General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

JPL PUBLICATION 84-45

HC A05/MF A01

(NASA-CR-174112) TECHNCLOGIES FOR SPACE STATION AUTONCHY (Jet Propulsion Lab.) 80 p CSCL 22A

N85-129C6

Unclas G3/12 24607

Technologies for Space Station Autonomy

Robert L. Staehle

June 15, 1984

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Technologies for Space Station Autonomy

Robert L. Staehle

June 15, 1984

NASA

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, close not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

ABSTRACT

This report presents an informal survey of experts in the field of spacecraft automation, with recommendations for which technologies should be given the greatest development attention for implementation on the initial 1990s NASA Space Station. The recommendations implemented an autonomy philosophy that was developed by the Concept Development Group's Autonomy Working Group during 1983. They were based on assessments of the technologies' likely maturity by 1987, and of their impact on recurring costs, non-recurring costs, and productivity. The three technology areas recommended for programmatic emphasis were: 1) artifical intelligence expert (knowledge based) systems and processors; 2) fault tolerant computing; and 3) high order (procedure oriented) computer languages.

This report also describes other elements required for Station autonomy, including technologies for later implementation, system evolvability, and management attitudes and goals. The cost impact of various technologies is treated qualitatively, and some cases in which both the recurring and nonrecurring costs might be reduced while the crew productivity is increased, are also considered. Strong programmatic emphasis on life cycle cost and productivity is recommended.

TABLE OF CONTENTS

I.	EXECUTIVE SUMMARY	1
II.	STUDY OBJECTIVE	3
	Autonomy/Automation Philosophy	3
III.	AUTONOMY GOALS AND BACKGROUND	6
	Goals	6
	Definitions	7
	Autonomy Working Group	8
	History	10
	Autonomy Is Not the Whole Answer	11
IV.	SURVEY TECHNIQUE	13
	Statistical Significance	16
۷.	SURVEY OBSERVATIONS	17
	Lack of Agreement	17
	"Essential" Technologies	18
	High Leverage Technologies	18
	Productivity, Recurring Cost and Development Emphasis	19
	Recurring Cost	22
	Productivity-Oriented Technologies Requiring Development	
	Attention	23
	"Impossible" Technologies	23
VI.	TECHNOLOGY PRIORITIES	24
VII.	PROGRAMMATIC CONCERNS	26
	Customer Accommodation	26
	Evolvability & Growth	27
	Development Initiative	28
	Readiness Risk	28
	System & Subsystem Compatibility	29

PRECEDING PACE BLANK NOT FILMED

.

VIII.	AUTONOMY IN PERSPECTIVE	30
	Productivity Enhancement	30
	Cost Savings	30
	Crew and Ground Personnel Acceptance	31
	Non-Recurring Costs	31
IX.	CONCLUSIONS & RECOMMENDATIONS	33
	Technology Selection	33
	Goals & Guidelines	34
	Management	35
	Space Station Evolution	35
	Cost Impact	36
	Customer Accommodation	36
Χ.	REFERENCES	37
XI.	ACKNOWLEDGEMENTS	39
XII.	APPENDICES	40
	1. Survey Respondents	40
	2. Sample Survey	42
	3. Survey Data	49

Tables

1.	Generic Technologies in Survey	14
A-1.	File Structure	49
A-2.	Summary of Technology Survey Data Reports	50

¥

I. EXECUTIVE SUMMARY

An informal survey was made of several experts in space system automation, seeking their advice on which technologies would be required to implement a high level of automation and autonomy for the Space Station Program. Autonomy/automation goals and definitions were taken from discussions during meetings of the Concept Development Group's Autonomy Working Group (AWG), which met several times during the last four months of 1983. Adoption of specific architectural guidelines developed by the AWG will enable implementation of the autonomy/automation goals beginning at IOC (initial operational capability).

Based on the assessments made of which technologies would have the greatest favorable impact on Station productivity and recurring cost, three generic areas were chosen as having the greatest likelihood of sufficient maturity by 1987 to be incorporated in the IOC Space Station:

Artificial Intelligence: Expert Systems & Processors Fault Tolerant Computing High Order (Procedure Oriented) Languages

Each requires a modest amount of application-specific development support, but has seen enough application to date to be relatively assured of its beneficial implementation in the Space Station Program. Other technologies were also identified with lower Space Station-specific development priorities and/or later maturities with high desirability for post-IOC implementation. Some desired technologies appear to be receiving sufficient development attention outside the Space Station Program. Evolvability must be built into Space Station Program hardware, software and operating procedures from the beginning to allow the station to incorporate important new technologies as they rapidly become available.

Technology selections were based on assumed maximum periods of autonomy from different levels of ground involvement in Station operations: 90 days without STS revisit, up to 5 days without routine support, and up to 24 hours without communication.

Strong management discipline and an in-depth, program-wide adherence to an aggressive autonomy philosophy are required to realize the recurring cost benefits of autonomy. Existing flight and ground personnel should be involved in the design process, and alternative technology plans should be prepared in high risk situations to lower the perceived risk of reliance on the proposed new technologies. There are some situations where new automation technologies might reduce net non-recurring costs while resulting in recurring cost and productivity improvements.

Likely customer needs for Station automated equipment and capacity need to be determined and allocated early in phase B, along with standard interface specifications for Station subsystems and customer equipment.

Several other early actions are required to realize the benefits of autonomy for the Space Station Program: Quantitative assessment of the impact of each high-priority technology on productivity, recurring cost, and non-recurring cost; identification of technology development programs which should be monitored, supported, or adopted on behalf of the Space Station Program; development of autonomy and robotics accommodation plans to be incorporated in Station design; and strong programmatic emphasis on life cycle cost and Station productivity.

¥

II. STUDY OBJECTIVE

The objective of the study reported herein was to identify those technologies in the field of automation which are most likely to be needed aboard the IOC Space Station in order to implement the autonomy goals agreed by members of the Autonomy Working Group (AWG), an arm of the Space Station Concept Development Group (CDG), during late 1983.

Lacking defined customer requirements, the goals were written in terms of facility (i.e., non-payload) operations, though there will always be links between facility operations and payload activity (as in an office building where heating, air conditioning, and lighting utilities are operated based on customer schedule and control inputs). Note the discussion entitled "Customer Accommodation" in Section VII, Programmatic Concerns.

Those goals are as follows: [1]

Autonomy/Automation Philosophy

- A. Subsystem/system monitoring and control will be performed onboard.
- B. Systems monitoring and control will be automated.
- C. Fault detection and isolation will be an automated function for all subsystems.
- D. Redundancy management, including reconfiguration, will be performed automatically onboard.
- E. Reverification of systems/subsystems elements will be performed automatically onboard.
- F. Near term (i.e., next 1 to 3 days) operations planning and scheduling will be performed onboard.
- G. The degree of automation will increase as the Space Station matures and new technologies become available.
- H. Collection and analysis of trend data will be automated onboard.
- I. The Space Station Platform shall have at least the same degree of automation onboard as the manned base.

These goals were written with the intent to avoid specifying how they might be achieved, other than recognizing that their realization requires extensive use of automation to enable many facets of autonomous operation aboard the Space Station.

A closely related set of Architectural Guidelines was also drafted, as follows:

- Automated fault detection, isolation and recovery will be carried out giving highest priority to crew life support and primary mission objectives.
- 2. Automated systems architecture is distributed and hierarchical.
- 3. Fault detection, isolation and recovery is accomplished at as low a level as possible in the hierarchy.
- The required fault tolerance capabilities may be accomplished using either fault tolerant computers or appropriate network approaches, or both.
- 5. Architecture shall facilitate development and test of individual subsystems independent of other subsystems.
- 6. Architecture should minimize subsystem interactions at all levels of architecture. Where interaction is required, it shall be performed at the highest feasible level.
- Only processed results will routinely progress upward through the hierarchy. Lower level data will be accessible at higher levels when required [2].
- Architecture will allow manual intervention in all automated processes. Appropriate safeguards should be provided to prevent inadvertent or unauthorized disabling of essential automated processes [2].

An underlying desire of the goals and architecture proposed by the AWG was to make the Station independent of "marching armies" of large numbers of ground controllers involved in hour-by-hour decision making. Based on this and operational considerations set by other working groups, three discreet periods of Station autonomy from the ground were specified for normal operations:

- * 90 days without STS revisit
- * 5 days without routine space station ground support
- * 24 hours without any communication with the ground

These specifications do not mean during normal operations that STS revisits, routine ground support, or communications with the ground will be carried out no more frequently than indicated; they do mean that the system is to be designed to accommodate these maximum intervals without interruption of normal operations. The 90 day specification was a programmatic requirement not set by the AWG. The 5 day specification was meant to allow for the longest holiday weekends for ground controllers. The 24 hour specification was intended to keep congested communications (especially via TDRSS) from becoming a major bottleneck in operations, and to force designers and planners to think of how to make decisions and conduct normal operations without consulting with the ground about every little action.

Further, these autonomy periods refer to facility operations, and not to all customer payload operations. For example, during observation of a unique solar event occurring on a weekend, discussions between the ground-based

investigator team and cognizant crewmembers would not be precluded as a part of normal operations. Likewise, the installation of a massive payload module need not occur at a resupply interval. Some facility operations will generally be required to support such customer operations, though the philosophy goals A, B and F were intended to obviate the routine need for facility ground controllers being on line at such times.

III. AUTONOMY GOALS AND BACKGROUND

Goals

The whole intent behind placing automation in the Space Station system is to make the system operate more effectively (as measured by both cost and performance) for the customer. In order to fulfill this intent, the approach is taken to "use machines (automation) to do what machines do best, and use humans to do what humans do best." The technologies of automation, along with certain polic, decisions and management implementations, are used to provide the orbiting Space Station facility with a high degree of autonomy from the ground. It is widely believed that a degree of autonomy much higher than that which existed during Apollo, Skylab and Shuttle/Spacelab missions will lead to greater productivity on behalf of Space Station customers and lower operating costs. Skylab and Spacelab experience, as well as numerous sociological studies cited by B. J. Bluth [3], have indicated the near necessity of greater facility autonomy for crew well-being and enhanced productivity on long-duration missions.

The varied technologies of automation, because of their present capability and their very rapid evolution, will play a key role in Space Station operations. While there is often considerable debate between the best respective roles for people and machines in space, the debate itself is beyond the scope of this study, and is in any case being dealt with in other studies, especially some recent ones led by personnel at Marshall Space Flight Center (MSFC) [4].

Initial Space Station operations appear likely to begin in a heavilysupervised mode with ground personnel and crew members issuing many discreet commands. With proper design and operations discipline, this situation can rapidly evolve to smooth, skilled operation by a small number of people assisted by highly capable automated systems. Without proper design and discipline, the initial operational environment can rapidly become onerous and expensive.

Certain system, facility, and payload architectural characteristics appear necessary to design and implement the full Space Station system in a manner which will permit the fullest use of automation technologies as they become available. Using automation, it is possible, when compared with present complex space systems, to increase system capability, visibility, flexibility, controllability, evolvability, safety and customer satisfaction. It is also possible to reduce operations costs, especially by reducing the required number of ground personnel, and to reduce the sensitivity to turnover of trained personnel and the costs of training new team members. Without the proper architecture, these positive attributes will be difficult to achieve, and automation could become a burden on system operators and customers.

Because of the lack of definition of the Space Station missions (especially), and to a lesser extent of design and subsystem technologies, results reported here should be considered as preliminary, incomplete, and subject to revision. Several areas where further study is needed are noted at the end.

Definitions

Automation is the use of a machine, often controlled by a computer, to perform a particular function with or without the involvement of a "person-in-theloop," regardless of the location of the persons involved (if any), the machine, or the function itself. For example, an automated function bould be effected aboard the station based on calculations made by a computer at the station operator's mission control site, with authorization to proceed coming from a person at a payload operations facility at another ground location.

Automation can involve everything from a simple mechanical device like a thermostat to very complex learning knowledge-based artificial intelligence (AI) systems running on large digital computers. The key element in automation is that a person does not actually perform the function described, though one or several individuals in several locations may input information to initiate or authorize an automated activity, or may select from a set of options for different automated activities.

Automation is not synonomous with autonomy. As a design parameter, automated systems may be highly dependent on information input, initiation or authorization to proceed given by crewmembers, ground controllers, and payload operators; or they may operate largely independent of human intervention or verification (i.e., autonomously). In many cases the degree of autonomy employed by an automated function may be made selectable, with frequent changes permitted during the course of a Space Station mission.

Autonomy describes the degree of control information which crosses the boundary between the function or system being described and the outside world. A system with defined boundaries is autonomous if it operates for a given period of time without external control inputs. A "system," for the purpose of describing its level of autonomy, must be described by a boundary which is either physical, functional, or both. Thus a thermostat operates autonomously so long as its control settings are left unchanged. А spacecraft, with or without a crew, may operate with autonomy from ground controllers so long as instructions or control inputs are not required from the ground. Data transfer between the Station and the ground might take place autonomously for a given payload, with elements of this autonomous system aboard the Station facility, its payload, and at several locations on the ground. Such a communications function might be controlled by an AI expert system selecting data rates and paths, store and dump periods, and data formats, all without the direct supervision of persons on the ground or aboard the Station.

In order to implement any particular function aboard a spacecraft, one must choose within the spectrum which contains fully manual operation, teleoperation from the ground, and complete automation with autonomy from human control. The best choice is often a blend of these which varies depending on technology availability, and is selectable during the course of operations.

Autonomy Working Group

The Autonomy Working Group (AWG) consisted of the following individuals, working mainly on an ad hoc basis, who met several times from September through December of 1983: John Anderson Mail Code RSS-5 National Aeronautics and Space Administration Washington, D.C. 20546 Phone: 755-8557 (FTS) William Bailey John F. Kennedy Space Center Kennedy Space Center, FL 32899 Phone: 823-7476 (FTS) Gene Beam Mail Code PM-01 George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812 Phone: 872-0541 Rodger Cliff Mail Code 402 Goddard Space Flight Center Greenbelt, MD 20771 Phone: 344-6158 (FTS) Audrey Dorofee Mail Code DL-DED-22 John F. Kennedy Space Center Kennedy Space Center, FL 32899 Phone: 823-4430 (FTS) Bob Easter Jet Propulsion Laboratory 180/701 4800 Oak Grove, Pasadena, CA 91109 (818) 354-2546 Phone: (FTS) 792-2546 Kevin Forsberg Lockheed Missiles & Space 1111 Lockheed Way Sunnyvale, CA 94086 Phone: (408) 743-0544 Ray Hartenstein Mail Code 730 Goddard Space Flight Center Greenbelt, MD 20771 Phone: 344-5659 (FTS)

Bill Holmes (Chairman) Code MFA-13 National Aeronautics & Space Administration Washington, D.C. 20546 Phone: 453-1092 (FTS) Milton Holt Mail Station 477 Langley Research Center Hampton, VA 23664 Phone: 928-3681 Matt Imamura Mail Code SO 550 Martin Marietta Corporation P.O. Box 179 Denver, CO 80201 Phone: (303) 977-3494 Judah Mogilensky MITRE Corp. Burlington Road Beaford, MA 01730 Bob Mullen Mail Station B 354 Bldg. S-41 Hughes Aircraft Company P.O. Box 92919 Los Angeles, CA 90009 Phone: (213) 648-1280 Everett Palmer Mail Code 239-3 Ames Research Center Moffett Field, CA 94035 Phone: (415) 965-6147, FTS 448-6147 Gordon Powell MITRE Corp. **Burlington Road** Bedford, MA 01730 Richard A. Spencer Mail Code 0570 Martin Marietta Corporation P.O. Box 179 Denver, CO 80201 Phone: (303) 977-4208 Robert Staehle Jet Propulsion Laboratory 158/224 4800 Oak Grove, Pasadena, CA 91101 Phone:

÷

e: (818) 354-6524, 6003 (FTS) 792-6524, 6003 -9-

Fred Steputis Mail Code L 8031 Martin Marietta Corporation P.O. Box 179 Denver, CO 80201 Phone: (303) 977-0293 Prof. Theodore Williams Purdue University School of Engineering 334 Potter Center West Lafayette, IN 47907 Phone: (317) 494-7434 Ron Thomas Mail Code 500-202 Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Phone: (FTS) 294-5218 Sid Whitley National Space Technology Laboratories NSTL. MS 39529 Phone: 494-3326 Jim Zapalac MDAC

5301 Bolsa Avenue Huntington Beach, CA 92647 Phone: (714) 896-5523

History

Since the United States' first space station, Skylab, the technology of automation has blossomed. Sophisticated computer-based automation has penetrated the office, communications, routine laboratory research, and planetary spacecraft, to name a few fields which have embraced the various rapidly evolving technologies. Very few of the Skylab operations functions were automated, and there was not even a central computer aboard the station, although the Apollo command service module did have a computer of limited capability by today's standards. There were limited capability control systems using electromechanical devices, but these were hard-wired and intended for single functions such as temperature control or limited functions such as attitude control (attitude control used a small digital computer for some functions) [5].

On Skylab, the station's final configuration could be assumed in great detail before flight, permitting designers to accommodate very specific requirements. We have assumed from the outset that the configuration of the Space Station will be constantly changing from payload to payload, and evolving as the basic facility is expanded. All subsystems must carry this flexibility, and the overall system, especially in the operational sense, must allow day-to-day and year-to-year flexibility in order to maintain the value of the large initial investment. Skylab required hundreds of controllers on the ground, and a modest fraction of crew time was used to monitor and reconfigure station systems [6]. In addition, there was a period of a few months between each crew's occupation during which planning and analysis could take place. This involved hundreds more people, very large volumes of documentation, and several levels of review. Assuming a basic cost of \$100K per workyear, a 1,000 person team requires \$100M per annum to support when benefits and overhead are accounted. Without using extensive automation on the ground and aboard the Space Station, the operating work level could easily exceed this number. An important guideline will be to design an operations system which allows high flexibility to take advantage of unique human decision-making abilities, while reducing the workload for routine and mundane tasks such as subsystem monitoring and detailed scheduling.

Autonomy Is Not the Whole Answer

Autonomy, and the automation technologies required for its implementation, are most often supported on the basis of expected Space Station operating cost savings. In most cases, placing a higher degree of automation aboard the IOC station than is used aboard present crewed spacecraft (Shuttle, Spacelab, Salyut) results in higher capital facility cost than would be the case if existing technologies and procedures were simply adapted without modification. It can be reasonably argued that these increments in nonrecurring capital costs will be made up very soon in reduced operating costs, increased system performance, and better customer accommodations. (Recurring and non-recurring cost impact of various candidate automation technologies were two of the topics on which study participants were surveyed.)

The cost-saving arguments are usually made in the context of reducing the direct ground operations support staff from the level of hundreds experienced during Apollo, Skylab, Viking and Shuttle/Spacelab [6] to perhaps as low as ten or twenty. This is a worthwhile goal, but a simple calculation will show that such direct cost savings are small compared to the expected overall program operating costs. While these costs have never been estimated publicly, Shuttle experience would suggest that they could exceed \$1 billion per year, based on the fact that early Shuttle flights have cost in the neighborhood of \$300 million apiece, not including amortization of non-recurring costs. In contrast, the direct annual savings from eliminating the need for 100 engineers with direct mission support duties would be on the order of \$10 million.

The real savings must come from the vast numbers of indirect program support personnel among the NASA centers, contractors, and payload operators. Hundreds of people must be equipped to do the work presently done by thousands; though perhaps a number of equivalent positions can simply be eliminated as confidence rises and overkill requirements of backup planning, reliability, and documentation are relaxed.

Automation, and a command structure emphasizing Station autonomy, can enable the desired savings in indirect operating costs, but the real initiative must come from hard management discipline and a commercially-oriented approach to station operations. Automation can enable flow of the required management information, and permit the required gains in productivity among the line workers. But automation must be accompanied at all times by thorough and conservative budgeting, cost accounting and strenuous recurring cost goals in order to achieve the levels of savings which proponents suggest are available through the use of a highly autonomous Space Station.

