficients of the Glauert series of equations (2) as

N ©
G=Z(R? +B2 +CR +0 3 (26)

mm m m mm m'm
m=0

where 1, Km, §m, Em, and Bm are redefined by the coefficients

_)
- A a >
Am = Am/cos a. Bm = Bm/cos o, u = u/wa
Cm = Cm/cos ag Dm = Dm/cos a Q = lewa

and ?m, 3m, ﬁm, and 3m are the set of vector functions defined for
the rotor and stator by .
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]
?0 2 3 ,> o COt'z—r

2w :?: = .‘?’]r(r]' pr) —_——— Q(Pr)dprdcr (283)
sin mw
m h Z r

a ] zr2 r
cot >
0 > 9 9 2 4
2vf == 1= Q'Zr(r]: Pr) ===== ‘I’(Pr)dPrdCr (28b)
ém sin Moo,
hr Zr]

Similarly, for the stator the vector functions are

Rsr 252 ©
ﬁ0 S AN cot 2
2w == = Q']S(r]’ PS) - w*(PS)dPSch (28¢)
ﬁ sin mo
m S
Rsrhs Zs]

R Z
sr s2 wy
30 > cot 5
2w == = ng“]’ PS) ——=——— Y*(Ps)dpsdfs (28d)
3 sin mw
m S

> > > >
The vector functions 29,, 235, 25, and 25 are defined by

: >
-?(z - cr)s1n v+ 3(1 - {r)cos ¥, - kr sin(e - wr)

3,2 o
Rr(r]t Pr)

Egr =

?(r cos 0 - P, COS wr) + 3(r sin @ - p_ sin ¢r) + ?(z - cr)

'éér =

3,2 >
Rr(r]v Pr)
' -> (29)
9
, Iz - )sin g + 1z - g)cos y, - Kr sin(e - y,)
As = : RS(? 2
s\ 1 Ps

5 ?(r cos 6 - pg COS ws) + 3(r sin o - P sin ¢s) + ?(z - cs)
yZS - R3(?‘) ->) /

s\’ Ps
with
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2 9 2
Rr(r]’ Pr)

1/2
2 21
) - 4rpr cos 2(e - wr)]

[(r] - Pr) + (Z] -¢

r
(30)

3 o 2 2 2 1 172
R(Fyy pg) = [(r1 - p) +(zy - &) - 4rp. cost (6 - ws)]

Besides considering the induced velocity of the bound vortices in the rotor
and stator, it is also necessary to include the induced velocity of the trail-
ing vortices shed by the rotor and stator. These vortices move downstream
along helical paths. The trailing vortices shed by the stator blades are
opposite in their sense of rotation to those shed by the rotor blades. Fur-
thermore, when the rotor and stator have nearly equal reactions, the trailing
vortices of both the rotor and stator may be assumed to be nearly equal in
strength at all radii. Thus the net vorticity downstream of the stator is
assumed to be nearly zero. Furthermore, because of the close spacing between
the rotor and the stator, the effect of the vortices shed by the rotor in the
rotor-stator gap will also be neglected. Consequently the

_)
induced velocity i of equation (26) is the complete induced velocity of the

stage.

MATCHING OF ROTOR AND STATOR FLOW FIELDS

>
The perturbation velocities u (?, t) and the resulting perturbation

pressures given in the preceding section at a point ? in the flow field are
based on the hypothesis that the individual contributions of the rotor and
stator are additive and are not vitiated by the interaction effects between
them. The singularity distributions on the blade surfaces assumed in
equations (2) imply no rotor-stator interference and satisfy, individuaily,
the Kutta condition at the trailing edge of both the rotor and stator. How-
ever, the flow tangency condition is disturbed when the rotor and stator are
Juxtaposed closely to form a compressor stage.

