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ABSTRACT

An Advanced Imaging Communication System (AICS) was proposed in the
mid-1970s as an alternative to the then-current Voyager data/communication system
architecture. AICS achieved "virtually error-free" communication with little loss in the
downlink data rate by concatenating a powerful Reed-Solomon block code with the
Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel
made feasible AICS sophisticated adaptive data compression techniques. Since then,
both Voyager (for Uranus and Neptune encounters) and the Galileo mission have im-
plemented AICS components, and the concatenated channel itself is heading for inter-
national standardization.

This report provides an analysis that assigns a dollar value/cost savings to AICS
mission performance gains. The results show a conservative value or savings of $3 mil-
lion for Voyager, $4.5 million for Galileo, and as much as $7-9.5 million per mission for
future projects such as the proposed Mariner Mark it series.
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I. INTRODUCTION

The concept of an Advanced Imaging Communication System (AICS) was proposed
and analyzed in 1974 111 . AICS was intended as a replacement for the baseline Voyager
data system/communication system architecture which later also became the Galileo
baseline. The two architectures are compared in Figs. 1 and 2.

AICS supplemented the Voyager communication link by concatenating a powerful
Reed-Solomon (RS) block code with the existing convolutionally coded, Viterbi decoded
channel. This provides "virtually error-free" communication without significant reduc-
tions in real data rate. The latter achievement then allows the practical use of sophisti-
cated data compression to represent the various spacecraft data sources. Further, the
Golay block code used on non-imaging data could be discarded, eliminating a significant
burden in parity overhead.

The original AICS description used the RM2 image compression algorithm as a vehi-
cle for demonstrating the significant end-to-end advantages of the AICS elements[ 1 ],[21,
This architecture received a patent in 1976[3],

CONV-VITERBI
CHANNEL

IMAGING
I

Fig. 1. Baseline Voyager/Galileo Data/Communication System

NON-IMAGING	 COMPRESS	 -"-°--°----°------------------
NI	 ^:1

	

REED-SOLOMON	 CONV•VITEHBI	 RS
CODING	 CHANNEL	 DECODING

IMAGING	 ĈOMPRESS
1	 L---..-°_°_-	 ________.---J

NIDECOMPRESS

DECOMPRESS

Fig. 2. Advanced Imaging Communication System (AICS)
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Modificatiomi incorporating AICS elements of coding and compression have since
been made to Voyager and Galileo. Major gains in "science value" are expected from
their joint use at the Voyager Uranus/Neptune encounters and the Galileo encounter
with Jupiter,

While significant, such applications do not fully tap the potential advantages possi-
ble. AICS must be incorporated in the early planning and development stages of a mis-
sion to fully realize all the advantages. The Mariner Mark II (MM II) series of future mis-
sions offers such an opportunity [4) . MM II will seek to achieve "Voyager Class
Science" in deep space at "Low Cost" and is thus committed to efficiency.

The fact that AICS compression and coding can yield substantial performance gains
is now well recognized. However, there has never been an analysis which assigned
quantitative dollar values to these gains. Providing such an analysis is the primary pur-
pose of this report. In particular, we will determine the value of AICS performance
gains to Voyager Uranus/Neptune and Galileo and estimate the potential value of a fully
implemented AICS to a typical MM I) mission. The results conservatively project future
mission value or savings on the order of $7-•9.5 million per mission.

APPROACH

AICS data compression and coding can improve the effective data rate through both
the spacecraft downlink and the Deep Space Network (DSN) ground communication
network. Further, data compression can increase the effective size of on-board mass
storage. Our approach to assigning a value to these improved capabilities is basically to
determine what it would have cost to do them by other means.

We will accomplish this by the systematic steps noted below:

• Provide AICS background establishing technology readiness and realizable com-
pression factors;

• Determine the realizable AICS "system performance gains" to the spacecraft
downlink, DSN ground communications and on-board mass memory;

• Determine the incremental costs for providing improvements to these same sys-
tem elements by other means;

• Combine the latter incremental element costs with the AICS performance gains
to yield overall mission value estimates for Voyager Uranus/Neptune, Galileo
and MM II.

2
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BACKGROUND AND AICS STATUS

Actual Implementations

Voyager, The RS coding in Fig 2 was incorporated on the Voyager spacecraft just
prior to launch as a backup mode in the ev, nt of an X-band failure at the Saturn encoun-
ters, Fortunately, such a failure did not ot;;ur so that now the concatenated channel can
be expected to be used at both Uranus (1986) and Neptune (1989), an originally un-
planned scenario, In addition, a form of adaptive image (noiseless) compression, based
on the original work in Refs. 5 and 6, will be programmed into the on-board computer.
The latter algorithm and various modifications which may be feasible at the Neptune en-
counter are described in Ref. 7. An average image compression factor of y == 3 can be
expected. Then, since non-imaging data compression was not added, we have for future
reference

Voyager	 Voyager

	

Uranus/Neptune	 Uranus/Neptune
y=3=1	 (1)