IV. SURVEY TECHNIQUE

During the end of 1983, an informal survey was taken, asking members of the Autonomy Working Group and other interested and knowledgeable persons which of a list of generic automation technologies would be most desirable for implementation aboard the Space Station at IOC. The list of generic technologies, reproduced in Table 1, was derived during discussions among members of the AWG during a meeting in October, with additional input from Martin Marietta personnel under contract to JPL. The list was intended to represent those technologies not yet fully available which would be required in some form in order to implement the AWG's Autonomy/Automation Philosophy. (See Part II, Study Objective.)

Each survey recipient was asked, for those technologies with which he or she was familiar, to estimate the impact which each of the technologies would have on productivity, recurring costs, and non-recurring costs for the Space Station. Respondents characterized the impact of IOC availability for each technology as a small, moderate or large increase or decrease. Respondents could also indicate if they felt the technology in question would have no impact. Thus a particular respondent noted that artificial intelligence subsystem monitoring software (an expert system) would result in a moderate increase in productivity, a large decrease in recurring cost, with a moderate increase in non-recurring cost.

Three other questions were asked about each technology in the survey. First, how desirable would it be to incorporate a particular technology in the IOC Station? This was asked largely without regard to the potential availability of each technology. Desirability was ranked as essential, useful, helpful or none.

Second, if present development efforts for each particular technology were continued at expected rates, or if developments not coming as result of Space Station program influence were to occur as expected, how likely is it that the technology would be mature enough in 1987 to be selected for incorporation aboard the IOC Station? In essence, this question asked how likely each technology was to be available in 1987 without regard to development work initiated in support of the Space Station Program. Expected readiness was ranked as certain, likely, indeterminate, unlikely, or impossible. "Impossible" meant that only a major, very costly, dedicated development program could bring the subject technology to the required level of maturity by 1987.

Third, based on the desirability and readiness of a given technology, respondents were asked to recommend a level of development effort which should be considered for support of the Space Station Program. Recommended levels of development emphasis were: major, moderate, minor, monitor, or none. A copy of the survey, along with explanations of what was meant by each type of ranking, can be found in Appendix 2. Table 1. Generic Technologies in Survey

Artificial Intelligence Learning Expert Systems (Ground) Learning Expert Systems (Onboard) * Expert Systems Explanation Mechanism * Fault Detection, Diagnosis & Recovery Software * Fault Recovery Software * Planning & Scheduling Software * Subsystem Monitoring Software * Symbolic Processor (Onboard) Power System & Load Management Control Techniques Adaptive Distributed Parameter Hierarchical Multivariable Non-Linear Optimal Data Storage Onboard Archival Storage (Onboard) Mass Storage (Onboard) *Fault Tolerant Computing Architecture Data Transfer (Onboard) Data Transfer (Between Station and Ground) Mass Storage (Onboard) Processors (Onboard) Software *High Order (Procedure Oriented) Language (HOL or VHOL) Reprogrammable Onboard Procedures & Software Software High Speed Computing Data Bus (Onboard) Memory (Onboard) Memory (Ground)

Processors (Onboard) Processors (Ground) Table 1 (cont.)

Crew-Machine Interface (part of HOL)

Text Generation Natural Language Annunciation Natural Language Understanding

Robotics

Dextrous Manipulators Image Processing Image Understanding Pattern Recognition Teleoperation** Telepresence** Dextrous Arm Intelligent Manipulation Intelligent Mobility

Simulation Techniques

Analysis Tools Integrated Design

Very Large Scale Integration/Very High Speed Integrated Circuits (VLSI/VHSIC)

Minimum Instruction Set Computers (Onboard)

Note: Some of the technologies noted above were not on the original survey, but were added by respondents.

* Recommended for highest Space Station Program management priority. See Section VI, Technology Priorities.

** Within the categories of teleoperation and telepresence, no distinction was made between short-range control, where the communications link introduces no significant time delay, and long-range control, where one or more signal hops to geostationary satellites may introduce significant and varying time delays into the control loop. While short-range control has been demonstrated frequently, long-range control still carries significant technical risk for early implementation.

Statistical Significance

The survey was not intended to be a formal scientific sampling of opinion. It was an informal, organized set of relevant questions asked of experts in various fields. Their answers should not be "averaged" or otherwise mathematically manipulated to arrive at any "best" or "most likely" answers in any rigorous statistical sense. This compilation of survey results is meant to give the reader an understanding of the state of knowledge of automation technologies as they relate to anticipated Space Station operations. While not statistically rigorous, it is felt that the results can be used, along with other means of review, in determining where the greatest technology development emphasis should be placed in order to achieve the stated goals of Space Station autonomy, productivity, and recurring cost savings.

V. SURVEY OBSERVATIONS

Lack of Agreement

Survey respondents were asked only to rank those technologies with which they felt comfortable or familiar. It should be noted that different respondents had widely varying backgrounds, job responsibilities and levels of operational experience. Each also had generally different areas of expertise. With this variation, it should come as little surprise that responses to the different questions about each technology varied.

There was indeed wide variation in response, which is probably indicative of the newness of many of the proposed technologies, and the lack of hands-on experience by some of the respondents. Interpretive differences are also likely, where different individuals were thinking differently regarding what was meant by a given technology, or what the qualitative relationship is between such adjectives as "large," moderate," and "small," or "essential," "useful," and "helpful."

Ten persons offered responses for AI planning software, more than for any other technology. Among those who attended AWG meetings, there was reasonable agreement regarding what this technology meant. All ten indicated that its use would result in increased productivity and decreased recurring costs. Six indicated a "moderate" increase in productivity, while three characterized the increase as "large," and one characterized it as "small." Estimates of recurring cost impact were split almost evenly, with four indicating a "small" decrease, and three each indicating "moderate" and "large" decreases. All but one indicated a non-recurring cost increase, with the exception, who probably has the most experience developing AI planning software, indicating a small decrease in non-recurring cost. This is presumbaly based on his experience with both classical and AI planning techniques on the Voyager mission, and may represent the most informed opinion. Others may not have thought to consider the non-recurring costs saved by needing a much smaller planning workforce and shorter lead time for planning efforts afforded through the use of AI techniques. The indication of a small decrease was not meant to suggest that AI planning software could be developed for nothing or that it would make monev!

In the case of AI planning software, none felt it was essential, but eight ranked it as "useful," the second highest category of desirability for IOC. The other two ranked this technology as "helpful." Two considered this technology's availability as "certain," including the one who has been developing it for Voyager. Five ranked its availability as "likely," one considered it "indeterminate," and two "unlikely."

Five felt that the Space Station Program's emphasis of AI planning software development should be "moderate," one suggested "major," and three recommended "minor." The one working on Voyager felt that the Space Station Program need only monitor other efforts prior to 1987.

An obvious lesson here is that the most experienced experts should be consulted before making research commitments. Hopefully this would occur in any case. Responses regarding AI planning software are boxed in Appendix 3, Report #1.

Another indication of the lack of agreement among respondents was the fact that for many of the technologies, only one respondent felt that its readiness in 1987 without Space Station Program intervention was assured ("certain"). However, some of these respondents actually knew of availability of the technology in question, at least in a form adaptable to Space Station utilization. This was the case for natural language annunciation, AI planning software (though not as complex as needed for Space Station), and some fault tolerant data transmission techniques. AWG members were frequently unsware of recent developments in others' fields, which of course was one of the better reasons for convening the AWG.

"Essential" Technologies (Appendix 3, Report #4)

Fourteen technologies were labeled by two or more respondents as "essential" for IOC in order to implement the agreed autonomy philosophy. Particular attention should be paid to development efforts for these technologies if autonomy is to be a major design goal for the Space Station. These technologies are:

	<pre># Respondents</pre>
AI Fault Detection, Diagnosis & Recovery Software	2
Hierarchical Control Techniques	3
Multivariable Control Techniques	2
Mass Data Storage (Onboard)	3
Fault Tolerant Onboard Mass Data Storage	3
Fault Tolerant Onboard Data Transfer	4
Fault Tolerant Uplink and Dowlink Data Transfer	3
Fault Tolerant Onboard Processors	3
Fault Tolerant Computing through Software Techniques	2
High Order Language Procedure Reprogramming Onboard	2
High Order/Procedure Oriented Language Software	2
High Speed Data Bus	2
Simulation Analysis Tools (Ground)	4
Simulation of Integrated Designs (Ground)	3

High Leverage Technologies (Appendix 3, Report #2)

Certain of the technologies show promise for having higher leverage than others in boosting productivity while possibly reducing both recurring and non-recurring cost. If we disregard the response of one of the respondents, who noted this condition for 18 of the 47 technologies in Table A, there are six technologies for which at least one respondent felt would increase productivity while decreasing both types of cost. These were:

Technology

AI Fault Recovery Software AI Planning Software AI Subsystem Monitoring Software AI Symbolic Processors (Onboard) High Order Language Software (procedure oriented, can be written by subsystem engineers with minimal programming experience or training) Simulation Analysis Tools

It is certainly arguable that a combination of AI techniques to do planning, performance monitoring, and fault recovery could greatly reduce the volume and complexity of software required for these functions onboard and on the ground. This will only be the case, however, if the heuristic AI techniques can be substituted with confidence for high-capacity communication links to the ground and large numbers of ground controllers. It is not clear to what extent the AI software could reduce the amount of deterministic software required for these functions, but the main issue in all these substitutions becomes verification of the reliability of the heuristic techniques to the satisfaction of project management and all reasonable safety concerns.

High Order Language software [sometimes referred to as Very High Order Language (VHOL) software, to distinguish procedure-oriented languages like the Systems Tests and Operations Language (STOL) from traditional programming languages like Fortran], would probably mesh well with AI techniques (though the two are not required to be utilized together), and could substantially reduce software costs by letting engineers familiar with their subsystems, rather than programmers, write much of the onboard and ground control software [7].

Better simulation analysis tools than exist today could conceivably reduce the costs associated with more hardware-oriented simulations required to verify configuration and other changes to the Space Station system.

Productivity, Recurring Cost, and Development Emphasis (Appendix 3, Report #11)

Two or more respondents identified 14 technologies which, while promising a large or moderate increase in productivity along with a large or moderate decrease in recurring cost, also received a recommendation for major or moderate development emphasis. At least one respondent ranked each technology's desirability as "useful" (the second highest ranking) or higher. Without regard to non-recurring cost (the estimates for which ranged from small decrease to large increase), this set should probably receive the greatest consideration for Space Station-specific developmental support during Phase B. In the long run, it is these technologies which are most likely to fulfill the goals of Space Station autonomy:

Technology	#	Respond.
AI Learning Expert Systems (Ground)		2
AI Learning Expert Systems (Onboard)		3
AI Fault Detection, Diagnosis & Recovery Software		6
AI Planning Software		4
AI Subsystem Monitoring Software		4
AI Symbolic Processor (Onboard)		2
Fault Tolerant Computing		2
High Order Language Reprogramming (Onboard)		3
High Order Language Software		4
High Speed Data Bus		
High Speed Memory		2
High Speed Processor		2
Teleoperation		2 2 3 3
Telepresence		3

It is apparent from the above list that the greatest promise was expected from AI techniques. This is not surprising, given the breadth of fields in which AI has so quickly found a niche in the last three years [8]. The basis of the so called "fifth generation" planned in the computing industry, artificial intelligence should be able to find frequent applications in space projects where costs, even on the ground, can be so sensitive to numbers of required operations personnel.

Some of the technologies noted above are unlikely to come to fruition in time for IOC, so that the emphasis on their development might better be subordinated to emphasis on nearer-term technologies. Also, for the post-IOC introduction technologies, significant developments outside of the fields of astronautics may be far more productive than significant pressure from within the Space Station program, until such time as these technologies can be readily adapted for Space Station use from techniques established and tested for non-space applications. Learning Expert Systems, those which not only mimic the thought process of experts in a given field, but which can modify, add to, and improve their knowledge bases with experience, are probably a good example of a technology which should develop on its own for a few more years before significant intervention on behalf of the Space Station Program.

According to respondents, the non-learning expert system techniques (fault detection, diagnosis & recovery; planning; and subsystem monitoring) are more likely to be adaptable to Space Station needs in time for IOC. The need for and readiness of onboard symbolic processors on which AI software is best run, should be investigated along with the near-term software techniques. Experts consulted outside the survey had differing opinions of whether the AI-optimized symbolic processors would be required in space-qualified form to run software, or whether more conventional space-qualified computers would suffice. The answer is a matter of software complexity, acceptable running speed, and the capabilities of space-qualified computers. The last item may be very important for a broad spectrum of automation tasks, because the capabilities of the largest and fastest space qualified hardware lags far behind common ground based machine capabilities.

According to one participant in AI expert system development, changes to the knowledge base by the addition or modification of a heuristic rule can often be made more quickly than writing or modifying, adding, and verifying the equivalent module of deterministic code [9]. Expert system rule changes can be composed and implemented in less than a day when working on a symbolic processor. In this way the "learning" of an expert system is done manually, but appears possible with significantly less delay than would be expected for deterministic software.

The generic technology of Fault Tolerant Computing (FTC) was noted by two respondents, but none of the specific FTC technologies were identified by more than one respondent. While often ranked as useful or essential by the respondents, this may be because most feel that the FTC technologies do not have a substantial impact on recurring cost or productivity. It may also be because many of the respondents felt that this technology was well on the way to readiness (indeed, there has been much DoD work here), and therefore often recommended a development emphasis of "minor" or "monitor."

Implementation of procedure-oriented programming languages, and their use for onboard reprogramming by crewmembers, were included in this category by three and four respondents, respectively. Most felt that these technologies were likely to be ready by 1987 for development leading to IOC incorporation, but still recommended moderate and major development emphasis. There are probably two reasons for this recommendation in light of apparent readiness. One is the long lead time required for software development. Software must often be ready before hardware is begun so that hardware designers can count on the availability of the particular software they wish to take advantage of. A second possible reason is that while the technology of procedure oriented languages is not difficult, there is not a language presently available which is considered capable of satisfying the need of the Space Station Program [10]. The underlying language must of course exist before the thousands of complex procedures required at and before IOC can be written. Procedureoriented software and programming techniques look very attractive for IOC, and offer the potential of eliminating the need for a large number of programmers who today must act as translators between engineers and software code. The message for the Space Station appears to be that because of the lead times involved, work on a suitable HOL (or VHOL, if you like), must get going soon.

Less of a case is made for High Speed techniques, almost certainly here because the readiness of these technologies without Space Station Program intervention before 1987 is considered by most to be either "certain" or "likely." While probably not requiring a great deal of development emphasis from within the Space Station Program, these technologies are important to both productivity enhancement and recurring cost reduction, and so should be utilized by designers from the outset where available.

Robotic techniques of teleoperation (i.e., including real-time control of manipulation using vision and sensor feedback automatically) and telepresence (i.e., by creating and integrating an environment in which the operator can optimally control the manipulation process via additional sensor feedback, such as force and touch) were listed by three respondents each. All were given a "moderate" recommended development emphasis. Many on the AWG did not feel that these technologies would (or could) be important at 10C, but most felt they would take on increasing importance. (See also footnote regarding

teleoperation and telepresence in Table 1). A strong case was made to assure the compatibility of the IOC station with the addition of mobile robotic equipment for intra- and extra-vehicular activity (IVA and EVA) later in the program. Two aspects of this were a controlled dimensional and visual environment so that machine vision systems could be made to operate, and standardized robotic interfaces ("handholds" and the like), both of which would be much easier to incorporate in design from the outset than to retrofit later in the program. Therefore a robotics accommodation plan is recommended for development during Phase B.

Recurring Cost (Appendix 3, Report #10)

Technology

If we look only at recurring cost, there were 13 technologies for which two or more respondents indicated there would be a "large decrease." In some cases, as with onboard mass storage, respondents did not fee? that major development emphasis was required on the part of the Space Station Progam because other rationales were driving development at a rapid enough pace for Space Station needs.

The technologies singled out for their greatest benefit to recurring costs were:

Respond.

AI Learning Expert Systems (Ground) AI Learning Expert Systems (Onboard)	4 4
AI Fault Detection, Diagnosis & Recovery Software	4
AI Planning Software	3
AI Subsytem Monitoring Software	2
AI Symbolic Processors (Onboard)	4
Mass Data Storage (Onboard)	2
Fault Tolerant Data Transfer (Onboard)	2
Fault Tolerant Data Transfer (Uplink & Downlink)	2
Fault Tolerant Processor (Onboard)	2
HOL Reprogrammable Procedures & Software (Onboard)	2
HOL Software	2
Pattern Recognition	2

Again, the various AI techniques stand out for their potential in recurring cost reductions. Unlike the AI techniques, the HOL technologies were rated "essential" to implementing the desired autonomy philosophy in three out of the four responses in this category. Of all the respondents commenting on these two HOL technologies, all but 2 out of 14 responses rated them as essential or useful, the two highest categories of desirability.

One respondent (who ranked the recurring cost impact as a moderate decrease) noted that the onboard reprogramming capability would be most useful during the first year of operations when procedures would be evolving the fastest and the crew would be operating at the greatest learning rate, not having the benefit of prior crews' experience.

Productivity-Oriented Technologies Requiring Development Attention (Appendix 3, Report #5)

It could be that the amount of money spent on development of the Space Station and its requisite technologies, and on Station operation, will be small compared with the value of the station's "product" over a few years after it begins operation. If this is to be the case (no attempt is made here to assess whether or not this will be the case), then one's emphasis should be more on productivity than on either recurring or non-recurring costs. Eleven technologies were ranked by at least two respondents as a) resulting in a large increase in productivity, b) being essential or useful to implementing the autonomy philosophy at IOC, and c) requiring major or moderate development emphasis in order to be ready to be brought into the start of Phase C/D in 1987. These technologies were:

Technology

Respond.

AI Learning Expert Systems (Ground)	2
AI Learning Expert Systems (Onboard)	2
AI Fault Detection, Diagnosis & Recovery Software	4
AI Symbolic Processors (Onboard)	2
Distributed Parameter Control Techniques	2
Hierarchical Control Techniques	3
Multivariable Control Techniques	2
Fault Tolerant Data Transfer (Onboard)	2
High Order Language Software	2
High Speed Data Bus	3
Teleoperation	2

In the case of the Learning Expert Systems, these respondents felt their readiness in 1987 was either indeterminate or impossible, whereas the other technologies ranked higher in likely availability by 1987.

The notable difference between this productivity ranking and the cost-biased rankings is the appearance here of the distributed parameter, hierarchical and multivariable control techniques. These may be important to maximizing the Station productivity, but might increase both recurring and non-recurring cost. There was disagreement over whether recurring cost would go up or down, while all respondents cited here indicated an increase in non-recurring cost.

"Impossible" Technologies (Appendix 3, Report #8)

As a final look at the direct survey results, four technologies were noted by two respondents each as being "impossible" to have ready by 1987 without massive development efforts beyond the likely affordability of the Space Station Program. They are:

AI Learning Expert Systems (Ground) AI Learning Expert Systems (onboard) Robotic Image Understanding Telepresence

Most respondents disagreed with this assessment, though many indicated the readiness without Space Station Program intervention as unlikely or indeterminate. It should be emphasized that this readiness evaluation depends on varying interpretations and technology maturity levels assumed by different respondents.

VI. TECHNOLOGY PRIORITIES

As can be seen from the various methods of looking at the survey response data, setting priorities for technology development depends to some extent on whether cost reduction or productivity enhancement is the principal selection criterion for new technologies to implement Space Station autonomy.

The technologies which appeared in survey responses most often with desirable characteristics were those of Artificial Intelligence, Fault Tolerant Computing and High Order (Procedure Oriented) Languages. Several control techniques were prominent with a bias toward increased productivity, while fault tolerant techniques were more prominent with a bias toward recurring cost reductions. AI techniques and HOL software remained priorities with either bias. AI techniques and HOL software were the only technologies which appeared with both biases and which were placed in the "high leverage" category of increasing productivity while reducing both recurring and non-recurring cost.