It i1s necessary to satisfy the flow tangency condition for the combination
simultaneously. This can be done by introducing an interference velocity
_)
Urs and the corresponding interfergnce pressure ppg so that the

resultant induced velocity vector ¥V and the resultant perturbation pressure.
p are written as

L X 2

<y

>
U+tu. s P=PpP+p. (31)

>
Under the hypothesis of small perturbations the interference vélocity ﬁrs

>
is assumed to be a constant fraction e of the induced velocity U of the
rotor and stator

>
= (1 + ¢)d (32)




From the 1ifting-1ine model it is known that the strength of the bound vor-
tex is a maximum at the blade root for both the rotor and the stator. A vortex

filament of this maximum strength extends downstream to infinity from the root
of each blade. If Iy, and Tgn be the strength of the blade root

vorticity per blade of the rotor and stator, respectively, the condition of
zero net vorticity behind the stator blade becomes

errh + Zsrsh =0 (33)

This equation provides the necessary condition for determining the set of
expansion coefficients in the Glauert series and the interaction factor e.

The vortex strengths I, and Ty, are obtained by a chordwise integration
of the surface density of vorticity in equation (11) so that we have

«© ©
r, =35 AE (h); r, =y CE_(h) (34)
rh i mrmr sh =0 m-sm''s
where Epp(hye) and Egp(hg) are defined by

v 1

i
Ero(hr) = Srh ./. cot > d;r, Erm(hr) = Srh sin L d:r
0 .
(35)
bl 1g
©s
Eso(hs) = SSh ~/~ cot > d(s; Esm(hs) = SSh ,/ﬂ sin Moo dcs
-0 0
with Spn and Sgp, obtained from equation (9) by setting ry equal to
hy and Rgrhg for the rotor and stator so that
Spnihp) = 2ulhp )i SR o) = ¥ (Ro ho) (36)
Equation (35) can be integrated and rewritten as
ErO(hr) = -2«CRSrh(hr)cos . Eso(hs) = '2“csssh(Rsrhs)C°S o
Er1(hr) = -«CRSrh(hr)cos . Es](hs) = -«Csssh(Rsrhs)cos o (3?)

Erm(hr) = 0; Esm(hs) =0 m=2,3, ..., @

BOUNDARY CONDITIONS
For compressors and fans with small tip clearances, the combined perturba-

_)
tion velocity field v of equation (32) together with the gross velocities of
the free stream must satisfy the condition of no radial flow at both the hub
and tip of the rotor and stator. Furthermore, both the rotor- and stator-blade
surfaces must be stream surfaces. The latter condition is convenient to apply
while dealing with the resultant velocity field of the flow singularities.
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The gross free-stream velocities VR (0, Vp, Wr) and Vs (0, Vs, Wg)
for the rotor and stator assumed ln the Introduction together with the

resultant gertgrbat1on velocity V of equation (32) give the resultant total

velocity O, Og

2 2 2 2 2
=0+ vi U =V +v (38)

> > 2
where 0Op, 05, Up, and ¥ are velocities renormalized in such a way

that

2 2
U, = ﬁR/wa; U - ﬁs/wa

(39)
2 2
Vg = VR/wa; v, = Vs/wa
whose Cartesian components for any azimuth angle wyp, ys on the rotor
and stator are given by
2 " "
Vo= o0 sinw; --—cosvy ; 1
R R+ r R+ r
2 N r
VS = ﬁ: + tan @, sin ¥ E: + tan @, | COS W 1
(40)
2 r] r] "
UR = ﬁ: sin Y+ Vs - ﬁ: cos g _ + vy; 1+ v,

2 r . m " "
US = R+ + tan ay sin Yo+ VS R+ + tan @, | COS ¥, + vy, 1+ v,
where R, = (Wp/Q@ri,) is a characteristic dimensionless radius. R, may also
be regarded as the advance ratio of the blade based on the tip radius of the
rotor. Assuming that the incoming flow is uniform in front of the rotor, the
flow characteristics at any point of the blade surface are only peculiar to its
radial location on an arbitrary blade. The same condition applies, likewise,
to the stator blade. Therefore the angles ¢, and g given by equations
(14) and (17) can be replaced by ¢, and g, respectively, and the midchord
1ine of the blade may be considered to be parallel to the X-axis.

