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1. INTRODUCTION

This report is the Final Technical Report on NASA Grant NAGW-240,

monitored by Drs. Clint Brown, Gary Hicks and Randolph Graves. The report

describes experimental work on turbulent, supersonic shear layers performed

at the Gas Dynamics Laboratory of Princeton University during the period

September I, 1981 to August 31, 1984.

The behavior of turbulent shear flows at high Reynolds numbers and

superscnic speeds is of great practical interest, particularly in the internal

and external aerodynamic design of aircraft. A good example is given by the

flow through the compressor and turbine. Here, very complicated flows occur,

and the boundary layers can experience severe adverse pressure gradients,

interactions with shock waves, longitudinal curvature and possibly separation

and reattachment. Similar observations can be made regarding the disturbances

suffered by the external flow over the fuselage, wing and control surfaces.

Unfortunately, our present understanding of these complex flows is

rather limited. As a result, the computations display severe shortcomings,

and these inadequacies were well documented at the recent Stanford Conference

on Complex Turbulent Flows (Kline, et.al. 1981). Consider the example shown

in Fig. 1. Here, the calculations by Visbal and Knight (1983) are compared

with the measurements by Settles, et.al. (1977) in four two-dimensional

compression corner flows at Mach 3.
oThe flows range from attached (8 ), to

incipient separation (16°) to separated (20°,24
0
). The computer code was

based on the Reynolds-averaged Navier-Stokes equations using the Baldwin-Lomax

algebraic eddy viscosity model. As can be seen, the comparisons are not very

favorable, especially for the higher corner angles and the results clearly

demonstrate the inadequacy of the turbulence model.
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For three-dimensional interactions, similar calculations have resulted
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in rather better agreement with experiment, at least in some cases. For

example, Knight (1983) found good agreement between his calculations and the

experimental study of a sharp fin interaction performed by Oskam (1976). Such

calculations, however, require careful validation before they can be considered

reliable and accurate. The recent computations by Horstman (1984) demonstrate

how cautiously we must proceed. Horstman calculated a large number of swept

compression corners, systematically varying the corner angle a and the sweep-

back angle A. These results were compared with the experimental work by Teng

and Settles (1982), Settles and Bogdonoff (1982) and Settles, et al. (1984),

and Horstman found good agreement over a considerable range of Q and A. At

high sweepback angles, however, sharp discrepancies occurred. In addition,

the computations missed some important flow details at lower angles. Thus,

computations can appear to be successful over some range of parameters and

yet display severe shortcomings outside this range; without appropriate

experimental work such discrepancies might pass unnoticed.

Experimental work, therefore, is required (i) to understand the physical

mechanisms which determine the behavior of the flow, (ii) to develop improved

turbulence models, and (iii) to generate data sets for the validation of compu-

tational work. In particular, we require further turbulence data; the existing

measurements are scarce and generally of dubious quality (see, for example,

Fernholz and Finley, 1981).

These needs were recognized by NASA, and the Gas Dynamics Lab was

asked to begin a long range experimental program to study the behavior of

turbulence in supersonic shear flows. We feel that this program has achieved

major progress in the understanding and documentation of supersonic shear
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layer behavior, and the current report summarizes our achievements. Further

details are available from the publications produced under NASA sponsorship,

and these are listed in Appendix A.

The research can be conveniently divided into three major areas:

development and ,improyement of turbulence measuring ;echniques for supersonic

flows (see Section 2); detailed exparimental investiga~io;,s of a limited number

of flow geometries (Section 3), and development of physical models to explain

the observed behavior of the flows (Section 4). In addition, a number of other

activities took place which are not so easily classifiable, and these activities

are described in Section 5. The conclusions are given in Section 6. together

with some recommendations for future work.
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2. I~STRL~ffiNTATION DEVELOPMENT ~~D TESTING

Previous turbulence data displayed considerable scatter (see, for

example, Fernholz & Finley, 1981), and a major effort was therefore under-

taken to improve the accuracy of these measurements. Two techniques are

available: hot-wire anemometry and laser-Doppler ve10cimetry. Early studies

using the LDV technique (which requires seeding of the flow) showed that this

method suffered from lack of resolution and seeding non-uniformity close to

the wall and in strong velocity gradients. There was considerable doubt

whether the particles fo110IVed the very sharp changes in flow direction which

occur through such interactions. Our previous experience had shown that the

hot-wire, with some restrictions, could be used for examining these flows, and

our attention was therefore focussed on improving hot-wire techniques, ·and

developing them to the point where hot-wires could be used to their full capa-

bi1ity under the harsh conditions of supersonic tests.

In a blowdm·m facility such as the 8" x 8" supersonic channel at .the

Gas Dynamics Laboratory, run times are typically limited to one or two minutes.

Such short run times make the use of conventional constant current hot-wire

anemometers impractical. These anemometers require careful adjustment 6f the

frequency response under actual operating conditions, and data acquisition is

therefore rather slow. Thus, we have concentrated our efforts on improving

constant temprature anemometer techniques. These systems compensate for fre-

quency response automatically and considerably improve data acquisition effi-

ciency. We have succeeded in developing reliable calibration and data

acquisition techniques for normal and inclined wires operated in the constant

temperature mode, and these methods have been reported at several confer(;!nces

and in a number of archival journals (see Appendix A). To summarize, significant



•

•

J

•

-5-

I

I

original contributions in this area include the design of reliable and

durable hot-wire probes. the analysis and experimental validation of inclined

wire sensitivity in supersonic flow and the identification of the effects of

normal Mach number, end conduction and wire bowing on inclined wire sensitivity.

It was also shown, for the first time. that constant temperature systems dis-

play significant non-linearities at low overheat ratios, and they are therefore

unsuitable for the measurement of temperature fluctuations. Only mass-flow

f1uctuatio' s. (~u)', can be satisfactorily measured with a constant-temperature

system.

Two uifferent probes were designed and tested: a normal wire probe,

for measuring (pu)', and an inclined wire probe, for measuring the mass-weighted

Reynolds shear stress (pu) 'v'. The probes, and the calibration and testing

procedures, are described briefly below.

2.1 Normal Wire Probe Design, Calibration and Test~

The current probe design is the result of considerable development.