Highest management priority is therefore recommended for the following three generic technology areas:

Artificial Intelligence* Fault Tolerant Computing High Order (Procedure Oriented) Languages

These technology areas are most likely to bring operational dividends whether Space Station Program improvement is measured in terms of increased productivity, reduced recurring costs, or a balance of the two. Each is mature enough to have significant positive impact on design by 1987, and to be implemented by IOC with a reasonable amount of developmental support.

Within the group of AI technologies, early development efforts should focus on various types of non-learning expert systems and possibly on onboard symbolic processors. Early efforts are not likely to be particularly fruitful with learning expert systems as they are unlikely to be ready for incorporation into the Phase C/D effort. However, learning expert systems appear to be a top priority for development leading to post-IOC implementation.

The importance of a number of other technologies should not be understated; recall that all the basic technologies were felt by most AWG members to be required in order to implement the desired autonomy philosophy. There are however, two factors which recommend selection of the AI, Fault Tolerant and HOL genera as priorities. First, other useful technologies are often receiving considerable development attention from other quarters, particularly from the Department of Defense (DoD). Second, it is assumed that technology development resources (funding and workforce levels) will be inadequate to cover all the suggested technologies. It will not be possible to implement all aspects of the desired autonomy philosophy on the IOC station. Therefore, of those technologies requiring development attention, those with the greatest potential for yielding large productivity increases and/or large decreases in recurring costs should be favored.

*See Section IV, Table 1.

Unresolved issues of space qualification arose in various discussions which may not have received adequate attention in the survey. These issues concern a) software validation and verification, and b) processor, memory and databus device hardness [11].

Certification requirements and validation techniques for HOL and knowledgebased software need to be developed and implemented before either the HOL or AI techniques can developed for or used aboard Space Station. Especially in the case of heuristic software, space qualification for critical functions is entirely new, and could cause a serious obstacle to implementation regardless of productivity and cost benefits. There may have been enough experience with HOL procedures at Kennedy Space Center (KSC) for the STS launch processing, and at the University of Colorado for Solar Mesosphere Explorer (SME) mission operations to adopt their verification techniques, but even ground based AI applications have only barely begun for Voyager at JPL.

Electronic devices such as processors, memories, database components, and some peripheral equipment such as displays and printers may be susceptible to unique problems of the space flight environment, even though the capabilities of office and lab-type systems are growing rapidly on the ground [12]. Whereas on the ground software is often the pacing item restricting computer capability, hardware may be the pacing item aboard the Space Station unless a number of basic devices are qualified over the next 3-5 years. The radiation and magnetic field environment of the low Earth orbit can seriously interfere with the operation of some types of devices, but not others. Convective cooling without forced air also does not operate in microgravity, so basic equipment layout and cooling must be different from the ground.

Mechanical launch loads, vibration, and acoustics are another problem. These trials can be severe, but unlike airborne and shuttle environments, they are a one-time occurrence for Space Station equipment. It could prove fruitful to investigate a new approach to electronic equipment deployment in space by launching fragile components in specialized shipping containers, then assembling a piece of equipment like a computer once in orbit. In reality, this might only involve plugging in circuit cards and verifying continuity on the same piece of equipment which was assembled and fully tested before launch, then partially disassembled for flight to the Space Station. This approach introduces a new element of risk into hardware deployment, but might prove less expensive than designing and hardening fully-assembled equipment for the launch environment.

Solutions to both the electronic hardware and launch loads problem can be verified with minor experiments on shuttle flights over the next few years. Common equipment can be prepared for flight, disassembled for launch if necessary, and tested for faults, error rate, and degradation once in orbit. A good example of this (done for other reasons) was the recent flight of a Compass/Grid personal microcomputer aboard the shuttle to plot Orbiter ground tracks. Such demonstrations with a wide variety of equipment should be encouraged.

VII. PROGRAMMATIC CONCERNS

With the technology priorities set, there remain a number of programmatic concerns about accommodation of the Space Station "customer," incorporation of later technologies not receiving top development priority, the risks associated with even the top priority technologies, and the ability of the Space Station Program to act as an integrated whole in implementing and utilizing the available autonomy technologies.

Customer Accommodation

The autonomy philosophy was drawn up with primary consideration for the Space Station facility operator (i.e., the NASA Space Station Program). Because customer needs with respect to autonomy are largely unknown, nearly exclusive attention was paid to the perceived desires of the facility owner/operator. Two primary concerns were in the best interest of customers in general. These were a) to increase the productivity and flexibility of the onboard crew in order that they may devote maximum attention to customer operations, and b) to reduce recurring costs, which might very well be passed onto the customer (ignoring likely subsidies in a government-operated program).

Specific (unknown) customer needs were not considered, but the need to give maximum system flexibility was, along with the need for facility visibility into certain customer equipment and operations. Architecture Guidelines 7 & 8 in Part II were intended to apply to payloads and facility equipment alike wherever desired by the customer, and wherever necessitated by safety or criticality of customer equipment.

Many customer operations will be relatively unique events with differing hardware, where a principal advantage of Space Station use will be the availability of the crew to alter procedures and make adjustments midstream. It is envisioned that such operations will rely mainly on customerprovided equipment for commanding, data collection and processing. Unique or nearly unique operations will have little use for extensive facility automation.

More repetitive operations, such as the housekeeping functions on laboratory modules, will occur often enough over a long period of time to possibly justify control, data collection and processing via installed Space Station automated systems. Specific examination of this possibility and the resulting requirements should be undertaken during Phase B. One example where such an extensive interface might be effective is in the case of a life sciences or materials processing laboratory operation as a module attached to the Space Station facility.

Lacking a clear definition of customer needs and desires, the autonomous operating capabilities of the Space Station are viewed as being available to customers on an as-wanted basis. Most complex customer equipment is likely to have built-in command and data processors, and after IOC, it becomes less and less likely that customer computing hardware will be the same as facility hardware, because of rapidly evolving technology. However, there will be standard data, control, and data bus protocols on the Space Station, and these specifications should be made available to customers, along with detailed manuals and consultants describing how to build and verify an interface. The hierarchical nature of the Space Station command and data system should make interfaces with customer equipment much easier to establish than on current spacecraft such as the Shuttle. Specific allocations of customer interface ports, software, and control/display equipment should be made during Phase B design work.

A decision must be made early in Phase B regarding the level of customer accommodation to be built into IOC automated systems, and the amount of flexibility for such future accommodation to be designed in as well. Such basic parameters as main bus data rates, control and display techniques, and overhead costs assignable to all users will be affected by this decision.

Evolvability & Growth

A major guideline for the entire Space Station Program is to make all systems capable of incorporating new technologies and expanding in capacity. The ability to take advantage of new technologies is especially important in the case of the automation technologies used to implement the Program autonomy goals. This is because it is expected that automation technologies will be improving as rapidly after IOC as they are today, or perhaps even faster. Also, the technologies available in 1987, when basic design must be frozen for a 1991-92 IOC, may not be capable of implementing the entire autonomy philosophy which is felt to lead to the most productive Space Station working environment. Rather than have non-mature enabling technologies frozen out of the system, it is important to design automated equipment and procedures so that these new technologies may be brought online as they become available.

As with other components on the Space Station, automated equipment must be designed and installed in modular fashion, as much as possible with standardized, well-defined, and accessible interfaces. In programs where costs are severely constrained or little attention is paid to these matters during early stages of development, these qualities are especially easy to drop, making future upgrades quite difficult and disruptive.

Enough capacity must be built into IOC automated equipment to permit significant growth over time. A good example is data bus capacity, because the physical hardware of data bus links (e.g., fiber optic or electrical conductor cabling) can be very difficult to replace, much as with the wiring in an office building or wire harnesses in an aircraft. Data buses and their associated processors should be designed with a very large capacity margin over expected throughputs immediately post-IOC. Otherwise, data or control rate capacity could become a major factor limiting or increasing the cost of future facility expansion. One could argue that the design capacity might well be 3 to 10 times the expected peak utilization during the first two years of operation.

Finally, automated equipment, such as data buses, command processors, analog to digital converters, sensors, and other components should be integrated in such a fashion that single units, or one type of unit may be replaced a) without having to replace all other like components, or all other differing components of a given subsystem such as a data bus, and b) without requiring more than a few hours of "down-time" for normal customer operations. There would be a great deal of opposition to any system upgrade which would require weeks for installation and testing if standard customer services and crew availability were interrupted for such a period.

Development Initiative

While development of automation technologies proceeds at an unprecedented pace for industrial and commercial service applications, one finds NASA far behind the leaders in incorporating much of this technology into its own day-to-day operations. This contrasts sharply with the Agency two decades ago, when the latest computer technology was employed to solve the engineering and management problems of Apollo. There is a significant danger that this slowness to bring the best technologies on line will extend beyond the ground and into flight equipment for the Space Station Program, if a conscious effort is not maintained at high levels to put a priority on autonomy.

Part of the problem for flight equipment is of course that space-qualified electronic components are often much more costly, and not nearly as powerful, as their ground-based counterparts. This is due in part to the unique environmental characteristics of low Earth orbit, such as particle radiation causing single event upsets and the potential for permanent circuit damage as feature sizes shrink in ever-higher scales of integration in micro-electronics. Also, the reliability requirements for life- and mission-critical electronics in an orbiting facility potentially three months away from resupply make some commercial electronic components unacceptable or unattractive.

These problems simply argue more for early technology efforts to increase the spectrum of space-qualified electronics, and to review the reliability specifications in light of the resupply and on-line maintenance capability afforded by the Space Station. With a crew onboard and relatively frequent resupply flights, standards may not need to be as high as in the case of traditional spacecraft with 5-10 year design lives and no opportunity for repair.

Development efforts should be paced by the fact that technologies for incorporation into the IOC Space Station will need to be relatively mature by 1987. Without this maturity, program managers will not accept the risk, and a given technology which might be very effectively applied, will simply not be considered for IOC. High priority automation technologies should be chosen in the very near future, and available resources applied without hesitation if there is to be any chance of implementing a significant portion of the autonomy philosophy in a 1992 Station. The alternative is to operate for at least the first several years in today's "classical" manner with a very large support staff on the ground, a need for continuous wide-band communication links, and an operating environment where nearly all procedural decisions will need to be made on the ground, rather than by the crewmembers who must do the work. This is at best an unattractive alternative.

Readiness Risk

Closely related to the need for inspired initiative to develop the technology required for autonomy is the matter of the risk taken by incorporating in immature technologies during Phase B. The higher the perceived risks, the less likely the required management initiative will be taken to develop a given technology and direct its incorporation during Phase B planning. Of the three technologies most strongly recommended as a result of the reported survey, Artificial Intelligence techniques probably carry the greatest perceived risk. And because of their potential power in handling difficult operations problems such as scheduling and power management, AI techniques may face the greatest opposition from groups presently solving similar Shuttle and Spacelab problems using classical techniques. Few people will wish to risk their reputations and abandon established procedures which work, however cumbersome these "classical" procedures are. On one hand, AI may turn out to revolutionize their function, making it easier to perform and much more responsive to "customer needs." On the other hand, it may be that near term AI capabilities have been oversold, or will introduce many new and unanticipated problems for which solutions will be difficult and expensive.

One method of mitigating this perceived (and real) risk is to pursue parallel options until a safer decision may be made, or until technology selections are frozen, presumably prior to the start of Phase C/D. With a firm backup plan based on proven technologies, program managers are more likely to encourage the development of new technologies where the potential payoff in productivity and recurring costs is large.

One final aspect of the readiness risk is procrastination: the longer development efforts are postponed, the greater becomes the risk (real and perceived) of counting on new technologies. The automation technologies recommended for development offer a clear opportunity for incorporation at IOC because there is enough time to engage in meaningful development and demonstration between now and 1987. AI, Fault Tolerant Computing, and Very High Order Language efforts within the Agency and DoD are well enough established to yield demonstrated high leverage technologies for incorporation in Phase C/D. However, this will only be possible if certain Space Stationspecific advanced technology efforts are funded beginning in FY 1985.

System & Subsystem Compatibility

Autonomy is to be an across-the-board feature of the Space Station system, intimately involving nearly all subsystems, both in orbit and on the ground. To be most effective, all appropriate subsystems should be designed from the outset with standard interfaces to the automated equipment used to implement Station autonomy. It would be unfortunate, for example, if the electrical power subsystem operated with the full autonomy capabilities, while the life support subsystem required a large ground monitoring crew and frequent manual control inputs from the ground and crew.

To ensure comprehensive implementation of whatever automation techniques are to be used at IOC and later, subsystem development managers must have visibility into and an opportunity to influence autonomy aspects of the Space Station System design, they must be given clear guidelines and interface specifications, and they must sense a commitment on the part of senior program management to an achievable and helpful autonomy philosophy. Without these programmatic characteristics, there is serious danger that different subsystems will operate with differing levels of autonomy, and only a fraction of the potential gains will be realized.

The appropriate interface specifications and guidelines should be developed and disseminated early in Phase B, preferably not later than 1986 October, and perhaps for both highly autonomous and "classical" control methods.

VIII. AUTONOMY IN PERSPECTIVE

There are two principal reasons to implement Space Station autonomy in the fashion proposed by the AWG, and two principal obstacles to be overcome in doing so. The principal reasons are productivity enhancement and cost savings, while the main obstacles are non-recurring cost increases in some areas and acceptance by crew and ground personnel.

Productivity Enhancement

Autonomy in the manner described, if incorporated into Space Station planning from the outset, will lead to considerably greater productivity of the Station as a national facility than would be the case if operations were conducted in the "classical" manner. This productivity enhancement can occur in a very broad sense, besides just a greater number of basic crew operations during a given period of time. By following the guidelines noted in Part II of this report, autonomy will permit much greater flexibility in operational techniques and the introduction of new technologies and improved procedures, beyond what has been possible with past systems such as Apollo, Skylab, the Shuttle and Spacelab. The hierarchical command and data architecture. modularity and standard interfaces used for automated systems, and Englishlike very high order procedure languages will all allow system capabilities to grow far beyond IOC levels. Access to all control and data points, and the reliance on software instead of "hardwired" techniques for most control and data processing will result in system flexibility unprecedented in astronautics.

<u>Cost Savings</u>

If autonomy is properly implemented, recurring cost savings will be substantial. Only a high degree of management discipline, and confidence built over a thorough verification program and early operations will enable these cost savings to be realized, however. Immediate savings can come from a reduction in the number of direct ground support personnel: From three-shift support teams totalling a few hundred to single-shift operations with fewer than fifty personnel. While dramatic on the surface and certainly worthy of achievement (see Part III, "Autonomy Is Not the Whole Answer"), this saving alone will not justify autonomy in financial terms. It is the thousands of indirect support personnel at field centers and contractors that should be the direct target of autonomy implementation, for it is here that Shuttle operating costs mount into the hundreds of millions per mission. Management and operating personnel throughout the Space Station Program need to be given whatever information they need, quickly, and in already interpreted form, with accuracy and reliability, in order to confidently utilize the Station [13]. The vast majority of burdensome accounting-type tasks involved in mission planning must be taken over by machines, which are much better at these tasks in any case, if properly programmed. Matters such as attitude maneuvers and propellant burn, tape recorder management, software control, life support subsystem monitoring and a myriad of other tasks must and will be handled. If not handled by automated machines, these will be handled by large numbers of people, just as with the Shuttle today. Nearly all the analysts, programmers, engineers and their support personnel must be replaced with automation if meaningful recurring cost reductions are to occur. Such replacement is already occurring in some companies within some industries, and much more will

occur in the future, freeing employers to have people do the tasks people do best. AI expert systems have already permitted large recurring cost reductions and productivity increases in many of their few commercial applications to date [14]. "User-friendly" software and English-like database management languages have yielded fast and accurate responses to the operational questions of many executives who were otherwise dependent on programmers or did without important information. Capabilities are rapidly expanding, while cost reductions and productivity improvements have been demonstrated over and over. But whatever the capabilities extant in a few companies, it will take strong management initiative to bring these and enhanced capabilities into the Space Station Program.

Crew and Ground Personnel Acceptance

The initiative mentioned above is mainly a management issue, but there must also be acceptance of the on-line operating personnel, both the Station crew and direct and indirect support personnel on the ground. Without this acceptance autonomy will not bring the sought-after improvements, flexibility and responsiveness will diminish and staff sizes will rise. Existing flight and ground personnel should be brought into the mainstream of the autonomy design process from the beginning, because they know best what jobs need to get done, and they will put up the greatest resistance to change if kept in the dark. When involved from the beginning, these people will learn the capabilities of the latest generation of automation and will be impressed by how much easier their jobs can become. Without this involvement, new techniques will, at least initially, be perceived as a threat, and will not meet the need of the people who must rely on the automation.

Non-Recurring Costs

Just as nearly all survey respondents indicated that implementation of the new automation technologies in the Space Station Program would result in better productivity, nearly all indicated that each technology would also result in rising non-recurring costs. As is generally the case, an investment in research and capital is required to realize a long term saving. Payback periods are certain to vary for different applications of different technologies.

There is not enough information available to quantitatively estimate payback periods for the different Space Station autonomy technology options. Some cases of commercial application of AI expert systems have resulted in payback periods of less than a year. It is worthy of note that this has occurred in largely non-subsidized environments (beyond the basic research stage), as in the case of Elf Aquataine (the French oil company) for oil drilling problem diagnosis, and with Digital Equipment Corp. for configuration selection of VAX computers [14]. These were relatively simple applications demonstrated at a very early stage of commercial AI application. While the technology has progressed, presumably many of the Space Station functions where AI might be applied are more complex, so it remains to be seen how the payback periods will be affected.

Much of the cost of developing the basic technologies of greatest interest to the Space Station Program (AI, High Order Languages, and Fault Tolerant Computing (FTC)) has already been sunk and need not be borne by the Program or NASA. Considerable DoD effort has gone into FTC, while the former two technologies take on increasing prominence in the commercial sector. For all applications of these technologies there is application-specific work which must be done before utilization can begin, and this results in increased non-recurring costs.

There is also the need for capital expenditures for hardware, software, and user training, in order to utilize any new technology. These costs also must be borne prior to IOC for any technology to be installed and verified for early use.

Some respondents have argued that certain of the proposed technologies would actually result in a net decrease in non-recurring costs (as well as recurring costs). This is conceivable, though not clearly demonstrated, in many cases. Perhaps the strongest case can be made for (very) high order procedure oriented languages and programming. If executed properly, verified, and available early (i.e., before the start of Phase C/D), software costs might be reduced from those encountered if most software were to be written in such languages as assembly and Fortran. This could occur by elimination of the computer programmer as the "middle-man" between the engineer and hardware. As has been the case with some Shuttle launch processing functions at KSC [15], and other mission operations functions for the Solar Mesosphere Explorer at the University of Colorado [7], engineers can write procedures in English-like phrases (though with rather strict syntax) which are directly interpreted and executed by system software.

Even in the case of procedure oriented languages, it is important to note that a suitable procedure oriented language does not yet exist for the Space Station, and therefore must be written and tested. There are also new costs associated with hardware on which the software runs, and with training and verification. How quickly these initial costs will pay off is open to question and should be examined.

AI techniques could pay off again by reducing the required amount of software in cases where relatively small heuristic knowledge bases might displace large volumes of deterministic software. It is expected, however, the AI expert systems may frequently call subroutines written in deterministic software languages in order to perform detailed calculations and control many functions. The relationship between AI techniques and procedure oriented languages has not been closely examined.

Fault Tolerant Computing might reduce non-recurring costs by reducing equipment requirements resulting from the need for system-level fault tolerance. For example, the Shuttle achieves computer fault tolerance primarily by having four identical processors running simultaneously with the same software, with a fifth different processor ready as a backup with different software. With chip- and board-level fault tolerance, equipment requirements might arguably be reduced. Also, the data rate of onboard, uplink and downlink data paths might be reduced by fault tolerant computing at most system nodes, and of course through the overall implementation of autonomy for the orbiting facility.

