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thrusterdesigns. Thismodel is formulatedin termsof the averageenergyrequiredto producean
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-----_, beam. The directlossof highenergy(primary)electronsfrom the plasmato the anode is shownto

:_ havea major eff'.'cton thrusterperformance.The model providessimplealgebraicequations
° , enablingone to calculatethe beam ion energycost. t__.averagedischargechamberplasmaion

____,i"_ energycost,the primaryelectrondensity,the primary-to-Maxwellianelectrondensityratioand
, the Haxwellianelectrontemperature.Experimentsindicatethatthe model correctlypredictsthe

_": variationin plasmaion energycost for changesin propellantgas (Ar,Kr and Xe),grid trans- !
:' :_ parencyto neutralatoms beam extractionarea dischargevoltage,and dischargechamberwall
_:._ temperature.

The modeland experimentsindicatethat thrusterperformancemay be describedin termsof only
_ four thrusterconfigurationdependentparametersand two operatingparameters.The modelalso
• suggeststhat improvedperformanceshouldbe exhibitedby thrusterde._ignswhich extracta large

..... fractionof the ions producedin the dischargechamber,whichhave good primaryelectronand
neutralatomcontainmentand whichoperateat high propellantflow rates. In addition,it suggests

-:_ " that hollowcathodeefficiencybecomesincreasinglyimportantto the dischargechamberperformance
_-_ as the dischargevoltageis reduced. Finally,the utilityof the model in missionanalysiscalcu-
-_ ,: lationsis demonstrated.The model makes it easy to determinewhichchangesIn thrusterdesignor

operatingparametershavethe greatesteffecton the payloadfractionand/ormissionduration.
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.......... I. INTRODUCTION

-iTh::i; i.

-u,::.,' Electronbombardmention thrustershave been proposedfor both

:,.. primaryand auxiliaryspace propulsionapplicationsfor nearly two-and-

a-halfdecades. During this time, thrusterperformancerequirements

have variedaccordingto the missionsof currentinterest. Also during

this time, the developmentof thrusterdesignscapableof meetingthese

requirementshas been largelyexperimental. That is, thrusterdevelop-

ment has generallybeen accomplishedby a procedurein which the design

"_i parametersthat influencethrusterperformanceare physicallyvaried
, o?-;

i until an acceptableconfigurationis obtained.

o.; This procedurehas severalinherentlimitations First of all, it

can be time consuming,especiallyif a large numberof parametersis

involved. Secondly,an optimumconfigurationmay not be found. That is,

once a configurationcapableof fulfillingthe missionrequirementsisdE

_.._: identified,the procedureis generallyterminatedeven though this may

_-_i not resultin the best configurationpossible. Finally,changesin the

missionsof current interestto those characterizedby different

thrusterrequirementsnecessitatethat the iterativeexperimentalpro-
,?

cedurebe repeated.

' Consequer,tly, there is a need for the developmentof an analytical

model which describesthe effectsof thrusterdesignvariablesand

"° operatingparameterson thrusterperformance. Such a model should,as

a minimum,be capableof providingguidancefor the iterativeprocedu_'e
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__,_, described above, and ideally would be capable of describing exactly how

_¢_ a thruster should be designed to achieve a given set of performance

=_ i requt rements

Many models of discharge chamber operation have been developed

over the last 24 years. A brief discussionof these models is given i,,

the next section. In general, the complexity of the processes taking

place in the dischargechamberof an ion thrustertogetherwith the
!

__ relative ease with which new thruster designs can be tested experi-

mentally has resultedin a situationin which theoreticalunderstanding

has lagged experimental developments.

The objectiveof this researchis to improvethe theoretical

understanding of ion thruster operation by providing a simple physical
i
i

model of the processesaffectingthrusterperformance. Additionalcon-

_,t straintson this model are that it shouldbe easy to use, yet general
)

...... }_ enoughto be applicableto a wide rangeof thrusterconfigurationsand

operatingconditions•

= _;J "" i/

....._, Bac.kground

Analyticalmodelingof electronbombardmention thrustershas been
, i

- on going more or less continuouslysince their introductionby Kaufman

: [1,2] in 1960. Milder [3] providesa surveyof modelingeffortsmade

:: through1969. In this surveyhe concludedthat, ...ourknowledgeand
_u

,_1 understandingof the physicsof these plasma:is far from complete."

...._' In addition,he concludedthat the usefulnessof these effortswas

_ _;' limitedby either the simplyflngassumptionsrequiredto make the

_-_ nroblemtractableor the difficultyof applyingless simplifiedmodels.
.

_._. -- ..... _ ,,,, _ ...... _, "_li-- __ "="_'=='=="



Kaufman[4] presentsa discussionof thrustertechnologyas of

1974 in which the latesttheoriesof thrusteroperationare described.
b:

i-

He concluded,as had Milder earlier,that the most successfuleffort

! "-_ to date was the semiempiricalapproachproposedby Masek [5] in 1969.

,_ The theoryof Masek is semiempiricalin that it requiresas input a

i, detailedknowledgeof the plasma propertiesinsidethe thrusterdis-

charge chamber. These propertiesare generallyobtainedusing a

,_ _ Langmuirprobe togetherwith a data reductionprocedurethat is both
i .... "

_ _' tediousand until recently[6,7] of only limitedaccuracy.
F-,_.

...._, Since 1974 a numberof analyticalmodels have been developed,
. . =

i_ directedtowarddifferentaspectsof ion thrusterdischargechamber

_" operation[7-19]. Of these, the models proposedin references8

_ _ through12 are extensionsof Masek'smodelingtechniquein that they

° _i" requiredetailedLangmuirprobe data as inputs. References16 through

=i' 18 pre_entmodelswhich do not requireprobe data, but which instead

_: consistof a complexset of equationswhich must be solvediteratively

,i" by a computer. This complexitymakes these modelsdifficultto apply
_r"{L

_ and limitstheir usefulnessin providingguidelinesto improved

thrusterdesigns.

Dischargechambermodels of ion sourcesfor neutralbeam injectors

, have also been proposedrecently[20-22]. The operationof these

sourcesisinmany respectsvery similarto that of ion sourcesfor

space propulslonapplications. This similaritywas enhancedby the

recentswitch in space thrusterdesign [23,24]to dischargechambers

characterizedby the same high magneticflux densitycuspedfields used

in neutralbeam injectors. References20 through22 presentrelatively

simplemodels that providevaluableinsightto dischargechamber
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i_i_ operation,but also requireplasma propertydata as inputs Further,

thesemodels &re not developedto the point where the performanceof a

_. given dischargedesigncan be calculateddirectly,

._r:._;_,_: In summary,the situationat the presenttime is remarkably

_;i;_ similarto the way it was in 1969 as describedby Milder [3]. Many

__' additionalmodels have been proposedsince 1969 providinga significant

_-_'_.... improvementin the overallunderstandingof dischargechamberprocesses,

, however,most of these models still requiredetailedplasmaproperty

._!:,.,_,.,,_°"_ data as inputs. Those that do not are eitherover simplified,result-
_I!_ _- ing in a loss of generalityand usefulness,or too complexto be

_.._:_,_,_ appliedeasily.Thus, there is a need for the developmentof a model of
•,_ii_'_',_.:..

_:_:,I:P!",/ ion thrusterperformancethat is easy to use, does not requireplasma

_ ,_i_ I:C data as inputs,and yet is generalenough and accurateenoughto serve

I_,_'_,_L__ii;, as a guidelinefor the designof improvedthrusterconfigurations.

._ OvervJew

' This dissertationis organizedin the followingmanner. First a
,, -"

brief reviewof ion thrusteroperationis given in ChapterII. In this

chapter,the dominantmechanismaffectingthrusterperformanceare

identifiedand discussedqualitatively. Since this report is primarily

concernedwith ion thrusterdischargechamberoperation,detaileddis-

<o, cussionsof other thrustercomponentssuch as the ion accelerator

Ir systemand cathodes,etc., will not be given. These componentswill be

discussedonly in regardto their effect on the operationof the main
i •

dischargechamber,

In ChapterIll the analyticalderivationof the equationscom-

,_ prisingthe thrusterperformancemodel proposedin this investigation
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11, ¸

...._i" is presented. This model consistsof a set of algebraicequations,

., each of which describesthe behaviorof a differentperformanceparam-

.... eter. For example, a single equation for the thruster performance

curve (variationof beam ion energycost with propellantutilization

._'. efficiency)is developed. Other equationsare developedthat allow the

_ averagevaluesof the dischargechamberplasmapropertiesto be calcu-

. lated as fu_lctions of the thruster operating point. These plasma

i:';i_i"_:"!'_ propertiesinclude: the primaryelectrondensity,the primary-to-

-::_',i:_Sl_i__ .:
_=__; : Maxwellianelectrondensityratio,the Maxwellianelectrontemperature,

_:_'_,i_!_;_ In ChapterIV,the experimentalapparatusand proceduresused to

investigate the validity of the proposed model are described. Experi-

_:{_ mental results comparisonof these resultswith the predictionsof the
r,,

_"c_:%' 2i
........._, model, and a discussionof this comparisonare also given in this

.... ; " _' chapter.

:. __i Three applicationsof the thrusterperformancemodel are discussed

: ",,,-:! in ChapterV. The first of these illustratesthe effect of thruster

i-_:_ designand operatingparameterson the standardperformancecurve. The

i!i. second application describes how the model can be used to extrapolate

=_: data taken without ion beam extractionto obtainthe performancecurve

,=_d_,r: applicableto operationwith beam extraction. Finally,an illustration

_ .- of how the model can be applied to mission analysis calculations is

.... _ _ presented. In this application,the effectsof thrusterdesignparam-

eters and propellant utilization efficiency on the deliverable payload

o fractionare discussedfor an earth orbit raisingmission(low earth

; orb'itto geosynchronousearth orbit).

5"
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The major conclusionsof thi-_ investigationare summarizedin

• ChapterVl. Sl units are used throughoutthis reportwith the excep-

tion that energy is frequently given in units of electron volts. In

....:' addition,forthermalelectronstheenergyquantitykT, ,_herek is
iI .

_ _ Boltzmann'sconstantand T is the temperaturewill be given as eTM

_ I_ where e is the electronic charge and TM is the electron temperature in
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_:_ II. ION THRUSTEROPERATION

_ii'_''°'i!i_IJi;_i: A c3ntemporary"ring cusp" electronbombardmention thrusterisshown schematicallyin Fig. I. This thrusterconsistsof a cylindrical

_ steel structureboundedat one end by a circularsteelplate and at theother end by a set of two closelyspacedgrids. The volumeboundedby

___ this structureis referredto as the dischargechamber. The two gridsat the end of the dischargechamberhave a matchedmatrixof holes

!. throughwhich the ion beam is extracted. The innergrid is referredto
as the screengrid while the outer one is called the acceleratorgrid.

Duringthrusteroperation,neutralpropellantgas is injectedinto
/,

• ._" the dischargechamber, The preferredpropellantgas has, for the most

...... part, been mercuryvapor becauseof its large atomicmass, low ioniza-

_ tion energy,and its liquidphase storability. Cesium vapor has also

_ been used. However,at the presenttime, the propellantsof most in-

;=_'i _ "

......_ terest are the rare gases argon, kryptonand xpnon. In this investiga-
(_ "

: tion,only these rare gases are considered. The propellantgas is

assumedto fill the dischargechamberuniformlyduring thruster

_ , operation.

o A hollowcathode servesas the sourceof electronsfor the dis-

: charge chamber. Hollow cathodeshave replacedboth refractorymetal

and oxide cathodesin ion thrustersprimarilybecausethey exhibitvery

long lifetimesand can be restarteda numberof times even after

exposureto air (an importantcapabilityif the thrusteris to be
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_,; preflight tested). A detailed discussion of hollow cathodes is given

_ by Siegfried [25].

_,,_._, The electrons emitted by the cathode in Fig. 1 are accelerated by
--_;;,i :TI

an electric field adjacent to the cathode into the discharge chamber.

This electric field is established by biasing the discharge chamber

walls (with the exception of the screen grid) 30 to 50 volts positive

of the cathode by meansof an external DC power supply (called the

__: discharge or anode supply). Electrons which have undergone this accel-

_ erationare called primaryel_ctrons. The energy of these primary
j.

_ __, electronsis determinedby the voltagedifferenceappliedbetweenthe

_-_ _: anode and cathode. The magnitudeof this voltagedifferenceis chosen

_, :_ so that the collisioncross sectionfor ionizationby the primary
}.

'_ electronsis largewhile at the same time the collisioncross section

, for the productionof multiplycharged ions by the primaryelectronsis

small.
'.!

; A secondgroup of electronsoriginatesfrom the inelasticinter-
z;

, actionof the primarieswith the neutralpropellantatoms. These

° interactionsreduce the energyof the primaryelectrons. In this in-

, vestigation,an electronis no longerconsidereda primaryelectronif
:

it has had at least one inelasticcollision. Ionization.the inelastic

collisionprocessof primaryinteresthere, resultsin the releaseof

, low energy secondaryelectrons. Primaryelectrons,that have had their

. energydegradedby inelasticcollisions,and secondaryelectrons

releasedby ionizatio&thermalizeto form an electronpopulationwith a

..... nearlyMaxwellianenergydistribution(characterizedby a temperatureon

_ the order of a few eV). It is possiblefor both electronpopulations

• ©
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to exist simultaneouslyin the dischargechamberdue Lo the low inter-

o action rate betweenthe primaryand Maxwellianelectrons[26].

rl At typicaldischargechamberneutralatom densities(_IOIBcm'3),

the ionizationmean free path for primaryelectronsin neutralatoms is

_i,. on the order of meterswhile typicaldischargechamberdimensionsare

....._LI on the order of tens of centimeters. For this reason,a magneticfield

is employedto restrictthe directaccessof primaryelectronsto the. _ ,%:

= :i_;: anode The magneticfield for the thrusterof Fig. I is createdby
C •

°":'LIC_.... the rings of magnetsof alternatingpolaritylocatedalong the back and

sides of the dischargechamber. The configurationand strengthof the

_ magneticfield has a substantialeffecton thrusteroperationand con-

...._ <: sequentlyhas been the subjectof numerousstudies[6,7,13,24,27-33].

= ._i_= Contemporarythrusterdesignsare operatedwith the entiredischarge .

:: chamberhousing(exceptfor the screengrid) at anode potential. Mag-

netic field lines at the field cusps, thus, terminateon anode potential ,_

surfaces• This allowselectronsto be lost to the anode by travelling

along magneticfield lines as well as by diffusingacrossthem. To

_: adequatelyrestrictthe flow of primaryelectronsalong the field lines

_. to the anode,magneticflux densitieson the order of O.l tesla are

required.

.. The dischargechambermagneticfield reducesthe probabilitythat
_f_mlL

a primaryelectronwill be collectedby the anode withoutfirst having

had an inelasticcollisionwith a neutralpropellantatom. This prob-

abilityis a functionof the thrustersize, the dischargechambermag-

......... netic fleia cunfiguration,the cathodelocationand the neutralatom

: density• As the neutraldensitydecreases,the probabilitythat a

;, ..:..._._.,,,.._,,_,,,.... ,,, ,,_i,r,_, 'i_,m,,,_i'r "i-riI'll" II I
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primaryelectronwill be lost to the anode withouthavingan inelastic

. collisionincreases.

For the hypotheticalcase of a zero neutralatom density,this

'& '., probabilityis one. That is, all primaryelectronsemittedby the

' cathodewill be collectedby the anode and none will have inelastic

collisions. In this case, each primaryelectronwill, on the average,

travela certaindistancethroughthe dischargechamberbefore being

io_ collectedby the anode. This distanceis a characteristicof the

_ thrustergeometry,magneticfield configurationand cathodelocation,i :;_{!

i°, i_ and is calledthe primaryelectroncontainmentlength [34]. With this

_ definition,the probabilityof primaryelectronloss to the anode may

_ be expressedas a functionof the ratio of the primaryelectroncon-

': tainmentlengthto the mean free path for primaryelectron-neutralatom

inelasticcollisions[34]. The loss of primaryelectronsto the anode ,
!

: ,, , T .

constitutesa loss of dischargeenergy. Consequently,ion thruster

_ _ performanceis stronglydependenton the probabilitywith which primary

_ electronsare lost [34,35].

The plasmaproducedwithin the dischargechamberwill typically

assume a potentiala few volts positiveof the anode. Thus, a

potentialsheathwill exist at all plasmaboundaries. The magnitudeof

this sheathat cathodepotentialsurfacesdependsprimarilyon the
.}

'_i magnitudeof the dischargevoltageappliedbetweenthe cathodeand

anode. The sheathpotentialat cathodesurfacesis sufficientlynega-

tive to reflectall but the most energeticelectronsin the tail of the

Maxwelliandistribution. Consequently,the vastmajorityof electrons

in the plasmacan leave the dischargechamberonly at anode potential

surfaces.



Of the ions produced in the discharge chamber, somewill reach the

dischargechamberwalls. Those that do, recombinewith electronsthere

and return to the plasma as neutral atoms. Most of the ions that reach

: the grid system,on the other hand, are acceleratedby the electricfield

_;i betweenthe screenand acceleratorgrid to form the ion beam. The

,, fractionof the total ion currentproducedthat is extractedintothe

_ : : beam is called the extractedion fraction. Becauseit does littlegood

[_ '; to produce ions in the plasma only to have them recombine at the dis-
! "

!; o,_ chargechamberwalls, it is clearlydesirable to have thrusterdesigns
! ?

o_ in which the extractedion fractionis as large (closeto one) as pos-

_ sible [34]. The electricfield betweenthe grids is establishedby
L

: biasingthe thrusterbody positiveof groundpotential(on the order of

:.i.. lO00 volts) and biasing the accelerator grid several hundred volts nega-
Z _L\

'L

, rive of groundpotential.The final velocity of the ions in the beam

_ is determinedby the sum of the positivepotentialappliedto the

, thruster cathode and the discharge voltage.
i:

. Electrons are injected into the positive ion beam by a cathode

(called a neutralizer) positioned downstream of the accelerator grid in

;_ _ order to space chargeand currentneutralizethe beam. The negative

accelerator grid prevents these electrons from backstreaming to the

positivethrusterbody.

During thruster operation, the propellant gas in the discharge

chamberis only partiallyionized,with the ion densitytyrIcallyan

order of magnitude smaller than the neutral atom density. Thus, one

might expect the neutral flux through the grids to be greater than the

ion flux. This, however, is not the case since the neutral flux is

determinedby free-molecularflow towardthe grids at a temperature
F

_ Q
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governedby the mean dischargechamberwall temperature[36] (_ 40OK).