Galileo. The original baseline Galileo data/communication system appears as in
Fig. 1. However, the spacecraft now incorporates the additional RS coding on the image
portion of the data in conjunction with a more complex (than Voyager Uranus) data com-
pression system called BARC [81 . The latter algorithm is a one-dimensional adaptation of
RM2. It includes the original noiseless operating mode as well as a rate controlled mode
which adaptively alters quantization along a line to assure that only a specified number
of bits are used. The Galileo image compressor will be operated in this mode at a fixed
rate of 3.24 bits/picture (b/p) element instead of the original 8 b/p. The non-imaging
data path, including the Golay coding, was left untouched. Then for future reference:

Galileo	 Galileo

	

7 = 2.5	 ^ = 1	 (2)

Standards. At this point there have been numerous implementations of the Reed-
Solomon coder as well as extensive work in verifying all the performance characteristics
of the concatenated channel (see Ref. 9 for a historical background). In fact the con-
catenated channel is heading for international standardization[101.

3
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Other. A technology transfer program between JPUNASA and ®alma Victor
Corporation has resulted in a recent demonstration prototype of an RM2 compressor/
decompressor11 11 . This implementatiion is intended for application to freeway surveil-
lance and military reconnaissance. However, it was implemented with the processor (In-
tel 8086) most likely to be space-qualified for the Mariner Mark II mission set. This pro-
vides the potential for a technology transfer back to the space program.

Additionally, the National Oceanic and Atmospheric Administration (NOAH) is in the
process of implementing the original noiseless image .,ompression algorithms in a
weather satellite application[ 121,

Image Science Value Studies

Two separate science value studies investigated the impact of an RM2 based
AICS 11314151 . In both cases imaging scientists concluded that full use of the user con-
trollable adaptive features could yield improvements from 4 to 6;1. Since we will be
specifically addressing MM U as a future mission which might use such capabilities, we
have

MM II Potential
Average Image (RM2)	 ry = 4 to 6 .	 (3)
Compression Factor

Instrument Compression Studies

A current program investigating the potential achievable compression factors for
non-imaging science instruments on MM II suggests a conservative

MM II Potential
Average Non-Imaging	 2 to 4 .	 (4)
Compression Factor

4
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II. PERFORMANCE GAINS

This section will provide an analysis which determines the realizable AILS "system
performance gains" to tiv , spacecraft downlink, DSN ground communications, and on-
board mass memory.

MASS MEMORY IMPROVEMENT

The gains to mass memory are rather obvious, A given capacity of on-board mem-
ory is effectively irtoreased by the average compression factor used to represent data
during storage operations. We denote this gain factor by GM,

Voyager Uranus/Neptune

Compression is used only on downlink operations so that the mass memory gain
factor is

Voyager

	

Uranus/Neptune " 1
	

(5)
GM

Galileo

In this case 2.5;1 compression is applied to imaging data during mass memory
operations. However, considerable uncompressed non-imaging data is included in the
total data stored so that the effective mass memory increase factor is reduced to

Galileo
G M	= 2
	

(6)

MM II

There is no need to constrain the application of compression to these future mis-
sions. However, we must make some assumptions about the relative quantities of non-
imaging and imaging data. We will assume that non-imaging data constitutes 1/3 of all
data being stored "before compression." Then using (3) and (4), a mass memory capa-
city C would be effectively increased:

5
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from

(1/3C)(2) + (2/3C)(4) w 10/3C

to

(1/3C)(4) + (2/3C)(6) = 16/3C.

Then we take the mass memory gain factor to ba

MM II
GM ow 3.3 to 5.3.	 (7)

Observe that GM would be slightly larger if the initial percentage of non-imaging
data were smaller since we have estimated ^ < 7 in (3) and (4). Since a 33% figure
for non-imaging data is probably high, the gain factors in (7) should be viewed as
conservative.

Summary. The mass memory gain factors as just derived are consolidated into
Table 1. These represent performance gains of at least 5 to 7 dB.

Table 1. Mass Memory Gain Factors.
_	

Mission

Gain
Factor

Voyager
Uranus/Neptune Galileo MM II

G M 1 2 3.3 to 5.3

{G M}
d6

0 3 5to7

DOWNLINK IMPROVEMENTS191

This system impact is by far the most difficult to assess. We will first focus on the
individual gains to non-imaging and imaging transmission paths and then treat the joint
communication problem.

Direct Improvements to Non-Imaging and Imaging

Non-Imaging. Figure 3 compares the non-imaging transmission path • pro p coed by
the Voyager/Galileo baseline system in Fig. 1 and that provided by AICS. As shown, the

6
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DATA
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non-imaging data in the boseline system 4s Golay coded so that two bits are transmitted
over th`a convolutional channel for each real data bit. As depicted in Fig. 3 then, 213
bits/s pas .; through the oo evolutional channel for each R bits/s of real data.