There is not enough quantitative evidence for a strong case to be made favoring autonomy from the point of view of non-recurring costs. However, there are enough plausible situations where certain non-recurring costs may be saved that more such situations should be sought out in an effort to reduce the overall added non-recurring cost of autonomy implementation.

IX. CONCLUSIONS & RECOMMENDATIONS

Based on the technology survey, discussions among members of the AWG, and opinions of the author, a number of conclusions have been drawn and recommendations made for further automation and autonomy work within the Space Station Program. Along with these are some important observations regarding the initiative required to maximize the Space Station's benefit from today's burgeoning automation technologies.

Technology Selection

Highest development priority should be given to the following three generic technology areas:

Artificial Intelligence-Expert Systems & Processors* Fault Tolerant Computing High Order (Procedure Oriented) Languages

These technology areas are most likely to bring operational dividends whether Space Station Program improvement is measured in terms of increased productivity, decreased recurring costs, or a balance of the two. Each is mature enough to have significant positive impact on design by 1987, and to be implemented by IOC with a reasonable amount of developmental support.

While the development of these technologies has achieved a relatively advanced stage with commercial and DoD funding, there is application-specific development which must take place prior to Phase C/D for each of these technologies to be considered mature in the Space Station environment.

The most effective use of automation is "to use machines (automation) to do what machines do best, and use humans to do what humans do best." There is an optimum division of tasks between humans, machines, and teleoperation on the ground and in orbit, which, through proper study and definition of optimization criteria, may be approximated in design. Optimization criteria should be defined and enforced at the highest management levels, and are most likely to include productivity and life cycle cost (return on investment would be the criterion for a commercial venture, and may be approximated in the Space Station Program).

The survey on which the selection of the most promising automation technologies was based consisted of a small set of relevant questions asked of an ad hoc group of experts in various fields of automation. The survey was not intended as a formal scientific sampling of opinion. Respondents had widely differing backgrounds, and wide variations in responses were encountered.

It must be determined whether the extensive use of AI expert systems aboard the Station requires space-qualified symbolic processors. Space qualified computers, either symbolic or conventional, which can run expert system software should receive immediate attention, and may require a development effort beginning in 1985.

Procedure-oriented software and programming techniques are very attractive for IOC (some ranked this technology as "essential"), and offer the potential of

eliminating the need for large numbers of programmer "middle-men" interposed between engineers and working equipment. Because of the lead times involved, a suitable High Order Language (e.g., Language for User Control and Communications, or LUCC) must be developed or selected within the next two years.

The utility of onboard reprogramming of procedures using an HOL will be most valuable during the first year of Space Station operations, when procedures will be evolving the fastest and the crew will be operating at its greatest learning rate.

The various "High Speed" technologies considered are likely to be ready by 1987 with little Space Station Program support. Their potential for productivity enhancement and recurring cost reduction is important, and these technologies should be utilized by designers from the outset.

Sophisticated robotic techniques are probably beyond achievement in time for IOC, but should be available in a few years thereafter. Specific design features assuring a controlled dimensional and visual environment aboard the station, along with standardized mechanical and electronic robotic interfaces should be incorporated into the IOC station. A detailed Robotic Accommodation Plan should be prepared during Phase B to assure that this technology can be effectively utilized when it becomes available.

When technology rankings were blased toward productivity increase, distributed parameter, hierarchical, and multivariable control techniques took on importance not indicated in the recurring cost-blased rankings. Their utility and cost impact should be investigated early in Phase B to determine whether they should be given top or secondary priority.

Verification techniques for HOL and AI software, and fault tolerant computing should be developed, reviewed, and adopted for the Space Station during Phase B.

A wide variety of computing-related hardware, some off-the-shelf, should be launched and tested aboard the shuttle for space environment and launch effects. Consideration should be given to final assembly of fragile electronic equipment in orbit after launch in protected shipping containers, as an alternative to integrated redesign to withstand transient launch loads.

Goals & Guidelines

The autonomy goals described in Part II, "Automation/Autonomy Philosphy," are the best present design target for the operating Space Station System. It will not be possible to fully implement each of these goals aboard the IOC station, but it will be possible to implement all within a few years of IOC. Even without full implementation, the IOC station can embody a quantum leap in crewed spacecraft automation, resulting in a large increase in productivity and substantial decrease in operating costs, compared to a non-autonomous facility relying mainly on ground control. The eight architectural guidelines listed in Part II are important design features required to implement the Automation/Autonomy philosophy for nonpayload, or facility, operations. A specific top-level design requirement defining autonomy periods is necessary to give designers quantitative time periods to work with. While more optimal periods may be found and later substituted, the following three maximum periods were assumed (see Part II):

- 90 days without STS revisit,
- 5 days without routine Space Station ground support,
- 24 hours without any communication with the ground.

Management

Priority for autonomy implementation must come from the top, along with visible and enforced design measurement criteria such as life cycle cost or return on investment. Significant implementation of autonomy will require a great deal of management initiative before Phase B begins. Interface specifications and programmatic guidelines for autonomy and automation should be published early in Phase B, preferably by 1986 January.

Reluctance to pursue heavily automated design options may be mitigated by pursuing parallel technology options (one mature, one in development) for different functions until the start of Phase C/D. Backup plans should be prepared for those IOC technologies considered to have the greatest development risk.

Existing flight and ground personnel should be brought into the mainstream of the autonomy design process from the beginning, because they know best what jobs need to get done, and they will put up the greatest resistance to change if kept in the dark.

Space Station Evolution

Initial Space Station operations are likely to begin in a heavily supervised manner with large human involvement. With proper design and operations discipline, this situation can rapidly evolve to smooth, skilled operation by a small number of persons assisted by automated equipment. Without proper design and discipline, operations can rapidly become onerous and expensive.

In order to maintain the value of the large initial investment in the Space Station, all systems and subsystems must be operationally flexible, allowing day-to-day procedural and year-to-year configurational flexibility. The Architectural Guidelines in Part II are essential to achieving this required level of flexibility. Procedures must be largely software-controlled, and the controlling software must be easily changed, verified and certified.

Some of the technologies considered offered great potential for the Space Station, but appeared unlikely to be mature enough by 1987 for incorporation in Phase C/D for the IOC station. Development efforts for these technologies should be subordinated to efforts for IOC technologies during the next three years, but should be reemphasized in technology programs soon after the IOC station enters Phase C/D.

It is important to design automated equipment and procedures so that nonmature technologies can be incorporated later when they become mature and useful. Without specific design measures, these new technologies may be frozen out of the system. Data and control rate capacities built into the IOC station should be several times the expected peak loads during the first two years of operation to avoid severe limitations later in the Program.

Automated equipment should be integrated so that single units or one type of unit may be replaced with minimal impact on similar or connected units, and without requiring more than brief periods of interruption of normal customer operations.

The relationship between heuristic AI software and deterministic "classical" software needs to be examined and defined, especially in light of the stringent flight certification requirements for the Space Station System. Both types of software will be used for various functions with intimate, dynamic interfaces. These new software interface requirements need definition prior to the start of Phase C/D.

Cost Impact

While significant reductions in the number of direct ground support personnel are possible through autonomy, it is the number of indirect support personnel which must be most dramatically reduced from prior programs in order to control Space Station Program recurring costs. Autonomy and automation offer the opportunity to achieve these savings, but strict management discipline and a commercially oriented approach to operations will be required to yield the full potential benefit.

Recurring cost savings usually require a higher net non-recurring cost, as measured from a point design, though it is arguable that this may not be the case with each automation technology considered. Net life cycle cost should be considered for each candidate technology, within ceilings of non-recurring cost.

There are some plausible situations where the introduction of one of the automation technologies could result in a net decrease in non-recurring as well as recurring costs.

With a crew onboard and relatively frequent resupply flights, automated (and other) equipment may not require as high reliability as is traditional with spacecraft having a 5-10 year design life. Costs of reliability must be balanced with costs of crew time required to deal with failed or degraded equipment.

۰.

Customer Accommodation

Customer needs for autonomy and automation provided to them as part of the Space Station facility are largely unknown. An investigation of these needs should be undertaken soon, with decisions made on customer capability and interface allocations early in Phase B.

Standardized specifications for data and control formats should be made available to customers along with detailed manuals and consultants describing how to build and verify interfaces between customer equipment and the Space Station System.

Specific allocations of interface ports, software, and control/display equipment should be made for customers during Phase B.

- X. REFERENCES
- William Holmes, <u>Autonomy</u>, <u>Automation</u>, <u>Robotics</u>, presentation to Space Station CDG, <u>Washington</u>, 1983 December 5.
- 2. Robert L. Staehle, "Extent of Automation of the Space Station from an Operational Viewpoint." <u>Space Station Program Description Document</u>, Book #6, Appendix B, 2nd Level White Paper: Systems Operations Paper #0-2.3, NASA/Kennedy Space Center, 1983 August.
- 3. B. J. Bluth, <u>Space Station Habitability Report</u>, NASA Contract NASW-3680/CC0081, Boeing Company, 1983 February 23.
- Georg von Tiesenhausen, <u>An Approach Toward Function Allocation Between</u> <u>Humans and Machines in Space Station Activities</u>, NASA/MSFC IM-82510, <u>November 1982</u>.
- Skylab Program Program Office, <u>MSFC Skylab Mission Report-Saturn Workshop</u>, NASA TM X-64814, MSFC, October 1974.
- 6. Kristan Lattu (JPL) and Frank Hughes (Johnson Space Center), "Comparative Study of the Evolution of Command and Control Activities for Manned and Unmanned Spaceflight Operations," IAA Paper # IAA-83-294, 1983 October.
- Randaïl Davis, University of Colorado, private communication, 1983 October 28.
- 8. Avron Barr and Edward A. Feigenbaum, Editors, <u>The Handbook of Artifical</u> <u>Intelligence</u>, Volumes 1 and 2, William Kaufmann, Inc., Los Altos, CA, 1981.
- 9. Sven Grenander (JPL), private communication, 1984 February 20.
- A. Dorofee & L. Dickison, "2nd Level White Paper on High Order Languages," Study No. 0-2.2, KSC/DL-DED-22, July 29, 1983.
- W. C. Mosely (General Electric Space Systems Division), "Space Station Data Management: A System Evolving from Changing Requirements and a Dynamic Technology Base," AIAA paper #83-2338, 1983.
- 12. Merlin E. Thimlar <u>et al.</u> (Aerospace Corp.), "Future Space-Based Computer Processors," <u>Aerospace America</u>, March 1984.
- 13. Donna Pivirotto (JPL), private communication, 1984 January.
- 14. Edward Feigenbaum, Expert Systems and Knowledge Edgineering, Seminar, Continuing Education Institute and Teknowledge, Inc., Los Angeles, 1983 August 17.
- 15. Audrey Dorofee, "Very High Order Language for Space Station: Space Station Autonomy Study," NASA/Kennedy Space Center Internal Draft, November 1983.

UNCITED REFERENCES

- D. L. Akin <u>et al.</u> (Massachusetts Institute of Technology), <u>Space Applications</u> of Automation, Robotics and Machine Intelligence Systems (ARAMIS) -Phase II, NASA Contractor Report 3734, October 1983.
- Richard D. Johnson (NASA Ames Research Center), Daniel Bershader and Larry Leifer (Stanford University), <u>Autonomy and the Human Element in Space</u>, Report of 1983 NASA/ASEE Summer Facility Workshop, Stanford University, 1 December 1983.
- A. Feinberg and S. Butman, <u>Technology Forecast for Communications and</u> <u>Automation Sciences - 1982</u>, JPL Document 7025-9, May 1982.
- P. R. Turner et al., Autonomous Systems: Architecture and Technology, JPL Document D-1197, 1 February 1984.
- Rene H. Miller et al., Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), Vol. 3: ARAMIS Overview, MIT Space Systems Laboratory, NASA/MSFC CR-162081, August 1982.

XI. ACKNOWLEDGEMENTS

I wish to thank the Autonomy Working Group members and especially the Survey Respondents for their valuable input. Several of the recipients of the draft made useful suggestions, including Ed Kan and Kristan Lattu. XII. APPENDICES

Appendix 1: Survey Respondents

David G. Aichele, EB41 NASA/Marshall Space Flight Center Huntsville, AL 35812 205/453-5935

Audrey Dorofee NASA, Mail Code DL-DED-22 Kennedy Space Center, FL 32899 FTS 823-4430

Leonard Friedman Jet Propulsion Laboratory, MS 278 4800 Oak Grove Dr. Pasadena, CA 91109 818/354-3888

Al Globus MS 257-1 Informatics General Corp. NASA/Ames Research Center Moffett Field, CA 94035 415/965-5192

Frank Hinchion, MS 0570 Martin Marietta Corp. P.O. Box 179 Denver, CO 80201 303/977-4146

H. M. Holt, A. O. Lupton, C. W. Meissner, Jr. D. E. Eckhardt, Jr., Fault Tolerant Systems Branch NASA/Langley Pesearch Center, MS 130 Hampton, VA 23665 804/865-3681

Max Krchnak, EH3 NASA/Johnson Space Center NASA Road 1 Houston, TX 77058 FTS 525-3829

Alfred J. Meintel, Jr., Automation Technology Branch NASA/Langley Research Center, MS 152D Hampton, VA 23666 804 865-2489

Everett Palmer, Man-Vehicle Systems Research Div. NASA/Ames Research Center, MS 239-3 Moffett Field, CA 94035 FTS 448-6073 Kathy Samms, Flight Management Branch NASA Langley Research Center, MS 156A Hampton, VA 23665 804/865-3621

James T. Yonemoto Hughes Aircraft Co., MS S41/B354 P. O. Box 92919 Los Angeles, CA 90009 213/615-9619

÷

Jim Zapalac McDonnell Douglas Astronautics Co., MS 14-1 5301 Bolsa Ave. Huntington Beach, CA 92647 714/896-3699 Appendix 2. Sample Survey

Beginning on the next page is a copy of the survey used to acquire the data listed in Appendix 3 from the respondents listed in Appendix 1. The definitions used follow the survey. See Part IV, Survey Technique, for additional explanation. Responses were requested in light of the AWG Autonomy/Automation Philosophy, a later version of which (with few differences from that which accompanied the survey) appears in Part II, Study Objective.

[Abbreviations used in reports are shown in square brackets in 2nd column.] Space Station Automation Technology Needs and Readiness Please return this table to arrive at JPL by November 10, or bring to the November 9-10 AWG meeting. Thank you. Name:_____Organization:_____ Address: _____ Mail Stop: _____ City: _____ Fhone: _____ State: ____ Zip: ____ Fhone: _____ Automation | Froductivity | Recurring | Non-Rec. | Desir. | Readiness | Recommended Technology | Impact | Cost | Cost | for | *87 w/o |Development | Impact | Impact | IDC |interven. | Emphasis . د همه سده سده بیدن پیدا بالم جمع بیدن بیدن بیدن اور است بیدن اور ا [ratings in! large | las with | las with | lassen- | certain | major descending | moderate | productiv. | productiv! tial | likely | moderate order] | small | | luseful | indeter- | minor teres para desi ana meningen peri 1 | increase | Inone |unlikely | none l decrease ! limpossible 1 lnone 1 1 | e.g. "small | 1 ' | increase" | Ł 1 1 [for example--feel free to disagree:] 1 AI symbolic | moderate | large | moderate | useful |unlikely |minor processors! increase ! decrease! increase! - 1 (onboard) | 1 1 1 1 ي ويت الحر ومن يدو بدو بدو بدو بدو بدو بدو بدو بدو الدو الدو بدو مدو بدو الدو بدو الدو الدو الدو الدو الدو بدو بدو بدو بدو ------1. AI ICAI/ESI 1 Expert Sys:/ symbolic [[AIsymproc] processorsl (onboard) | planning & {[Alpls/w] sched. s/wl tools 1 subsystem [[AIsubmons/w]] monitoring s/w tools | fault detec:[CAIfddrs/w] | diagnosis | & recoverv! s/w tools |

Automation (Productivity (Recurring (Non-Rec. IDesir. IReadiness IRecommended Technology | Impact Cost Cost 1 for 1 '87 w/c |Development 1 1 1 Impact | Impact 1 100 linterven. | Emphasis learning ICAI LES-0] expert sys! (onboard) (ground) ICAI LES-g] 2. Robotics; [ROB] ICROBiu3 image understandl -ing pattern [[ROBpatrec] recog'n. image proc. [EROMimproc] teleopera- [[ROBteleop] tion tele-[[ROBtelepr] presence dextrous |[ROBdexman] manipulation ICFTC3 3. Fault Tolerant. Computing processors [[FTpro-o] (onboard) mass stor- [[FTmasst-o] aqe (onboard) ! data xfer |[FTdxfer-o] (onboard) | (between ICFTdxfersg3 station & | ground) Automation |Productivity |Recurring !Non-Rec. |Desir. |Readiness |Recommended | '87 w/o |Development Technology | Impact Cost l for 1 | Cost Impact | Impact | IOC ¦interven. | Emphasis

Space Station Automation Technology Needs and Readiness (continued)

ORIGINAL OF POOR CAMENY

Automation Technology	Productivity Impact 	Recurring Cost I Impact	Cost	for	1 '87 w/o	Recommended Development Emphasis
software	[FT\$/W] 		1	\$	1	1 1 1
vía archi- tecture vs. hdw. (onboard)				•		
4. High- Order Languages	 (e.g. progran [HOL] 	nmable by e 	ngineering 	''non-pr 	ı ogrammers." ¦ !	i } ! !
software	[HOLs/w]			5 1 1 1 1		,
natural language annuncia- tion	ENLA]		j - - - - - - - - - - - - -			
natural language understand -ing						
onboard reprogram- ming	 [HOLrpr-c] 			-		
5. Data Storage (onboard)	 (see also Fau [DS-o] 	 ult Toleran 	 t Computin 	 g) 	; ; ; ;	
mass stor age	[DSms-o] 				1 1 1	7
archival storage	 EDSarchstor-o] 				1 1 1 1	
	- 	 			1 1 1	

Space Station Automation Technology Needs and Readiness (continued)

÷

ø

.

Automation Technology		l Cost	l Cost	l for	Readiness "87 w/o interven.	Development
6. Simula- tion	ICBIMI 		ann per inte ann per per ann une per per	,) 	
integrated design	ICSIMid]	} } { 1	1			
analysis tools	 ESIManal] 			20 20 20 20 20 20 20 20 20 20 20 20 20 2		1 1 1
7. Control Techniques			: : :			; ; ;
hierarchi- cal	[CThier] 		1			• • •
multi- variable	¦ [CTm∨] 		i 	1		
nonlinear	LCTnl J		1 1 1	1 1 1		; ; ;
distribu- ted param- eter	 [CTdistpar] 		 			- - - -
optimal	 CCTopt] 	5 5 7 7				
adapti∨e	 [CTadap] 					
8. High Speed Computing	/ [HSC] 					
processors	l [HSproc] 					; { }
memory	l CHSmem] 					
data bus	 [HSbus] 		[] }			} }
	add any other: dered in light					

Space Station Automation Technology Needs and Readiness (continued)

*** Please add any others on next page which you feel are appropriate to be considered in light of the proposed autonomy philosophy. Note any appropriate further breakdown of above categories.

٠,

.

đ

Definition of Terms

Automation Technology: field of automation with potential application aboard Space Station. Sub-fields, as in the case of fault-tolerant computing (e.g., mass storage, processors, data transfer, etc.) should generally be listed separately if different techniques are required to achieve practicality.

Productivity Impact: the likely influence of a particular technology on the amount of useful mission work achievable by the Space Station system with fixed physical resources (power, mass, volume, cooling, pointing, etc.) and a given number of crew and ground personnel. Also refers to the ability of the Station to sustain new types of tasks otherwise impractical with a lower level of technology. A few words of elaboration on a separate sheet of paper would be helpful to describe the envisioned impact. Flease characterize your estimate of the likely overall effect as being an increase or decrease (or none at all) of large, moderate or small magnitude.