" >
The resultant velocities g and OUg can be resolved along and
perpendicular to the blade chord in terms of the local coordinates (Y' - Z')
mentioned in the section Representation of Lifting Surface. To be consistent
with the postulates of thin-aerofoil theory, the boundary condition is applied
at the blade chord. The resultant velocities are given by
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r
~ 1 -~ "~ A
URy' = <-— + U, sing + v, cos °r> sina. + (1 + 7 )cos a

R+
0 T, g v 1+ % )st
Rz! = R+ tvsine + vycos ®,|COS a - (1 + vz)s ne
X r (41)
USy' = - ﬁ: + tan ay + vxs1n ¢+ vy cos ¢s> sin a, + (1 + vz)cos ag

r
[+ 1 " PN a
USZ' = <R+ + tan a, + vxs1n P + vycos (ps>COS ag + (1 + vz)sin ag

wherein we have neglected terms of second order gnd h1ghe5 in Vx, Vy, v,.

The resultant perturbation velocity components Vg and ¥ at the rotor
and stator in the local coordinate system are related to those in the Cartesian
system by the matrix transfo;mation

- -

(-er-T "cos o, ’ sin 0. 0 i Vx

~n

vRy' sin ?p sin a. €OS ¢ sin @. COSa

~ ~

sz' = | sin ?p cos a. cos ®, cos a. -sin a,. vy

vSr cos @ sin o 0 (42)

[o] ~

VSy' -sin Pg sin @ -Cos ®q sin @, COS ag v,

sz' sin ¢, cos o,  cos o C0s & sin a |
_ - _ " -

While calculating the perturbation velocities vR and vs in the blade
coordinates at the rotor and stator given by the column matrix on the left of
equation (42), it is to be noted that the Cartesian velocity components (vx,
vy, Vz) are evaluated at the corresponding points on the rotor and stator,
respectively. The kinematical flow conditions of flow tangency on the blade
surface at any radius ry can now be expressed as

' N ' A
(dZC> - YRz . (d_z_T> _1 o
dy' ] & ’ dy! -24a
r URy' z;:O r URy' z;=0
1 - ]
<d2c> s (‘l’l) 1%
dy' Toa i dy'/ ~ 2 &
s USy' z;=0 S URy' z;=0

To be consistent with the postulates of thin-aerofoil theory, in equations (43)
the boundary cond1t1ons are satisfied at the local chord of the blade by set-
ting zr =0 or = 0 as appropriate to the blade in question.
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From these considerations and equation (12) at any given radius a relation
between the azimuth angles (¢p, zp, ry) and (¢s, Zg, r7) is obtained as

(zr0 - zr)tan e, (zS - zso)tan a

tan ?, = r1 ; tan ¢ = r]

. (44)

These can be substituted for z, and zg 1in the expressions of equations (43).

The slopes of the mean camber 1ine and the thickness distribution for the
rotor and stator blades as given by the derivatives on the left of equa-
tions (43) are known for given blade profiles. These derivatives are denoted

as
Tre T\dy'/,. T T S \dy'),
(45)

dz! dz!
r = '——(.: M T T =2 '_T'
SC dy S S dy s

Combining equations (42) and (43) with equation (3) gives, after some
simplification,

-

sina + 1 CoS a
1 r rc ry._ 0

~ Fo] by
— + - +
2 v, sin o + V, CcOS o (1 Vz)(cos S sin o

r] . R . sin @ - T cos a
R Pran oy + ¥, sineg + Yy cos oo + (14 V) G55 ag + T sina. )” 0
(46)
(r] s & v ~ 5
otV sin op + Vy cog ¢r)tan o, + (1 + vz) = %g% BmTrm(rl)
(3 ) - 8
gt tana, + Vsing + U cos o tan o + (1 + 7)) = - %g% 0 Tem(ry)
where
S @(l".l) : 0, ) ‘I’(I"-l) ; W
r.) = cot =; r{) = cot =
ro* 1 rT 2 sO'' 1 ToT 2
T (ry) 2ry) 1 T (r) ) 1 (47)
r.) = sin mo_; r.) = sin mw
rm* 1 T r sm 1 Tor s
. ) Q(r1) 1 W(r])
= - stnw.; T_, = -2 sin o
ri TeT r sl ToT S
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DETERMINATION OF CONSTANTS