By comparison, the concatenated RS/convolutional channel of AICS can operate at
roughly (0.38)(213) bitsis and yield "virtually error-free" communication. No Golay
coder is necessary so that all 1,7613 bits/s are available for non-imaging data. If the non-
imaging data can be compressed by an average factor of ^, the effective data rate for
non-imaging is 1,76 ^ R bits/s. Then we have

Improved AICS
G N I w downlink performance = 1.76	 (8)

factor for non-imaging

Observe that for Galileo, non-imaging communication, was left unchanged. For this
situation we have the special case where[161

Galileo
GNI W 1.0
	

(9)

which is like taking a compression factor of 1/1.76 in (8).

ON-BCARD
VOYAGER/GAUILEO

BASELINE NON-IMAGING COMMUNICATION
-------------------

NQN-	 R	 I	 GOLAY	 213	 COWIMAGING	 CODING	 CODINGi:^ATA	 bits's	 I	 bits/s
IL------------------- J

ON-BOARD
AICS NON-IMAGING COMMUNICATION

r-------------------------------- iI	 I

I nnnnnoccc I (0.88)(2131 I	 nc.	 I	 nn^n^	 I I l

1	
^ • ,	 I	 OILS/S	 ^	 ^ vvvn.v )

	
wvv^i.-=_^ i (

I
Iy-________________J I

L---------------------------------J

Fig. 3. Non-Imaging Architecture: Baseline vs. AICS.
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Imaging. Figure 4 compares the onboard imaging transmission paths provided by
the Voyager/Galileo baseline systems and that provided b! AILS.

In the baseline system R bits/s of image data are directly passed through the convo-
lutional channel. In AILS, compressed image data passes through the concatenated RS/
convolutional channel at (0.88)R bits/s. Accounting for an average cull1pression factor
of y, the effective imaging data rate is (0.88 y)R bits/s. Thus we have the imaging data
rate gain factor

Improved AICS

	

G I °^: downlink performance - 0.88 y
	

(10)
factor for imaging

ON BOARD VOYAGERiGALILEO
BASELINE IMAGING COMMUNICATION

r-------------- iI	 I
IMAGE:	 R	 I	 CONY.
DATA	 I	 CHANNEL	 ^I^Ih^ s	 ^

I	 I
L-------------- I

ONBOARD
AICS IMAGING COMMUNICATION

r-------------------------------- i
r
----------------^

rnnl	 ADD 17 a	 IO.f3811R1	 I	 e	 I	 I	 ^nnni	 I i

L_____._._^	 UILS'S	

'	

I l.V W11YV ^	 ^	 ^.vvnv^ I i II	 I
I	 L----------------J II	 IL----------- ----------------------J

Fig. 4. Imaging Architecture: Baseline vs. AICS.

Individual mission gain factors. Now using (8), (9), and (10) we can establish the
various gain factors for Voyager Uranus/Neptune, Galileo, and MM II. The results are
given in Table 2.

Overall Downlink Gains

In this report we are interested in the improvements to the total downlink data rates.
To accomplish this we now need to treat the communication of non-imaging and imag-
ing data jointly. This was done in Ref. 8 but the resrilts are not in the form we will need
for later value estimates.
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Table 2. Individual Downlink Gain Factors.

Mission

Gain Voyafler
Factor Uranwi Neptune R abler MM II

Non Imaging
G NI 1,76 1.0 3.5 to I

Irncging
C I 2.64 2.2 3.5 to 5.3

Figures 5 and 6 compare the baseline Voyager/Galileo systems and AICS by tracing
the effects on data rate backwards from the convolutional channel which is assumed to
operate in both cases at a rate of Rc bits/s.

The only new term is the multiplier a which represents the fraction of available
convolutional downlink rate, R c , which is assigned to non-imaging data. Hence, 1 ® a is
the fraction assigned to imaging. The 1/2 term in Fig. 5 represents the data rate reduc-
tion factor caused by the 100% parity overhead of Golay coding. Correspondingly, the
0.88 term in Fig, 6 is the minor data rute reduction factor of the RS/convolutional chan-
nel in AICS.

GOLAY	
NON-IMAGING

CODING	
FRACTION
C1	 ,v <.." 1

NON-IMAGING
DATA RATE

RNI

IMAGING
DATA RATE

RI

Fig. 5. Reverse Baseline Downlink Diagram.
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NON IMAGING
DATA RATE

RNI

RS CODING,
COMPRESSION

RS CODING,
COMPPESSION

IMAGING	 0.88 7
DATA RATE	 1 cx

Ri

Fig. 6. Reverse A1CS Downlink Diagram.

R N I and R NI represent the resulting net data rates available to non-imaging data in
the two systems, R l and R`1 represent the equivalent terms for imaging data.