Recurring Cost Impact: the likely influence of a particular technology on operating costs throughout the Space Station System. For example, onboard subsystem monitoring using AI techniques might reduce the number of ground crew required. A few words of elaboration on a separate sheet of paper would be helpful to describe the envisioned impact, including a brief note regarding each area or subsystem where a significant impact would be likely and why. Please characterize your estimate of the likely overall effect as being an increase or decrease (or none at all) of large, moderate or small magnitude.

Non-Recurring Cost Impact: the likely influence of a particular technology on capital costs (e.g., design, development, test & engineering (DDT&E), procurement, crew training) throughout the Space Station System. For example, onboard subsystem monitoring using AI techniques might increase DDT&E and crew training costs, decrease ground personnel training costs, and decrease the cost of the telemetry and data analysis equipment by reducing the required housekeeping data telemetry throughput (and resulting subsystem capacity) to the ground. A few words of elaboration on a separate sheet of paper would be helpful to describe the envisioned impact, including a brief note regarding each area or subsystem where a significant impact would be likely and why. Please characterize your estimate of the likely overall effect as being an increase or decrease (or none at all) of large, moderate or small magnitude.

Desirability for IOC Space Station: Given the Station philosophy discussed at the last AWG meeting (summary chart enclosed), how important is having the particular technology applied within the Space Station System? (Emphasis here is on onboard hardware and software, but availability on the ground may also be important.) Please characterize the desirability for having a given technology at IOC as essential, useful, helpful, or none at all. Also please note whether this applies to having equipment.

incorporating the technology onboard, on the ground, or both.

Readiness in 1987 without Intervention: How probable is it that this technology will have been demonstrated in breadboard or brassboard form by 1987 if the Space Station program does not seek to encourage its development? "Demonstrated" implies that program managers would have enough confidence to incorporate the technology in Phase C/D Space Station development and count on its operational readiness at or within a few months of IOC. (For example, processors optimized for AI symbolic manipulation will ue generally available in 1987, but clear solutions to the problem of their space and man-rated qualification may not be evident without specific attention from NASA prior to 1987. Hence the readiness of space qualified, man-rates AI symbolic processors might be rated "unlikely," but not "impossible." Please rank readiness as "certain" (already or soon to be demonstrated in space-qualified form today), "likely," "indeterminate" (don't know or too many variables to say). "unlikely," or "impossible" (nothing short of a costly crash development program could bring confidence to a high enough level by 1927).

Recommended Development Emphasis: To what extent should the Space Station program attempt to influence the development of this technology in order to implement the philosophy described at the last AWG meeting? Base this on the level of desirability in relation to the expected level of readiness without Space Station intervention. Please characterize the recommended level of emphasis as "major" (Space Station-specific funding probably required in direct support of development in order to achieve philosophy objectives), "moderate" (modest funding probably required to adapt the technology for station use). "minor" (influence from Space Station program probably required to assure readiness, but little or no specific funding likely to be required), "monitor" (if development proceeds as expected the proper level of readiness is likely, but the Space Station program should maintain cognizance of the development of this technology in case outside development emphasis is altered), or "none" (the technology is already demonstrated to the necessary level of confidence).

> ORIGINAL PAGE IN OF POOR QUALITY

Survey data was taken from questionnaires and placed in a data base using Ashton-Tate dBase II software on a microcomputer. The file structure is listed in Table A-1. Data reports, consisting of different selections of the survey responses, are summarized in Table A-2. Responses are listed in alphabetical order of the technology name used, the same order as in Table 1 in Part IV of this paper. Each data report, titled by its selection criteria, follows Table A-2.

Table A-1. File Structure

Display Structure

Structure for File:	A:TECHPOLL.DBF
Number of Records:	00231
Date of Last Update:	02/06/84
Primary Use Database	

FLD	Name	Туре	Width	DEC
001	LNAME	Ċ	015	
002	ORG	C	008	
003	TECHNOLOGY	C	010	
004	PROD	С	008	
005	RECCOST	С	008	
006	NRCOST	C	008	
007	DESIRIOC	С	008	
008	READ187	С	008	
009	RECEMPH	C	008	
010	NOTE1	C	080	
Total			00162	

Notes for Table A-2 (next page)

Each report lists those technologies for which a respondent indicated that the attribute in each column was as listed in the table. For an attribute (column) that is left blank, this attribute did not affect selection of technologies contained in this report; therefore Report #1 (all columns blank) lists all responses for all technologies. Refer to Appendix #2 and the sample survey for the ranking of each attribute.

Reports
Data
Survey
of Technology Survey Da
Summary of '
Table A-2.

	Remark	•	A11 Responses	High Leverage	Produc- tivity Bias				Null Set Intersection of 3 and 6		1449104, 1-	Cost Bias	Need Attention
Recommended	Dev. Emphasīs		*		,		Major or Moderate	Major or Moderate	Major or Moderate				Major or Moderate
	Keadiness '8/							Unlikely, Impossible, or Indeterminate	Unlikely, Impossible, or Indeterminate	Impossible	Certain		
Docinchi] % +	ves if av i i cy					Essential	Essential, Use- ful or Helpful	Essential or Useful	Essential or Useful	•			
ND Coct	און הטטר			Decrease									
Inpact On Rec Cost				Decrease								Large Decrease	Large or Moderate Decrease
Productivity		(* .** .**	• • • • • • • • • • • • • • • • • • •	Increase	Large Increase		Large Increase		Large Increase				Large or Moderate Increase
Report #				2	m	4	പ	Q	7	8	6	10	11

- 50-

Amerika Salahan Sala

-51-

PAGE ND. 00001 02/15/84

OF POOR QUALITY

ORIGINAL FREE

Res r ondent	Organiz.	Technol ogy	Productiv.	RecCost	NR Cost	Desir IOC	Readi '87	Rec. Emph.	Remarks
Zapalac	MDAC	AI LES-g	and inc	lar dec	lar inc	use	imp	min	
Aichele	NSFC	AI LES-g	mod inc	sa dec	sm inc	use	unt	aod	
Palmer	ARC-NVSD	AI LES-g	s∎ inc	sm dec	and inc	none	unl	min	
Samas	LaRC FMB	AI LES-g	mod inc	lar dec	mod inc	use	unl	min	
Friedman	JPL 364	AI LES-g	lar inc	lar dec	sm inc	use	idt	aod	
Hinchion	KHC	AI LES-g	mod inc	sm dec	lar inc	use	idt	rin	
Krchnak	JSC EH3	AI LES-g	lar inc	lar dec	lar inc	use	≦ a p	mod	
Zapalac	MDAC	AI LES-o	and inc	lar dec	lar inc	use	imp	min	
Aichele	NSFC	AI LES-o	mod inc	sø dec	sm inc	use	unl	aod	
Palmer	ARC-HVSD	AI LES-o	sm inc	and dec	mod inc	none	unl	∎in	
Holt, et al.	LaRC FTS	AI LES-o	mod inc	mod dec	pos dec	use	unl-lik	maj	see notes 4,5
•									on
									questionnaire
Saons	LaRC FMB	AI LES-o	mod inc	lar dec	mod inc	use	unl	min	
Friedman	JPL 364	AI LES-D	lar inc	lar dec	se inc	use	idt	nod	
Hinchion	MMC	AI LES-o	mod inc	sn dec	lar inc	use	idt	∎in	
Krchnak	JSC EH3	AI LES-o	lar inc	lar dec	lar inc	use	imp	aod	
61 obus	ARC	AI/ES	mod inc	sm dec	mod dec	help	idt	nod	
Aichele	MSFC	AI/ES	mod inc	sm dec	sm inc	use	unl	aod	
Sames	LaRC FMB	AI/ES	lar inc	lar dec	mod inc	USB	idt	∎aj	
Yonemoto	Hughes	AI/ES	s∎ inc	none	sa dec	use	lik	8 0 <u>0</u>	
Hinchion	HHC	AI/ES	?	mod dec	lar inc	?	?	?	? = blank
Hinchion	NHC	AlexplMech	and inc	none	lar inc	des	idt	mod	AI
Zapalac	MDAC	Alfddr s/w	lar inc	lar dec	mod inc	use	lik	∎aj	seems best of
Deless '		ATCIAN MIN	and the		and inco		: 44	and	AI applications
Palmer	ARC~MVSD	Alfddr s/w	mod išg	nod dec	mod inc?	use	idt 144	nod	
Holt, et al.	LaRC FTS	Alfddr 5/w	and inc	lar dec	mod inc	USP	lik	∎aj and	astan annharin
Samas	LaRC FMB	Alfddr s/w	mod inc	lar dec	mod inc	use	unl	aod	major emphasis for 2000
Friedman	JPL 364	Alfddr s/w	lar inc	mod dec	sm dec	use	cer	MON	diagnosis only: see next for
									Recovery tools
Yonemoto	Hughes	Alfddr s/w	mod inc	s# dec	mod inc	ess	lik	min	
Hinchion	MMC	Alfddr s/w	lar inc	sm dec	sa inc	USE	lik	nod	
Krchnak	JSC EH3	Alfddr s/w	lar inc	lar dec	lar inc	use	unl	maj	SSTF should
NI LIIIIAK		+ 111001 5/W	14/ 110	Idi Uçt		056		-	monitor
Fricdman	JPL 364	Alfrecovs/w	lar inc	lar dec	sm dec	ess	lik	aod	
61 obus	arc	Alplan s/w	mod inc	add dec	sm inc	use	lik	nod	
Zapalac	MDAC	Alplan s/w	mod inc	lar dec	mod inc	use	cer	aod	reduce ground ops
∦ichele	NSFC	Alplan s/w	mod inc	sa dec	sm inc	use	unl	apd	·
Palmer	ARC-HVSR	Alplan s/w	sm inc	s# dec	se inc	help	lik	ain	
Holt, et al.	LaRC FTS	Alplan s/w	lar inc	mod dec	mod inc	use	idt	maj	
Sams	LaRC FMB	Alplan s/w	acd inc	lar dec	mod inc	use	unl	aod	
Friedman	JPL 364	Alplan s/₩	lar inc	∎cd dec	s a dec	use	cer	ion	
Yonemoto	Hughes	Alplan s/w	and inc	sa dec	sm inc	use	lik		
Hinchion	MHC	Alplan s/w	mod inc	sm dec	sm inc	use	lik	aod	
Krchnak	JSC EH3 .	AIplan s/w	lar inc	lar dec	lar inc	help	lik	min	RTOP already funded
Hinchion	MHC	Alplms/w	lar inc	lar dec	lar inc	des	idt	eod	, UIDER

PAGE ND. 00002 02/15/84 ORIGINAL PACE IC OF POOR QUALITY

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IOC	Readi '87	Rec. Emph.	Remarks
Zapalac	NDAC	Alsubmon s/w	mod inc	dn dec	sm inc	help	unl	₽in	will use algorit ^e sic IC(??) autom.
Aichele	MSFC	Alsubmon s/W	mod inc	sa dec	sm inc	use	lik	nod	
Falmer	ARC-HVSD	Alsubaon s/W	mod inc	nod dec	mod inc?	use	lik	nod	
Holt, et al.	LaRC FTS	Alsubmon s/w	zod inc	lar dec	mod inc	use	idt	maj	
Sanas	LaRC FMB	Alsubaon s/w	mod inc	mod dec	sm inc	use very	lik	aod	
Friedman	JPL 364	Alsubmon s/w	lar inc	mod dec	sn dec	use	cer	non	
Yonemoto	Hughes	Alsubmon s/W		mod dec	mod inc	ess	lik	min	
Hinchion	HMC	Alsubnon s/w	mod inc	sm dec	sm inc	des	idt	nod	
Krchnak	JSC EH3	Alsubaon s/w	lar inc	lar dec	lar inc	use	unl	s aj	
61 obus	ARC	Alsymproc	sm inc	and inc	lar inc	help	unl	none	
lapalac	NDAC	Alsymproc	mod inc	lar dec	mod inc	USE	unl	min	can use mainframe comp./int??
Holt, et al.	LaRC FTS	Alsymproc	5m inc	lar dec	sm inc	use	lik	nod	see notes on form 1,2,3
Samas	LaRC FMB	Alsymproc	lar inc	lar dec	mod inc	use	idt	maj	
Friedman	JPL 364	Alsymproc	lar inc	aod dec	sa dec	use	unl	nod	
Yonemoto	Hughes	Alsymproc	sm inc	se dec	none	use	idt	non	
Hinchion	MMC	Alsymproc	and inc	none	mod inc	use	unl	nod	
Krchnak	JSC EH3	Alsymproc	lar inc	lar dec	and inc	USE	unl	∎în	OAST, not SSTF, should fund
Hinchion	MMC	Alteleop/pr	lar inc	sm dec	sa inc	des	lik	#on	
Hinchion	HMC	CT adap	mod inc	sm inc	lar inc	benefici	unl	min	
Zapalac	MDAC	CTadap	lar inc	lar dec	mod inc	ess	lik	maj	
Meintel, Jr.	LaRC ATB	CTadap	aod inc	?	?	?	?	?	see note 14 on Q. As applied to teleop.
Krchnak	JSC EH3	CTadap	lar inc	and inc	lar inc	help	unl	ain	•
lapalac	MDAC	CTdistpar	SM INC	sa dec	mod inc	use	lik	min	
Hinchion	NHC	CTdistpar	lar inc	lar inc	lar inc	ess	lik	maj	
Krchnak	JSC EH3	CTdistpar	lar inc	sm inc	mod inc	use	lik	maj	
Zapalac	MDAC	CTheir	and inc	nod dec	and inc	855	lik	od	
Meintel, Jr.	LaRC ATB	CTheir	lar inc	dec	mod inc	USE	lik	aod	see notes 8,14,15 in Q. As applied to Teleop.
Hinchion	MMC	CTheir	lar inc	lar inc	lar inc	855	lik	maj '	F
Krchnak	JSC EH3	Cîheir	lar inc	sa dec	sm inc	855	lik	maj	
Zapalac	MDAC	CTav	mod inc	aod dec	mod inc	ess	lik	nod	
Meintel, Jr.	LaRC ATB	CTINV	∎od inc	?	?	?	?	?	see note 14 on Q. As applied to teleop.
Hinchion	NHC	CTev	lar inc	lar inc	lar inc	ess	lik	∎aj	•
Krchnak	JSC EH3	CTav	lar inc	sø dec	mod inc	use	unl	maj	
Zapalac	HDAC	CTnl	so inc	sn dec	mod inc	use	lik	min	
Meintel, Jr.	LaRC ATB	CTn1	mod inc	?	?	?	lik	nod	see notes 14 & 15 on Q. As

15 on Q. As applied to teleop. PAGE ND, 00003 02/15/84

÷

÷

y

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IOC	Readi '87	Rec. Emph.	Remarks
Hinchion	NHC	CTnl	mod inc	mod inc	and inc	benefici	idt	nod	
Krchnak	JSC EH3	CTn1	lar inc	mod inc	lar inc	help	unl	min	
Zapalac	MDAC	CTopt	se inc	sa dec	lar inc	use	unl	non	
Meintel, Jr.	LaRC ATB	CTopt	mou inc	?	?	?	lik	sod	see notes 14,15
Hinchion	NNC	CTopt	mod inc	mod inc	lar inc	855	idt	eod	
Krchnak	JSC EH3	CTopt	mod inc	mod inc	lar inc	help	unl	min	
61obus	ARC	DS-0	∎aj in⊏	∎aj dec	maj dec	855	unl	aod	
61 obus	ARC	DSarchstor-o	-	maj dec	maj dec	ess	unl	nod	
Zapalac	NDAC	DSarchstor-o		sm dec	mod inc	use	unl	BON	
Yonemoto	Hughes	DSarchstor-o		-		USE	lik	none	
Hinchion	NNC 100 FUZ	DSarchstor-o		none	sm inc	des	lik -	#on	
Krchnak	JSC EH3	DSarchstor-o		sm inc	mod inc	none	unl	ninor nod	
61obus Tasalas	ARC Mdac	DS#s-o DS#s-o	maj inc lar inc	∎aj dec lar dec	maj dec sm inc	e55 e55	cer	BOD	
Zapalac Vaparata		DSms-D DSms-O	sm inc		pe INC	255 U52	lik	none	
Yonémoto Hinchion	Hughes MMC	DSes-D	nod inc	none	58 -	use	lik	aon	
Krchnak	JSC EH3	DSes-o	mod inc	lar dec	sm inc	855 855	lik	aon	
Zapalac	MDAĽ	FTC							required for criticality but results in productivity gain applies to all FT
Palmer	ARC-MVSD	FTC	∎od inc	∎od inc	mod inc	use	idt	nod	no breakdown for different FT technologies
Holt, et al.	LaRC FTS	FTC	lar inc	lar dec	none	use	lik	∎aj	see note 6 on Q'aire: extends sys lifetime, reduces ground, crew involvement
Hinchion	MMC	FTC	lar inc	nod dec	mod inc	des	lik	eod	
Krchnak	JSC EH3	FTC	-	-	-	-	-	see note	"FTC hardware is being adequately funded by DAST and DoD."
Yonemoto	Hughes	FTarch	sm inc	sm inc	sm inc	use	lik	min	
Krchnak	JSC EH3	FTarch	lar inc	sa dec	lar inc	US e	imp	maj	not clear if he thinks OAST & DoD apply here
61 obus	ARC	FTdxfer-o	maj inc	and dec	mod dec	e \$\$	นกไ	nod	
Zapalac	HDAC	FTdxfer-o	mod inc	ain inc	mod inc	ess	cer	ain	
Holt, et al.	LaRC FTS	FTdxfer-o	lar inc	lar dec	none	usn	lik	maj	
Yonemoto	Hughes	FTdxfer-o	s∎ inc	none	sm inc	use	lik	min	
Hinchion	HHC	FTdxfer-o	lar inc	-	.	855	idt	∎aj	
Krchnak	JSC EH3	FTdxfer-o	lar inc	lar dec	mod inc	e 55	lik	mon	DAST & DoD adequate
6lobus	ARC	FTdxfersg	maj inc	mod dec	nod dec	ess	lik	nin	

ORIGINAL FURT

PAGE ND. 00004 02/15/84

.