The nature of the distribution of the flow singularities on the blade sur-
face depends on the coefficients Ap, By, Cy, and Dy (m =0, 1, 2,..., =) in
equations (2). To determine these coefficients, the surface boundary condi-
tions in equations (46) have been introduced. Substituting for the resultant
induced velocities Vx, V., and Vz from equations (32) and (26) and combining
the different quantities give for each point on the blade the following set of
simultaneous algebraic equations:

© . . “ " - |"1/R+ - gr
Ed“‘\m‘gl-m"Bm]mJ'cm“’i?mJ'Dm){m+ T+e =0
m=0
(-]
- - - " ry/R, + tan o, - g
Z Am‘%-m * Bmg2m * Cm;‘;m * Dmfém * 1 +¢ =0
m=0 (48)

(<]
1 +r,/R tan o BT
- a . P -~ 1"+ r_ m rm
Z: RZ +8BG +THa +D 4 + e = :E: T

m=0 m=0
2 A1 +r /R + tan a =0T
2 : 2 2 g o a 1"+ 2 z : m_sm
m=0Am'%m+Bm%m+cm)qm+Dmdgm+ 1+¢ - I

where g, and gg are defined by the relations

in +
S ar 1rc cosS ar

g (w.)
r'r cos . - trc sin .

(49)
sina + Tt COS o
g (0) = S SC S
s'S cos o, - T, sin o,
and the set of functions %, @, s#¢ and d{ by the matrix relations
= * . @G = *
.ga SR Fm' jh SR Gm '
(50)
- * . - *
gﬁ% = Sr Hm’ oﬁn = SR Jm
The matrix SR and the column vectors Fp, Gy, Hys Ims Zme % e and
S are given by
sin ?p cos ?, -gr
sin P cos P +gS
SR = sin ?, tan a, cos ®, tan a. 1 (51)
sin ¢ tan o cos ¢_ tan o =1
S S s s
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F ] e (H ] EM
mx mx mx mx
>
P Foy | 5 g - | A ER N W 3 - Iy (52)
_sz_ ‘;sz_ v _Hmz_ _szj
- -7 - - - . - -
Flm %m ‘ﬁm cﬁm
g@m‘ g%m ‘%sm o’ém
= || %= % | 0= | |? o= | (53)
.gﬁm_ .g2m4 .qu_ _)ﬁm-

for m=0, 1, 2,..., . The coefficients A, ﬁm, ﬁm, and ﬁm can be deter-
mined from the set of equations (48). However, since the interaction parameter
e 1s unknown, an additional equation must be provided. This is done by
adjoining equation (33) to equation (48), which provides the matching of the
rotor and the stator. By combining equations (33) and (34), the additional
equation becomes

mz=j [AerErm + CstEsm] -0 (54)

with Epp (hy) and Egp (hg) defined by equations (35). Thus equations (48)
and (54) are the set of simulitaneous Jequations to be golved in order to deter-
mine the infinite set of constants Am, By Cm, and Dp and the interference
parameter e.

Discretization of Problem

It 15 seen from equations (48) and (54) that the infinite set of coeffi-
cients Am, me Cm, and Dy 1s, indeed, required to describe the flow over
the rotor- and stator-blade surfaces for each value of rj and results in
infinite matrices. The dimensions of the problem can be reduced by selecting a
finite number of terms m = (Mx - 1) in the Glauert series of equations (2) for
both the rotor and the stator so that 4Mx + 1 unknown constants must be
determined. As for the blade surface, Rx stations over the blade length and
N+ points along the blade chord are considered at which the camber and thick-
ness profiles and their slopes are specified for both the rotor and stator.
Thus the number of terms in each of equations (2) equals M = RaNx- and the
matrix of the coefficients A 8, €, and ﬁm ‘Is of order 4Mx.

