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The progress report consists of the enclosed Abstract which w p -

submitted to the AIAA 18th Fluid Dynamics, Plasma Dynamics and Lasers

Conference.
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ROLL-UP OF A VORTEX SHEET*

R. A. Mitcheltree**

North Carolina State University, Raleigh, NC

H. A. Hassant

North Carolina State University, Raleigh, NC

Abstract

The roll-up of a vortex sheet is analyzed by two approaches. The first

is bassi on the exact compreF,sible Euler equations while the second is based

on the exact 4ncompressible Na.vier-Stokes equations. The inviscid calcula-

tions for the two-di-iensional problem do not indicate any roll-up of tie

sheet. On the other hand, the viscous calculations capture the dynamics

of the roll-up rather well. This suggests that the generally held views

regarding tale roll-up process of aircraft wakes, namely, that it be treated

as an inviscid process, may not be completely accurate.

Introduction and Avvroach

This research represents the results of the first phase of a research

effort dealing with aircraft wakes. An excellent review (,f this problem

is given by Donaldson and Bilanin. I According to Reference 1, understanding

aircraft wakes entails the understanding of four problems. These are: roll-

up, interaction and stability, aging and atmospheric effects.

*Supported in part by NASA Cooperative Agreement NCCI-84.

**Research Assistant, Mechanical and Aerospace Engineering, Student Member

AIAA.
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The object of this investigation is the roll-up region. Its length

scale is of the order of the aspect ratio over the lift cuc ficienc times

the span length. As indicated in Reference'l, processes in rhIs region are

essentially inviscid. Because of this, we felt that an approach based on

the exact Euler equations should refroduce the experimentally observed

features of this region. Such an approach has a distinct advantage over

other approaches reviewed in Faference 1 because the generality of the

equations permits first, detailed study of the relevant dynamics processes

and second, observation of the downstream evolution of vorcical structures

in their proper spatial and temporal relationships.

Al-hough w:? are dealing with low Mach numbers, the compressible form

of the Euler equations is employed. This is a crucial aspect of the form-

k	 ulation because the problem is dominated by boundary conditions, Figure 1.

One does not know before hand whether inflow or outflow conditions should

be imposed at P given boundary. Therefore, without employing a procedure

that selects the proper boundary condition at a given instant and a given

point one cannot hope to achieve an accurate solution. The proper boundary

conditions for the compressible Euler equations, which are hyperbolic, are

determined from the method of characteristics  and these have been imple-

mented here.

The calculation of the development of a vortex wake from a flat sheet,

Figure 2, is considered. This problem, which is characterized as "formid-

able" in Reference 1, is analyzed using the fourth-order Runge-Kutta method

of Jameson et al. 3 Ilse of this method of solution brings up another crucial

aspect of the formulation, namel y , numerical damping. It is extremely

important that the effects of numerical damping be reduced to a minimum in
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order nit to mask the relevant physics of the problem. There are three types

of damping that are employed in Reference 3: second-order, fourth-order

and enthalpy. Because the stagnation enthalpy is not constant for the

problem under consideration, enthalpy damping cannot be used here. Second-

order damping mimics viscous effects and, therefore, was not used. There-

fore, only fourth-order damping was employed in this formulation.

When one employs the compressible equations to study a phenomenon where

the compressibility effects are small, the system of equations becomes stiff.

	

The stiffness is a result of the disparity in the eigenvalues of the system. 	 i

Matrix preconditioning4,5 may be employed to alleviate the problem. There-

fore, a secondary objective of this investigation is to evaluate the utility

of such schemes.

i	 Because of the inability of the Euler equations to predict the physics

of the roll-up problem, the code that was developed in Reference 6 to study

shear layers was employed. The code employs a vorticity-velocity formula-

tion of the incompressible Navier-Stokes equations. Further details of the

method are given in Reference 6.

Results anJ Discussion

The problem considered is that shown in Figure 2. At time t = 0,

the velocity difference between the two streams occurs across one computa-

tional cell with the result that, at t = 0, the vorticity is Zero everywhere

except at that cell. Because enthalpy damping could not be used to speed

up the convergence to the steady state, the matrix preconditioning (M.P.)

procedure of Turkel 5 was employed. Figure 3 shows the convergence history

of the solution based on the Euler equations in the absence and presence of
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matrix preconditioning,. It is ?een from the figure that M.P. helps speed up

the convergence.

Figure 4 shows the vorticity contours that result from calculations

based on the Euler equations with N indicating the number of iterations.

The total number of iterations employed corresponds to the number of

iterations needed to allow a disturbance mooing with the lowest velocity

to propagate across the computational domain. No roll-up is indicated

in the figure. Figure 5 shows the vorticity contours based on the Navier-

Stokes equations. It is seen that the results indicate roll-up.

In conclusion, the above results suggest that the physics of vortex

roll-up is best described by the Navier-Stokes e quations. It appears that

if we hope to understand the behavior of aircraft wakes then we must rely

exclusively on the Navier-Stokes equations.
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