ORIGINAL PAGE (S) OF POOR QUALITY

Space Station Technology Poll

Respondent	Gryaniz.	Technology	Productiv.	RecCost	NR Cost	Desir IOC	Readi'87	Rec. Emph.	Remarks
Zapalac	MDAC	FTdxfersg	and inc	min inc	mod inc	855	cer	min	
Holt, et al.	LaRC FTS	FTdxfersg	mod inc	lar dec	none	use	lik	nod	
Yonemoto	Hughes	FTdxfersg	sm inc	none	sa inc	USE	lik	min	
Krchnak	JSC EH3	FTdxfersg	and inc	lar dec	mod inc	ess	lik	aon	DAST & DoD
		•							adequate
61 obus	ARC	FT#asst-o	waj inc	maj dec	∎aj dec	85 5	unl	mod	
lapalac	MDAC	FTmasst-o	aod inc	min inc	mod inc	855	cer	min	
Holt, et al.	LaRC FTS	FTmasst-o	mod inc	nod dec	none	use	lik	∎aj	
Yonemoto	Hughes	FTmasst-o	sm inc	none	sm inc	use	lik	min	
Krchnak	JSC EH3	FTmasst-o	mod inc	lar dec	and inc	855	lik	AOD	OAST & DoD adequate
81 obus	ARC	FTpro-o	maj inc	maj dec	∎aj dec	255	unl	mod	•
Zapalac	NDAC	FTpro-o	mod inc	ain inc	and inc	855	cer	aod	
Holt, et al.	LaRC FTS	FTpro-o	lar inc	lar dec	none	use	lik	∎aj	
Yonemoto	Hughes	FTpro-o	sm inc	s@ inc	sm inc	use	lik	none	
Hinchion	HHC	FTpro-o	lar inc	-	-	des	lik	mon/min	DoD VHSIC
Krchnak	JSC EH3	FTpro-o	lar inc	lar dec	mod inc	8 55	lik	non	OAST & DoD adequate
Zapalac	HDAC	FTs/w	mod inc	se decc	lar inc	use	unl	aon	
Holt, et al.	LaRC FTS	FT5/W	mod inc	?	s-m dec	e ss	lik	maj	see note 7 on Questionnaire
Yonemoto	Hughes	FTs/w	sm inc	sn dec	sm inc	use	lik	none	
Krchnak	JSC EH3	FTs/w	lar inc	lar dec	lar inc	855	unl	n aj	not clear if he thinks OAST &DoD apply here
Palmer	ARC-MVSD	HOL	mod inc	sm dec	sm inc	use	lik	a od	,
Hinchion	NMC	HOL	lar inc	sm inc	se inc	855	lik	min	
Globus	ARC	HOLrpr-o	mod inc	mod dec	mod inc	help	unl	and	
Zapalac	NDAC	HOLrpr-o	mod inc	sa dec	sa inc	use	lik	min	
Aichele	MSFC	HOLrpr-o	lar inc	lar dec	lar inc	use	unl	min	
Sams	LaRC FMB	HOLrpr-o	and inc	lar dec	sm inc	e 55	lik	maj	
Friedman	JPL 364	HOLrpr-o	mod inc	sa dec	none	use	liķ	and	
Hinchion	HNC	HOLrpr-o	idt	-	sm inc	ess	lik	BOU	
Krchnak	JSC EH3	HOLrpr-o	sm inc	mod inc	mod inc	none	lik	∎in	
Dorofee	KSC	HOLrpr-o	nod inc	∎od dec	mod inc	USE	lik	Maj	<pre>for VHOL, non life-critical: must be adapted for SS, esp useful 1st yr</pre>
61 obus	ARC	HOLs/w	maj inc	maj dec	aod inc	use	imp	∎aj	waring tar li
Zapalac	MDAC	HOLS/W	lar inc	mod dec	mod inc	use	idt	aod	
Aichele	MSFC	HOLS/W	nod inc	mod dec	mod inc	use USe	lik	maj	
Samms	LaRC FMB	HOLS/W	lar inc	lar dec	mod dec	ess	lik	∎aj ∎aj	
Krchnak	JSC EH3	HOLS/W	lar inc	lar dec	nod inc	ess	lik	∎aj ∎in	
Dorofey	KSC	HOLS/W HOLS/W	and inc	mod dec	vsa inc	USP	lik	naj	RECCOST=
2010169		,,,,,,,,,,		amm thèr	,			1	sa-mod dev could be

se-mod dev could be NASA or minor funding to IEEE to ensure ready-both .

PAGE ND. 00005 02/15/84

۲

.

٠

-

ORIGE CALLARY OF POOR GUILLARY

IOC station*

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IO	C Readi'(37 Rec. Emph.	Remarks
Dorofee	KSC	HOLsups/₩	lar inc	od dec	∎od inc	USP	unl	maj earl	see notes: some s/w dev tools to be avail commercially: some SS-specific
Zapalac	MDAC	HSdbus	lar inc	lar dec	sm inc	ess	cer	nod	·
Palmer	ARC-NVSD	HSdbus	lar inc	mod dec	sm inc	use	lik	mod	
Yonemoto	Hughes	HSdbus	s∎ inc	sm inc	sm inc	use	líķ	none	
Hinchion	MMC	HSdbus	lar inc	sa dec	lar inc	ess	idt	maj	
Krchnak	JSC EH3	HSdbus	mod inc	none	and inc	use	lik	min	
Zapalac	MDAC	HSmen	lar inc	lar dec	sa inc	622	Cer	boa	
Palmer	ARC-MVSD	HSmem	mod inc	nod dec	s∎ inc	use	lik	nod	
Yonemoto	Hughes	HSmen	none	none	none	?	?	?	
Krchnak	JSC EH3	HSmen	lar inc	mod dec	mod inc	use	lik	min	
61obus	ARC	HSmen-g	∎aj inc	maj dec	maj dec	help	lik	min	
Zapalac	MDAC	HSproc	lar inc	lar dec	sa inc	e 55	cer	eod	
Palmer	ARC-NVSD	HSproc	∎od inc	and dec	s∎ inc	use	lik	aod	
Yonemoto	Hughes	HSproc	sm inc	sm inc	sm inc	use	idt	none	
Krchnak	JSC EH3	HSproc	and inc	aod dec	mod inc	use	lik	min	
61 obus	ARC	HSproc-g	maj inc	maj dec	maj der	help b-l-	lik	ein	
Hinchion	HMC	MNtextgen	sm inc	sæ dec	lar inc	help	unl	NON	
61 obus	ARC	NLA	min inc	min dec	ain inc	help	lik	none	ill animathad
lapalac	HDAC	NLA	lar inc	eod dec	lar inc	use	i∎p	MOD.	iff connected to word recognition
Aichele	MSFC	NLA	lar inc	lar dec	lar inc	use	unl	#in	
Palmer	ARC-MVSD	NLA	sm inc	sø dec	lar inc	none	like	#OD	
Hinchion	HHC	NLA	s e inc	none	sm inc	help	lik	ein	"voice readback"
Krchnak	JSC EH3	NLA	mod inc	mod dec	and inc	use	unl	min	
Dorofee	KSC	NLA	lar inc	sm dec	mod inc	use	cer	min mon	esp. C‱, some exists
61obus	ARC	NLU	∎in'in⊂	sin dec	∎aj inc	none	i∎p	none	
Zapalac	NDAC	NLU	lar inc	mod dec	mod inc	use	idt	#in	
Aichele	MSFC	NLU	lar inc	lar dec	lar inc	use	นกไ	ain	
Palmer	ARC-MVSD	nlu	sm inc	se dec	lar inc	none	unl	a dh	
Samms	LaRC FMB	NLU	mod inc	nod dec	sm inc	use	unl	aod	
Friedman	JPL 364	NLU	mod inc	sm inc	sm inc	help	idt	∎in	
Hinchion	MMC	NLU	aod inc	sa dec	lar inc	use	idt	min	
Krchnak	JSC EH3	NLU	mod inc	nod dec	eod inc	help	unl	ein	
Dorofee	KSC	NLU	vlar inc	mod inc	lar inc	help	unl	min	reliability central, wait
		•							for outside develop. User-oriented lang, more rel
									<\$
Krchnak	JSC EH3	ROB	-	-	-	see note	-	-	"No firm requirement for robotics identified for
									Identified for

PAGE NO. 00006 02/15/84

5 j.

ł

••

San Land

ORIGINAL PAGE 13 OF POOR QUALITY,

Respondent	Organiz.	Technology	Productiv,	RecCost	NR Cost	Desir IOC	Readi '87	Rec, Emph.	Remarks
61 obus Zapalac	ARC Mdac	ROBdexman ROBdexman	maj inc mod inc	maj dec mod dec	maj dec mod inc	use ?	imp ?	maj ?	? = not shown on questionnaire
Palmer Meintel, Jr.	ARC-MYSD Larc Atb	ROBdexman ROBdexman	mod inc and inc	nod dec dec	mod inc sm inc	help none	idt unl	mod minor	see notes
Krchnak	JSC EH3	ROBdexman	lar inc mod inc	lar dec mod dec	mod inc	none use	idt lik	none	8,11,12,13 in Q. Special end effectors good and to be ready "No firm requirements for robotics identified for IOC station"
6lobus Zanalan	ARC	ROBimproc					unl	#in	
Zapalac	MDAC	ROBimproc	and inc	eod dec	mod inc	USE	lik	≡in #in	
Aichele	MSFC	ROBimproc	and inc	?	/ 	USE			
Palmer	ARC-HVSD	ROBimproc	sm inc	sm inc	s∎ inc s¤ inc	none des	unl lik	mon ∎in	Vision
Hinchion	MMC 100 EUZ	ROBimproc	lar inc	none las das				aon	4131011
Krchnak	JSC EH3	ROBimproc	lar inc	lar dec		none	unl idt	non	
61 obus	ARC	ROBiu	and inc	mod dec	mod inc	help			
Zapalac	MDAC	ROBiu	and inc	lar dec	lar inc	USE	imp	min	
Aichele	MSFC	ROBiu	lar inc	?	?	use	unl	maj	
Palmer	ARC-HVSD	ROBiu	sm inc	sa dec	lar inc	none	unl	aod	
Maintel, Jr.	LaRC ATB	ROBiu	sm inc	dec	sm inc	help	low	min	see note 1 on questionnaire
Hinchion	HMC	ROBiu	sm inc	none	lar inc	help	นกไ	∎ON	Vision (separated from Robotics by MMC)
Krchnak	JSC EH3	ROBiu	lar inc	mod dec	mod inc	none	imp	eon	
Globus	ARC	ROBpatrec	mod inc	aod dec	mod inc	use	lik	ain	
Zapalac	HDAC	ROBpatrec	mod inc	lar dec]ar inc	use	imp	min	
Aichele	HSFC	ROBpatrec	mod inc	?	?	use	lik	min	
Palmer	ARC-MVSD	ROBpatrec	sm inc	sm dec	acd inc	none	unl	non	
Neintel, Jr.	LaRC ATB	ROBpatrec	and inc	dec	se inc	help	lik	ain	see notes 2,3,4
						•			on Q
									requires HS
									computing.
									Also useful for
									Earth Res.
Hinchion	MMC	ROBpatrec	sm inc	none	sa inc	help	cer	MON	Vision
Krchnak	JSC EH3	RDBpatrec	lar inc	lar dec	mod inc	none	unl	non	
61 obus	ARC	ROBteleop	maj inc	maj dec	?	use	unl	∎aj	
Zapalac	MDAC	ROBteleop	mod inc	nod dec	mod inc	use	lik	aod	
Aichele	MSFC	ROBteleop	mod inc	?	?	use	lik	m in	
Palmer	ARC-MVSD	ROBteleop	lar inc	nod dec	lar inc	use	idt	mod	
Meintel, Jr.	LaRC ATB	ROBteleop	lar inc	dec	sm inc	use	lik	maj	see notes 7-10
neinter, or.		VODCELEOD		μ <u>υ</u> ς,	JM 110			,	in Q. RMS is demonstrated
									teleop, but
									more develop
									for better
									iul vertei

PAGE ND. 00007 02/15/84

*

.

٠

.

ORIGINAL PA. OF POOR QUALITY

Space Station Technology Poll

- 18

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IO	C Readi'8	7 Rec. Emph.	Remarks
Krchnak	JSC EH3	ROBteleop	mod inc	med dec	lar inc	use	unl	eod	
61 obus	ARC	ROBtelepr	mod inc	mod dec	sa dec	help	imp	nod	
Zapalac	NDAC	ROBtelepr	mod inc	∎od dec	mod inc	use	lik	nod	
Aichele	NSFC	ROBtelepr	?	?	?	?	?	?	"This is just another form of teleoperation"
Palmer	ARC-MVSD	ROBtelepr	lar inc	aod dec	lar inc	use	idt	nod	,
Meintel, Jr.	LaRC ATB	ROBtelepr	and inc	dec	sm inc	U5 e	lik	eod	see notes 7-10 in Q
Krchnak	JSC EH3	ROBtelepr	mod inc	and dec	mod inc	help	imp	ain	
Hinchion	MMC	Rdextare	lar inc	nod dec	lar inc	ess	unl	maj	Robotics
Hinchion	MMC	Rintelman	mod inc	nod dec	lar inc	use	idt	nod	
Hinchion	NHC	Rintelmob	and inc	mod dec	lar inc	use	unl	nod	Robotics
61 obus	ARC	SIN	maj inc	∎aj dec	∎aj der	ess	unl	nod	
61obus	ARC	SIManal	maj inc	∎aj dec	∎aj dec	ess	unl	eod	
Zapalac	HDAC	SIManal	mod inc	sa dec	sin dec	ess	cer	aod	
Hinchion	HNC	SIManal	sm inc	sa dec	mod inc	ess	lik	∎in	
Krchnak	JSC EH3	SIManal	nod inc	sn dec	sm inc	ess	unl	m aj	
61obus	ARC	SIMid	maj inc	∎aj dec	maj dec	use	unl	eod	
Zapalac	MDAC	SIMid	mod inc	sn dec	sm inc	ess	cer	nod	
Hinchion	HHC	SIM	sm inc	s a dec	mod inc	855	lik	min	
Krchnak	JSC EH3	SIM	mod inc	sa dec	sm inc	ess	unl	maj	
61 obus	ARC	TFs/W	maj inc	∎aj dec	maj dec	ess	unl	maj	
Hinchion	HHC	VLSI/VHSIC	lar inc	lar dec	lar inc	ess '	lik	mon/maj	
61obus	ARC	VLSIdt	mod inc	mod dec	mod dec	help	lik	min	
Globus ·	ARC	VLSIsp-o	mod inc	mod dec	mod dec	help	unl	mod	
Hinchion	HHC	i#ps/w val	lar inc	-	-	e 55	lik	maj	non-AI- i∎proved s/w validation tools
61 obus	ARC	∎inins-o	mod inc	aod dec	aod dec	help	unl	bae	Minimum instr. set computers

 Productivity Increase, Non-Recurring Cost Decrease, and Recurring Cost Decrease .

PAGE NO. 00001 02/15/84

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IOC	: Readi '87	Rec. Emph.	Remarks
Holt, et al.	LaRC FTS	AI LES-0	and inc	nod dec	pos dec	USE	un1-lik	∎aj	see notes 4,5 on
61 obus	ARC	AI/ES	mod inc	sa dec	nod dec	help	idt	aod	questionnaire
Friedman	JPL 364	Alfddr s/w	lar inc	and dec	sn dec	USC	cer	#0Ŋ	diagnosis only: see next for Recovery tools
Friedman	JPL 364	Alfrecovs/w	lar inc	lar dec	sm dec	ess	lik	mod	
Friedman	JPL 364	Alplan s/w	lar inc	mod dec	sa dec	use	cer	NOD	
Friedman	JPL 364	Alsubmon s/w		∎od dec	sa dec	use	cer	800	
Friedman	JPL 364	Alsymptoc	lar inc	aod dec	sa dec	use	un1	aod	
61 obus	ARC	DS-0	maj inc	maj dec	maj dec	ess	unl	aod	
Globus	ARC	DSarchstor-o		maj dec	∎aj dec	ess	unl	eod	
61 obus	ARC	DSes-D	maj inc	maj dec	maj dec	255	unl	nod	
61 obus	ARC	FTdxfer-o	maj inc	nod dec	mod dec	ess	unl	aod	
61 obus	ARC	FTdxfersg	maj in	mod dec	mod dec	ess	lik	min	
61 obus	ARC	FTmasst-o	maj inc	maj dec	maj dec	ess	unl	nod	
61 obus	ARC	FTpro-o	maj inc	maj dec	∎aj dec	e ss	unl	aod	
Samas	LaRC FMB	HOLs/w	lar inc	lar dec	mod dec	ess	lik	∎aj	
61 obus	ARC	HSmem-g	maj inc	maj dec	maj dec	help	lik	#in	
61obus	ARC	HSproc-g	maj inc	maj dec	maj dec	help	lik	•in	
61 obus	ARC	ROBdexman	maj inc	maj dec	maj dec	use	imp	maj	
61 obus	ARC	ROBtelepr	mod inc	mod dec	sa dec	help	imp	nod	
Globus	ARC	SIN	maj inc	maj dec	∎aj dec	e 55	unl	#od	
61 obus	ARC	SIManal	maj inc	maj dec	∎aj dec	e ss	unl	nod	
Zapalac	MDAC	SIManal	mod inc	sa dec	se dec	e 55	cer	éod	
61obus	ARC	SIMid	maj inc	∎aj dec	∎aj dec	use	unl	nod	
61 obus	ARC	TFs/w	maj inc	∎aj dec	maj dec	ess	unl	maj	
61 obus	ARC	VLSIdt	mod inc	mod dec	aod dec	help	lik	#in	
61 obus	ARC	VLSIsp-o	mod inc	mod dec	mod dec	help	unl	aod	
Globus	ARC	minins-o	mod inc	mod dec	mod dec	help	unl	nod	Minimum instr.

set computers

ORIGINAL PAGE 19 OF POOR QUALITY

-58-

URIGINAL FALLER OF POCK GUALITY

4.

-59-

* *1*

÷

,

ę

PAGE ND. 00001 02/15/84

1

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IOC	Readi '87	Rec. Emph.	Remarks
Friedman	JPL 364	AI LES-g	lar inc	lar dec	sm inc	use	idt	sod	
	JSC EH3	AI LES-g	lar inc	lar dec	lar inc	use	imp	aod	
	JPL 364	AI LES-0	lar inc	lar dec	se inc	use	idt	mod	
	JSC EH3	AI LES-o	lar inc	lar dec	lar inc	use	imp	aod	
K	LaRC FMB	AI/ES	lar inc	lar dec	mod inc	use	idt	maj	
	MDAC	Alfddr s/w	lar inc	lar dec	mod inc	use	lik	∎aj	seems best of Al applications
Fried∎an	JPL 364	Alfddr s/w	lar inc	mod dec	sa dec	use	cer	non	diagnosis only: see next for Recovery tools
Hinchion	MMC	Alfddr s/w	lar inc	sa dec	sm inc	use	lik	nod	
	JSC EH3	Alfddr s/w	îar inc	lar dec	lar inc	use	unl	maj	SSTF should ∎onitor
Friedman	JPL 364	Alfrecovs/w	lar inc	lar dec	sa dec	855	lik	∎od	
	LaRC FTS	Alplan s/w	lar inc	and dec	aod inc	use	idt	maj	
,	JPL 364	Alplan s/w	lar inc	mod dec	sa dec	use	cer	aon	
	JSC EH3	Alplan s/w	lar inc	lar dec	lar inc	help	lik	min	RTOP already funded
Hinchion	MMC	Alplms/w	lar inc	lar dec	lar inc	des	idt	aod	
	JPL 364	Alsubmon s/w		mod dec	sa dec	use	cer	mon	
	Hughes	Alsubmon s/w	lar inc	mod dec	mod inc	ess	lik	min	
	JSC EH3	Alsubmon s/w	lar inc	lar dec	lar inc	use	unl	∎aj	
	LaRC FMB	Alsymproc	lar inc	lar dec	mod inc	use	idt	s aj	
	JPL 364	Alsymptoc	lar inc	mod dec	sa dec	use	unl	nođ	
Krchnak .	JSC EH3	Alsymproc	lar inc	lar dec	mod inc	use	unl	min	DAST, not SSTF, should fund
Hinchion	MMC	AIteleop/pr	lar inc	sm dec	sm inc	des	lik	non	
	NDAC	CTadap	lar inc	lar dec	mod inc	e 55	lik	∎aj	
	JSC EH3	CTadap	lar inc	mod inc	lar inc	help	uni	min	
Hinchion	NNC	CTdistpar	lar inc	lar inc	lar inc	ess	lik	∎aj	
Krchnak	JSC EH3	CTdistpar	lar inc	sm inc	and inc	use	lik	∎aj	
Meintel, Jr.	LaRC ATB	CTheir	lar inc	dec	∎od inc	use	lik	eod	see notes B,14,15 in Q. As applied to Teleop.
Hinchion	HHC	CTheir	lar inc	lar inc	lar inc	ess	lik	s aj	· •
	JSC EH3	CTheir	lar inc	sa dec	sm inc	e55	lik	maj	
	MMC	CTmv	lar inc	lar inc	lar inc	ess	lik	∎aj	
	JSC EH3	CTev	lar inc	sm dec	mod inc	use	unl	maj	
	JSC EH3	CTnl	lar inc	nod inc	lar inc	help	unl	min	
	NDAC	DS@s-o	lar inc	lar dec	sm inc	ess	cer	e on	
	LaRC FTS	FTC	lar inc	lar dec	none	USE	lik	∎aj	see note 6 on Q'aire: extends sys lifetime, reduces ground, crew involvement
Hinchion	NHC	FTC	lar inc	mod dec	mod inc	des	lik	nod	
Krchnak	JSC EH3	FTarch	lar inc	se dec	lar inc	USP	imp	∎aj	not clear if he thinks OAST & DoD apply here

