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Lithospheric Structure in the Pacific Geoid 	 ^^

The determination of the shape of the earth has led to an

understanding of the geoidal undulations as they relate to the

density distribution on and within the surface of the earth. A

spherical harmonic expansion of the gravitational potential every-

where outside of the earth yields, in essence, a decomposition of

the geoid field with respect to spatial variation. From this de-

composition, the geoid can be divided into the long-wavelength

( a z 4500 km ), the intermediate-wavelength ( 4500 z A z 200),

and the short-wavelength ( A z 200 km ) contributions. The long=

wavelength part of the field is attributed to mantle convection

cells extending deep into the mantle, whereas the short-wavelength

part is due to uncompensated seafloor topography. On the other

hand, the source of the intermediate wavelengths of the geoid is not

well understood. Investigators have speculated that these inter-

mediate geoid undulations are perhaps due to shallow, small-scale

mantle instabilities, but a correlation has been observed with the

structure of the lithosphere.

tie have been studying the high degree and order (n,m > 12,12)

SEASAT geoid in the central Pacific as it correlates with the struc-

ture of the cooling lithosphere. Relative changes in lithospheric

plate age across major fracture zones in relatively young ( S 80 Ma)

seafloor frame the east-west trending pattern formed by the geoid

anomalies (Figure 1). The separation of the major fracture zones is

` 1000 km, whereas the dominant wavelength of the geoid field is
A
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` 2000 km in the north-south direction.

Investigators customarily remove the effects of regional litho-

spheric thermal subsidence from bathymetry to expose anomalies in

depth, the so-called residual depth anomalies. This field removal

in bathymetry corresponds to removal of some of the low degree and

order (n,m < 12,12) geoidal components, and the step-like structure

across fracture zones is also removed. We have, instead, removed

the regional thermal subsidence from the bathymetry by subtracting

a mean subsidence surface from the observed bathymetry. This pro-

duces what we are calling a residual bathyretry map (Figure 2)

analogous to the usual residual depth anomaly maps. The residual

bathymetry obtained in this way then contains shallow depths for

young seafloor, and larger depths for older seafloor, thus retaining

the structure of the lithosphere while removing the subsidence of

the lithosphere. This is the operation we have performed on the

bathymetry data for the purpose of yielding a transfer function

between the geoid field and the bathymetry field. However, a better

way to proceed is to expand the bathymetry field in terms of spher-

ical harmonics, and then remove the coefficients up to, and including,

degree and order 12. By doing this, we are left with a high degree

and order bathymetry field which has been treated identically to

the geoid, thus eliminating possible ambiguities due to model field

removal.

In order that sub-lithospheric density variations be revealed

with the geoid, the regional geoid anomalies ( ` 2 m) associated

with bathymetric variations, must first be removed. We have used

spectral techniques to generate a synthetic geoid (Figure 3) by fil-

tering the residual bathymetry assuming an Airy-type isostatic compen-

sation model. We have assumed a value of 100 km for the thickness
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of the lithosphere, and have also assumed the plane approximation

to be valid. The resulting field fairly closely resembles in pat-

tern the observed geoid of Figure 1, but the amplitudes are different,

and may yet need to be adjusted throu gh the depth of compensation and

density structure. It is, nevertheless, clear that this field due

to lithospheric structure may be a major component of the geoid in

this region.

We have obtained and unbiased estimate of the admittance, and a

comparison with model admittances shoes that, for the region under

study, no single compensation mechanism will explain all of the power

in the geoid. Our values of the admittance for the shorter wave-

lengths { }, < 450 km) agree with the values obtained by Sandwell &

Poehls (1980) for a similar region in the Pacific assuming an Airy

model. The longer wavelengths do not agree with the Airy model, nor

do they agree with the thermal compensation model. This may most

likely be due to the fact that the spectral contributions from the

Hawaiian swell and from the regional Pacific bathymetry are indis-

tinguishable in the frequency domain. Nevertheless, because topo-

graphic features are mainly coherent with the geoid, to first order

an isostatically compensated lithosphere cut by major E-W fracture

zones accounts for most of the power in the high degree and order

SEASAT geoid in the central Pacific.
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Fig, 1. The SEASAT geoid superimposed on the map of the are of the

ocean basins r-f Pitman et al. (1974). Major fracture zones with large

offsets have been marked with dashed lines. From north to south, these

fracture zones are Mendocino, Murra y , Molokai, Clipperton, and Marquesas

and the last is apparently unnamed. These fracture zones frame the pat-

tern of geoid anomalies, and there is a correlation between regions of

relatively voling seafloor and positive geoid anomalies.
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Fig. 2. The residual bathymetry obtained by removing a mean thermal sub-
sidence surface from the observed bathymetry. Large positive values occur
over shallow, young seafloor, and large negative values over deep, older
seafloor.
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Fig. 3. The synthetic geoid obtained by filtering the residual bathy-

metry in figure 2 through an Airy-type isostatic compensation model.
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