The ions,on the other hand, tend to move toward the grid systemat the

Bohm [37] velocity,which is governedby the much higherelectron

,,_ temperature(typically5 eV or _ 58,000K). Thus, the ion flux through

the grids is usually greater than the neutral flux even though the ioh

_ densityis substantiallysmallerthan the neutraldensity.

The ratio of the beam current (assuming singly charged ions only)

to the total propellantflow rate (expressedin units of equivalent,!

i o _ amperes) is known as the propellantutilizationefficiency. For a

°i°"i. constant total propellant flow rate, increasing the propellant utiliza-

_ _'\ tion efficiencygenerallyrequiresan increasein the averageenergy i:_ .

_, requiredto producea beam ion. This variationof the beam ion energy

_.. cost with the propellantutilizationis known as a performancecurve.

It will be shown in the chapters that follow that the dominant mechan-

Isms affectingthe performancecurve are the loss of primaryelectrons

....___ to the anode and the extracted ion fraction.

i



III• THEORETICALDEVELOPMENT

h_' "

_, ThrusterPerformanceModel

In this section, a model is developed which results directly in a

singlealgebraicequationfor the variationof the beam ion energycost

_ with the propellantutilizationefficiencyfor high flux densitycusped

o: magneticfield thrusters. This is made possibleby formulatingthe
i,

,;,_ model in terms of the averageenergy requiredto producean ion in the

_ dischargechamberplasmaand the fractionof ions producedwhich are

• extractedinto the beam• A key featureof the model is that it

, providesa simpletechniquefor the calculationof the averagedis-

charge plasma ion energycost as a functionof the propellantflow rate
F

_ and propellantutilizationefficiency•

i "
o

'_-_ Assumptionsand Limitations

The developmentof the model assumessteadystate discharge

chamberoperation The model is applicableto dischargechamberswhich

•: producelow pressure,partiallyionized,opticallythin plasmasin

which neutral densities are in the range of 101B to lO 19 m"3 and plasma

densitiesrange from I0Is to lO17 m"3. In addition,Maxwellianelec-

tron temperatures and primary electron energies should range from

, I to I0 eV and 30 to 50 eV, respectively.

Electron energy losses due to elastic collisions with ions or

neutralatoms are neglected. This can be justifiedbecausethe average

C
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energy loss per encounter is proportional to the ratio of masses, and

this ratio is small (_ 10"5), Electron energy losses resulting from

_ inelasticcollisionswith ions are also neglectedbecauseof the low

ion densityrelativeto the neutraldensity. This should not cause

° o.- a significanterror,except perhapsat very high propellantutiliza-
/-

i ions. Only singlychargedions are assumedto be produced,and the

_ effectof metastableatomic stateson ion productionis neglected.
c_

CI:, Primaryelectronthermalizationresultingfrom collisionswith the
_
; backgroundMaxwellianelectronsalso is neglected. Primaryelectron

behavioris assumedto be lin,itedto either inelasticcollisionswith

_ _ neutralato[_isor direct loss to anode potentialsurfaces. A primary

,_i electronis consideredto join the Maxwellianelectronpopulationafter

_ havingone inelasticcollision.

_ Electronsare assumedto be constrainedby the plasmasheathsso
r I'_

,. they are able to leave the plasmaonly at anode potentialsurfaces.

_ Ions and photons(emittedby the de-excitationof excitedpropellant

_ atoms)are assumedto be lost acrossall plasmaboundaries. The

: assumptionof a low pressuredischargeimpliesthat ion-electronre-

combinationshouldbe wall controlled,consequently,volume ion recombi-

naLion is neglected.

• The neutralatom densityis assumedto be uniformthroughoutthe

dischargechamber,and free molecularflow is assumedto apply to the

neutralatom flux throughthe acceleratorgrid system.

Beam Ion EnergyCost

The averageenergycost per beam ion is definedas,

tB _ (JD " JB) VD/JB , [eV/beamion] (1)

_,_'_"'_'_'_='tL_'-_":--"_'_l'l [iiII _l ' II ' II4 ill .... |-I IlI ........ I III I_l
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,, where all symbols_re definedin AppendixC. The beam current(JB) in

j_.i. Eq. 1 is subtracted from the discharge current (JD) so that the energy

that goes into acceleratingthe beam ions throughthe dischargevoltage

=_i:_ is not charged to the beam ion energy cost. The numerator on the

-_i:;. right-hand-sideof Eq. 1 representsthe power used to operatethe dis-

charge chamber.

_!?ii/ In a similarmanner,the averageenergyexpendedin creatingions

_,,_ in the dischargechamberplasmamay be definedas,

=_::!/:' Cp --[JD " (JB + JC)] VDIJp , [eV/plasmaion]. (2)

:_;_,_- By analogyto Eq. I, the "JB + JC" term is subtractedfrom the dis-

/;: charge currentso that the energy that goes into acceleratingthese

, ::- ionsout of the dischargechamberplasma into the chamberwalls or the
!,

beam is not includedin the plasma ion productioncost. Rearranging

t
_' Eq. 2 yields,

( 0-  iVo
For steady state operation, the total ion current produced (dp) must be

--_:,o equal to the total ion currentleavingthe plasma. For ion thruster

_'_i discharge chambers, ions can only leave the plasma by going to cathode

potentialsurfaces,anode potentialsurfacesor by being extractedinto

the beam. Thus, the total ion currentproducedis given by*,
¢

JP -- JB + JC + JA ' (4)

Dividingthis equationthroughby Jp yields,

* Equation4 is a statementof continuityfor the ions.
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;_, 1 = fB + fc + fA ' (5)
__ where,

_: fB _ JB/JP ' fc _ JC/JP and fA _ JA/JP ' (6)

z

_ The fractionsfB' fc and fA are, in order, the extractedion fraction,

_ . .. the fraction of ion current produced that goes to cathode potential

..... surfaces,and the fractionof ion currentproducedthat goes to anode

.,_,. pQtentialsurfaces. Using the definitionsof fB and fc in Eq. 3 along

_ with Eq, 1 yields,

,:.i Cp = CBfB - fcVD (7)
_ Z

0 22

_: i Solvingthis equationfor cB gives the result,

i_: _B = Cp/fB + fcVD/fB ' (8)
._

_ This equationdescribesthe beam ion energy cost as a functionof the

o_. plasma ion energycost (¢p),the extractedion fraction(fB),the

/_ fractionof ion currentto cathodepotentialsurfaces(fc)and the dis-

charge voltage (VD).
'. i/

: The first term on _he right-hand-sideof Eq. 8 representsthe

energy loss associated with producing ions in the discharge chamber and

extractingonly a fractionof them into the beam. Ionswhich are not

_,:. extractedinto the beam go to the walls of the dischargechamberwhere

they recombine. The resulting atoms must then be re-ionized before

they can contributeto the beam current. The factor I/fB may be

..... interpreted as the average number of times that a beam ion undergoes

ionizationfrom a neutralstate beforebeing extractedinto the beam,
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_, The second term on the right-hand-sideof Eq. 8 representsthe

,. energywasted in acceleratingplasma ions into interiorcathodepo-

tential surfaces. This process is undesirable because it results in

.(_ both a dischargeenergyloss and in the sputtererosionof these

surfaces.

To generateperformancecurves using Eq. 8, one must be able to

....:. specifythe behaviorof each of the terms on the right-hand-sideof

_,_...._, this equationas a functionof the propellantutilizationefficiency

°':,_.... Plasma Ion Energy Cost
_ C , .._ _..

_J:,:i_-,,,, The plasma ion energycost parameter(¢p)appearingin Eq. 8 and
, %

defined by Eq. 2 reflects all mechanisms of energy loss from the dis-

charge chamberexceptfor the accelerationof ionsout of the plasma

_ .!_. throughthe dischargevoltage. Specifically,ep includesenergy losses

i_ " .,/' due to the followingphenomena: direct primaryelectronloss to the ,

__. anode, Maxwellian electron collection by the anode, excitation of

' neutralatoms, excitationof ionic states (whichwill be neglected)and

...._ :_T hollow cathode operation To derive an expression for the plasma ion[ ,., '" •

:' energycost as a functionof the propellantutilization,a power

' balanceis made on the dischargechamberplasmarepresentedin Fig. 2.

The boundaryof the controlvolume for this power balanceis definedby
,_ .

_._._. the plasmasheathedge. The primaryelectronsare assumedto be accel-

" erated from a cathoderegion plasmapotentialthat is Vc volts above

• cathodepotentialto the potentialof the bulk plasmawhich is assumed

: to he near that of the anode. In addition,if it is assumedthat only
T

the dischargepower supply is used to sustainthe discharge,then the

rate at which energy is supplied to the discharge chamber plasma by the
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,,_ Figure2. DishargePlasmaPowerBalanceSchematic
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, primaryelectronsis given by JE(VD - VC). The "missing"power JEVc is

used to operatethe hollowcathode.

_ Energy is lost from the plasma primarilyby the flux of four types

of energy carriers across the plasma boundaries: ions, photons (emitted

._ by de-excitationof excitedpropellan_:atoms),Maxwellian electrons,

':_,.,. and primaryelectrons• The ions and photonsare lost to all interior
-- f _r(

._:: thrustersurfaceswhereasthe Maxwellianand primaryelectronsare
m-\!,i'¢i'_';'_' •

v_r"c,_"' •

_: assumedto be lost to the anode surfacesonly• In steady state,the

_?_', rate of energy suppliedto the plasmamust be equal to the rate at

--:,,,._ which it is lost, thus,

/'_.':" JE (VD'Vc)= dpU+ + ,_JjUj + JMCM + JL(VD-Vc) , (9)

__ '.. where the summation is over the set of excited neutral states.

_ _ DividingEq g by the ion productioncurrent(dp)and recognizingthat.:. •

_.:.i°): the emissioncurrent(JE) relatedto the dischargecurrentby *,

' " ._ dE = JD" (Jc + JB) ' (lO)

_: ,_T allows Eq. g to be writtenas,

:: _ JjUj JMCM JLVD JEVc JLVc

....._::: ep : U+ + jp + jp + -_p + jp jp , (II)

_ where Eq. 2 has been used• The rate at which the jth excitedstate is

produced (expressed as a current) t s given by,

J_ dj = enone <diVe>_ , (12)u

• * EquationlO is a statementof continuityfor the electrons.
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I where <ajVe>representsthe productof jth excitationcollisioncross

_ section and the electron velocity averaged over the entire electron

speed distribution- includingthe primaryelectrons. Similarly,the

ion production current is given by,

Jp = enone <O+Ve>_ . (13)

• SubstitutingEqs. 12 and 13 into Eq. II yields,

JMCM + JLVD JEVc JLVc
Cp=co,_ _ , _p -jr-, (14)

"_ where the parameterco is definedby,

_,<OjVe>Uj

co -=U+ + _ • (15)
<(_+Ve>

_. This parameteraccountsfor the energy that is expendedin ionization

and excitationreactionsand may be calculatedin the mannerdescribed

by Dugan and Sovie [38]. The third term on the right-hand-sideof

Eq. 14 may be writtenas,

" JLVD JL JEVD JL

J-7= J--;-=¥ ,
where the last stepwas made using Eqs. 2 and lO. The ratio JL/J is

simplythe fractionof primaryelectronsemittedby the cathodewhich

are collectedby the anode before havingany inelasticcollisions. This

fractionmay be given by the survivalequation[39] as,

i

: JL " °ono_e
=e (I;)

where _e is the averagedistancea primaryelectronwould travel in

the dischargechamberbeforebeing collectedby the anode - assumingit

had no inelasticcollisions(i.e.the primaryelectroncontainment

o
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length), o is the total inelasticcollisioncross sectionfor
.' O

• electrons at the primary electron energy and no is the neutral atom

density. CombiningEqs. 14, 16 and 17 yields,

, ! ,

!':ir '' = .0.° no.te Vc Vc no_e
' JMCM _p e"°0 (18)i.._,. _p eo + jp + epe + ep VD _DD '

_T,C'.

The current of Maxwellian electrons to the anode may be given as the

',- sum of the secondaryelectronsliberatedin the ionizationprocessand

_._:i, the thermalized primaryelectrons,thus,

' /

=_ ' JM- JP + (JE " JL) - JP + JE(I'JL/JE) " (Ig)

t_ Using Eqs. 17 and Ig in 18 yields,

. -o'n _ cM -Oono_e.( -Oono_e)_];i ep = e0 +[Jp + dE(l-e o o e)] _+ _p[e l-e •
(20)

_:>,,; Finally,using Eqs. 2 and lO and solvingEq. 20 for ep resultsin,

-- kl.VC+, Mj . (21)
!

:i" -aono£ e
The factorl-e may be interpretedas the probabilitythat e

o primaryelectronwill have an inelasticcollisionbefore being collected

by the anode. This is analogous to the "fast neutrnn non-leakage prob-

ability" used in nuclearreactorphysics[40].

• The neutral density (no) may be expressed in terms of the pro-

pellantflow rate and propellantutilizationby equatingthe rate at

which propellant enters and leaves the discharge chamber, i.e.,

= JB + no (22)
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where m and n are in units of equivalentamperes+, The neutralflow

rate from the thrustermay be expressedusing the theory for free

molecularflow througha sharp-edgedorfice [39],,, ....•

+..... no = _ noevoAg¢o ' (23)

° CombiningEqs. 22 and 23 yields,"i

_' 4 m(l-nu)
_ ' " I (24)

+ no = evoAg '•.... ¢o

• jB/&,.:: where the propellantutilizationdefinedby nu _ was used. Thus,

Eq. 21 may be written as,

,[l.e.Co_(l.nu)] -ICp = _p , (25)
,r

: where,
t

_- 4Oo_e

" C° _ eVoAg ¢o ' (26)I

and,

• _o + CM (27)
_i Cp _ •

1 VC+¢M
• - -VD./

I Equation25 is a very simplerelationshipwhich can be used to calculate

the plasma ion energy cost as a functionof the propellantutilization.

, ° Experimentalresults,which will be presentedin ChapterIV, indicate

° ' that under many conditions the parametersCo and cp may be taken to

be independent of the propellant utilization.
= ?

i Substitutionof Eq. 25 intoEq, 8 yields the followingsingle

equation describing the performance of a given thruster design,

+
Equation22 is a statementof continuityfor the propellant.

C
l
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:_ e B - [ l e.Co___u_ + "_B • (28)_: fB l-

....:_ For design purposes,the parametersfB and fc in additionto CO and

_p ;:ay be taken to be independent of the utilization and flow rate.

i_: These parametersdo, however,depend stronglyon the thrusterdesign.

i:ii_ Indeed,these four parametersdeterminethe performanceof a given
thruster design.

The quantityCo reflectsthe degree to which primaryelectrons

interactwith neutralatoms. Thus, it is referredto as the primary

electronutilizationfactor. This factordependson the qualityof the

_'_ primaryelectroncontainment(through_e), the qualityof the contain-

ment of neutralatoms (throughAg, 0o and Vo) and the propellantgas

, properties(throughao and Vo). Recallthat the primaryelectroncon-

._ tainmentlength _e may be interpretedas the averagedistancea primary

electronwould travelin the dischargechamberbefore being lost to the

anode--assumingit had no inelasticcollisions• Magneticfieldsin all

discharge chamber designs serve the function of increasing this length

Althoughan effectivemeans of determining_e remainsto be developed,

it is believed that this parameter is a function primarily of the

thrustergeometry,magneticfield configurationand cathodelocation.

Equation25 suggeststhat the plasma ion energycost should,

throughthe factorCo , be a functionof:

_' I. The propellant,which determinesthe total inelasticcollision

......,, cross section(Oo)and atomicmass (whichaffectsthe thermalneutral

velocity, Vo).

2. The wall temperature,which affectsthe neutralvelocity.
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...." 3. The transparency of the grids to neutrals (¢o).

4. The area throughwhich the beam is extracted(At).

5. The discharge voltage, which determines the primary electron
I

_' energyand, thus, effectsthe value of the cross section(_o).

2/_," Th_ baselineplasma ion energycost (_), definedby Eq. 27,

_Z_ dependson a numberof energy lossmechanismsincluding: the relative

: amountof energyexpendedin excitationscomparedto ionizationof
_;:_ neutralatoms throughto, the averageenergy of the Maxwellian _!ectrons

=_:_ which leave the plasma (_M) and the efficiencywith which the hollow

:_::_: cathodeoperates

: The cathodeefficiencyis reflectedin the value of VC which

represents the plasma potential from which the electrons are supplied.

'_:, Inefficientcathodeoperationresultsin high valuesof VC and corres-

pondinglypoor overallthrusterperformance. For tr,ermioniccathodes

,,- Vc = O, however,additionalheater power must be suppliedto effect its

operation. For thrustersequippedwith a cathodepole piece/baffle

assembly,VC shouldbe taken as the plasmapotentialin the cathode

_;_ _ dischargeregion (i.e.,the regionbetweenthe cathodeand the baffle).

_ In this case, the power representedby JEVc goes into both the operation

_ of the hollowcathodeand the operationof the cathoderegiondischarge.

_ The resultinghigh valuesof Vc, in this case,would be expectedto

_:_ producepooreroverallthrusterperformance. Eliminationof the

_ separatecathodedischargeregion should,therefore,improvethe per-..:.

_':--__ formance.
The parameter e , defined by Eq. 15, in general is a function of

o

the entire electronenergy distributionincludingthe primaryelectrons.
L

The poy'ameter e_ (which contains eo' see Eq. 27) is, thus, also a

_7L
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functionof the electronenergydistribution.For plasmascharacterized

by a Haxwellianplus monoenergeticelectronenergy distribution,a

,_ " simple method for the calculation of c; may be derived. Sample calcu-

lations using this method, along with the appropriate collision cross
@..

:_ sectiondata, are given in AppendixA. The experimentalresultsgiven
,?

'_ in ChapterIV indicatethat, under many conditions,the baselineplasma

: ion energy cost (e) may be taken to be a constant. The calculations

= _ given in AppendixA demonstratethat this experimentalobservationis: c,,

:__ predictedby the model.