Tracing through the diagrams we see that in the baseline

	

R NI = 2 Rc and RI = (1 -° al Rc	 (11)

for a total data rate of

	

RT — [ c' + (1 -- a)] Rc	 (12)

r
for AICS we have

RN I = 0.88 a Rc and Rl = 0.88 y (1 — a) Rc	 (13)
E

for a total available data rate of

	

R'T = [0.88 ^ a + 0.88 y (1 — a)] Rc	 (14)

Rewriting these terms by using (8)—(10) we have

RT = 
[ceGNl 

+ (1 — a) VI Rc	 (15)
2
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which yields the overall downlink improvement factor achieved by AICS over the base-
line as

AICS Downlink	 RT aGNI + 2(1 ® a) GI
G D = Improvement	 (16)

	

Factor	 RT	 2 -- cx

G D is the factor by which Rc would have to be increased in the baseline to achieve the
same real data rate,

Now consider the special cases of interest in this paper,

Voyager Uranus/Neptune. The primary mode for the Uranus encounter (and Nep-
tune with antenna arraying) will use an AICS downlink data , rate of[ 171

Voyager
Uranus

Rc 	= 14 kbits/s

with 4 kbits/s of this assigned to non-imaging. Then we have

Voyager
Uranus/Neptune

«	 =4= 0.285
14

Then using Table 2 and Eq. 16 we get

Voyager
Uranus/Neptune

G D	 = 2.49

which represents a 3.8 dB gain in the overall downlink data rate.

Galileo. The primary communication mode on Galileo uses a convolutional
channel transmission rate of[161

Galileo

	

Rc	 = 115 kbits/s.

11
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(18)

(19)
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The transmission rate assigned to non-imaging data (including some filler bits) is
22 kbits/s so that

Galileo

	

cx	 -_ 0.19 .	 (21)

Using Table 2 and Eq. 16 again we get

Galileo

	

G 	 2.07	 (22)

which is slightly more than 3 dB.

MM 11. From Table 2, the individual gain factors for imaging and non-imaging are
very close with the estimated minimum gain factors the same. We can therefore bound
the overall downlink performance gains by substituting the G I range for G N I on Eq. 16.
After cancellation we get

	

MM II	 MM II
G D > GI - 3.5 to 5.3	 (23)

which represents an overall downlink performance gain of at least 5 to 7 dB.

Summary. The overall downlink gains provided by AICS to Voyager Uranus/
Neptune, Galileo and MM II are summarized in Table 3. For convenience later, Table 4
provides the nominal convolutional transmission rate R c , including an estimated 30
kbits/s for MM II.

Table 3. Overall AICS Downlink Gains.

Mission

Voyager
UranusiNeptune Galileo MM II

G D 2.4.9 2.07 3.5 to 5.3

{G D} 3.8 3.0 5 to 7
dB
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Table 4. Convolutional Channel Downlink Rates,

Mission

Voyager
Uranus/Neptuno	 Galileo	 MM II7R C 	 14	 11a	 3D

k

GROUNDLINK IMPROVEMENTS

Lets look more closely at the results that evolved from Figs. 5 and 6. At a convolu-
tiona l channel rate of Rc the baseline system achieves only a real data ;ate given by (12)
as

	

RT =- f (a) Rc	 (24)

where f(a) is a function of a. But by (1 ^v)

	RT r GDRT .	 (25)

Comparing these we see that, with a fixed, G D is the factor by which the convolutional
channel rate in the baseline would have to be increased to achieve the same real data

rate RT.

Now suppose that for both AICS and the baseline Voyager/Galileo systems the

groundlink is merely an extension of the downlink. That is, all data received over the
convolutional channel are passed on through the DSN ground communication network.

Then by the above arguments, the use of a baseline Voyager/Galileo downlink
would require groundlink data rates to be G D times higher than required if AICS were
used.

Now note that for both Voyager and Galileo, the decoding of Golay coded non-
imaging data is done at a central Mission Control and Computing Center (MCCC) at JPL.
Thus all the data received on the convolutionally coded channel are passed on.

For AICS, there are also some advantages to placing the RS decoder at a central
site. In such a case, all data received on the channel would be passed on. However, the

13
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RS decoding may be done directly at the DSN stations so that RS parity would not need
to be transmitted. In this case, a mission using the baseline Voyager/Galileo downlink
would require groundlink data rates higher than AICS by {GDJdB +• 0.6 dB.

Ignoring this potential additional advantage, we can certainly say that

AICS	 AICS
Groundlink > Downlink
	 (26)

Gain Factor Gain Factor

and can thus use Tables 3 and 4 , to assess any advantages to the ground communica-
tions.

F
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III. MISSION VALUE/COSTS

Achieving improved mission performance by increased "dBs" has been an on-
going quest since the inception of the deep space program. Certainly, a comparison of
the capabilities available for Mariner IV in 1964 and those available on the (baseline)
Voyager and Galileo missions today is truly astounding. However, this achievement has
pushed many areas of technology into maturity and efforts to improve their performance
to a point of diminishing returns (e.g., doubling the size of the DSN 64-meter antennas is
not a reasonable thing to consider). In essence, squeezing additional performance by
standard approaches has become a costly endeavor,

As Tables 1 and 3 show, the coding and compression of AICS offer an alternative
approach to obtaining significant performance gains. We wish to assign a value to those
gains. To accomplish this we make fundamental use of the observation that the utiliza-
tion of AILS components generally avoids expenditures that would have been necessary
to achieve a desired level of performance by other means.

In essence, "we will assign a value to a particular AICS system gain equal to what it
would have cost; for such a gain by standard means."