In our first design, bare tungsten wire was spot-welded to the prongs using

a tungsten electrode. This proved to be highly unsatisfactory. Not only was

the active wire length subjected to aerod>~amic interference from the relatively

bulky prongs, but it was also difficult to achieve a satisfactory bond between

wire and prong, and wire breakages were very frequemt. Instead, our curr.ent

probe design closely follows that recommended by Kov.asznay (1950). The tungsten

wire (5 ~m diameter) is first electroplated with copper and then soft-soldered

to the prongs. A dilute suphuric acid solution is then used to etch away the

copper coating and expose an active portion of tungsten wire approximately

0.8 mm long (Fig. 2). To avoid strain-gaging, a small amount of slack is

usually introduced. This probe design drastically ~~uces wire breakage. and
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in addition, minimizes the interference effect of the bow shocks emanating

from the tips of the prongs (Figs. 3 and 4).

The probe was connected to a DISA SS}110 constant temperature anemometer.

The overheat ratio was varied by changing the bridge resistance. The frequency

re~ponse (deduc~d fro~ a square-wave test) was optimized by adjusting the ane-

mometer gain and filter setting. All wires were checked for strain-gaging,

and those found to be suspect were discarded.

The anemometer output was separated into a me,n and a fluctuating

component by low- and high-pass filters each set at 10 Hz. The fluctuating

component was digitized directly at SOO kHz sampling rate by a Prest0n Scientific

GMAD-l AID converter, and the raw data was stored on-line in the memory of a

Hewlett-Packard HPlOOO minicomputer for further processing. The mean component

of the output voltage was also r-=corded, along VJith other mean quantities, by

a slower AID converter.

The wires were tested and calibrated in a small Hach 3 pilot tunnel

with a working section measuring 49.3 rom x 74.S rom. The stagnation pressure

was varied between 4 x 105 and 14 x laS N/m2 which, for a S ~m wire, gave a

VJire Re)~olds number range of approximately 80 to 250.

We demonstrated that the constant-temperature hot-wire anemometer is

inherently unsuitable for. measuring turbulent temperature correlations; the

major reason is the non-lin~arity of the temperature sensitivity at low

overheat ratios. The instrument is therefore restricted to measurements of

the mass-flow fluctuations. If temperature fluctuations are present, high

overheat r~tios are desirable to avoid contaminatioa of the mass-flow signal

by contributions from the fluctuating temperature. Very high overheat ratios

may be required if we wish to ignore these contributions entirely.
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The maximum frequency response of the system depends on the anemometer

roll-off frequency, the spatial resolution of the probe and the maximum AID

conversion rate. The maximum frequency response required depends on the

experiment; all requirements on the frequency response become less stringent

as the typical size of the shear layer increases.

It was found that the static calibration of the anemometer could be

adequately represented by a modified King's Law. This calibration is a

function of mean stagnation temperature and corrections are required to

account for this dependence if the stagnation temperature varies with time,

or with position in the flow field. The corrections were found to be sitinifi-

cant, and a satisfactory correction procedure was suggested.

To demonstrate the constant-temperature hot-wire technique in practice,

some measurements were made in the boundary layer developing on the tunnel

floor of the Princeton University 203 mm x 203 rom Supersonic Wind Tunnel.

The freestream ~ach number was 2.9, the wall conditions were near-adiabetic.

and the rms mass-flow turbulence level in the freestream was approximately 1%.

The tunnel was operated at a stagnation pressure of 6.9 x 105 N/m2 , which

7gave a unit Reynolds number of 6.3 x 101m. At the measuring position, the

boundary layer thickness was about 26 rom, with a Reynolds number based on

momentum thickness of 77,600.

Consider the data presented in Fig. 5. Figure 5a shows the mass-flow

turbulence intensity as measured by three different wires, each operated at

an overheat ratio of approximately 1.0. The repeatability of the measurements

is obViously very satisfactory. The effect of varying the overheat ratio is

demonstrated in Fig. Sb. Clearly, the data reach an asymptotic level as the

overheat ratio increases, suggesting that the results ta.ken at high overheat
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are not significantly "contaminated" by total temperature fluctuations.

The inferred velocity fluctuation intensity is shown in Fig. Sc.

The present measurements appear to be a little higher than most comparable

data. particularly near the wall. The relatively high levels shown by our

results may be due to the good spatial and temporal resolution of our measure-

ments; significantly. our measurements agree well with the data of Johnson and

Rose (1975) who used both LDV and hot-wire systems.

In conclusion. the overall trend shown by our data. and the level of

quantitative agreement with previous data appears to be s~tisfactory.

2.2 Inclined lvire Probe Design, Calihration and Testing

The inclined wire probe design was similar to that used for the normal

wire probe described in Section 2.1. The tungsten wire (5 ~m diameter) was

first electroplated with copper and then soft-soldered to the prongs. The

central portion of the copper coating was etched away to expose an active

portion of the tungsten wire approximately 0.8 rnrn long (see Fig. 6). For an

inclined wire it is particularly important to isolate the central active

length from the flowfield interference caused by the prongs. and the copper

plated stubs served this purpose admirably (see Fig. 7). The angle formed

between the mean flow direction and the normal to the wire for our probes

was either 30°. or 450 (approximately).

The calibration facility. anemometer equipment and data analysis

techniques were as described in Section 2.1. The inclined wire was calibrated

for mass-flow rate sensitivity according to the procedure used for a normal

wire. To calibrate the inclined wire for directional sensitivity. the probe

was yawed through an angle of about ± 10° f,"om its null position using the

device shown in Fig. 8. This device yaws the wire without changing its .positJon

in the flow.
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We established a reliable calibration procedure for inclined wires

operating in supersonic flow. The longitudinal mass-flow sensitivity at a

fixed yaw angle was found by fitting a modified King's Law to the data.

This data correlation was identical to that used in the analysis of normal

wire data, with both correlations using an exponent n = 0.55. Several

observations were made regarding the relative sensitivity ~, defined as the

ratio of the transverse to longitudinal mass-flow sensitivity (see Fig. 9).

First, ~ appears to be independent of the Reynolds number. Second, although

~ depends strongly on the flo~ direction relative to the wire, the functional

dependence is not simple; for instance, the cosine cooling law does not hold

in supersonic flow. It seems best to find ~ by Qirect calibration. Third,

when the relative sensitivity is a strong function of the yaw angle, the wire

should be discarded to avoid errors due to nonlinearities. Fourth, in a super-

sonic flow ~ takes higher values than commonly encountered in subsonic flows.

The Mach number dependence of the inclined wire response was not inves-

tigated. Present indications are that this ~mch number dependence is small,

in agreement with the findings of Reshotko and Beckwith (1958). Further work

on this question is currently in progress.

The calibration is a function of probe alignment and mean stagnation

temperature. The corrections for temperature drift are similar to those used

in the normal wire analysis. When the probe is misaligned by only a small

amount, the senstivities may be corrected appropriately, but the measurements

can not be interpreted without knowing the intensity of the longitudinal mass-

flow rate fluctuations.