°._ Althoughthe model cannotyet be used to predictthe performance
-o:

.. of completelynew thrusterdesigns,it providesa clear physicalpic-

ture of the phenomenaaffectingthe performance. Equation25 describes

the plasr_',ion energy cost in terms of the loss of primaryelectronsto

the anode. At high valuesof the neutraldensityparameter,the neutral

• densityin the dischargechamberis large,and the probabilityis high

_. that all the primaryelectronswill undergoinelasticcollisionswith

- neutralatoms and nonewill be lost directlyto the anode. In this

case, the dischargechamberwill be producingions for the minimumor

baselineplasmaion energycost, c*,

-T;_i As the beam current is increased(at a constantpropellantflow

r-

_; '_' rate),the propellant utilizationincreasescausingthe neutraldensityL;"....

parameter(andthus the neutraldensity)to decrease (see Eq. 24). The

,_.... decreasein neutraldensityincreasesthe likelihoodof a primaryelec-

tron reachingthe anode withouthavingan inelasticcollision. This

directloss of primaryelectronenergy increasesthe overallplasma ion

. energycost accordingto Eq. 25 and consequentlyincreasesthe beam ion

. energycost accordingto Eq. 2B. The shapeof the performancecurve is

©
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, largely determined by this direct loss of primary electrons. Thus, any

........ design change which decreases the likelihood of the direct loss of

° _,, primaryelectrons(withoutdecreasingthe extractedion fraction)

• shouldimprovethe thruster'sperformance. The probabilityof direct
_,_

_/ primaryelectronloss is determinedthroughthe parameterCo. This

parametermay be increasedby either increasing_e' which makes it

_i harderfor primaryelectronsto escapethe plasma,or by making it

-_: harderfor neutralatoms to escape the dischargechamber.

_'_ Calculationof PlasmaProperties

o_. The followinganalysisprovidesa set of very simple algebraic

"_r: equationswhich allow one to calculatethe valuesof the followingdis-

_ii: chargechamberplasmaproperties: the averageprimaryelectrondensity,
:_

'" _L

the averageprimary-to-totalelectrondensityratio, the averageMax-

•_ wellianelectrontemperatureand the averageratio of the doubly-to-

singlychargedion currentin the beam. Each of these quantitiesmay be

calculatedas a functionof the propellantflow rate and propellant

utilizationusing only informationthat would normallybe availablein

_ the thrusterdesign phase.

PrimaryElectronDensity

This analysisis based on the recognitionthat all of the energy

suppliedto the dischargechamberplasmais suppliedby the primary

electrons. Thus, correctlyaccountingfor the behaviorof the primary

electronsis essentialin determiningthe averageplasmaproperties.

• It is assumedthat a primaryelectroncan do only one of two things.

It can either have an inelasticcollisionwith a neutralpropellant
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atom or it can be lost dtrectly to the anode. For the case where the

_.... primaryelectronhas an inelasticcollisionwith a neutralatom, it
'?

,. will produceeitheran ion or an excitedneutralstate. After such an

inelastic collision, the energy of the primary electron is degraded and)- -i ,

o .

._i": it is assumedthat it is subsequentlythermallzedinto the Maxwellian

.._ electron population. The rate at which primary electrons have in-

....: elasticcollisionswith neutralatoms is given by the differencebe-

tween the rate at which they are suppliedby the cathode(dE) and thei.

°'.... rate at which they are lost directlyto the anode (JL), i.e.,

I I

'_- JE " JL --JP + Jex , (29)

I !

; where dp is the ion currentproducedby primaryelectronsand dex is

- the primary electron induced production rate of excited neutral states

' expressedas a current. The ion currentproducedby primaryelectrons
t

is given by,
!

Jp = nonpeo+ -V-Vp , (30)

I

.. where o+ is the ionizationcollisioncross sectionat the primaryelec-

tron energy. Similarly,the rateof productionof excitedstate atoms

• induced by primaries is given by,

' Jex'= nonpeVp_ _ o_ (31)

Ci, where aj is the collisioncross sectionfor the jth excitedstate at

the primary electron energy. The fraction of the primary electron-

o neutralatom inelasticcollisionsthat produceions is given by,

• I I

. _ nonpeVpa+
l = (32)

' 'JP+Jex nonpeVpa+_ + nonpeVp_ oj

Q
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I
or,

I !

dp o+
, , - , . (33)
j + a++ ojp Jex

.... : Note that the sum o+ + _ o.jIs just the total inelasticcollisioncross
. ,] I

_-... sectionfor primaryelectron-neutralatom collisionso.o Therefore,

......__. Eq. 33 may be writtenas,--_,o,/,,,.
q

._ .... I I

? : dp 0.+:. o.... (34)
.._ I I i *

.....° : JP + dex o'o,'!2'r'

MultiplyingEq. 34 by the rate at which primaryelectron-neutralatom

° :: collisions occur (Eq. 29) yields the rate at which ions are produced by

_ :_;i primaryelectrons,i.e.,

i 0'+

_:'__:_' dp = (dE - jL)--, . (35)
o"0

_'": The term in parenthesesin Eq. 35 may be writtenas,

.! JE " JL = JE (1 - JL/JE) • (36)

i The quantityJL/JE is the fractionof the input primaryelectroncurrent

lost directly to the anode and is given by the survival equation (Eq. 17

written in a slightlydifferentform)_

JL .Co_(l-nu) . (37)

• _E - e

' CombiningEqs. 2 and I0 yields the followlngexpressionfor the cathode

emission current.

Jpcp (38)
dE = VD
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Combining Eqs. 25, 35, 36, 37 and 38 yields the following expression

for the ion current produced by primary electrons,

, .;' , I

_ 1 , Jpep o+
>:o..... ., _p - , • (39)

v. ,

_ii. Dividingboth sidesof this equationby dp yields an expressionfor

_':. the ratioof ion currentproducedby primariesto the total ion current

,. produced,
: I * I

dp Cp a+

i,;,:, _pp = , • (40)
::. VDao

I

_!' Since the ratio dp/Jp cannotbe greaterthan one, Eq. 40 providesa

,: _: theoreticallimit for the maximumvalue of Cp , i.e.,
h

- _.,-

.;_ , VD_o;. (eP)max , . (41)

'5.,

._.o;- The total ion currentproducedmay be expressedin terms of the beam

_;_7.,.. currentby using the definitionof the extractedion fraction(Eq.6),

Jp = dB/fg . (42)

In addition, using the definition of the propellant utilization the

beam currentmay be writtenas,

: = • (43)mn u

•- CombiningEqs 39, 42 and 43 yields,
I

o+
.. d_ _ u r, . (44)

fBVD°o
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,: Ftnally, equating Eq. 30 to Eq. 44 and solving for the primary electron
•

density (np) yields,

• r;A0,,oVo/Z _'" ' II '

. np [% v-eBVDO° (4s)

;-_i:_'j where Eq 24 was used for the neutraldensity. Equation45 providesan_:?.;j •

_' expressionfor the averageprimaryelectrondensityas a functionof

the propellant utilization. Remarkably, this expression does not

dependon either the propellantmass flow rate or the primaryelectron

utilization factor, both of which cancelled out in the analysis. The

" term in the square bracketsshouldbe roughlya constantfor a giveni-

thruster design, propellant gas and discharge voltage. A reasonable
• :2"

° :': estimatefor eachof the terms in the square bracketshouldbe possible
;"C

:, for a thrusterbeing designed(assuminga method is developedfor the

determination of the extracted ion fraction).

i_.' Primar.v-to-TotalElectronDenslt_/Ratio

Assulningquasi-neutrality,the averageion density(ni) is equal

,. to the averagetotal electrondensity (ni = np +nM). In addition,the

averageion densityis relatedto the beam currentby [41].

:- JB = O'6nievbAg¢i " (46)

Solving this equation for ni yields,

dB
, ni = (47)

O.6eVbAg¢i

where ¢i is the transparency of the screen grid to ions and vb is the
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Bohmvelocity. Dividing Eq. 45 by 47 and using Eq. 43 ytelds the

o. followingexpressionfor the averageratio of primary-to-totalelectron

.... dens i ty

" r ].... _ _ = O'IBeCpVbAg¢o¢i l (48)

, .... ,, &(1.nu) "i .... (:;:!_ ni k VpVDfB"V'_o
/

)_ ' : This equationindicatesthat the averageprlmary-to-totalelectron
Z o- _'

:, , . densityratio should be a functionof the neutraldensityparameter,
E ....i_,':

_ ....e:i, _(l.nu). As was the case for Eq. 45,the combinationof parametersin

i".,°_" the squarebracketsof Eq. 48 should be roughlya constantfor a given

;.,__- thrusterdesign,propellantand dischargevoltage. Equation48 also

a _ _ indicatesthat, all else being equal, increasingthe extractedion

....._; fractionshould decreasethe primary-to-totalelectrondensityratio.

,_: ' Primar¥-to-MaxwellianElectronDensityRatio

=_ Once the primary-to-totalelectrondensityratio is calculated,
,.,'

• using Eq. 48 the primary-to-Maxwellianelectrondensityratio (np/nM)

:: may be calculatedfrom the followingequation,I_)"

. :7

":. np np/ni I= = . (49)
.F i

_ • - nt.1 1-np/n i ni/n p 1

Maxwe]lian ElectronTemperature

The total ion currentproduced(Jp) is the sum of the ion current

produced by primary electrons (J_) and that produced by Maxwellian

_ _ electrons(Jp,M) . (50)



• t_•

i_I 33
ij.

,: The ion currentproducedby primaryelectronsis given by Eq. 30 and

. that producedby Maxwellianelectronsis given by,

_: JP,M = nonMe <°+Ve>MV- (51)

where the quantity <_+Ve>M represents the product of the electron

_ velocityand ionizationcollisioncross sectionaveragedover the

_',,, Maxwellianelectronenergy distribution. This quantity is the Max-

, wellianelectronrate factor for the productionof ion::,and is given

_; the symbolQo ' i.e.,
" o."_ 4"

:i_':' Qo : <°+Ve>M " (52)

'L CombiningEqs. 50 to 52 yields,

L: I

.....,,,_ Jp = nonpeVpo+ ¥ + nonMeQ+V- . (53)

+

_; Using Eqs. 42 and 43 in Eq. 53 and solvingfor Qo gives,

,,,_ IIlnU _p_ '
!i,I , Q+_ n VpO+ .,e_ nM (54)

°_, i,_ fBnonM

_',,.. Substitutingfor the neutraldensityusing Eq. 24 yields,
.

.....' + = v°AB¢° nu -nP VpO+ . (55)
•>:, Qo 4fBnM ¥ nM

The Maxwellian electron density, appearing in Eq. 55, may be written as,u

nM

..... Substitutingthis into Eq. 55 yields,
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•_'a, Equation45 providesan expressionfor the primaryelectrondensity.

Using this in Eq. 57 yields,

,)
• "'r,

l/ The primary-to-Maxwelllanelectrondensityratiomay be found using

: Eqs. 48 and 49. Substitutingthese equationsinto Eq. 58 yields the

=:l.C_,_:_L_TI'l". followingexpressionfor the averageMaxwellianelectronrate factor

=_;_;_,' for Ion productIon

, )_;' _'l_ :" '' V pO + ( V DO_ " lk, E:O0+7:i//i?i!::: Qo = [ VpVDOo "V ] • (59)

"I ':l_'O'_ ; tO.15eC_VoVbAgZ¢o¢i m(l-nu)- l

d:_C. Equation59 providesan expressionfor the Maxwellianelectronioniza-

_;_i_._,? tion rate factoras a functionof the neutraldensityparameter,

u&' _l_l I T" _ _ t can be compared_ ) . Once this rate factor has been calculated,

=:. ,_,, to a tabulationof rate factorsversus electrontemperaturefor the
...../
_::;1l,,_ given propellantto determinethe appropriateMaxwellianelectron

_) l'_ temperature. Equation59 i_Idicatesthat the averageMaxwellianelec-N_d .:_ .-
_:,, ..... , .

1% "

_ 'l _' l ', _' :{ l tron temperatureshouldincreasewith decreasingvaluesof the neutral

:: densityparameter.

_ DoubleIon Production

_" ' ' l ) In the previousanalysis,the productionof doubly chargedionswas

_ ll '' l neglected. In this section,a slmpleformulationfor the ratio of-._ %

_l& ";_ _Lq' doubly-to-singlychargedion currentin the beam is developed. The pro-

_j ductlonrate of singlychargedionsexpressedas a currentis given by,

)

b'.,
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+ n + +
dp = ( onpPo+ nonM o) e V- , (60)

where Qo is the Maxwlllan ratefactorfor the productionof single
r_ . ,m-

ionsfrom groundstateneutralatoms and P, is the primaryelectronr,

• ,; '-, ratefactoralso for the productionof singleions fromgroundstater
U

_. neutrals• Similarly, the production rate of doubly charged ions
., r/' ,.,;

._:,", expressedas a currentis givenby,

_ : ; +++ nonpPo+++n+nM ++ n+npP++)ii,'__,, d = (nonMo + + 2e _ (61)

_",:.,i_=,.:: where n+ is the singlychargedion density,Q_+ and P;+ are the Max-

wellian and primary electron rate factors for double ion production

--,r "_ from groundstateneutrals,respectively,and Q+++and P:+ are the cor-
: respondingratefactorsfor doubleion productionfrom groundstate ions.

y:,. DividingEq• 61 by 60 yields,

' _ 2n+ np +4-_)*+ _z p ) _ (Q_+, p
_'_'_ J;+ 2(Q° +nM no nM (62)

" ,-,,_;:: JP Q, + nM P, Q, + nM P,

Assuming that the doubly charged extracted ion fraction (f;+) is equal

_ to the singlychargedextractedion fraction(f;) impliesthat,

++. dp
+ - + + - + , (63)

° "" JP JBIfB JB

_ ++ _+

i whereJB /JB is the averageratioof doubly-to-singlychargedion cur-

_ rent in the beam. CombiningEqs.62 and 63 yields,

.. 2n+ _ ++
PO ) _O0 "MN

- �(64)
+ + + __ + •

' JB Q;+_PM'MPo Q, + , Po

® . . ©
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• The singlycharged ion density (n+)may be conservativelyapproximated

by assuming the beam current is made up entirely of singly charged ions,

:_. thus,

JB
n = ni - • (65)

;:_. + O.6eVbAgOi

. '., In addition,using Eq. 43 for the beam currentand Eq. 24 for the

' neutraldensityallows Eq. 64 to be writtenas,

[- ()()_
'°_:. JB Qo + nM Po nM

_ _ The first term on the right-hand-sideof Eq. 66 representsthe produc-

i" !_I' tion of double ions from ground state neutralatoms This term depends

! ._', on the thrustergeometryonly throughthe primary-to-Maxwellianelec-

_//'i', tron densityratio (np/nM)which is given by Eqs. 48 and 49 and the

_ Maxwellianelectrontemperature(Eq.59). The secondterm in Eq. 66

represents double ion production from singly charged ions. This term

' is stronglydependenton the propellantutilization. The rate factors
++ ++ +

Qo and Q+ may be determinedonce the rate factorQo is calculated

_ from Eq. 59.
./

_
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_' IV. EXPERIMENTALPROCEDURESAND RESULTS

- , (,¢

_. Apparatus

_,.o.•<_-,' For this investigation,the ion sourcesshown schematicallyin

_:i_i Figs. 3a and b were designedand built. Each of these sourcesnormally
_'"_i

_L producesa 12 cm dia. ion beam and providesthe capabilityfor measuring

__.;,:%o the distributionof ion currentsto the beam, screengrid and internal

thrustersurfaces(withthe exceptionof the anode).

%2 ; The magneticfield for the experimentalion source in Fig. 3a is

" establishedthroughthe use of an electromagnetlocatedon the upstream

: centerlineof the dischargechamberand a numberof 1.9 cm x 1.3 cn, x

,_ 0.5 cm samariumcobaltpermanentmagnets. These permanentmagnetsare

', arrangedend-to-endto form ring magnetsof alternatepolarityin the
J.

manner suggestedby Fig. 3a. The flux densityat the surfaceof the

magnetsis 0.27T and the magnetsare attachedto the steeldischarge

°_ chamberhousingby their own magnetic attraction. This arrangement
Z _'."

a11ows the ion sourcemagneticfield configurationto be alteredquickly

_ • and easily by simplyadding,removingor changingthe positionof the

magnets. Althoughmany differentconfigurationswere tested,the results

obtainedwere all similar,thus, only those obtainedusing the configura-

tions shown in Figs. 3a and 3h will be presented. For these configura-

• tions, the upstreammagnet ring is coveredwith a strip of 0.13 mm thick
r -

: steel insulatedfrom the magnetsthemselvesby a strip of 0.25 n_,_thick

flexiblemica. This is done so that the surfaceof this strip can be
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_ maintainedat anode potentialwhile the rest of the thrusterbody is

• biasednegativeof cathodepotential. The downstreammagnet ring is

" uncovered. The magneticflux densityat the surfaceof the electro-

_ .. magnet for the configurationof Fig. 3a can be adjustedfrom zero to

approximately0.2 T by adjustingthe magnet currentfrom zero to

i_ 124 A.

_ Themaindischargechambercathodes,forbot_ configurations,con-

...... sistofseven 0.25cmdia, tungstenwiresconnectedinparallelandsupport-
L

ed bytwosupportpoststhatare electricallyisolatedfromthe thruster

_;_ body. Each cathodewire is approximately2.8 cm long so the totalr

_C cathodelengthexposedto the plasma is about 19.6 cm. These _even

short wires in parallelare used to minimizethe voltagedrop across

_; the cathode. A voltagedrop less than 3 v at the maximumheatercur-

rent was achievedwith this system. The small voltagedrop across the

• cathoderesultsin a primaryelectronenergydistributionthat more

, closelyresembesthe monoenergeticdistributionproducedby a hollow

_ cathode. The cathodewires were heatedusing direct currentsin the

range 6 to 8 A per wire. Tests on the configurationof Fig. 3a, were

conductedusing argon,kryptonand xenon propellants. Dischargevolt-

ages were varied from 30 to 50 v for argon and 20 to 40 v for krypton

r and xenon. The dischargecurrentwas adjustedthroughthe range of

0.5 to 5 A by controllingthe heatingcurrentthroughthe refractory

cathodewires.

Tw_ ion acceleratorsystemswere used in this study. The first

acceleratorsystemconsistedof a set of dished small hole accelerator

grids (SHAG)_,,itha cold grid separationof 0.75 mm and screenand

acceleratorgrid physicalopen area fractionsof 0.68 and 0.30,
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.,_"_. respectively. The second system consisted of a set of dished large !

hole accelerator grids (LHAG)with a cold grid separation of 0.75 _,

and screenand acceleratorgrid physicalopen area fractionsof 0.68

and 0.57, respectively. Both accelerator systems were normally masked

° ' to producea 12 cm diameterbeam One seriesof test was conducted,

ii-:irl however,with the SHAG set masked to producea 6 cm diameterbeam. For_/_: the 12 cm dia. beam tests,flow rates for both argon and kryptonwere

!_._: variedfrom 500 to 1500 mA e_ and for xenon from 250 to lO00 mA eq.