PAGE ND. 00002 02/15/84

ORICESSUE, LALE OF POOR GRADING

.

for better

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IOC	Readi '87	Rec. Emph.	Remarks
Holt, et al.	LaRC FTS	FTdxfer-o	lar inc	lar dec	none	U58	lik	maj	
Hinchion	HMC	FTdxfer-o	lar inc	-	and ina	ess	idt 176	∎aj	OAST & DoD
Krchnak	JSC EH3	FTdxfer-o	lar inc	lar dec	mod inc	e 55	lik	non	adequate
Holt, et al.	LaRC FTS	Fĭpro-o	lar inc	lar dec	none	use	lik	maj son (sin	n-n UUCTO
Hinchion	NMC	FTpro-o	lar inc		-	des	lik	son/sin	DoD VHSIC DAST & DoD
Krchnak	JSC EH3	FTpro-o	lar inc	lar dec	mod inc	855	lik	800	adequate
Krchnak	JSC EH3	FTs/H	lar inc	lar dec	lar inc	ess	unl	s aj	not clear if he thinks OAST &DoD apply here
Hinchion	KHC	HOL	lar inc	sm inc	sm inc	e ss	lik	nin	wann abbel unia
Aichele	NSFC	HOLrpr-o	lar inc	lar dec	lar inc	use	unl	#in	
Zapalac	MDAC	HOLs/w	lar inc	nod dec	and inc	USP	idt	nod	
Samms	LaRC FMB	HOLS/W	lar inc	lar dec	mod dec	855	lik	maj	
Krchnak	JSC EH3	HOLs/w	lar inc	lar dec	mod inc	855	lik	min	
Dorofee	KSC	HOLsups/w	lar inc	mod dec	∎od inc	use	unl	maj earl	see notes: some s/w dev tools to be avail commercially: some SS-specific
Zapalac	MDAC	HSdbus	lar inc	lar dec	sm inc	ess	cer	nod	an phanes
Palmer	ARC-MVSD	HSdbus	lar inc	mod dec	sm inc	use	lik	nod	
Hinchion	NHC	HSdbus	lar inc	sn dec	lar inc	ess	idt	saj	
Zapalac	NDAC	HSaea	lar inc	lar dec	sm inc	ess	cer	nod	
Krchnak	JSC EH3	HSnem	lar inc	mod dec	mod inc	use	lik	min	
Zapalac	MDAC	HSproc	lar inc	lar dec	sm inc	e 55	cer	aod	
Zapalac	HDAC	NLA	lar inc	nod dec	lar inc	U50	imp	E DN	iff connected to word recognition
Aichele	MSFC	NLA	lar inc	lar dec	lar inc	use	unl	min	
Dorofee	KSC	NLA	lar inc	sn dec	mod inc	use	cer	ain ∎on	esp. C&K, some exists
Zapalac	MDAC	NLU	lar inc	mod dec	mod inc	use	idt	nin	
Aichele	MSFC	NLU	lar inc	lar dec	lar inc	U50	unl	min	
Krchnak	JSC EH3	ROBdexman	lar inc	lar dec	mod inc	None	idt	none	"No firm requirements for robotics identified for IOC station"
Hinchion	MMC	ROBimproc	lar inc	none	sm inc	des	lik	min	Vision
Krchnak	JSC EH3	ROBimproc	lar inc	lar dec	mod inc	none	unl	aon	
Aichele	ŃSFC	ROBiu	lar inc	?	?	use	unl	#aj	
Krchnak	JSC EH3	ROBiu	lar inc	nod dec	mod inc	none	imp	MON	
Krchnak	JSC EH3	ROBpatrec	lar inc	lar dec	mod inc	none	unl	non	
Palger	ARC-NVSD	ROBteleop	lar inc	nod dec	lar inc	use	idt	nod	
Heintel, Jr.	LaRC ATB	ROBteleop	lar inc	dec	sm inc	use	lik	maj	see notes 7-10 in Q. RMS is demonstrated
									teleop, but more develop for better

PAGE ND. 00003 02/15/84

£

.

ā

۴

.

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir	IDC Readi	'87 Rec. Emph.	Remarks
Palmer Hinchion Hinchion Hinchion	ARC-NYSD MMC MMC MMC MMC	ROBtelepr Rdext&rm VLSI/VHSIC imps/w val	lar inc lar inc lar inc lar inc lar inc	mod dec mod dec lar dec -	lar inc lar inc lar inc	U50 855 855 855	idt unl lik lik	mod maj mbn/maj maj	Robotics non-AI- improved s/w validation tools

OF POUR CLASSING

.

-62-

*

*

*

ų

ORIGINAL PASS II OF POOR QUALITY.

PAGE NO. 00001 02/15/84

,

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IO	C Readi	'87 Rec.	Enph, Remarks
Yonemoto	Hughes	Alfddr s/w	mod inc	sa dec	mod inc	255	lik	ain	
Friedman	JPL 364	Alfrecovs/w	lar inc	lar dec	se dec	855	lik	aod	
Yonemoto	Hughes	Alsubaon s/w	lar inc	mod dec	mod inc	855	11k	ain	
Zapalac	HDAC	CTadap	lar inc	lar dec	mod inc	e55	lik	maj	
Hinchion	NHC	Cīdistpar	lar inc	lar inc	lar inc	855	lik	maj	
Zapalac	NDAC	CTheir	mod inc	aod dec	mod inc	ess	lik	aod	
Hinchion	NHC	CTheir	lar inc	lar inc	lar inc	ess	lik	∎a j	
Krchnak	JSC EH3	CTheir	lar inc	sn dec	sm inc	e35	<u>lik</u>	m aj	
Zapalac	MDAC	CTAV	and inc	nod dec	mod inc	e 55	lik	aod	
Hinchion	HHC	CTinv	lar inc	lar inc	lar inc	ess	lik	saj	
Hinchion	HHC	CTopt	and inc	mod inc	lar inc	ess	idt	nod	
61 obus	ARC	DS-o	maj inc	maj dec	maj dec	855	นกไ	boa	
61obus	ARC	DSarchstor-o		∎aj dec	maj dec	es s	unl	nod	
61 obus	ARC	DSms-o	∎aj inc	maj dec	maj dec	ess	unl	nod	
Zapalac	HDAC	DSas-o	lar inc	lar dec	sm inc	855	cer	no <u>n</u>	
Krchnak	JSC EH3	DSas-0	mod inc	lar dec	s∎ inc	ess	lik	#on	
Globus	ARC	FTdxfer-o	maj inc	pod dec	mod dec	e55	unl	nod	
Zapalac	MDAC	FTdxfer-o	mod inc	ain inc	mod inc	ess	cer	#in	
Hinchion	KNC .	FTdxfer-o	lar inc		-	ess	idt	∎aj	0407 4 D.D
Krchnak	JSC EH3	FTdxfer-o	lar inc	lar dec	mod inc	855	lík	∎on	DAST & DøD adequate
61 obus	ARC	FTdxfersg	maj inc	mod dec	nod dec	ess	lik	min	
Zapalac	HDAC	FTdxfersg	and inc	min inc	mod inc	ess	cer	min	
Krchnak	JSC EH3	FTdxfersg	mod inc	lar dec	aod inc	855	lik	#DN	DAST & DoD adequate
61 obus	ARC	FT#asst-o	maj inc	maj dec	maj dec	ess	unl	nod	·
Zapalac	NDAC	FTmasst-o	mod inc	min inc	mod inc	ess	cer	min	
Krchnak	JSC EH3	FTmasst-o	mod inc	lar dec	mod inc	855	lik	RON	DAST & DoD adequate
61obus	ARC	FTpro-o	maj inc	∎aj dec	∎aj dec	855	սոլ	aod	•
lapalac	MDAC	FTpro-o	mod inc	min inc	nod inc	e55	cer	nod	
Krchnak	JSC EH3	FTpro-o	lar inc	lar dec	and inc	855	lik	non	OAST & DoD adequate
Holt, et al.	LaRC FTS	FTs/W	mod inc	?	s-n dec	255	lik	∎aj	see note 7 on Questionnaire
Krchnak	JSC EH3	FTs/w	lar inc	lar dec	lar inc	e 55	unl	maj	not clear if he thinks DAST &DoD apply here
Hinchion	NHC	HOL	lar inc	s e inc	s∎ inc	ess	lik	s in	
Samps	LaRC FMB	HOLrpr-o	mod inc	lar dec	sm inc	855	lik	∎aj	
Hinchion	HMC	KOLrpr-o	idt	-	sm inc	ess	lik	aon	
Sames	LaRC FMB	HOLs/w	lar inc	lar dec	aod dec	ess	lik	maj	
Krchnak	JSC EH3	HOLs/w	lar inc	lar dec	mod inc	e 55	lik	ain	
Zapalac	MDAC	HSdbus	lar inc	lar dec	sm inc	BSS	cer	nod	
Hinchion	MHC	HSdbus	lar inc	sa dec	lar inc	e 55	idt	∎aj	
Zapalac	MDAC	HSmen	lar inc	lar dec	sm inc	e 55	cer	and .	
Zepalac	MDAC	HSproc	lar inc	lar dec	sa inc	ess	cer	nod	
Hinchion	NHC	Rdextarm	lar inc	nod dec	lar inc	ess	unl	∎aj	Robotics
Globus	ARC	SIM	maj inc	maj dec	s aj dec	ess	unl	nod	
61 obus	ARC	SIManal	maj inc	∎aj dec	maj dec	ess	unl	n od	

PAGE NO. 00002 02/15/84

,

4

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir	IOC Read	li '87 Re	c. Emph,	Remarks
Zapalac	NDAT	SIManal	mod inc	sa dec	sa dec	e55	cer	80	d	
Hinchion	hhc	SIManal	sm inc	sa dec	mod inc	e55	lik	ni.	n	
Krchna	JSC EH3	SIManal	wod inc	sa dec	sa inc	ess	unl	a a	j	
Zapalac	MDAC	SIMid	mod inc	sm dec	s∎ inc	ess	cer		d	
Hinchion	NHC	SIMid	sm inc	sa dec	mod inc	855	lik	mi	n	
Krchnak	JSC EH3	SINid	mod inc	sn dec	sa inc	e55	ünl	n a	j	
Globus	ARC	TFs/M	maj inc	maj dec	maj dec	e55	unl	Ba	j	
Hinchion	HMC	VLS1/VHSIC	lar inc	lar dec	lar inc	ess	lik	80	n/maj	
Hinchion	HHC	imps/w val	lar inc	-	-	855	lik	#a	j	non-Al- improved s/w
										validation

tools

OF POOR QUALITY.

 Productivity "Large Increase," and Essential, Useful, or Helpful @ IOC, and Major or Moderate Development Emphasis.

PAGE ND. 00001 ORIGINAL PAGE IO 02/15/84 OF POOR QUALITY,

Responders	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IO	Readi '	B7 Rec. Enph.	Remarks
Friedman	JN 364	AI LES-g	lar inc	lar dec	sm inc	use	idt	nnd	
Krchnak	355 EH3	AI LES-g	lar inc	lar dec	lar inc	144	i≞p	ផលនី	
Friedman	JPL 364	AI LES-D	lar inc	lar dec	sm inc	use	idt	nod	
Krchnak	JSC EH3	AI LES-0	lar inc	lar dec	lar inc	use	imp	nod	
Samos	LaRC FMB	AI/ES	lar inc	lar dec	mod inc	use	idt	maj	
Zapalac	HDAC	Alfddr s/w	lar inc	lar dec	mod inc	use	lik	#Bj	seems best of AI applications
Hinchion	NHC	Alfddr s/w	lar inc	sm dec	sa int	USE	lik	nod	
Krchnak	JSC EH3	Alfddr s/w	lar inc	lar dec	lar inc	USP	unl	maj	SSTF should monitor
Friedman	JPL 364		lar inc	lar dec	sa dec	ess	lik	aod	
Holt, et al.	LaRC FTS	Alplan s/w	lar inc	nod dec	and inc	use	idt	Baj	
Krchnak	JSC EH3	Alsubmon s/w		lar dec	lar inc	use	unl	m aj	
Sams	LaRC FMB	Alsymptoc	lar inc	lar der	mod inc	use	idt	maj	
Friedman	JPL 364	Alsymproc	lar inc	and dr.	sæ dec	use	unl	nod	
Zapalac	HDAC	CTadap	lar inc	lar dec	mod inc	655	lik	maj	
Hinchion	HHC	CTdistpar	lar inc	lar inc	lar inc	ess	lik	Maj	
Krchnak	JSC EH3	CTdistpar	lar inc	sn inc	mod inc	USP	lik	∎aj wad	
Meintel, Jr.	LaRC ATB	CTheir	lar inc	dec	acd inc	use	lik	NOQ	see notes 8,14,15 in Q. As applied to Teleop.
Hinchion	MMC	f. theor	lar inc	lar inc	lar inc	e 5 5	lik	maj	·
Krchnak	JSC EH3	Cineir	lar inc	sa dec	se inc	8 55	lik	maj	
Hinchion	RMC	CTav	lar inc	lar inc	lar inc	PSS	lik	≋ aj	
Krchnak	JSC EH3	CTev	lar inc	sa dec	aod inc	use	unl	maj	
Holt, et al.	LaRC FTS	FTC	lar inc	lar dec	none	USP	lik	ø aj	spe note 6 on Ufaire: extends sys lifetime, reduces ground, crew involvement
Krchnak	JSC EH3	FTarch	lar inc	sm dec	lar inc	USE	imp	£aj	not clear if he thinks DAST & DoD apply here
Holt, et al.	LaRC FTS	FTdxfer-o	lar inc	lar dec	none	use	lik	m aj	
Hinchion	HHC	FTdxfer-o	lar inc	~	-	855	idt	maj	
Hult, et al.	LaRC FTS	FTpro-o	lar inc	lar dec	none	use	lik	∎aj	
Krchnak	JSC EH3	FTs/W	lar inc	lar dec	lar inc	255	unl	maj	not clear if he thinks DAST &DoD apply here
Zapalac	MDAC	HOLs/W	lar inc	mod dec	mod inc	use	idt	aod	
Samms	LaRC FMB	HOLs/w	lar inc	lar dec	mod dec	855	lik	∎aj	
Dorofee	KSC	HOLsups/w	lar inc	nod dec	aod inc	use	unl	∎aj earl	see nctes: some s/w dev tools to be avail commercially:
									some SS-specific
Zapalac	MDAC	HSdbus	lar inc	lar dec	sm inc	ess	cer	nod	

-65-

ORIGINAL PLANE

PAGE ND. 00002 02/15/84

,

ø

¥

5

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir	IOC Readi	'87 Rec. E	mph. Remarks
Palmer Hinchion Zapalac Zapalac Aichele Palmer Meintel, Jr.	ARC-MYSD MHC MDAC MDAC MSFC ARC-MYSD LaRC ATB	HSdbus HSdbus HSmem HSproc ROBiu ROBteleop ROBteleop	lar inc lar inc lar inc lar inc lar inc lar inc lar inc	mod dec sm dec lar dec lar dec ? mod dec dec	sm inc lar inc sm inc sm inc ? lar inc sm inc	USP 855 855 855 USP USP USP	lik idt cer unl idt lik	nod nod nod naj nod naj	see notes 7-10 in Q, RMS is demonstrated teleop, but more develop for better
Palmer Hinchion Hinchion	ARC-MVSD MMC MMC	ROBtelepr Rdextarm imps/w val	lar inc lar inc lar inc	nod dec nod dec -	lar inc lar inc -	USE ESS ESS	idt unl lik	aod maj maj	Robotics non-AI- improved s/w validation tools

ORIGINAL PARE IST OF POOR QUALITY

PAGE ND. 00001 02/15/84 -66- 6. Essen IOC I or In Major

. Essential or Useful @ IOC Impossible, Unlikely or Indeterminate in 1987 Major or Moderate Development Emphasis

commercially:

some SS-specific

			•						
Respondent	Örganiz.	Technology	Productiv.	RecCost	NR Cost	14.54° TOC	Readi '87	Rec. Emph.	Remarks
Aichele	MSFC	AI LES-g	mod inc	sa dec	sm inc	use	unl	mod	
Friedman	JPL 364	AI LES-g	lar inc	lar dec	sm inc	use	idt	nod	
Krchnak	JSC EH3	AI LES-g	lar inc	lar dec	lar inc	use	i n p	boa	
Aichele	NSFC	AI LES-0	mod inc	sn dec	sm inc	use	unl	and	
Holt, et al.	LaRC FTS	AI LES-o	mod inc	nod dec	pos dec	U 5e	unl-lik	maj	see notes 4,5
									on
.			• •	1			1.11		questionnaire
Friedman	JPL 364	AT LES-0	lar inc	lar dec	sm inc	use	idt	sod	
Krchnak	JSC EH3	AI LES-0	lar inc	lar dec sø dec	lar inc sm inc	use use	i n p unl	nod nod	
Aichele	MSFC	AI/ES AI/ES	mod inc lar inc	lar dec	nod inc	use use	idt	maj -	
Sanns Palmer	LaRC FMB ARC-MVSD	Alfddr s/w	mod inc	nod dec	mod inc?	use	idt	ROđ	
Lgibel 29992	LaRC FMB	Alfddr s/w	and inc	lar dec	mod inc	USC USC	unl	Rod	major emphasis
POWED.		Ution sim	NTAC THE	101 014			wita		for 2000
Krchnak	JSC EH3	Alfddr s∕w	lar inc	lar dec	lar inc	use	unl	maj	SSTF should
NI WINN	400 END	1121001 071						····· •	monitor
Aichele	NSFC	Alplan s/w	mod inc	sm dec	sa inc	use	unl	aod	
Holt, et al.	LaRC FTS	Alplan s/w	lar inc	mod dec	mod inc	use	idt	maj	
Sanas	LaRC FMB	Alplan s/w	mod inc	lar dec	and inc	use	unl	aod	
Holt, et al.	LL FTS	Alsubaon s/w	mod inc	lar dec	mod inc	use	idt	m aj	
Krchnak	JSC EH3	Alsubmon s/w	lar inc	lar dec	lar inc	use	unl	a aj	
Samms	LaRC FMB	Alsymptoc	lar inc	lar dec	mod inc	use	idt	maj	
Friedman	JPL 364	Alsymproc	lar inc	aod dec	sa dec	use	unl	nod	
Hinchion	MNC	Alsymptoc	mod inc	none	nod inc	use	unl	#od	
Krchnak	JSC EH3	CTnv	lar inc	sn dec	mod inc	use	unl	maj	
Hinchion	MMC	CTopt	aod inc	aod inc	lar inc	ess	idt	nod	
61obus	ARC	DS-o	maj inc	maj dec	maj dec	e55	unl	nod	
61obus	ARC	DSarchstor-o	-	maj dec	maj dec	855	unl	호0년 ****	
61 obus	ARC HUCK	DSms-o	maj inc	maj dec	maj dec	855	unl idt	nod	no breakdown
Palmer	ARC-KVSD	FTC	mod inc	aod inc	mod inc	use	101	nod	for different FT technologies
Krchnak	JSC EH3	FTarch	lar inc	sn dec	lar inc	use	inp	s aj	not clear if he thinks DAST &
01	400	FTJ. (DoD apply here
61 obus	ARC	FTdxfer-o	maj inc	nod dec	and dec	ess 255	unl idt	aod ani	
Kinchion Blobus	NHC Arc	FTdxfer-o FTøasst-o	lar inc maj inc	maj dec	- maj dec	ess ess	unl	naj nod	
Globus	ARC	FTpro-o	maj inc maj inc	maj dec	maj dec maj dec	655 655	unl	aod	
Krchnak	JSC EH3	FTs/W	lar inc	lar dec	lar inc	855	unl	saj	not clear if he
AI LIIIUA	800 EN0		141 1112	4 H) WH&)	thinks DAST &DoD apply here
Globus	ARC	HOLs/w	maj inc	saj dec	nod inc	use	imp	maj	
Zapalac	NDAC	HOLs/W	lar inc	mod dec	mod inc	use	idt	aod	
Dorofee	KSC	HOLsups/w	lar inc	aod dec	eod inc	USE	unl	maj earl	see notes: some s/w dev tools to be avail

PAGE NO. 00002 02/15/84

*

ø

•

4

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir	IOC	Readi	'87	Rec.	Emph.	Remarks
Hinchion	MMC	HSdbus	lar inc	sn dec	lar inc	ess		idt		∎aj		
Sanns	LaRC FMB	NLU	mod inc	mod dec	sm inc	use		unl		nod		
61 obus	ARC	ROBdexwan	∎aj in⊂	∎aj dec	maj dec	use		imp		∎aj		
Aichele	MSFC	RDBiu	lar inc	?	?	use		unl		maj		
61obus	ARC	ROBteleop	∎aj inc	∎aj dec	?	use		unl		∎aj		
Palmer	ARC-HVSD	RDBteleop	lar inc	and dec	lar inc	use		idt		aod		
Krchnak	JSC EH3	ROBteleop	mod inc	nod dec	lar inc	use		unl		nod		
Palmer	ARC-NVSD	ROBtelepr	lar inc	mod dec	lar inc	use		idt		nod		
Hinchion	HHC	Rdextarm	lar inc	mod dec	lar inc	e55		unl		∎āj		Robotics
Hinchion	KMC	Rintelman	eod inc	mod dec	lar inc	use		idt		eod		
Hinchion	NMC	Rintelmob	mod inc	eod dec	lar inc	use		unl		aod		Robotics
61obus	ARC	SIN	maj inc	maj dec	∎aj dec	ess		unl		nod		
61 obus	ARC	SIManal	maj inc	maj dec	maj dec	e 55		unl		nod		
Krchnak	JSC EH3	SIManal	mod inc	sm dec	se inc	e ss		unl		maj		
61 obus	ARC	SIMid	∎aj inc	∎aj dec	maj dec	use		unl		nod		
Krchnak	JSC EH3	SIMid	mod inc	sa dec	sm inc	ess		unl		∎aj		
61 obus	ARC	TFs/w	∎aj inc	∎aj dec	maj dec	855		unl		∎aj		

Remarks

ORICENTAL EL

7. Intersection of Reports 3 and 6.

Report #7: Large Productivity Increase "Essential" or "Useful" at IOC "Impossible" or "Indeterminate" readiness in 1987 "Major" or "Moderate" recommended development emphasis

Null set.