Two major restrictions limit the usefulness of the inclined wire in

supersonic flO\,'. The first restriction requires that the normal Mach n'lmber
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must exceed 1.2. This places a limit on the maximum turbulence intensity

that can be measured accurately. The second restriction is the necessity

for a high system roll-off frequency. This lower limit on the frequency

response is consider~bly higher than that required for normal wire measurements,

and it may not be attainable in practice.

To demonstrate the inclined wire technique in practice, the mass-weighted

Reynolds shear stress (pu)'v' was measured in a Mach 2.9 turbulent boundary

layer. By comparing the results with corresponding data for similar flows,

some indication of the measurement accuracy was obtained.

In these measurements, two different inclined wires were used, and the

angle calibrations of these particular wires were those sho~~ in Fig. 9. Both

wires had a nomLlal diameter of 5 lJm, a length-to-diameter ratio of approxi-

mately 180, and in each case the frequency response in the freestream was about

125 kHz. The boundary layer flow was typical of a zero pressure gradient layer,

and the flow was identical to that investigated using normal wires. "Further

details of the flowfield, and the data acquisition system were given in

Section 2.1.

The results are sho~~ in Fig. 10. The Reynolds shear stress ~'v' was

deduced by assumipg that (i) the pressure fluctuations were small, (ii) the

total temperature gradient was small, and (iii) the turbulent Pradtl number

was unity Olikulla, in: Fernholz and Finley, 1981).

The normal ~Iach number restriction affects the measurements near the

wall, and it will mean that (ou)'v' and u'v' are underestimated close to the

wall. For a strai.ght 300 wire in our Mach 2.9 boundary layer, the results

are underestimated for y/8 < 0.1 and for a straight 450
w~re the results are

underestimated for y/5 < 0.4. Uhen the wire is bowed, the situation 1s"
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considerably worse. For instance, with a bow of ± 10°, the results for a

°nominally 30 wire are underestimated in the region y/o < 0.2, and a nominally

45° wire cannot be used for y/o < 0.6. Thus the results for the twp (slightly

bowed) wires shown in Fig. 10 can be explained in terms of the normal Mach

number criterion.

The u'v' measurements shown in Fig. lOb may be compared with the "best

estimate" of the supersonic shear stress distribution suggested by Sandborn

(1974). The agreement is rather poor for the 45° wire, but the 300 wire

gives excellent agreement for y/8 > 0.2. In fact, considering the size of

the error bars, the agre~~ent is rather better than expected. The discrepancies

displayed by the 45° wire for y/c < 0.6, and by the 30° wires for y/o < 0.2 may

be explained in terms of the normal Mach number criterion, as has already been

discussed.

In practice, hot wires are often bowed, either because of thermal

expansion; or because of a deliberate attempt to reduce strain-gauging effects.

In addition to bowing, end-conduction effects may be responsible for the scatter

observed in the directional sensitivity (see, for example, Fig. 9c).

The directional sensitivity of a bowed, inclined hot-wire wns "thcre-

fore investigated using a simple model for the convective heat transfer.

The static response was analyzed for subsonic and supersonic flows. It was

sho~~ that the effects of both end conduction and wire bowing are greater in

supersonic flow. Regardless of the Mach number, however, these two phenomena

have distinctly different effects; end conduction apepars to be responsible

for reducing the non-linearity of the response, whereas bowing increases the

directional sensitivity (see Fig. 11).
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It was also possible to calculate the temperature distribution along

the bowed wire, and sample calculations are shown in Fig. 12. The effect of

yaw on a straight wire is surprisingly small, and the temperature distribution

is virtually unaffect~d by yaw angle. In contrast, the bowed wire temperature

distribution is a strong function of yaw angle.

The position of the temperature peak occurs along the portion of the

wire with the greatest sweepback, as may be expected. In addition, the

maximum temperature for a bowed wire is considerably higher than the maximum

for the straight wire. This observation has important consequences for hot

wire filaments made of tungsten; to avoid oxidation the temperature at any

part along the wire should remain below 6000 K.

2.3 Current Development Work

Current development work in the area of hot-wire anemometry includes

a micro-schlieren flow visualization investigation of the flow in the vicinity

of the wire (preliminary results are shown in Figs. 4 and 7), the design of

a suitable cr0ssed-wire probe, the study of the hot-wire response in transonic

flows and the development of a probe with an array of wires for the purpose of

gathering data simultaneously at a number of points in the flow.

In addition to hot-wires, wall pressure transducers have been used in

our lab for some time, particularly in the investigation of unsteady flows.

Recently, we have extended the use of these transducers to multiple channels

to measure space-time correlations, and to operate in combination with hot-

wire probes to measure wall-pressure/velocity correlations. The validity

of these measurements is restricted by the upper frequency response of the

pressure transducers and the phase shift performance. These aspects .are

currently under investigation.



3. EXPERIMENTAL STUDIES

The hot-wire development resulted in a clear understanding of normal

and inclined wire behavior, and it enabled us to take high quality turbulence

•

,

measurements in supersonic flows. Great progress was achieved in using these

hot-wire techniques to investigate a variety of interesting flows. These

flows may be conveniently distinguished into two groups: shock-wave/boundary

layer interactions produced by two-dimensional compression corners, and

"isentropic compressions;' where the boundary layer flows over a concavely

curved surface. These flows were chosen to investigate the behavior of

supersonic turbul~nt boundary layers in moderate to severe pressure gradients.

In addition, the reattachment of a boundary layer separating off a backward-

facing step was investigated in considerable detail to improve our understanding

of the reattachment process. We will now consider each group of flows in turn,

beginning with the reattachment study.

3.1 Reattaching Shear Layer Study

Using a backward facing step geometry, the incoming boundary layer was

allowed to develop over a flat plate at Mach 2.9 before separating off the

~oostep and reattaching on a~· ramp. The ramp was designed to eliminate the

,

•

lip shock at the point of separation, and the separated flow formed a nominally

self-preserving free shear layer without extraneous shocks and disturbances,

and therefore it provided a well-defined initial condition for reattachment.

The test model is shown in Fig. 13. A turbulent boundary layer

developed lliitially on the upstrea~ flat plate (229 rom long). At the point

where the boundary layer separated over a backward facing step, the boundary

layer thickness 00 was about 3.5 rom with a Reynolds number based on momentum

thickness of approx~ately 14,000. The free shear layer, formed by the
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separating boundary layer bridged a 25.4 mm deep cavity before reattaching

on a plane ramp (see Fig. 14).