The chordwise location of the points can be obtained by using the 3/4-chord
theorem for each chord segment. Thus, since the midpoint of the chord has been
chosen for each chord reference for Nx = 4, these points will be located at
(-5/16, -1/16, 3/16, 7/16) of the dimensionless rotor and stator chords CR and
Cs, respectively. For R« = 3, the radial 1ocat10n of the points would be
riy = [he, (1 +# hp)/2, 1] on the rotor and ry = [Rgrhg, Rgp(1 + hg)/2, Rgr] on
E?edstator, corresponding to the hub, mean, and tip, respectively, of each

ade
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The set of equations (48) and (54) can be written as a single matrix
equation

EF * AA = (EE * AA)ey (55)

where EF Is a (4Mx + 1)-order square matrix of the integrals &%, ¥, ># and &
and the blade geometry parameters; AA is the (4Mx + 1)-order column vector of
the constants Ay, 8y, Cm, O, and e7, where

. (56)

and the matrices EF, AA, and EE are defined by

F 9 ¥ 4
EF = | mmm e e e a -~ (57)
ZE 0 ZE_ 0 10
m sm 1
M-l & 2% 2 ¢l (58)
(0 00 0 0
0 0T 0 0
rm
EE=|o 0 0 o 0 (59)
000 Ty O
0O 00 0 0

The submafrices & ¥, 5 and ¢ ;re each of order (4Mx x Mx),; EM s a
(4Mx x 1)-order column matrix with each block of elements EM;, EMp, EM3, and
EMg given by

r] r-l
EMy = (R_ - gr); EM, =(E‘ +tan e, + gs)

(60)
r r]
EM3 = (1 + ﬁ: tan ar); EM4 =1 +-<§: + tan ay,. ta?)“s
and
o = [AO' . . 4AM*-1}; B= [BO.- . . BM*-1]
a 3 - ~ (6])
& = [co. . . CM*_]]; D= [DO. .. DM*—I]

are (1 x Mx)-order row vectors; and ZrErm and ZgEgy are (1 °'x Mx) row
vectors. The matrix EE has only two nonnull submatrices, Tep/tp7 and
-Tgm/tsT, €ach of order (Mx x Mx).

It 1s observed from equations (48) that the unknown interaction parameter
e1 multiplies the unknown coefficient matrix AA of which &7 1is also an
element. In this sense, the matrix equation (55) is nonlinear. The equation
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can be solved by an iteration process that assumes ¢ < 1 and expands in
powers of ¢ so that

c]=(1+e)-1=1—c+c2—53+... (62)
Equation (55) can also be written
2 3
EF * AA = (EE * AA)(1 - e + ¢ - ¢ + ...) (63)

B¥ setting ¢ = 0, the zeroth-order solution AA(0) 45 obtained from the
elgenvectors AA of the matrix equation

EF * AA = EE * AA (64)

from which csO) to zeroth order is obtained. This can be used to obtain

1
the first-order c§ ), and a first-order vector AA(1) can be obtained
from the equation
(1)

EF * AA = (1 - ¢ ")(EE * AA) (65)

This matrix iteration process can be continued until the changes in the suc-
ceeding values of €7 or ¢ and the eigenvectors are within acceptable
1imits. The eigenvectors provide the constants used in the distribution of
flow singularities over the blade surface.

NET PRESSURE DISTRIBUTION ON LIFTING SURFACE

> >
From the results obtained in the preceding section for G and ¥, includ-

ing the effects of rotor-stator interaction, it is possible to obtain the local
static pressure on the blade. Thus, if pg, and pgg be the total pres-
sures ahead of the rotor and stator with the corresponding air density p, the
Bernoulli equation gives

14,2 _ 2\, C1(2 2
Por ~ Pr = 2<Yr - wa)’ Pos = Ps = Z(Vs - ws) (66)

where V. and Vg are the corresponding local velocities. Using equations
(40) for the resultant velocities Up and Us at the rotor and stator and
neglecting the quadratic terms Vﬁ, %5, and 3 give ’

p_-Pp r p_-p r

© _ T & ~ . © _ ] P A

———lpwz = 2<—R+ Vg * vz>r, le2 = 2[(—-—R+ - tan a.2> v + vz] (67)
2" a 2"a .