_,.o For the 6 cm dia. beam test, the flow rateswere varied from 125 to 500

mA eq.

ir_:._ The configurationof Fig. 3b is similarto that of Fig. 3a except
that the electromagnet assembly has been replaced by a permanent magnet

_ attachedto the steel backplate. In addition,the sourceof Fig. 3b is

i 2 cm shorterthan the one in Fig. 3a and the upstreammagnet ring is

' positionedonly 2.5 cm from the downstreamend rather than 6 cm. ,

This source was equipped with two Langmuir probe assemblies. The

first probe consistedof a 0.76 mm dia. tantalumwire, 4.32 mm long,

•' _ supported from a quartz tube insulator. This probe was positioned

along the thrustercenterlineapproximatelyhalf way betweenthe cathode

_; assemblyand the screen grid as suggestedin Fig. 3b. The secondprobe

was a square piece of steel, 1 cm on a side and 0.127 _ thick that was

positionedon the surfaceof the upstreammagneticring. This probe

was insulatedfrom the magnet ring with a piece of 0.13 mm thick

flexible mica.

Measurements of the doubly and singly charged ion beam components

were made on the thrustercenterllneusing a collimatingE x B momentum

analyzer. Details of the use of this probe are given elsewhere [42].
!

Q
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,- Tests were conductedon the configurationof Fig. 3b using both

, argon and xenon propellants. Argon propellantflow rateswere varied

• over the range 350 to 1500 mA eq. at dischargevoltagesof 30 to 50 v.

:_,.,..._: ,. Xenon propellantflow rates were variedover the range 250 to I000 mA

" eq. at dischargevoltagesof20 to 40 v. Dischargecurrentsfor both

:__.,._ propellantswere variedover 0.5 to 4.0 A.
........ _,.jo-,

_:t_:_' All tests were conducted in a 1.2 m dia. x 4.6 m long vacuum test

_i_--.-_-_-' facility. Indicatedtank pressuresrangedfrom _ 2 x lO-6 Torr with

_--_ no flow to _ 3 x lO-s Torr at a flow rate of 1500 mA eq. of krypton.

_.___ Procedure

The following set of eYperiments, conducted using the thruster
!,,

configuration of Fig. 3a, was designed to test the suitability of the

model developed in Chapter Ill to predict the functional dependence of

the plasma ion energy cost, ep, on the neutral density parameter,

" m(l-nu) . The model predicts that the plasma ion energy cost should

behave according to Eq. 25 with the primary electron utilization factor

:. (CO ) and the baseline plasma ion energy cost (¢p) given by Eqs. 26 and

21, respectively. The value of ep may be determined experimentally

.... through the use of Eq. 2, which is repeatedhere for convenience,

[JD " (Jc + JB)]VD
'

ep
dp

Note that the power used to operate the thermionic cathodes is not in-

cluded in Eq. 2. In order to use Eq. 2, one must be able to measure

each of the parameters on the right-hand-side of the equation. Measure-

ment of the discharge current, discharge voltage and beam current is

©&

I
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) +- straight forward, and was accomplished using the experimental instru-
[

mentatton described in Appendix B.
i ' '

)+./ To measurethe ion currentsJc and Jp, the thrusterconfiguration)
[ *

i_+-,._, of Fig. 3a was operatedwith only the upstreammagnet ring at anode

_? potential. All other interiordischargechambersurfaces(with the

- exceptionof the cathodesupportposts)were biasedapproximately30 v

.+ negativeof cathodepotentialto repel the dischargechamberelectrons.
T.

At this bias, the currentto these surfacesconsistsonly of the incom-

_ ing ion current. If the ion currentto the cathodesupportposts and

_= cathodewires is neglected,then the ion currentmeasuredin the manner

describedabove is equal to JC'

To determineJp, it is noted that the total ion productioncurrent

is the sum of the ion currentsleavingthe plasma as given by Eq. 4.

_ Since the anode is exposedto the plasmaonly at a magneticfield cusp, ,_

the effectivearea for ion loss to this surfaceis expectedto be less

• than the physicalarea [43-46]. Rough calculationsindicatethat the

_o - ion currentto the anode with this configurationshould be less than a

) few precentof the total productioncurrent. Thus, Jp may be approxi-

_,, mated as the sum of the ion currentsto the beam (includingthe impinge-

°_ ment current)and to the negativelybiaseddischargechambersurfaces

(includingthe screengrid).

Completesetsof data consistingof the beam current,propellant

• flow rate, propellantutilizationand total ion productioncurrentwere

collectedover the rangeof operatingconditionsdiscussedearlierwith

the electromagneticcurrentheld constantat 57 A for the thrusterof

Fig. 3a. At each conditiontested,the thrusterwas operatedat flow
L.

ratesof 500, 750, lO00 and 1500 mA eq. for argon and krypton

, _, '++
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_!o propellants,and 250, 500, 7_0 and I000 mA eq. for xenon. At each flow_.:.,_ rate, the dischargevoltagewas held constantwhile the dischargecur-

_III_/_ITII._, rentwas varied. Increasingthe dischargecurrent,increasesthe beam

_;i:_L: currentand propellantutilization,thus causingthe neutraldensity

i;i parameterm(l-nu)to decrease. By operatingin this manner,the full

range of neutraldensityparametersfrom close to zero to nearly1500)

...._, mA eq, could be investigated, Thus, the plasma ion energycost was de-

terminedfrom Eq. 2 for a wide range of operatingconditions. The ex-

_ o_ tractedion fraction,fB' definedby Eq, 6, was also computedfrom

_ measuredion currentsover this same range of cunditions.

_ A second set of experimentswas performedusing the thruster
o

configurationof Fig. 3b. These tests were designedto investigatethe

_ abilityof the model to predictthe behaviorof variousplasma prop-

ertieswith variationsin thrusteroperatingconditions. The procedure

for these tests was the same as for the previousset with the addition

.... that Langmuirprobe measurementsof the plasmapropertiesonthethruster

centerlineand at the anode surfacewere made at each operatingpoint

tested. The ratio of doubly to singly chargedion beam currentsalong

the thrustercenterlinewere also measuredat each operatingcondition,

_,,, using E x B probe.

ExperimentalResults

Plasma Ion EnergyCost

Measurementof the plasma ion energycost, for operationof the

thrusterconfigurationof Fig. 3a with argon propellantat a 50 v

dischargeover the range of neutralflow rates from 500 to 1500 mA eq.,

yieldedthe resultsshown in Fig. 4a. Here, the measuredvaluesof the
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plasmaion energy cost (Ep) are plottedas a functionof the neutral

density parameter m(1-nu), as suggested by Eq. 25. The solid line in

Fig.4a is the curve given by Eq. 25 when the parametersCO and _ have

i , been selectedto give the best fit to the data. The parameterc_ was

_' taken to be the value of Cp measuredat large valuesof the neutral

density parameter. The justification for this selection can be under-

_ stood by consideringEq. 25, which shows that when Co tn(l-nu)is large,

_ ' the exponentialterm is small comparedto unity and one obtains

• Cp Cp . Having established the value of the baseline plasma ion

:,,, energy cost, the value of the primaryelectronutilizationfactor (Co)

_.:-_ is varied until the best fit is obtained. The agreementbetweenthe
-):

=,v /<_ functionalform of Eq. 25 and the experimentaldata is seen to be quite

:IC good. This indicatesthat the parametersCO and ¢; may be taken to be

independent of the neutral density parameter.

A value of Co = 3.1(A eq.)-I which is applicableto the ion source

, of Fig. 3a operatingat the conditionsdefinedin the legendfor Fig.4a

has now been established. New values of primary electron utilization

factor,applicableto other operatingconditions,may now be calculated
from this value using Eq. 26. For example, changing grid sets from SHAG

to LHAG shouldchangethe value of CO throughthe parameter¢o which is

_ the effectivetransparencyof the grids to neutralatoms. This effec-

tive transparency parameter may be calculated for each grid set accord-

ing to the equation,

CsCa
¢0 -

¢S + ¢a (66)

where Cs and Ca are the modified transparencies for the screen and

.- acceleratorgrids,respectively. These modlf_edtransparenciesmay be

./



calculatedas the physicalripenarea fractionof a grid times the

appropriateClausingfactor [47]. For the two grid sets used in this
o .

study,

....... (Co)SHAG= 0.16, @o_..... ( )LHAG= 0.27 (67)
*L

...._ Thus, the new value of the primaryelectronutilizationfactorappli-

......T cable to the LHAGoptics with all other conditionsheld constantis

_!:'_!:ii: given by,

- (Co)SHAG , (68)
ireful: (Co)new - (Co)Fig. 4a

i:!: (¢o)LHAG

_ which yields (Co)hew = 1.8 (A eq.)'1

The measuredvaluesof Cp , obtainedunder the same set of condi-

tions defined in the legendof Fig. 4a,exceptfor the change in optics

o_i from SHAG to LHAG, yieldedthe resultsshown by the data points in

Fig. 4b. The solid line is the predictionof the model based on the

value of Co calculatedfrom Eq. 68. The value of the baselineplasma

ion energy cost was held constantat ¢: = 57 eV since changingthe

_,_, optics should not affect this parameter. The degreeof agreementbe-

tween the data points and the curve in Fig. 4b shows clearlytnat the

model correctlypredictsthe variationin the plasma ion energy cost

with the neutraldensityparameterwhen the grid systemtransparencyto

neutralsis changed.

The same procedureof calculatinga now value of the primary

electronutilizationfactorfrom the old value accordingto Eq. 26 was

followedfor the analysisof the data displayedin Figs. 5a and 5b.

For the data in Fig. 5a, the thrusterwas operatedwith krypton
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propellantand SHAG optics at a dischargevoltageof 40 v. The primary

electronutilizationfactorcorrespondingto this operatingcondition

,i. was calculatedusing the value of CO obtainedfrom Fig. 4a together

_,_ ,_ with Eq, 26 in the form,

h :.

_ , M/_r
,_:_,,,i (ao) Kr (69)

: ,jw_ (Co)new- , _ (Co)Fie,,4a '
_._i;.._ (%)Ar J MAr

b_,;_:" In this case, both the change in propellantpropertiesand the change
k ',,', ' "

-> : in dischargevoltagemust be accountedfor. That is, (ao)Kr.is the

_"_"_rl total inelasticcollisioncross sectionfor 40 eV primaryelectron-

¢ 4 rl*'= _ refers,in this case, to 50 eV_ .__ kryptonatom collisions,whereas(%)Ar

,- i_! primaryelectron-argonatom collisions. The cross sectiondata needed

_i_" in this equationwere obtainedfrom de Herr, et. al [48]. The new

_"_ii. value of the primary electron utilization factor calculated from

_ ......:'- Eq. 69 was CO - 5.7 (A eq.)"I and the correspondingpredictionof the

model is comparedto the measuredvalues in Fig. 5a. A new value of

the baseline plasma ion energy cost (¢p) was also required to fit the

•;, data of Fig. 5a since this parameteris a functionof both the dis-. _._ ....

• _ ;_ charge voltageand the propellanttype. This new value was selected

- :_ in the manner suggestedpreviouslyas the measuredpla2ma ion energy
t

r :,. cost at high neutraldensitylevels. These data indicatethat the

,i: model works as well for operationwith kryptonpropellantas it does

_,;2,, for argon.

_ From Eq. 26, it is seen that the primaryelectronutilization

factordepends inverselyon the area of the grids throughwhich the

.... beam is extracted, Ag . This area may be varied without changing the

.... . dischargechamberdiameterby maskingdown the screengrid to produce
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d_

_: ion beams of differentcross sectionalareas, In this case, the screen

,_,:: grid for the SHAG opticsset was masked down from a beam diameterof

....._. 12cmto oneof6cm. This four fold reduction in beam area should pro-

:_: ". duce a correspondingfour fold increaseir nrimaryelectronutilization
_.

•.....' factor. TakingCO for Fig. 5a and multiplyingby four yields the new

value of CO = 22.8 (A eq.) "1 . The model prediction for the plasma ion
o,

_., energy cost versus neutraldensityparametercurve,obtainedusing this

" value of CO, is compared to the measured values of these quantities in

Fig. 5b. Remarkably,the agreementbetweenthe model and the experimentw ,,

_._'_ is excellent. Similar agreement was obtained for operation with argon

.:ii__i using the masked down grid set.

_/L.!I. Measurementsof the plasma ion energy cost variationwith theJ neutraldensityparameterwere also made on the thrusterconfiguration
oi:

i, of Fig. 3b. Some of the results obtained with this configuration are

_:, shown in Figs. 6a, 6b, 7a and 7b. The data in Fig. 6a was obtained

with argon propellant,a dischargevoltageof 50 v and a range of pro-

_,, pellantflow rates from 350 to 1500 mA eq. Excellentagreementbetween

._..--,_" the model and the experimentaldata was obtainedby taking_p = 59 eV

: ...._ and CO = 4.0 (A eq.)"I . The value of e_ = 59 eV, obtainedwith this

;- _ . configuration,agreeswell with the value of ¢; = 57 eV obtainedwith

the other configuration for operation with argon at a discharge voltage
o

of 50 v. The slightlyhighervalue of e_ for the configurationof

_'_ Fig. 3b is believedto be the resultof the shorterdischargechamber

length causing a slightly higher fraction of ion current to go to the

• anode surface_nd cathodesupportposts.
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_ l [ From the value of CO in Fig. 6a, a new value of Co applicable to

this configuration operating on xenon propellant at a discharge voltage

of 40 v may be calculated using Eq. 26. The results of this calcula-
b

• ., tion, togetherwith the experimentalresults,are given in Fig. 6b.

For these data, the neutraldensityparameterhas been correctedfor

presenceof doublychargedions in the beam. Again the value of ¢_ was
r'C'

_,:. chosenin the mannerdescribedabove. Clearly,the model agreeswell

o with the measuredresults. Equations25 and 26 have now been demon-

stratedto describecorrectlythe effectsof variationsin the plasma

,_ ion energycost resultingfrom changesin propellantflow rate, pro-

_ pellantutilization,effectivegrid transparencyto neutralatoms beam

extractionarea, dischargevoltage,and propellantgas (Ar, Kr and Xe).

_ In addition,other experimentsindicatethat the model correctlypre-

'_, dicts the change in thrusterperformanceresultingfrom a changein the

_//_ effectivedischargechamberwall temperature[36]. The model has also

: been shown to work well on line cusp thrustergeometries[35].

,_ For operationat low dischargewltages, however,the situationis
o

quite differentas seen in Fig. 7a. The data in this figurewere taken

using argon propellant,a dischargevoltageof 30 v and the thruster

configurationof Fig. 3b. Here, a systematicdifferencein the data

taken at differentpropellantflow rates is observed. Clearly,a single

equationsuch as Eq. 25 is not sufficientto explainthis behaviorif

_ Co and ¢; are taken to be independentof the propellantflow rate and

propellantutilization. This systematicdifferenceof the plasmaion

energycost curves,measuredat differentflow rates,is believedto

: : resultfrom changesin the baselineplasmaion energycost (c_)which

occur at low dischargevoltages.
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" ,,. These changes, in turn, result from the dependenceof the baseline

• plasmaion energycost on the averageenergyof a Maxwellian electron

collectedby the anode. _M (see Eq. 27). The value of _M' however,

, dependson the Maxwellianelectrontemperatureat the anode. Measured

r _,._ valuesof the electrontemperature,made using the Langmuirprobe po-

,. sitionedon the surfaceof the anode magnetring, are shown in Fig. 7b.

_ . These data were taken under operatingconditionsidenticalto those

used for the collectionof the data in Fig. 7a. The data in Fig. 7b!

• clearlyindicatea systematicdifferencein electrontemperatureat the

_ anode for differentpropellantflow rates. For a given value of the

.... neutraldensityparameter,these data show that the electrontemperature

at ";heanode increaseswith increasingpropellantflow rate. Higher

,,i electrontemperaturesat the anode correspondto highervaluesof _;

_ becauseof the increasedloss of energy from the plasma in the form of

Maxwellianelectrons. Becausethe ratio tM/VD appearsin the equation

for E; , changesin CM become increasinglyimportantat low discharge

volrages.

The systematicdifferencein the curvesof electrontemperature

versus neutraldensityparameterobservedin Fig. 7b is not predicted

by the model (as given by Eq. 59). Thus, some additionalmechanismfor

the transferof energyfrom the primaryelectronsto the Maxwellian

electrons,other than that consideredin the model, must becomeim-

portantat low dischargevoltages. This mechanismis believedto be

the direct thermalizationof the primaryelectronsas the resultof

electron_electroncollisions. The collisioncross sectionfor primary-

_laxwellianelectroncollisionsincreasesrapidlywith decreasing

primaryelectronenergy. This is consistentwith the observationthat
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.... the separationbetweenthe electrontemperaturecurves taken at dif-

ferentpropellantflow rates (suchas those in Fig. 7b) increaseswith
.o,

" decreasingprimaryelectronenergy (i.e.,dischargevoltage).

i ExtractedIon Fraction

": Aside from the plasma ion energy cost, the other parameterwhich

o has a major affecton thrusterperformanceis the extractedion frac-

tion, fB' It is of little use to create ions efficientlyin the dis-

;- '_ chargechamberif the fractionof these ions extractedinto the beam

_. is small. The extractedion fraction,which is definedin Eq. 6 as the

_' ratio of the beam currentto the total ion currentproduced,was mea-

, sured for both thrusterconfigurationsover the range of operating

conditionsdiscussedearlier.
r.

,' The resultingextractedion fractiondata, obtainedon the

thrusterconfigurationof Fig. 3a, are shown in Figs. 8a and b. In

Fig. 8a, the value of fB are given versusthe neutraldensityparameter

: for operationwith argon propellantat dischargevoltagesof 30 and

• 50 v over a rangeof propellantflow rates from 500 to 1500mA eq.

These data indicatethat the extractedion fraction,while being rela-

tively independentof neutraldensity,does tend to be slightlygreater

at lower dischargevoltages. Data taken under the same conditions,but

at a 40 v dischargevoltage,fall betweenthe two curves showninFig.8a.

-: The extractedion fractionsfor argon propellantare comparedto

.. those for kryptonpropellantat a dischargevoltageof 40 v in Fig.8b,

The values of fB for argon are seen to be generallyslightlyhigher

than those for krypton.
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The data in Figs.8a and 8b indicatethat the extractedion

=i fractionis relativelyindependentof the neutra_densityparameter.

Other data not presented,indicatethat the extractedion fraction
_.. =.