The flowfield steadiness was investigated by Settles et.al. (1983)

using microsecond shadowgrams. In contrast to subsonic reattachment, where

the reattachment line can move significantly, only a slight "tremble" of

the wave system was observed. The magnitude of this wave motion was small

compared to the average shear layer thickness and no large scale unsteadiness

seemed to be present.

The upstream turbulent boundary layer separates without deflection at

the corner of the backward facing step, forming a free shear layer. The

shear layer mean velocity profiles achieve self-similarity at station SH43,

which is approximately 17 °0 downstream of the step. The growth of the shear

layer is faster on the lo~-speed side than on the high-speed side, and, as a

result, reattachment occurs at a point slightly below the geometric extension

of the flat plate on the ramp surface. The static pressure rises before re-

attachment and continues to rise well do~~stream. The compression wave asso-

cia ted with the shear layer curvature coalesce to form a shock wave in the

freestream, at some distance outside the shear layers.

Downstream of the mean reattachment point (station R27) a new boundary

layer begins to develop. The adverse pressure gradient in this region gradually

reduces and becomes negligible at about station R44. The mean velocity near the

wall rapidly increases with downstream distance and the wall-layer thickness

grows quickly. T~e velocity profiles initially display a very large wake

component (as may be expected) but this soon decreases. By station R42, the

mean velocity appears to dip below the standard logarithmic law, sugges~ing

that the length scale near the wall is abnormally large. The relaxation of
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the boundary layer is certainly not monotonic. For instance, both the Clauser

parameter G and the wake parameter r. reach high values near reattachment but

undershoot their respect i-,e equilibrium values of 6.8 and 0.55 downstream.

This behavior agrees with that observed in many subsonic reattachment studies

(Bradshaw and Wong, 1972; Chandrsuda and Bradshaw, 1981).

The turbulence behavior is in some ways even more spectacular. Figure 15

shows the downstream evolution of the maximum rms mass-flow fluctuation inten

sity <Cpu)'>. In this figure, the turbulence intensities are normalized by

the mean freestream mass flow upstream of the reattachment to show the ampli

fication of the absolute intensity. To interpret the results in terms of the

local freestream mass-flow rate, it may be noted that the freestream mass-flow

rate increases by 97% through the compression. The arrows in Figs. 3 and 4

indicate the sonic point locations. The results below these points should

be ignored, since the hot-wire calibration is not valid in the transonic and

subsonic regions.

As can be seen, the fluctuation intensity in the free shear layer

increases slowly with do~~stream distance. In contrast to the mean flow

measurements, it appears that the turbulence intensity profiles do not achieve

similarity at any stage before reattachment. However, this observation may be

incorrect. The relative temporal and spatial resolution of the hot wire improves

improves with increasing shear-layer thickness, and this may give the erroneous

impression that the turbulence intensity is increasing.

The maximum turbulence intensity rises rapidly as the she~r layer

approaches the ramp, and at reattachment it reaches a level of almost 40%

(see Fig. 15). Do~~strearn of this point, the intensity continues to rise

before reaching a maximum at station R42 (which coincides closely with the

point where the static pressure gradient becomes negligible).
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This large increase in turbulence level, persisting downstream of
I

reattachment, is rather unexpected. In subsonic flow, downstream of a

, backward facing step, it has been observed that the turbulence level reaches

a peak before reattachment and then decays rapidly. In contrast, in super-

sonir. flow, we observe a dramatic amplification of the turbulence level.

This experiment, therefore, clearly demonstrates the effect of compressi-

bility on the turbulence behavior.

By using an approximate form of the turbulent kinetic energy equation,

we demonstrated that mean dilatation significantly contributed to the

amplification of the turbulence intensities. The overall flow behavior,

however, was far from simple, and many competing influences were Fresent.

In p~rticular, the turbulence length scale appeared to be both reduced by

eddy bifurcation near reattachment and amplified by the action of extra

strain rates due to dilatation and longitudinal curvature. In our analysis

we ignored the possibility of turbulence amplification caused by unsteady

oscillation of the wave systa~, and by local deformation of the compression

waves by the turbulence itself. Several authors (Anyiwo and Bushnell, 1982;

Zang et al., 1982) have sUf,gested that these mechanisms may be important-.

In short, successful prediction of the present flow will require some very

sophisticated modeling, and the challenge to the predictor is clear.

3.2 Compression Corner Studies

Three compression corners were surveyed using both normal and inclined

wires. The corner angles were 80
, 160 and 200

, which, at a Mach number of 2.9,

correspond to a fully attached flow, a flow on the point of separation and a

separated flow with a small separation bubble. The incoming flow was identical

in all three cases, and the upstream boundary layer 00 was approximately
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26 mm thick. with a Reynolds number based on momentum thickness of 77.600.

The results ~ere repo7ted in publications [lJ. [3J. [12J. [13J and [17J

(see Appendix A). and the data were tabulated in publications [9], [14J. [15]

and [20J. These data compilations are particularly useful in dissemipating

results to computors (see Section 4). and we have adopted their production

as standard practice.

The tunnel configuration is shown in Fig. 16. The tunnel was

operated at a stagnation pressure of 6.9 x 105 N/m2• and the unit Reynolds

7
number was 6.3 x 101m. The wall condj~ions were near-adiabatic and the

freestream rms turbulence intensity was approximately 1%. The models were

mounted on the tunnel floor and fitted with aerodynamic fences to avoid

interference from the side-wall boundary layers. Blockage problems limited

the model lengths downstream of the corner to 195 mm for the 80 model. 151 mm

for the 160 model and l2l·rom for the 200 model.

Constant temperature hot-wire anemometers were used throughout. and

details of the operating procedure were given in Sections 2.1 and 2.2.

The normal wire measures fluctuations in mass-flow rate (pu) , • To

determine the behavior of the fluctuations in ve:ocity, we invoked Morkovin's

(1962) "Strong Reynolds Analogy," which assumes that the pressure fluctua-

tions are small, and that the density fluctuations are related to the velocity

fluctuations according to

<pI>
--=-- =

P

<u'>

u

These assulnptions appear to hold even in severely perturbed boundary layers

(see. for example Dussauge and Gaviglio, 1981). In addition to the above,

the value of the density-velocity correlation is required. The measurements
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by Dussauge and Gaviglio suggest a constant value of 0.8 across the boundary

layer, and this value was adopted for all data analysis.

The inclined wire measures the mass-weighted shear btress (pu) 'v' •

To determine the behavior of the turbulent shear stress T = pu'v', we again

assumed that the "Strong Reynolds Analogy" could be applied. That is,

where the subscript '\.,," indicates at the wall. In the case of the undisturbed,

upstream boundary layer (see Fig. 17), the results agree closely with Sandborn's

1 (pu) 'v'
[1 + (y-l) M 2] P 1)2

a

--2
p U

p U2
ref ref

TITw

"beRt fit", which does not prove that the data are accurate, but nevertheless

gives further confidence in our method.