Note that in using this approach we must deal with the fact that system perfor-
mance improvements often come in steps which may be much larger than 1 dB. Cer-
tainly, any in-between gains must have a value. Then, to assign cost, and hence value,
to performance improvements lying between and beyond these real discrete steps we
will simply interpolate and extrapolate. For example, if it costs $Y to double (3 dB) the
mass memory from X bits to 2X bits, then we can assume the marginal cost for memory
improvements is $Y/3 per dB. The value of a X dB improvement in mass memory (with a
capacity in the vicinity of X bits) is then W/3.

Tables 1 and 3 give the AICS performance gains to mass memory, the downlink
and, by (26), groundlink communication. It remains to determine the marginal costs
associated with obtaining such gains by other means. Once established we can deter-
mine AICS mission value as

AICS	 Cast/dB for

Mission Value	 dB Gain System Element

of AICS	 =	 System
i 
Element	 (27)By Standard

memory,	 Means
downlink,
groundlink

15
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COST PER dB IMPROVEMENT BY STANDARD MEANS

Basic Rule-of-Thumb Parameters[ 181

The following provides a set of key rule-of-thumb costing parameters currently used
in pre-project planning,

On-board mass. The basic cost of a kilogram of on-board mass is

MASS$ r-- $100K/kg ,	 (28)

Cost of RTG power. A 250 watt Radioactive Thermoelectric Generator (RTG) costs
$13.75 million, leading to a direct incremental cost of

	

DPower$ =	
Cost/watt	

= $55K/VW .
on-bound power
	 (29)

But such an R i G weighs 56 kg, leading to a secondary cost in spacecraft mass of

mass/watt

	

RTGM =	 of	 = 0.22 kg/W	 (30)
on-board power

or using (28), the indirect incremental cost for on-board power is

W ..
	 IPOWER$ _ $22K/watt . 	 (31)

Then, the total incremental cost for on-board power is given as

POWER$ = DPOWER$ + IPOWER$ = $771</watt 	 (32)

Direct Costs for Increased On-Board Mass Memory

In the following discussions we will assume a baseline recording capacity, C, ob-
tained from the use of a single off-the-shelf Voyager or Galileo tape recorder. This is still
by far the cheapest flight quolified mass memory available.

Basic assumptions. A single Galileo or Voyager tape recorder costs $1.7 mil-

	

lion, with additional units costing roughly $0.7 million. 	 (33)

16



A dovelopment program to roughly double the capacity of such recorders by
improving the packing density would cost about $2.0 million. 1191	 (34)

On the other hand, a development program to ready other tape recorders (of
higher capacity, say 4C) for JPL flight programs would cost around $ 5 million l181 . (35)

The weight of a Galileo or Voyager recorder is around 9 kg.	 (36)

Power is dependent on rate of operation. At full rate these baseline recorders
draw 20 watts. 	 (37)

We will assume that any "developed" recorder has the same power and mass
requirements and further, that the cost for subsequent recorders is the same as in
(33).	 (38)

Costs for the first 3 dB. We could double the capacity to 2C by adding a second
recorder or by modifying the existing recorders. Consider first the addition of a second
recorder. By (33) this additional recorder would cost a minir-M.- . of $0.7 million. If we
assume that only one recorder operates at a time we do not have to account for extra
power. However, from (36) and (28) the additional on-board mass would cost (9 kg)
($100K/kg) = $0.9 million. Adding these two terms gives

Cost of
Adding One	 $1.6 million .	 (39)

Recorder

This result is less than a development program to double the capacity of an existing
recorder. Taking the smallest we get

Cost per dB
for Doubling > $ 533K/dB.	 (40)

Mass Memory

Cost of 6 d13. If we double the mass memory again, we would need either

a) three standard recorders at a cost of $4.8 million, or

b) a new flight qualified recorder for about $ 5 million, or

c) two modified standard recorders at a cost of $3.6 million (i.e., 2 + 1.6).
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Taking the minimum option we get

Cost per dB
for Quadrupling > $ 600K ,	 (41)
Mass Memory

Costs per dB, Taking the minimum of (40) and (41) we can bound the marginal cost
for mass memory as

Cost per dB
for	 > $ 533K/dB	 (42a)

Mass Memory

and where

Cost per dB for

Mass Memory - $ 600K/dB .	 (42b)
increase in the
vicinity of 6 dB

Direct Costs for Increased Downlink Rates

Modifications for downlink transmission rate capabilities have historically been ac-
complished by altering basic communication system parameters: transmitter power,
ground antenna gain and on-board antenna gain. We will first derive estimates for the in-
dividual costs associated with altering these parameters and then consolidate the latter
results into an overall downlink per dB direct cost (a value).

Transmitter power. Doubling transmitter power will achieve a doubling of trans-
mission rate capabilities. To compute the cost or "value" of this 3 dB gain, consider a
transmitter power reference point of 10 watts. This corresponds to the MM II trans-
mitter baseline.