PAGE ND. 00001 02/15/84

Alia Marine - m

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir	IOC R	eadi	' 87	Rec.	Emph.	Remarks
Zapalac	NDAC	AI LES-g	mod inc	lar dec	lar inc	use	in	p		min.		
Krchnak	JSC EH3	AI LES-g	lar inc	lar dec	lar înc	use	in	p		aod		
Zapalac	MDAC	AI LES-0	mod inc	lar dec	lar inc	use	in			min		
Krchnak	JSC EH3	AI LES-o	lar inc	lar dec	lar inc	use	in			aod		
Krchnak	JSC EH3	FTarch	lar inc	sø dec	lar inc	use	in	þ		∎aj		not clear if he thinks DAST & DoD apply here
61obus	ARC	HOLs/w	maj inc	maj dec	mod inc	use	in	р		∎aj		
Zapalac	NDAC	NLA	lar inc	mod dec	lar inc	use	in	p		non		iff connected to word recognition
Globus	ARC	NLU	min inc	min dec	maj inc	none	in	p		none		
61 obus	ARC	ROBdexman	s aj inc	∎aj dec	maj dec	üse	in	p.		maj		
Zapalac	MDAC	ROBiu	nod inc	lar dec	lar inc	use	in	p		min		
Krchnak	JSC EH3	ROBiu	lar inc	nod dec	mod inc	none	ia	p		non		
Zapalac	MDÁC	ROBpatrec	mod inc	lar dec	lar inc	use	in	p		ain		
Clobus	ARC	ROBtelepr	and inc	eod dec	sm dec	help	i n	p		mod		
Krchnak	JSC EH3	ROBtelepr	mod inc	mod dec	mod inc	help	· ia	p		min		

۲

4

PAGE ND. 00001 02/15/84

Respondent	Organiz.	"echnology	Productiv.	RecCost	NR Cost	Desir	IOC Readi	'87 Rec. Emph	. Remarks
Friedman	JPL 364	Alfddr s/w	lar inc	∎od dec	sa dec	USE	cer	∎on	diagnosis only: see next for Recovery tools
Zapalac	NDAC	Alplan s/w	mod inc	lar dec	mod inc	use	cer	ban	reduce ground ops
Friedman	JPL 364	Alplan s/w	lar inc	mod dec	se dec	use	cer	non	-
Friedman	JPL 364	Alsubmon s/w	lar inc	aod dec	sa dec	use	cer	non	
Zapalac	NDAC	DSes-o	lar inc	lar dec	s∎ inc	ess	cer	#DD	
Zapalac	NDAC	FTdxfer-o	mod inc	min inc	mod inc	ess	cer	min	
Zapalac	HDAC	FTdxfersg	mod inc	min inc	mod inc	ess	cer	ain	
Zapalac	NDAC	FTmasst-o	mod inc	min inc	mod inc	ess	cer	min	
Zapalac	MDAC	FTpro-o	mod inc	min inc	and inc	ess	cer	aod	
Zapalac	NDAC	HSdbus	lar inc	lar dec	sm inc	ess	cer	nod	
Zapalac	KDAC	HSnem	lar inc	lar dec	s∎ inc	ess	cer	acd	
Zapalac	MDAC	HSproc	lar inc	lar dec	sm inc	855	cer	nod	
Dorofee	KSC	NLA	lar inc	sa dec	mod inc	use	cer	ain aon	esp. C&W, some exists
Hinchion	MMC	ROBpatrec	sm inc	none	sm inc	help	cer	non	Vision
Žapalac	NDAC	SIManal	mod inc	sa dec	se dec	ess	cer	nod	
Zapalac	MDAC	SIMid	mod inc	sa dec	sm inc	ess	cer	acq.	

PAGE NO. 00001 02/15/84

3

4

÷

8

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Dasir IOC	: Readi 'I	87 Rec.	Emph.	Remarks
Zapalac	MDAC	AI LES-g	mod inc	lar dec	lar inc	use	imp	min		
Sames	LaRC FMB	AI LES-g	mod inc	lar dec	mod inc	use	unİ	#in		
Friedman	JPL 364	AI LES-g	lar inc	lar dec	sm inc	use	idt	aod		
Krchnak	JSC EH3	AI LES-g	lar inc	lar dec	lar inc	use	imp	nod		
Zapalac	NDAC	AI LES-o	mod inc	lar dec	lar inc	use	imp	∎in		
Samms	LaRC FMB	AI LES-n	mod inc	lar dec	and inc	use	unl	∎in		
Friedman	JPL 364	AI LEC-o	lar inc	lar dec	sm inc	USB	idt	nod		
Krchnak	JSC EH3	AI LES-o	lar inc	lar dec	lar inc	use	imp	nod		
Sanns	LaRC FMB	AI/ES	lar inc	lar dec	and inc	use	idt	maj		
Zapalac	NDAC	Alfddr s/w	lar inc	lar dec	mod inc	use	lik	∎aj		seems best of AI applications
Holt, et al.	LaRC FTS	Alfddr s/w	mod inc	lar dec	mod inc	use	lik	maj		
Samas	LaRC FHB	Alfddr s/w	mod inc	lar dec	mod inc	use	unl	nod		major emphasis for 2000
Krchnak	JSC EH3	Alfddr s/w	lar inc	lar dec	lar inc	use	unl	maj		SSTF should monitor
Friedman	JPL 364	Alfrecovs/w	lar inc	lar dec	sa dec	e 55	lik	aod		
lapalac	NDAC	Alplan s/w	aod inc	lar dec	mod inc	USE	cer	nod		reduce ground ops
Sames	LaRC FMB	Alplan s/w	mod inc	lar dec	mod inc	use	unl	aod		
Krchnak	JSC EH3	Alplan s/w	lar inc	lar dec	lar inc	help	lik	min		RTOP already funded
Hinchion	MMC	Alplms/w	lar inc	lar dec	lar inc	des	idt	aod		
Holt, et al.	LaRC FTS	Alsubmon s/w	aod inc	lar dec	and inc	use	idt	∎a j		
Krchnak	JSC EH3	Alsubmon s/w	lar inc	lar dec	lar inc	use	unl	fiaj		
Zapalac	MDAC	Alsymproc	mod inc	lar dec	mod inc	use	unl	min		can use mainframe comp./int??
Holt, et al.	LaRC FTS	Alsymproc	sm inc	lar dec	sm inc	USP	lik	a o d		see notes on form 1,2,3
Sames	LaRC FMB	Alsymproc	lar inc	lar dec	mod inc	use	idt	n aj		
Krchnak	JSC EH3	Alsymproc	lar inc	lar dec	mod inc	USe	unl	∎in		OAST, not SSTF, should fund
Zapalac	MDAC	CTadap	lar inc	lar dec	mod inc	855	lik	∎aj		
Zapalac	NDAC	DSas-o	lar inc	lar dec	sa inc	e ss	cer	non		
Krchnak	JSC EH3	DSms-o	mod inc	lar dec	sm inc	ess	lik	eon.		
Holt, et al.	LaRC FTS	FTC	lar inc	lar dec	none	USC	lik	∎aj		see note 6 on Q'aire: extends sys lifetime, reduces ground,
										crew involvement
Holt, et al.	LaRC FTS	FTdxfer-o	lar inc	lar dec	none	use	lik	∎aj		AILEDT ARMEILP
Krchnak	JSC EH3	FTdxfer-o	lar inc	lar dec	mod inc	855 855	lik	aon		OAST & DoD adequate
Holt, et al.	LaRC FTS	FTdxfersg	mod inc	lar dec	none	use	lik	aod		**********
Krchnak	JSC EH3	FTdxfersg	and inc	lar dec	none nod inc	855	lik	eon		DAST & DoD
Krchnak	JSC EH3	FTmasst-o	and inc	lar dec	mod inc	855	Jik	eon		adequate DAST & DoD
νι εμπακ	VJU ENJ	1 18032L_D	HUU INL	Idi UEL	MUU 1116.	499 1	- # D	-011		adequate

PAGE NO. 00002 02/15/84

Space Station Technology Poll

Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir)	IOC Readi 'I	37 Rec. Emph	. Remarks
Holt, et al.	LaRC FTS	FTpro-o	lar inc	lar dec	none	use	lik	maj	
Krchnak	JSC EH3	FTpro-o	lar inc	lar dec	and inc	855	lik	non	DAST & DoD adequate
Krchnak	JSC EH3	FTs/W	lar inc	lar dec	lar inc	855	unl	∎aj	not clear if he thinks OAST &DoD apply here
Aichele	MSFC	HOLrpr-o	lar inc	lar dec	lar inc	use	unl	min	
Sames	LaRC FMB	HOLrpr-o	mod inc	lar dec	sm inc	ess	lik	∎aj	
Samas	LaRC FMB	HOLs/w	lar inc	lar dec	mod dec	ess	lik	maj	
Krchnak	JSC EH3	HOLs/w	lar inc	lar dec	mod inc	ess	lik	∎in	
Zapalac	MUAC	HSdbus	lar inc	lar dec	sm inc	ess	ter	nod	
Iapalac	MDAC	HSmem	lar inc	lar dec	s e inc	ess	cer	nod	
Zapalac	MDAC	HSproc	lar inc	lar dec	s s inc	e55	cer	mod	
Aichele	NSFC	NLA	lar inc	lar dec	lar inc	U52	unl	sin	
Aichele	MSFC	NLU	lar inc	lar dec	lar inc	use	unl	ain	
Krchnak	JSC EH3	ROBdexman	lar inc	lar dec	eod inc	none	idt	none	"No firm requirements for robotics identified for IOC station"
Krchnak	JSC EH3	ROBimproc	lar inc	lar dec	and inc	none	unl	ADN	
Zapalac	MDAC	ROBiu	mod inc	lar dec	lar inc	U 58	imp	n in	
Zapalac	HDAC	ROBpatrec	mod inc	lar dec	lar inc	use	imp	ain	
Krchnak	JSC EH3	ROBpatrec	lar inc	lar dec	mod inc	none	unl	RON	
Hinchion	MMC	VLSI/VHSIC	lar inc	lar dec	lar inc	ēss	lik	mon/maj	

e

11. Large or Moderate Productivity Increase, Large or Moderate Recurring Cost Reduction, and Major or Moderate Development Emphasis

Remarks

see notes 4,5

questionnaire

seems best of AI applications

major emphasis for 2000 SSTF should monitor

reduce ground

see note 6 on Q'aire: extends

sys lifetime, reduces ground,

crew involvement

ops

í

on

,										
Friedman	JPL 364	AI LES-g	lar i	ກຕ	lar	dec	sm inc	USP	idt	nod
Krchnak	JSC EK3	AI LES-g	lar i	nc	lar	dec	lar inc	use	imp	nod
Holt, et al.	LaRC FTS	AI LES-0	nod i	חכ	aod	dec	pos dec	USB .	unl-lik	maj
Friedman	JPL 364	AI LES-o	lar í	nc	lar	dec	sm inc	use	idt	aod
Krchnak	JSC EH3	AI LES-0	lar i		lar	dec	lar inc	use	imp	nod
Sams	LaRC FMB	AI/ES	lar i		lar		and inc	use	idt	maj
Zapalac	NDAC	Alfddr s/w	lar i		lar		aod inc	USe	lik	maj
Palmer	ARC-MVSD	Alfddr s/w	mod i		nod		mod inc?	use	idt	aod
Hølt, et al.	LaRC FTS	Alfddr s/w	mod i		lar			use	lik	maj
Sanns	LaRC FMB	Alfddr s/w	aod i	nc	lar	dec	mod inc	use	unl	aod
Krchnak	JSC EH3	Alfddr s/w	lar i	nċ	lar	dec	lar inc	use	unl	maj
Friedman	JPL 364		lar i		lar		sa dec	ess	lik	nod
61 obus	ARC	Alplan s/w	nod i		nod		sm inc	use	lik	aod
Zapalac	NDAC	Alplan s/w	aod i	nc	lar	dec	mod inc	use	cer	nod
Holt, et al.	LaRC FTS		lar i		nod		mod inc	use	idt	maj
Samas	LARC FMB	Alplan s/w	nod i		lar			use	unl	nod
Hinchion	NHC .	Alplas/w	lar i		lar		lar inc	des	idt	aod
Palmer	ARC-MVSD	Alsubmon s/w			nod		mod inc?	use	lik	baa
Holt, et al.	LaRC FTS	Alsubmon s/w			lar		mod inc	USP	idt	a j
Samms '	LaRC FMB	Alsubaon s/w			nod		sm inc	use very	lik	mod
Krchnak	JSC EH3	Alsubmon s/w			lar		lar inc	use	unl	maj
Sames	LaRC FMB	Alsymproc	lar i		lar		nod inc	use	idt	maj
Friedman	JPL 364	Alsymproc	lar i		nod		se dec	use	unl	éod
Zapalac	NDAC	CTadap	lar i		lar			ess	lik	∎aj
Zapalac	MDÁC	CTheir	and i		nod		mod inc	ess	lik	aod
Zapalac	MDAC	CTav	mod i		nođ		mod inc	ess	lik	nod
Holt, et al.	LaRC FTS	FTC	lar i	nc	lar	dec	none	use	lik	maj
Hinchion	MMC	FTC	lar i	ńc	nod	dec	mod inc	des	lik	mod
Holt, et al.	LaRC FTS	FTdxfer-o	lar i		lar		none	use	lik	maj
Holt, et al.	LaRC FTS	FTdxfersg	mod i		lar		none	use	lik	eod
Holt, et al.	LaRC FTS	FTmasst-o	and i		nod		none	use	lik	∎aj
Holt, et al.	LaRC FTS	FTpro-o	lar i		lar		none	use	lik	∎aj
Krchnak	JSC EH3	FTs/w	lar i		lar		lar inc	855	unl	maj
					•					-

61 obus ARC HOLrpr-o and inc sod dec mod inc help un] aod lík. HOLrpr-o mod inc lar dec sm inc ∎aj Sames LaRC FMB 855 lik Dorofee KSC HOLrpr-o and inc mod dec mod inc use ∎aj

من تسبيلوم ...

-

2

for VHOL, non life-critical: must be adapted for SS, esp useful 1st yr

not clear if he thinks OAST &DoD apply here

-73-

NR Cost

Desir IOC Readi '87 Rec. Emph.

Space Station Technology Poll

RecCost

PAGE ND. 00001 02/15/84

Respondent

2

1

ORIGINAL DIST. PI

Technology Productiv.

Organiz.

PAGE NO. 00002 02/15/84

ORIGINAL PAUL IN OF POOR QUALITY

Space Station Technology Poll										
Respondent	Organiz.	Technology	Productiv.	RecCost	NR Cost	Desir IO	C Readi '87	Rec. Emph.	Remarks	
Zapalac	HDAC	HOLs/w	lar inc	nod dec	mod inc	use	idt	aod		
Aichele	MSFC	HOLs/w	mod inc	and dec	and inc	use	lik	maj		
Samms	LaRC FHB	HOLs/w	lar inc	lar dec	and dec	e55	lik	maj		
Dorofey	KSC	HOLs/w	mod inc	nod dec	YS A ÎNC	use	lik	₽aj	RECCOST= sm-mod dev could be NASA or minor funding to IEEE to ensure	
Dorofee	KSC	KOLsups/w	lar inc	eod dec	mod inc	use	unl	∎aj earl	ready-both see notes: some s/w dey tools to be avail commercially: some SS-specific	
Zapalac	MDAC	HSdbus	lar inc	lar dec	s∎ inc	e 55	cer	nod		
Palmer	ARC-MVSD	HSdbus	lar inc	mod dec	se inc	use	lik	nod		
Zapalac	MDAC	HSsea	lar inc	lar dec	s# inc	ess	cer	eod		
Palmer	ARC-HVSD	HSmem	and inc	mod dec	se inc	US 2	lik	nod		
Zapalac	MDAC	HSproc	lar inc	lar dec	s∎ inc	ess	cer	aod		
Palmer	ARC-NVSD	HSproc	mod inc	mod dec	sm inc	use	lik	nod		
Sanas	LaRC FMB	NLU	mod inc	mod dec	sm inc	use	unl	nod		
Palmer	ARC-MVSD	ROBdexman	mod inc	mod dec	mod inc	help	idt	nod		
Globus	ARC	ROBiu	mod inc	mod dec	mod inc	help	idt	mod		
lapalac	NDAC	ROBteleop	mod inc	mod dec	mod inc	use	lik	eod		
Palmer	ARC-HVSD	ROBteleop	lar inc	nod dec	lar inc	use	idt .	mod		
Krchnak	JSC EH3	ROBteleop	mod inc	mod dec	lar inc	use	unl	nođ		
61 obus	ARC	ROBtelepr	mod inc	mod dec	sm dec	help	i∎p	mod		
lapalac	NDAC	ROBtelepr	mod inc	nod dec	mod inc	use	lik	∎ođ		
Palmer	ARC-NVSD	ROBtelepr	lar inc	aod dec	lar inc	use	idt	nod		
Hinchion	MMC	Rdextarm	lar inc	mod dec	lar inc	855	នោរ	m aj	Robotics	
Hinchion	MHC	Rintelman	mod inc	mod dec	lar inc	use	idt	nod		
Hinchion	MMC	Rintelmob	mod inc	mod dec	lar inc	use	unl	aod	Robotics	
61 obus	ARC	YLSIsp-o	mod inc	mod dec	mod dec	help	unl	nod		
61obus	ARC	ainins-o	mod inc	mod dec	mod dec	help	unl	aod	Minimum instr.	

set computers

1