Before presenting the turbulence measurements.. it is useful to consider

some aspects of the mean flow behavior.

The static pressure and skin friction coefficient distributions are

shown in Figs. 18 and 19, respectively. From these figures, it is clear

that the flow tends towards separation as the corner angle increases. In

othe 20 case, the flo~ has actudl1y separated, with ~ separated zone approxi-

mately one-hnlf C long.o

The mean velocity profiles generally demonstnte a quick recovery

downstream of the corner. For all three cases, Seu:les, et a1. (1979) ob-

served that the profiles rapidly fill out and approa~h their equilibrium

shape by the furthest do~~strea~ station.

3.2.1 Normal wire results

When we consider the turbulence behavior, howewer, it quickly becomes

clear that the boundary layer is far from ",quilibrium" reven at the furthest



«pu)'> and velocity fluctuation intensity <u'>. Note that the intensities

are non-dirnensionalized by the incoming freestream values (pU) ref and Uref.

•

•
I

point downstream.
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Figures 20 and 21 show the mass-flow fluctuation intensity

...•.

•

•

The figures ther~fore show the behavior of the abSlllute fluctuation levels.

The most obvious feature of the turbulence ~ehavior is the dramatic

amplification that occurs as the boundary layer passes through the interaction

region. To understand this amplification more fully. it is useful to consider

the evolution of the turbulence intensities along selected streamlines. In

this way. the amplification may be related to the terms which appear in the

Reynolds stress transpoLt equations (see. for example. Hayakawa. et al., 1983).

Three streamlin~s, corresponding to upstreaID boundary layer locations

of y/o = 0.2, 0.4 and 0.6 were selected for this ~rpose (see Fig. :2). Foro .

each of these streamlines, the evolution of u'2, n~alized by its upstream

value is given in Fig. 23.

Figure 23 shows that these flows may be convilniently divided in,t,o two

regions: an "interaction zone," which loosely corr:esponds to the region where

severe pressure p,radients exist, and a "recovery zam," which is the region

downstream of the interaction zone. Within the interaction zone, u'Z dis-

plays a rapid increase along each streamline. The ·~itude of the increase,

however, is a function of both the initial position within the boundary layer

and the shock strength; the largest increase occurs for the largest corner

angle. In contrast, the behavior within the recove~ zone does not display

such a simple trend. Near the wall, the turbulence im,tensity decays quite ra-

pidly (Fig. 23a), whereas further away the intensit~s are still increasing, even

at the furthest downstream station (Fig. 23b). This lJehavior clearly reflects

the time dependent response of the turbulent :notions.. As expected, the.' larger
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eddies in the outer part of tre boundary layer obviously respond more slowly

than the motions near the wall.

3.2.2 Inclined wire results

The mass weighted Reynolds shear stress (pu}'v'/(PU2}ref is shown

in Fig. 24. Bef?re d~scussing these results, the accuracy and limitation

of the hot-wire technique should be considered.

It is becoming increasingly clear that one of the major limitations

on using inclined hot-wires in low Mach number supersonic flows is the

requirement that the instantaneous normal Mach nucber should be greater

than 1.2 (Smits and Muck, 1984). Within the transonic range, the hot-wire

behavior ~hanges drastically, and a sharp fall-off occurs in the inferred

turbulence intensity. For this reason, results for which the normal Mach

number is below 1.2 are expected to be in error and should be used caut~ously

although it may be possible to use the shear stress at the wall as a guide

for interpreting the results near the surface.

----Consider now the results shown in Fig. 24. '!m'e behavior of (pu)'v' is

obviously rather different from that displayed by {;jm1}'2. For example, in

passing through the interaction region, (pu)'v' for ~he 160 corner incrEases

by as much as 16 times, whereas ( u)'2 increases by.l(f15,s than 10 times over

the same distance. For the 200 corner, the maximum ]evel at the last station

is more than 20 times its upstream value. This may Th:e compar-;.c'. to (pu) ,2

which increased by abcut 16 times over the same distamce.

The behavior of either the Re)~olds stress p~~v', or the kinematic

shear stress u'v' may be deduced from the results fclt (pu) 'v' by using the

Strong Reynolds Analogy. Here we have chosen to presmt only the results

for the kinematic stress u'v'.
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---2
Figure 25 shows u'v'/U plotted against y/oo for the different

ref
---2

streamwise stations. The behavior of u'v'/Uref is qualitatively similar to

2 -2
that of u' Iu f' Quantitatively. however. the amplification of u'v' is notre

as great as that observed for u,2; this suggests that the turbulence structure

is significantly changed through the interaction.

For instance. the ratio - u'v'/u,2 can be taken as a structure para-

meter. In the undisturbed boundary layer at x = -51 mm. this ratio has a

value of about 0.25 (at y/0
0

= 0.6), which agrees well with the value commonly

quoted for incompressible boundary layers (see Townsend. 1976. p.l07). Through

the interaction zone of the 160 corner. the ratio ~/UI2 increases to about

0.32, although it must be stated that the measurements of u'v' in this region

are probably not too reliable. Downstream in the recovery region. however,

this ratio decreases significantly. and it reaches a value of 0.16 ~ 0.18 at

the furthest downstream station (x = 140 mm). A similar trend was observed

by Smits et al. (1979) in a subsonic boundary layer subjected to an impulse

in concave curvature. It is interesting to note that in the present experi-

ment. where both curvature and compressibility effects are important, the

turbulence appeJirs to respond in a fashion siI::ilar to that obs~rvec.1 in .an

incompressible curved flow.

o
In passing the interaction region of the 20 corner, however,

u'v'/u'2 drops by about 25%. and remains low. although it appears to recover

slightly at the last two stations. This result contrasts distinctly with

the behavior observed in the 8° and 160 corner studies: there the ratio

increased sharply through the interaction before relaxing somewhat downstream.
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3.2.3 ~inal discussion of compression corner flows

All turbulence quantities (pu),Z, u,Z, (pu)'v' and u'v' show a

qualitatively similar trend; all increase steeply on encountering the shock

and continue to increase over a distance which corresponds approximately to

the region of non-zero pressure gradient. The relaxation process downstream

appears to be rather slow, and at the furthest downstream station (about 4 00

downstream of the corner), the turbulence is still far from equilibrium.

PE'rhaps the most remarkable feature is that for the ZOo corner, the dimension

less turbulence structure parameter u'v'/u,2 is significantly reduced in

passing through the interaction, in contrast with behavior observed with 80

and 160 corner flows.