Since the efficiency of such a transmitter is only 25%, the actual on-board power
used by the 10 watt transmitter is 40 watts. Doubling this requires a 40 watt increment
to on-board power (with a corresponding increment to spacecraft mass to support that
power). Then using (32), this 3 dB gain in data rate would cost

($77K/W)(40W) = $3 million . 	 (43)
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Data Rate
Advantage of

64-m over 34-m
Stations

- 5dB. (46)

Getting the next 3 dB would cost twice as much so, normalizing (43), we can lower
bound cost by:

Cost per dB
By Changing	 > $1 million/dB

	
(44)

Transmitter Power

The latter results are plotted in Fig, 7.
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Fig. 7. Costs for dB Gain From Transmitter Power.

DSN Stations. The difference in performance between the DSN 34-meter (m) an-
tennas and the 64-m antennas is about 5 dB. The difference in operational costs is
substantial.

The stated charges for use of these stations (20] are $ 2000/h for the 64-m stations
and $ 800/h for the 34-m stations, The difference between using one or the other is then

Hourly Cost Difference

	

Between 34-m and 64-m = $1200/h
	

(45)
Stations

where
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Those observations are plotted in Fig. 8. Observe that the slope of the line connect-
ing the two options represents the hourly cost or value of a dB gain in data rate at the
DSN stations. Then

Hourly Cost
per dB
	

-- $ 240/h
	

(47)
at the DSN

To determine mission cost we need an estimate of a typical number of hours of DSN
use, Using MM 11 as a minimum guideline we assume 6 months of DSN tracking at 16
hours a day or 4 months of full use [211 , (The Voyager Uranus/Neptune and Galileo
Jupiter orbiter missions could be longer.) Then using (47) we gett

DSN Mission
Cost per dB gain W $700K/dB
at the Stations

These results are plotted in Fig. 9.

64 m
STATION

\1 	 11-1

RATE, dB

Fig. 8. The Hourly Cost of a dB at the Stations,

tThis is quite conservative for the Galileo and Voyager Uranus/Neptune missions
which may be considerably longer. In particular, the Galileo spacecraft should be collect-
ing data for as long as two years,

20

I Am
Sri



J	
1111)

64 m
STATION

SLOPE * v 70OK dB

-^	 34 m
101, "00, I STATION

f

Z'	 6
0J
-,J

4
0
U

V

in

2

0
R

	

	 R+S
RATE, dB

*ASSUMES 4 MONTHS
OF FULL TRACKING
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Increased antenna size. (221 It is feasible to double the area of an off-the-shelf 1.4-m
Viking antenna. However, going beyond this would become prohibitively expensive.

A doubling of area would increase transmission rate capability by 3 dB at a deve,op-
ment cost of roughly $ 750K, The estimated mass Increase to provide the larger antenna

e	 is 6-8 kg or an additional cost of, using (28), $ 700K. Then

Cost per dB
by Increasing

On-Board	 $50OK/dB .	 (49)
Antenna Size

(first mission use)

Consolidating downlink costs. The performance improvements provided by in-
creased transmitter power or higher gain antennas are additive. Each of them will
separately add dB improvements to data rate capability. Then to assign a value to dB
gains on the downlink we take an average of the incremental costs in (44), (48) and
(49), yielding

Average Cost (value)

	

per dB Improvement - $730K/d3 .	 (50)
in Downlink Rate
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In support of this approach, note that when Voyager implemented the RS coding
before launch there was no time to build another antenna or increase on-board power,
The only alternative for improving data rate was to improve tho receiving antenna
capability (by arraying antennas). The number assumed for DSN marginal cost in (48) is
very close to the average in (50).

In the case of MM II, we are talking about dB gains of 5 to 7 dB. If we increase the
downlink data rate performance on-board without AILS we must both increase trans-
mitter power (3 dB) and antenna size (3 dB) to avoid using 64-m stations (5 dB). The
average per dB cost for combining increases in transmitter power ($1 million/dB) and
antenna size ($ 500K/dB) is $ 750K/dB. If instead, this performance gain, say 5 dB, was
obtained by using the 64-m stations then we are back to $ 700K/dB. Either one is very
close to the average in (50).

Costs for Ground Communication[ 231

Data received by DSN stations in Australia, Madrid and at Goldstone must be com-
municated back to a central Mission Control and Computing Center (MCCC) at JPL. We
must look closely at the current communication structure to assign a fair value to incre-
ments in this "ground communication."

Assumptions. Communications rate capability between the DSN stations and JPL
can now be increased in steps of 56 kbits/s or 224 kbits/s. All three stations must re-
ceive the same improvement.

The cost of each 56 kbits/s increment to performance differs for each station.
Data from Australia travels first to Goddard Space Flight Center at $35K/month and
then to JPL via satellite at an additional $4K/month. From Madrid the corresponding
costs are $16K/month and $4K/month respectively. Goldstone costs are simply
$ 5K/month for each 56 kbits/s increment. Summing these costs we get

Cost for Each
56 kbits/s	 = $ 64•K/month .	 (51)

Network Improvement

If as many as four additional 56 kbits/s lines are required, a single 224 bits/s capa-
bility can be added at lower cost:

Cost for Each
4 x 56 kbits/s	 (3.5)($64K) = $224K/month .	 (52)

Network Improvement
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Most of the first 56 kbits/s capability is taken up in various forms of overhead so
that only 5 kbits/s are available for transferring real mission data.