•, sometimesdecreaseswith increasingbeam currentsfor certainthruster
L

_ configurations. This decreasein fB resultsfrom a decreasein the

_: effectivetransparencyof the screengrid to ions as the plasmadensity

=':_'--:_''" ..... is increased. However,the fractionof the total ion currentproduced
_:_

_¢)_,__u° that is directed toward the grids remai ns constant._' Earlierstudies[32,33]indicatethat the extractedion fraction,

--_... or the fractionof ions directedtowardthe grids, is stronglydependent

: on the magneticfield configurationand thrustergeometry. The data in

this report indicatethat fB is also a weak functionof the discharge

voltageand propellantgas, but not a functionof the neutraldensity

:_ parameter. Consequently,a simpledesign approachwould be to take fB

to be a constantfor a given dischargechamberdesign (magneticfield

_, _ configuration),propellantand dischargevoltage. Unfortunately,a

method for calculatingthe value of the extractedion fractionfrom the

above designdata remainsto be developed.

• PlasmaProperties

Equation45 providesa simpleexpressionfor the primaryelectron

densityas a functionof the propellantutilization. As mentioned

earlier,the combinationof parametersinsidethe square bracketsin

this equationmay be taken to be roughlya constantfor a given pro-

pellant,discharge,,oltageand thrusterconfiguration. The value of

this constant,ap_;-opriatefor argon propellant,a dischargevoltageof

50 v and the thrusterconfiguratlonof Fig. 3b, was calculatedt} be

©
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l.O x I0I° cm"3 . Thus, Eq. 45 becomes,in this case,

' np = (l 0 x I0I°) nu (cm"3) . (70),: ' l-nu

' , The value of c* , requiredfor this calculation,was taken to be the

,/ measuredvalue given in Fig. 6a. The value of _p could, however,have

_ been calculatedusing the methoddescribedin AppendixA.

• The volumeof the ion productionregion (_), requiredby Eq. 45,

was determinedfrom a computerdrawn magneticfield map of the dis-

...._i charge chamber. This map was createdby measuringthe magneticflux

densityand directionat regularlyspaced pointsin the discharge

o_L. chamber. The ion productionvolume,definedby this map, was taken to

be the volume in which the magneticflux densitywas 0.005 Tesla or

- less.

The extractedion fraction(fB)was taken to be its measuredvalue

_, obtainedin tests with argon propellant,a dischargevoltageof 50 v

and the thrusterconfigurationof Fig. 3b. The transparencyof the

' o .C

• grids to neutralatoms (¢o)was calculatedfrom Eq. 66. Finally,the

• neutralatom velocity(Vo)was calculatedbased on an assumedeffective

wall temperatureof 400 K.

_. Comparisonof the calculatedvalues of the primaryelectrondensity

from Eq. 45 (in the form of Eq. 70) with the measuredvalues is given

in Fig. 9a. The measuredprimaryelectrondensitieswere obtainedusing

the Langmuirprobe positionedalong the centerlineof the discharge

o chamber. Equations45 and 70, however,calculateessentiallyan average

primaryelectrondesnity. Further,since th._ centerlineprimaryelec-

tron densityis expectedto be higher than the averagevalue, the
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excellentagreementbetweenthe calculatedand measuredvalues in

., Fig. 9a is somewhatmisleading. This figureclearlyindicates,however,

.. that Eq. 45 has the correctfunctionalform and that the primaryelec-

: _. tron densityis indeed relativelyindependentof the propellantflow

_-L_!'_ rate as predictedby the model.

_ A similarcomparisonbetweencalculatedand measuredprimary

_ _ electrondensitiesis given in Fig. 9b for operationof the same

'i thrusterconfiguration,but with xenon propellantand a dischargevolt-

:'_ age of 40 v Again, the same concludsionsdrawn from Fig 9a are also

_ applicable to thruster operation on xenon as _ndicated in Fig. 9b. The

->_. observationthat the calculatedaveragevaluesare somewhatgreater

than the measuredcenterlinevalues probablyresultsfrom the use of

, _: the measuredvalue of _ = 44 eV in Eq. 45 ratherthan the calculated

,_ value of e_ = 36 eV given in AppendixA.

,_.:,_ An expressionfor the ratio of pri_.ary-to-totalelectrondensity

,_? is given by Eq. 48. The combinationof parametersin the square brac-

', kets in this equationis approximatelya constantfor a given propellant,

:, aischargevoltageand thrusterconfiguration. For operationwith argon

at VD = 50 and the configurationof Fig. 3b, Eq. 48 becomes,

• _ 0.027. (71)
nl m(l-nu)

......__ In making this calculation,the Bohm velocity(Vb)was calculatedbased

on an electron temperature of 4 eV. The value of the screen grid

transparencyto ions (¢i)was determinedexperimentallyby measuring

the ion currentto the screen grid and t_ the beam, The transparency

is then the ratio of the beam current to the sum of the screen grid and

................. _ ...... .. - _ " _- _'-_'"" - _--_ir_-T _........... rl '_" _ _-_ -_-"_ _'-' - -'_T_---- FT i



beam currents. The measuredscreen grid transparencyto ions was

approximately0.8 comparedto the physicalopen area fractionof the

_ screengrid which was approximately0.68.
t

;_<, Comparisonof Eq. 48 (in the form of Eq. 71) with the experimental-

i_ : ly measuredvaluesis given in Fig. lOa. This figure indicatesthat for

,_.. a given dischargevoltage,propellantand thrusterconfigurationtheL

P _ primary-to-totalelectrondensityratio is only a functionof the neu-

i ;_ tral densityparameter. In addition,it indicatesthat Eq. 71 has the
)_ ;:
_=- correctfunctionalform for the variationof this ratio with the

neutraldensit.yparameter.
,>-._

_ ? For operationof the same thrusterconfigurationwith xenon at

VD = 40 v, the resultsshown in Fig lOb were obtained. The solid line•-,. •

, ;_ in this figure correspondsto Eq. 48, where the constantwas calculated

! ' using valuesof the parametersin Eq. 48 that are appropriatefor xenon

_.....,. propellantand a dischargevoltageof 40 v. FigureslOa and b indicate

_-_,_ that Eq. 48 correctlyaccountsfor changesin the propellantgas, the

dischargevoltage,the neutraldensity parameterand the propellant

flow rate•

Comparisonof calculatedand measuredMaxwellianelectrontempera-

. tures is given in Fig. If. The calculatedelectrontemperatureswere

obtainedusing Eq. 59. For operationwith xenon at VD = 40 and the

° thrusterconfigurationof Fig. 3b, Eq. 59 becomes,

.... + 7.64 x lO"14
: Qo = (m3/s) , (72)

i;_ 226 m(l-nu)-I
F

where the appropriatecross sectiondata were obtainedfrom References

• 49 and 50. Equation72 gives the value of the Maxwellianionization

rate factor for the productionof single ions from neutralatoms as a

.

F'
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,_'i::,¸:

1 +....."'i:i functionof the neutraldensityparameter. The rate factorQo is a

_F!I":_: functionof the Maxwellianelectrontemperature,and is given by,

i y Ee .E
L:I +; o

'. Qo _ e.EITM . (73)y ,E

Using Eq. 73, the rate factor Qo may be plotted as a function of the

electrontemperatureas shown in Fig. 12.

_ To determinethe electrontemperatureas a functionof the neutral

densityparameter,the followingprocedureis used. First,the value

+

: of the rate factorQo is calculatedfor a given value of m(1"nu) using

+ is then used to enter the curve in Fig. 12_._,,:_:: Eq. 72. Thi_ valueof Qo

_?>:_,i!,_:i: from which the correspondingelectrontemperatureis determined. Re-

_:,_,__ peatingthis proceduregeneratesthe curve of Maxwellianelectron

:.,._, ._ temperatureversusneutraldensityparametershown as the solid line

_2:::_:,i:: in Fig. II. The agreementbetweenthe calculatedand measuredelectron

,,,,,::_,-__'_!_,;:_ temperaturesis consideredto be quite good.

In additionto the Langmuirprobe positionedon the thruster

: o_,_j: centerline,a second probewas positionedon the upstreammagnet ring.

This probe was used to measurethe temperatureof the Maxwellianelec-

_ _ i trons and the energyof the primaryelectronsreachingthe anode.

,,_-,, Becausethe probewas positionedin a regionof very high magneticflux

density,the electrontemperaturesdeterminedfrom the probe traces

.!: obtainedwith this probe are probablyonly equal to the electrontem-

peratureresultingfrom motion along the magneticfield lines. The

electrontemperaturecorrespondingto motion normal to the field lines

"rl/1
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=_' may or may not be the same. For simplicity,the_e temperaturesare

assumed,in this work, to be the same.

o_.) The measuredelectrontemperature_at the anode were found to be
"iL

i less than the measuredcenterlinetemperaturesby approximatelya

factorof 2/3_ The correlationof electrontemperatureat the anode

_',_ with the centerlineelectrontemperatureis given in Fig. 13. The data

,'_ in this figurewere obtainedwith the thrusterconfigurationof Fig. 3b
o,

• using both argon and xenon propellants. The solid line in this figure

has a slopeof 2/3. This observationthat the electrontemperatureat

'.. the anode is approximately2/3 of the centerlinetemperatureis used in
?i.

_' _ AppendixA for the calculationof c; ._ "r_

d

. The probe tracesobtainedwith the probe positionedon the magnet

i .... ring surfacealso indicatedthe presenceof primaryelectrons. For

_ operationat a dischargevoltageof 50 v, these primaryelectronshad

.... an energyof approximately50 eV as the model suggeststhey should for

_ this case where a refractorycathodeis used (VC = 0). Similarly,for

operationat VD = 40 v, the measuredprimaryelectronenergyat the

anode surfacewas _ 40 eV. These probe tracesprovidedirect evidence

• of the loss of primaryelectronsthroughthe magneticfield cusp to the

_. anode. Further,the loss rate of these primaryelectronswas seen to

' _ ,. increaseas the neutreldensityparameterdecreasesas the model

_ ;_ predicts.
u

• A comparisonbetweenthe calculated(from Eq. 66) and measured

valuesof the doubly-to-singlychargedion beam currentratio is given

in Fig. 14. The measuredvaluesare given by the open symbolsand the

' calculatedvalues by the solid symbols. The propellantutilization

efficienciesin this figure have been correctedfor the presenceof

©
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doubly chargedions accordingto Eq. B-5 given in AppendixB. The

h�+

ratiosJB / JB in Fig. 14 were taken to be equal to the valuesof

/' doubly-to-singlychargedion currentdensitymeasuredon the thruster

- _ centerline. The valuescalculatedfrom Eq. 66, however,correspondto

_ valuesof this ratio averagedover the entire grid area. Since the

_ centerlineratio is expectedto be greaterthan the averagevalue,the

-_i_ data pointsin Fig. 14 are believedto be shiftedup and to the left

_ relativeto the locationsof the correspondingaveragevalues, The

amountof this shift is unknown. This shift, however,is believedto

i)i accountfor at least part of the differencebetweenthe measuredand

_._ calculatedvalues.

. p�t�....._ In calculatingthe valuesof JB /JB using Eq. 66, the collision

_ cross sectiondata requiredfor the calculationof the parametersQo

i and P+• o were taken from Reference50. The valuesof the parameters

Qo ' Q_' Po ' P+ were obtainedfrom ReferenceII, in which the colli-

_. sion cross sectionswere calculatedusing the classicalcross section

model of Gryzinski[51]. The use of Gryzinskicross sectiondata in
:" dthe calculationsof JB /JB might also accountfor some of the difference

betweenthe measuredand calculatedvalues. The valuesof the Max-

• wellianelectrontemperatureand primary-to-Maxwellianelectrondensity

ratio, requiredas inputsto Eq. 66, were calculatedusing Eqs. 4B, 49

,_ and 59.

, ++. Finally,it is noted that, the valuesof JB / JB calculatedfrom

i Eq. 66 are very sensitiveto the value of the electrontemperatureused

in the calculations. Equation66 does, however,indicatethe correct

functionaldependenceof the doubly-to-singlychargedbeam current

ratio on thrusteroperatingconditions.



V. MODEL APPLICATIONS

= ,_': ThrusterDesign
o

i: Equation28 (repeatedbelow) providesa single equationdescribing

_:i the performancecurve of a given thrusterdesign

_" _B = _P + fcVD

i i.

. This equation,along with the data presentedin ChapterIV, suggestthat
c

the performance of any thruster design depends on the values of four
•_!

dischargechamberconfigurationcontrolledparameters:e;, CO, fB and

"_ fc; and two operatingparameters,m and VD. The effectof these

:, parameterson performancewas investigatedanalyticallythroughEq. 28

by choosingthe followingset of valuesas the standardset, then vary=

": ing themone at a time to determinetheir effect on the traditional

: performancecurves.

.Z

' Tabl e 1

' StandardConfigurationParameters

_ m = I000 mA eq.

....... fB = 0.6

' fc = 0.I

,___ Vb = 50 v

'° Co = 3.0 A eq.

: ep = 50 eV

!

" 0
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: FigureISa shows the effectof the extractedion fractionon
i : .,
i

.__" performance. As expected,this parameterhas a strongeffecton the
i

:, performance. Changesin fB shift the performancecurve up or down, but

_' do not substantiallychange its shape. Clearly,it is desirableto

have fB be as large (near unity) as possible.i 'i

=_F_ The effectof the primaryelectronutilizationfactor (Co)on

i_/ performanceis given in Fig. 15b. This parameteralso has a strong

!] _ effecton the performance. Indeed,it is this parameterwhich primarily
j: ii

o determinethe shape of the performancecurve,with larger valuesof CO...

L"

:' _ correspondingto improvedperformanceand curves with more sharply

!I _ defined"knees." The definitionof Co given in Eq. 26 suggestsa num-
i= d

....._, ber of ways in which the value of Co may be increased. For example,it

S may be increasedby using a propellantgas characterizedby a larger

_i ' and a largeratomicmass (result-,:'_ inelasticcollisioncross section_o'

i_. ing in a lower neutralvelocityVo). The parameterCo may also increase

by decreasing the grid transparency to neutrals, ¢o' This must be done,

.. of course,withoutincreasingthe acceleratorimpingementcurrent. For

thruster designs with non-uniform beam profiles, Tailoring the accele-
:7

io_ ' rator grid hole size to match the radialcurrentdensityprofilemight

',i_" be a usefulway to minimize¢o" Also, three grid systemsmight be ex-

alt,h; pectedto have smallervalues of 0o than two grid systems.

Most importantly, CO may be increased by increasing the primary

r: L electroncontainmentlength t_e). This lengthcorrespondsto the

averagedistancea primaryelectronwould travel in the discharge

• _ chamberbefore being collectedby an anode surfaceprovidedit had no

inelastic collisions. As mentioned earlier., the primary function of the

• magneticfield in all thrusterdesignsis to increasethis length. In

,_ • ,._ .._ -
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I,

' cuspedfield thrusters,primaryelectronsare lost to the anode though

_ ,. the cusps. Thus, _e may be increasedby decreasingthe numberof cusps
i

at anode potentialor increasingthe flux densityat the cusp, but only

_ i,__ up to a point. Reductionsin effectiveanode cusp area below a certain

° _ limit will resultin unstableoperationof the discharge[22].

.... Equation26 also suggeststhat the primaryelectronutilization

....ii,!i factormay be increasedby maskingdown the area of the grids through

_-_o which the beam is extracted,Ag. However,decreasingAg in this manner

_._ will lead to a large reductionin the extractedion fraction,and,

:i_ therefore,an overallreductionin performance.._:_

_ The effectof propellantflow rate on performanceis shown in

_-<_.' Figs. 16a and b. In general higher flow rates producebetterperform-

': ance. The maximumflow rate at which the thrustercan be operated,

.._._" however,is limitedby the abiiityof the acceleratorsystemto extract

the ion currentdirectedtoward it. li_eeffectef flow rateon perform-

_j ance is less dramaticfor thrusterdesignscharacterizedby larger

,: ,_.... valuesof CO as shown in Fig. 16b. High valuesof CO should,there_re,

. be particularlydesirablein thrustersdesignedto be throttled.

The effectof Cp is merely to shift the performancecurvesup or

down. The amountof the shift increasesfor smallervaluesof fB" For

'! thrustersthat use hollowcathodes,the efficiencyof the cathodeopera-
6

' tion (characterizedby Vc irhEq. 27) has a strongeffecton the value

_ of _ . In addition,highervaluesof VD, in general,producesmaller

* High dischargevoltages,however,are undersirablefrom
o : valuesof Cp .

_ thrusterlifetimeconsiderations,Consequently,a trade off between

\ _ thrusterperformanceand thrusterlifetimeis necessary.

o ,
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'._; The effectof cathodeoperationon thrusterperformancecan be

_,. investigated analytically using the performance model. Hollow cathode

operationis reflectedin the value of the parameterVc. The lower

ttle value of this parameter the more efficiently the cathode is oper-
a

: : ating. At a fixeddischargevoltage,increasingthe value of Vc

degradesthe thrusterperformancein two ways. First, it increases

_-°_:_: e_ directlythroughits appearancein Eq. 27, and second,it decreases

the energyof the primaryelectrons,which increasesthe value of the

_ collisionalloss parameter_o and decreasesthe value of CO. All of
_ _---T_-.

...._ these affectsare accountedfor when Cp is calculatedaccordingto the

:: proceduredescribedin AppendixA and the primaryelectronenergy is
"L-

_'_. given by VD-VC.

_ _ _: The effectof Vc on the baselineplasma ion energycost was calcu-

_ ....,_ lated for xenon propellantusing the method describedin AppendixA and

;_.' assuming a discharge voltage of 30 v. The results of these calculations

_i_ are given in Table 2.

.... Table 2

_;ii o :T Effect of Vc on e;
).. _ .

_ ' i VD Vc VD-VC ep Co

(Volts) (Volts) (Volts) (eV) (A eq.)"I

30 0 30 36 8.0
!

30 2.5 27.5 42 7.9

30 5.0 25.0 48 7.6
i

_, 30 7.5 22.5 55 7.2

!_ 30 lO.0 20.0 66 6.5

30 12.5 17.5 79 5.2
!

i

i



..... The valuesof _p and CO, from Table 2, were then used in the equation

for thrusterperformance (Eq. 28) along with the values: m = 1000 mAeq.,

i fB = 0.5, fc = 0.I, and VD = 30 v. The performancecurves generatedin

,_., thismanner a_-eshown in Fig. 17. This figure indicatesthat, at a dis-

charge voltage of 30 v, relatively small changes in Vc can produce

_ _L_':_:_ substantialchangesin thrusterperformance. For example,increasing

p L ,.,

_ _ Vc from I0 to 12.5 v causesan increaseof approximately30 eV/beamionL--_ .... "

_. ' _,-_ in the performancecurve.