To interpret these results, we can begin by considering the theoretical

work of Zang et a1. (1982) and Anyiwo and Bushnell (1982). Using the two-

dimensional Euler equations, these authors showed that several possible turbu-

1ence amplification or generation mechanisms may occur during an interaction

between a plane shock wave and an incident turbulence field. These mechanisms

include (1) direct amplification, (2) "generation" of turbulence from incident

acoustic and tmlropy fluctuations, and (3) "focussing" caused by distortions

of the shock front.

When a shock wave interacts with a turbulent boundary layer, however,

the flow field is rather different from the ideal case considered by these

authors. The shock wave within the boundary layer curves and is followed

by a system of instantaneous compression waves (see. for instance, Fig. 3).

All these waves are unsteady and appear to be in constant, low frequency

motion (Dolling and Hurphy, 1982). As Zang et a1. (1982) point out, the

direct conversion of mean flow energy into turbulenee by shock oscillation
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can serve as a pOwerful turbulence amplification mechaniGm.

For both the eO and 16
0

corner flows. the effects of dilatation

and curvature appeared to be sufficient to explain the measured amplification.

Direct shock effects and shock oscillation did not seem to be overly important.

This conclusion was supported principally by th~ behavior of the structure

parameter u'v"/u,Z.' For example. Debieve et al. used an analysis based on

rapid distortion theory to show that this parameter should increase through

a shock, when the shock behaves as a stationary discontinuity. In addition.

Smits, et a1. (1979) found that u'v' /u'Z increased when a subsonic boundary

layer ,.,as subj ected to a short region of concave curvature. In the ZOo

corner flow, however, this parameter decreased through the interaction. To

explain this result, we tentatively suggest that s~ock oscillation may be im

portant in thi~ flow. in addition to the effects of dilatation and curvature.

Shock oscillation is likely to become more important at these high corner

angles because the strength of the shock increases and eventually produces

separation. If the shock movement is essentially random, we expect, tpat the

mean flow energy is transferred more to the normal stresses rather than to

the shear stresses. ~his explanation suggests that the motion of the shock

wave generates significant "inactive" motions such as those discussed' by

Bradshaw (1967) in relation to highly retarded subsonic boundary layers.

3.3 Isentropic Compression Studies

We examined the evolution of the mean flow and the turbulent stresses

in a supersonic boundary layer experiencing the effect of bulk compression

and strp.amline curvature. This study was prompted in part by the investiga

tions of shock-wave/boundary layer interactions generated by two-dimensional

compression corners (see Section 3.2). In that work, it was observed that
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the boundary layer parameters suffered considerable distortion; in particular,

the turbulent stresses were dramatically amplified. Four separate mechanisms

for turbulence amplification were identified: "direct" amplification by the

shock wave oscillation; the deLtabilizing effect of compression downstream

of the shock, and the destabilizing effect of concave curvature.

The present investigation was designed to isolate the effects of

compression and curvature. Instead of turning the flow suddenly, as in a

compression corner, the turning was accomplis~ed more graduaily, through a

short region of concavely curved wall. By spreading the pressure rise over

several boundary layer thicknesses, the shock wave forms outside the boundary

layer and it has no direct effect on the boundary layer behavior.

The incoming boundary layer and upstream flow conditions were

identical to those used in the compression ramp studies. The upstream

boundary layer was allowed to develop fully under a nominally zero pressure

gradient on the wind tunnel floor before entering a short region of suriace

curvature. Just upstream of the curved wall, the boundary layer thickn'ess

00 was approximately 26 ~~. The total turning angle was fixed at 8°. Two

different constant radii curvatures were investigated: the first had a

radius of 254 rom, the second a radius of 1270 mm. These correspond to ratios

of 0o/R of approximately 0.1 and .02 respectively. Both curvatures were

fcllowed by a short (153 mm) recovery region, allowing us to study the

initial relaxation behavior of the boundary layer (sec Fig. 26).

The mean flow behavior for both wodels was previously reported by

Taylor and Smits (1984) and Taylor (1984). Briefly, the velocity profiles

displayed a "dip" below the log-law, suggesting an increase in the turbulence

length scale, and no evidence was found for the presence of longitudinal
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roll-cells, as might he expected to occur in concavely curved shear layers.

In both these respects, the flow was similar to the incompressible flow

studies by Smits C't a1. (1979), who investigated the response of a.boundary

layer as it ~xperi~nced the combined effects of concave curvature and lateral

divergence. In the present flow, the boundary layer experiences the combined

effects of concave curvature and bulk compression, ana the analogy between

divergence and compression, first suggested by Green in Bradshaw (1973), was

strengthened considerably by these mean flow observations.

Measurements of the turbulence behavior were also taken. NOl~al and

inclined hot-wires were used, and the measurements describe the behavior of

the longitudinal mass-flow fluctuations (pu)' and the mass weighted shear

stress (pu)'v'. The kinematic stresses u'2 and u'v' were deduced using

Morkovin's "Strong Reynolds Analogy." Wherever possible, the results for

»

•

othe 8 compression corner were compared with those for Mod~ls I and, Jr. The

incoming boundary layer and the upstream freestream conditions were identical

in all three experiments. The static pressure and skin friction distributions

are compared in'Figs; 27 and 28, respectively, and the figures demonstrate

that the experiments cover a wide range of stress gradients. that is, a wid~

range of strain rates, although the overall pressure rise and turning angle

are the sa~e in each case. Hence, these experiments investigate, for a given

perturbation strergth, the effect of varying perturbation rate.

The variation of the longitudinal component of the turbulence intensity

is shown in Fig. 29. The upstream reference conditions were used as non-

dimensionalizing variables throughout, and hence the results show the behavior

of the absolute turbulence levels.
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The general betillvior of u,2 is very similar in all cases. Initially,

there is a rapid amplification of u'Z through the perturbation zone, This

increase continues further downstream, and the peak amplification of u'2 is

about three-fold in each case. In the outer part of the boundary layer,

there is little sign of any recovery or relaxation but near the wall the

intensities quickly fall, indicating that the relaxation process begins at

t~e wall and prop~gates outward.

The variat ion of the kinematic shear stress U'V'"/U2 f is shown inre

Fig. 30. Again, a considerable amplification occurs through the perturbation

zone, continuing into the region downstream, and the relaxation appears to

propagate outwards from the wall. However, the peak amplification levels

for the three cases differ considerably; for the compression corner and

Model I it is about four-fold, whereas for Model II it is only about two-fold.

Hence, the present results show that structure parameters, such as

u'v'/u'Z, are clearly a function of the perturbation rate.