These observations are plotted in Fig. 10, Point A represents a network configura-
tion employing a single 56 kbits/s line providing a mission usable 5 kbits/s, Such a basic
capability can be viewed as always present.

Points B-E represent improvements to groundlink capability obtained by adding
single 56 kbits/s lines one at a time. The slope of the dashed line connecting points A-E
is then from (51)

	

$1.14K per kbits/s per month . 	 (53)

Point F in Fig. 10 represents the same data rate capability as poim E but is obtained
at lower cost. The dashed line connecting point A and E is

	

$1.OK per kbits/s per month . 	 (54)

100	 200	 300	 400

AVAILABLE GROUND COMMUNICATION, kblts/s

Fig. 10. Groundlink Costs.
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Actual increments to performance can occur only in the steps indicated in Fig. 10 as
A-B-C-D-E or A-F. However, such steps can result in a misleading interpretation of the
value associated with a particular improvement in ground communication. For example,
suppose the nominal groundlink communication requirement for a particular mission
were 60 kbits/s. This is slightly less than the capability afforded by two 56 kbits/s lines
at point B. An increase in data rate by only 0.1 dB would require moving to point C in
Fig. 10 at a cost of $640K per dB. This is not a fair assessment of the value of that
added 0.1 dB.

More realistically we propose to assign values to ground communication im-
provements by presuming we could move along the dashed straight lines connect-
ing the points A-E or A-F. To further assure a conservative estimate of value we
will use the line A-F with its lesser slope given by (54).t 	 (55)

Voyager Uranus/Neptune value, At both encounters the primary communication
mode will utilize a downlink transmission rate of 14 kbits/s (Table 4). Using Table 3 we
see that AICS makes this equivalent to (2.49)(14•) = 35 kbits/s. From Fig. 10 or (54)
the incremental cost to go from 14 kbits/s to 35 kbits/s is

Voyager
Uranus/Neptune

Monthly	 $21 K per month .	 (56)
Groundlink Cost
for 3.8 dB Gain

Assuming 6 months of total DSN network operation for both encounters we get

Voyager
Uranus/Neptune = $126K

	 (57)
Groundlink Cost
for 3.8 dB Gain

or normalizing

t Observe that future DSN ground communication systems are expected to utilize
time division-multiplexing. This will mean that each individual requirement for improve-
ments to data rate could be incrementally paid for at a kbits/s cost. This is essentially
what we are doing here in assigning "value."
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Voyager
Uranus/Neptune

Incremental	
$33K .	 (58)

Groundlink Cost

Galileo. We have plotted the Galileo transmission operating points in Fig. 10. Point
, shown at 115 kbits/s, represents the now planned downlink operating point us-

ing AICS components, By Table 3, this rate would need to be (2.07)(115 kbits/s) =
238 kbits/s (point nH ) without AICS, to be equivalent. This increase of 123 kbits/s
would, by (54), cost

Galileo Monthly
Groundlink Cost
	

$123K/month .	 (59)
for 3 dB Gain

Assuming 6 months of total DSN network support for this orbiter mission we gett

Galileo
Groundlink Cost - $738K	 (60)

for 3 dB Gain

or normalizing,

Galileo
Incremental	 $246K/dB .	 (61)

Groundlink Cost

MM II. We take the nominal MM II downlink rate (with AICS) as 30 kbits/s, shown
as point 0 in Fig. 10. By Table 3, the downlink would have to be at least (3.5)(30
kbits/s) = 105 kbits/s to be equivalent without AICS (point l^J in Fig. 10). This in-
crease in transmission rate is valued at

MM II Monthly
Groundlink Cost = $ 75K/month .	 (62)

for 5 dB Gain

t Note again that this is quite conservative. The Galileo spacecraft should be collect-
ing data for as long as two years.
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Assuming 4 months of full DSN support this would cost

MM II
Groundlink Cost oz $300K 	 (63)

for 5 dB Gain

or normalizing,

MM II
Incremental x $ 60K/dB .	 (64)

Groundlink Cost

Summary. The groundlink costs just computed are costs (values) associated with
increased groundlink data rates which would be needed if AICS were not present. By our
previous arguments these costs are the values we assign to the AICS performance
gains. They are summarized in Table 5 for convenience.

Table 5. Groundlink Values for AICS Performance Gains.

Mission

Voyager
Uranus/Neptune Galileo MM II

Mission
Value

$K 126 738 300

per dB
Value

$K 33 246 60

OVERALL AICS MISSION VALUE

To obtain an overall mission value for AICS performance gains we need only substi-
tute the appropriate terms into the "mission value equation", (27). Values associated
with effective improvements to mass memory are easily determined from Table 1 and
Eq. 42. Similarly downlink values can be computed using Table 3 and Eq. 50. Ground-
link values were already computed directly and are summarized in Table 5.

The major quantitative results are shown in Table 6. The table lists the individual
mission value contributions from improvements to a) mass memory, b) the downlink,
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Table 6. AICS Mission Value.