_._._._v/,,_, Work done by Siegfried[52] on inert gas hollowcathodesindicated

_,_,_-.: that a 0.6 v increasein the surfacework functionof the cathodein-

__):_;*:i_._o_,,_,,,o,_,_ sert could producean increasein internalcathodeplasma potential

,., ,_ from 8 to 12 v. The value of Vc would be expectedto increaseby this

/: same amount. In addition,Siegfriednotes that there is apparentlya

_. ; greatersensitivityof the insert to depletionor contaminationof the

._....!, low work functionmaterialfor op,,rationwith argon or xenon as compared

=_.._._ to operationwith mercury. Consequently,on the basis of these consid-
i'

;_: erations,one would expect the performanceof inert gas ion thrustersr

operating at low discharge voltages to be quite sensitive to the con-
?.

_;_. ditionand operationof the hollowcathode.

_! Changes in the fractionof ion currentgoing to cathodepotential; _ _',

_,. surfaces(fc) also tend to shift the performancecurves up or down.

i !_i Recenttrends[23,24]in thrusterdesign to operatethe discharge

.....__ chamberbody at anode ratherthan cathodepotentialserve to reduce the

value of fc' and consequentlyimprovethe performance. In addition,

L eliminationof the separatecathodedischargeregionin these designs

, servesto decreaseboth fc and VC, which again improvesthe performance.

_ " It should be noted, however, that an increase in the extracted ion
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fractionfB is also believedto be an importantfactorin the perform-

:: ance improvementobserved in these new thrusterdesigns.

.... ThrusterScaling

;_.. The dischargechambermodel also suggestsperformancechangesthat

might be expccted from the scaling of thruster designs to different

[ i""..:
_ ,,_ dischargechamberdiameters. This may be seen by examiningthe product

_ _ of the primaryelectronutilizationfactorand propellantflow rate.

L '/_: This productis a dimensionlessquantityand is given the symbolBo.
_-_ .,' . J •

._,:,..... ,,,.C_o_em
!.-;, "::_r- Bo - Corn- , ,, (74)

_r'_:'_:r_ For constant,averagebeam currentdensities thrusterscalingshould

_:;C_. be accomplishedsuch that the ratio of mass f_ow rate to activegrid
:"_L

area, m/Ag, is constant. Thus, for the same propellantand grid trans-

parencyto neutrals,Eq. 74 suggests that the discharge chamber perform-

ance dependsonly on the primaryelectroncontainmentlength,ge" It is
c

• _;.,

:_,._- believedthat this lengthshouldincreasein approximatelydirect pro-

portionto thrusterdiameter,and this suggeststhat largerdiameter

• thrustersshould be more efficientthan smallerone,_. This is not the

!
i_ .... whole story,however. The effectof thrusterdiameteron the extracted

L,,,_:_ ion fractionmust also be considered. The above conclusionremains

_-,; true for thrusterscalingaccomplishedin such a way that fB remains

.- constant.
i _'

L_,_ o

NeutralLoss Rate

::° " RewritingEq. 22 yields an expressionfor the neutralatom loss

: ° o rate from the dischargechambert,,roughthe g_ids,



" ,",.:: ' Substituting this Into Eq. 28, and solving for the neutral loss rate

! _":-,.'--_ yt el ds, [ ]:"' no " _oo fB_-B'fcVD "
._ i'; = l gn 1 - eP (76)

This equation gives the value of the neutral atom loss rate as a func-

'? tton of the beam ion energy cost. For a specified thruster geometry

and discharge voltage, the design parameters Co, e;, fB' fc and Vo may

:_ be taken to be approximatelyconstant. Thus, since the propellantmass

_._ flow rate doesn'tappearon the right-hand-sideof Eq. 76, this equa-

'.t

_ r tion predictsthat the neutralloss rate _o is independentof the flow

_, r, ::" '+ " rate at a constantvalue of the energy cost per beam ion (SB). Thist..

__'_''m_i;_'_.. same conclusionwas reachedoriginallyby Kaufman[53] in his constant
'............/i). neutralloss rate theorydevelopedfor low magneticfield strengthdis-
. _11_

_

":'":_ chargechamberdesigns.

"_'_::,, ThrusterTestin_withoutBeam Extraction

-". It is often desirableto comparethe performanceof differentdis-

charge chamber designs that have been operated without ion beam extrac-

_-_:':_?:_,';, tion. Operationwithoutbeam extractionis often more convenientand

._;._ generallyrequiresthe use of smellervacuum test facilitiesthan

_ £_:.... operation with beam extraction. However, data obtained under these
._>_.:

. ., conditionsmust be interpretedcarefully. It has been observedthat

_,_ the performance(eVlbeamion) extrapolatedfrom thrusteroperation

..i_i' withoutbeam extractionis generallysignificantlybetterthan the

:'_ performancemeasuredwith beam extraction[24,54,55]. This difference
K_,.,

v .'
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in performance may be understood in context of the performance model

_,! developed in this report.
Thrusteroperationwithoutbeam extractionshouldbe characterized

by higherdischargechamberneutraldensitiesthan operationat the

same propellantflow rate with beam extraction. This is because,

withoutbeam extractionmost of the propellantleavesthe discharge

chamberin the form of neutralatoms at the neutralatom thermal
I .

:' velocity. With beam extraction,however,most of the propellantleaves

:_ in the form of ions at the Bohmvelocity. Therefore, since the total

.:_ propellantflow rate leavingthe thrustermust be the same in each case,

_: the loss rate of neutralsis smallerwith beam extractionthan without
!LL_
_i it, implyinglower neutraldensities. This is primarilya consequence

_i! of the changingeffectivetransparencyof the screen grid. Without

i!i_
beam extraction,the effectivescreen grid transparencyis very small,j

i_iI. [56]since ions tend to be focusedonto the grid webbing. With beam ,i

extraction,the ions tend to be focusedaway from the screen grid

webbingand throughthe grid apertures. In any case, operationat

higherneutraldensities,for the same thrusterconfiguration,trans-

lates into lower plasma ion energycosts accordingto Eq. 25.

The performancemodel developedhereinmay be used to make more

meaningfulextrapolationof data taken withoutbeam extractionto opera-

tion with beam extraction. To do this, it is necessar>to experiment-

* Co fB and fc" Theally determinethe valuesof the parametersCp, ,

parameters_p and CO are roughlyindependentof the neutraldensity,

i thus, shouldn'tchangedependingon whetheror.not a beam is extracted.

For hollowcathodeequippedthrusterdesigns,however,the baseline

plasma ion energycost includesthe parameterVc, which is an indication
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.... of cathodeperformance. The value of Vc may be a functionof the dis-

charge chamber neutral density and consequently could cause the value
!

; of _ to change for operationwith and withoutbeam extraction. The
P

"_: magnitudeof the change in Vc, if any, is unknown.
w

'_: _ To determine the values of ep and CO for operation without beam

• extraction,somemethod _f estimatingthe total ion currentproducedas

G'_._',,I,..
a functionof the dischargechamberneutraldensitymust be used. This

_ _' _ is probablymost easilyaccomplishedusing severalion currentprobes

io,,,'__-,,-,_'_ positionedat the walls of the dischargechamberin the manner suggested

: 17

i,_?o.('ii} by Poeschel[54]. Ideally,these data shouldbe acquiredover a range

),) _ _. of neutral densities at a constant discharge voltage.

Once the total ion currentproducedis known as a functionof the

,_°, neutral density, a curve similar to Fig. 4a may be generated, where the

i .... :i' valuesof ep are calculatedusing Eq. 2. From these data, the values ,i
iJ

:) of ¢; and Co may then be determinedas those which give the best fit

_ _i of Eq. 25 to the data. Note, e_ may also be calculatedaccordingto

: " .. the procedureoutlinedin AppendixA.

.__ Finally,the valuesof fB and fc may be determinedusing the above
! .........

i probe data and guessinga value of the effectivescreengrid transpar-
i

i-'_: ency appropriatefor the beam extractioncondition. Once the valuesof

o_._: Cp, Co, fB and fc have been determined,the performancecurve for the

beam extraction condition may be approximated using Eq. 28, for any

desiredtotal propellantflow rate.

b'
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Space PropulsionMissionAnalys!s

.,_...... The performance model, developed in this report, is particularly
o

, useful for examiningthe impactof thrusterperformanceon space pro-
..,._.
,.":' " pulsionmissions. It shouldalso be usefulfor studiesmaking compari-

o ,,

sionsof the capabilitiesof differentpropulsionsystemssuch as those

_ done in References57 and 58. The followinganalysisis intendedas an

: illustrationof the kinds of thingsthat can be done using this thruster

_-_='_,*_ performancemodel. Consequently,the orbit transfermissionconsidered

_ " ;.: here has been greatly simplified Solving a more accurate and compli-
i

" ...." cared orbit transferproblemwould not provideany additionalinsight

into the applicabilityof the model to missionanalysis,and may even

" tend to concealthe desiredillustration. In the analysisthat follows,
i ,, o

: the effectof thrusterperformanceon the maximumpayloadfractionob-

_.o ::'_ tainablefor a low earth orbit to geosynchronousearth orbit transfer

i_" * mission, with a characteristic velocity of 6000m/s, is investigated.

'--_=-,., The rocketequation(Eq, 77) gives the ratio of final spacecraft
o ".

• .;_. mass (Mf) to initialmass (Mi) as a functionof the characteristic

....: velocityfor the mission (AV),the thrusterexhaustvelocity (u) and

_ ' the thrusterpropellantutilizationefficiency(nu),

I_ : Mf _ -AVlnuu--- e . (77)
,. MI

Assuming,for simplicity,that the final mass consistsonly of the

._o-: payloadmass (M£)and the mass of the power plant (Mg) then Eq. 77 can

,. be writtenas,

M_ = -aV/nuU _ (78)
14,1 e - Mi •

o
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I The mass of the power plant is proportionalto the power generated,

.,i[.. Mg = _ Pg , (79)
;I

IF where _ is the specificpower plantmass (Kg/W),and Pg is the

_i:_ generatorpower (W). The generatorpower may be given as,
F_,

_F

_)!... Pg nt u2nu , (80)

'=_::,,i_-

_,_.'._;__;iii!_'L where nt is the thrusterelectricalefficiencyand mp is the total

_i!;.i!_i:._ propulsionsystem propellantmass flow rate (kg/s). For a constant

_C'I:_,!,,I_ exhaustvelocityand propellantefficiency,Eq. 80 may be integratedto

_=._;_;:...__.'.._ obtain, Mp° u2 nu

Pg-
,, o" , (81)
,/......" 2nt t

where Mpo is the initialpropellantmass and t is the totalmission'i%
, ,-J
. time. CombiningEqs. 78-80 and recognizingthat,

;[ _,_ Mpo -aV/nuUi- ioii, - l - e (82)
!i _:."." Mi '
:I
k_i:'ii,:!" yields

M_ = "aVlnuu ¢U2nu /I "AV/nuU)--e ,. - e . (83)

Mi 2nt t

Consideringonly dischargechamberlosses,the thrusterelectrical

efficiency may be approximated by,

_C..... nt _ l (84)
____ I+_B/VN '

where VN is the net accelerating voltage. The net accelerating voltage

..... is relatedto the exhaustvelocityby,

©• , _,,. z..p.
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' ½e VN = miu2 (85)

• Combining Eqs. 83-85 yields,

• ( -V,uU/."° M_ = -AVlnuu _u2nu 1 + - - e . (86)

ii_. .... M-i e 2t /

ii L

:!-..0_._ Equation86 gives the payloadmass fractionas a functionof: the

__'_r,"14"" characteristicvelocity,the exhaustvelocity,the missiontime, the

!i'_:_!_::.:i power plant specific,mass, the charge-to-massratioof the beam ions,
i °:::

i_. ._ the averagebeam ion energy cost and the propellantutilizationeffici-

"_"'_ ency. The averagebeam ion energycost is relatedto the propellant

_,, utilizationefficiencythroughthe equationdevelopedin the thruster

_ ! performance model,
_ o ', W

,:,: _ Cp fcVD

_""_: CB-- [ e'B-_°l'nu')'] '' + fB ' (87) ,i-,. ';.,..?. fB I-
: o=" e'J/ : ?,

" _ _. _ where Bo is a dimensionlessquantitydescribingthe utilizationof. V_ "T:I

_,.::_:'%; primaryelectronsin the dischargechamberand is given by Eq. 74.

i _(_. i For a given characteristic velocity, mission time, power plant

:!:"_.,__ specificmass, and propellantutilizationefficiency,the optimum,.,;..i."

_:; exhaustvelocitycorrespondingto the maximumpayloadfraction,for
F ' ;i:

i _ these conditions,can be determinedfrom Eq. 86. This is accomplished

; .... by settingthe derivativeof Eq. B6 (with respectto u) equal to zero

.._ and numericallysolvingthe resultingequationfor u. Substituting

_ this value of the exhaust velocity back into Eq. 86 gives the value of

the optimumpayloadf_.'actionunder the specifiedconditions. This pro-

cedure may be repeated for different values of propellant utilization,
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L where, for each value of nu, the corresponding beamion energy cost is

calculated from Eq. 87. In this manner, a curve of optimized payload

fraction versus propellant utilization efficiency may be generated for.¢, _,'.

_ ,._ specified values of the characteristic velocity, mission time, power

. plant specific mass and thruster performance parameters, ep, fB' fc"
, ,p.

Bo and VD.

An exampleof this is shown as the solid line in Fig. 18 for a

characteristic velocity of 6000 m/s, a mission time of 200 days and a

J-_- specificpower plant mass of 40 kg/kW. In addition,the thrusterper-

; ' formanceparameterswere taken to be Cp = 50 eV, fB = 0.5, fc --0.I
,, ",

!_.d's Bo = 5 and VD - 40 v with argon as the propellant. Figure18 indicates
i

_ that the curve of optimizedpayloadfractionversuspropellantutiliza-
= g :.

_: tion efficiencygoes througha maximum. The propellantutilization

_. efficiency corresponding to this doubly maximized payload fraction in-

.... _ dicatesthe locationon the thrusterperformancecurve at which the

• thrustershould be operatedin order to truly maximizethe payload

• o "'i

_,,,- fraction. In summary,the doublymaximizedpayloadfractionwas de-
!
i ,,: terminedby optimizingthe exhaustvelocityto producethe optimumpay-
!' L

: : load fractionfor a given propellantutilizationefficiencyand

r" "_ subsequentlyselectingthe propellantuti'lizationto obtain the maximum

payloadfractionfrom this set of optimizedpayloadfractions.

'_ To illustratemore clearlywhat is going on, the initialpropellant

mass fraction (Mpo/Mi) and power plantmass fraction(Mg/Mi) are plotted

_" along with the optimizedpayloadfractionin Fig. 18. Note that the

.... sum of the three curves in this figure, at any propellant utilization,

is equal to unity. As the propellantutilizationincreasesthe initial

propellant mass fraction decreases as expected, in addition, the power
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,,_',,_ plant mass decreasesinitially,due to a decreasingoptimumexhaust

: velocity, then increases dramatically at high propellant utilization

' ¢_T efficiencies,due to the rapid increasein the averagebeam ion energy

' cost• For the set of conditions chosen for the curves in Fig. 18, the

.....:. doublymaximizedpayloadfractionoccurs at a propellantutilization

.......... of 0.73

-;;,!_;:,:_._ The effectof the specificpower plant mass on the optimizedpay-

_"_", load fractionvs. propellantutilizationefficiencycurve is shown in;r_,,_o

_4_';o, Fig• 19a. It is interestingto note that, at very low valuesof _ the

,......_,_...,._.._,,,_,... optimizedpayloadfractionis relativelyinsensitiveto large changes

_:_,,:,_;,.:::,"_,_i, _n the propellantutilization In addition,the propellantutilization

_--'_,_ at which the doubly maximize.ipayloadfractionoccurs is a functionof.... G* , "

;._...........; _. That is, the point at which one should operate on the performance

' curve of a given thrusterdependson the specificpower plant mass for

" ,, the spacecraft. This is illustratedin Fig Igb, where the optimum

..... propellantutilizationefficlencesfor the specifiedmissionparameters

" 'r_l'_" " are indicatedon the performancecurve used in generatingthe curves in

Fig. 19_. It is also interestingto note that, the optimumpropellant

°'_ utilizationfor the _ = l kg/kW case occurswell past what might ordin-

drily be consideredthe "knee"of the performancecurve• In a similar

manner,the missiontime can be shown to effectthe optimumpropellant

"_ utilization,with longer trip times yieldinghigheroptimumpropellant

....% utiIIzatlons.

: _=_ So far, only one thrusterperformancecurve has been consideredand

it has been observed that the optimum propellantutilizationefficiency

" correspondingto the doublymaximizedpayloadfractionis a functionof

the specific power plant mass and the mission time. The effect of the
_r !..

i= .'_; _..... -._-_-.....-_ .... -_-_.................._ . .--,ac._ _ _-__'_-_.:2" :"T-I.... -,_-_.-_-__-.-__t':_..___<,





,._. thrusterperformanceparameterson the optimumpayloadvs. propellant

o utilizationcurveswill now be investigated.

°4 Figure20a indicatesthe effectof the parameterBo on payload

_ fractioncurves. This parameterprimarilydeterminesthe shape of the

_:,,_, thrusterperformancecurve. As expected,largervaluesof Bo yield

higher maximum payload fractions. The optimum propellant utilization

efficienciesare indicated,for each performancecurve in Fig. 20 b, by

- the verticallines that intersectthe curves.

_.:_. The effectof the extractedion fractionon the payloadfraction

_-_.,:., curves is shown in Fig. 21a. Not surprisingly,higherextractedion

-..,_;a_ fractionsproducelargermaximumpayloadfractions. Again, the optimum
;Si_e'.-_'_,

@,_ propellantutilizationsare indicatedfor each performancecurve in

--:_':: Fig. 21b.

Finally,the effectof the propellantgas is indicatedin Fig. 22a.

-:_-; To generatethe curve labelled"argon"in this figure,the following ,
" Z, TI.

.,,_._:_ thrusterperformanceparameterswere used: fB = 0.5, fc = O.l, VD =

-_ii:_t_!. 40 v, Bo = 5.0 and _p = 50 eV. For kryptonand xenon propellants,the

._ _'i valuesof fB and fc were held constant,but, the valuesof VD. Bo and

-__'ii'__I,_ _p were changedto 30 v, 8.2 and 49 eV for krypton,and 30 v, 14.6 and

"ii": 42 eV for xenon. The changes in the valuesof Bo were calculatedusing

,_._:.. the equationsdevelopedin the thrusterperformancemodel. The changes

o_ in the valuesof Cp are consistentwith measuredchangesin this param-

-:_ i eter for a given thrusterdesign operatedon the three propellantgases.
•-,:_,"__.