As far as the turbulence beh:lvior is cO!1cerned, the compression corner

and Hodel I influence the turbulence in an almost identical manner. This

result suggests that the perturbation in these tHO cases is sufficiently

rapid to alter the turbulence in a manner which depends only on the overall

changes that occur, not on the path taken. The parameter describing this

"change of state" is therefore the total strain, that: is, the integral of

the strain rate over the time it acts. For the curvature, this integral is

equal to the total turning angle, and for the compression it is equal to

(l/y)tn(PZ!Pl)' It appears that the shock wave itself has no explicit effect

on the turbulence but this conclusion can only hold if the shock is .reiatively

weak, such that the entropy loss is small, and separation with the concommitant



•
unsteadiness is avoided.

-27-

This condition seems to be satisfied in the 80

•

compression corner experiment.

The response of the turbulence to the perturbation produced by Model II

is quite different to that seen in the other two experiments. For example,

the stress ratio u'v'/u,2 is affected by only a relatively small amount.

Hence, despite the large amplification of the absolute turbulent stresses,

the turbulence structure is not radically altered. implying that the perturba

tion is sufficiently slow for some redistribution processes to occur. In this

case, the local strain rates are probably more useful than the total strain

for describing the response of the turbulence. The results from this parti

cular experiment, therefore, appear to constituce an excellent test case for

developing turbulence models.

Close to the wall, ve observed the beginning of a relaxation process

in all three experiments. It is to be expected that the flow near the wall

will attain equilibrium more quickly than the flow in the outer part of the

layer; a measure of the large eddy time constant is the turbulent energy

divided by its rate of production, and this will vary approximately as

1/(3U/ay) (Bradshaw, 1973). This relaxing region grew in size as we pro

ceeded downstream, and its growth resembled that DI a new boundary layer.

Similar 11 internal layers" have been observed in boundary layers perturbed

by sudden changes in surface roughness, surface curvature, and pressure

gradient (Smits and Wood, 1985) and the similarity displayed by the propa

gatIon of the relaxation outward from the wall may be useful in a qualitative

understanding for the flow behavior in the present experiments •
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3.4 Summary and Conclusions of Experimental Work

When taken as a whole. the experimental work leads to several interesting

conclusions. For example, we have seen that turbulence levels are strongly

amplified in a shock-wave boundary layer interaction. This amplification

appears to be caused'by direct, virtually inviscid amplification across the

shock, followed by the combined effects of adverse pressure gradient, compres-

sive extra strain-rates and concave curvature. When the shock strength is

relatively low (that is, no separation occurs) it seems that the important

parameter is the overall pressure rise rather than the presence of a shock-

wave. This was demonstrated by the results from the isentropic compression

studies. When the shock strength increases, however, shock-wave oscillation

becomes an important amplification mechanism. Here, mean flow energy is

directly transferred into unsteady turbulent motions. This process is

apparently random, and therefore contributes more to the random motions

which increase the total turbulent energy than to the organized motions'

&ssociated with the shear stresses. This hypothesis explains why the struc

ture parameter u'v'/u,2 increases'through the interaction for the 80 and 160

ocompression corners, and decreases for the 20 compression corner; when,the

flow separates at higher angles, shock-wave oscillation becomes important.
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ANALYTICAL M~D COMPUTATIONAL WORK

•

f

Throughout the period of our previous funding, we have maintained

close contact with several computat!onal groups, especially those groups

headed by Prof. D. D. Knight at Rutgers University, and Dr. C. C. Horstman

at NASA-Ames. In addition, OUT contacts include R. E. Melnik (Grumman Aero-

space Corporation), Ha Minh Hieu (l'Institut National Polytechnique de Toulouse),

D. Degani (Technion), J.-P. Bonnet (Poitiers) and H. H. Legner (Physical Sciences,

Inc.). All of these groups have expressed interest in trying to calculate the

compression corner flows, although they generally use rather conventional tuI'-

bulence models.

What is perhaps more promising is the approach suggested by Dussaugc

and Gaviglio (198l), Debieve et.al. (1982) and Anyiwo and Bushnell (1982).

In this work, the concept of "sudden distortion" is applied to compressible

flows experiencing a short region of intense pressure gradient, including

the interaction with a shock-wave. When the perturbation is sudden, that is,

the perturbation occurs over a time which is considerably less than the

response time of the turbulent motions, then the distortion may be essentially

inviscid. The turbulent motions are then affected only through the distortion

of the mean field, and nonlinear effects caused by turbulence-turbulence

interaction can be neglected. This approach appears to have considerable

promise in calculating the turbulence behavior observed in our experimental

work. We have been fortunate enough to have had Dr. J.-P. Dussaute from

I.M.S.T. in Marseille as'a Visiting Research Fellow this year, and we are

working closely with him to complete the calculation of our compressior. corner

flows as well as the "isentropic" compressions. rrel imin:lT)' work sut£est s thnt

this essentinlly inviscid analysis might supplement more conventional" ~chcmcs,
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S. MISCELLANEOUS ADDITIONAL WORK

Earlier this year, Professor H. Fernholz from the University of Berlin
~.. '.
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spent six weeks in the Laboratory as a Visiting Research fellow. During this

period, we had the opportunity to interact closely with him, and we intend to

maintain these discussions in the future. In particular, we are .~king our

data available to him for future publication in AGARDograph form.

In another development this year, Professor A. Smits of the Gas

Dynamics Laboratory was invited to write a review article for Annual Revic~s

of Fluid Mechanics. Entitled liThe response of turbulent boundary layers to

a sudden perturbation," the article is co-authored with Dr. D. H. Wood from

Newcastle University (Newcastle, Australia), and is due to appe~r early in

19S5.
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PROPOSALS FOR FUTURE WORK

I
J

•

•

)

•

The conclusions and observations from our previous work lend us to

propose the following. Firstly, we are interested in testing our current

understanding of shock-wave boundary layer interactions. Although 'we have

identified some of the important physical mechanisms, we are still far short

of a quantitative understanding. Further theoretical and experimental work

is required to produce a useful turbulence model. In the experiments per-

formed thus far, man)' different effects were acting simultaneously. To

undelstand these effects full)', we need to study them in isolation, and Our

first priority is to investigate relatively simple geometries such as a flat

plate boundary layer subjected to a severe adverse pressure gradient. In

this geometry, the effects of the shock, as well as effects of the curvntllrc

would be eliminated. Preliminary work has already commenced, and we have

designed models to reproduce on a flat plate the pressure gradients observed

in the isentropic compression corners. By comparison between thcs~' sets of

experiments, we will be able to distinguish between the, effects of compression

and curvature. In a complementary study, we propose to complete the isentropic

compression work by investigating a flow with a total turning anglc'of l()o nnd

oo/R = 0.02. This work will provide important information on the range of

applicability of Rapid Distortion Theory. The model has alrea~y heen constructed.

and the mean flow studies have been completed (publication [22J, Appendix A),

although the turbulence measurements have not yet commenced.