Mission

Voyager
Uranus/Neptune Galileo MM II

Mass Memory
$ Million 0.0 2.01 3.0 to 4.2

Downlink
$ Million 2.77 2.19 3.65 to 5.11

Groundlink
$ Million 0.13 0.74 0.25

Mission $6.9 Million
Total $2.9 Million $4.94 Million to
Value $ 9.5 Million

and c) ground communication along with cumulative mission value totals. Overall mis-
sion values of roughly $3 million for Voyager, $5 million for Galileo and $7 to $9.5
,;,iron for an MM 11 mission are shown.

Observe that the gains are potentially larger on MM II because it is the first mission
set which might take full advantage of AICS. Observe that the incremental value to an
investment in AICS performance in a single future mission is

Incremental
AICS Value to = $1.4 million/dB . 	 (65)
MM II Mission

But over a five mission set the cumulative value might approach $35 to $ 50 million. The
corresponding incremental value in seeking the maximum benefit from AICS then ap-
proaches $7 million/dB, certainly a worthwhile investment.

Some of these muiti-mission savings may have already been obtained. R.
Stevens [241 notes that the existence of "effective" image data compression on-board
the Voyager II spacecraft was the primary reason for cancelling the construction of four
new 34-m antennas. These antennas, to be used to enhance the Voyager Uranus/Nep-
tune encounters by arraying, would have cost $ 5.6 million apiece. Thus AICS had a ma-
jor role in saving over $ 20 million in this one instance.
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AICS Costs

We now seek to arrive at the following conclusions:

a) AICS implementation costs today are minor, relative to the dollar value contri-
buted by the improved performance (Table 6).

and

b) The costs to achieve a given level of AICS capability will diminish in the future,

Consider first the first order costs associated with today's AICS implementations
on Voyager and Galileo.

Voyager. The RS encoder on Voyager for Uranus and Neptune vas implemented
over a 2 -%2 month development period just prior to launch. It used less than 100 low
power CMOS chips, which will run at a low data rate (hence low power) of 14 kbits/s.
The image data compression will be programmed into the existing on-board computer
and thus incurs no additional spacecraft costs. Ground decoding and decompression
could be done in software using existing facilities. Then without worrying about details,
we can conclude that the AICS implementation costs on Voyager are negligible com-
pared to the $3 million value indicated in Table 6,

Galileo. The image compressor on Galileo has a much more difficult compression
task and, along with the RS encoder, has to operate at much higher data rates.

The h)rdware compressor and RS encoder were built with CMOS logic over a 4-5
month crash, Effort by a single senior designer. One could certainly assume that the
decompressor alone, a Functionally simpler problem than the compressor, could be de-
veloped with less effort. In support of this, note that a ground decompressor can operate
at rates much l ower than the maximum required by the compressor (see below) and a
ground decompressor design need not be constrained to use the limited set of flight
qualified parts.

Reed-Solomon decoding is indeed a more difficult task than RS encoding. However,
the subject of RS encoding/decoding has been absorbed into standardization programs
and general long term DSN upgrade programs. By the time Galileo needs a high speed
decoder there may exist a single decoder which can serve Galileo and all subsequent
missions through the 1990s. Thus it is difficult to assign any specific cost to Galileo in
particular.
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Our first order approximation to real development costs for Galileo is to assume that
ground development (decompressor and decoder) is roughly the same as the spacecraft
development costs noted above. Summing these we have: the approximate AILS devel-
opment costs for Galileo are equivalent to 4/5 man year of a senior designer's time,

Now consider the spacecraft costs. The compression/coder unit weighs 1.5 kg(2510
which by (28), incurs a spacecraft cost of $150K. In addition, when image data is
placed directly on the recorder, the compressor has to operate at 800 kbits/s. At such
maximum operating rates the power requirements are 5 watts(251 . By (32) this would
imply a spacecraft cost of (5W)($77K/W)--►-$385K. But power use is a fairly direct
function of data rate and the average mission data rate for compressed image data can
certainly be no more than the downlink rate of 115  kbits/s. Thus the 5-watt maximum
is probably too high a penalty to assign to the compressor. If we conservatively keep it,
the first order spacecraft costs are 150 + 385 = $ 535K.

Conservatively adding $100K for 4/5 man years of development time we find that
the first order AICS costs on Galileo are close to an order of magnitude less than the mis-
sion value shown in Table 6.

Future missions. By the above calculations, the costs associated with implement-
ing AICS elements within Voyager and Galileo are minor compared with the net value
obtained. An even stronger statement can be made for future missions.

Consider that AICS performance gains are basically derived from processing data
differently than before. The real costs for AICS come from the hardware or software
needed to accomplish this processing. Obviously, the tremendous advances in micro-
electronics are dramatically reducing the costs to accomplish any form of processing. In
particular, the power, weight and volume and hence costs, associated with a given level
of AICS capability today, in any part of the end-to-end system, will fairly rapidly become
negligible by comparison.

Thus, the AICS implementation costs relative to performance values (Table 6) are
already small and will continue to get smaller.
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