• Clearly, xenon propellant is superior to either argon or krypton pro-

._ pellants. The performancecurves,along with the correspondingoptimum

_ propellantefficiencies,are given in Fig. 22b for the cases where

these three propellants are used.

i i
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'" VI. CONCLUSIONS

° A simple th_'uster performance model, that has led to an improved

understandingof ion thrusterdischargechamberoperation,has been

developed. This model describesion thrusterperformancein terms of

four parameters: the plasma ion energy cost (¢p), the extracted ion

_o'_ fraction(fB), the ion currentfractionto cathodepotentialsurfaces

(fc)and the dischargevoltage(VD).

,_.. The equation developed to describe the behavior of the plasma ion

. energycost agreeswith the resultsof a varietyof experiments. This

_ _o_ equationprovidesan expressionfor the functionaldependenceof the

,_' plasma ion energycost on the neutraldensityparameter,m(l-nu) ,l

Oo,_ Experimentsindicategood agreementbetweenthe predictedfunctional
o-,;

i;_:::,_! form of the model and the experimentaldata. These experimentsalso

._-_,_ suggest that the primary electron utilization factor (Co) and the base-

2,_,,,_L_., line plasma ion energycost (e_) are independentof the neutraldensity

_:_ parameterunder many conditions. The model correctlypredictsthe
o

o

• variation in plasma ion energy cost for changes in: propellant gas,v •

....' grid transparencyto neutralatoms,beam extractionarea, discharge

_..... voltage and effective discharge chamber wall temperature. The model is

applicableto both ring and line cusp thrusterdesigns.

Measurementsof the extractedion fractionindicatethat this

parameter is relatively independent of the neutral density parameter.

The extractedion fractiondoes, however,appear to be a functionof
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_ the thrustergeometryand magneticfield configuration,and to a lesser

_,_ extentthe propellantgas and the dischargevoltage. No effective

_!, methodfor calculatingthe extractedion fractionbased on these con-

_:i siderationsis availableat the presenttime.
;: The valuesof severaldischargechamberplasmapropertie_can be

°; easilycalculated,as a functionof thrusteroperatingconditions,

using the equationsdevelopedin the mod_i. These propertiesinclude:
L

...._ the primaryelectrondensity,the primary-to-totaland primary-to-

= ";i•: Maxwellianelectrondensityratiosand the Maxwellianelectrontempera-

_ ture. The valuesof these properties,calculatedby the model,agree

_ well with the correspondingexperimentaldata. An equationwas also

_• developedto calculatethe doubly-to-singlychargedion beam current

_: ratio. Experimentsindicateonly fair agreementbetweenthis equation

*_ and the measureddata. This is believedto be partly the resultof the

_,:i, techniqueused to measurethe doubly-to-singlychargedion beam current

ratio,and partlythe fact that the calculatedvaluesof this ratio are

i. very sensitiveto the input electrontemperature.

For design purposes,thrusterperformancemay be taken to depend

on only four physicalparameters(the primaryelectronutilization

factorCo, the baselineplasmaion energy cost ¢;, the extractedion

fractionfB and the cathodepotentialsurfaceion fractionfc) and two

operatingparameters(the propellantflow rate m and the discharge

voltageVD). Improvedperformanceshouldbe characterizedby large

extractedion fractions,long primaryelectroncontainmentlengths

(_e),small effectivegrid transparenciesto neutralatoms (¢o)and

operationat high propellantflow rates. The loss of primaryelectrons

to the anode determinesthe shape of the performancecurve to first

Q
• r
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_,_ order. The model suggeststhat thrusterdesignscharacterizedby

.....i : large valuesof Co shouldallow efficientthrottling. In addition,it

i, suggeststhat hollowcathodeefficiencybecomesincreasinglyimportant

........ to the dischargechamberperformanceat low dischargevoltages.
. • ,,'c.,

_.i. The thrusterperformancemodel can be very useful for mission

analysiscalculations. The model allowsone to easilyidentifythe

optimum propellant utilization at which the thrus_cr should be operated

for a given mission. In addition,the model makes it easy to determine

which changes in thruster design or operating parameters have the
,/.i

greatesteffecton the payloadfractionand/ormissionduration.

_-_!_i;!_ Finally,a simpledirectmethod for the calculationof the base-

..... line plasma ion energycost has been developed• Calculationsof ¢p

_=-_o_ agree well with the measuredvalues

f

. Suggestionsfor FutureWork

;_; '_ Two of the parametersidentifiedin this investigationas having

_" strongeffectson thrusterperformancewere the primaryelectroncon-

tainmentlength and the extractedion fraction• At the presenttime,

..... however, these parameters cannot be calculated directly given only the

_ r' _" dischargechamber/magneticfield design,propellantgas and discharge

voltage• Consequently,futurework should focus on the developmentof

a method by which the primary electron containment length and the ex-

racted ion fraction can be calculatedbased only on this information.
_r

• The experimentsdescribedin this investigationwere all performed

using a thruster equipped with a filament cathode• The model suggests,

, however,that the performanceof a thrusterequippedwith a hollow

cathodecan be stronglyinfluencedby the operationof the hollow

(i'

L
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cathode. Consequently,there is a need to verifythe predictionsof

the model on a hollow cathode equipped ion thruster.

' Finally,it is of interestto test the validityof the model on

'.' the older style, low magnetic field strength thruster designs, such as! ,,_._, _..

a.

T the SERT II [63]or the J-Series[64] thrusters. These thrusterdesigns

_ o_ differfrom the cuspedmagneticfield designsconsideredin this inves-

i='_" tlgationin that electrons,in the dischargechamberplasma,can only
! .

i)_: reach the anode surfaceby crossingmagneticfield lines. In the

" ' cusped field designs,however,the majorityof electronsare believedto
j_

reach the anode by going along the field lines. The mechanismfor elec-

_-_ tron loss in the low magneticfield thrusterdesigns is sufficiently

_::! differentfrom that in the cusped field designsthat experimentalveri-

•' ficationof the model on these low field strengthdesignsis required.

,_
r_ _

i

i r. _ •

i 'J "
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APPENDIXA

'.' THEORETICALCALCULATIONOF THE BASELINE

....:. PLASMAION ENERGYCOST, _;

....'; The definitionof the baselineplasma ion energy cost (c_) is given

.....#;! by Eq. 27, and is repeatedhere for convenience,
;,:_u .'

_-_ "_ _0 + EM

•._. I'(Vc+¢M)/VD

......__,i The parameter¢o in Eq. A-I accountsfor the energy that is expendedin

iI ionizationand excitationreactionsand is defined in Eq. 15 as,

_.-_, eo _ U+ + . (A-2)
_.. <a+Ve>

o::

_. The bracketsin this equationrepresentthe enclosedproductaveraged

,_ over the entire electronspeed distributionfunction,i.e.,

,." _ o+(Ve)VeF(Ve)dVe

<O+Ve> = 0 _ , ( )_A-3_
. _ dveF(ve)

0
%

where F(Ve) represents the entire electron distribution function.

i For a plasma with an electron population characterized by a/.

Maxwelliandistributionof temperatureTM, and a monoenergetic

: ..... (primary)group of energyEp, Eq. A-2 becomes,
i _'.
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'I; 6e_:;

I_. 102H

;. n

• = U++ n , (A-4)
:".... '-'p- ' vp + <o'+if. nM a+ Ve>M
i.

bl " •

! " where < >M representsthe enclosedproductaveragedover the

_,.:.,_i Maxwellianspeed distributionfunction.
_ '_i??' "

b;!_ .. The term under the summationsign in Eq. A-4 may be approximated
_..,:_,_.. by consideringonly a singleequivalentlumpedexcitedstate character-

!'"__':!.o_<*_" Ized by a total excitat_:::)collisioncross sectionrex and a lumped

_-::> excitationenergy Uex. For rare gases,Uex may be approximatedby [38],

!:. Uex (U_ + U+) , (A-5)

"_':-i:, where Ug is the lowestexciLa_.ionenergy level. Using this lumped

o_ , excitationapproximationEq. A-4 becomes,

n

'_-'__"_: [_4 Gex Vp + <_exVe>M]Uexi
_" ' " ¢o = U+ + (A-6)
, : np
! ......... " I Vp

_'_,._".X rim _+ <%ve>M

_,_,y._)--.:.,_:_,:,.,.SubstitutingEq. A-6 into A-I yields the followingexpressionfor ¢_,

l:i: [_ aex + <aexVe>M]Uex
......:d_d' U+ + _M +

_:'"_"i-' .__ a_.Vp + <_Ve:,M
.- ¢ = nM (A-7)

" 1 - (Vc + _M) I VD

_ The value of ¢_ may be easily calculatedusing Eq. A-7 for a given

u

, C, c_,' ,
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, MaxwelIian electrontemperature,primary-to-M_xwelllan electrondensity

_' ratio, discharge voltage and value of Vc. In addition, the average

_:_ energyof a Maxwelllanelectronlost to thc anode (cM) must be known.

...... ,_, ReferenceIg gives this energyas,

_%2:_,;:'=
-, _ ; eM = 2TA + VA • (A-8)

°'_'i::_., where TA is the electrontemperatureat the anode and VA is the

:_ differencebetweenplasmapotentialand anode potential. Experiments

presented earlier indicated the electron temperature at the anode was
L

_1_ :: approximately2/3 of the centerlinetemperature. Therefore eM will

i/i_;Z! be taken as,

eM = 2( TM) + VA . (A-g)

- Langmuirprobe measurementsalso indicatethat for the thrusterconfig-

,,,. urationstested in this inves_igatlonVA was alwaysapproximately2v

,_:' thus,this value of VA will be used in these calculationstogetherwith. i"

,_,,,_ Eq. A-g.

.,. _.._ For xenon, the values of the total excitation collision cross

_,.. sectionrequiredby Eq. A-7 were taken from Reference49. Ionization

'_ cross sectiondata were obtainedfrom Reference50. These data, along

_: with polynomialcurve fits used to facilitateinterpolationbetween

''r_I data pointsare given in Figs. A-la and A-lb.

./;i./.L....: With these data,Eq. A-7 was used to calculatethe valuesof _ as

L_I;.._. a functionof electrontemperaturewith the primary-to-Maxwellian

: electrondensityratio as a parameter. The resultsof these calcula-
o.

tions are given in Fig. A-2 where the values VD=4Ov, Vc=OVand VA=2V

_ were used. From this figure,it is seen that the baselineplasma ion

.! energy cost can vary over a wide range of values, and it is not clear

, . _;_,.,;._-_.;.g....._, _.=.............................. .._... ........ .
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at this point which value or values of c; are appropriate. This diffi-

culty arises becausethe Maxwellianelectrontemperatureand prlmary-to-

Maxwellian electron density ratio may not be selected independently as

was done for the calculationsin Fig. A-2.

_ , _: To resolvethis difficultya secondequationfor _; is required.

:_,, This secondequation for Cp may be derived in the following manner.

Equation40 providesan expressionfor the ratio of ion currentpro-

duced by primary electrons to the total ion current produced, i.e.,

Jp VD oo

_::;, :_ The total ion currentproduced,however,is given by Eq. 52 as,

|

"_i:, Jp nonpeVp°+_ + nonMe<°+Ve>M¥ (A-ll)

and the ion currentproducedby primaryelectronsis given by Eq. 30 as,

! I

Jp = nonpeVpO+ _ (A-12)

dividing Eq. A-12 by A-11 yields,

__ = 1 (A-13)
dp n_a+Ve> Nl pO+

_:_: EquatingEq. A-13 to A-IO and solvingfor ¢_ yields the desiredsecond

: equation for the baseline plasma ion energy cost.

: i i

; Vo_o/a+ . (A-14)c = nM<O+Ve>M
1 + n '

pO+Vp
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* determined from the correct corres-
The appropriatevaluesof Ep ,

pondingelectrontemperaturesand densityratios,may be found by

solvingEqs. A-7 and A-14 simultaneouslyfor c_ and the electron

:_ temperaturefor specifiedvaluesof the primary-to-Maxwellianelectron

° densityratio This procedureis most easily accomplishedgraphically,

. as shown in Fig. A-3, where the intersectionof the curvescorresponding

_-_ to the same valuesof np/nM gives both _ and the electrontemperature.

_._ The locus of these intersectionpoints indicatesthe variationof the

_: , baselineplasma ion energy cost with the electrontemperatureand

_.i primary-to-Maxwellianelectrondensityratio• FigureA-3 indicates

.._ * does not-._ii_ that, under the assumpt';onsused for these calculations,Cp

vary substantiallyover wide variationsin.electrontemperatureand

....._C:_ np/_4 . This agreeswith the experimentalobservationthat ¢_ is a

constantfor operationwith xenon propellantat a dischargevoltageof

_ 40 v.

._ * is shown along with the calculatedvaluesThe measuredvalue of Cp

_. in Fig. A-3. The experimentalvalue,at low electrontemperatures,is
i

seen to be generallyslightlyhigherthan the calculatedvalues• The

,, most likelyexplanationfor this is a systematicmeasurementerror of

_ the total ion currentproducedas discussedin AppendixB. Also indi-

_ cated in Fig. A-3 is the theoreticalmaximumvalue of ¢_ for this case

(as calculatedfrom Eq. 41). Finally,it shouldbe noted that the

• above resultsare somewhatsensitiveto the choiceof {M which is

assumedhere to be given by Eq. A-9.
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_ APPENDIXB
!.

_, ERRORANALYSIS

_ _ The experimentsdescribedin this investigationrequire the=_!"r:;"
L '

measurementof severalquantities. These quantitiesmay be separated

into four groups accordingto the techniquerequiredto make the mea-
c,:

surement. These four groupsare:

* and fB",_.: I. Measurementof ep, Cp

'_:o: _(1-nu)• _ _• 2. Measurementof the neutraldensityparameter,

: _ _!! 3. Measurementof the plasmaproperties:nM,, np , and TM .

!i ;: 4 Measurementof doubly chargedions.
L

...._: The errors associatedwith the measurementsof the quantitiesin eachL
.!
L

of these groupswill be discussedseparately. In each case, both

systematicand randomerrorswill be discussed.

i :!.
,._; ,

__ ....... Measurementof ep, e_ and fB

__ Determinationof the quantitiesin this group requiresthe measure-

ment of the thrusterelectricaloperatingparametersincluding:the

dischargevoltage,dischargecurrentand beam current. In addition,

_J the total ion currentproduced(Jp)must be measured. The total ion

" currentproduced is given as the sum of the ion currentsleavingthe

plasma,i.e.,

• Jp = JB + JC + JA + Jimp '

The acceleratorgrid impingementcurrent(Jimp)is generallyless than
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one percentof the beam current,and can probablybe neglected. In this

investigation,however,the impingementcurrentwas always includedin

the total ion productioncurrentfor completeness.

_ Measurementsof the thrusterelectricaloperatingparameterswere

i c,_L made using the ion sourceinstrumentationshown schematicallyin

°_ Fig. B-l. The measurementof the ion currentto cathodepotentialsur-

faces (Jc)was accomplishedby biasing these surfaces30v negativeof

F _ cathodepotential. With this bias,electroncollectionat these surfaces

! was eliminatedallowingthe incomingion currentto be measured. The
i !,"

i _._._ ion currentto anode potentialsurfaces(JA) and to the cathodesupport
)
' _-_ posts could not be measuredwith this technique. The measuredion pro-

_: ductioncurren_consequently,does not includethese currents.

_i_ Three potentiallysignificantsystematicerrorsassociatedwith

;_ _:_ the measurementsof Jp (and thus Cp and fB) have been identified. These
',> .i)

, are:

_;_.. I. Neglectingthe ion currentto anode potentialsurfacesand the

i .. cathodesupportposts.

_ 2. Secondaryelectronsemittedby ions strikingthe negatively

_: biasedsurfaces.

3. The presenceof doubly chargedions.

The most seriousof these is the neglectof the ions reachingthe

anode surfacesand the cathodesupportposts. The error in Jp and Cp

resultingfrom this omissionis difficultto assessaccurately, How-

ever, the physicalareaof these surfaceswas 5% and 2%, respectively,

of the total interiorsurfacearea of the dischargechamber. Thus, one

• might take 7% to be the maximumsystematicerror in Jp resultingfrom
t,

the neglectedion currents. Becauseof these neglectedcurrents,the
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:. true value of Jp should be largerthan the measuredvalue. This implies

._ that the true values of Ep and c; shouldbe smallerthan the measured

: _o-" valuesaccordingto Eq. 2. A 7% error in Jp can result in approximately

,_t,,, , a 13% error in _ . It shouldbe noted, however,that Reference43

through 46 indicate that the effective anode area for ion collection at

a magneticfield cusp should be less than the physicalarea. Conse-

{ quently,it is believedthat the measuredvaluesof _p and _; are no

_.,i, _ more than 10% greaterthan the true values In addition,the true

!_>, value of fB would be expected to be slightly smaller than the measured

: value as a resultof the neglectedion currents.
i

•:_. Secondaryelectrons,emittedas a resultof ions strikingthe

negatively biased surfaces, produce an error in the measurement of the
"i

_-_' ,:;.

,:; ion currentto those surfacesresultingin measuredvaluesof Jc that

:_ are largerthan the actualvalues• The largestsecondaryelectron

..' yields at low energies,for the ions and metal surfacesof concernin

,, this study,appear to be for argon ions incidenton a clean molybdenum

.....' surface [41]. The secondary electron yield for low energy (< 100 eV)

,. argon ions strikingmolybdenumis approximately12% [41]. If half of

,. the ions producedstrikeclean molybdenumsurfacesthen the measured

..... value of Jp would be approximately6% greaterthan the true value as a

, resultof secondaryelectronemission.

It has been observed,however,that the secondaryelectronyield

of a clean surface decreases after exposure to air [59,60]. Reference

: 60 concludes that secondary electron yields are less than 1% for low

intensityand low energy ion incidenton a metal electrodewhich has

been exposed to air and theambient gas pressure is in the mtorr range
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!i duringoperation• In the course of the experimentsin _his investlga-
"r "_'_ ' tion the dischargechambersurfaceswere frequentlyexposedto air

! "

_ betweentests. It is believedthat the error in the measurementof Jp

!i).: resultingfrom secondaryelectronemissionis less tllanI%.