In addition. we are interested in studying the time-dependent behavior

of turbulent motions in a supersonic boundary layer. We feel that this work

is essential to a proper understanding of turbulent transport properties, and
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it will represent a significant departure from our previou5 work which used

the more conventional approach based on Reynolds-averaged quantities.

We propose to begin with a detailed study of the 240 corner at Mach

2.9. Here, a substantial separated region exists, and shock-wave oscillation

is expected to be particularly important. Currently, Drs. K. C. Muck and

J.-P. Dussaug~ are measuring the correlation between wall pressure and velo-

instantaneous conditions before and after the shock wave can be detel~ined.

mounted flush with the wall. These gaug~s will provide instantaneous wall

shock wave motion and the behavior of the separation bubble.

In this work. we propose to begin

On a more fundamental level, we propose a detailed stu~y of the large-

ci ty fluctuat·ions. These measurements will provide information regarding

perturbation to the separation bubble. By controlling the shock wave motion,

tion is used as a trigger for the conditional sampling. In this way. the

shear information, and will enable us to discern the connection between the

the instantaneous wall conditions, an array of thin hot-film gauges will be

the effect of shock wave oscillation may be more clearly defined. To study

scale motions in a flat plate zero pressure-gradient boundary layer. A great

wave oscillation amplifies the random motions more than the organized motion~.

the "inactive" motions, and the data should test our suggestion that shock-

We also propose active control of the shock wave position by applying a

with a set of conditionally sampled measlIre:nents wehre the shock wave posi-

wrinkling effect. ~e propose to complete the analysis of existing data

lation displays both a bulk motion backwal'ds and forwards as well as a spanwise

to study space-time correlations of the pressure signal and the distribution

In this study, we have also used an array of four wall pressure transducers

and to extend the experimental work.

of phase velocities. Preliminary results indicate that the shock-wave o~cil-

,
"'
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f
deal of work has been performed to identify the characteristic motions,

sometimes called coherent structures, which occur in turbulent shcar flows,

but our current understanding of these large-scale motions is mainly derived

from subsonic flow studies at relatively low Reynolds number (sec, for eX:lmpl(',

Brown &Thomas, 1977). We propose ~o use multiple hot-wires, combined with

arrays of flush-mounted hot films, to similarly characteri~e the nature of a

compressible, high Reynolds number boundary layer. We believe that this

study would be the first of its kind. Some work has alrc:ldy commenced in this

area, although the measurements thus far have been confined to mapping out the

overall nature of the boundary layer. By measuring uv and uw in the spanwise

and streamwise directions, we have established that the boundary layer is

acceptably uniform and two-dimensional. Preliminary measurements of the wall

pressure-velocity correlations are currently being analyzed.

In another major effort, we propose to examine the relaxation behavior

of the boundary layer far do~~stream of a severe perturbation such us ~n

interaction with a shock wave. This behavior is of great practical i~tere$t.

For example, as the flow enters an inlet, the boundary layers interact with

the entry shock s)'stern and then relax before entering the compressor stage.

Thus, it is the relaxation behavior which really governs the engine inlet

condition. The relaxation process is highly nonlinear, however. nnd very

difficult to calculate. It is also experimentally difficult, and no mcasurc-

ments are currently available far downstream. In our present facility, such

measurements are not possibl e but our new faci li t)' (funded by a l'ocent DOD

equipment grant, see Appendix C), will allow this work to proceed. This

facility features a flexible diffuser. which by careful adjustment will

create a relatively long disturbance-free region downstream of the interaction

./

:','.

•
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We propose to begin with a study of there]nX3tion beh3vior downstream

of an 80 compression corner. In terms of turbulence modelling, our ultimate

aim is to combine a rapid distortion analysis for the interaction region with

a suitable transport model (such as a k-c model, for example) to describe the

relaxation process.

As support for the work mentioned above, we intend to

modify existing instrumentation and develop and test a variety of new

instruments. The proposed work in hot-wire anemometry, and in the measure-

ment of wall pressure fluctuations has nlread)' been mentioned. In particular,

we wish to develop a hot-wi~e rake capable of taking velocity data simultaneously

at a number of points within the boundary layer. We have also alluded to flush-

mounted thin-film gages for the measurement of instantaneous wall shear stress.

These gages were suggested by Prof. Noscnchuck of our Dcp3rtment, nnd havl' the

potential to measure the me3n and fluctuating Skin-friction, lw .. l w
t

•

Several other techniques are being developed within the Laboratory,

with particular emphasis on new and improved flow visualization methods.

Our long-range goal is to visualize the whole flowfield and its behavior as
..

a function of time, with sufficient resolution to examine detailed areas of

the flow. We have identified many possible techniques, including sharp-

focus schlieren, multiple. schlieren, tracing "hot-sp~t-!;" ~enerated by spark

discharges or high-energy laser pulses, multiple high-speed imaging techniques

and local vapor screen methods.

We are also continuing our development of the Resonant Doppler

Velocimeter (RDV) as a flow visualization tool. Here, the fluorescence of

an atomic or molecular seeding species is used to highlight areas of high

or low velocity, temperature and pressure (see Zimmerman and Miles 1983 and

Zimmerman et al. 1983).
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In the long term, the RDV techniques will allow quantitative analysis

of mean and fluctuating pressure, velocity and temperature within the flow

field (Cheng et a1. 1983). In the short term, however, we feel that another

technique is required to supplement (and cross-c~leck) the hot-wire measurements.

We expect, therefore, to begin laser-Doppler measurements within the next three

years. This will require considerable development, plus capital investment,

and we hope to find support for this wo~k.

One of our primary purposes in pursuing this experimental work is to

develop a quantitative model for the turbulence behavior in compressible

boundary layers. We propose to begin this task by (a) extending the work

performed by Bradshaw on small extra strain rates and impulsively applied

extra strain rates, and (b) modifying the rapid distortion approach suggested

by workers at the Institut de Mechanicque de la Turbulence at Marseille.

In addition, the effect of shock ~ave oscillation will be examined by extending

the work of Anyiwo and Bushnell (1982) and the work of Debieve et.al:. (1982).

We feel that these inviscid approaches to suddenly perturbed flows hold great

promise, and we anticipate making substantial progress in this area.
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