The net pressure distribution on the blades, defined as the difference
between the upper and lower surfaces of the blades, can be obza1ned from R
equations (67) to the first order in the induced velocities Vo Vy, and v,

as
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ap, N ' "
—_— | — S _ O | — _ G _ O
q - (R+ sin a. + COS °¥>(vyL vyu> R+ cos a, sin a. <sz VzU)

s g (68)
—a— = E: - tan a, sin ag + COS

S

r
1 %
- (R - tan a2> cos a, - sin ag (vyL 'U)

+

> >
where VU and VL are, respectively, the total induced-velocity vectors on
the upper and lower surfaces of the blades evaluated at the chordline of the
rotor and stator blades as required.

The local 11ft coefficients Cgp and Cyg of the rotor and stator
blades are defined by

— (69)
/R+)2CS

L
i Cee =
f/Rz)zc Ls

C =
Lr q(1 +r

- N

q(1 + r

where L, and Lg are the local 11ft per unit span of the rotor and
stator blades and can be expressed in terms of Ap, and Aps as

Zr2 252
Lr =/ L\pr dz]; L,S =/ ApS dz] (70)

2 Zq1

Since the flow field of the stage is complex, it would be convenient to
define the upwash as the axial component of the induced velocity. Because of
the nature of the chordwise distribution of circulation given in equa-
tions (9), the magnitude of the upwash velocity on the rotor depends on the
chordwise position of the rotor point considered. Let us consider the upwash
velocity at the midpoint of the rotor-blade chord at the median plane. From
equation (26) the upwash velocity is obtained as

-~

ZE: (Am mz * * Loz + Dpdpy) ' (11)

Z=ZR

(2]

which 1s a function of the radial position ry along the blade. Since the
blade loading increases toward the blade tip, the blade tips will probably be
closer to stall with the stator than without.

DISCUSSION

This report is primarily of a theoretical nature, outlining the method-
ology for including the stator of a turbomachine to make a combined study of
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the rotor and stator as a subsystem. The lifting-surface theory outlined here
provides a proper framework for the analysis. The theory can be applied to
several interesting cases. Thus the case of an isolated rotor can be discussed
by putting Z¢ = 0. The solution for a single actuator disk can be obtained by
letting Zyp » » and Zg = 0 while allowing the 1ift force per rotor blade to
tend toward zero. The flow field of a pair of infinite, two-dimensional cas-
cades in parallel is obtained for hp » 1; hg > 1.

It is seen from the method used to represent the 1ifting-surface of the
rotor and stator that each additional row of blades introduces two more sets of
coefficients in the corresponding Glauert series expansion. The overall aero-
dynamic interaction effect of additional rows on the first row can still be
represented by e¢. Keeping the same number of Rix stations over the blade
length and Nx points along the blade chord for specifying the blade surface
geometry results in the size of the matrix involved in determining the Glauert
series coefficients being 2 x number of rows x RixNa + 1.

The Bessel functions employed above in the distribution of the flow singu-
larities extend to very high orders, for which asymptotic representations are
important for numerical evaluation. This aspect will be discussed along with
the results for a stage of given geometry and flow condition and compared with
measurements in a separate report.

CONCLUDING REMARKS

The application of the 1ifting-surface theory for a complete stage of a
turbomachine of arbitrary camber, thickness, and other cascade geometry param-
eters has been demonstrated for arbitrary flow conditions with subsonic axial
flow. The separation of the rotor-stator interference effect has also been
shown. Expressions have been given for the spanwise loading on the individual
blades for uniform steady inlet flow.
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