In the calculationsof Cp, c_ and fB it is assumedthat only singly

charged ionsexist. On the basis of this assumption,a doublycharged
/

ion leavingthe plasmais interpretedas two singlychargedions. The

* and fB shouldeffect,however,of these doubly chargedionson _p, Cp

not be substantialfor two reasons. First,the fractionof doubly-to-

singlychargedions is generallysmall. Second,the energy requiredto

_. produceone doubly chargedion shouldnot be vastlydifferentthan the

.;,i;: energy requiredto producetwo singlychargedions. The presenceof

_. doublychargedions does have a significanteffecton the value of the

neutraldensityparameter,however,and this problemis addressedlater

_ in this appendix

'_; Of the three systematicerrorsmentionedabove only the neglectof

_.' the ion currentsto anode surfacesand to the cathodesupportposts

; appearsto be significant. The measuredvaluesof Ep and ¢_ are, there-

fore, believedto be no more than 10% greaterthan the true valuesas a

• resultof systematicmeasurementerrors.

The followinganalysiswas performedto estimatethe uncertainty

associatedwith the experimentallymeasuredvaluesof _p. The uncer-

taintyin Cp resultsfrom the uncertaintyin the measurementsof the

independentvariableswhich appearon the right-hand-sideof Eq. 2. In

general,the uncertaintyof a quantityy which is a functionof the

measurableindependentvariablesxl, x2, x3. . . xn is given by [61]_



:':": Ay = _ AXi + _L AX2 +...+ AXn , (B-l)....i Bx2L . oL

::::;:i.;;=_ where Axi is the uncertaintyof the ith Independentvarlable, For

._::.,<.,:_i._i,,. the plasma ion energycost equationgiven by*,

" (jD_Jp)VD

_p jp (b-2)
i ._..

;. Eq. B-I becomes,

Aep = AJD) +\@jp Adp + AVD) . (B-3)

_,_ Carryingout the partialdifferentiations,Eq. B-3 becomes,

_ _i_i: A_p = _ppAJp + _p2aJp + _pp- l AVD , (B-4)

:..,l_:_:_::.;:_::c_ TO use Eq. B-4 the uncert,aintiesin the measurementsof the discharge

_ ;;;i::i!i):i! current (AJD),the dischargevoltage (AVD) and the total ion current
' ,;' , c

'''" ,l..;:If?: produced(AJp)must be determined. These uncertaintiesresultfrom the

-o.-,.:_::,_:_i, uncertaintiesof the digitalmeters used to make the measurementsand

• any variation in the thruster operating set point which may occur while

the data is being recorded.

Simpson digital panel meters were used to measure the discharge

current,dischargevoltageand beam current. These meters have an

uncertainty of O.l_ plus 1 digit, The ion current to the negatively

_, :: biasedsurfaceswas measuredusing a Kiethlydiyitalmultimeter. This
c, :;

meter has an uncertaintyof 0.5% plus l digit. The variationin the
,,x •

thrusteroperatingset point was taken to be 1 digit on each of the

_ * This form of Eq. 2 is appropriatefor the case where JA may be

neglectedand the impingementcurrentis includedin J_.
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_': digitalmeters• In addition,3v was added to the uncertaintyin the

" dischargevoltagebecauseof the voltagedrop acrossthe thermonic

cathodewires. With these uncertainties,the uncertaintyin ep was

. ,, calculatedusing Eq. B-4. The resultsof these calculationsare shown
L '

: in Fig. B-2 where the verticalerror bars representthe measurement
.... :_; .

,.'. uncertainty. The horizontalerror bars representthe uncertaintyin

L,, ,_ the neutraldensityparameterand is discussedin the next section.

_._,'__,,,_,_,, The data in Fig. B-2 is the same as that in Fig. 6a. The uncertainty

=-":": '" in the measuredvaluesof ep range from approximately7 to 11%
.....•!_'_"_.',. , •

= __i Measurementof m(l-nu)

_ : Three systematicerrors exist in the measurementof the neutral

_,_._'i:-:_, density parameter, m(1-nu). The first is the effect of doubly charged
i

"%::_. ions on the propellantutilizationefficiency. The second is the use ,

, of a gas flow meter with argon, krypton and xenon gases that has only

•! been calibratedfor air. The third is the backflowof neutralatoms

,:._ from the vacuumchamber intothe dischargechamberthroughthe grids.

_,:_ The presenceof doublycharged ions in the beam leads to artific-

•"_:" " ally highmeasurementsof the propellantutilizationand,consequently,

-,_:.... low values of the neutraldensityparameter. Measurementsof the

, . .++ ..+
--.--_;,.,,,._ doubly-to-singlychargedion beam currentdB ldB were made along the

_' _'_r_ thrustercenterline. This informationcan be used to correctthe
: ......' , •

!_-_;:.':_:,o propellant uti11zationaccordingto the equation•

._,>_. . 1 .++..+
/ +

JB IJB

(nu)c°rrected= (nu)measured I+ "++"+ ' (B-5)-- " _B /dB

__,_i Since the value of JB IJB at the centerlineis generallyhigherthan

LI _ _ ............ ' ........ "" k,'..... "_t
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,', the average value its use in Eq. B-5 should tend to over correct the
i ,r ..

propellantutlllzatlonslightly. The resultingerror in the neutral
E ....

densityparameteris believedto be small,however,

.... A TeledyneHastlngs-Raydstflow meter with a range of 0 to 50
vl

sccmwas used to measurethe propellantflow rate into the thruster.

The flow meter was calibratedfor air,requiringthe output readingstor

• ' "_ be analyticallycorrectedfor operationwith the gases argon, krypton

! ......... and xenon. The use of the analytical corrections rather than recal i-

_' ;"_:.. bratlngthe flow meter for the differentgases is expectedto introduce
,-_,'r_"

Y:,':. only a very slighterror in the flow rate measurement. Thus, the

........ systematicerrors in the measurementof the neutraldensityparameter

o'o are believedto be negligible.

"___ The backflowof neutralatoms from the vacuumfacilityinto the
., , , ,, ,,

'L, ,t' dischargechamberwas calculatedbased on measurementsof the facility

'-.,.,:i_ pressuremade _Im downstreamof the thruster. These calculationswere

;_)_"J:_ used to correctthe total propellantflow rate into the discharge
i--._,_:_,'

i""_L,_" . chamber.
L' "

i

i __ The accuracyof the flow meter is I% of full scale. This turns
_", ._', :

L ......_' out to be the major uncertaintyin the determinationof the neutral

density parameter. The uncertainty in the neutral density parameter
!

i-m_: is indicatedby the horizontalerror bars in Fig. B-2.

, Plasma Propert$ Measurement

.....'_: Plasmapropertymeasurementswere made using one Langmuirprobe

, . : positionedalong the dischargechambercenterllneand a secondprobe

i.... positioned on a magnel:tc field cusp. Details of the Langmutr probe

...........'----.... _%_..\;.-/.;,,.;.____-:-__ -T:_]....,-_c:_'-,. -'_--:T-:_;;-:_.c'. _... '....,_, . L..



!_;: 118

ii circuitryused are given in Reference62. There are two major sources
4,

of error in using Langmuirprobesto obtainplasma propertydata. The
i
_ ' first of these deals with obtainingthe probe trace itself(i e ,

! measurementof collectedcurrentversus probe voltage). The second

i sourceof error arisesfrom the analysisof the probe trace to obtain

the desiredplasmapropertyinformation.

I_: Errors associatedwith the trace includesuch
obtaining probe

i thingsas: the variationin work functionover the probe surfacearea,

secondaryelectronemissionfrom the probe,probe insulatorcontamina-

tion, noise in the plasma,electricalnoise in the probe circuitry,
i

iiii plasma perturbationby the probe,and magneticfieldeffects. Plasmaperturbationby the probe is minimizedby using a probe with a small

_'!i!_ surfacearea. Biasingthe probe negativeof cathodepotentialwhen

_iI! data is not being collectedtends to sputterclean the surfaceand

_/ minimizesthe variationin work functionover the probe surfacearea.

!_ Changingthe probe supportinsulatorfrequently(_ every 6 hours)mini-

_ mizes the problemof insulatorcontamination. Noise in the plasmawas

_;- minimizedby using a D.C. currentheatedtherminoiccathode. Magnetic

• field effectswere minimizedby placingthe probe on the discharge

chambercenterlinewhere the magneticflux densitywas less than 0.001

tesla. For the probe positionedon the magneticfield cusp, where the

; magneticflux density is approximately0.2 tesla, the magneticfield

effectsare substantial. In this case, only the electrontemperature

and primaryelectronenergydata obtainedfrom these tracesare believed

to be meaningful.

1.



_''1_l':";_': ..... The probe traceswere analyzedusing a non-linearnumericalcurve

"_'_'_'_:.,_,,:_,.,_fittingroutinesimilarto the one describedby Beattie[6]. This

_._:_,'. routineassumesan _lectronpopulationthat is characterizedby a Max-

.ii '' wellianplus mono-energetic(primary)electronenergydistribution.

o 'i.. Probe traces were digitized using an HP-7470A graphics plotter together

. _ with an HP-85 mini-computer. The plottermay be used as a digitizer

.....:"'i. when equippedwith a specialdigitizingsight. Accuratedigitizingis

,. crucialto obtaininggood primaryelectroninformation.

.....•i. The errors introduced during probe trace digitizing and analysis

i):- may be determinedby generatingidealizedprobe traceswith known

:. plasma propertiesand then analyzingthese traces in the usual manner.

....: Eight such idealized probe traces were generated and analyzed, covering

a wide range of plasmaconditions. The resultsindicatedthat the data

. ._...... analysiscan accuratelydistinguishprimary-to-Maxwellianelectron

.... densityratios as small as 0.2% providedthe Maxwelllan electrontemper-

•_. ture is low. The most difficulttraces to analyzeare those correspond-

.- ing to low primary-to-Maxwellian electron density ratios in a plasma

with a high Maxwellianelectrontemperature. This particularplasmar .

m_

E

_....._i:_ condition,however,was not observedexperimentallyin the courseof

" this investigation.The resultsin ChaptersIll, IV and AppendixA of

this report indicate that when the primary-to-Maxwellian electron

_ : densityratio is small the Maxwellianelectrontemperatureis low and
iI

............... :" ' when the electrontemperatureis high the primary-to-Maxwellianelec-

tron density ratio is large. These types of probe traces are accurately

analyzedwith the data reductionsystemused in this investigation.

The idealized probe trace analysis indicated that under most conditions
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the following errors may be expected from the digitizing and curve

fitting procedures:

PlasmaPotentional ± 0.3 v

, MaxwellianElectronDensity,nM _ 5%
6i ::

MaxwellianElectronTemperature,TM _ 3%

_ _ + 15%
_-_.- PrimaryElectronDensity,np .

_ Ep + 5%PrimaryElectronEnergy, -
,

i_.. np/nM + 3%

i_'_.i The overalluncertaintyassociatedwith the plasmapropertymeasure-

_ ments are believedto be the following:

-- Plasma Potential _ l.O v

_i!_ MaxwellianElectronDensity,nM _ 20T

_ "_ MaxwellianElectronTemperature,TM + 10%

) i_ PrimaryElectronDensity,np _ 30%i i_, ,
J + IO%

PrimaryElectronEnergy,Ep

_ p/ + 30%:'_ n nM

,;_

_., . Measurementof Doubl7ChargedIons

Measurementsof doubly charged ions in the beam were made using an

E x B probe similarto that describedin Reference42, Errorsassoci-
F

ated with these measurementsinclude:the accuracyof the picoammeter

used to read the probe current,selectionof the properprobe deflection

voltageto obtain the maximumsignalcorrespondingto the particular

chargedspecieof interest,and variationin the thrusteroperating

conditionsduring data collection.
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Probe current readings were madeusing a Keithly model 410A

picoammeter with an accuracy of ± 4% of full scale. Selection of the

, proper probe deflectionvoltage is a fairlydifficultthing to do

-, . accuratelybecauseof the slow responsetime of the plcoammeter

'i: (between0.4 and 12s). This is especiallytrue for currentsin the
t_

:_: lowestrangesof the ammeter. Errorsresultingfrom the uncertainty

., in probe deflectionvoltageand variationin thrusteroperatingcondi-

tions are believedto introducea maximumerror of 10% in the measured

values of the singleand double ion currents. The total uncertanties¢

iii in the measuredvaluesof the doubly-to-singlycharged ion current

ratio, resultingfrom the sourcesof error mentionedabove, are indi-

. _._ cated in Fig. B-3 by the verticalerror bars. The horizontalerror

:. bars indicatethe uncertaintyin the correctedpropellantutilization

efficiencyas mentionedearlier.

!I •

/.
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APPENDI'_C
:i

:' NOMENCLATURE

_-i_.. Ag = Area of grids throughwhich the ion beam is extracted(m2)

,, , Bo = °
,i CO = Primaryelectronutilizationfactordefinedby Eq. 26 (A eq.)-l

,._:. Ep = PrimaryElectronEnergy (eV)

_......ii_ e = ElectronicCharge (1.6 x lO"19 coul.)

" :_ fA = Fractionof ion currentto anode surfaces

,_'!_ fB = Extractedion fraction

--/ fc = Fractionof i:,,currentto cathodesurfaces

'_i JA = Ion currentto anode potentialsurfaces(A)
!

JB = Ion beam current (A)

, _ J_ = Singly chargedion beam current (A)
++

_ JB = Doublychargedion beam current (A)

JC = Ion currentto cathodepotentialsurfaces(A)

JD = Dischargecurrent(A)

• JE = CathodeEmissionCurrent(A)
I

Jex = Total productionrate of excitedneutralatoms by primary
® electrons- expressedas a current(A)

" Jimp = Acceleratorgrid ion impingementcurrent(A)

Jj = Productionrate of jth excitedstate expressedas a current(A)

o JL = Primaryelectroncurrentto the anode (A)

• JM = Maxwellianelectroncurrentto the anode (A)

Jp = Totalioncurrentproductionrate expressedas a current (A)
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-" = Ion productionrate by primaryelectronsexpressedas a
_L JP current (A)

J+ = Productionrate of singly chargedions expressedas a
_i_ P current(A)
X_,

++

ii,: ",'_ Jp = Productionrate of doubly chargedions expressedas a
current (A)

J = Ion productionrate by Maxwellianelectronsexpressedas a
p,m current(A)

_" _e = Primaryelectroncontainmentlength (m)

Mf = Final spacecraftmass (kg)

Mg = Generatormass (kg)

._ Mi = Initialspacecraftmass (kg)

M_ = Payloadmass (kg)

Mpo = Initialpropellantmass (kg)

me = ElectronMass (kg)

_ mi = Ion mass (kg¢

m = Thrusterpropellantflow rate (A eq.)

: • mp = Total spacecraftpropellantflow rate (kg/s)

. ne = Total electrondensity (m"3)

ni = Total ion density (m"3)

._i nM = Maxwellianelectrondensity (m"3)

n = Primaryelectrondensity(m-3)
" p

no = Neutralatom density(m"3)

no = Neutralatom loss rate (A eq,)

• Pg = GeneratorPower (W)

+ = Primaryelectronrate factor for ionizationof neutral
.... Po atoms (m3/s)

P++ = Primaryelectronrate factor for double ionizationof
o neutralatoms (m3/s)
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-,:::,,.... P+++ = Primaryelectronrate factor for the productionof double
_:;iii,i_.. ions from single ions (m3/s)

--iii_Y_ Q_ = Maxwellianelectronrate factor for ionizationof neutral
_,:_,., atoms (ma/s)

-":'_"::"-_,,,, Q + = Maxwellianelectronrate factor for double ionizationof
_;i_i_ " neutralatoms (m3/s)

o,g_..... ++

"_.;i Q+ = Maxwellianelectronrate factorfor the productionof

' double ions from singleions (m3/s)

TA = Maxwellian electron temperature at anode surface (eV)

,, TM = Maxwellianelectrontemperaturein bulk plasma (eV)

,, t = Missionduration (s)

_, ,, u = Ion exhaustvelocity(m/s)

_ Uex Lumpedexcitationenergy (eV)
L

..'_- U+ = Ionizationenergy (eV)

_._ Uj = Excitationenergy of jthexcitedstate (eV)

i,_, U_ = Lowestexcitationenergy (eV)

• VA = Anode sheath voltage (v)

_ VC = Plasmapotentialfrom which electronsemittedby the cathode
_, are acceleratedto becomeprimaryelectrons

" VD = Discharge(Anode)voltage(v)

_ VN = Net acceleratingvoltage(v)

" V+ = Screen grid supplyvoltage (v)

V. = Acceleratorgrid supplyvoltage (v)

' vb = Bohmvelocity(m/s)

,_ _ ve = Electronvelocity (m/s)

Vp = Primary electron velocity (m/s)

vo = Neutralatom velocity (m/s)

. _ = Volume of ion productionregion (m3)

x = Independent variable

y = Dependentvariable

r,
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d J

: _ = Power plant specificmass (kg/w)
o

_,. AJD = Dischargecurrentuncertainty(A)

AJp = Ion productioncurrentuncertainty(A)

_. ' AV = Characteristicvelocity (m/s)

_,,i.::-,, AVD = Dischargevoltageuncertainty(V)

Ax = Uncertaintyof independentvariable

Ay = Uncertaintyof dependentvariable

_ cB = Averagebeam ion energy cost (eV/beamion)
'PI"

EM = Averageenergy of Maxwell!anelectronsleavingthe plasma

=_i_ at the anode (eV)

• ..... Cp = Averageplasma ion energy cost (eV/plasmaion)

ep Baselineplasma ion energy cost (eV/plasmaion)

== _o = Averageplasma ion energy cost consideringionizationand
- excitationprocessesonly (eV)

'ell nt = Thrusterelectricalefficiency

nu Propellantutilizationefficiency

-_'<_,<_"' Oex = Total excitationcollisioncross section(m2)
",_ ._ !

:;- _ex = Total excitationcollisioncross sectionat the primary
_ electronenergy (m2)

aj = Excitationcollisioncross sectionof the jth state (m2)

- o. = Excitationcollisioncross sectionof the jth state at the
.... 3 primaryelectronenergy (m2)

!

oo = Total inelasticcollisioncross sectionat the primary
r'' electronenergy (m2)

_' : _+ = Ionizationcollisioncross section(m2)
I

d+ = Ionizationcollisioncross sectionat the primaryelectron
energy (m2)

o "

@a = Transparencyof the acceleratorgrid to neutralatoms

¢i = Transparencyof the screengrid to ions

, • ,,_". d.",_ " .. _-.-"
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E

'_ r " ¢S = Transparency of the screen grid to neutral atoms

_ 0o = Effectivetransparencyof the grid systemto neutralatoms

•- < > = Averageover the entireelectronenergy distributionfunction

< >M= Average over the Maxwellian energy distribution function

a-

p- j-..,:

i . ..

i 'i
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